WorldWideScience

Sample records for biomedical science research

  1. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  2. Important techniques in today's biomedical science research that ...

    African Journals Online (AJOL)

    The need for best evidence has driven researchers into multidisciplinary, collaborative approaches which have become mainstay in today's biomedical science. The multidisciplinary and collaborative approaches to research in research-intensive academic medical centres in the USA and in other countries of affluence has ...

  3. Science communication in the field of fundamental biomedical research (editorial).

    Science.gov (United States)

    Illingworth, Sam; Prokop, Andreas

    2017-10-01

    The aim of this special issue on science communication is to inspire and help scientists who are taking part or want to take part in science communication and engage with the wider public, clinicians, other scientists or policy makers. For this, some articles provide concise and accessible advice to individual scientists, science networks, or learned societies on how to communicate effectively; others share rationales, objectives and aims, experiences, implementation strategies and resources derived from existing long-term science communication initiatives. Although this issue is primarily addressing scientists working in the field of biomedical research, much of it similarly applies to scientists from other disciplines. Furthermore, we hope that this issue will also be used as a helpful resource by academic science communicators and social scientists, as a collection that highlights some of the major communication challenges that the biomedical sciences face, and which provides interesting case studies of initiatives that use a breadth of strategies to address these challenges. In this editorial, we first discuss why we should communicate our science and contemplate some of the different approaches, aspirations and definitions of science communication. We then address the specific challenges that researchers in the biomedical sciences are faced with when engaging with wider audiences. Finally, we explain the rationales and contents of the different articles in this issue and the various science communication initiatives and strategies discussed in each of them, whilst also providing some information on the wide range of further science communication activities in the biomedical sciences that could not all be covered here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Structural biology computing: Lessons for the biomedical research sciences.

    Science.gov (United States)

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields. Copyright © 2013 Wiley Periodicals, Inc.

  5. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-10-26

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research....... The Sheraton Crystal City. Oncology December 8-9, 2011.. The Sheraton Crystal City. Clinical Research...

  6. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... Committee Act) that the Panel for Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board will meet on...

  7. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-01-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... Committee Act) that the Panel for Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board will meet on...

  8. Development of Tritium AMS for Biomedical Sciences Research

    International Nuclear Information System (INIS)

    Dingley, K H; Chiarappa-Zucca, M L

    2002-01-01

    Tritium ( 3 H) is a radioisotope that is extensively utilized in biological research. Normally in the biological sciences, 3 H is quantified by liquid scintillation counting. For the most sensitive measurements, liquid scintillation counting requires large samples and counting times of several-hours. In contrast, provisional studies at LLNL's Center for Accelerator Mass Spectrometry have demonstrated that Accelerator Mass Spectrometry (AMS) can be-used to quantify 3 H in milligram-sized biological samples with a 100 1000-fold improvement in detection limits when compared to scintillation counting. This increased sensitivity is expected to have great impact in the biological research community. However, before 3 H AMS can be used routinely and successfully, two areas of concern needed to be addressed: (1) sample preparation methods needed to be refined and standardized, and (2) smaller and simpler AMS instrumentation needed to be developed. To address these concerns, the specific aims of this project were to: (1) characterize small dedicated 3 H AMS spectrometer (2) develop routine and robust biological sample preparation methods, and (3) with the aid of our external collaborations, demonstrate the application of 3 H AMS in the biomedical sciences. Towards these goals, the 3 H AMS instrument was installed and optimized to enhance performance. The sample preparation methodology was established for standard materials (water and tributyrin) and biological samples. A number of biological and environmental studies which require 3 H AMS were undertaken with university collaborators and our optimized analysis methods were employed to measure samples from these projects

  9. Some Aspects of the State-of-the-Arts in Biomedical Science Research

    African Journals Online (AJOL)

    Summary: In the biomedical sciences, there is need to generate solutions for Africa's health and economic problems through the impact of university research. To guide organizational transformation, the author here presents some aspects of the state-of-the-arts of biomedical science research in advanced countries using a ...

  10. Biomedical Science Technologists in Lagos Universities: Meeting ...

    African Journals Online (AJOL)

    Biomedical Science Technologists in Lagos Universities: Meeting Modern Standards in Biomedical Research. ... biomedical techniques. SOTA biomedical science needs adequate financial investment for the scientific resources as well as stable civic infrastructure, thus these public institutions need more of such provisions.

  11. Research Training in the Biomedical, Behavioral, and Clinical Research Sciences

    Science.gov (United States)

    National Academies Press, 2011

    2011-01-01

    Comprehensive research and a highly-trained workforce are essential for the improvement of health and health care both nationally and internationally. During the past 40 years the National Research Services Award (NRSA) Program has played a large role in training the workforce responsible for dramatic advances in the understanding of various…

  12. Reflections on my journey in biomedical research: the art, science, and politics of advocacy.

    Science.gov (United States)

    Slavkin, H C

    2013-01-01

    Scientific Discovery often reflects the art, science, and advocacy for biomedical research. Here the author reflects on selected highlights of discovery that contributed to several aspects of our understanding of craniofacial biology and craniofacial diseases and disorders.

  13. Egyptian Journal of Biomedical Sciences

    African Journals Online (AJOL)

    The Egyptian Journal of Biomedical Sciences publishes in all aspects of biomedical research sciences. Both basic and clinical research papers are welcomed. Vol 23 (2007). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Table of Contents. Articles. Phytochemical And ...

  14. Bayes' theorem: A paradigm research tool in biomedical sciences ...

    African Journals Online (AJOL)

    One of the most interesting applications of the results of probability theory involves estimating unknown probability and making decisions on the basis of new (sample) information. Biomedical scientists often use the Bayesian decision theory for the purposes of computing diagnostic values such as sensitivity and specificity ...

  15. Boundary-Work in the Health Research Field: Biomedical and Clinician Scientists' Perceptions of Social Science Research

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D.

    2009-01-01

    Funding agencies in Canada are attempting to break down the organizational boundaries between disciplines to promote interdisciplinary research and foster the integration of the social sciences into the health research field. This paper explores the extent to which biomedical and clinician scientists' perceptions of social science research operate…

  16. Molecular mass spectrometry imaging in biomedical and life science research

    Czech Academy of Sciences Publication Activity Database

    Pól, Jaroslav; Strohalm, Martin; Havlíček, Vladimír; Volný, Michael

    2010-01-01

    Roč. 134, č. 5 (2010), s. 423-443 ISSN 0948-6143 R&D Projects: GA MŠk LC545; GA ČR GPP206/10/P018 Institutional research plan: CEZ:AV0Z50200510 Keywords : Mass spectrometry * Chemical imaging * Molecular imaging Subject RIV: EE - Microbiology, Virology Impact factor: 4.727, year: 2010

  17. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  18. Patterns of biomedical science production in a sub-Saharan research center

    Directory of Open Access Journals (Sweden)

    Agnandji Selidji T

    2012-03-01

    Full Text Available Abstract Background Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing in sub-Saharan Africa. This study aims to describe the patterns of clinical research activities at a sub-Saharan biomedical research center. Methods In-depth interviews were conducted with a core group of researchers at the Medical Research Unit of the Albert Schweitzer Hospital from June 2009 to February 2010 in Lambaréné, Gabon. Scientific activities running at the MRU as well as the implementation of ethical and regulatory standards were covered by the interview sessions. Results The framework of clinical research includes transnational studies and research initiated locally. In transnational collaborations, a sub-Saharan research institution may be limited to producing confirmatory and late-stage data with little impact on economic and social innovation. However, ethical and regulatory guidelines are being implemented taking into consideration the local contexts. Similarly, the scientific content of studies designed by researchers at the MRU, if local needs are taken into account, may potentially contribute to a scientific production with long-term value on social and economic innovation in sub-Saharan Africa. Conclusion Further research questions and methods in social sciences should comprehensively address the construction of scientific content with the social, economic and cultural contexts surrounding research activities.

  19. Bridging the social and the biomedical: engaging the social and political sciences in HIV research.

    Science.gov (United States)

    Kippax, Susan C; Holt, Martin; Friedman, Samuel R

    2011-09-27

    This supplement to the Journal of the International AIDS Society focuses on the engagement of the social and political sciences within HIV research and, in particular, maintaining a productive relationship between social and biomedical perspectives on HIV. It responds to a number of concerns raised primarily by social scientists, but also recognized as important by biomedical and public health researchers. These concerns include how best to understand the impact of medical technologies (such as HIV treatments, HIV testing, viral load testing, male circumcision, microbicides, and pre-and post-exposure prophylaxis) on sexual cultures, drug practices, relationships and social networks in different cultural, economic and political contexts. The supplement is also concerned with how we might examine the relationship between HIV prevention and treatment, understand the social and political mobilization required to tackle HIV, and sustain the range of disciplinary approaches needed to inform and guide responses to the global pandemic. The six articles included in the supplement demonstrate the value of fostering high quality social and political research to inform, guide and challenge our collaborative responses to HIV/AIDS.

  20. Biomedical Science Undergraduate Major: A New Pathway to Advance Research and the Health Professions.

    Science.gov (United States)

    Gunn, John S; Ledford, Cynthia H; Mousetes, Steven J; Grever, Michael R

    2018-01-01

    Many students entering professional degree programs, particularly M.D., Ph.D., and M.D./Ph.D., are not well prepared regarding the breadth of scientific knowledge required, communication skills, research experience, reading and understanding the scientific literature, and significant shadowing (for M.D.-related professions). In addition, physician scientists are a needed and necessary part of the academic research environment but are dwindling in numbers. In response to predictions of critical shortages of clinician investigators and the lack of proper preparation as undergraduates for these professions, the Biomedical Science (BMS) undergraduate major was created at The Ohio State University to attract incoming college freshmen with interests in scientific research and the healthcare professions. The intent of this major was to graduate an elite cohort of highly talented individuals who would pursue careers in the healthcare professions, biomedical research, or both. Students were admitted to the BMS major through an application and interview process. Admitted cohorts were small, comprising 22 to 26 students, and received a high degree of individualized professional academic advising and mentoring. The curriculum included a minimum of 4 semesters (or 2 years) of supervised research experience designed to enable students to gain skills in clinical and basic science investigation. In addition to covering the prerequisites for medicine and advanced degrees in health professions, the integrated BMS coursework emphasized research literacy as well as skills related to work as a healthcare professional, with additional emphasis on independent learning, teamwork to solve complex problems, and both oral and written communication skills. Supported by Ohio State's Department of Internal Medicine, a unique clinical internship provided selected students with insights into potential careers as physician scientists. In this educational case report, we describe the BMS

  1. The Value of Traditional Ecological Knowledge for the Environmental Health Sciences and Biomedical Research.

    Science.gov (United States)

    Finn, Symma; Herne, Mose; Castille, Dorothy

    2017-08-29

    Traditional Ecological Knowledge (TEK) is a term, relatively new to Western science, that encompasses a subset of traditional knowledge maintained by Indigenous nations about the relationships between people and the natural environment. The term was first shared by tribal elders in the 1980s to help raise awareness of the importance of TEK. TEK has become a construct that Western scientists have increasingly considered for conducting culturally relevant research with Tribal nations. The authors aim to position TEK in relation to other emerging schools of thought, that is, concepts such as the exposome, social determinants of health (SDoH), and citizen science, and to explore TEK's relevance to environmental health research. This article provides examples of successful application of TEK principles in federally funded research when implemented with respect for the underlying cultural context and in partnership with Indigenous communities. Rather than treating TEK as an adjunct or element to be quantified or incorporated into Western scientific studies, TEK can instead ground our understanding of the environmental, social, and biomedical determinants of health and improve our understanding of health and disease. This article provides historical and recent examples of how TEK has informed Western scientific research. This article provides recommendations for researchers and federal funders to ensure respect for the contributions of TEK to research and to ensure equity and self-determination for Tribal nations who participate in research. https://doi.org/10.1289/EHP858.

  2. Synergies and Distinctions between Computational Disciplines in Biomedical Research: Perspective from the Clinical and Translational Science Award Programs

    Science.gov (United States)

    Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.

    2010-01-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198

  3. African Journal of Biomedical Research: Submissions

    African Journals Online (AJOL)

    AIMS AND SCOPE: The journal is conceived as an academic and professional journal covering all fields within the Biomedical Sciences including the allied health fields. Articles from the Physical Sciences and humanities related to the Medical Sciences will also be considered. The African Journal of Biomedical Research ...

  4. Low statistical power in biomedical science: a review of three human research domains

    Science.gov (United States)

    Dumas-Mallet, Estelle; Button, Katherine S.; Boraud, Thomas; Gonon, Francois

    2017-01-01

    Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0–10% or 11–20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation. PMID:28386409

  5. Biomedical research applications

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The biomedical research Panel believes that the Calutron facility at Oak Ridge is a national and international resource of immense scientific value and of fundamental importance to continued biomedical research. This resource is essential to the development of new isotope uses in biology and medicine. It should therefore be nurtured by adequate support and operated in a way that optimizes its services to the scientific and technological community. The Panel sees a continuing need for a reliable supply of a wide variety of enriched stable isotopes. The past and present utilization of stable isotopes in biomedical research is documented in Appendix 7. Future requirements for stable isotopes are impossible to document, however, because of the unpredictability of research itself. Nonetheless we expect the demand for isotopes to increase in parallel with the continuing expansion of biomedical research as a whole. There are a number of promising research projects at the present time, and these are expected to lead to an increase in production requirements. The Panel also believes that a high degree of priority should be given to replacing the supplies of the 65 isotopes (out of the 224 previously available enriched isotopes) no longer available from ORNL

  6. Compliance with National Ethics Requirements for Human-Subject Research in Non-biomedical Sciences in Brazil: A Changing Culture?

    Science.gov (United States)

    de Albuquerque Rocha, Karina; Vasconcelos, Sonia M R

    2018-02-06

    Ethics regulation for human-subject research (HSR) has been established for about 20 years in Brazil. However, compliance with this regulation is controversial for non-biomedical sciences, particularly for human and social sciences (HSS), the source of a recent debate at the National Commission for Research Ethics. We hypothesized that for these fields, formal requirements for compliance with HSR regulation in graduate programs, responsible for the greatest share of Brazilian science, would be small in number. We analyzed institutional documents (collected from June 2014 to May 2015) from 171 graduate programs at six prestigious Brazilian universities in São Paulo and Rio de Janeiro, the states that fund most of the science conducted in Brazil. Among these programs, 149 were in HSS. The results suggest that non-compliance with standard regulation seems to be the rule in most of these programs. The data may reflect not only a resistance from scientists in these fields to comply with standard regulations for ethics in HSR but also a disciplinary tradition that seems prevalent when it comes to research ethics in HSR. However, recent encounters between Brazilian biomedical and non-biomedical scientists for debates over ethics in HSR point to a changing culture in the approach to research ethics in the country.

  7. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... of Veterans Affairs (VA) gives notice under the Public Law 92-463 (Federal Advisory Committee Act... Crystal City Hotel. Mental Health and Behavioral Sciences- November 16, 2012...... *VA Central Office. B..., 2012...... Sheraton Crystal City Hotel. Mental Health and Behavioral Sciences- November 20, 2012...

  8. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research Part 1: Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1995-04-01

    Research in the biomedical sciences at PNL is described. Activities reported include: inhaled plutonium in dogs; national radiobiology archives; statistical analysis of data from animal studies; genotoxicity of inhaled energy effluents; molecular events during tumor initiation; biochemistry of free radical induced DNA damage; radon hazards in homes; mechanisms of radon injury; genetics of radon induced lung cancer; and in vivo/in vitro radon induced cellular damage.

  9. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2017-05-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC is an e-learning platform that empowers the biomedical community to develop, launch and share open training materials. It deploys hands-on software training toolboxes through virtualization technologies such as Amazon EC2 and Virtualbox. The BBDTC facilitates migration of courses across other course management platforms. The framework encourages knowledge sharing and content personalization through the playlist functionality that enables unique learning experiences and accelerates information dissemination to a wider community.

  10. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory Committee Act) that..., 2013 Sheraton Crystal City Hotel. Mental Health and Behavioral. May 30, 2013 Sheraton Crystal City Hotel. Sciences--A. Gastroenterology May 30-31, 2013......... U.S. Access Board. Pulmonary Medicine May...

  11. Radiochemicals in biomedical research

    International Nuclear Information System (INIS)

    Evans, E.A.; Oldham, K.G.

    1988-01-01

    This volume describes the role of radiochemicals in biomedical research, as tracers in the development of new drugs, their interaction and function with receptor proteins, with the kinetics of binding of hormone - receptor interactions, and their use in cancer research and clinical oncology. The book also aims to identify future trends in this research, the main objective of which is to provide information leading to improvements in the quality of life, and to give readers a basic understanding of the development of new drugs, how they function in relation to receptor proteins and lead to a better understanding of the diagnosis and treatment of cancers. (author)

  12. Sierra Leone Journal of Biomedical Research

    African Journals Online (AJOL)

    The Sierra Leone Journal of Biomedical Research publishes papers in all fields of Medicine and Allied Health Sciences including Basic Medical Sciences, Clinical Sciences, Dental Sciences, ... Survey of Current Practice of Labour Analgesia Among Obstetricians in Nigeria: Implications For Pain-free Labour Initiative.

  13. Towards Multidisciplinary HIV-Cure Research: Integrating Social Science with Biomedical Research.

    Science.gov (United States)

    Grossman, Cynthia I; Ross, Anna Laura; Auerbach, Judith D; Ananworanich, Jintanat; Dubé, Karine; Tucker, Joseph D; Noseda, Veronica; Possas, Cristina; Rausch, Dianne M

    2016-01-01

    The quest for a cure for HIV remains a timely and key challenge for the HIV research community. Despite significant scientific advances, current HIV therapy regimens do not completely eliminate the negative impact of HIV on the immune system; and the economic impact of treating all people infected with HIV globally, for the duration of their lifetimes, presents significant challenges. This article discusses, from a multidisciplinary approach, critical social, behavioral, ethical, and economic issues permeating the HIV-cure research agenda. As part of a search for an HIV cure, both the perspective of patients/participants and clinical researchers should be taken into account. In addition, continued efforts should be made to involve and educate the broader community. Published by Elsevier Ltd.

  14. Towards multi-disciplinary HIV cure research: integrating social science with biomedical research

    Science.gov (United States)

    Grossman, Cynthia I; Ross, Anna Laura; Auerbach, Judith D.; Ananworanich, Jintanat; Dubé, Karine; Tucker, Joseph D.; Noseda, Veronica; Possas, Cristina; Rausch, Dianne

    2015-01-01

    The quest for a cure for HIV remains a timely and key challenge for the HIV research community. Despite significant scientific advances, current HIV therapy regimens do not completely eliminate the negative impact of HIV on the immune system; and the economic impact of treating all people infected with HIV globally, for the duration of their lifetimes, presents significant challenges. This article discusses, from a multi-disciplinary approach, critical social, behavioral, ethical, and economic issues permeating the HIV cure research agenda. As part of a search for an HIV cure, both the perspective of patients/participants and clinical researchers should be taken into account. In addition, continued efforts should be made to involve and educate the broader community. PMID:26642901

  15. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  16. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... Department of Veterans Affairs (VA) gives notice under the Public Law 92-463 (Federal Advisory Committee Act...'Enfant Plaza Hotel, and not on June 11-12, 2012. Clinical Research Program will meet on June 7-8, 2012, at *VA Central Office and not at Sheraton Suites--Old Town Alexandria. The addresses of the hotel and...

  17. Ranking Iranian biomedical research centers according to H-variants (G, M, A, R) in Scopus and Web of Science.

    Science.gov (United States)

    Mahmudi, Zoleikha; Tahamtan, Iman; Sedghi, Shahram; Roudbari, Masoud

    2015-01-01

    We conducted a comprehensive bibliometrics analysis to calculate the H, G, M, A and R indicators for all Iranian biomedical research centers (IBRCs) from the output of ISI Web of Science (WoS) and Scopus between 1991 and 2010. We compared the research performance of the research centers according to these indicators. This was a cross-sectional and descriptive-analytical study, conducted on 104 Iranian biomedical research centers between August and September 2011. We collected our data through Scopus and WoS. Pearson correlation coefficient between the scientometrics indicators was calculated using SPSS, version 16. The mean values of all indicators were higher in Scopus than in WoS. Drug Applied Research Center of Tabriz University of Medical Sciences had the highest number of publications in both WoS and Scopus databases. This research center along with Royan Institute received the highest number of citations in both Scopus and WoS, respectively. The highest correlation was seen between G and R (.998) in WoS and between G and R (.990) in Scopus. Furthermore, the highest overlap of the 10 top IBRCs was between G and H in WoS (100%) and between G-R (90%) and H-R (90%) in Scopus. Research centers affiliated to the top ranked Iranian medical universities obtained a better position with respect to the studied scientometrics indicators. All aforementioned indicators are important for ranking bibliometrics studies as they refer to different attributes of scientific output and citation aspects.

  18. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  19. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base

  20. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Science.gov (United States)

    Nisbet, Matthew; Markowitz, Ezra M

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  1. Building the biomedical data science workforce.

    Science.gov (United States)

    Dunn, Michelle C; Bourne, Philip E

    2017-07-01

    This article describes efforts at the National Institutes of Health (NIH) from 2013 to 2016 to train a national workforce in biomedical data science. We provide an analysis of the Big Data to Knowledge (BD2K) training program strengths and weaknesses with an eye toward future directions aimed at any funder and potential funding recipient worldwide. The focus is on extramurally funded programs that have a national or international impact rather than the training of NIH staff, which was addressed by the NIH's internal Data Science Workforce Development Center. From its inception, the major goal of BD2K was to narrow the gap between needed and existing biomedical data science skills. As biomedical research increasingly relies on computational, mathematical, and statistical thinking, supporting the training and education of the workforce of tomorrow requires new emphases on analytical skills. From 2013 to 2016, BD2K jump-started training in this area for all levels, from graduate students to senior researchers.

  2. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course

    Directory of Open Access Journals (Sweden)

    Kristen L.W. Walton

    2014-08-01

    Full Text Available Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States.  Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course.  The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research.  Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research.  Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course.  This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  3. Using a popular science nonfiction book to introduce biomedical research ethics in a biology majors course.

    Science.gov (United States)

    Walton, Kristen L W

    2014-12-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  4. International Journal of Medicine and Biomedical Research

    African Journals Online (AJOL)

    The International Journal of Medicine and Biomedical Research (IJMBR) is a peer-reviewed scholarly journal by Michael Joanna Publications. It publishes data and information, useful to researchers in all aspects of Clinical and Basic Medical Sciences including Anatomical Sciences, Biochemistry, Dentistry, Genetics, ...

  5. The reincarnation of a biomedical researcher: from bench science to medical education.

    Science.gov (United States)

    Brawer, James R

    2008-02-01

    After 33 years as a biomedical research scientist, I embarked on a new career in medical education. The transformation was awkward, difficult and exciting. Although I had assumed that previous experience in research and scholarship would stand me in good stead, such was hardly the case. I had to learn to navigate a strange new literature, replete with terms that I did not understand, and to deal with concepts that challenged my physico-chemical mindset. As I learned, I found myself discovering a field rich in essential questions, controversial hypotheses, and important potential applications. With my newly acquired knowledge and skills, I began to reflect on my own educational endeavors. I identified a number of outstanding issues and I designed studies to address them. What made these investigations particularly significant for me was their applicability. Although medical education is an exciting and meaningful career path, because of its low profile in most medical schools, few faculty are aware of the academic opportunities that it affords.

  6. Archives: Journal of Medical and Biomedical Sciences

    African Journals Online (AJOL)

    Items 1 - 20 of 20 ... Archives: Journal of Medical and Biomedical Sciences. Journal Home > Archives: Journal of Medical and Biomedical Sciences. Log in or Register to get access to full text downloads.

  7. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    Science.gov (United States)

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future. © 2015 American Society for Nutrition.

  8. Ranking Iranian biomedical research centers according to H-variants (G, M, A, R) in Scopus and Web of Science

    Science.gov (United States)

    Mahmudi, Zoleikha; Tahamtan, Iman; Sedghi, Shahram; Roudbari, Masoud

    2015-01-01

    Background: We conducted a comprehensive bibliometrics analysis to calculate the H, G, M, A and R indicators for all Iranian biomedical research centers (IBRCs) from the output of ISI Web of Science (WoS) and Scopus between 1991 and 2010. We compared the research performance of the research centers according to these indicators. Methods: This was a cross-sectional and descriptive-analytical study, conducted on 104 Iranian biomedical research centers between August and September 2011. We collected our data through Scopus and WoS. Pearson correlation coefficient between the scientometrics indicators was calculated using SPSS, version 16. Results: The mean values of all indicators were higher in Scopus than in WoS. Drug Applied Research Center of Tabriz University of Medical Sciences had the highest number of publications in both WoS and Scopus databases. This research center along with Royan Institute received the highest number of citations in both Scopus and WoS, respectively. The highest correlation was seen between G and R (.998) in WoS and between G and R (.990) in Scopus. Furthermore, the highest overlap of the 10 top IBRCs was between G and H in WoS (100%) and between G-R (90%) and H-R (90%) in Scopus. Conclusion: Research centers affiliated to the top ranked Iranian medical universities obtained a better position with respect to the studied scientometrics indicators. All aforementioned indicators are important for ranking bibliometrics studies as they refer to different attributes of scientific output and citation aspects. PMID:26478875

  9. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research.

    Science.gov (United States)

    King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  10. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research

    Science.gov (United States)

    King, Andrew J.; Fisher, Arielle M.; Becich, Michael J.; Boone, David N.

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist. PMID:28400991

  11. Capturing the Value of Biomedical Research.

    Science.gov (United States)

    Bertuzzi, Stefano; Jamaleddine, Zeina

    2016-03-24

    Assessing the real-world impact of biomedical research is notoriously difficult. Here, we present the framework for building a prospective science-centered information system from scratch that has been afforded by the Sidra Medical and Research Center in Qatar. This experiment is part of the global conversation on maximizing returns on research investment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Journal of Medicine and Biomedical Research

    African Journals Online (AJOL)

    The Journal of Medicine and Biomedical Research is published by the College of Medical Sciences, University of Benin to encourage research into primary health care. The journal will publish original research articles, reviews, editorials, commentaries, case reports and letters to the editor. Articles are welcome in all ...

  13. [Biomedical research in Revista de Biologia Tropical].

    Science.gov (United States)

    Gutiérrez, José María

    2002-01-01

    The contributions published in Revista de Biología Tropical in the area of Biomedical Sciences are reviewed in terms of number of contributions and scope of research subjects. Biomedical Sciences, particularly Parasitology and Microbiology, constituted the predominant subject in the Revista during the first decade, reflecting the intense research environment at the School of Microbiology of the University of Costa Rica and at Hospital San Juan de Dios. The relative weight of Biomedicine in the following decades diminished, due to the outstanding increment in publications in Biological Sciences; however, the absolute number of contributions in Biomedical Sciences remained constant throughout the last decades, with around 80 contributions per decade. In spite of the predominance of Parasitology as the main biomedical subject, the last decades have witnessed the emergence of new areas of interest in the Revista, such as Pharmacology of natural products, Toxinology, especially related to snake venoms, and Human Genetics. This retrospective analysis evidences that Biomedical Sciences, particularly those related to Tropical Medicine, were a fundamental component during the first years of Revista de Biología Tropical, and have maintained a significant presence in the scientific output of this journal, the most relevant scientific publication in biological sciences in Central America.

  14. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  15. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  16. National Space Biomedical Research Institute

    Science.gov (United States)

    2003-01-01

    In June 1996, NASA released a Cooperative Agreement Notice (CAN) inviting proposals to establish a National Space Biomedical Research Institute (9-CAN-96-01). This CAN stated that: The Mission of the Institute will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. The Institute will be the focal point of NASA sponsored space biomedical research. This statement has not been amended by NASA and remains the mission of the NSBRI.

  17. The Need for Veterinarians in Biomedical Research

    Science.gov (United States)

    Rosol, Thomas J.; Moore, Rustin M.; Saville, William J.A.; Oglesbee, Michael J.; Rush, Laura J.; Mathes, Lawrence E.; Lairmore, Michael D.

    2010-01-01

    The number of veterinarians in the United States is inadequate to meet societal needs in biomedical research and public health. Areas of greatest need include translational medical research, veterinary pathology, laboratory-animal medicine, emerging infectious diseases, public health, academic medicine, and production-animal medicine. Veterinarians have unique skill sets that enable them to serve as leaders or members of interdisciplinary research teams involved in basic science and biomedical research with applications to animal or human health. There are too few graduate veterinarians to serve broad national needs in private practice; academia; local, state, and federal government agencies; and private industry. There are no easy solutions to the problem of increasing the number of veterinarians in biomedical research. Progress will require creativity, modification of priorities, broad-based communication, support from faculty and professional organizations, effective mentoring, education in research and alternative careers as part of the veterinary professional curriculum, and recognition of the value of research experience among professional schools’ admissions committees. New resources should be identified to improve communication and education, professional and graduate student programs in biomedical research, and support to junior faculty. These actions are necessary for the profession to sustain its viability as an integral part of biomedical research. PMID:19435992

  18. The University of Washington Health Sciences Library BioCommons: an evolving Northwest biomedical research information support infrastructure.

    Science.gov (United States)

    Minie, Mark; Bowers, Stuart; Tarczy-Hornoch, Peter; Roberts, Edward; James, Rose A; Rambo, Neil; Fuller, Sherrilynne

    2006-07-01

    The University of Washington Health Sciences Libraries and Information Center BioCommons serves the bioinformatics needs of researchers at the university and in the vibrant for-profit and not-for-profit biomedical research sector in the Washington area and region. The BioCommons comprises services addressing internal University of Washington, not-for-profit, for-profit, and regional and global clientele. The BioCommons is maintained and administered by the BioResearcher Liaison Team. The BioCommons architecture provides a highly flexible structure for adapting to rapidly changing resources and needs. BioCommons uses Web-based pre- and post-course evaluations and periodic user surveys to assess service effectiveness. Recent surveys indicate substantial usage of BioCommons services and a high level of effectiveness and user satisfaction. BioCommons is developing novel collaborative Web resources to distribute bioinformatics tools and is experimenting with Web-based competency training in bioinformation resource use.

  19. Science gateways for biomedical big data analysis

    NARCIS (Netherlands)

    Shahand, S.

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists

  20. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately

  1. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  2. Building the biomedical data science workforce.

    Directory of Open Access Journals (Sweden)

    Michelle C Dunn

    2017-07-01

    Full Text Available This article describes efforts at the National Institutes of Health (NIH from 2013 to 2016 to train a national workforce in biomedical data science. We provide an analysis of the Big Data to Knowledge (BD2K training program strengths and weaknesses with an eye toward future directions aimed at any funder and potential funding recipient worldwide. The focus is on extramurally funded programs that have a national or international impact rather than the training of NIH staff, which was addressed by the NIH's internal Data Science Workforce Development Center. From its inception, the major goal of BD2K was to narrow the gap between needed and existing biomedical data science skills. As biomedical research increasingly relies on computational, mathematical, and statistical thinking, supporting the training and education of the workforce of tomorrow requires new emphases on analytical skills. From 2013 to 2016, BD2K jump-started training in this area for all levels, from graduate students to senior researchers.

  3. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    National Research Council Canada - National Science Library

    1984-01-01

    Partial Contents: Life Sciences, Biomedical and Behavioral Sciences, Aerospace Medicine, Argotechnology, Biochemistry, Bionics, Biophysics, Biotechnology, Epidemiology, Genetics, Human Factors, Immunology, Laser...

  4. Globalizing and crowdsourcing biomedical research.

    Science.gov (United States)

    Afshinnekoo, Ebrahim; Ahsanuddin, Sofia; Mason, Christopher E

    2016-12-01

    Crowdfunding and crowdsourcing of medical research has emerged as a novel paradigm for many biomedical disciplines to rapidly collect, process and interpret data from high-throughput and high-dimensional experiments. The novelty and promise of these approaches have led to fundamental discoveries about RNA mechanisms, microbiome dynamics and even patient interpretation of test results. However, these methods require robust training protocols, uniform sampling methods and experimental rigor in order to be useful for subsequent research efforts. Executed correctly, crowdfunding and crowdsourcing can leverage public resources and engagement to generate support for scientific endeavors that would otherwise be impossible due to funding constraints and or the large number of participants needed for data collection. We conducted a comprehensive literature review of scientific studies that utilized crowdsourcing and crowdfunding to generate data. We also discuss our own experiences conducting citizen-science research initiatives (MetaSUB and PathoMap) in ensuring data robustness, educational outreach and public engagement. We demonstrate the efficacy of crowdsourcing mechanisms for revolutionizing microbiome and metagenomic research to better elucidate the microbial and genetic dynamics of cities around the world (as well as non-urban areas). Crowdsourced studies have been able to create an improved and unprecedented ability to monitor, design and measure changes at the microbial and macroscopic scale. Thus, the use of crowdsourcing strategies has dramatically altered certain genomics research to create global citizen-science initiatives that reveal new discoveries about the world's genetic dynamics. The effectiveness of crowdfunding and crowdsourcing is largely dependent on the study design and methodology. One point of contention for the present discussion is the validity and scientific rigor of data that are generated by non-scientists. Selection bias, limited sample

  5. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Park, J.F.

    1984-02-01

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base

  6. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1984-02-01

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base.

  7. African Journal of Biomedical Research

    African Journals Online (AJOL)

    The African Journal of biomedical Research was founded in 1998 as a joint project between a private communications outfit (Laytal Communications) and ... is aimed at being registered in future as a non-governmental organization involved in the promotion of scientific proceedings and publications in developing countries.

  8. Some Aspects of the State-of-the-Arts in Biomedical Science Research: A Perspective for Organizational Change in African Academia.

    Science.gov (United States)

    John, Theresa Adebola

    2014-12-29

    In the biomedical sciences, there is need to generate solutions for Africa's health and economic problems through the impact of university research. To guide organizational transformation, the author here presents some aspects of the state-of-the-arts of biomedical science research in advanced countries using a perspective derived from the FASEB journal publications. The author examines the thirty three peer reviewed scientific research articles in a centennial (April 2012) issue of the FASEB Journal [Volume 26(4)] using the following parameters: number of authors contributing to the paper; number of academic departments contributing to the paper; number of academic institutions contributing to the paper; funding of the research reported in the article. The articles were written by 7.97±0.61 authors from 3.46±0.3 departments of 2.79±0.29 institutions. The contributors were classified into four categories: basic sciences, clinical sciences, institutions and centers, and programs and labs. Amongst the publications, 21.2% were single disciplinary. Two tier collaboration amongst any two of the four categories were observed in 16/33 (48.5%) of the articles. Three tier and four tier collaborations were observed amongst 7/33 (21.2%) and 3/33 (9%) of the articles respectively. Therefore 26/33 (78.7%) of the articles were multidisciplinary. Collaborative efforts between basic science and clinical science departments were observed in 9/33 (27.3%) articles. Public funding through government agencies provided 85 out of a total of 143 (59.5%) grants. The collaborative and multidisciplinary nature and government support are characteristic of biomedical science in the US where research tends to result in solutions to problems and economic benefits.

  9. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  10. Enhancing Diversity in Biomedical Data Science.

    Science.gov (United States)

    Canner, Judith E; McEligot, Archana J; Pérez, María-Eglée; Qian, Lei; Zhang, Xinzhi

    2017-01-01

    The gap in educational attainment separating underrepresented minorities from Whites and Asians remains wide. Such a gap has significant impact on workforce diversity and inclusion among cross-cutting Biomedical Data Science (BDS) research, which presents great opportunities as well as major challenges for addressing health disparities. This article provides a brief description of the newly established National Institutes of Health Big Data to Knowledge (BD2K) diversity initiatives at four universities: California State University, Monterey Bay; Fisk University; University of Puerto Rico, Río Piedras Campus; and California State University, Fullerton. We emphasize three main barriers to BDS careers (ie, preparation, exposure, and access to resources) experienced among those pioneer programs and recommendations for possible solutions (ie, early and proactive mentoring, enriched research experience, and data science curriculum development). The diversity disparities in BDS demonstrate the need for educators, researchers, and funding agencies to support evidence-based practices that will lead to the diversification of the BDS workforce.

  11. African Journal of Biomedical Research: Journal Sponsorship

    African Journals Online (AJOL)

    African Journal of Biomedical Research: Journal Sponsorship. Journal Home > About the Journal > African Journal of Biomedical Research: Journal Sponsorship. Log in or Register to get access to full text downloads.

  12. Archives: Journal of Medicine and Biomedical Research

    African Journals Online (AJOL)

    Items 1 - 19 of 19 ... Archives: Journal of Medicine and Biomedical Research. Journal Home > Archives: Journal of Medicine and Biomedical Research. Log in or Register to get access to full text downloads.

  13. Journal of Medical and Biomedical Sciences

    African Journals Online (AJOL)

    Journal of Medical and Biomedical Sciences. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 3 (2014) >. Log in or Register to get access to full text downloads.

  14. Journal of Medical and Biomedical Sciences

    African Journals Online (AJOL)

    Journal of Medical and Biomedical Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 3 (2012) >. Log in or Register to get access to full text downloads.

  15. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1988-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology.

  16. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1989-06-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1988. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals.

  17. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    International Nuclear Information System (INIS)

    Park, J.F.

    1988-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology

  18. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 1, Biomedical sciences

    International Nuclear Information System (INIS)

    Park, J.E.

    1987-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1986. The research develops the knowledge and scientific principles necessary to identify, understand and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect the PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological methods for assessing health risks among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include effects of radiation and of energy-related chemicals. The last section is related to medical applications of nuclear technology

  19. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1987-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1986. The research develops the knowledge and scientific principles necessary to identify, understand and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect the PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological methods for assessing health risks among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include effects of radiation and of energy-related chemicals. The last section is related to medical applications of nuclear technology.

  20. Research prioritization through prediction of future impact on biomedical science: a position paper on inference-analytics.

    Science.gov (United States)

    Ganapathiraju, Madhavi K; Orii, Naoki

    2013-08-30

    Advances in biotechnology have created "big-data" situations in molecular and cellular biology. Several sophisticated algorithms have been developed that process big data to generate hundreds of biomedical hypotheses (or predictions). The bottleneck to translating this large number of biological hypotheses is that each of them needs to be studied by experimentation for interpreting its functional significance. Even when the predictions are estimated to be very accurate, from a biologist's perspective, the choice of which of these predictions is to be studied further is made based on factors like availability of reagents and resources and the possibility of formulating some reasonable hypothesis about its biological relevance. When viewed from a global perspective, say from that of a federal funding agency, ideally the choice of which prediction should be studied would be made based on which of them can make the most translational impact. We propose that algorithms be developed to identify which of the computationally generated hypotheses have potential for high translational impact; this way, funding agencies and scientific community can invest resources and drive the research based on a global view of biomedical impact without being deterred by local view of feasibility. In short, data-analytic algorithms analyze big-data and generate hypotheses; in contrast, the proposed inference-analytic algorithms analyze these hypotheses and rank them by predicted biological impact. We demonstrate this through the development of an algorithm to predict biomedical impact of protein-protein interactions (PPIs) which is estimated by the number of future publications that cite the paper which originally reported the PPI. This position paper describes a new computational problem that is relevant in the era of big-data and discusses the challenges that exist in studying this problem, highlighting the need for the scientific community to engage in this line of research. The proposed

  1. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1986-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology.

  2. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Park, J.F.

    1986-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology

  3. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  4. Journal of Medical and Biomedical Sciences: Submissions

    African Journals Online (AJOL)

    SCOPE: Journal of Medical and Biomedical Science publishes original, novel, peer-reviewed reports that pertain to medical and allied health sciences; confirmatory reports of previously described .... Very occasionally, concerns may also relate to the impli-cations to society of publishing a paper, including threats to security.

  5. Nigerian Journal of Health and Biomedical Sciences

    African Journals Online (AJOL)

    The Nigerian Journal of Health and Biomedical Sciences is a multidisciplinary and peer-reviewed journal. This journal was established to meet the challenges of health care delivery in the 21st century in Nigeria and other countries with similar setting in the ever-changing world of science and technology. The health care ...

  6. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, C.C. [ed.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  7. Modeling and control in the biomedical sciences

    CERN Document Server

    Banks, H T

    1975-01-01

    These notes are based on (i) a series of lectures that I gave at the 14th Biennial Seminar of the Canadian Mathematical Congress held at the University of Western Ontario August 12-24, 1973 and (li) some of my lectures in a modeling course that I have cotaught in the Division of Bio-Medical Sciences at Brown during the past several years. An earlier version of these notes appeared in the Center for Dynamical Systems Lectures Notes series (CDS LN 73-1, November 1973). I have in this revised and extended version of those earlier notes incorporated a number of changes based both on classroom experience and on my research efforts with several colleagues during the intervening period. The narrow viewpoint of the present notes (use of optimization and control theory in biomedical problems) reflects more the scope of the CMC lectures given in August, 1973 than the scope of my own interests. Indeed, my real interests have included the modeling process itself as well as the contributions made by investiga­ tors who e...

  8. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1992-09-01

    This report summarizes progress in OHER biological research and general life sciences research programs conducted conducted at PNL in FLY 1991. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long- term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and newly developed energy-related technologies through an increased understanding of the ways in which radiation and chemicals cause biological damage.

  9. Statistics and Biomedical Informatics in Forensic Sciences

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2009-01-01

    Roč. 20, č. 6 (2009), s. 743-750 ISSN 1180-4009. [TIES 2007. Annual Meeting of the International Environmental Society /18./. Mikulov, 16.08.2007-20.08.2007] Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * biomedical statistics * genetic information * forensic dentistry Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.000, year: 2009

  10. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course †

    Science.gov (United States)

    Walton, Kristen L. W.

    2014-01-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research. PMID:25574289

  11. Nigerian Journal of Health and Biomedical Sciences: Submissions

    African Journals Online (AJOL)

    Author Guidelines. The Nigerian Journal of Health and Biomedical Sciences publishes original research articles, case report, review articles and short communications of outstanding research findings. Manuscript Preparation Manuscripts (3 copies) should be typewritten on A4 paper (210 x 297 mm) with double line ...

  12. Archives of Medical and Biomedical Research

    African Journals Online (AJOL)

    Archives of Medical and Biomedical Research is the official journal of the International Association of Medical and Biomedical Researchers (IAMBR) and the Society for Free Radical Research Africa (SFRR-Africa). It is an internationally peer reviewed, open access and multidisciplinary journal aimed at publishing original ...

  13. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  14. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research - Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1990-05-01

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiological studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.

  15. Journal of Medical and Biomedical Sciences: Journal Sponsorship

    African Journals Online (AJOL)

    Journal of Medical and Biomedical Sciences: Journal Sponsorship. Journal Home > About the Journal > Journal of Medical and Biomedical Sciences: Journal Sponsorship. Log in or Register to get access to full text downloads.

  16. USSR report: life sciences. Biomedical and behavioral sciences

    International Nuclear Information System (INIS)

    1982-09-01

    Studies in life sciences, biomedical sciences, and behavioral sciences are reported. The following fields of interest were studied: agricultural biology, biochemistry, biotechnology, environment effects, medical demography, medicine, microbiology, physiology, radiation biology, and human factors engineering. For individual titles, see N82-33989 through N82-33994

  17. Education and research in biomedical engineering of the Budapest University of Technology and Economics.

    Science.gov (United States)

    Benyó, Z

    2006-03-01

    Biomedical Engineering is a relatively new interdisciplinary science. This review paper presents the biomedical engineering activity, which is carried out at the Budapest University of Technology and Economics (BUTE) and its partner institutions. In the first parts the main goals and the curriculum of the Biomedical Engineering Education Program is presented. The second part of the paper summarizes the most important biomedical engineering researches most of them carried out in the Biomedical Engineering Laboratory of BUTE.

  18. Graduate Biomedical Science Education Needs a New Philosophy.

    Science.gov (United States)

    Bosch, Gundula; Casadevall, Arturo

    2017-12-19

    There is a growing realization that graduate education in the biomedical sciences is successful at teaching students how to conduct research but falls short in preparing them for a diverse job market, communicating with the public, and remaining versatile scientists throughout their careers. Major problems with graduate level education today include overspecialization in a narrow area of science without a proper grounding in essential critical thinking skills. Shortcomings in education may also contribute to some of the problems of the biomedical sciences, such as poor reproducibility, shoddy literature, and the rise in retracted publications. The challenge is to modify graduate programs such that they continue to generate individuals capable of conducting deep research while at the same time producing more broadly trained scientists without lengthening the time to a degree. Here we describe our first experiences at Johns Hopkins and propose a manifesto for reforming graduate science education. Copyright © 2017 Bosch and Casadevall.

  19. Science, biomedical technology and biolaw.

    Science.gov (United States)

    Furnica, Cristina; Scripcaru, Calin

    2009-01-01

    Starting from legislative recognition of the grounding principles of human rights, the authors describe and comment upon the Council of Europe's Convention on human rights and human dignity confronted with scientific discoveries and also upon the Oviedo Convention of 1997 for the protection of Human Rights and dignity of the human being with regard to the application of biology and medicine. The authors specify that, given the promise made by Romania to observe international obligations, the Romanian law no. 2/1998 on organ and tissue transplantation abrogates the stipulations of the law 3-1978 and also includes 9 appendices which, being part of the law, guarantee in addition the observance of its provisions. All these regulations on the relationship between science and human rights have determined an evolution from the fatality of natural risks to current compensations, as an expression of human solidarity. They have determined the transition from social and vocational paternalism to personal autonomy and personal guarantees of independence and freedom. All these developments are faithfully reflected by comparative legislation on the use of life science outcomes on persons as they presently are. This is also reflected in Romanian legislation concerning tissue and organ transplantation and in mental health legislation.

  20. Defining Compensable Injury in Biomedical Research.

    Science.gov (United States)

    Larkin, Megan E

    2015-01-01

    Biomedical research provides a core social good by enabling medical progress. In the twenty-first century alone, this includes reducing transmission of HIV/AIDS, developing innovative therapies for cancer patients, and exploring the possibilities of personalized medicine. In order to continue to advance medical science, research relies on the voluntary participation of human subjects. Because research is inherently uncertain, unintended harm is an inevitable part of the research enterprise. Currently, injured research participants in the United States must turn to the “litigation lottery” of the tort system in search of compensation. This state of affairs fails research participants, who are too often left uncompensated for devastating losses, and makes the United States an outlier in the international community. In spite of forty years’ worth of Presidential Commissions and other respected voices calling for the development of a no-fault compensation system, no progress has been made to date. One of the reasons for this lack of progress is the failure to develop a coherent ethical basis for an obligation to provide compensation for research related injuries. This problem is exacerbated by the lack of a clear definition of “compensable injury” in the biomedical research context. This article makes a number of important contributions to the scholarship in this growing field. To begin, it examines compensation systems already in existence and concludes that there are four main definitional elements that must be used to define “compensable injury.” Next, it examines the justifications that have been put forth as the basis for an ethical obligation to provide compensation, and settles on retrospective nonmaleficence and distributive and compensatory justice as the most salient and persuasive. Finally, it uses the regulatory elements and the justifications discussed in the first two sections to develop a well-rounded definition of “compensable injury

  1. Las Ciencias instrumentales en la Investigación Biomédica Instrumental Sciences in Biomedical Research

    Directory of Open Access Journals (Sweden)

    Josep Roma Millán

    2004-03-01

    Full Text Available Hay una serie de ciencias que se hacen imprescindibles para poder investigar e interpretar los resultados científicos, son la ciencias que llamamos instrumentales o auxiliares. Entre ellas se encuentran la Demografía, la Epidemiología y la Bioestadística. Además, hay que tomar en consideración las técnicas de investigación cualitativa, el conjunto de estrategias e instrumentos de búsqueda de información bibliográfica y, también las metodologías de presentación de resultados. Finalmente, no puede olvidarse la ética, en sus dos componentes de bioética y de ética del trabajo científico, si queremos desarrollar un trabajo siguiendo el método científico. Este capítulo explica cuál es la función de estas disciplinas en el seno de la investigación científica y del desarrollo de proyectos.Some scientific disciplines are essential for research and scientific results interpretation. Instrumental or auxiliary sciences include Demography, Epidemiology, and Biostatistics. Also, it is necessary to take into account the techniques for qualitative research, the strategies and instruments for bibliographic information and the methodology for scientific results presentation. Finally, to develop a project according to the scientific method, it is necessary to consider ethics, in its two components: bioethics and the ethics of scientific method. This report explains which is the function of these instrumental and auxiliary sciences in the context of the scientific research and the development of scientific projects.

  2. Annals of Biomedical Sciences: Submissions

    African Journals Online (AJOL)

    Authors must comply with “Instructions to authors” which is published in each issue of the journal. TYPES OF CONTRIBUTION The following categories of articles are published. Authors should indicate into which of listed categories their submission is intended for. Original articles. These are reports of original research of ...

  3. Use of laboratory animals in biomedical and behavioral research

    National Research Council Canada - National Science Library

    1988-01-01

    ... of Laboratory Animals in Biomedical and Behavioral Research Commission on Life Sciences National Research Council Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesetting-specific created from the as publ...

  4. Use of Laboratory Animals in Biomedical and Behavioral Research

    National Research Council Canada - National Science Library

    1988-01-01

    ... of Laboratory Animals in Biomedical and Behavioral Research Commission on Life Sciences National Research Council Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesetting-specific created from the as publ...

  5. Publications in biomedical and environmental sciences programs, 1980

    International Nuclear Information System (INIS)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences

  6. Publications in biomedical and environmental sciences programs, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences.

  7. The use of AMS to the biomedical sciences

    International Nuclear Information System (INIS)

    Vogel, J.S.

    1991-04-01

    The Center for Accelerator Mass Spectroscopy (AMS) began making AMS measurements in 1989. Biomedical experiments were originally limited by sample preparation techniques, but we expect the number of biomedical samples to increase five-fold. While many of the detailed techniques for making biomedical measurements resemble those used in other fields, biological tracer experiments differ substantially from the observational approaches of earth science investigators. The role of xenobiotius in initiating mutations in cells is of particular interest. One measure of the damage caused to the genetic material is obtained by counting the number of adducts formed by a chemical agent at a given dose. AMS allows direct measurement of the number of adducts through stoichiometric quantification of the 14 C label attached to the DNA after exposure to a labelled carcinogen. Other isotopes of interest include tritium, 36 Cl, 79 SE, 41 Ca, 26 Al and 129 I. Our experiments with low dose environmental carcinogens reflect the protocols which will become a common part of biomedical AMS. In biomedical experiments, the researcher defines the carbon to be analyzed through dissection and/or chemical purification; thus the sample is ''merely'' combusted and graphitized at the AMS facility. However, since biomedical samples can have a 14 C range of five orders of magnitude, preparation of graphite required construction of a special manifold to prevent cross-contamination. Additionally, a strain of 14 C-depleted C57BL/6 mice is being developed to further reduce background in biomedical experiments. AMS has a bright and diverse future in radioisotope tracing. Such work requires a dedicated amalgamation of AMS scientists and biomedical researchers who will redesign experimental protocols to maximize the AMS technique and minimize the danger of catastrophic contamination. 18 refs., 4 figs., 1 tab

  8. The use of AMS to the biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.

    1991-04-01

    The Center for Accelerator Mass Spectroscopy (AMS) began making AMS measurements in 1989. Biomedical experiments were originally limited by sample preparation techniques, but we expect the number of biomedical samples to increase five-fold. While many of the detailed techniques for making biomedical measurements resemble those used in other fields, biological tracer experiments differ substantially from the observational approaches of earth science investigators. The role of xenobiotius in initiating mutations in cells is of particular interest. One measure of the damage caused to the genetic material is obtained by counting the number of adducts formed by a chemical agent at a given dose. AMS allows direct measurement of the number of adducts through stoichiometric quantification of the {sup 14}C label attached to the DNA after exposure to a labelled carcinogen. Other isotopes of interest include tritium, {sup 36}Cl, {sup 79}SE, {sup 41}Ca, {sup 26}Al and {sup 129}I. Our experiments with low dose environmental carcinogens reflect the protocols which will become a common part of biomedical AMS. In biomedical experiments, the researcher defines the carbon to be analyzed through dissection and/or chemical purification; thus the sample is merely'' combusted and graphitized at the AMS facility. However, since biomedical samples can have a {sup 14}C range of five orders of magnitude, preparation of graphite required construction of a special manifold to prevent cross-contamination. Additionally, a strain of {sup 14}C-depleted C57BL/6 mice is being developed to further reduce background in biomedical experiments. AMS has a bright and diverse future in radioisotope tracing. Such work requires a dedicated amalgamation of AMS scientists and biomedical researchers who will redesign experimental protocols to maximize the AMS technique and minimize the danger of catastrophic contamination. 18 refs., 4 figs., 1 tab.

  9. Impedance measurements in the biomedical sciences.

    Science.gov (United States)

    Coffman, Frederick D; Cohen, Stanley

    2013-01-01

    Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.

  10. Nigerian Journal of Health and Biomedical Sciences: Editorial Policies

    African Journals Online (AJOL)

    Biomedical Engineering Biotechnology in relation to Medicine Clinical Sciences Dental Sciences Environment and Health Health Economics and Management Health Information Management Hygiene and Health Education Legal Aspects of Healthcare Medical Education Nursing Sciences Pharmaceutical Sciences

  11. International Journal of Medicine and Biomedical Research

    African Journals Online (AJOL)

    International Journal of Medicine and Biomedical Research. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 5, No 3 (2016) >. Log in or Register to get access to full text downloads.

  12. Data science, learning, and applications to biomedical and health sciences.

    Science.gov (United States)

    Adam, Nabil R; Wieder, Robert; Ghosh, Debopriya

    2017-01-01

    The last decade has seen an unprecedented increase in the volume and variety of electronic data related to research and development, health records, and patient self-tracking, collectively referred to as Big Data. Properly harnessed, Big Data can provide insights and drive discovery that will accelerate biomedical advances, improve patient outcomes, and reduce costs. However, the considerable potential of Big Data remains unrealized owing to obstacles including a limited ability to standardize and consolidate data and challenges in sharing data, among a variety of sources, providers, and facilities. Here, we discuss some of these challenges and potential solutions, as well as initiatives that are already underway to take advantage of Big Data. © 2017 New York Academy of Sciences.

  13. A community of practice: librarians in a biomedical research network.

    Science.gov (United States)

    De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara

    2014-01-01

    Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine.

  14. Application of infrared to biomedical sciences

    CERN Document Server

    Etehadtavakol, Mahnaz

    2017-01-01

    The book covers the latest updates in the application of infrared to biomedical sciences, a non-invasive, contactless, safe and easy approach imaging of skin and tissue temperatures. Its diagnostic procedure allows practitioners to identify the locations of abnormal chemical and blood vessel activity such as angiogenesis in body tissue. Its non-invasive approach works by applying the technology of the infrared camera and state-of-the-art software, where high-resolution digital infrared imaging technology benefits highly from enhanced image production, standardized image interpretation protocols, computerized comparison and storage, and sophisticated image enhancement and analysis. The book contains contributions from global prominent scientists in the area of infrared applications in biomedical studies. The target audience includes academics, practitioners, clinicians and students working in the area of infrared imaging in biomedicine.

  15. Globalization and changing trends of biomedical research output.

    Science.gov (United States)

    Conte, Marisa L; Liu, Jing; Schnell, Santiago; Omary, M Bishr

    2017-06-15

    The US continues to lead the world in research and development (R&D) expenditures, but there is concern that stagnation in federal support for biomedical research in the US could undermine the leading role the US has played in biomedical and clinical research discoveries. As a readout of research output in the US compared with other countries, assessment of original research articles published by US-based authors in ten clinical and basic science journals during 2000 to 2015 showed a steady decline of articles in high-ranking journals or no significant change in mid-ranking journals. In contrast, publication output originating from China-based investigators, in both high- and mid-ranking journals, has steadily increased commensurate with significant growth in R&D expenditures. These observations support the current concerns of stagnant and year-to-year uncertainty in US federal funding of biomedical research.

  16. Simbody: multibody dynamics for biomedical research.

    Science.gov (United States)

    Sherman, Michael A; Seth, Ajay; Delp, Scott L

    Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.

  17. [Open access :an opportunity for biomedical research].

    OpenAIRE

    Duchange, Nathalie; Autard, Delphine; Pinhas, Nicole

    2008-01-01

    International audience; Open access within the scientific community depends on the scientific context and the practices of the field. In the biomedical domain, the communication of research results is characterised by the importance of the peer reviewing process, the existence of a hierarchy among journals and the transfer of copyright to the editor. Biomedical publishing has become a lucrative market and the growth of electronic journals has not helped lower the costs. Indeed, it is difficul...

  18. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  19. [Dendrimers in biomedical sciences and nanotechnology].

    Science.gov (United States)

    Sekowski, Szymon; Miłowska, Katarzyna; Gabryelak, Teresa

    2008-12-30

    Dendrimers are relatively new, hyper-branched polymers that have many interesting abilities. Dendrimers could be used, for example, as drug or gene carriers, contrast agents, sensors for different metal ions, and in developing innovation technology. These spherical polymers are also characterized by pharmacological activity against different bacterial and viral diseases. Dendrimers are currently being intensively investigated as anti-prion and anti-amyloid fibril agents. They can be used to build specific dendrimer films to be applied in modern technology. This review describes different uses of dendrimer particles in biomedical sciences and nanotechnology and shows advantages of their application.

  20. Repeat: a framework to assess empirical reproducibility in biomedical research

    Directory of Open Access Journals (Sweden)

    Leslie D. McIntosh

    2017-09-01

    Full Text Available Abstract Background The reproducibility of research is essential to rigorous science, yet significant concerns of the reliability and verifiability of biomedical research have been recently highlighted. Ongoing efforts across several domains of science and policy are working to clarify the fundamental characteristics of reproducibility and to enhance the transparency and accessibility of research. Methods The aim of the proceeding work is to develop an assessment tool operationalizing key concepts of research transparency in the biomedical domain, specifically for secondary biomedical data research using electronic health record data. The tool (RepeAT was developed through a multi-phase process that involved coding and extracting recommendations and practices for improving reproducibility from publications and reports across the biomedical and statistical sciences, field testing the instrument, and refining variables. Results RepeAT includes 119 unique variables grouped into five categories (research design and aim, database and data collection methods, data mining and data cleaning, data analysis, data sharing and documentation. Preliminary results in manually processing 40 scientific manuscripts indicate components of the proposed framework with strong inter-rater reliability, as well as directions for further research and refinement of RepeAT. Conclusions The use of RepeAT may allow the biomedical community to have a better understanding of the current practices of research transparency and accessibility among principal investigators. Common adoption of RepeAT may improve reporting of research practices and the availability of research outputs. Additionally, use of RepeAT will facilitate comparisons of research transparency and accessibility across domains and institutions.

  1. Bioethical Principles of Biomedical Research Involving Animals

    Directory of Open Access Journals (Sweden)

    Bakir Mehić

    2011-08-01

    Full Text Available A major requirement both of national and international ethical codes for human experimentation, and of national legislation in many cases, is that new substances or devices should not be used for the first time on human beings unless previous tests on animals have provided a reasonable presumption of their safety. That is so called: Good Clinical Praxis (GCP. There are two international ethical codes intended principally for the guidance of countries or institutions that have not yet formulated their own ethical requirements for human experimentation: The Declaration of Helsinki of the World Medical Association and The Proposed International Guidelines for Biomedical Research Involving Human Subjects of the Council for International Organizations of Medical Sciences and the World Health Organization[1].Animal experimentation is fundamental to the biomedical sciences, not only for the advancement of specific vital processes, but also for the improvement of methods of prevention, diagnosis, and treatment of disease both in man and in animals. The use of animals is also indispensable for testing the potency and safety of biological substances used in human and veterinary medicine, as well as for determining the toxicity of the rapidly growing number of molecules that never existed before in nature and which may represent a hazard to health. This extensive exploitation by man of animals implies philosophical and moral problems that are not peculiar to their use for scientific purposes, and there are no objective ethical criteria by which to judge claims and counterclaims in such matters[2]. However, there is a consensus that „deliberate cruelty is repugnant”.While many countries have general laws or regulations imposing penalties for ill-treatment of animals, relatively few make specific provision for their use for scientific purposes. Because of differing legal systems and cultural backgrounds there are varying approaches to the use of

  2. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2015-06-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Should biomedical research be like Airbnb?

    Science.gov (United States)

    Bonazzi, Vivien R; Bourne, Philip E

    2017-04-01

    The thesis presented here is that biomedical research is based on the trusted exchange of services. That exchange would be conducted more efficiently if the trusted software platforms to exchange those services, if they exist, were more integrated. While simpler and narrower in scope than the services governing biomedical research, comparison to existing internet-based platforms, like Airbnb, can be informative. We illustrate how the analogy to internet-based platforms works and does not work and introduce The Commons, under active development at the National Institutes of Health (NIH) and elsewhere, as an example of the move towards platforms for research.

  4. Should biomedical research be like Airbnb?

    Directory of Open Access Journals (Sweden)

    Vivien R Bonazzi

    2017-04-01

    Full Text Available The thesis presented here is that biomedical research is based on the trusted exchange of services. That exchange would be conducted more efficiently if the trusted software platforms to exchange those services, if they exist, were more integrated. While simpler and narrower in scope than the services governing biomedical research, comparison to existing internet-based platforms, like Airbnb, can be informative. We illustrate how the analogy to internet-based platforms works and does not work and introduce The Commons, under active development at the National Institutes of Health (NIH and elsewhere, as an example of the move towards platforms for research.

  5. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    Fuente Puch, A.E. de la

    2013-01-01

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  6. African Journal of Biomedical Research: Editorial Policies

    African Journals Online (AJOL)

    One of the dual roles of the African Journal of Biomedical Research is to serve as a conduit for academic and professional media, covering all research findings within ... Editorial Team. Founding Editor. Raphael A. Elegbe, M.D. Managing Editor. Samuel. B. Olaleye. Department of Physiology,. University of Ibadan. Nigeria.

  7. Biomedical research competencies for osteopathic medical students.

    Science.gov (United States)

    Cruser, des Anges; Dubin, Bruce; Brown, Sarah K; Bakken, Lori L; Licciardone, John C; Podawiltz, Alan L; Bulik, Robert J

    2009-10-13

    Without systematic exposure to biomedical research concepts or applications, osteopathic medical students may be generally under-prepared to efficiently consume and effectively apply research and evidence-based medicine information in patient care. The academic literature suggests that although medical residents are increasingly expected to conduct research in their post graduate training specialties, they generally have limited understanding of research concepts.With grant support from the National Center for Complementary and Alternative Medicine, and a grant from the Osteopathic Heritage Foundation, the University of North Texas Health Science Center (UNTHSC) is incorporating research education in the osteopathic medical school curriculum. The first phase of this research education project involved a baseline assessment of students' understanding of targeted research concepts. This paper reports the results of that assessment and discusses implications for research education during medical school. Using a novel set of research competencies supported by the literature as needed for understanding research information, we created a questionnaire to measure students' confidence and understanding of selected research concepts. Three matriculating medical school classes completed the on-line questionnaire. Data were analyzed for differences between groups using analysis of variance and t-tests. Correlation coefficients were computed for the confidence and applied understanding measures. We performed a principle component factor analysis of the confidence items, and used multiple regression analyses to explore how confidence might be related to the applied understanding. Of 496 total incoming, first, and second year medical students, 354 (71.4%) completed the questionnaire. Incoming students expressed significantly more confidence than first or second year students (F = 7.198, df = 2, 351, P = 0.001) in their ability to understand the research concepts. Factor analyses

  8. Research evaluation support services in biomedical libraries.

    Science.gov (United States)

    Gutzman, Karen Elizabeth; Bales, Michael E; Belter, Christopher W; Chambers, Thane; Chan, Liza; Holmes, Kristi L; Lu, Ya-Ling; Palmer, Lisa A; Reznik-Zellen, Rebecca C; Sarli, Cathy C; Suiter, Amy M; Wheeler, Terrie R

    2018-01-01

    The paper provides a review of current practices related to evaluation support services reported by seven biomedical and research libraries. A group of seven libraries from the United States and Canada described their experiences with establishing evaluation support services at their libraries. A questionnaire was distributed among the libraries to elicit information as to program development, service and staffing models, campus partnerships, training, products such as tools and reports, and resources used for evaluation support services. The libraries also reported interesting projects, lessons learned, and future plans. The seven libraries profiled in this paper report a variety of service models in providing evaluation support services to meet the needs of campus stakeholders. The service models range from research center cores, partnerships with research groups, and library programs with staff dedicated to evaluation support services. A variety of products and services were described such as an automated tool to develop rank-based metrics, consultation on appropriate metrics to use for evaluation, customized publication and citation reports, resource guides, classes and training, and others. Implementing these services has allowed the libraries to expand their roles on campus and to contribute more directly to the research missions of their institutions. Libraries can leverage a variety of evaluation support services as an opportunity to successfully meet an array of challenges confronting the biomedical research community, including robust efforts to report and demonstrate tangible and meaningful outcomes of biomedical research and clinical care. These services represent a transformative direction that can be emulated by other biomedical and research libraries.

  9. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  10. Research Strategies for Biomedical and Health Informatics

    Science.gov (United States)

    Kulikowski, Casimir A.; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra Neil; Leong, Tze Yun; McCray, Alexa T.

    2017-01-01

    Summary Background Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes. PMID:28119991

  11. National Space Biomedical Research Institute Annual Report

    Science.gov (United States)

    2000-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2000. The NSBRI is responsible for the development of countermeasures against the deleterious effects of long-duration space flight and performs fundamental and applied space biomedical research directed towards this specific goal. Its mission is to lead a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan by focusing on the enabling of long-term human presence in, development of, and exploration of space. This is accomplished by: designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of mankind, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through NASA's Lyndon B. Johnson Space Center. Attachment:Appendices (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, and P.).

  12. Data Analysis in Experimental Biomedical Research

    DEFF Research Database (Denmark)

    Markovich, Dmitriy

    This thesis covers two non-related topics in experimental biomedical research: data analysis in thrombin generation experiments (collaboration with Novo Nordisk A/S), and analysis of images and physiological signals in the context of neurovascular signalling and blood flow regulation in the brain...

  13. Practical radiation shielding for biomedical research

    International Nuclear Information System (INIS)

    Klein, R.C.; Reginatto, M.; Party, E.; Gershey, E.L.

    1990-01-01

    This paper reports on calculations which exist for estimating shielding required for radioactivity; however, they are often not applicable for the radionuclides and activities common in biomedical research. A variety of commercially available Lucite shields are being marketed to the biomedical community. Their advertisements may lead laboratory workers to expect better radiation protection than these shields can provide or to assume erroneously that very weak beta emitters require extensive shielding. The authors have conducted a series of shielding experiments designed to simulate exposures from the amounts of 32 P, 51 Cr and 125 I typically used in biomedical laboratories. For most routine work, ≥0.64 cm of Lucite covered with various thicknesses of lead will reduce whole-body occupational exposure rates of < 1mR/hr at the point of contact

  14. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Felton, D.L.

    1985-02-01

    Research progress is reported in the following areas: (1) evaluation of possible health effects among nuclear workers; (2) dose-effect relationship studies of carcinogenesis from both nuclear materials and complex mixtures; (3) microbial mutagenesis studies with 6-aminochrysene and benzo[a]pyrene in coal-derived complex mixtures; and (4) a variety of studies relating to noncarcinogenic and nonmutagenic endpoints, including teratology, perinatal studies and studies to determine absorption, metabolism, and doses to critical tissues and organs of coal-derived mixtures and radionuclides. Items have been individually abstracted for the data base

  15. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Felton, D.L. (ed.)

    1985-02-01

    Research progress is reported in the following areas: (1) evaluation of possible health effects among nuclear workers; (2) dose-effect relationship studies of carcinogenesis from both nuclear materials and complex mixtures; (3) microbial mutagenesis studies with 6-aminochrysene and benzo(a)pyrene in coal-derived complex mixtures; and (4) a variety of studies relating to noncarcinogenic and nonmutagenic endpoints, including teratology, perinatal studies and studies to determine absorption, metabolism, and doses to critical tissues and organs of coal-derived mixtures and radionuclides. Items have been individually abstracted for the data base. (ACR)

  16. The Salient Map Analysis for Research and Teaching (SMART) method: Powerful potential as a formative assessment in the biomedical sciences

    Science.gov (United States)

    Cathcart, Laura Anne

    This dissertation consists of two studies: 1) development and characterization of the Salient Map Analysis for Research and Teaching (SMART) method as a formative assessment tool and 2) a case study exploring how a paramedic instructor's beliefs about learners affect her utilization of the SMART method and vice versa. The first study explored: How can a novel concept map analysis method be designed as an effective formative assessment tool? The SMART method improves upon existing concept map analysis methods because it does not require hierarchically structured concept maps and it preserves the rich content of the maps instead of reducing each map down to a numerical score. The SMART method is performed by comparing a set of students' maps to each other and to an instructor's map. The resulting composite map depicts, in percentages and highlighted colors, the similarities and differences between all of the maps. Some advantages of the SMART method as a formative assessment tool include its ability to highlight changes across time, problematic or alternative conceptions, and patterns of student responses at a glance. Study two explored: How do a paramedic instructor's beliefs about students and learning affect---and become affected by---her use of the SMART method as a formative assessment tool? This case study of Angel, an expert paramedic instructor, begins to address a gap in the emergency medical services (EMS) education literature, which contains almost no research on teachers or pedagogy. Angel and I worked together as participant co-researchers (Heron & Reason, 1997) exploring the affordances of the SMART method. This study, based on those interactions with Angel, involved using open coding to identify themes (Strauss & Corbin, 1998) from Angel's views of students and use of the SMART method. Angel views learning as a sense-making process. She has a multi-faceted view of her students as novices and invests substantial time trying to understand their concept

  17. Biomedical research applications of electromagnetically separated enriched stable isotopes

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1982-01-01

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosotope production, labeled compounds, and potential radiopharmaceuticals; (2) nutrition, food science, and pharmacology; (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and Moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and non-radioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Priorities and summaries are based on statements in the references and from answers to a survey conducted in the fall of 1981. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for 26 Mg, 43 Ca, 70 Zn, 76 Se, 78 Se, 102 Pd, 111 Cd, 113 Cd, and 190 Os. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments

  18. Archives: International Journal of Medicine and Biomedical Research

    African Journals Online (AJOL)

    Items 1 - 15 of 15 ... Archives: International Journal of Medicine and Biomedical Research. Journal Home > Archives: International Journal of Medicine and Biomedical Research. Log in or Register to get access to full text downloads.

  19. [Open access :an opportunity for biomedical research].

    Science.gov (United States)

    Duchange, Nathalie; Autard, Delphine; Pinhas, Nicole

    2008-01-01

    Open access within the scientific community depends on the scientific context and the practices of the field. In the biomedical domain, the communication of research results is characterised by the importance of the peer reviewing process, the existence of a hierarchy among journals and the transfer of copyright to the editor. Biomedical publishing has become a lucrative market and the growth of electronic journals has not helped lower the costs. Indeed, it is difficult for today's public institutions to gain access to all the scientific literature. Open access is thus imperative, as demonstrated through the positions taken by a growing number of research funding bodies, the development of open access journals and efforts made in promoting open archives. This article describes the setting up of an Inserm portal for publication in the context of the French national protocol for open-access self-archiving and in an international context.

  20. Publications in biomedical and environmental sciences programs, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.

  1. Publications in biomedical and environmental sciences programs, 1981

    International Nuclear Information System (INIS)

    Moody, J.B.

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference

  2. From biomedical-engineering research to clinical application and industrialization

    Science.gov (United States)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  3. The science-media interaction in biomedical research in the Netherlands. Opinions of scientists and journalists on the science-media relationship

    NARCIS (Netherlands)

    Dijkstra, Anne M.; Roefs, Maaike M.; Drossaert, Constance H.C.

    2015-01-01

    Scientists’ participation in science communication and public engagement activities is considered important and a duty. However, in particular, the science-media relationship has not been studied frequently. In this paper, we present findings from interviews with both scientists and journalists

  4. Sierra Leone Journal of Biomedical Research: Editorial Policies

    African Journals Online (AJOL)

    Scope of the Journal SLJBR is devoted to the publication of contributions in all fields of Medicine and Allied Health Sciences including Basic Medical Sciences, Clinical Sciences, Dental Sciences, Behavioural Sciences, Biomedical Engineering, Molecular Biology, Pharmaceutical Sciences, Biotechnology in relation to ...

  5. Unbridle biomedical research from the laboratory cage.

    Science.gov (United States)

    Lahvis, Garet P

    2017-06-29

    Many biomedical research studies use captive animals to model human health and disease. However, a surprising number of studies show that the biological systems of animals living in standard laboratory housing are abnormal. To make animal studies more relevant to human health, research animals should live in the wild or be able to roam free in captive environments that offer a natural range of both positive and negative experiences. Recent technological advances now allow us to study freely roaming animals and we should make use of them.

  6. Driving forces of biomedical science education and research in state-of-the arts academic medical centres: the United States as example.

    Science.gov (United States)

    John, T A

    2011-06-01

    Basic science departments in academic medical centres are influenced by changes that are commonly directed at medical education and financial gain. Some of such changes may have been detrimental to or may have enhanced basic science education. They may have determined basic science research focus or basic science research methods. However, there is lack of research on the educational process in the basic sciences including training of PhD's while there is ample research on medical education pertaining to training of medical doctors. The author here identifies, from university websites and available literature, some forces that have driven teaching and research focus and methods in state-of-the-arts academic medical centres in recent times with a view of seeing through their possible influences on basic science education and research, using the United States of America as an example. The "forces" are: Changes in medical schools; Medical educational philosophies: problem based learning, evidence based medicine, cyberlearning and self-directed learning; Shifting impressions of the value of basic sciences in medical schools; Research trends in Basic Sciences: role of antivivisectionists, alternative experimentations, explosion of molecular and cell biology; Technological advancements; Commercialization of research; and Funding agencies. The author encourages African leaders in academia to pay attention to such forces as the leadership seeks to raise African Universities as centres of knowledge that have a major role in acquiring, preserving, imparting, and utilizing knowledge.

  7. New frontiers in biomedical science and engineering during 2014-2015.

    Science.gov (United States)

    Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep

    2015-01-01

    The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.

  8. Biomedical Research Institute, Biomedical Research Foundation of Northwest Louisiana, Shreveport, Louisiana

    International Nuclear Information System (INIS)

    1992-01-01

    Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0789, evaluating the environmental impacts of construction and operation of a Biomedical Research Institute (BRI) at the Louisiana State University (LSU) Medical Center, Shreveport, Louisiana. The purpose of the BRI is to accelerate the development of biomedical research in cardiovascular disease, molecular biology, and neurobiology. Based on the analyses in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  9. [Health care professional view on biomedical research].

    Science.gov (United States)

    Giménez, N; Jodar, E; Torres, M; Dalmau, D

    2009-01-01

    Biomedical research is a necessary subject and enjoys social prestige. To ascertain the views and expectations of health care professionals on research, analysing the influence of their academic training and professional level. An anonymous questionnaire was distributed to physicians and qualified nurses working in a, tertiary hospital, seven primary care centres and two nursing homes (health care centres for the elderly). Cronbach's coefficient alpha=0.817. Response rate: 64% (432 out of 682 questionnaires distributed). Women: 71%. Mean age: 37 years. Mean years involved in health care: 14 years. 79% of people considered research as a part of their job, although in practice only 43% were doing it. Overall participation in activities was: Conferences (71%), education (42%), publications (34%) and ongoing projects (17%). Physicians dedicated more off duty time (37%) to research than qualified nurses (CI95%: 28 to 46%). The majority of physicians having their doctoral thesis would like to carry out research activities, and 84% did so in their free time and 74% had active research projects in progress. They identified physician workload as the main factor that impedes performing research. Proposals to increase research activities were focused on improving resources. The majority of health care professionals expressed a great motivation. The perception of research varies depending upon professional qualification. Physicians having their doctoral thesis were more involved and had a different perception of research, being more critical about available resources. Overall research perception was more positive among those with less academic training, as well as among those centres with less research activities.

  10. Accelerator mass spectrometry in biomedical research

    International Nuclear Information System (INIS)

    Vogel, J.S.; Turteltaub, K.W.

    1993-01-01

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10 9 ) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10 13--15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. 14 C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. 3 H, 41 Ca and 26 Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications

  11. Accelerator mass spectrometry in biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; Turteltaub, K.W.

    1993-10-20

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10{sup 9}) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10{sup 13--15} on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. {sup 14}C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. {sup 3} H, {sup 41}Ca and {sup 26}Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  12. Context-Aware Adaptive Hybrid Semantic Relatedness in Biomedical Science

    Science.gov (United States)

    Emadzadeh, Ehsan

    Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1--6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.

  13. Big Biomedical data as the key resource for discovery science

    Energy Technology Data Exchange (ETDEWEB)

    Toga, Arthur W.; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W.; Price, Nathan D.; Glusman, Gustavo; Heavner, Benjamin D.; Dinov, Ivo D.; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-07-21

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an “-ome to home” approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center’s computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson’s and Alzheimer’s.

  14. Commercializing biomedical research through securitization techniques.

    Science.gov (United States)

    Fernandez, Jose-Maria; Stein, Roger M; Lo, Andrew W

    2012-10-01

    Biomedical innovation has become riskier, more expensive and more difficult to finance with traditional sources such as private and public equity. Here we propose a financial structure in which a large number of biomedical programs at various stages of development are funded by a single entity to substantially reduce the portfolio's risk. The portfolio entity can finance its activities by issuing debt, a critical advantage because a much larger pool of capital is available for investment in debt versus equity. By employing financial engineering techniques such as securitization, it can raise even greater amounts of more-patient capital. In a simulation using historical data for new molecular entities in oncology from 1990 to 2011, we find that megafunds of $5–15 billion may yield average investment returns of 8.9–11.4% for equity holders and 5–8% for 'research-backed obligation' holders, which are lower than typical venture-capital hurdle rates but attractive to pension funds, insurance companies and other large institutional investors.

  15. From Bench to Bedside: A communal utility value intervention to enhance students’ biomedical science motivation

    Science.gov (United States)

    Brown, Elizabeth R.; Smith, Jessi L.; Thoman, Dustin B.; Allen, Jill M.; Muragishi, Gregg

    2015-01-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student’s perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective we identify and test two types of utility value: communal (other-oriented) and agentic (self-oriented). The culture of science is replete with examples emphasizing high levels of agentic value, but communal values are often (stereotyped as) absent from science. However, people in general want an occupation that has communal utility. We predicted and found that an intervention emphasizing the communal utility value of biomedical research increased students’ motivation for biomedical science (Studies 1–3). We refined whether different types of communal utility value (working with, helping, and forming relationships with others) might be more or less important, demonstrating that helping others was an especially important predictor of student motivation (Study 2). Adding agentic utility value to biomedical research did not further increase student motivation (Study 3). Furthermore, the communal value intervention indirectly impacted students’ motivation because students believed that biomedical research was communal and thus subsequently more important (Studies 1–3). This is key, because enhancing student communal value beliefs about biomedical research (Studies 1–3) and science (Study 4) was associated both with momentary increases in motivation in experimental settings (Studies 1–3) and increased motivation over time among students highly identified with biomedicine (Study 4). We discuss recommendations for science educators, practitioners, and faculty mentors who want to broaden participation in science. PMID:26617417

  16. From Bench to Bedside: A communal utility value intervention to enhance students' biomedical science motivation.

    Science.gov (United States)

    Brown, Elizabeth R; Smith, Jessi L; Thoman, Dustin B; Allen, Jill M; Muragishi, Gregg

    2015-11-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student's perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective we identify and test two types of utility value: communal (other-oriented) and agentic (self-oriented). The culture of science is replete with examples emphasizing high levels of agentic value, but communal values are often (stereotyped as) absent from science. However, people in general want an occupation that has communal utility. We predicted and found that an intervention emphasizing the communal utility value of biomedical research increased students' motivation for biomedical science (Studies 1-3). We refined whether different types of communal utility value (working with, helping, and forming relationships with others) might be more or less important, demonstrating that helping others was an especially important predictor of student motivation (Study 2). Adding agentic utility value to biomedical research did not further increase student motivation (Study 3). Furthermore, the communal value intervention indirectly impacted students' motivation because students believed that biomedical research was communal and thus subsequently more important (Studies 1-3). This is key, because enhancing student communal value beliefs about biomedical research (Studies 1-3) and science (Study 4) was associated both with momentary increases in motivation in experimental settings (Studies 1-3) and increased motivation over time among students highly identified with biomedicine (Study 4). We discuss recommendations for science educators, practitioners, and faculty mentors who want to broaden participation in science.

  17. Journal of Medical and Biomedical Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Journal of Medical and Biomedical Science publishes original, novel, peer-reviewed reports that pertain to medical and allied health sciences; confirmatory reports of previously described phenomena that either contain a novel finding or are of such magnitude to enhance the field; as well as laboratory or ...

  18. [Biomedical research from philanthropy to scarcity.

    Science.gov (United States)

    Addis, Antonio; De Fiore, Luca; Traversa, Giuseppe

    2016-10-01

    Some huge information technology companies have increased investment in biomedical research: recently Google, Microsoft, and Facebook. The latter presented the ambitious Zuckerberg-Chan Initiative involving three major Californian universities: UC San Francisco, Berkeley and Stanford. These important private investments arouse reflections. First, investing in scientific research improves the corporate image of the most generous companies and it is a great marketing strategy. Second, the availability of private funds is surely useful, especially if these funds are directed to relevant projects, and produce studies conducted and disseminated in a transparent way. Third, private funding should not replace public ones, representing an integration that will not likely affect the determination of the research agenda, which should remain the prerogative of public institutions. Fourth, the researchers involved in public funded projects should benefit from the margin of freedom that private industry promises, both in the decision of research pathways and in their course. Finally, the scarcity of resources is likely to divert energy and attention of the public researchers and this aspect should be considered by decision makers when determining size and recipients of research funding.

  19. Future of fundamental discovery in US biomedical research.

    Science.gov (United States)

    Levitt, Michael; Levitt, Jonathan M

    2017-06-20

    Young researchers are crucially important for basic science as they make unexpected, fundamental discoveries. Since 1982, we find a steady drop in the number of grant-eligible basic-science faculty [principal investigators (PIs)] younger than 46. This fall occurred over a 32-y period when inflation-corrected congressional funds for NIH almost tripled. During this time, the PI success ratio (fraction of basic-science PIs who are R01 grantees) dropped for younger PIs (below 46) and increased for older PIs (above 55). This age-related bias seems to have caused the steady drop in the number of young basic-science PIs and could reduce future US discoveries in fundamental biomedical science. The NIH recognized this bias in its 2008 early-stage investigator (ESI) policy to fund young PIs at higher rates. We show this policy is working and recommend that it be enhanced by using better data. Together with the National Institute of General Medical Sciences (NIGMS) Maximizing Investigators' Research Award (MIRA) program to reward senior PIs with research time in exchange for less funding, this may reverse a decades-long trend of more money going to older PIs. To prepare young scientists for increased demand, additional resources should be devoted to transitional postdoctoral fellowships already offered by NIH.

  20. 1st International Conference on Computational and Experimental Biomedical Sciences

    CERN Document Server

    Jorge, RM

    2015-01-01

    This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...

  1. Biomedical engineering research at DOE national labs

    International Nuclear Information System (INIS)

    None

    1999-01-01

    Biomedical Engineering is the application of principles of physics, chemistry, nd engineering to problems of human health. The National Laboratories of the U.S. Department of Energy have been leaders in this scientific field since 1947. This inventory of their biomedical engineering projects was compiled in January 1999

  2. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  3. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs

  4. Information Retrieval in Biomedical Research: From Articles to Datasets

    Science.gov (United States)

    Wei, Wei

    2017-01-01

    Information retrieval techniques have been applied to biomedical research for a variety of purposes, such as textual document retrieval and molecular data retrieval. As biomedical research evolves over time, information retrieval is also constantly facing new challenges, including the growing number of available data, the emerging new data types,…

  5. The experiential knowledge of patients: new resource for biomedical research?

    NARCIS (Netherlands)

    Caron - Flinterman, J.F.; Broerse, J.E.W.; Bunders - Aelen, J.G.F.

    2005-01-01

    Both governments and patients' movements are increasingly making a plea in favour of the active participation of patients in biomedical research processes. One of the arguments concerns the contribution that patients could make to the relevance and quality of biomedical research based on their

  6. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  7. Innovative strategies in teaching of biomedical sciences to health ...

    African Journals Online (AJOL)

    Knowledge and skills in biomedical sciences have reached a level, which is difficult to pass on to students in the traditional one to two years by traditional lecture methods and are still expanding. Recently, innovative methods of enabling the students to acquire the knowledge and skills have been evolved, and include ...

  8. Blended learning as an effective pedagogical paradigm for biomedical science

    Directory of Open Access Journals (Sweden)

    Perry Hartfield

    2013-11-01

    Full Text Available Blended learning combines face-to-face class based and online teaching and learning delivery in order to increase flexibility in how, when, and where students study and learn. The development, integration, and promotion of blended learning in frameworks of curriculum design can optimize the opportunities afforded by information and communication technologies and, concomitantly, accommodate a broad range of student learning styles. This study critically reviews the potential benefits of blended learning as a progressive educative paradigm for the teaching of biomedical science and evaluates the opportunities that blended learning offers for the delivery of accessible, flexible and sustainable teaching and learning experiences. A central tenet of biomedical science education at the tertiary level is the development of comprehensive hands-on practical competencies and technical skills (many of which require laboratory-based learning environments, and it is advanced that a blended learning model, which combines face-to-face synchronous teaching and learning activities with asynchronous online teaching and learning activities, effectively creates an authentic, enriching, and student-centred learning environment for biomedical science. Lastly, a blending learning design for introductory biochemistry will be described as an effective example of integrating face-to-face and online teaching, learning and assessment activities within the teaching domain of biomedical science.   DOI: 10.18870/hlrc.v3i4.169

  9. Scientists and the 3Rs: attitudes to animal use in biomedical research and the effect of mandatory training in laboratory animal science.

    Science.gov (United States)

    Franco, N H; Olsson, I A S

    2014-01-01

    The 3Rs principle of replacement, reduction, and refinement has increasingly been endorsed by legislators and regulatory bodies as the best approach to tackle the ethical dilemma presented by animal experimentation in which the potential benefits for humans stand against the costs borne by the animals. Even when animal use is tightly regulated and supervised, the individual researcher's responsibility is still decisive in the implementation of the 3Rs. Training in laboratory animal science (LAS) aims to raise researchers' awareness and increase their knowledge, but its effect on scientists' attitudes and practice has not so far been systematically assessed. Participants (n = 206) in eight LAS courses (following the Federation of European Laboratory Animal Science Associations category C recommendations) in Portugal were surveyed in a self-administered questionnaire during the course. Questions were related mainly to the 3Rs and their application, attitudes to animal use and the ethical review of animal experiments. One year later, all the respondents were asked to answer a similar questionnaire (57% response rate) with added self-evaluation questions on the impact of training. Our results suggest that the course is effective in promoting awareness and increasing knowledge of the 3Rs, particularly with regard to refinement. However, participation in the course did not change perceptions on the current and future needs for animal use in research.

  10. The science of sex and gender in human health: online courses to create a foundation for sex and gender accountability in biomedical research and treatment.

    Science.gov (United States)

    Plank-Bazinet, Jennifer L; Sampson, Annie; Miller, Leah R; Fadiran, Emmanuel O; Kallgren, Deborah; Agarwal, Rajeev K; Barfield, Whitney; Brooks, Claudette E; Begg, Lisa; Mistretta, Amy C; Scott, Pamela E; Clayton, Janine Austin; Cornelison, Terri L

    2016-01-01

    Sex and gender differences play a significant role in the course and outcome of conditions that affect specific organ systems in the human body. Research on differences in the effects of medical intervention has helped scientists develop a number of sex- and gender-specific guidelines on the treatment and management of these conditions. An online series of courses, "The Science of Sex and Gender in Human Health," developed by the National Institutes of Health Office of Research on Women's Health and the U.S. Food and Drug Administration Office of Women's Health, examines sex and gender differences and their implications. Thus far, three online courses have been generated. The first course offers an overview of the scientific and biological basis for sex- and gender-related differences. The second course is focused on disease-specific sex and gender differences in health and behavior and their implications. Finally, the third course covers the influence of sex and gender on disease manifestation, treatment, and outcome. Data were obtained using website analytics and post-course surveys. To date, over 1000 individuals have completed at least one course. Additionally, 600 users have received continuing education credit for completing a course in the series. Finally, the majority of respondents to the online course survey have indicated that the courses considerably enhanced their professional effectiveness. "The Science of Sex and Gender in Human Health" online courses are freely available sources of information that provide healthcare providers and researchers with the resources to successfully account for sex and gender in their medical practice and research programs.

  11. Race and Genetics: Controversies in Biomedical, Behavioral, and Forensic Sciences

    Science.gov (United States)

    Ossorio, Pilar; Duster, Troy

    2005-01-01

    Among biomedical scientists, there is a great deal of controversy over the nature of race, the relevance of racial categories for research, and the proper methods of using racial variables. This article argues that researchers and scholars should avoid a binary-type argument, in which the question is whether to use race always or never.…

  12. Big biomedical data as the key resource for discovery science.

    Science.gov (United States)

    Toga, Arthur W; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W; Price, Nathan D; Glusman, Gustavo; Heavner, Benjamin D; Dinov, Ivo D; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-11-01

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an "-ome to home" approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center's computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson's and Alzheimer's. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    Pawar, S.H.; Khyalappa, R.J.; Yakhmi, J.V.

    2009-01-01

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  14. Status of Research in Biomedical Engineering 1968.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…

  15. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2004-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  16. Multidisciplinary Russian biomedical research in space

    Science.gov (United States)

    Orlov, O. I.; Sychev, V. N.; Samarin, G. I.; Ilyin, E. A.; Belakovskiy, M. S.; Kussmaul, A. R.

    2014-08-01

    Research activities on a comprehensive multidisciplinary program are vital for enhancement of the system of crew's medical care, environmental health and hygiene in space missions. The primary goal of the program must be identification of patterns, intensity and dynamics of structural and functional shifts in organism induced by an aggregate of spaceflight factors including microgravity, isolation, artificial environment, space radiation, etc. Also, the program must pursue differential assessment of emerging deviations from the standpoint of adequacy to the spaceflight conditions and prospects of returning to Earth and guide the development of principles, methods and techniques necessary to maintain health and working capacity of humans during short- and long-duration missions and on return to Earth. Over 50 years, since 1963, the IBMP researchers apply systemic and innovational approaches to fundamental and exploratory studies in the fields of medical sciences, radiation biology, engineering science, biotechnology, etc. with participation of various biological specimens and human volunteers. Investigations aboard manned spacecrafts and biological satellites as well as in ground-based laboratories further enhancement of the medical care system for crews on orbital and remote space missions; they give insight into the fundamental problems of gravitational physiology and biology, psychophysiology, radiation biology, and contribute thereby to the development of knowledge, methods and technologies, as well as medical and scientific equipment.

  17. Publications in biomedical and environmental sciences programs, 1982

    International Nuclear Information System (INIS)

    Moody, J.B.

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division

  18. Cyclotrons for clinical and biomedical research with PET

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1987-01-01

    The purpose of this commentary is to present some background material on cyclotrons and other particle accelerators particularly with a view toward the considerations behind acquiring and installing such a machine for purely clinical and/or biomedical research use

  19. Evolution of the use of ionizing radiation in biomedical research

    International Nuclear Information System (INIS)

    Macias, M. T.

    2011-01-01

    This article presents the evolution, as a change of process, with the use of radioactivity in biomedical research, showing the consume of radioisotopes during the las 20 years indicating the evidences of these changes. The radioisotopic techniques applied at the present are described, and the future use of the radioisotopes in biomedical research is proposed, emphasizing the importance that the Molecular Imaging Techniques will have in this scientific area. (Author) 56 refs.

  20. In silico discoveries for biomedical sciences

    NARCIS (Netherlands)

    Haagen, Herman van

    2011-01-01

    Text-mining is a challenging field of research initially meant for reading large text collections with a computer. Text-mining is useful in summarizing text, searching for the informative documents, and most important to do knowledge discovery. Knowledge discovery is the main subject of this thesis.

  1. Annals of Biomedical Sciences: Advanced Search

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  2. Incorporating collaboratory concepts into informatics in support of translational interdisciplinary biomedical research

    Science.gov (United States)

    Lee, E. Sally; McDonald, David W.; Anderson, Nicholas; Tarczy-Hornoch, Peter

    2008-01-01

    Due to its complex nature, modern biomedical research has become increasingly interdisciplinary and collaborative in nature. Although a necessity, interdisciplinary biomedical collaboration is difficult. There is, however, a growing body of literature on the study and fostering of collaboration in fields such as computer supported cooperative work (CSCW) and information science (IS). These studies of collaboration provide insight into how to potentially alleviate the difficulties of interdisciplinary collaborative research. We, therefore, undertook a cross cutting study of science and engineering collaboratories to identify emergent themes. We review many relevant collaboratory concepts: (a) general collaboratory concepts across many domains: communication, common workspace and coordination, and data sharing and management, (b) specific collaboratory concepts of particular biomedical relevance: data integration and analysis, security structure, metadata and data provenance, and interoperability and data standards, (c) environmental factors that support collaboratories: administrative and management structure, technical support, and available funding as critical environmental factors, and (d) future considerations for biomedical collaboration: appropriate training and long-term planning. In our opinion, the collaboratory concepts we discuss can guide planning and design of future collaborative infrastructure by biomedical informatics researchers to alleviate some of the difficulties of interdisciplinary biomedical collaboration. PMID:18706852

  3. Challenges and opportunities for the biomedical research community.

    Science.gov (United States)

    Ivinson, A J

    2000-01-01

    The biomedical research community of the new millennium has at its disposal the resources and knowledge to bring about major changes in human health. Technological advances on a scale never before seen mean that we can consider a level of medical investigation and intervention unimaginable only 20 years ago. But with this power comes a tremendous responsibility to think carefully about how those resources should best be used. For reasons of economy, biomedical research is likely to remain focussed on the needs of rich countries. This need not, however, mean that poorer countries cannot in the future receive a greater benefit from the current community of biomedical researchers. And given the nature of disease and its disrespect for national boundaries, a more global approach to biomedical research should be attractive to rich and poor countries alike. Achieving this change, no matter how modest in scale, will require a concerted effort at all levels within the biomedical research community. Indeed, the community is at a stage when it must pay closer attention to the sensitivities and concerns of its patient population. Only then will the tremendous potential of biomedical research be embraced and supported by our societies.

  4. Reengineering Biomedical Translational Research with Engineering Ethics.

    Science.gov (United States)

    Sunderland, Mary E; Nayak, Rahul Uday

    2015-08-01

    It is widely accepted that translational research practitioners need to acquire special skills and knowledge that will enable them to anticipate, analyze, and manage a range of ethical issues. While there is a small but growing literature that addresses the ethics of translational research, there is a dearth of scholarship regarding how this might apply to engineers. In this paper we examine engineers as key translators and argue that they are well positioned to ask transformative ethical questions. Asking engineers to both broaden and deepen their consideration of ethics in their work, however, requires a shift in the way ethics is often portrayed and perceived in science and engineering communities. Rather than interpreting ethics as a roadblock to the success of translational research, we suggest that engineers should be encouraged to ask questions about the socio-ethical dimensions of their work. This requires expanding the conceptual framework of engineering beyond its traditional focus on "how" and "what" questions to also include "why" and "who" questions to facilitate the gathering of normative, socially-situated information. Empowering engineers to ask "why" and "who" questions should spur the development of technologies and practices that contribute to improving health outcomes.

  5. Artificial Sight Basic Research, Biomedical Engineering, and Clinical Advances

    CERN Document Server

    Humayun, Mark S; Chader, Gerald; Greenbaum, Elias

    2008-01-01

    Artificial sight is a frontier area of modern ophthalmology combining the multidisciplinary skills of surgical ophthalmology, biomedical engineering, biological physics, and psychophysical testing. Many scientific, engineering, and surgical challenges must be surmounted before widespread practical applications can be realized. The goal of Artificial Sight is to summarize the state-of-the-art research in this exciting area, and to describe some of the current approaches and initiatives that may help patients in a clinical setting. The Editors are active researchers in the fields of artificial sight, biomedical engineering and biological physics. They have received numerous professional awards and recognition for their work. The artificial sight team at the Doheny Eye Institute, led by Dr. Mark Humayun, is a world leader in this area of biomedical engineering and clinical research. Key Features Introduces and assesses the state of the art for a broad audience of biomedical engineers, biophysicists, and clinical...

  6. Navigating the Path to a Biomedical Science Career

    Science.gov (United States)

    Zimmerman, Andrea McNeely

    The number of biomedical PhD scientists being trained and graduated far exceeds the number of academic faculty positions and academic research jobs. If this trend is compelling biomedical PhD scientists to increasingly seek career paths outside of academia, then more should be known about their intentions, desires, training experiences, and career path navigation. Therefore, the purpose of this study was to understand the process through which biomedical PhD scientists are trained and supported for navigating future career paths. In addition, the study sought to determine whether career development support efforts and opportunities should be redesigned to account for the proportion of PhD scientists following non-academic career pathways. Guided by the social cognitive career theory (SCCT) framework this study sought to answer the following central research question: How does a southeastern tier 1 research university train and support its biomedical PhD scientists for navigating their career paths? Key findings are: Many factors influence PhD scientists' career sector preference and job search process, but the most influential were relationships with faculty, particularly the mentor advisor; Planned activities are a significant aspect of the training process and provide skills for career success; and Planned activities provided skills necessary for a career, but influential factors directed the career path navigated. Implications for practice and future research are discussed.

  7. Handbook of photonics for biomedical science

    CERN Document Server

    Tuchin, Valery V

    2010-01-01

    Many of the chapters are written by leaders in their field and thus provide both good foundational descriptions as well as up-to-date accounts of the state of the field. … the book does well throughout: providing a better than skin-deep introduction to a subject, focusing on the core issues within a field and providing references to enable more detailed investigation. … It brings together much of the most important literature into an easily accessible form. Written by leaders in their respective fields, this book would be a valuable addition to the collection of researchers, engineers and c

  8. Biomedical engineering - A means to add new dimension to medicine and research

    Science.gov (United States)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  9. Enrolment and Retention of African Women in Biomedical Research ...

    African Journals Online (AJOL)

    Relevant biomedical research literatures on Human Research Participants from Scirus, Pubmed and Medline computerized search were critically evaluated and highlighted. Information was also obtained from research ethics training as well as texts and journals in the medical libraries of the research ethics departments of ...

  10. Biomedical Engineering: A Compendium of Research Training Programs.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This document was prepared to provide a comprehensive view of the programs in biomedical engineering in existence in 1969. These programs are supported by the National Institute of General Medical Sciences and are located at 18 universities. This compendium provides information as to the intent and content of these programs from data provided by…

  11. Professional ethics in biomedical engineering practice and research.

    Science.gov (United States)

    Monzon, Jorge E; Monzon-Wyngaard, Alvaro

    2008-01-01

    This paper discusses some guidelines for use with the accepted fundamental canons of ethics for engineers. We present some rules of practice and professional obligations emerging from these canons. Basic recommendations for engineers dissenting on ethical grounds are also presented. Ethical issues relating to Biomedical Engineering research are illustrated. We mention some cases that could be used to further understanding the ethical implications of biomedical engineering practice.

  12. DNA nanotechnology and its applications in biomedical research.

    Science.gov (United States)

    Sun, Lifan; Yu, Lu; Shen, Wanqiu

    2014-09-01

    DNA nanotechnology, which uses DNA as a material to self-assemble designed nanostructures, including DNA 2D arrays, 3D nanostructures, DNA nanotubes and DNA nanomechanical devices, has showed great promise in biomedical applications. Various DNA nanostructures have been used for protein characterization, enzyme assembly, biosensing, drug delivery and biomimetic assemblies. In this review, we will present recent advances of DNA nanotechnology and its applications in biomedical research field.

  13. [Research Biomedical Ethics and Practical Wisdom].

    Science.gov (United States)

    Vergara, Oscar

    2015-01-01

    As is well known, in the field of Biomedical Ethics some methodological proposals have been put forward. They try to provide some guidelines in order to take proper decisions. These methodologies are quite useful insofar as they supply reasons for action, but they are essentially insufficient. In fact, taking a good decision requires a special skill that goes beyond sheer technique, and this skill is traditionally called practical wisdom. Not in the usual and more outlying sense of sheer caution, but in the more central one of phronesis or prudentia. Although it is not a new notion, it usually appears blurred in biomedical decision-making theory, playing the wrong role, or in a marginal or indefinite way. From this postulate, we will try to make a double analysis. First, we will try to show the need for a proper understanding of the core role that phronesis plays in decision making. Second, we will try to get the original meaning of Aristotelian phronesis back. For reasons of space, in this paper the second question will be just partially addressed.

  14. [Biomedical informatics].

    Science.gov (United States)

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  15. Tackling conflict of interest and misconduct in biomedical research.

    Science.gov (United States)

    Dadhich, J P

    2012-07-01

    Biomedical research forms the basis of evidence based practices in the field of health and nutrition. However, it is, increasingly being seen that conflicts of interest and misconduct are undermining research. More and more instances of using research to promote commercial interest are being reported. Fraudulent means, in the quest to publish, are also being used. This article discusses conflict of interest and misconduct in bio-medical research, reviews scientific evidence available on the subject, and proposes some solutions to check the menace.

  16. The distribution of biomedical research resources and international justice.

    Science.gov (United States)

    Resnik, David B

    2004-05-01

    According to some estimates, less than 10% of the world's biomedical research funds are dedicated to addressing problems that are responsible for 90% of the world's burden of disease. This paper explains why this disparity exists and what should be done about it. It argues that the disparity exists because: 1) multinational pharmaceutical and biotechnology companies do not regard research and development investments on the health problems of developing nations to be economically lucrative; and 2) governmental agencies that sponsor biomedical research face little political pressure to allocate funds for the problems of developing nations. This paper argues that developed nations have an obligation to address disparities related to biomedical research funding. To facilitate this effort, developed countries should establish a trust fund dedicated to research on the health problems of developing nations similar to the Global AIDS Fund.

  17. Researching Undergraduate Social Science Research

    Science.gov (United States)

    Rand, Jane

    2016-01-01

    The experience(s) of undergraduate research students in the social sciences is under-represented in the literature in comparison to the natural sciences or science, technology, engineering and maths (STEM). The strength of STEM undergraduate research learning environments is understood to be related to an apprenticeship-mode of learning supported…

  18. Ethical Medical and Biomedical Practice in Health Research in Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ethical Medical and Biomedical Practice in Health Research in Africa. African countries have an urgent need for research to battle the diseases that ravage their populations and hamper their economic and social development. This research entails both benefits and risks for the people involved. Particular effort must be ...

  19. Crowdsourcing biomedical research: leveraging communities as innovation engines.

    Science.gov (United States)

    Saez-Rodriguez, Julio; Costello, James C; Friend, Stephen H; Kellen, Michael R; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo

    2016-07-15

    The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories.

  20. Diversity in the biomedical research workforce: developing talent.

    Science.gov (United States)

    McGee, Richard; Saran, Suman; Krulwich, Terry A

    2012-01-01

    Much has been written about the need for and barriers to achievement of greater diversity in the biomedical workforce from the perspectives of gender, race, and ethnicity; this is not a new topic. These discussions often center around a "pipeline" metaphor that imagines students flowing through a series of experiences to eventually arrive at a science career. Here we argue that diversity will only be achieved if the primary focus is on (1) what is happening within the pipeline, not just counting individuals entering and leaving it; (2) de-emphasizing the achievement of academic milestones by typical ages; and (3) adopting approaches that most effectively develop talent. Students may develop skills at different rates based on factors such as earlier access to educational resources, exposure to science (especially research experiences), and competing demands for time and attention during high school and college. Therefore, there is wide variety among students at any point along the pipeline. Taking this view requires letting go of imagining the pipeline as a sequence of age-dependent steps in favor of milestones of skill and talent development decoupled from age or educational stage. Emphasizing talent development opens up many new approaches for science training outside of traditional degree programs. This article provides examples of such approaches, including interventions at the postbaccalaureate and PhD levels, as well as a novel coaching model that incorporates well-established social science theories and complements traditional mentoring. These approaches could significantly impact diversity by developing scientific talent, especially among currently underrepresented minorities. © 2012 Mount Sinai School of Medicine.

  1. DIVERSITY IN THE BIOMEDICAL RESEARCH WORKFORCE: DEVELOPING TALENT

    Science.gov (United States)

    McGee, Richard; Saran, Suman; Krulwich, Terry A.

    2012-01-01

    Much has been written about the need for and barriers to achievement of greater diversity in the biomedical workforce from the perspectives of gender, race and ethnicity; this is not a new topic. These discussions often center around a ‘pipeline metaphor’ which imagines students flowing through a series of experiences to eventually arrive at a science career. Here we argue that diversity will only be achieved if the primary focus is on: what is happening within the pipeline, not just counting individuals entering and leaving it; de-emphasizing achieving academic milestones by ‘typical’ ages; and adopting approaches that most effectively develop talent. Students may develop skills at different rates based on factors such as earlier access to educational resources, exposure to science (especially research experiences), and competing demands for time and attention during high school and college. Therefore, there is wide variety among students at any point along the pipeline. Taking this view requires letting go of imagining the pipeline as a sequence of age-dependent steps in favor of milestones of skill and talent development decoupled from age or educational stage. Emphasizing talent development opens up many new approaches for science training outside of traditional degree programs. This article provides examples of such approaches, including interventions at the post-baccalaureate and PhD levels, as well as a novel coaching model that incorporates well-established social science theories and complements traditional mentoring. These approaches could significantly impact diversity by developing scientific talent, especially among currently underrepresented minorities. PMID:22678863

  2. Potential applications of microbial surfactants in biomedical sciences.

    Science.gov (United States)

    Singh, Pooja; Cameotra, Swaranjit Singh

    2004-03-01

    The main commercial use of biosurfactants is in pollution remediation because of their ability to stabilize emulsions. This enhances the solubility and availability of hydrophobic pollutants, thus increasing their potential for biodegradation. One useful property of many biosurfactants that has not been reviewed extensively is their antimicrobial activity. Several biosurfactants have strong antibacterial, antifungal and antiviral activity. Other medically relevant uses of biosurfactants include their role as anti-adhesive agents to pathogens, making them useful for treating many diseases and as therapeutic and probiotic agents. Here, we discuss some of the new and exciting applications and related developments of various microbial surfactants in the field of biomedical sciences.

  3. Arab nations lagging behind other Middle Eastern countries in biomedical research: a comparative study

    Science.gov (United States)

    2009-01-01

    Background Analysis of biomedical research and publications in a country or group of countries is used to monitor research progress and trends. This study aims to assess the performance of biomedical research in the Arab world during 2001–2005 and to compare it with other Middle Eastern non-Arab countries. Methods PubMed and Science Citation Index Expanded (SCI-expanded) were searched systematically for the original biomedical research publications and their citation frequencies of 16 Arab nations and three non-Arab Middle Eastern countries (Iran, Israel and Turkey), all of which are classified as middle or high income countries. Results The 16 Arab countries together have 5775 and 14,374 original research articles listed by PubMed and SCI-expanded, respectively, significantly less (p Arab countries also scored less when the data were normalized to population, gross domestic product (GDP), and GDP/capita. The publications from the Arab countries also have a significantly lower (p Arab world is producing fewer biomedical publications of lower quality than other Middle Eastern countries. Studies are needed to clarify the causes and to propose strategies to improve the biomedical research status in Arab countries. PMID:19374747

  4. Arab nations lagging behind other Middle Eastern countries in biomedical research: a comparative study

    Directory of Open Access Journals (Sweden)

    Bakoush Omran

    2009-04-01

    Full Text Available Abstract Background Analysis of biomedical research and publications in a country or group of countries is used to monitor research progress and trends. This study aims to assess the performance of biomedical research in the Arab world during 2001–2005 and to compare it with other Middle Eastern non-Arab countries. Methods PubMed and Science Citation Index Expanded (SCI-expanded were searched systematically for the original biomedical research publications and their citation frequencies of 16 Arab nations and three non-Arab Middle Eastern countries (Iran, Israel and Turkey, all of which are classified as middle or high income countries. Results The 16 Arab countries together have 5775 and 14,374 original research articles listed by PubMed and SCI-expanded, respectively, significantly less (p Conclusion The Arab world is producing fewer biomedical publications of lower quality than other Middle Eastern countries. Studies are needed to clarify the causes and to propose strategies to improve the biomedical research status in Arab countries.

  5. Arab nations lagging behind other Middle Eastern countries in biomedical research: a comparative study.

    Science.gov (United States)

    Benamer, Hani T S; Bakoush, Omran

    2009-04-17

    Analysis of biomedical research and publications in a country or group of countries is used to monitor research progress and trends. This study aims to assess the performance of biomedical research in the Arab world during 2001-2005 and to compare it with other Middle Eastern non-Arab countries. PubMed and Science Citation Index Expanded (SCI-expanded) were searched systematically for the original biomedical research publications and their citation frequencies of 16 Arab nations and three non-Arab Middle Eastern countries (Iran, Israel and Turkey), all of which are classified as middle or high income countries. The 16 Arab countries together have 5775 and 14,374 original research articles listed by PubMed and SCI-expanded, respectively, significantly less (p GDP), and GDP/capita. The publications from the Arab countries also have a significantly lower (p < 0.001) citation frequency. The Arab world is producing fewer biomedical publications of lower quality than other Middle Eastern countries. Studies are needed to clarify the causes and to propose strategies to improve the biomedical research status in Arab countries.

  6. Keynote Lecture: The Problems and Challenges in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Bruce Albert

    2015-08-01

    Full Text Available Distressed by the perverse incentives that have generated the current hyper-competitive biomedical research environment in the United States, four of us published an open-access article in April 2014 entitled: Rescuing US biomedical research from its systemic flaws (Alberts, B., Kirschner, Marc W., Tilghman, Shirley, and  Varmus, H.; Proc. Natl. Acad. Sci. USA 111, 5773-5777 (2014. As announced in our follow-up piece, Opinion: Addressing systemic problems in the biomedical research enterprise (Proc. Natl. Acad. Sci. USA 112, 1912-1913 (2015, we have formed a 16-member steering committee to oversee a new website that is designed to collect suggestions for actions that can ameliorate the identified problems, as well as to highlight promising changes that are either underway or proposed (see http://rescuingbiomedicalresearch.org.  Despite widespread agreement concerning the problems, any substantial change in the system is bound to be controversial. Experiments are therefore needed. In my talk, I will outline some possible ideas for overcoming the inertia that prevents moving forward.We are encouraging both national and international contributions to this effort, since the problems that we have described are by no means unique to the United States.

  7. Characteristics desired in clinical data warehouse for biomedical research.

    Science.gov (United States)

    Shin, Soo-Yong; Kim, Woo Sung; Lee, Jae-Ho

    2014-04-01

    Due to the unique characteristics of clinical data, clinical data warehouses (CDWs) have not been successful so far. Specifically, the use of CDWs for biomedical research has been relatively unsuccessful thus far. The characteristics necessary for the successful implementation and operation of a CDW for biomedical research have not clearly defined yet. THREE EXAMPLES OF CDWS WERE REVIEWED: a multipurpose CDW in a hospital, a CDW for independent multi-institutional research, and a CDW for research use in an institution. After reviewing the three CDW examples, we propose some key characteristics needed in a CDW for biomedical research. A CDW for research should include an honest broker system and an Institutional Review Board approval interface to comply with governmental regulations. It should also include a simple query interface, an anonymized data review tool, and a data extraction tool. Also, it should be a biomedical research platform for data repository use as well as data analysis. The proposed characteristics desired in a CDW may have limited transfer value to organizations in other countries. However, these analysis results are still valid in Korea, and we have developed clinical research data warehouse based on these desiderata.

  8. Can informetrics shape biomedical research? A case study of the ...

    African Journals Online (AJOL)

    Further, the paper addresses the application of informetrics to examine whether or not informetrics can be used to shape biomedical research, with special reference to HIV/AIDS research in sub-Saharan Africa. In that regard, the paper reports on an informetrics perspective of the relatedness of opportunistic diseases and ...

  9. Research Workforce Diversity: The Case of Balancing National versus International Postdocs in US Biomedical Research.

    Science.gov (United States)

    Ghaffarzadegan, Navid; Hawley, Joshua; Desai, Anand

    2014-03-01

    The US government has been increasingly supporting postdoctoral training in biomedical sciences to develop the domestic research workforce. However, current trends suggest that mostly international researchers benefit from the funding, many of whom might leave the USA after training. In this paper, we describe a model used to analyse the flow of national versus international researchers into and out of postdoctoral training. We calibrate our model in the case of the USA and successfully replicate the data. We use the model to conduct simulation-based analyses of effects of different policies on the diversity of postdoctoral researchers. Our model shows that capping the duration of postdoctoral careers, a policy proposed previously, favours international postdoctoral researchers. The analysis suggests that the leverage point to help the growth of domestic research workforce is in the pregraduate education area, and many policies implemented at the postgraduate level have minimal or unintended effects on diversity.

  10. Research Workforce Diversity: The Case of Balancing National versus International Postdocs in US Biomedical Research

    Science.gov (United States)

    Ghaffarzadegan, Navid; Hawley, Joshua; Desai, Anand

    2013-01-01

    The US government has been increasingly supporting postdoctoral training in biomedical sciences to develop the domestic research workforce. However, current trends suggest that mostly international researchers benefit from the funding, many of whom might leave the USA after training. In this paper, we describe a model used to analyse the flow of national versus international researchers into and out of postdoctoral training. We calibrate our model in the case of the USA and successfully replicate the data. We use the model to conduct simulation-based analyses of effects of different policies on the diversity of postdoctoral researchers. Our model shows that capping the duration of postdoctoral careers, a policy proposed previously, favours international postdoctoral researchers. The analysis suggests that the leverage point to help the growth of domestic research workforce is in the pregraduate education area, and many policies implemented at the postgraduate level have minimal or unintended effects on diversity. PMID:25368504

  11. International Journal of Medicine and Biomedical Research ...

    African Journals Online (AJOL)

    It also publishes valuable studies in areas of Biological Sciences related to health issues, Allied Medicine, Alternative and Complementary Medicine, Nursing, Physiotherapy, and Medical Ethics and Medical Education. Authorship criteria. Authorship should be based on considerable intellectual contributions to the following ...

  12. International Journal of Medicine and Biomedical Research ...

    African Journals Online (AJOL)

    Focus and Scope. IJMBR publishes editorial, original and review papers, case reports, reports and commentaries, letters to editor and conference proceedings in areas of Clinical and Basic Medical Sciences. It also publishes valuable studies in Allied Medicine, Pharmaceutical Chemistry, and Alternative and ...

  13. Publications in biomedical and environmental sciences programs, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division.

  14. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.

    Science.gov (United States)

    Ke, Yonggang; Castro, Carlos; Choi, Jong Hyun

    2018-04-04

    Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery. Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  15. [Required procedure for nominal data files processing in biomedical research].

    Science.gov (United States)

    Chambon-Savanovitch, C; Dubray, C; Albuisson, E; Sauvant, M P

    2001-12-01

    To date, biomedical research using nominal data files for the data collection, data acquisition or data processing has had to comply with 2 French laws (Law of December, 20, 1988, modified, relating to the protection of patients participating in biomedical research, and the Law of January, 6, 1978, completed by the Law of July 1, 1994 n degrees 94-548, chapter V bis). This later law dictates rules not only for the establishment of nominal data files, but also confer individual rights to filed persons. These regulations concern epidemiological research, clinical trials, drug watch studies and economic health research. In this note, we describe the obligations and specific general and simplified procedure required for conducting biomedical research. Included in the requirements are an information and authorization procedure with the local and national consultative committees on data processing in biomedical research (CCTIRS, Comité Consultatif sur le Traitement de l'Information en Recherche Biomédicale, and CNIL, Commission Nationale Informatique et Libertés).

  16. Governance of biomedical research in Singapore and the challenge of conflicts of interest.

    Science.gov (United States)

    Ho, Calvin Wai Loon; De Castro, Leonardo D; Campbell, Alastair V

    2014-07-01

    This article discusses the establishment of a governance framework for biomedical research in Singapore. It focuses on the work of the Bioethics Advisory Committee (BAC), which has been instrumental in institutionalizing a governance framework, through the provision of recommendations to the government, and through the coordination of efforts among government agencies. However, developing capabilities in biomedical sciences presents challenges that are qualitatively different from those of past technologies. The state has a greater role to play in balancing conflicting and potentially irreconcilable economic, social, and political goals. This article analyzes the various ways by which the BAC has facilitated this.

  17. [Metrology research on biomedical engineering publications from China in recent years].

    Science.gov (United States)

    Yu, Lu; Su, Juan; Wang, Ying; Sha, Xianzheng

    2014-12-01

    The present paper is to evaluate the scientific research level and development trends of biomedical engineering in China using metrology analysis on Chinese biomedical engineering scientific literatures. Pubmed is used to search the biomedical engineering publications in recent 5 years which are indexed by Science Citation Index, and the number and cited times of these publications and the impact factor of the journals are analyzed. The results show that comparing with the world, although the number of the publication in China has increased in recent 5 years, there is still much room for improvement. Among Chinese mainland, Hongkong and Taiwan, Chinese mainland maintains the obvious advantage in this subject, but Hongkong has the highest average cited number. Shanghai and Beijing have better research ability than other areas in Chinese mainland.

  18. Applications of Micro-Raman Imaging in Biomedical Research

    NARCIS (Netherlands)

    Otto, Cornelis; de Grauw, C.J.; de Grauw, C.J.; Duindam, J.J.; Duindam, J.J.; Sijtsema, N.M.; Greve, Jan

    1997-01-01

    Recent results are presented of the application of imaging micro-Raman spectrometers in cellular biophysics and biomedical research. Various micro-Raman spectrometers have been developed that are now routinely applied in these fields. Results are presented that were obtained with a linescan Raman

  19. Silicon Valley Meets Biomedical Research in the Chan Zuckerberg Initiative.

    Science.gov (United States)

    Crow, Diana

    2017-05-18

    The Chan Zuckerberg Initiative, the philanthropy launched by Facebook CEO Mark Zuckerberg and his wife Priscilla Chan, drew attention with its stated goal of helping to "cure, manage, or treat all diseases" by the end of the century. They intend to do it through funding basic research and addressing gaps in biomedical technology. Copyright © 2017. Published by Elsevier Inc.

  20. Enrolment and Retention of African Women in Biomedical Research ...

    African Journals Online (AJOL)

    In Africa, women have had minimal participation in biomedical research especially in clinical trials despite the epidemiologic realities of the trends and burden of diseases in the continent. The purpose of this paper is to critically examine the challenges as well as suggesting ways of over-coming them in recruiting and ...

  1. ChE Undergraduate Research Projects in Biomedical Engineering.

    Science.gov (United States)

    Stroeve, Pieter

    1981-01-01

    Describes an undergraduate research program in biomedical engineering at the State University of New York at Buffalo. Includes goals and faculty comments on the program. Indicates that 58 percent of projects conducted between 1976 and 1980 have been presented at meetings or published. (SK)

  2. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences

    OpenAIRE

    Shrivastava, Siddhartha; Dash, Debabrata

    2009-01-01

    Recent research on biosystems at the nanoscale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, neuromorphic engineering, and developing a sustainable environment. Nanobiosystems research is...

  3. African Journal of Biomedical Research: Advanced Search

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  4. Archives of Medical and Biomedical Research: Submissions

    African Journals Online (AJOL)

    Do not use abbreviations for keywords. Text Headings should be appropriate to the nature of the paper. For original research papers, text should be organized as Introduction, Methodology, Results, Discussion, Conclusion and References. For case reports, the author should organize the text as Introduction, Case details, ...

  5. International Journal of Medicine and Biomedical Research ...

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  6. Consenting to Heteronormativity: Assumptions in Biomedical Research

    NARCIS (Netherlands)

    Cottingham, M.D.; Fisher, J.A.

    2015-01-01

    The process of informed consent is fundamental to basic scientific research with human subjects. As one aspect of the scientific enterprise, clinical drug trials rely on informed consent documents to safeguard the ethical treatment of trial participants. This paper explores the role of

  7. Financial conflicts of interest in biomedical research: the need to improve the system.

    Science.gov (United States)

    Wang, Amy T; Montori, Victor M; Murad, Mohammad Hassan

    2010-11-01

    Fifty years ago, the issue of conflict of interest in biomedical research appeared in the national spotlight and has remained in a state of constant evolution. Government legislation caused a boom in collaborations between physicians, researchers, academic institutions and industry. These relationships continue to advance medical science and make meaningful progress, yet they may threaten the integrity of physicians and researchers and the public's trust in medicine. This article will highlight the evolution of industry relationships and conflict of interest over time, discuss methods by which industry can potentially exert effects and propose new directions for the future. Copyright 2010 Prous Science, S.A.U. or its licensors. All rights reserved.

  8. The Importance of Zebrafish in Biomedical Research

    OpenAIRE

    Santos, Ana Bárbara Tavares dos; Lopes, Susana Santos

    2013-01-01

    FUNDING SOURCE - PTDC/SAU-OBD/103981/2008 and SFRH/BPD/772587/2011 Introduction: Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Material and Methods: Using scientific literature research tools available online and the keywords Zebrafish, biomed...

  9. Role of institutional climate in fostering diversity in biomedical research workforce: a case study.

    Science.gov (United States)

    Butts, Gary C; Hurd, Yasmin; Palermo, Ann-Gel S; Delbrune, Denise; Saran, Suman; Zony, Chati; Krulwich, Terry A

    2012-01-01

    This article reviews the barriers to diversity in biomedical research and describes the evolution of efforts to address climate issues to enhance the ability to attract, retain, and develop underrepresented minorities, whose underrepresentation is found both in science and medicine, in the graduate-school biomedical research doctoral programs (PhD and MD/PhD) at Mount Sinai School of Medicine. We also describe the potential beneficial impact of having a climate that supports diversity and inclusion in the biomedical research workforce. The Mount Sinai School of Medicine diversity-climate efforts are discussed as part of a comprehensive plan to increase diversity in all institutional programs: PhD, MD/PhD, and MD, and at the residency, postdoctoral fellow, and faculty levels. Lessons learned from 4 decades of targeted programs and activities at the Mount Sinai School of Medicine may be of value to other institutions interested in improving diversity in the biomedical science and academic medicine workforce. © 2012 Mount Sinai School of Medicine.

  10. Complementary therapy use by nursing, pharmacy and biomedical science students.

    Science.gov (United States)

    Wilkinson, J M; Simpson, M D

    2001-03-01

    Attitudes towards the use of complementary therapies by students of undergraduate Bachelor of Nursing, Pharmacy and Biomedical Sciences were determined using a self-administered questionnaire. Overall, 78% of students had used a complementary therapy in the past year and 56% had visited a complementary therapy practitioner. The therapies most used were those involving vitamins, mineral and other supplements. Practitioners specializing in this area were the most visited, followed by chiropractors. Commonly used products included vitamin C, multivitamins, B group vitamins, garlic, iron and echinacea. Most students thought complementary therapies improved quality of life, with friends and family providing the main sources of information. There were few differences attributable to course or gender. The results suggest that these students have favorable attitudes towards complementary therapies and that many choose to use them as part of normal health care.

  11. Swine in biomedical research. V. 1

    Energy Technology Data Exchange (ETDEWEB)

    Tumbleson, M.E.

    1986-01-01

    This volume presents information on the following topics: the history of pigs; conceptual and operational history of the development of miniature swine; breeding program and population standards of the Gottingen miniature swine; moral, social and scientific aspects of the use of swine in research; fertility in gilts inseminated with frozen boar semen stored at -196 C for eight years; ultrastructure of piglet liver; porcine models in surgical research; anesthesia in swine; pulse monitoring, intravascular and instramuscular injection sites in pigs; collagen biosynthesis and collagen content as a measure of dermal healing in experimental wounds in domestic swine; methods for hair removal; swine as a cardiac surgical model; bone marrow transplantation in miniature swine; technical aspects of small intestinal transplantation in young pigs; models; the pig in studies of diarrhea pathophysiology; use of swine to validate airflow perturbation device for airways resistance measurements in humans; swine as a model for human diabetes; and the weanling Yorkshire pig as an animal model for measuring percutaneous penetration.

  12. Swine in biomedical research. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Tumbleson, M.E.

    1986-01-01

    This volume presents information on the following topics: hemodynamic characteristics of the conscious resting pig; cardiovascular and metabolic responses to acute and chronic exercise in swine (ILLEGIBLE) a large animal model for studies (ILLEGIBLE) effects of heparin-protamine interaction in swine - intravenous vs. intraarterial; swine as animal models in cardiovascular research; studies of coronary thrombosis in swine with von Willebrand's disease; role of plasma intermediate and low density lipoproteins in early atherogenesis in hyperlipidemic swine; swine as a model in renal physiology and nephrology; the pig as a model for studying kidney disease in man; hypertension of renal origin and the effects of Captopril in miniature pigs; porcine natural killer/killer cell system; the behavior of pig lymphocyte populations in vivo; a review of spontaneous and experimental porcine eperythrozoonosis; and Sinclair swine melanoma.

  13. USSR Report, Life Sciences, Biomedical and Behavioral Sciences.

    Science.gov (United States)

    1987-02-06

    1400-1410 [Article by Ye.I. Sobolevskiy, Pacific Ocean Scientific Research Institute of Fishing and Oceanography, Vladivostok] [Abstract] Materials...respect to a 32 monoculture of the producer, Nocardia minima. The associate which stimulated formation of the enzymes was Arthrobacter citreus

  14. Adipoparacrinology: an Emerging Field in Biomedical Research

    Directory of Open Access Journals (Sweden)

    George N. Chaldakov

    2012-03-01

    Full Text Available White adipose tissue (WAT is a dynamic multicellular assembly composed of adipocytes and stromovascular cells, including fibroblasts, endothelial and immune cells, nerve fibers, and stem cells. In humans, WAT is a responsive and secretory (endocrine and paracrine tissue partitioned into two large depots (subcutaneous and visceral and many small depots associated with the heart, blood vessels, major lymph nodes, prostate gland, ovaries and mammary glands. This short review conceptualizes evidence for the paracrine activity of adipose tissue in founding a new research field, designated adipoparacrinology. Here we focus on (i epicardial and periadventitial adipose tissue in atherogenesis, (ii mammary gland-associated adipose tissue in breast cancer, and (iii periprostatic adipose tissue in prostate cancer. Other examples include: (i mesenteric adipose tissue in Crohn’s disease, (ii lymph node-associated (perinodal adipose tissue in Crohn’s disease and HIV-associated adipose redistribution syndrome, (iii infrapatellar fat pad (Hoffa’s fat pad in knee osteoarthritis, (iv orbital adipose tissue in thyroid-associated (Graves’ ophthalmopathy, and (v parasellar region-associated adipose tissue in brain disorders. The therapy aspect of adipoparacrinology is also discussed.

  15. Biomedical text mining and its applications in cancer research.

    Science.gov (United States)

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Radwaste requirements at a biomedical research facility

    International Nuclear Information System (INIS)

    Brannegan, D.P.; Wolter, W.; Merenda, J.M.; Figdor, S.K.

    1993-01-01

    The low-level radioactive waste (LLRW) federal legislation that was passed during the 1980s was intended to provide an orderly system of LLRW disposal as the country's three waste sites proceeded toward excluding out-of-state generators. The system was based on a regional interstate compact system. As originally envisioned, several contiguous states were to form an association (compact) with one state receiving radwaste from the compact. Everyone is aware of the difficulties that followed as attempts were made to implement these laws and to meet the prescribed milestones to avoid financial penalties. Although the states (compacts) have labored for over 12 yr along this rocky road, no compact has developed and licensed a new disposal site prior to the January 1, 1993 deadline. A recent report by the Center for the Study of American Business at Washington University in St. Louis states that open-quotes The current regional interstate compact system for disposal of low-level radioactive waste is fatally flawed on both technical and practical political grounds.close quotes Thus, the system has broken down and the three original LLRW sites closed their gates (with the possible exception of Barnwell) as planned on January 1, 1993. It would appear that the fate of LLRW will be the same as that of high-level waste (HLW); it will be stored at the site of the generator until a solution to the problem is found. For the nonutility generator, storage is an entirely new problem. It must be appreciated that almost all nonutility generators are in the business of research or medical treatment and not in the business of storing LLRW. Thus, storage represents a new turn of events and a new aspect of doing business. It also means the diversion of limited resources to a problem that should not exist. Lastly, on-site LLRW storage for the nonutility generator will also require additional regulatory approval for the handling, storage, and ongoing monitoring of this waste

  17. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    1987-02-18

    Abstract] Apamin, the honey - bee venom neurotoxin, is the only known neuro- toxin acting on the central nervous system. The neurotoxic_activity of apamin...37 - e - PHARMACOLOGY AND TOXICOLOGY Use of Gravitational Overloads as a Screening Procedure in Research on New Biologically Active Agents (M. D...PHARMACOLOGY AND TOXICOLOGY UDC f>j.5.^’/.3.0^6.8.076.9:616.831-OO5.4-09i?.9-02:612.OlU.447-063 USE OF GRAVITATIONAL OVERLOADS AS A SCREENING PROCEDURE IN

  18. Collective intelligence for translational medicine: Crowdsourcing insights and innovation from an interdisciplinary biomedical research community.

    Science.gov (United States)

    Budge, Eleanor Jane; Tsoti, Sandra Maria; Howgate, Daniel James; Sivakumar, Shivan; Jalali, Morteza

    2015-01-01

    Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.

  19. Teaching authorship and publication practices in the biomedical and life sciences.

    Science.gov (United States)

    Macrina, Francis L

    2011-06-01

    Examination of a limited number of publisher's Instructions for Authors, guidelines from two scientific societies, and the widely accepted policy document of the International Committee of Medical Journal Editors (ICMJE) provided useful information on authorship practices. Three of five journals examined (Nature, Science, and the Proceedings of the National Academy of Sciences) publish papers across a variety of disciplines. One is broadly focused on topics in medical research (New England Journal of Medicine) and one publishes research reports in a single discipline (Journal of Bacteriology). Similar elements of publication policy and accepted practices were found across the policies of these journals articulated in their Instructions for Authors. A number of these same elements were found in the professional society guidelines of the Society for Neuroscience and the American Chemical Society, as well as the ICMJE Uniform Requirements for Manuscripts Submitted to Biomedical Journals. Taken together, these sources provide the basis for articulating best practices in authorship in scientific research. Emerging from this material is a definition of authorship, as well as policy statements on duplicative publication, conflict of interest disclosure, electronic access, data sharing, digital image integrity, and research requiring subjects' protection, including prior registration of clinical trials. These common elements provide a foundation for teaching about scientific authorship and publication practices across biomedical and life sciences disciplines.

  20. Cross-Cultural Communication Training for Students in Multidisciplinary Research Area of Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2014-08-01

    Full Text Available Biomedical Engineering makes multidisciplinary research area, which includes biology, medicine, engineering and others. Communication training is important for students, who have a potential to develop Biomedical Engineering. Communication is not easy in a multidisciplinary research area, because each area has its own background of thinking. Because each nation has its own background of culture, on the other hand, international communication is not easy, either. A cross-cultural student program has been designed for communication training in the multidisciplinary research area. Students from a variety of backgrounds of research area and culture have joined in the program: mechanical engineering, material science, environmental engineering, science of nursing, dentist, pharmacy, electronics, and so on. The program works well for communication training in the multidisciplinary research area of biomedical engineering. Foreign language and digital data give students chance to study several things: how to make communication precisely, how to quote previous data. The experience in the program helps students not only understand new idea in the laboratory visit, but also make a presentation in the international research conference. The program relates to author's several experiences: the student internship abroad, the cross-cultural student camp, multi PhD theses, various affiliations, and the creation of the interdisciplinary department.

  1. Medical and biomedical research productivity from Palestine, 2002 – 2011

    Directory of Open Access Journals (Sweden)

    Sweileh Waleed M

    2013-02-01

    Full Text Available Abstract Background Medical research productivity reflects the level of medical education and practice in a particular country. The objective of this study was to examine the quantity and quality of medical and biomedical research published from Palestine. Findings Comprehensive review of the literature indexed by Scopus was conducted. Data from Jan 01, 2002 till December 31, 2011 was searched for authors affiliated with Palestine or Palestinian authority. Results were refined to limit the search to medical and biomedical subjects. The quality of publication was assessed using Journal Citation Report. The total number of publications was 2207. A total of 770 publications were in the medical and biomedical subject areas. The annual rate of publication was 0.077 articles per gross domestic product/capita. The 770 publications have an h-index of 32. One hundred and thirty eight (18% articles were published in 46 journals that were not indexed in the web of knowledge. Twenty two (22/770; 2.9% articles were published in journals with an IF > 10. Conclusions The quantity and quality of research originating from Palestinian institutions is promising given the scarce resources of Palestine. However, more effort is needed to bridge the gap in medical research productivity and to promote better health in Palestine.

  2. Effects of government spending on research workforce development: evidence from biomedical postdoctoral researchers.

    Directory of Open Access Journals (Sweden)

    Hyungjo Hur

    Full Text Available We examine effects of government spending on postdoctoral researchers' (postdocs productivity in biomedical sciences, the largest population of postdocs in the US. We analyze changes in the productivity of postdocs before and after the US government's 1997 decision to increase NIH funding. In the first round of analysis, we find that more government spending has resulted in longer postdoc careers. We see no significant changes in researchers' productivity in terms of publication and conference presentations. However, when the population is segmented by citizenship, we find that the effects are heterogeneous; US citizens stay longer in postdoc positions with no change in publications and, in contrast, international permanent residents (green card holders produce more conference papers and publications without significant changes in postdoc duration. Possible explanations and policy implications of the analysis are discussed.

  3. [The long pilgrimage of Spanish biomedical journals toward excellence. Who helps? Quality, impact and research merit].

    Science.gov (United States)

    Alfonso, Fernando

    2010-03-01

    Biomedical journals must adhere to strict standards of editorial quality. In a globalized academic scenario, biomedical journals must compete firstly to publish the most relevant original research and secondly to obtain the broadest possible visibility and the widest dissemination of their scientific contents. The cornerstone of the scientific process is still the peer-review system but additional quality criteria should be met. Recently access to medical information has been revolutionized by electronic editions. Bibliometric databases such as MEDLINE, the ISI Web of Science and Scopus offer comprehensive online information on medical literature. Classically, the prestige of biomedical journals has been measured by their impact factor but, recently, other indicators such as SCImago SJR or the Eigenfactor are emerging as alternative indices of a journal's quality. Assessing the scholarly impact of research and the merits of individual scientists remains a major challenge. Allocation of authorship credit also remains controversial. Furthermore, in our Kafkaesque world, we prefer to count rather than read the articles we judge. Quantitative publication metrics (research output) and citations analyses (scientific influence) are key determinants of the scientific success of individual investigators. However, academia is embracing new objective indicators (such as the "h" index) to evaluate scholarly merit. The present review discusses some editorial issues affecting biomedical journals, currently available bibliometric databases, bibliometric indices of journal quality and, finally, indicators of research performance and scientific success. Copyright 2010 SEEN. Published by Elsevier Espana. All rights reserved.

  4. Biomedical engineering education in developing countries: research synthesis.

    Science.gov (United States)

    Douglas, Tania S

    2011-01-01

    Biomedical engineering (BME) contributes to development through improving human health. This paper examines BME education to address the needs of developing countries. Components of different BME programs described in the literature are synthesized to represent what has been proposed or implemented for the production of graduates able to address health problems in a manner suited to the local environment in which they occur. Published research on BME education is reviewed with reference to problem context, interventions and their mechanisms, and intended outcomes.

  5. Developmental programming: State-of-the-science and future directions-summary from a Pennington biomedical symposium

    Science.gov (United States)

    On December 8-9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current s...

  6. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  7. Nano-biotechnology for biomedical and diagnostic research

    CERN Document Server

    Zahavy, Eran; Yitzhaki, Shmuel

    2011-01-01

    The title ""Nano Biotechnology for Biomedical and Diagnostics Research"" will address research aspects related to nanomaterial in imaging and biological research, nanomaterials as a biosensing tool, DNA nanotechnology, nanomaterials for drug delivery, medicinal and therapeutic application and cytotoxicity of nanomaterials. These topics will be covered by 16 different manuscripts. Amongst the authors that will contribute to the book are major scientific leaders such as S. Weiss - UCLA, I. Willner, and G. Golomb -- HUJI, S. Esener - UCSD, E.C. Simmel - Tech. Univ. Munchen, I. Medintz -- NRL, N.

  8. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  9. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  10. The art and science of selecting graduate students in the biomedical sciences: Performance in doctoral study of the foundational sciences.

    Science.gov (United States)

    Park, Hee-Young; Berkowitz, Oren; Symes, Karen; Dasgupta, Shoumita

    2018-01-01

    The goal of this study was to investigate associations between admissions criteria and performance in Ph.D. programs at Boston University School of Medicine. The initial phase of this project examined student performance in the classroom component of a newly established curriculum named "Foundations in Biomedical Sciences (FiBS)". Quantitative measures including undergraduate grade point average (GPA), graduate record examination (GRE; a standardized, computer-based test) scores for the verbal (assessment of test takers' ability to analyze, evaluate, and synthesize information and concepts provided in writing) and quantitative (assessment of test takers' problem-solving ability) components of the examination, previous research experience, and competitiveness of previous research institution were used in the study. These criteria were compared with competencies in the program defined as students who pass the curriculum as well as students categorized as High Performers. These data indicated that there is a significant positive correlation between FiBS performance and undergraduate GPA, GRE scores, and competitiveness of undergraduate institution. No significant correlations were found between FiBS performance and research background. By taking a data-driven approach to examine admissions and performance, we hope to refine our admissions criteria to facilitate an unbiased approach to recruitment of students in the life sciences and to share our strategy to support similar goals at other institutions.

  11. Technical editing of research reports in biomedical journals.

    Science.gov (United States)

    Wager, Elizabeth; Middleton, Philippa

    2008-10-08

    Most journals try to improve their articles by technical editing processes such as proof-reading, editing to conform to 'house styles', grammatical conventions and checking accuracy of cited references. Despite the considerable resources devoted to technical editing, we do not know whether it improves the accessibility of biomedical research findings or the utility of articles. This is an update of a Cochrane methodology review first published in 2003. To assess the effects of technical editing on research reports in peer-reviewed biomedical journals, and to assess the level of accuracy of references to these reports. We searched The Cochrane Library Issue 2, 2007; MEDLINE (last searched July 2006); EMBASE (last searched June 2007) and checked relevant articles for further references. We also searched the Internet and contacted researchers and experts in the field. Prospective or retrospective comparative studies of technical editing processes applied to original research articles in biomedical journals, as well as studies of reference accuracy. Two review authors independently assessed each study against the selection criteria and assessed the methodological quality of each study. One review author extracted the data, and the second review author repeated this. We located 32 studies addressing technical editing and 66 surveys of reference accuracy. Only three of the studies were randomised controlled trials. A 'package' of largely unspecified editorial processes applied between acceptance and publication was associated with improved readability in two studies and improved reporting quality in another two studies, while another study showed mixed results after stricter editorial policies were introduced. More intensive editorial processes were associated with fewer errors in abstracts and references. Providing instructions to authors was associated with improved reporting of ethics requirements in one study and fewer errors in references in two studies, but no

  12. Reasons behind the participation in biomedical research: a brief review

    Directory of Open Access Journals (Sweden)

    Sonia Mansoldo Dainesi

    2014-12-01

    Full Text Available INTRODUCTION: Clinical research is essential for the advancement of Medicine, especially regarding the development of new drugs. Understanding the reasons behind patients' decision of participating in these studies is critical for the recruitment and retention in the research. OBJECTIVES: To examine the decision-making of participants in biomedical research, taking into account different settings and environments where clinical research is performed. Methods: A critical review of the literature was performed through several databases using the keywords: "motivation", "decision", "reason", "biomedical research", "clinical research", "recruitment", "enrollment", "participation", "benefits", "altruism", "decline", "vulnerability" and "ethics", between August and November 2013, in English and in Portuguese. RESULTS: The review pointed out that the reasons can be different according to some characteristics such as the disease being treated, study phase, prognoses and socioeconomic and cultural environment. Access to better health care, personal benefits, financial rewards and altruism are mentioned depending on the circumstances. CONCLUSION: Finding out more about individuals' reasons for taking part in the research will allow clinical investigators to design studies of greater benefit for the community and will probably help to remove undesirable barriers imposed to participation. Improving the information to health care professionals and patients on the benefits and risks of clinical trials is certainly a good start.

  13. Open access publishing in the biomedical sciences: could funding agencies accelerate the inevitable changes?

    Science.gov (United States)

    Glover, Steven William; Webb, Anne; Gleghorn, Colette

    2006-09-01

    Open access is making a noticeable impact on access to information. In 2005, many major research funders, including the Wellcome Trust, National Institutes for Health (NIH), and the Research Councils UK (RCUK), set out their position in a number of statements. Of particular note was the stipulation that authors receiving grants must deposit their final manuscript in an open access forum within 6-12 months of publication. The paper will look at the open access position statements issued by some of the major funding bodies in the biomedical sciences. The paper will also look at the models used by publishers to provide open or delayed access, such as Oxford Open from Oxford University Press, HighWire Press' delayed access policy, BioMed Central, and Public Library of Science (PLoS). There are now over 1.2 million articles in PubMed that are freely accessible via publishers' websites.(1) Could funding agencies accelerate the move to open access? The list of funding agencies supporting open access is growing. The National Institutes for Health and the Wellcome Trust have been joined by many of the world's major funders in biomedical research whose goal it is to make their research findings available with no barriers.

  14. Applying Nano technology to Human Health: Revolution in Biomedical Sciences

    International Nuclear Information System (INIS)

    Shrivastava, S.; Dash, D.

    2009-01-01

    Recent research on bio systems at the nano scale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, necrophorum engineering, and developing a sustainable environment. Nano bio systems research is a priority in many countries and its relevance within nano technology is expected to increase in the future. The realisation that the nano scale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nano medical research. The present review explores the significance of nano science and latest nano technologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas

  15. Programmatic Efforts at the National Institutes of Health to Promote and Support the Careers of Women in Biomedical Science.

    Science.gov (United States)

    Plank-Bazinet, Jennifer L; Bunker Whittington, Kjersten; Cassidy, Sara K B; Filart, Rosemarie; Cornelison, Terri L; Begg, Lisa; Austin Clayton, Janine

    2016-08-01

    Although women have reached parity at the training level in the biological sciences and medicine, they are still significantly underrepresented in the professoriate and in mid- and senior-level life science positions. Considerable effort has been devoted by individuals and organizations across science sectors to understanding this disparity and to developing interventions in support of women's career development. The National Institutes of Health (NIH) formed the Office of Research on Women's Health (ORWH) in 1990 with the goals of supporting initiatives to improve women's health and providing opportunities and support for the recruitment, retention, reentry, and sustained advancement of women in biomedical careers. Here, the authors review several accomplishments and flagship activities initiated by the NIH and ORWH in support of women's career development during this time. These include programming to support researchers returning to the workforce after a period away (Research Supplements to Promote Reentry into Biomedical and Behavioral Research Careers), career development awards made through the Building Interdisciplinary Research Careers in Women's Health program, and trans-NIH involvement and activities stemming from the NIH Working Group on Women in Biomedical Careers. These innovative programs have contributed to advancement of women by supporting the professional and personal needs of women in science. The authors discuss the unique opportunities that accompany NIH partnerships with the scientific community, and conclude with a summary of the impact of these programs on women in science.

  16. Critically engaging: integrating the social and the biomedical in international microbicides research.

    Science.gov (United States)

    Montgomery, Catherine M; Pool, Robert

    2011-09-27

    Randomized controlled trials and critical social theory are known not to be happy bedfellows. Such trials are embedded in a positivist view of the world, seeking definitive answers to testable questions; critical social theory questions the methods by which we deem the world knowable and may consider experiments in the biomedical sciences as social artifacts. Yet both of these epistemologically and methodologically divergent fields offer potentially important advances in HIV research. In this paper, we describe collaboration between social and biomedical researchers on a large, publicly funded programme to develop vaginal microbicides for HIV prevention. In terms of critical engagement, having integrated and qualitative social science components in the protocol meant potentially nesting alternative epistemologies at the heart of the randomized controlled trial. The social science research highlighted the fallibility and fragility of trial data by demonstrating inconsistencies in key behavioural measurements. It also foregrounded the disjuncture between biomedical conceptions of microbicides and the meanings and uses of the study gel in the context of users' everyday lives. These findings were communicated to the clinical and epidemiological members of the team on an ongoing basis via a feedback loop, through which new issues of concern could also be debated and, in theory, data collection adjusted to the changing needs of the programme. Although critical findings were taken on board by the trialists, a hierarchy of evidence nonetheless remained that limited the utility of some social science findings. This was in spite of mutual respect between clinical epidemiologists and social scientists, equal representation in management and coordination bodies, and equity in funding for the different disciplines. We discuss the positive role that social science integrated into an HIV prevention trial can play, but nonetheless highlight tensions that remain where a hierarchy

  17. IT Infrastructure for Biomedical Research in North-West Germany.

    Science.gov (United States)

    Seeger, Insa; Zeleke, Atinkut; Freitag, Michael; Röhrig, Rainer

    2017-01-01

    The efficient use of routine data for biomedical research presupposes an IT infrastructure designed for health care facilities. The objective of this study was to analyse which IT infrastructure is used in hospitals and by general practitioners' (GP) practices in the region Oldenburg-Bremen and to examine how well this supports research projects. To this end, IT managers and GPs were interviewed. The usage of hospital information systems (HIS) and data warehouse systems (DWS) in hospitals is of major importance for the study. Over 90 % use DWS for administration, 42 % for clinical research. None of the hospitals implemented consent for the use of routine data for research. Only a third of the GPs have participated in studies. The GPs' offices based EHR systems in use offer virtually no support for research projects. The study results demonstrate that technical and organisational measures are required for the further usage of routine data in the region.

  18. Developing expertise in bioinformatics for biomedical research in Africa.

    Science.gov (United States)

    Karikari, Thomas K; Quansah, Emmanuel; Mohamed, Wael M Y

    2015-09-01

    Research in bioinformatics has a central role in helping to advance biomedical research. However, its introduction to Africa has been met with some challenges (such as inadequate infrastructure, training opportunities, research funding, human resources, biorepositories and databases) that have contributed to the slow pace of development in this field across the continent. Fortunately, recent improvements in areas such as research funding, infrastructural support and capacity building are helping to develop bioinformatics into an important discipline in Africa. These contributions are leading to the establishment of world-class research facilities, biorepositories, training programmes, scientific networks and funding schemes to improve studies into disease and health in Africa. With increased contribution from all stakeholders, these developments could be further enhanced. Here, we discuss how the recent developments are contributing to the advancement of bioinformatics in Africa.

  19. Developing expertise in bioinformatics for biomedical research in Africa

    Directory of Open Access Journals (Sweden)

    Thomas K. Karikari

    2015-09-01

    Full Text Available Research in bioinformatics has a central role in helping to advance biomedical research. However, its introduction to Africa has been met with some challenges (such as inadequate infrastructure, training opportunities, research funding, human resources, biorepositories and databases that have contributed to the slow pace of development in this field across the continent. Fortunately, recent improvements in areas such as research funding, infrastructural support and capacity building are helping to develop bioinformatics into an important discipline in Africa. These contributions are leading to the establishment of world-class research facilities, biorepositories, training programmes, scientific networks and funding schemes to improve studies into disease and health in Africa. With increased contribution from all stakeholders, these developments could be further enhanced. Here, we discuss how the recent developments are contributing to the advancement of bioinformatics in Africa.

  20. Death, cadavers and post-mortem biomedical research: a point of view from a Christian community.

    Science.gov (United States)

    Charlier, Philippe; Joly, Alain; Champagnat, Julie; Brun, Luc; de la Grandmaison, Geoffroy Lorin; Hervé, Christian

    2013-12-01

    Facing modern developments of medicine and biomedical researches, religious communities are a strong source of ethics principles and orientations. Human dignity does not disappear after life, in a context of biomedical research on cadavers. Moral, political, social and scientific aspects of research on human cadavers (mainly autopsies) have been widely discussed in biomedical publications, whereas the religious ones (which could be predominant for some) have rarely been analyzed and presented. This article will present the results of a survey carried out a French Benedictine Abbey (relative to death, cadaver's status and biomedical research) and subsequent Christian background according to canonic texts and practical cases from anthropological, historical, archeological and biomedical origin.

  1. Drug knowledge bases and their applications in biomedical informatics research.

    Science.gov (United States)

    Zhu, Yongjun; Elemento, Olivier; Pathak, Jyotishman; Wang, Fei

    2018-01-03

    Recent advances in biomedical research have generated a large volume of drug-related data. To effectively handle this flood of data, many initiatives have been taken to help researchers make good use of them. As the results of these initiatives, many drug knowledge bases have been constructed. They range from simple ones with specific focuses to comprehensive ones that contain information on almost every aspect of a drug. These curated drug knowledge bases have made significant contributions to the development of efficient and effective health information technologies for better health-care service delivery. Understanding and comparing existing drug knowledge bases and how they are applied in various biomedical studies will help us recognize the state of the art and design better knowledge bases in the future. In addition, researchers can get insights on novel applications of the drug knowledge bases through a review of successful use cases. In this study, we provide a review of existing popular drug knowledge bases and their applications in drug-related studies. We discuss challenges in constructing and using drug knowledge bases as well as future research directions toward a better ecosystem of drug knowledge bases. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Leading change: curriculum reform in graduate education in the biomedical sciences.

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences. © 2015 The International Union of Biochemistry and Molecular Biology.

  3. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  4. A biobank management model applicable to biomedical research

    Directory of Open Access Journals (Sweden)

    Patenaude Johane

    2006-04-01

    Full Text Available Abstract Background The work of Research Ethics Boards (REBs, especially when involving genetics research and biobanks, has become more challenging with the growth of biotechnology and biomedical research. Some REBs have even rejected research projects where the use of a biobank with coded samples was an integral part of the study, the greatest fear being the lack of participant protection and uncontrolled use of biological samples or related genetic data. The risks of discrimination and stigmatization are a recurrent issue. In light of the increasing interest in biomedical research and the resulting benefits to the health of participants, it is imperative that practical solutions be found to the problems associated with the management of biobanks: namely, protecting the integrity of the research participants, as well as guaranteeing the security and confidentiality of the participant's information. Methods We aimed to devise a practical and efficient model for the management of biobanks in biomedical research where a medical archivist plays the pivotal role as a data-protection officer. The model had to reduce the burden placed on REBs responsible for the evaluation of genetics projects and, at the same time, maximize the protection of research participants. Results The proposed model includes the following: 1 a means of protecting the information in biobanks, 2 offers ways to provide follow-up information requested about the participants, 3 protects the participant's confidentiality and 4 adequately deals with the ethical issues at stake in biobanking. Conclusion Until a governmental governance body is established in Quebec to guarantee the protection of research participants and establish harmonized guidelines for the management of biobanks in medical research, it is definitely up to REBs to find solutions that the present lack of guidelines poses. The model presented in this article offers a practical solution on a day-to-day basis for REBs

  5. BUILDing SCHOLARS: enhancing diversity among U.S. biomedical researchers in the Southwest.

    Science.gov (United States)

    Collins, Timothy W; Aley, Stephen B; Boland, Thomas; Corral, Guadalupe; Cox, Marc B; Echegoyen, Lourdes E; Grineski, Sara E; Morera, Osvaldo F; Nazeran, Homer

    2017-01-01

    With funding from the National Institutes of Health, BUILDing SCHOLARS was established at The University of Texas at El Paso with the goal of implementing, evaluating and sustaining a suite of institutional, faculty and student development interventions in order to train the next generation of biomedical researchers from the U.S. Southwest region, where the need is dire among underserved communities. The focus is on supporting the infrastructure necessary to train and mentor students so they persist on pathways across a range of biomedical research fields. The purpose of this article is to highlight the design and implementation of BUILDing SCHOLARS' key interventions, which offer a systemic student training model for the U.S. Southwest. In-depth reporting of evaluation results is reserved for other technical publications. BUILDing SCHOLARS uses a comprehensive regional approach to undergraduate training through a multi-institution consortium that includes 12 research partners and various pipeline partners across Texas, New Mexico, and Arizona. Through faculty collaborations and undergraduate research training, the program integrates social and behavioral sciences and biomedical engineering while emphasizing seven transdisciplinary nodes of biomedical research excellence that are common across partner institutions: addiction, cancer, degenerative and chronic diseases, environmental health, health disparities, infectious diseases, and translational biomedicine. Key interventions aim to: (1) improve institutional capacities by expanding undergraduate research training infrastructures; (2) develop an intra- and cross-institutional mentoring-driven "community of practice" to support undergraduate student researchers; (3) broaden the pool of student participants, improve retention, and increase matriculation into competitive graduate programs; and (4) support faculty and postdoctoral personnel by training them in research pedagogy and mentoring techniques and providing

  6. Biomedical Research Group, Health Division annual report 1954

    Energy Technology Data Exchange (ETDEWEB)

    Langham, W.H.; Storer, J.B.

    1955-12-31

    This report covers the activities of the Biomedical Research Group (H-4) of the Health Division during the period January 1 through December 31, 1954. Organizationally, Group H-4 is divided into five sections, namely, Biochemistry, Radiobiology, Radiopathology, Biophysics, and Organic Chemistry. The activities of the Group are summarized under the headings of the various sections. The general nature of each section`s program, publications, documents and reports originating from its members, and abstracts and summaries of the projects pursued during the year are presented.

  7. Internal Contamination Program in hospital and biomedical research institutions

    International Nuclear Information System (INIS)

    Tellez de Cepeda, M.; Macias, M.T.; Plaza, R.; Martinez Hidalgo, C.

    1992-01-01

    Program and the criteria for establishing such program to control the internal contamination from a point of view, not yet systematized and standardized in Hospital and Biomedical Research centers. The main purpose of this work is to review our own situation, to establish and systematize an operative program with variable means (instruments) and the use of external means if need. This program will be established taking into account the new recommendations of I.C.R.P. and the new criteria A.L.I. (author)

  8. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Siddhartha Shrivastava

    2009-01-01

    Full Text Available Recent research on biosystems at the nanoscale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, neuromorphic engineering, and developing a sustainable environment. Nanobiosystems research is a priority in many countries and its relevance within nanotechnology is expected to increase in the future. The realisation that the nanoscale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nanomedical research. The present review explores the significance of nanoscience and latest nanotechnologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas.

  9. Space life and biomedical sciences in support of the global exploration roadmap and societal development

    Science.gov (United States)

    Evetts, S. N.

    2014-08-01

    The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.

  10. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool

    NARCIS (Netherlands)

    Boon, Mieke

    2017-01-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in

  11. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  12. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  13. Beyond funding: Acknowledgement patterns in biomedical, natural and social sciences.

    Science.gov (United States)

    Paul-Hus, Adèle; Díaz-Faes, Adrián A; Sainte-Marie, Maxime; Desrochers, Nadine; Costas, Rodrigo; Larivière, Vincent

    2017-01-01

    For the past 50 years, acknowledgments have been studied as important paratextual traces of research practices, collaboration, and infrastructure in science. Since 2008, funding acknowledgments have been indexed by Web of Science, supporting large-scale analyses of research funding. Applying advanced linguistic methods as well as Correspondence Analysis to more than one million acknowledgments from research articles and reviews published in 2015, this paper aims to go beyond funding disclosure and study the main types of contributions found in acknowledgments on a large scale and through disciplinary comparisons. Our analysis shows that technical support is more frequently acknowledged by scholars in Chemistry, Physics and Engineering. Earth and Space, Professional Fields, and Social Sciences are more likely to acknowledge contributions from colleagues, editors, and reviewers, while Biology acknowledgments put more emphasis on logistics and fieldwork-related tasks. Conflicts of interest disclosures (or lack of thereof) are more frequently found in acknowledgments from Clinical Medicine, Health and, to a lesser extent, Psychology. These results demonstrate that acknowledgment practices truly do vary across disciplines and that this can lead to important further research beyond the sole interest in funding.

  14. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Getsi, J.A.

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives

  15. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Getsi, J.A. (comps.)

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives. (JGB)

  16. Biomedical Science Ph.D. Career Interest Patterns by Race/Ethnicity and Gender.

    Science.gov (United States)

    Gibbs, Kenneth D; McGready, John; Bennett, Jessica C; Griffin, Kimberly

    2014-01-01

    Increasing biomedical workforce diversity remains a persistent challenge. Recent reports have shown that biomedical sciences (BMS) graduate students become less interested in faculty careers as training progresses; however, it is unclear whether or how the career preferences of women and underrepresented minority (URM) scientists change in manners distinct from their better-represented peers. We report results from a survey of 1500 recent American BMS Ph.D. graduates (including 276 URMs) that examined career preferences over the course of their graduate training experiences. On average, scientists from all social backgrounds showed significantly decreased interest in faculty careers at research universities, and significantly increased interest in non-research careers at Ph.D. completion relative to entry. However, group differences emerged in overall levels of interest (at Ph.D. entry and completion), and the magnitude of change in interest in these careers. Multiple logistic regression showed that when controlling for career pathway interest at Ph.D. entry, first-author publication rate, faculty support, research self-efficacy, and graduate training experiences, differences in career pathway interest between social identity groups persisted. All groups were less likely than men from well-represented (WR) racial/ethnic backgrounds to report high interest in faculty careers at research-intensive universities (URM men: OR 0.60, 95% CI: 0.36-0.98, p = 0.04; WR women: OR: 0.64, 95% CI: 0.47-0.89, p = 0.008; URM women: OR: 0.46, 95% CI: 0.30-0.71, pworkforce diversity challenges may limit the effectiveness of efforts to attract and retain the best and most diverse workforce. We propose incorporation of an ecological perspective of career development when considering strategies to enhance the biomedical workforce and professoriate through diversity.

  17. Design Science Research

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Venable, John; Baskerville, Richard L.

    2017-01-01

    This workshop is an applied tutorial, aimed at novice and experienced researchers who wish to learn more about Design Science Research (DSR) and/or to develop and progress their own DSR work. During the workshop, attendees will be introduced to various DSR concepts and current trends, to create...

  18. Radioactive ion beams for biomedical research and nuclear medical application

    CERN Document Server

    Beyer, Gerd-Jürgen

    2002-01-01

    The ISOLDE facility at CERN is the world leading on On-Line Isotope Separator installation. The main aspects which makes ISOLDE produced radio-isotopes such valuable for use in biomedical research are: the availability of exotic or uncommon radioisotopes, the high purity and the ion beam quality. A short overview on research strategies, on experimental work and application of ISOLDE produced radionuclides used in the field of biomedicine over a period of more than 2 decades will be given. Special attention will be directed to the radio- lanthanides, because they can be seen as one single element providing the unique possibility to study systematically relationships between molecule parameters and a biological response without changes in the basic tracer molecule. Among those radionuclides we find any radiation properties we wish (single photon emission) suitable for SPECT, positron emission suitable for positron emission tomography (PET), alpha -, beta /sup -/- and Auger electron emission. (21 refs).

  19. Biomedical scientist training officers' evaluation of integrated (co-terminus) Applied Biomedical Science BSc programmes: a multicentre study.

    Science.gov (United States)

    Pitt, S J; Cunningham, J M

    2011-01-01

    The introduction of the Institute of Biomedical Science (IBMS) portfolio for pre-registration training in 2003 allowed universities to develop integrated (co-terminus) biomedical science BSc programmes. Students undertake structured placements within clinical pathology laboratories as part of their degree. The clinical training and professional development of students is undertaken by training officers (TOs), who are experienced Health Professions Council (HPC)-registered biomedical scientists and usually also members of the IBMS. This study aims to evaluate TOs' perceptions of these integrated degrees as a means of delivering pre-registration training for biomedical scientists. A questionnaire to collect quantitative data and be completed anonymously was sent to TOs, via staff at participating universities. Items considered TOs' perceptions in four categories: how well students fitted into the laboratory team, their professional and scientific development, the impact of delivering integrated degrees on service delivery, and the commitment to training students. Surveys took place in 2007, 2008 and 2009 and involved TOs taking students from 10, 14 and 17 universities each year, respectively. The response rates to the survey were 60% in 2007, 34% in 2008 and 12% in 2009. Participants were representative in terms of age, gender and pathology discipline and had a broad range of experience with students. The overall mean score for TOs perceptions was 3.38 in 2007 which increased significantly to 3.99 in 2009 (Kruskall Wallis test chi2 = 21.13, P<0.01). Mean scores in three of the four categories were positive in 2007, although the impact on service delivery was perceived negatively. In all areas, means were significantly greater in 2009. The results indicate that TOs view the integrated degrees favourably and are happy with the scientific and professional development of students. Although designing training sessions suitable for undergraduates took extra work initially

  20. Advances in targeted proteomics and applications to biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Tujin [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Song, Ehwang [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Nie, Song [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Rodland, Karin D. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Liu, Tao [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Qian, Wei-Jun [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Smith, Richard D. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA

    2016-08-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074–1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.

  1. Improving biomedical journals' ethical policies: the case of research misconduct.

    Science.gov (United States)

    Bosch, Xavier

    2014-09-01

    Scientific journals may incur scientific error if articles are tainted by research misconduct. While some journals' ethical policies, especially those on conflicts of interest, have improved over recent years, with some adopting a uniform approach, only around half of biomedical journals, principally those with higher impact factors, currently have formal misconduct policies, mainly for handling allegations. Worryingly, since a response to allegations would reasonably require an a priori definition, far fewer journals have publicly available definitions of misconduct. While some journals and editors' associations have taken significant steps to prevent and detect misconduct and respond to allegations, the content, visibility of and access to these policies varies considerably. In addition, while the lack of misconduct policies may prompt and maintain a de novo approach for journals, potentially causing stress, publication delays and even legal disputes, the lack of uniformity may be a matter of contention for research stakeholders such as editors, authors and their institutions, and publishers. Although each case may need an individual approach, I argue that posting highly visible, readily accessible, comprehensive, consistent misconduct policies could prevent the publication of fraudulent papers, increase the number of retractions of already published papers and, perhaps, reduce research misconduct. Although legally problematic, a concerted approach, with sharing of information between editors, which is clearly explained in journal websites, could also help. Ideally, journals, editors' associations, and publishers should seek consistency and homogenise misconduct policies to maintain public confidence in the integrity of biomedical research publications. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Biomedical Science Ph.D. Career Interest Patterns by Race/Ethnicity and Gender.

    Directory of Open Access Journals (Sweden)

    Kenneth D Gibbs

    Full Text Available Increasing biomedical workforce diversity remains a persistent challenge. Recent reports have shown that biomedical sciences (BMS graduate students become less interested in faculty careers as training progresses; however, it is unclear whether or how the career preferences of women and underrepresented minority (URM scientists change in manners distinct from their better-represented peers. We report results from a survey of 1500 recent American BMS Ph.D. graduates (including 276 URMs that examined career preferences over the course of their graduate training experiences. On average, scientists from all social backgrounds showed significantly decreased interest in faculty careers at research universities, and significantly increased interest in non-research careers at Ph.D. completion relative to entry. However, group differences emerged in overall levels of interest (at Ph.D. entry and completion, and the magnitude of change in interest in these careers. Multiple logistic regression showed that when controlling for career pathway interest at Ph.D. entry, first-author publication rate, faculty support, research self-efficacy, and graduate training experiences, differences in career pathway interest between social identity groups persisted. All groups were less likely than men from well-represented (WR racial/ethnic backgrounds to report high interest in faculty careers at research-intensive universities (URM men: OR 0.60, 95% CI: 0.36-0.98, p = 0.04; WR women: OR: 0.64, 95% CI: 0.47-0.89, p = 0.008; URM women: OR: 0.46, 95% CI: 0.30-0.71, p<0.001, and URM women were more likely than all other groups to report high interest in non-research careers (OR: 1.93, 95% CI: 1.28-2.90, p = 0.002. The persistence of disparities in the career interests of Ph.D. recipients suggests that a supply-side (or "pipeline" framing of biomedical workforce diversity challenges may limit the effectiveness of efforts to attract and retain the best and most

  3. Liberty to decide on dual use biomedical research: an acknowledged necessity.

    Science.gov (United States)

    Keuleyan, Emma

    2010-03-01

    Humanity entered the twenty-first century with revolutionary achievements in biomedical research. At the same time multiple "dual-use" results have been published. The battle against infectious diseases is meeting new challenges, with newly emerging and re-emerging infections. Both natural disaster epidemics, such as SARS, avian influenza, haemorrhagic fevers, XDR and MDR tuberculosis and many others, and the possibility of intentional mis-use, such as letters containing anthrax spores in USA, 2001, have raised awareness of the real threats. Many great men, including Goethe, Spinoza, J.B. Shaw, Fr. Engels, J.F. Kennedy and others, have recognized that liberty is also a responsibility. That is why the liberty to decide now represents an acknowledged necessity: biomedical research should be supported, conducted and published with appropriate measures to prevent potential "dual use". Biomedical scientists should work according to the ethical principles of their Code of Conduct, an analogue of Hippocrates Oath of doctors; and they should inform government, society and their juniors about the problem. National science consulting boards of experts should be created to prepare guidelines and control the problem at state level. An international board should develop minimum standards to be applicable by each country. Bio-preparedness is considered another key-measure.

  4. Advancement and applications of peptide phage display technology in biomedical science.

    Science.gov (United States)

    Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung

    2016-01-19

    Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

  5. Health Benefits of Animal Research: The Mouse in Biomedical Research.

    Science.gov (United States)

    Jonas, Albert M.

    1984-01-01

    Traces the history of using mice for medical research and discusses the benefits of using these animals for studies in bacteriology, virology, genetics (considering X-linked genetic homologies between mice and humans), molecular biology, immunology, hematology, immune response disorders, oncology, radiobiology, pharmacology, behavior genetics,…

  6. What Health Sciences Programs Want from Biomedical Communications.

    Science.gov (United States)

    Merrill, Irving R.

    1980-01-01

    A 1979 survey of U.S. members of the Association of Biomedical Communications Directors asked them to rank the importance of eight types of service to each professional program that his unit supports. Service priorities are reported for programs characteristic of medicine, allied health, dentistry, nursing, and pharmacy. (Author)

  7. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  8. Cyanobacterial Sunscreen Scytonemin: Role in Photoprotection and Biomedical Research.

    Science.gov (United States)

    Rastogi, Rajesh Prasad; Sonani, Ravi Raghav; Madamwar, Datta

    2015-07-01

    Cyanobacteria are the most promising group of photosynthetic microorganisms capable of producing an array of natural products of industrial importance. Scytonemin is a small hydrophobic alkaloid pigment molecules present in the extracellular sheath of several cyanobacteria as a protective mechanism against short wavelength solar ultraviolet (UV) radiation. It has great efficacy to minimize the production of reactive oxygen species and formation of DNA lesions. The biosynthesis of scytonemin is regulated by different physico-chemical stressors. Scytonemin display multiple roles, functioning as a potent UV sunscreen and antioxidant molecules, and can be exploited in cosmetic and other industries for the development of new cosmeceuticals. Herein, we review the occurrence, biosynthesis, and potential application of scytonemin in photoprotection, pharmaceuticals, and biomedical research.

  9. Small animal PET and its applications in biomedical research

    International Nuclear Information System (INIS)

    Qiu Feichan

    2004-01-01

    Positron emission tomography (PET) is a nuclear medical imaging technique that permits the use of positron-labeled molecular imaging probes for non-invasive assays of biochemical processes. As the leading technology in nuclear medicine, PET has extended its applications from the clinical field to the study of small laboratory animals. In recent years, the development of new detector technology has dramatically improved the spatial resolution and image quality of small animal PET scanner, which is being used increasingly as a basic tool in modern biomedical research. In particular, small animal PET will play an important role in drug discovery and development, in the study of small animal models of human diseases, in characterizing gene expression and in many other ways. (authors)

  10. Atomic force microscopy in biomedical research - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Pier Carlo Braga and Davide Ricci are old friends not only for those researchers familiar with Atomic force microscopy (AFM but also for those beginners (like the undersigned that already enthusiastically welcomed their 2004 edition (for the same Humana press printing types of Atomic force microscopy: Biomedical methods and applications, eventhough I never had used the AFM. That book was much intended to overview the possible AFM applications for a wide range of readers so that they can be in some way stimulated toward the AFM use. In fact, the great majority of scientists is afraid both of the technology behind AFM (that is naturally thought highly demanding in term of concepts not so familiar to biologists and physicians and of the financial costs: both these two factors are conceived unapproachable by the medium range granted scientist usually not educated in terms of biophysics and electronic background....

  11. Machine learning, medical diagnosis, and biomedical engineering research - commentary.

    Science.gov (United States)

    Foster, Kenneth R; Koprowski, Robert; Skufca, Joseph D

    2014-07-05

    A large number of papers are appearing in the biomedical engineering literature that describe the use of machine learning techniques to develop classifiers for detection or diagnosis of disease. However, the usefulness of this approach in developing clinically validated diagnostic techniques so far has been limited and the methods are prone to overfitting and other problems which may not be immediately apparent to the investigators. This commentary is intended to help sensitize investigators as well as readers and reviewers of papers to some potential pitfalls in the development of classifiers, and suggests steps that researchers can take to help avoid these problems. Building classifiers should be viewed not simply as an add-on statistical analysis, but as part and parcel of the experimental process. Validation of classifiers for diagnostic applications should be considered as part of a much larger process of establishing the clinical validity of the diagnostic technique.

  12. A Web-based platform for interdisciplinary biomedical research.

    Science.gov (United States)

    Schreier, Guenter; Messmer, Juergen; Rauchegger, Guenter; Modre-Osprian, Robert; Ladenstein, Ruth

    2009-01-01

    The European Neuroblastoma Group of the International Society for Paediatric Oncology (SIOPEN) is dedicated to the research and treatment of neuroblastoma. The medical research network SIOPEN-R-NET is an extensive web-based European IT network for interdisciplinary biomedical research. The IT infrastructure has been built using state-of-the-art multi-tiered architecture principles. Basic features required for electronic data capture in clinical trials were implemented. Additionally, advanced tools were developed for registration, review, user management, communication and image management. Currently three clinical trials and eight supporting scientific studies are implemented. The medical research network is already in use by 345 active users from 240 institutions in 18 countries. More than 960 000 item entries and 7962 images from 1260 patients are stored. Challenges, which resulted from the fact that only 16 % of the centres had more than 2 patients per year, have been addressed by an intuitive user interface, hierarchical roles, user required features, and experienced support. The system has already been used extensively and has helped to make significant progress in the area of Neuroblastoma research.

  13. Teaching Science through Research.

    Science.gov (United States)

    Hugerat, Muhamad; Zidani, Saleem; Kurtam, Naji

    2003-01-01

    Discusses the objectives of the science curriculum and the teacher's responsibility of passing through not only the required material, but also skills. Suggests that in order to improve teaching and learning skills, new strategies, such as teaching and learning through research must be utilized. Presents four examples of teaching and learning…

  14. Materials Sciences Research.

    Science.gov (United States)

    1974-07-01

    thin superconducting indium films in contact with normal or superconducting thallium films. The results agree well with a theoretical model which we...Sandwiches of Indium and Thallium Physical Review B1_, 5065-5071 (1973) Supported by the National Science Foundation under Grants GH-33634 and GH-37980 oS...Senior Staff: Harvey J. Stapleton, Professor Junior Staff: Patrick Devaney, Research Assistant Gordon E. Fish , Research Assistant Richard C. Herrick

  15. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  16. The ethical justification for the use of animals in biomedical research

    Directory of Open Access Journals (Sweden)

    Kostomitsopoulos N.G.

    2010-01-01

    Full Text Available Despite all the benefits, the use of animals in biomedical research is still a subject of debate with respect to its true value. The sensitivity of the community and the interest of scientists who work in the field of laboratory animal science and welfare have clearly demonstrated that the use of animals in biomedical research must be conducted under specific scientific, legal and ethical rules. The ethical justification of a research project starts from its initial designing phase until its completion and the review of the obtained results. Justification of the necessity of the project and the need to use animals in the interests of human or animal health, the importance of conducting a pilot study and a systematic review of previously published animal research on the topic, and the availability of the proper facilities, equipment and personnel are the main issues of concern in the ethical review of a research project. The ethical justification of the proposed project by the scientists themselves involves team-work, and should be a sustainable rather than a one-off procedure. This justification reflects the interest and the responsibility of scientists to reduce the number of animals, refine the procedures, and possibly replace animals in their research projects. The end-results of the ethical review process will be the creation of a trust relationship between scientists and society. .

  17. Knowledge of the Nigerian Code of Health Research Ethics Among Biomedical Researchers in Southern Nigeria.

    Science.gov (United States)

    Ogunrin, Olubunmi A; Daniel, Folasade; Ansa, Victor

    2016-12-01

    Responsibility for protection of research participants from harm and exploitation rests on Research Ethics Committees and principal investigators. The Nigerian National Code of Health Research Ethics defines responsibilities of stakeholders in research so its knowledge among researchers will likely aid ethical conduct of research. The levels of awareness and knowledge of the Code among biomedical researchers in southern Nigerian research institutions was assessed. Four institutions were selected using a stratified random sampling technique. Research participants were selected by purposive sampling and completed a pre-tested structured questionnaire. A total of 102 biomedical researchers completed the questionnaires. Thirty percent of the participants were aware of the National Code though 64% had attended at least one training seminar in research ethics. Twenty-five percent had a fairly acceptable knowledge (scores 50%-74%) and 10% had excellent knowledge of the code (score ≥75%). Ninety-five percent expressed intentions to learn more about the National Code and agreed that it is highly relevant to the ethical conduct of research. Awareness and knowledge of the Code were found to be very limited among biomedical researchers in southern Nigeria. There is need to improve awareness and knowledge through ethics seminars and training. Use of existing Nigeria-specific online training resources is also encouraged.

  18. [Hospital biomedical research through the satisfaction of a Health Research Institute professionals].

    Science.gov (United States)

    Olmedo, C; Plá, R; Bellón, J M; Bardinet, T; Buño, I; Bañares, R

    2015-01-01

    A Health Research Institute is a powerful strategic commitment to promote biomedical research in hospitals. To assess user satisfaction is an essential quality requirement. The aim of this study is to evaluate the professional satisfaction in a Health Research Institute, a hospital biomedical research centre par excellence. Observational study was conducted using a satisfaction questionnaire on Health Research Institute researchers. The explored dimensions were derived from the services offered by the Institute to researchers, and are structured around 4 axes of a five-year Strategic Plan. A descriptive and analytical study was performed depending on adjustment variables. Internal consistency was also calculated. The questionnaire was completed by 108 researchers (15% response). The most valued strategic aspect was the structuring Areas and Research Groups and political communication and dissemination. The overall rating was 7.25 out of 10. Suggestions for improvement refer to the need for help in recruitment, and research infrastructures. High internal consistency was found in the questionnaire (Cronbach alpha of 0.9). So far research policies in health and biomedical environment have not been sufficiently evaluated by professionals in our field. Systematic evaluations of satisfaction and expectations of key stakeholders is an essential tool for analysis, participation in continuous improvement and advancing excellence in health research. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  19. Building integrated pathways to independence for diverse biomedical researchers: Project Pathways, the BUILD program at Xavier University of Louisiana.

    Science.gov (United States)

    Foroozesh, Maryam; Giguette, Marguerite; Morgan, Kathleen; Johanson, Kelly; D'Amour, Gene; Coston, Tiera; Wilkins-Green, Clair

    2017-01-01

    Xavier University of Louisiana is a historically Black and Catholic university that is nationally recognized for its science, technology, engineering and mathematics (STEM) curricula. Approximately 73% of Xavier's students are African American, and about 77% major in the biomedical sciences. Xavier is a national leader in the number of STEM majors who go on to receive M.D. degrees and Ph.D. degrees in science and engineering. Despite Xavier's advances in this area, African Americans still earn about 7.5% of the Bachelor's degrees, less than 8% of the Master's degrees, and less than 5% of the doctoral degrees conferred in STEM disciplines in the United States. Additionally, although many well-prepared, highly-motivated students are attracted by Xavier's reputation in the sciences, many of these students, though bright and capable, come from underperforming public school systems and receive substandard preparation in STEM disciplines. The purpose of this article is to describe how Xavier works to overcome unequal education backgrounds and socioeconomic challenges to develop student talent through expanding biomedical training opportunities and build on an established reputation in science education. The National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS)-funded BUILD (Building Infrastructure Leading to Diversity) Program at Xavier University of Louisiana, Project Pathways , is a highly-innovative program designed to broaden the career interests of students early on, and to engage them in activities that entice them to continue their education towards biomedical research careers. Project strategies involve a transformation of Xavier's academic and non-academic programs through the redesign, supplementation and integration of academic advising, tutoring, career services, personal counseling, undergraduate research training, faculty research mentoring, and development of new biomedical and research skills courses. The Program also

  20. Hegemony in the marketplace of biomedical innovation: consumer demand and stem cell science.

    Science.gov (United States)

    Salter, Brian; Zhou, Yinhua; Datta, Saheli

    2015-04-01

    The global political economy of stem cell therapies is characterised by an established biomedical hegemony of expertise, governance and values in collision with an increasingly informed health consumer demand able to define and pursue its own interest. How does the hegemony then deal with the challenge from the consumer market and what does this tell us about its modus operandi? In developing a theoretical framework to answer these questions, the paper begins with an analysis of the nature of the hegemony of biomedical innovation in general, its close relationship with the research funding market, the current political modes of consumer incorporation, and the ideological role performed by bioethics as legitimating agency. Secondly, taking the case of stem cell innovation, it explores the hegemonic challenge posed by consumer demand working through the global practice based market of medical innovation, the response of the national and international institutions of science and their reassertion of the values of the orthodox model, and the supporting contribution of bioethics. Finally, the paper addresses the tensions within the hegemonic model of stem cell innovation between the key roles and values of scientist and clinician, the exacerbation of these tensions by the increasingly visible demands of health consumers, and the emergence of political compromise. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Bridging medicine and biomedical technology: enhance translation of fundamental research to patient care.

    Science.gov (United States)

    Raff, Adam B; Seiler, Theo G; Apiou-Sbirlea, Gabriela

    2017-12-01

    The 'Bridging medicine and biomedical technology' special all-congress session took place for the first time at the OSA Biophotonics Congress: Optics in Life Sciences in 2017 (http://www.osa.org/enus/meetings/osa_meetings/optics_in_the_life_sciences/bridging_medicine_and_biomedical_technology_specia/). The purpose was to identify key challenges the biomedical scientists in academia have to overcome to translate their discoveries into clinical practice through robust collaborations with industry and discuss best practices to facilitate and accelerate the process. Our paper is intended to complement the session by providing a deeper insight into the concept behind the structure and the content we developed.

  2. Appropriation of value in Biomedical research outcome at Public Research Organisations

    NARCIS (Netherlands)

    Kensah, D.K.; Groen, Arend J.

    2008-01-01

    Transactions on biomedical research outcomes bring into play strategies that are determined by leveraging resources into quasi-markets and on options based on expectations. To govern such transactions, the choice of appropriate governance structures and the governance of interaction are all too

  3. Library & Information Science Research

    OpenAIRE

    Van Gaasbeck, Kalvin

    2013-01-01

    A brief introduction to the quarterly periodical, Library & Information Science Research (LISR) providing an overview of the scope of the publication. The current paper details the types of articles published in the journal and gives a general overview of the review process for articles published in the journal, concluding with a brief statement of the value of the publication to the LIS field for students.

  4. Research in computer science

    Science.gov (United States)

    Ortega, J. M.

    1986-01-01

    Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.

  5. Biomedical Informatics Research for Individualized Life - Long Shared Healthcare

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana; Hanzlíček, Petr; Nagy, Miroslav; Přečková, Petra; Zvára, K.; Seidl, L.; Bureš, V.; Šubrt, D.; Dostálová, T.; Seydlová, M.

    2009-01-01

    Roč. 29, č. 2 (2009), s. 31-41 ISSN 0208-5216 R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : electronic health record * semantic interoperability * dentistry * cardiology Subject RIV: IN - Informatics, Computer Science

  6. Derivation of porcine pluripotent stem cells for biomedical research.

    Science.gov (United States)

    Shiue, Yow-Ling; Yang, Jenn-Rong; Liao, Yu-Jing; Kuo, Ting-Yung; Liao, Chia-Hsin; Kang, Ching-Hsun; Tai, Chein; Anderson, Gary B; Chen, Lih-Ren

    2016-07-01

    Pluripotent stem cells including embryonic stem cells (ESCs), embryonic germ cells (EGCs), and induced pluripotent stem cells (iPSCs) are capable of self-renew and limitlessly proliferating in vitro with undifferentiated characteristics. They are able to differentiate in vitro, spontaneously or responding to suitable signals, into cells of all three primary germ layers. Consequently, these pluripotent stem cells will be valuable sources for cell replacement therapy in numerous disorders. However, the promise of human ESCs and EGCs is cramped by the ethical argument about destroying embryos and fetuses for cell line creation. Moreover, there are still carcinogenic risks existing toward the goal of clinical application for human ESCs, EGCs, and iPSCs. Therefore, a suitable animal model for stem cell research will benefit the further development of human stem cell technology. The pigs, on the basis of their similarity in anatomy, immunology, physiology, and biochemical properties, have been wide used as model animals in the study of various human diseases. The development of porcine pluripotent stem cell lines will hold the opportunity to provide an excellent material for human counterpart to the transplantation in biomedical research and further development of cell-based therapeutic strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Common husbandry-related variables in biomedical research with animals.

    Science.gov (United States)

    Reinhardt, Viktor

    2004-07-01

    Common, often overlooked, variables in biomedical research with animals are reviewed. The barren primary enclosure is an abnormal living environment for laboratory animals. Species-appropriate enrichment attenuates some of the distress resulting from chronic understimulation. Social deprivation distress of individually-caged social animals is best mitigated by the provision of compatible companionship. Biotelemetry and positive reinforcement training avoid or minimize stress reactions that typically occur when animals are forcibly restrained during procedures. The variables, 'light' and 'position of living quarters' are inherent in the multi-tier caging system. To date there is no satisfactory alternative other than the single-tier cage arrangement that eliminates both variables. Removing test animals from their familiar home environment and from their cage mates for procedures introduces stress as an avoidable influential variable. Music may become an important variable if not all subjects are exposed to it. Disturbance time cannot be controlled as an extraneous variable but it should at least be mentioned to explain possible incongruities of data. A positive relationship between animal care personnel and research subjects is a key requisite to minimize stress as a data-confounding variable.

  8. Journal of Controversies in Biomedical Research - the Need of the Hour

    Directory of Open Access Journals (Sweden)

    Christudas Morais

    2015-08-01

    Full Text Available Approximately 75-89% of the peer–reviewed published literature are thought to be non-reproducible. A need exists to better address the problem of irreproducibility of research data so that contradictory, null and negative findings can be disclosed in an unbiased, non-judgemental, yet scientifically plausible manner. Journal of Controversies in Biomedical Research (JCBMR; www.jcbmr.com is an attempt to address the ‘reproducibility crisis’ in biomedical research. JCBMR is an online-only open access journal that will publish basic science or clinical research articles that meet any of the following criteria: a original articles that demonstrate biologically plausible negative, neutral or contentious findings; b original articles that challenge previously published results in peer-reviewed journals; c original articles that show effects of compounds on disease models (either in vitro or in vivo are contradictory to the expected outcome; d review articles that critically evaluate and challenge established norms and offer possible solutions to the problem; e any manuscript that will assist the scientific community to re-think and re–evaluate the established norm.

  9. The Brazilian research and teaching center in biomedicine and aerospace biomedical engineering.

    Science.gov (United States)

    Russomano, T; Falcao, P F; Dalmarco, G; Martinelli, L; Cardoso, R; Santos, M A; Sparenberg, A

    2008-08-01

    The recent engagement of Brazil in the construction and utilization of the International Space Station has motivated several Brazilian research institutions and universities to establish study centers related to Space Sciences. The Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) is no exception. The University initiated in 1993 the first degree course training students to operate commercial aircraft in South America (the School of Aeronautical Sciences. A further step was the decision to build the first Brazilian laboratory dedicated to the conduct of experiments in ground-based microgravity simulation. Established in 1998, the Microgravity Laboratory, which was located in the Instituto de Pesquisas Cientificas e Tecnologicas (IPCT), was supported by the Schools of Medicine, Aeronautical Sciences and Electrical Engineering/Biomedical Engineering. At the end of 2006, the Microgravity Laboratory became a Center and was transferred to the School of Engineering. The principal activities of the Microgravity Centre are the development of research projects related to human physiology before, during and after ground-based microgravity simulation and parabolic flights, to aviation medicine in the 21st century and to aerospace biomedical engineering. The history of Brazilian, and why not say worldwide, space science should unquestionably go through PUCRS. As time passes, the pioneering spirit of our University in the aerospace area has become undeniable. This is due to the group of professionals, students, technicians and staff in general that have once worked or are still working in the Center of Microgravity, a group of faculty and students that excel in their undeniable technical-scientific qualifications.

  10. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L

    2010-06-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers' time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment.

  11. Beyond Preparation: Identity, Cultural Capital, and Readiness for Graduate School in the Biomedical Sciences.

    Science.gov (United States)

    Gazley, J Lynn; Remich, Robin; Naffziger-Hirsch, Michelle E; Keller, Jill; Campbell, Patricia B; McGee, Richard

    2014-10-01

    In this study, we conducted in-depth interviews with 52 college graduates as they entered a Postbaccalaureate Research Education Program (PREP). Our goal was to investigate what it means for these aspiring scientists, most of whom are from groups underrepresented in the sciences, to feel ready to apply to a doctoral program in the biomedical sciences. For our analysis, we developed and used a theoretical framework which integrates concepts from identity-in-practice literature with Bourdieu's formulation of cultural capital and also examined the impact of racial, ethnic, and gender identities on education and career trajectories. Five patterns of identity work for expected engagement with PREP grew out of our analysis: Credential Seekers, PI Aspirants, Path Builders, Discipline Changers, and Interest Testers. These patterns illuminate differences in perceptions of doing, being , and becoming within science; external and internal foci of identity work; and expectations for institutional and embodied cultural capital. Our findings show that preparing for graduate education is more complex than acquiring a set of credentials as it is infused with identity work which facilitates readiness beyond preparation . This deeper understanding of individual agency and perceptions allows us to shift the focus away from a deficit model where institutions and programs attempt to "fix" students, and to offer implications for programs designed to support college graduates aspiring to become scientists.

  12. [The system of protection of scientific biomedical research participants in France and in Poland].

    Science.gov (United States)

    Czarkowski, Marek; Sieczych, Alicja

    2013-07-01

    Realizing scientific biomedical research conducted on human-beings demands obeying ample ethical rules. However, states keep independence in the means of implementing deontological guidelines to legislative acts. The aim of the article is to compare rules of law relative to protection of scientific biomedical research participants in two European Union member states--France and Poland. French regulations cover more types of scientific biomedical research than those in Poland. In France almost all types of interventional scientific biomedical research including research on human biological samples and research on cosmetics are covered by the rules of law. Polish regulations are limited to interventional research conducted by doctors and dentists. In both states projects of clinical trials of medicinal products demands double acceptance - from bioethics committee and from competent state authority. In protection of scientific biomedical research participants the role of state authority competent for personal data is more vital in France than it is in Poland. In France there is also National Ethics Advisory Committee whereas in Poland there is no such institution. The systems protecting scientific biomedical research participants differs therefore in both states in many vital aspects and French measures cover more types of scientific biomedical research, hence the level of participants protection in various types of research is more equitable.

  13. Exploring lecturers' views of first-year health science students' misconceptions in biomedical domains.

    Science.gov (United States)

    Badenhorst, Elmi; Mamede, Sílvia; Hartman, Nadia; Schmidt, Henk G

    2015-05-01

    Research has indicated that misconceptions hamper the process of knowledge construction. Misconceptions are defined as persistent ideas not supported by current scientific views. Few studies have explored how misconceptions develop when first year health students conceptually move between anatomy and physiology to construct coherent knowledge about the human body. This explorative study analysed lecturers' perceptions of first-year health science students' misconceptions in anatomy and physiology to gain a deeper understanding of how and why misconceptions could potentially arise, by attempting to link sources of misconceptions with four schools of thought, namely theories on concept formation, complexity, constructivism and conceptual change. This was a qualitative study where ten lecturers involved in teaching anatomy and physiology in the health science curricula at the University of Cape Town were interviewed to explore perceptions of students' misconceptions. Analytical induction was used to uncover categories within the interview data by using a coding system. A deeper analysis was done to identify emerging themes that begins to explore a theoretical understanding of why and how misconceptions arise. Nine sources of misconceptions were identified, including misconceptions related to language, perception, three dimensional thinking, causal reasoning, curricula design, learning styles and moving between macro and micro levels. The sources of misconceptions were then grouped together to assist educators with finding educational interventions to overcome potential misconceptions. This explorative study is an attempt in theory building to understand what is at the core of biomedical misconceptions. Misconceptions identified in this study hold implications for educators as not all students have the required building blocks and cognitive skills to successfully navigate their way through biomedical courses. Theoretical insight into the sources of misconceptions can

  14. Karma, reincarnation, and medicine: Hindu perspectives on biomedical research.

    Science.gov (United States)

    Hutchinson, Janis Faye; Sharp, Richard

    2008-12-01

    population. This study suggests that minority status does not automatically indicate unwillingness to participate in genetic or medical research. Indian Americans were not skeptical about the potential benefits of biomedical research in comparison to other ethnic minority communities in the United States.

  15. The Function Biomedical Informatics Research Network Data Repository.

    Science.gov (United States)

    Keator, David B; van Erp, Theo G M; Turner, Jessica A; Glover, Gary H; Mueller, Bryon A; Liu, Thomas T; Voyvodic, James T; Rasmussen, Jerod; Calhoun, Vince D; Lee, Hyo Jong; Toga, Arthur W; McEwen, Sarah; Ford, Judith M; Mathalon, Daniel H; Diaz, Michele; O'Leary, Daniel S; Jeremy Bockholt, H; Gadde, Syam; Preda, Adrian; Wible, Cynthia G; Stern, Hal S; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G

    2016-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Practical methods for generating alternating magnetic fields for biomedical research

    Science.gov (United States)

    Christiansen, Michael G.; Howe, Christina M.; Bono, David C.; Perreault, David J.; Anikeeva, Polina

    2017-08-01

    Alternating magnetic fields (AMFs) cause magnetic nanoparticles (MNPs) to dissipate heat while leaving surrounding tissue unharmed, a mechanism that serves as the basis for a variety of emerging biomedical technologies. Unfortunately, the challenges and costs of developing experimental setups commonly used to produce AMFs with suitable field amplitudes and frequencies present a barrier to researchers. This paper first presents a simple, cost-effective, and robust alternative for small AMF working volumes that uses soft ferromagnetic cores to focus the flux into a gap. As the experimental length scale increases to accommodate animal models (working volumes of 100s of cm3 or greater), poor thermal conductivity and volumetrically scaled core losses render that strategy ineffective. Comparatively feasible strategies for these larger volumes instead use low loss resonant tank circuits to generate circulating currents of 1 kA or greater in order to produce the comparable field amplitudes. These principles can be extended to the problem of identifying practical routes for scaling AMF setups to humans, an infrequently acknowledged challenge that influences the extent to which many applications of MNPs may ever become clinically relevant.

  17. Current biomedical scientific impact (2013) of institutions, academic journals and researchers in the Republic of Macedonia.

    Science.gov (United States)

    Spiroski, Mirko

    2014-01-01

    To analyse current ranking (2013) of institutions, journals and researchers in the Republic of Macedonia. the country rankings of R. Macedonia were analyzed with SCImago Country & Journal Rank (SJR) for subject area Medicine in the years 1996-2013, and ordered by H-index. SCImago Institutions Rankings for 2013 was used for the scientific impact of biomedical institutions in the Republic of Macedonia. Journal metrics from Elsevier for the Macedonian scholarly journals for the period 2009-2013 were performed. Source Normalized Impact per Paper (SNIP), the Impact per Publication (IPP), and SCImago Journal Rank (SJR) were analysed. Macedonian scholarly biomedical journals included in Google Scholar metrics (2013, 2012) were analysed with h5-index and h5-median (June 2014). A semantic analysis of the PubMed database was performed with GoPubMed on November 2, 2014 in order to identify published papers from the field of biomedical sciences affiliated with the country of Macedonia. Harzing's Publish or Perish software was used for author impact analysis and the calculation of the Hirsh-index based on Google Scholar query. The rank of subject area Medicine of R. Macedonia according to the SCImago Journal & Country Rank (SJR) is 110th in the world and 17th in Eastern Europe. Of 20 universities in Macedonia, only Ss Cyril and Methodius University, Skopje, and the University St Clement of Ohrid, Bitola, are listed in the SCImago Institutions Rankings (SIR) for 2013. A very small number of Macedonian scholarly journals is included in Web of Sciences (2), PubMed (1), PubMed Central (1), SCOPUS (6), SCImago (6), and Google Scholar metrics (6). The rank of Hirsh index (h-index) was different from the rank of number of abstracts indexed in PubMed for the top 20 authors from R. Macedonia. The current biomedical scientific impact (2013) of institutions, academic journals and researchers in R. Macedonia is very low. There is an urgent need for organized measures to improve the quality

  18. Credibility Assessment of Deterministic Computational Models and Simulations for Space Biomedical Research and Operations

    Science.gov (United States)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Myers, Jerry

    2015-01-01

    Human missions beyond low earth orbit to destinations, such as to Mars and asteroids will expose astronauts to novel operational conditions that may pose health risks that are currently not well understood and perhaps unanticipated. In addition, there are limited clinical and research data to inform development and implementation of health risk countermeasures for these missions. Consequently, NASA's Digital Astronaut Project (DAP) is working to develop and implement computational models and simulations (M&S) to help predict and assess spaceflight health and performance risks, and enhance countermeasure development. In order to effectively accomplish these goals, the DAP evaluates its models and simulations via a rigorous verification, validation and credibility assessment process to ensure that the computational tools are sufficiently reliable to both inform research intended to mitigate potential risk as well as guide countermeasure development. In doing so, DAP works closely with end-users, such as space life science researchers, to establish appropriate M&S credibility thresholds. We will present and demonstrate the process the DAP uses to vet computational M&S for space biomedical analysis using real M&S examples. We will also provide recommendations on how the larger space biomedical community can employ these concepts to enhance the credibility of their M&S codes.

  19. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O' Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving

  20. [Application of the life sciences platform based on oracle to biomedical informations].

    Science.gov (United States)

    Zhao, Zhi-Yun; Li, Tai-Huan; Yang, Hong-Qiao

    2008-03-01

    The life sciences platform based on Oracle database technology is introduced in this paper. By providing a powerful data access, integrating a variety of data types, and managing vast quantities of data, the software presents a flexible, safe and scalable management platform for biomedical data processing.

  1. Social networks, web-based tools and diseases: implications for biomedical research.

    Science.gov (United States)

    Costa, Fabricio F

    2013-03-01

    Advances in information technology have improved our ability to gather, collect and analyze information from individuals online. Social networks can be seen as a nonlinear superposition of a multitude of complex connections between people where the nodes represent individuals and the links between them capture a variety of different social interactions. The emergence of different types of social networks has fostered connections between individuals, thus facilitating data exchange in a variety of fields. Therefore, the question posed now is "can these same tools be applied to life sciences in order to improve scientific and medical research?" In this article, I will review how social networks and other web-based tools are changing the way we approach and track diseases in biomedical research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. 78 FR 3019 - Privacy Act of 1974; Science & Technology Directorate-001 Research, Development, Test, and...

    Science.gov (United States)

    2013-01-15

    ... 1974; Science & Technology Directorate-001 Research, Development, Test, and Evaluation Records System.../Science and Technology Directorate-001 Research, Development, Test, and Evaluation System of Records... biomedical and life sciences research; and subject matter experts who voluntarily consent to be included in a...

  3. The Council of Europe's instruments on biomedical research: how is conflict of interest addressed?

    Science.gov (United States)

    Zilgalvis, Pēteris

    2002-07-01

    Conflict of interest is an issue that has been put in the spotlight by the commercial application of the new biomedical technologies. This paper presents the approach of the Council of Europe and the binding legal instruments to deal with this problem. The main focus is on the Convention on Human Rights and Biomedicine, and its draft additional Protocol on Biomedical Research.

  4. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  5. Computer Science Research in India.

    Science.gov (United States)

    1995-10-07

    This paper begins with a discussion of the nature of Computer Science Research in India. The type of institutions in which Computer Science research...Finally we study the influence on Indian Computer Science research of the phenomenal growth in exports by the Indian software industry and the arrival

  6. Non-animal methodologies within biomedical research and toxicity testing.

    Science.gov (United States)

    Knight, Andrew

    2008-01-01

    Laboratory animal models are limited by scientific constraints on human applicability, and increasing regulatory restrictions, driven by social concerns. Reliance on laboratory animals also incurs marked - and in some cases, prohibitive - logistical challenges, within high-throughput chemical testing programmes, such as those currently underway within Europe and the US. However, a range of non-animal methodologies is available within biomedical research and toxicity testing. These include: mechanisms to enhance the sharing and assessment of existing data prior to conducting further studies, and physicochemical evaluation and computerised modelling, including the use of structure-activity relationships and expert systems. Minimally-sentient animals from lower phylogenetic orders or early developmental vertebral stages may be used, as well as microorganisms and higher plants. A variety of tissue cultures, including immortalised cell lines, embryonic and adult stem cells, and organotypic cultures, are also available. In vitro assays utilising bacterial, yeast, protozoal, mammalian or human cell cultures exist for a wide range of toxic and other endpoints. These may be static or perfused, and may be used individually, or combined within test batteries. Human hepatocyte cultures and metabolic activation systems offer potential assessment of metabolite activity and organ-organ interaction. Microarray technology may allow genetic expression profiling, increasing the speed of toxin detection, well prior to more invasive endpoints. Enhanced human clinical trials utilising micro- dosing, staggered dosing, and more representative study populations and durations, as well as surrogate human tissues, advanced imaging modalities and human epidemiological, sociological and psycho- logical studies, may increase our understanding of illness aetiology and pathogenesis, and facilitate the development of safe and effective pharmacologic interventions. Particularly when human tissues

  7. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  8. Guidelines for euthanasia of laboratory animals used in biomedical research

    Directory of Open Access Journals (Sweden)

    Adina Baias,

    2012-06-01

    Full Text Available Laboratory animals are used in several fields of science research, especially in biology, medicine and veterinary medicine. The majority of laboratory animals used in research are experimental models that replace the human body in study regarding pharmacological or biological safety products, studies conducted for a betterunderstanding of oncologic processes, toxicology, genetic studies or even new surgical techniques. Experimental protocols include a stage in which animals are euthanized in order to remove organs and tissues,or for no unnecessary pain and suffering of animals (humane endpoints or to mark the end of research. The result of euthanasia techniques is a rapid loss of consciousness followed by cardiac arrest, respiratory arrest and disruption of brain activity. Nowadays, the accepted euthanasia techniques can use chemicals (inhalant agents like: carbon dioxide, nitrogen or argon, overdoses of injectable anesthetics or physical methods (decapitation, cervical spine dislocation, stunning, gunshot, pitching.

  9. The role biomedical science laboratories can play in improving science knowledge and promoting first-year nursing academic success

    Science.gov (United States)

    Arneson, Pam

    The Role Biomedical Science Laboratories Can Play In Improving Science Knowledge and Promoting First-Year Nursing Academic Success The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an analysis of the role bioscience labs have in first-year nursing academic success is apposite. In response, this study sought to determine whether concurrent enrollment in anatomy and microbiology lecture and lab courses improved final lecture course grades. The investigation was expanded to include a comparison of first-year nursing GPA and prerequisite bioscience concurrent lecture/lab enrollment. Additionally, research has indicated that learning is affected by student perception of the course, instructor, content, and environment. To gain an insight regarding students' perspectives of laboratory courses, almost 100 students completed a 20-statement perception survey to understand how lab participation affects learning. Data analyses involved comparing anatomy and microbiology final lecture course grades between students who concurrently enrolled in the lecture and lab courses and students who completed the lecture course alone. Independent t test analyses revealed that there was no significant difference between the groups for anatomy, t(285) = .11, p = .912, but for microbiology, the lab course provided a significant educational benefit, t(256) = 4.47, p = .000. However, when concurrent prerequisite bioscience lecture/lab enrollment was compared to non-concurrent enrollment for first-year nursing GPA using independent t test analyses, no significant difference was found for South Dakota State University, t(37) = -1.57, p = .125, or for the University of South Dakota, t(38) = -0.46, p

  10. Citation Analysis for Biomedical and Health Sciences Journals Published in Korea.

    Science.gov (United States)

    Oh, Juyeon; Chang, Hyejung; Kim, Jung A; Choi, Mona; Park, Ziyoung; Cho, Yoonhee; Lee, Eun-Gyu

    2017-07-01

    A citation analysis of biomedical and health sciences journals was conducted based on their enlistment in journal databases to identify the factors contributing to the citation metrics. Among the 1,219 academic journals managed by the National Center for Medical Information and Knowledge at the Korea Centers for Disease Control and Prevention, 556 journals were included for analysis as of July 2016. The characteristics of the journals include history years, publication media, language, open-access policy as well as the status enlisted in international and domestic databases, such as Science Citation Index (SCI), Scopus, Medline, PubMed Central, Embase, and Korea Citation Index (KCI). Six bibliometric measures were collected from SCI, Scopus, and KCI as of 2015, the most recent disclosure year. Analyses of group differences and influential factors were conducted using t -tests, Mann-Whitney tests, and multiple regression. Journal characteristics, such as history years, publication media, and open-access policy, were not significant factors influencing global or domestical citation of the journals. However, global citations were higher for SCI and Medline enlisted journals than for their counterparts. Among KCI journals, the KCI impact factors of journals published in English only were lower. Efforts by journals to be enlisted in international databases, especially in SCI and Medline, are critical to enhance their global circulation. However, articles published in English only hinder the use of domestic researchers. Different strategies are required for enhancing international and domestic readerships.

  11. Providing Experiential Business and Management Training for Biomedical Research Trainees

    Science.gov (United States)

    Petrie, Kimberly A.; Carnahan, Robert H.; Brown, Abigail M.; Gould, Kathleen L.

    2017-01-01

    Many biomedical PhD trainees lack exposure to business principles, which limits their competitiveness and effectiveness in academic and industry careers. To fill this training gap, we developed Business and Management Principles for Scientists, a semester-long program that combined didactic exposure to business fundamentals with practical…

  12. Use of dual isotope tracers in biomedical research

    NARCIS (Netherlands)

    Stellaard, F

    Biomedical stable isotope studies involve administration of tracer and measurement of isotope enrichment in blood, urine, feces or breath. The aim of the studies is to gather quantitative information about a specific metabolic function. However, the measured isotope enrichment may be affected by

  13. Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.

    Science.gov (United States)

    Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi

    2016-04-01

    This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.

  14. British Journal of Biomedical Science in 2017: What have we learned?

    Science.gov (United States)

    Blann, Andrew

    2018-01-01

    In 2017 the British Journal of Biomedical Science published 35 articles in the various disciplines that comprise biomedical science. These were 6 reviews, 22 original articles, 6 'In Brief' short reports and one guideline. Of these, the majority were in clinical chemistry (one review, six data papers), microbiology (one review, four data papers), cellular pathology (four data papers) and virology (one review, two data papers). There were two data papers in transfusion science, whilst haematology, cytopathology and immunology were each represented by one review and one data paper. Reflecting the increasing complexity of the laboratory, five data papers crossed barriers between traditional disciplines, and so may be described as multidisciplinary. The present report will summarise key aspects of these publications.

  15. Ayurgenomics – a new player in biomedical sciences.

    Indian Academy of Sciences (India)

    2016-08-24

    Aug 24, 2016 ... Contemporary medical science has, until recent times, remained in perennial search of a single cause of a disease, be it physiological or molecular. Looking at the human body through a systems perspective is a relatively new approach in the field of biomedicine. Ayurveda, the Indian traditional medical ...

  16. Welfare assessment in porcine biomedical research – Suggestion for an operational tool

    DEFF Research Database (Denmark)

    Søndergaard, Lene Vammen; Dagnæs-Hansen, Frederik; Herskin, Mette S

    2011-01-01

    used for experimental purposes; and (2) the scientific outcome can be dependent upon the welfare state of the animals. In order to be able to quantify and control laboratory pig welfare, a practical tool is needed. The purpose of the present paper is to provide an overview of the current status...... of the extent of welfare assessment in pigs used in biomedical research and to suggest a welfare assessment standard for research facilities based on an exposition of ethological considerations relevant for the welfare of pigs in biomedical research. The tools for porcine welfare assessment presented suggest......In recent years, increasing interest in using the pig (Sus scrofa) for biomedical research has become evident. Today, the pig is considered an advantageous alternative animal model for various human diseases and conditions. However, even though a considerable amount of biomedical research has been...

  17. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  18. CollaborationViz: interactive visual exploration of biomedical research collaboration networks.

    Directory of Open Access Journals (Sweden)

    Jiang Bian

    Full Text Available Social network analysis (SNA helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs. Especially, in the Clinical Translational Science Award (CTSA community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences--a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization.

  19. On Determining Factors for Good Research in Biomedical and Health Informatics

    Science.gov (United States)

    2014-01-01

    Summary Objective What are the determining factors for good research in medical informatics or, from a broader perspective, in biomedical and health informatics? Method From the many lessons learned during my professional career, I tried to identify a fair sampling of such factors. On the occasion of giving the IMIA Award of Excellence lecture during MedInfo 2013, they were presented for discussion. Results Sixteen determining factors (df) have been identified: early identification and promotion (df1), appropriate education (df2), stimulating persons and environments (df3), sufficient time and backtracking opportunities (df4), breadth of medical informatics competencies (df5), considering the necessary preconditions for good medical informatics research (df6), easy access to high-quality knowledge (df7), sufficient scientific career opportunities (df8), appropriate conditions for sustainable research (df9), ability to communicate and to solve problems (df10), as well as to convey research results (df11) in a highly inter- and multidisciplinary environment, ability to think for all and, when needed, taking the lead (df12), always staying unbiased (df13), always keeping doubt (df14), but also always trying to provide solutions (df15), and, finally, being aware that life is more (df16). Conclusions Medical Informatics is an inter- and multidisciplinary discipline “avant la lettre”. Compared to monodisciplinary research, inter- and multidisciplinary research does not only provide significant opportunities for solving major problems in science and in society. It also faces considerable additional challenges for medical informatics as a scientific field. The determining factors, presented here, are in my opinion crucial for conducting successful research and for developing a research career. Since medical informatics as a field has today become an important driving force for research progress, especially in biomedicine and health care, but also in fields like

  20. On determining factors for good research in biomedical and health informatics. Some lessons learned.

    Science.gov (United States)

    Haux, R

    2014-05-22

    What are the determining factors for good research in medical informatics or, from a broader perspective, in biomedical and health informatics? From the many lessons learned during my professional career, I tried to identify a fair sampling of such factors. On the occasion of giving the IMIA Award of Excellence lecture during MedInfo 2013, they were presented for discussion. Sixteen determining factors (df) have been identified: early identification and promotion (df1), appropriate education (df2), stimulating persons and environments (df3), sufficient time and backtracking opportunities (df4), breadth of medical informatics competencies (df5), considering the necessary preconditions for good medical informatics research (df6), easy access to high-quality knowledge (df7), sufficient scientific career opportunities (df8), appropriate conditions for sustainable research (df9), ability to communicate and to solve problems (df10), as well as to convey research results (df11) in a highly inter- and multidisciplinary environment, ability to think for all and, when needed, taking the lead (df12), always staying unbiased (df13), always keeping doubt (df14), but also always trying to provide solutions (df15), and, finally, being aware that life is more (df16). Medical Informatics is an inter- and multidisciplinary discipline "avant la lettre". Compared to monodisciplinary research, inter- and multidisciplinary research does not only provide significant opportunities for solving major problems in science and in society. It also faces considerable additional challenges for medical informatics as a scientific field. The determining factors, presented here, are in my opinion crucial for conducting successful research and for developing a research career. Since medical informatics as a field has today become an important driving force for research progress, especially in biomedicine and health care, but also in fields like computer science, it may be helpful to consider such

  1. From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce

    OpenAIRE

    Valantine, Hannah A.; Lund, P. Kay; Gammie, Alison E.

    2016-01-01

    The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges. Over the past few decades, the biomedical research workforce has benefited from NIH programs aimed at enhancing diversity. However, there is considera...

  2. Measuring the outcome of biomedical research: a systematic literature review.

    Directory of Open Access Journals (Sweden)

    Frédérique Thonon

    Full Text Available There is an increasing need to evaluate the production and impact of medical research produced by institutions. Many indicators exist, yet we do not have enough information about their relevance. The objective of this systematic review was (1 to identify all the indicators that could be used to measure the output and outcome of medical research carried out in institutions and (2 enlist their methodology, use, positive and negative points.We have searched 3 databases (Pubmed, Scopus, Web of Science using the following keywords: [Research outcome* OR research output* OR bibliometric* OR scientometric* OR scientific production] AND [indicator* OR index* OR evaluation OR metrics]. We included articles presenting, discussing or evaluating indicators measuring the scientific production of an institution. The search was conducted by two independent authors using a standardised data extraction form. For each indicator we extracted its definition, calculation, its rationale and its positive and negative points. In order to reduce bias, data extraction and analysis was performed by two independent authors.We included 76 articles. A total of 57 indicators were identified. We have classified those indicators into 6 categories: 9 indicators of research activity, 24 indicators of scientific production and impact, 5 indicators of collaboration, 7 indicators of industrial production, 4 indicators of dissemination, 8 indicators of health service impact. The most widely discussed and described is the h-index with 31 articles discussing it.The majority of indicators found are bibliometric indicators of scientific production and impact. Several indicators have been developed to improve the h-index. This indicator has also inspired the creation of two indicators to measure industrial production and collaboration. Several articles propose indicators measuring research impact without detailing a methodology for calculating them. Many bibliometric indicators identified

  3. Truth in basic biomedical science will set future mankind free.

    Science.gov (United States)

    Ling, Gilbert N

    2011-01-01

    It is self-evident that continued wellbeing and prosperity of our species in time to come depends upon a steady supply of major scientific and technologic innovations. However, major scientific and technical innovations are rare. As a rule, they grow only in the exceptionally fertile minds of men and women, who have fully mastered the underlying basic sciences. To waken their interest in science at an early critical age and to nurture and enhance that interest afterward, good textbooks at all level of education that accurately portray the relevant up-to-date knowledge are vital. As of now, the field of science that offers by far the greatest promise for the future of humanity is the science of life at the most basic cell and below-cell level. Unfortunately, it is precisely this crucial part of the (standardized) biological textbooks for all high schools and colleges in the US and abroad that have become, so to speak, fossilized. As a result, generation after generation of (educated) young men and women have been and are still being force-fed as established scientific truth an obsolete membrane (pump) theory, which has been categorically disproved half a century ago (see Endnote 1.) To reveal this Trojan horse of a theory for what it really is demands the concerted efforts of many courageous individuals especially young biology teachers who take themselves and their career seriously. But even the most courageous and the most resourceful won't find the task easy. To begin with, they would find it hard to access the critical scientific knowledge, with which to convert the skeptic and to rally the friendly. For the wealth of mutually supportive evidence against the membrane (pump) theory are often hidden in inaccessible publications and/or in languages other than English. To overcome this seemingly trivial but in fact formidable obstacle and to reveal the beauty and coherence of the existing but untaught truth, I put together in this small package a collection of the

  4. Prediction markets and their potential role in biomedical research--a review.

    Science.gov (United States)

    Pfeiffer, Thomas; Almenberg, Johan

    2010-01-01

    Predictions markets are marketplaces for trading contracts with payoffs that depend on the outcome of future events. Popular examples are markets on the outcome of presidential elections, where contracts pay $1 if a specific candidate wins the election and $0 if someone else wins. Contract prices on prediction markets can be interpreted as forecasts regarding the outcome of future events. Further attractive properties include the potential to aggregate private information, to generate and disseminate a consensus among the market participants, and to offer incentives for the acquisition of information. It has been argued that these properties might be valuable in the context of scientific research. In this review, we give an overview of key properties of prediction markets and discuss potential benefits for science. To illustrate these benefits for biomedical research, we discuss an example application in the context of decision making in research on the genetics of diseases. Moreover, some potential practical problems of prediction market application in science are discussed, and solutions are outlined. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Does the name really matter? The importance of botanical nomenclature and plant taxonomy in biomedical research.

    Science.gov (United States)

    Bennett, Bradley C; Balick, Michael J

    2014-03-28

    Medical research on plant-derived compounds requires a breadth of expertise from field to laboratory and clinical skills. Too often basic botanical skills are evidently lacking, especially with respect to plant taxonomy and botanical nomenclature. Binomial and familial names, synonyms and author citations are often misconstrued. The correct botanical name, linked to a vouchered specimen, is the sine qua non of phytomedical research. Without the unique identifier of a proper binomial, research cannot accurately be linked to the existing literature. Perhaps more significant, is the ambiguity of species determinations that ensues of from poor taxonomic practices. This uncertainty, not surprisingly, obstructs reproducibility of results-the cornerstone of science. Based on our combined six decades of experience with medicinal plants, we discuss the problems of inaccurate taxonomy and botanical nomenclature in biomedical research. This problems appear all too frequently in manuscripts and grant applications that we review and they extend to the published literature. We also review the literature on the importance of taxonomy in other disciplines that relate to medicinal plant research. In most cases, questions regarding orthography, synonymy, author citations, and current family designations of most plant binomials can be resolved using widely-available online databases and other electronic resources. Some complex problems require consultation with a professional plant taxonomist, which also is important for accurate identification of voucher specimens. Researchers should provide the currently accepted binomial and complete author citation, provide relevant synonyms, and employ the Angiosperm Phylogeny Group III family name. Taxonomy is a vital adjunct not only to plant-medicine research but to virtually every field of science. Medicinal plant researchers can increase the precision and utility of their investigations by following sound practices with respect to botanical

  6. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    Science.gov (United States)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey

  7. The Biomedical Resource Ontology (BRO) to enable resource discovery in clinical and translational research.

    Science.gov (United States)

    Tenenbaum, Jessica D; Whetzel, Patricia L; Anderson, Kent; Borromeo, Charles D; Dinov, Ivo D; Gabriel, Davera; Kirschner, Beth; Mirel, Barbara; Morris, Tim; Noy, Natasha; Nyulas, Csongor; Rubenson, David; Saxman, Paul R; Singh, Harpreet; Whelan, Nancy; Wright, Zach; Athey, Brian D; Becich, Michael J; Ginsburg, Geoffrey S; Musen, Mark A; Smith, Kevin A; Tarantal, Alice F; Rubin, Daniel L; Lyster, Peter

    2011-02-01

    The biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development and use of the Biomedical Resource Ontology (BRO) to enable semantic annotation and discovery of biomedical resources. We also describe the Resource Discovery System (RDS) which is a federated, inter-institutional pilot project that uses the BRO to facilitate resource discovery on the Internet. Through the RDS framework and its associated Biositemaps infrastructure, the BRO facilitates semantic search and discovery of biomedical resources, breaking down barriers and streamlining scientific research that will improve human health. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Deep significance of the field concept in contemporary biomedical sciences.

    Science.gov (United States)

    Jerman, Igor; Krasovec, Rok; Leskovar, Robert T

    2009-01-01

    Since antiquity, biology has had two opposing views of life and organisms: holistic (organismic) and reductionist. In contemporary biology, the molecular reductionist approach prevails--its central entity being the gene. Organicism lingers on the margin of biology, having well-elaborated ideas but no empirical confirmation for the integrative biological entity. The latter could be found in the endogenous coherent EM field (ECEMF), since it organizes countless cellular processes, including cell's division, and through the coupling of coherence domains integrates the whole organism. A serious and thorough reconsideration of life and organisms in light of this new biological entity would have far-reaching consequences in all areas of biological science, i.e., in ontogeny, the theory of evolution, understanding and combating serious illnesses, and above all, cancer.

  9. Are we studying what matters? Health priorities and NIH-funded biomedical engineering research.

    Science.gov (United States)

    Rubin, Jessica B; Paltiel, A David; Saltzman, W Mark

    2010-07-01

    With the founding of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in 1999, the National Institutes of Health (NIH) made explicit its dedication to expanding research in biomedical engineering. Ten years later, we sought to examine how closely federal funding for biomedical engineering aligns with U.S. health priorities. Using a publicly accessible database of research projects funded by the NIH in 2008, we identified 641 grants focused on biomedical engineering, 48% of which targeted specific diseases. Overall, we found that these disease-specific NIH-funded biomedical engineering research projects align with national health priorities, as quantified by three commonly utilized measures of disease burden: cause of death, disability-adjusted survival losses, and expenditures. However, we also found some illnesses (e.g., cancer and heart disease) for which the number of research projects funded deviated from our expectations, given their disease burden. Our findings suggest several possibilities for future studies that would serve to further inform the allocation of limited research dollars within the field of biomedical engineering.

  10. New Development in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    Science.gov (United States)

    Shirazi-Fard, Y.; Choi, S.; Harris, C.; Gong, C.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. G.

    2017-01-01

    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research program at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. Throughout phases of these missions, our practices, hardware and operations have evolved from tested to developed standards, and we are able to modify and customize our procedure and operations for mission specific requirements. The Rodent Research Habitat is capable of providing a living environment for animals on ISS according to standard animal welfare requirements. Using the cameras in the Habitat, the Rodent Research team has the ability to perform daily health checks on animals, and further analyze the collected videos for behavioral studies. A recent development of the Rodent Research hardware is inclusion of enrichment, to provide the animals the ability to rest and huddle. The Enrichment Hut is designed carefully for adult mice (up to 35 week old) within animal welfare, engineering, and operations constraints. The Hut is made out of the same stainless steel mesh as the cage interior, it has an ingress and an egress to allow animals move freely, and a hinge door to allow crewmembers remove the

  11. A proposed key escrow system for secure patient information disclosure in biomedical research databases.

    Science.gov (United States)

    Ferris, Todd A; Garrison, Gregory M; Lowe, Henry J

    2002-01-01

    Access to clinical data is of increasing importance to biomedical research. The pending HIPAA privacy regulations provide specific requirements for the release of protected health information. Under the regulations, biomedical researchers may utilize anonymized data, or adhere to HIPAA requirements regarding protected health information. In order to provide researchers with anonymized data from a clinical research database, we reviewed several published strategies for de-identification of protected health information. Critical analysis with respect to this project suggests that de-identification alone is problematic when applied to clinical research databases. We propose a hybrid system; utilizing secure key escrow, de-identification, and role-based access for IRB approved researchers.

  12. A research education program model to prepare a highly qualified workforce in biomedical and health-related research and increase diversity.

    Science.gov (United States)

    Crockett, Elahé T

    2014-09-24

    The National Institutes of Health has recognized a compelling need to train highly qualified individuals and promote diversity in the biomedical/clinical sciences research workforce. In response, we have developed a research-training program known as REPID (Research Education Program to Increase Diversity among Health Researchers) to prepare students/learners to pursue research careers in these fields and address the lack of diversity and health disparities. By inclusion of students/learners from minority and diverse backgrounds, the REPID program aims to provide a research training and enrichment experience through team mentoring to inspire students/learners to pursue research careers in biomedical and health-related fields. Students/learners are recruited from the University campus from a diverse population of undergraduates, graduates, health professionals, and lifelong learners. Our recruits first enroll into an innovative on-line introductory course in Basics and Methods in Biomedical Research that uses a laboratory Tool-Kit (a lab in a box called the My Dr. ET Lab Tool-Kit) to receive the standard basics of research education, e.g., research skills, and lab techniques. The students/learners will also learn about the responsible conduct of research, research concept/design, data recording/analysis, and scientific writing/presentation. The course is followed by a 12-week hands-on research experience during the summer. The students/learners also attend workshops and seminars/conferences. The students/learners receive scholarship to cover stipends, research related expenses, and to attend a scientific conference. The scholarship allows the students/learners to gain knowledge and seize opportunities in biomedical and health-related careers. This is an ongoing program, and during the first three years of the program, fifty-one (51) students/learners have been recruited. Thirty-six (36) have completed their research training, and eighty percent (80%) of them have

  13. A systematic review of comparisons between protocols or registrations and full reports in primary biomedical research

    Directory of Open Access Journals (Sweden)

    Guowei Li

    2018-01-01

    Full Text Available Abstract Background Prospective study protocols and registrations can play a significant role in reducing incomplete or selective reporting of primary biomedical research, because they are pre-specified blueprints which are available for the evaluation of, and comparison with, full reports. However, inconsistencies between protocols or registrations and full reports have been frequently documented. In this systematic review, which forms part of our series on the state of reporting of primary biomedical, we aimed to survey the existing evidence of inconsistencies between protocols or registrations (i.e., what was planned to be done and/or what was actually done and full reports (i.e., what was reported in the literature; this was based on findings from systematic reviews and surveys in the literature. Methods Electronic databases, including CINAHL, MEDLINE, Web of Science, and EMBASE, were searched to identify eligible surveys and systematic reviews. Our primary outcome was the level of inconsistency (expressed as a percentage, with higher percentages indicating greater inconsistency between protocols or registration and full reports. We summarized the findings from the included systematic reviews and surveys qualitatively. Results There were 37 studies (33 surveys and 4 systematic reviews included in our analyses. Most studies (n = 36 compared protocols or registrations with full reports in clinical trials, while a single survey focused on primary studies of clinical trials and observational research. High inconsistency levels were found in outcome reporting (ranging from 14% to 100%, subgroup reporting (from 12% to 100%, statistical analyses (from 9% to 47%, and other measure comparisons. Some factors, such as outcomes with significant results, sponsorship, type of outcome and disease speciality were reported to be significantly related to inconsistent reporting. Conclusions We found that inconsistent reporting between protocols or

  14. Biomedical and health informatics education and research at the Information Technology Institute in Egypt.

    Science.gov (United States)

    Hussein, R; Khalifa, A

    2011-01-01

    During the last decade, Egypt has experienced a revolution in the field of Information and Communication Technology (ICT) that has had a corresponding impact on the field of healthcare. Since 1993, the Information Technology Institute (ITI) has been leading the development of the Information Technology (IT) professional training and education in Egypt to produce top quality IT professionals who are considered now the backbone of the IT revolution in Egypt. For the past five years, ITI has been adopting the objective of building high caliber health professionals who can effectively serve the ever-growing information society. Academic links have been established with internationally renowned universities, e.g., Oregon Health and Science University (OHSU) in US, University of Leipzig in Germany, in addition those with the Egyptian Fellowship Board in order to enrich ITI Medical Informatics Education and Research. The ITI Biomedical and Health Informatics (BMHI) education and training programs target fresh graduates as well as life-long learners. Therefore, the program's learning objectives are framed within the context of the four specialization tracks: Healthcare Management (HCM), Biomedical Informatics Research (BMIR), Bioinformatics Professional (BIP), and Healthcare Professional (HCP). The ITI BMHI research projects tackle a wide-range of current challenges in this field, such as knowledge management in healthcare, providing tele-consultation services for diagnosis and treatment of infectious diseases for underserved regions in Egypt, and exploring the cultural and educational aspects of Nanoinformatics. Since 2006, ITI has been positively contributing to develop the discipline of BMHI in Egypt in order to support improved healthcare services.

  15. Nigerian Journal of Health and Biomedical Sciences: Advanced ...

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  16. Journal of Medical and Biomedical Sciences: Advanced Search

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  17. Animal models in biological and biomedical research - experimental and ethical concerns

    Directory of Open Access Journals (Sweden)

    MONICA L. ANDERSEN

    2017-09-01

    Full Text Available ABSTRACT Animal models have been used in experimental research to increase human knowledge and contribute to finding solutions to biological and biomedical questions. However, increased concern for the welfare of the animals used, and a growing awareness of the concept of animal rights, has brought a greater focus on the related ethical issues. In this review, we intend to give examples on how animals are used in the health research related to some major health problems in Brazil, as well as to stimulate discussion about the application of ethics in the use of animals in research and education, highlighting the role of National Council for the Control of Animal Experimentation (Conselho Nacional de Controle de Experimentação Animal - CONCEA in these areas. In 2008, Brazil emerged into a new era of animal research regulation, with the promulgation of Law 11794, previously known as the Arouca Law, resulting in an increased focus, and rapid learning experience, on questions related to all aspects of animal experimentation. The law reinforces the idea that animal experiments must be based on ethical considerations and integrity-based assumptions, and provides a regulatory framework to achieve this. This review describes the health research involving animals and the current Brazilian framework for regulating laboratory animal science, and hopes to help to improve the awareness of the scientific community of these ethical and legal rules.

  18. Animal models in biological and biomedical research - experimental and ethical concerns.

    Science.gov (United States)

    Andersen, Monica L; Winter, Lucile M F

    2017-09-04

    Animal models have been used in experimental research to increase human knowledge and contribute to finding solutions to biological and biomedical questions. However, increased concern for the welfare of the animals used, and a growing awareness of the concept of animal rights, has brought a greater focus on the related ethical issues. In this review, we intend to give examples on how animals are used in the health research related to some major health problems in Brazil, as well as to stimulate discussion about the application of ethics in the use of animals in research and education, highlighting the role of National Council for the Control of Animal Experimentation (Conselho Nacional de Controle de Experimentação Animal - CONCEA) in these areas. In 2008, Brazil emerged into a new era of animal research regulation, with the promulgation of Law 11794, previously known as the Arouca Law, resulting in an increased focus, and rapid learning experience, on questions related to all aspects of animal experimentation. The law reinforces the idea that animal experiments must be based on ethical considerations and integrity-based assumptions, and provides a regulatory framework to achieve this. This review describes the health research involving animals and the current Brazilian framework for regulating laboratory animal science, and hopes to help to improve the awareness of the scientific community of these ethical and legal rules.

  19. Conflicts of interest in biomedical research--the FASEB guidelines.

    Science.gov (United States)

    Brockway, Laura M; Furcht, Leo T

    2006-12-01

    The rise in academia-industry relationships has been accompanied by increasing concerns about financial conflicts of interest. To date, policy recommendations addressing financial conflicts of interest have focused on the role of academic institutions in reviewing and overseeing investigator relationships with industry. However, investigators as a group determine the effectiveness of policies and practices. Therefore, there is a clear need for a consensus statement of standards for academia-industry interactions from the scientists' perspective. To meet that need, we propose conflict of interest guidelines for individual biomedical investigators to address the critical challenges faced when financial relationships with industry exist.

  20. Using qualitative research methods in biomedical innovation: the case of cultured red blood cells for transfusion.

    Science.gov (United States)

    Lyall, Catherine; King, Emma

    2016-05-11

    Qualitative research has a key role to play in biomedical innovation projects. This article focuses on the appropriate use of robust social science methodologies (primarily focus group studies) for identifying the public's willingness and preference for emerging medical technologies. Our study was part of the BloodPharma project (now known as the Novosang project) to deliver industrially generated red blood cells for transfusion. Previous work on blood substitutes shows that the public prefers donated human blood. However, no research has been conducted concerning attitudes to stem cell derived red blood cells. Qualitative research methods including interviews and focus groups provide the methodological context for this paper. Focus groups were used to elicit views from sub-sections of the UK population about the potential use of such cultured red blood cells. We reflect on the appropriateness of that methodology in the context of the BloodPharma project. Findings are in the form of lessons transferable to other interdisciplinary, science-led teams about what a social science dimension can bring; why qualitative research should be included; and how it can be used effectively. Qualitative data collection offers the strength of exploring ambivalence and investigating the reasons for views, but not necessarily their prevalence in wider society. The inherent value of a qualitative method, such as focus groups, therefore lies in its ability to uncover new information. This contrasts with a quantitative approach to simply 'measuring' public opinion on a topic about which participants may have little prior knowledge. We discuss a number of challenges including: appropriate roles for embedded social scientists and the intricacies of doing upstream engagement as well as some of the design issues and limitations associated with the focus group method.

  1. Research Involving Children: Recommendations of the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research.

    Science.gov (United States)

    Jonsen, Albert R.

    1978-01-01

    The article summarizes the ten recommendations of the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research regarding ethical considerations involved in using children as experimental subjects. Journal availability: see EC 111 045. (DLS)

  2. Text summarization in the biomedical domain: a systematic review of recent research.

    Science.gov (United States)

    Mishra, Rashmi; Bian, Jiantao; Fiszman, Marcelo; Weir, Charlene R; Jonnalagadda, Siddhartha; Mostafa, Javed; Del Fiol, Guilherme

    2014-12-01

    The amount of information for clinicians and clinical researchers is growing exponentially. Text summarization reduces information as an attempt to enable users to find and understand relevant source texts more quickly and effortlessly. In recent years, substantial research has been conducted to develop and evaluate various summarization techniques in the biomedical domain. The goal of this study was to systematically review recent published research on summarization of textual documents in the biomedical domain. MEDLINE (2000 to October 2013), IEEE Digital Library, and the ACM digital library were searched. Investigators independently screened and abstracted studies that examined text summarization techniques in the biomedical domain. Information is derived from selected articles on five dimensions: input, purpose, output, method and evaluation. Of 10,786 studies retrieved, 34 (0.3%) met the inclusion criteria. Natural language processing (17; 50%) and a hybrid technique comprising of statistical, Natural language processing and machine learning (15; 44%) were the most common summarization approaches. Most studies (28; 82%) conducted an intrinsic evaluation. This is the first systematic review of text summarization in the biomedical domain. The study identified research gaps and provides recommendations for guiding future research on biomedical text summarization. Recent research has focused on a hybrid technique comprising statistical, language processing and machine learning techniques. Further research is needed on the application and evaluation of text summarization in real research or patient care settings. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Golden Helix Institute of Biomedical Research: Interdisciplinary research and educational activities in pharmacogenomics and personalized medicine

    Science.gov (United States)

    Mitropoulos, Konstantinos; Innocenti, Federico; van Schaik, Ron H.; Lezhava, Alexander; Tzimas, Giannis; Kollia, Panagoula; Macek, Milan; Fortina, Paolo; Patrinos, George P.

    2013-01-01

    The Golden Helix Institute of Biomedical Research is an international non-profit scientific organization with interdisciplinary research and educational activities in the field of genome medicine in Europe, Asia and Latin America. These activities are supervised by an international scientific advisory council, consisting of world leaders in the field of genomics and translational medicine. Research activities include the regional coordination of the Pharmacogenomics for Every Nation Initiative in Europe, in an effort to integrate pharmacogenomics in developing countries, the development of several National/Ethnic Genetic databases and related web services and the critical assessment of the impact of genetics and genomic medicine to society in various countries. Also, educational activities include the organization of the Golden Helix Symposia®, which are high profile scientific research symposia in the field of personalized medicine, and the Golden Helix Pharmacogenomics Days, an international educational activity focused on pharmacogenomics, as part of its international pharmacogenomics education and outreach efforts. PMID:22379996

  4. Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2012-01-01

    Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.

  5. Research Journal of Health Sciences

    African Journals Online (AJOL)

    The Research Journal of Health Sciences is dedicated to promoting high quality research work in the field of health and related biological sciences. It aligns with the mission of the Osun State University, which is “to create a unique institution, committed to the pursuit of academic innovation, skills-based training and a ...

  6. Annals of Medical and Health Sciences Research

    African Journals Online (AJOL)

    The journal covers technical and clinical studies related to health, ethical and social issues in field of all aspects of medicine (Basic and Clinical), Health Sciences, Nursing, Medical Laboratory Sciences, Medical Radiography and Rehabilitation, Pharmacy, Biomedical Engineering, etc. Articles with clinical interest and ...

  7. Biomedical text mining for research rigor and integrity: tasks, challenges, directions.

    Science.gov (United States)

    Kilicoglu, Halil

    2017-06-13

    An estimated quarter of a trillion US dollars is invested in the biomedical research enterprise annually. There is growing alarm that a significant portion of this investment is wasted because of problems in reproducibility of research findings and in the rigor and integrity of research conduct and reporting. Recent years have seen a flurry of activities focusing on standardization and guideline development to enhance the reproducibility and rigor of biomedical research. Research activity is primarily communicated via textual artifacts, ranging from grant applications to journal publications. These artifacts can be both the source and the manifestation of practices leading to research waste. For example, an article may describe a poorly designed experiment, or the authors may reach conclusions not supported by the evidence presented. In this article, we pose the question of whether biomedical text mining techniques can assist the stakeholders in the biomedical research enterprise in doing their part toward enhancing research integrity and rigor. In particular, we identify four key areas in which text mining techniques can make a significant contribution: plagiarism/fraud detection, ensuring adherence to reporting guidelines, managing information overload and accurate citation/enhanced bibliometrics. We review the existing methods and tools for specific tasks, if they exist, or discuss relevant research that can provide guidance for future work. With the exponential increase in biomedical research output and the ability of text mining approaches to perform automatic tasks at large scale, we propose that such approaches can support tools that promote responsible research practices, providing significant benefits for the biomedical research enterprise. Published by Oxford University Press 2017. This work is written by a US Government employee and is in the public domain in the US.

  8. Research traceability using provenance services for biomedical analysis.

    Science.gov (United States)

    Anjum, Ashiq; Bloodsworth, Peter; Branson, Andrew; Habib, Irfan; McClatchey, Richard; Solomonides, Tony; Soomro, Kamran; The Neugrid Consortium

    2010-01-01

    We outline the approach being developed in the neuGRID project to use provenance management techniques for the purposes of capturing and preserving the provenance data that emerges in the specification and execution of workflows in biomedical analyses. In the neuGRID project a provenance service has been designed and implemented that is intended to capture, store, retrieve and reconstruct the workflow information needed to facilitate users in conducting user analyses. We describe the architecture of the neuGRID provenance service and discuss how the CRISTAL system from CERN is being adapted to address the requirements of the project and then consider how a generalised approach for provenance management could emerge for more generic application to the (Health)Grid community.

  9. Assessing the impact of biomedical research in academic institutions of disparate sizes.

    Science.gov (United States)

    Sypsa, Vana; Hatzakis, Angelos

    2009-05-29

    The evaluation of academic research performance is nowadays a priority issue. Bibliometric indicators such as the number of publications, total citation counts and h-index are an indispensable tool in this task but their inherent association with the size of the research output may result in rewarding high production when evaluating institutions of disparate sizes. The aim of this study is to propose an indicator that may facilitate the comparison of institutions of disparate sizes. The Modified Impact Index (MII) was defined as the ratio of the observed h-index (h) of an institution over the h-index anticipated for that institution on average, given the number of publications (N) it produces i.e. MII = h/10alphaNbeta (alpha and beta denote the intercept and the slope, respectively, of the line describing the dependence of the h-index on the number of publications in log10 scale). MII values higher than 1 indicate that an institution performs better than the average, in terms of its h-index. Data on scientific papers published during 2002-2006 and within 36 medical fields for 219 Academic Medical Institutions from 16 European countries were used to estimate alpha and beta and to calculate the MII of their total and field-specific production. From our biomedical research data, the slope beta governing the dependence of h-index on the number of publications in biomedical research was found to be similar to that estimated in other disciplines ( approximately 0.4). The MII was positively associated with the average number of citations/publication (r = 0.653, p or = 100 citations (r = 0.211, p = 0.004) but not with the number of publications (r = -0.020, p = 0.765). It was the most highly associated indicator with the share of country-specific government budget appropriations or outlays for research and development as % of GDP in 2004 (r = 0.229) followed by the average number of citations/publication (r = 0.153) whereas the corresponding correlation coefficient for the

  10. A Perspective on Promoting Diversity in the Biomedical Research Workforce: The National Heart, Lung, and Blood Institute's PRIDE Program.

    Science.gov (United States)

    Boyington, Josephine E A; Maihle, Nita J; Rice, Treva K; Gonzalez, Juan E; Hess, Caryl A; Makala, Levi H; Jeffe, Donna B; Ogedegbe, Gbenga; Rao, Dabeeru C; Dávila-Román, Victor G; Pace, Betty S; Jean-Louis, Girardin; Boutjdir, Mohamed

    2016-07-21

    Aspiring junior investigators from groups underrepresented in the biomedical sciences face various challenges as they pursue research independence. However, the biomedical research enterprise needs their participation to effectively address critical research issues such as health disparities and health inequities. In this article, we share a research education and mentoring initiative that seeks to address this challenge: Programs to Increase Diversity among Individuals Engaged in Health Related Research (PRIDE), funded by the National Heart, Lung, and Blood Institute (NHLBI). This longitudinal research-education and mentoring program occurs through summer institute programs located at US-based academic institutions. Recruited participants are exposed to didactic and lab-based research-skill enhancement experiences, with year-round mentoring over the course of two years. Mentor-mentee matching is based on shared research interests to promote congruence and to enhance skill acquisition. Program descriptions and sample narratives of participants' perceptions of PRIDE's impact on their career progress are showcased. Additionally, we highlight the overall program design and structure of four of seven funded summer institutes that focus on cardiovascular disease, related conditions, and health disparities. Mentees' testimonials about the value of the PRIDE mentoring approach in facilitating career development are also noted. Meeting the clinical and research needs of an increasingly diverse US population is an issue of national concern. The PRIDE initiative, which focuses on increasing research preparedness and professional development of groups underrepresented in the biomedical research workforce, with an emphasis on mentoring as the critical approach, provides a robust model that is impacting the careers of future investigators.

  11. Biomedical research, a tool to address the health issues that affect African populations

    Science.gov (United States)

    2013-01-01

    Traditionally, biomedical research endeavors in low to middle resources countries have focused on communicable diseases. However, data collected over the past 20 years by the World Health Organization (WHO) show a significant increase in the number of people suffering from non-communicable diseases (e.g. heart disease, diabetes, cancer and pulmonary diseases). Within the coming years, WHO predicts significant decreases in communicable diseases while non-communicable diseases are expected to double in low and middle income countries in sub-Saharan Africa. The predicted increase in the non-communicable diseases population could be economically burdensome for the basic healthcare infrastructure of countries that lack resources to address this emerging disease burden. Biomedical research could stimulate development of healthcare and biomedical infrastructure. If this development is sustainable, it provides an opportunity to alleviate the burden of both communicable and non-communicable diseases through diagnosis, prevention and treatment. In this paper, we discuss how research using biomedical technology, especially genomics, has produced data that enhances the understanding and treatment of both communicable and non-communicable diseases in sub-Saharan Africa. We further discuss how scientific development can provide opportunities to pursue research areas responsive to the African populations. We limit our discussion to biomedical research in the areas of genomics due to its substantial impact on the scientific community in recent years however, we also recognize that targeted investments in other scientific disciplines could also foster further development in African countries. PMID:24143865

  12. Medical and biomedical research productivity from the Kingdom of Saudi Arabia (2008-2012

    Directory of Open Access Journals (Sweden)

    Rabia Latif

    2015-01-01

    Full Text Available Background: Biomedical publications from a country mirror the standard of Medical Education and practice in that country. It is important that the performance of the health profession is occasionally documented. Aims: This study aimed to analyze the quantity and quality of biomedical publications from the Kingdom of Saudi Arabia (KSA in international journals indexed in PubMed between 2008 and 2012. Materials and Methods: PubMed was searched for publications associated with KSA from 2008 to 2012. The search was limited to medical and biomedical subjects. Results were saved in a text file and later checked carefully to exclude false positive errors. The quality of the publication was assessed using Journal Citation Report 2012. Results: Biomedical research production in KSA in those 5 years showed a clear linear progression. Riyadh was the main hub of medical and biomedical research activity. Most of the publications (40.9% originated from King Saud University (KSU. About half of the articles were published in journals with an Impact Factor (IF of < 1, one-fourth in journals with no IF, and the remaining one-fourth in journals with a high IF (≥1. Conclusion: This study revealed that research activity in KSA is increasing. However, there is an increasing trend of publishing in local journals with a low IF. More effort is required to promote medical research in Saudi Arabia.

  13. Scientific Reproducibility in Biomedical Research: Provenance Metadata Ontology for Semantic Annotation of Study Description.

    Science.gov (United States)

    Sahoo, Satya S; Valdez, Joshua; Rueschman, Michael

    2016-01-01

    Scientific reproducibility is key to scientific progress as it allows the research community to build on validated results, protect patients from potentially harmful trial drugs derived from incorrect results, and reduce wastage of valuable resources. The National Institutes of Health (NIH) recently published a systematic guideline titled "Rigor and Reproducibility " for supporting reproducible research studies, which has also been accepted by several scientific journals. These journals will require published articles to conform to these new guidelines. Provenance metadata describes the history or origin of data and it has been long used in computer science to capture metadata information for ensuring data quality and supporting scientific reproducibility. In this paper, we describe the development of Provenance for Clinical and healthcare Research (ProvCaRe) framework together with a provenance ontology to support scientific reproducibility by formally modeling a core set of data elements representing details of research study. We extend the PROV Ontology (PROV-O), which has been recommended as the provenance representation model by World Wide Web Consortium (W3C), to represent both: (a) data provenance, and (b) process provenance. We use 124 study variables from 6 clinical research studies from the National Sleep Research Resource (NSRR) to evaluate the coverage of the provenance ontology. NSRR is the largest repository of NIH-funded sleep datasets with 50,000 studies from 36,000 participants. The provenance ontology reuses ontology concepts from existing biomedical ontologies, for example the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), to model the provenance information of research studies. The ProvCaRe framework is being developed as part of the Big Data to Knowledge (BD2K) data provenance project.

  14. Reproducible Research Practices and Transparency across the Biomedical Literature.

    Directory of Open Access Journals (Sweden)

    Shareen A Iqbal

    2016-01-01

    Full Text Available There is a growing movement to encourage reproducibility and transparency practices in the scientific community, including public access to raw data and protocols, the conduct of replication studies, systematic integration of evidence in systematic reviews, and the documentation of funding and potential conflicts of interest. In this survey, we assessed the current status of reproducibility and transparency addressing these indicators in a random sample of 441 biomedical journal articles published in 2000-2014. Only one study provided a full protocol and none made all raw data directly available. Replication studies were rare (n = 4, and only 16 studies had their data included in a subsequent systematic review or meta-analysis. The majority of studies did not mention anything about funding or conflicts of interest. The percentage of articles with no statement of conflict decreased substantially between 2000 and 2014 (94.4% in 2000 to 34.6% in 2014; the percentage of articles reporting statements of conflicts (0% in 2000, 15.4% in 2014 or no conflicts (5.6% in 2000, 50.0% in 2014 increased. Articles published in journals in the clinical medicine category versus other fields were almost twice as likely to not include any information on funding and to have private funding. This study provides baseline data to compare future progress in improving these indicators in the scientific literature.

  15. Nanocellulose in Polymer Composites and Biomedical: Research and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan [ORNL; Tekinalp, Halil L [ORNL; Peter, William H [ORNL; Eberle, Cliff [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL

    2014-01-01

    Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thus been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.

  16. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  17. Supporting novel biomedical research via multilayer collaboration networks

    OpenAIRE

    Kuzmin, Konstantin; Lu, Xiaoyan; Mukherjee, Partha Sarathi; Zhuang, Juntao; Gaiteri, Chris; Szymanski, Boleslaw K

    2016-01-01

    The value of research containing novel combinations of molecules can be seen in many innovative and award-winning research programs. Despite calls to use innovative approaches to address common diseases, an increasing majority of research funding goes toward "safe" incremental research. Counteracting this trend by nurturing novel and potentially transformative scientific research is challenging, it must be supported in competition with established research programs. Therefore, we propose a to...

  18. Eclecticism Beyond Orthodoxies: African Social Science Research in the Fight Against HIV/AIDS

    OpenAIRE

    Ambe-Uva T. Nom

    2005-01-01

    This study examines the importance of social science research on HIV/AIDS in Africa. There is a dearth of social science research on HIV/AIDS epidemic in Africa as available literature focus essentially on biomedical and epidemiological aspect of HIV/AIDS research and behavioral changes. In Africa however, efforts at preventing and mitigating the impact of HIV/AIDS epidemic will have to consider the social dimension of the epidemic. This study argues for a distinct social science research on ...

  19. A Brief History of Biomedical Research Ethics in Iran: Conflict of Paradigms.

    Science.gov (United States)

    Aramesh, Kiarash

    2015-08-01

    During the past two decades, Iran has experienced a noteworthy growth in its biomedical research sector. At the same time, ethical concerns and debates resulting from this burgeoning enterprise has led to increasing attention paid to biomedical ethics. In Iran, Biomedical research ethics and research oversight passed through major periods during the past decades, separated by a paradigm shift. Period 1, starting from the early 1970s, is characterized by research paternalism and complete reliance on researchers as virtuous and caring physicians. This approach was in concordance with the paternalistic clinical practice of physicians outside of research settings during the same period. Period 2, starting from the late 1990s, was partly due to revealing of ethical flaws that occurred in biomedical research in Iran. The regulatory and funding bodies concluded that it was not sufficient to rely solely on the personal and professional virtues of researchers to safeguard human subjects' rights and welfare. The necessity for independent oversight, emphasized by international declarations, became obvious and undeniable. This paradigm shift led to the establishment of research ethics committees throughout the country, the establishment of academic research centers focusing on medical ethics (MEHR) and the compilation of the first set of national ethical guidelines on biomedical research-one of the first and most important projects conducted by and in the MEHR. Although not yet arrived, 'period 3' is on its way. It is predictable from the obvious trends toward performance of high-quality clinical research and the appearance of a highly educated new generation, especially among women. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. Biomedical Informatics Research and Education at the EuroMISE Center

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2006-01-01

    Roč. 45, Suppl. (2006), s. 166-173 ISSN 0026-1270 Grant - others:Evropské sociální fondy CZ04307/42011/0013 Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * research * education * healthcare * information society Subject RIV: BJ - Thermodynamics Impact factor: 1.684, year: 2006

  1. Why do people refuse to take part in biomedical research studies ...

    African Journals Online (AJOL)

    We found nine key factors that influence people to refuse to participate in biomedical research. The factors are failure to follow traditional customs , lack of study benefits, superstition, poor informed consent procedures, ignorance of health research, fear of strangers, lack of cultural sensitivity, poor timing, and previous bad ...

  2. Caring for nonhuman primates in biomedical research facilities: scientific, moral and emotional considerations.

    Science.gov (United States)

    Coleman, Kristine

    2011-03-01

    Animal care for nonhuman primates (NHPs) in biomedical facilities has undergone major changes in the past few decades. Today, most primate facilities have dedicated and highly trained animal care technicians who go to great efforts to ensure the physiological and psychological well being of the primates in their charge. These caretakers work closely with the animals and, as a result, often develop strong relationships with them. Once discouraged and considered a potential threat to scientific objectivity, such positive relationships are now seen as important components to animal care. Positive interactions between caretakers and primates can benefit the primates by reducing their stress and improving their overall well being which can, in turn, help the scientific endeavor. Further, providing the best possible care is our moral responsibility. However, there can also be emotional costs associated with caring for NHPs in research facilities, particularly when animals become ill or have to be euthanized. Facilities can do much to help ease this conflict. High-quality and conscientious animal care is good for the animals, science, and public perception of research facilities. 2010 Wiley-Liss, Inc.

  3. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  4. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  5. The rise of the middle author: Investigating collaboration and division of labor in biomedical research using partial alphabetical authorship.

    Directory of Open Access Journals (Sweden)

    Philippe Mongeon

    Full Text Available Contemporary biomedical research is performed by increasingly large teams. Consequently, an increasingly large number of individuals are being listed as authors in the bylines, which complicates the proper attribution of credit and responsibility to individual authors. Typically, more importance is given to the first and last authors, while it is assumed that the others (the middle authors have made smaller contributions. However, this may not properly reflect the actual division of labor because some authors other than the first and last may have made major contributions. In practice, research teams may differentiate the main contributors from the rest by using partial alphabetical authorship (i.e., by listing middle authors alphabetically, while maintaining a contribution-based order for more substantial contributions. In this paper, we use partial alphabetical authorship to divide the authors of all biomedical articles in the Web of Science published over the 1980-2015 period in three groups: primary authors, middle authors, and supervisory authors. We operationalize the concept of middle author as those who are listed in alphabetical order in the middle of an authors' list. Primary and supervisory authors are those listed before and after the alphabetical sequence, respectively. We show that alphabetical ordering of middle authors is frequent in biomedical research, and that the prevalence of this practice is positively correlated with the number of authors in the bylines. We also find that, for articles with 7 or more authors, the average proportion of primary, middle and supervisory authors is independent of the team size, more than half of the authors being middle authors. This suggests that growth in authors lists are not due to an increase in secondary contributions (or middle authors but, rather, in equivalent increases of all types of roles and contributions (including many primary authors and many supervisory authors. Nevertheless

  6. Deliberating about race as a variable in biomedical research | van ...

    African Journals Online (AJOL)

    Race as a variable in research ethics is investigated: to what extent is it morally appropriate to regard the race of research subjects as pivotal for research outcomes? The challenges it poses to deliberation in research ethics committees are considered, and it is concluded that race sometimes must be considered, subject to ...

  7. [Regulatory science researches of nanomedicines].

    Science.gov (United States)

    Sakai-Kato, Kumiko; Goda, Yukihiro

    2014-01-01

    Recently, the development of nanomedicines is progressing. These are designed to ensure high stability and to optimize the pharmacokinetics in vivo. The polymeric micelles and lipid nanoparticles are typical such examples. Because the unique size-specific interaction with biological systems or biodistribution may have significant impacts on the efficacy and safety of nanomedicines, regulatory science researches of nanomedicines are required. In this review, the authors introduce our initiatives of the regulatory science researches of nanomedicines.

  8. Maximising value from a United Kingdom Biomedical Research Centre: study protocol.

    Science.gov (United States)

    Greenhalgh, Trisha; Ovseiko, Pavel V; Fahy, Nick; Shaw, Sara; Kerr, Polly; Rushforth, Alexander D; Channon, Keith M; Kiparoglou, Vasiliki

    2017-08-14

    Biomedical Research Centres (BRCs) are partnerships between healthcare organisations and universities in England. Their mission is to generate novel treatments, technologies, diagnostics and other interventions that increase the country's international competitiveness, to rapidly translate these innovations into benefits for patients, and to improve efficiency and reduce waste in healthcare. As NIHR Oxford BRC (Oxford BRC) enters its third 5-year funding period, we seek to (1) apply the evidence base on how best to support the various partnerships in this large, multi-stakeholder research system and (2) research how these partnerships play out in a new, ambitious programme of translational research. Organisational case study, informed by the principles of action research. A cross-cutting theme, 'Partnerships for Health, Wealth and Innovation' has been established with multiple sub-themes (drug development, device development, business support and commercialisation, research methodology and statistics, health economics, bioethics, patient and public involvement and engagement, knowledge translation, and education and training) to support individual BRC research themes and generate cross-theme learning. The 'Partnerships' theme will support the BRC's goals by facilitating six types of partnership (with patients and citizens, clinical services, industry, across the NIHR infrastructure, across academic disciplines, and with policymakers and payers) through a range of engagement platforms and activities. We will develop a longitudinal progress narrative centred around exemplar case studies, and apply theoretical models from innovation studies (Triple Helix), sociology of science (Mode 2 knowledge production) and business studies (Value Co-creation). Data sources will be the empirical research studies within individual BRC research themes (who will apply separately for NHS ethics approval), plus documentary analysis and interviews and ethnography with research

  9. Description of color/race in Brazilian biomedical research.

    Science.gov (United States)

    Ribeiro, Teresa Veronica Catonho; Ferreira, Luzitano Brandão

    2012-01-01

    Over recent years, the terms race and ethnicity have been used to ascertain inequities in public health. However, this use depends on the quality of the data available. This study aimed to investigate the description of color/race in Brazilian scientific journals within the field of biomedicine. Descriptive study with systematic search for scientific articles in the SciELO Brazil database. A wide-ranging systematic search for original articles involving humans, published in 32 Brazilian biomedical scientific journals in the SciELO Brazil database between January and December 2008, was performed. Articles in which the race/ethnicity of the participants was identified were analyzed. In total, 1,180 articles were analyzed. The terms for describing race or ethnicity were often ambiguous and vague. Descriptions of race or ethnicity occurred in 159 articles (13.4%), but only in 42 (26.4%) was there a description of how individuals were identified. In these, race and ethnicity were used almost interchangeably and definition was according to skin color (71.4%), ancestry (19.0%) and self-definition (9.6%). Twenty-two races or ethnicities were cited, and the most common were white (37.3%), black (19.7%), mixed (12.9%), nonwhite (8.1%) and yellow (8.1%). The absence of descriptions of parameters for defining race, as well as the use of vague and ambiguous terms, may hamper and even prevent comparisons between human groups and the use of these data to ascertain inequities in healthcare.

  10. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  11. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  12. Good science, bad science: Questioning research practices in psychological research

    NARCIS (Netherlands)

    Bakker, M.

    2014-01-01

    In this dissertation we have questioned the current research practices in psychological science and thereby contributed to the current discussion about the credibility of psychological research. We specially focused on the problems with the reporting of statistical results and showed that reporting

  13. Research opportunities in photochemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The workshop entitled {open_quotes}Research Opportunities in Photochemical Sciences{close_quotes} was initiated by the U.S. Department of Energy (DOE), Office of Energy Research (ER), Office of Basic Energy Sciences (BES), Division of Chemical Sciences. The National Renewable Energy Laboratory (NREL) in Golden, Colorado was requested by ER to host the workshop. It was held February 5-8, 1996 at the Estes Park Conference Center, Estes Park, CO, and attended by about 115 leading scientists and engineers from the U.S., Japan, and Europe; program managers for the DOE ER and Energy Efficiency and Renewable Energy (EERE) programs also attended. The purpose of the workshop was to bridge the communication gap between the practioneers and supporters of basic research in photochemical science and the practioneers and supporters of applied research and development in technologies related to photochemical science. For the purposes of the workshop the definition of the term {open_quotes}photochemical science{close_quotes} was broadened to include homogeneous photochemistry, heterogeneous photochemistry, photoelectrochemistry, photocatalysis, photobiology (for example, the light-driven processes of biological photosynthesis and proton pumping), artificial photosynthesis, solid state photochemistry, and solar photochemistry. The technologies under development through DOE support that are most closely related to photochemical science, as defined above, are the renewable energy technologies of photovoltaics, biofuels, hydrogen energy, carbon dioxide reduction and utilization, and photocatalysis for environmental cleanup of water and air. Individual papers were processed separately for the United states Department of Energy databases.

  14. Management control in biomedical research and pharmaceutical innovation

    NARCIS (Netherlands)

    Omta, Simon Willem Frederik

    1995-01-01

    This monograph concentrates on the research floor level, the research unit (the professors with their scientific, technical, analytical and administrative staff in universities, or the department heads with their staff in institutes), and the system of research units which together form the R&D

  15. Use of Laboratory Animals in Biomedical and Behavioral Research.

    Science.gov (United States)

    Ministry of Education, Addis Ababa (Ethiopia).

    The use of animals in scientific research has been a controversial issue for over a hundred years. Research with animals has saved human lives, lessened human suffering, and advanced scientific understanding, yet that same research can cause pain and distress for the animals involved and may result in their death. It is hardly surprising that…

  16. Big data science: A literature review of nursing research exemplars.

    Science.gov (United States)

    Westra, Bonnie L; Sylvia, Martha; Weinfurter, Elizabeth F; Pruinelli, Lisiane; Park, Jung In; Dodd, Dianna; Keenan, Gail M; Senk, Patricia; Richesson, Rachel L; Baukner, Vicki; Cruz, Christopher; Gao, Grace; Whittenburg, Luann; Delaney, Connie W

    Big data and cutting-edge analytic methods in nursing research challenge nurse scientists to extend the data sources and analytic methods used for discovering and translating knowledge. The purpose of this study was to identify, analyze, and synthesize exemplars of big data nursing research applied to practice and disseminated in key nursing informatics, general biomedical informatics, and nursing research journals. A literature review of studies published between 2009 and 2015. There were 650 journal articles identified in 17 key nursing informatics, general biomedical informatics, and nursing research journals in the Web of Science database. After screening for inclusion and exclusion criteria, 17 studies published in 18 articles were identified as big data nursing research applied to practice. Nurses clearly are beginning to conduct big data research applied to practice. These studies represent multiple data sources and settings. Although numerous analytic methods were used, the fundamental issue remains to define the types of analyses consistent with big data analytic methods. There are needs to increase the visibility of big data and data science research conducted by nurse scientists, further examine the use of state of the science in data analytics, and continue to expand the availability and use of a variety of scientific, governmental, and industry data resources. A major implication of this literature review is whether nursing faculty and preparation of future scientists (PhD programs) are prepared for big data and data science. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The Role of Scientific Communication Skills in Trainees’ Intention to Pursue Biomedical Research Careers: A Social Cognitive Analysis

    Science.gov (United States)

    Cameron, Carrie; Lee, Hwa Young; Anderson, Cheryl; Byars-Winston, Angela; Baldwin, Constance D.; Chang, Shine

    2015-01-01

    Scientific communication (SciComm) skills are indispensable for success in biomedical research, but many trainees may not have fully considered the necessity of regular writing and speaking for research career progression. Our purpose was to investigate the relationship between SciComm skill acquisition and research trainees’ intentions to remain in research careers. We used social cognitive career theory (SCCT) to test a model of the relationship of SciComm skills to SciComm-related cognitive variables in explaining career intentions. A sample of 510 graduate students and postdoctoral fellows at major academic health science centers in the Texas Medical Center, Houston, Texas, were surveyed online. Results suggested that interest in performing SciComm tasks, SciComm outcome expectations (SCOEs), and SciComm productivity predicted intention to remain in a research career, while SciComm self-efficacy did not directly predict career intention. SCOEs also predicted interest in performing SciComm tasks. As in other SCCT studies, SciComm self-efficacy predicted SCOEs. We conclude that social cognitive factors of SciComm skill acquisition and SciComm productivity significantly predict biomedical trainees’ intentions to pursue research careers whether within or outside academia. While further studies are needed, these findings may lead to evidence-based interventions to help trainees remain in their chosen career paths. PMID:26628562

  18. Support for biomedical research and its impact on radiology.

    Science.gov (United States)

    Bragg, D G; Hendee, W R

    1994-12-01

    Research in medical imaging has experienced substantial growth during the past decade. Still, research is a small fraction of the budget of the typical academic radiology program. Few radiology faculty participate in hypothesis-driven research projects. Funding of research will be more difficult to secure in the future, since clinical subsidies will diminish or disappear, support from industry is decreasing, and funds from private foundations and philanthropists are not likely to increase. Support from the NIH will probably remain about level in constant dollars. In response to these constraints, radiology will have to be both more creative and more opportunistic to tap the limited remaining resources of research support. An excellent compilation of some major resources was recently published by Williams and Holden (9). Efforts of the Conjoint Committee will continue to be critical for continuing support of the LDRR, encouraging the allocation of intramural and extramural resources of the NCI to medical imaging, guiding the development of the American Academy of Radiologic Research, providing research training opportunities for physicians and scientists in radiology, and leading the research effort in medical imaging in general (10). Within individual institutions and departments, imaging research must continue to be acknowledged as a priority despite increasing pressures to generate clinical revenue. Enhanced efforts are warranted to nurture the research interests of younger faculty and selected residents and fellows, including pairing them with research mentors and providing them with opportunities to develop skills in areas such as research design, statistical analysis, and evaluative techniques. The long-term well-being of radiology and its important contributions to patient care are dependent on its continued investment in research and development.

  19. Economies of scale and scope in publicly funded biomedical and health research: evidence from the literature.

    Science.gov (United States)

    Hernandez-Villafuerte, Karla; Sussex, Jon; Robin, Enora; Guthrie, Sue; Wooding, Steve

    2017-02-02

    Publicly funded biomedical and health research is expected to achieve the best return possible for taxpayers and for society generally. It is therefore important to know whether such research is more productive if concentrated into a small number of 'research groups' or dispersed across many. We undertook a systematic rapid evidence assessment focused on the research question: do economies of scale and scope exist in biomedical and health research? In other words, is that research more productive per unit of cost if more of it, or a wider variety of it, is done in one location? We reviewed English language literature without date restriction to the end of 2014. To help us to classify and understand that literature, we first undertook a review of econometric literature discussing models for analysing economies of scale and/or scope in research generally (not limited to biomedical and health research). We found a large and disparate literature. We reviewed 60 empirical studies of (dis-)economies of scale and/or scope in biomedical and health research, or in categories of research including or overlapping with biomedical and health research. This literature is varied in methods and findings. At the level of universities or research institutes, studies more often point to positive economies of scale than to diseconomies of scale or constant returns to scale in biomedical and health research. However, all three findings exist in the literature, along with inverse U-shaped relationships. At the level of individual research units, laboratories or projects, the numbers of studies are smaller and evidence is mixed. Concerning economies of scope, the literature more often suggests positive economies of scope than diseconomies, but the picture is again mixed. The effect of varying the scope of activities by a research group was less often reported than the effect of scale and the results were more mixed. The absence of predominant findings for or against the existence of

  20. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    Science.gov (United States)

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  1. A Roadmap for caGrid, an Enterprise Grid Architecture for Biomedical Research

    Science.gov (United States)

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Hong, Neil Chue

    2012-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG™) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123

  2. Chimpanzees in AIDS research: A biomedical and bioethical perspective.

    NARCIS (Netherlands)

    R. van den Akker (Ruud); M. Balls; J.W. Eichberg; J. Goodall; J.L. Heeney (Jonathan); A.D.M.E. Osterhaus (Albert); A.M. Prince; I. Spruit

    1993-01-01

    textabstractThe present article represents a consensus view of the appropriate utilization of chimpanzees in AIDS research arrived at as a result of a meeting of a group of scientists involved in AIDS research with chimpanzees and bioethicists. The paper considers which types of studies are

  3. AIDS--Challenges to Basic and Clinical Biomedical Research.

    Science.gov (United States)

    Fauci, Anthony S.

    1989-01-01

    Clinical trials and access to therapeutic drugs pose dilemmas for researchers, physicians, and AIDS patients. The National Institute of Allergy and Infectious Diseases, recognizing the need for greater access to drugs by a broader spectrum of the infected population, is establishing the Community Programs for Clinical Research on AIDS. (Author/MLW)

  4. Ethical Medical and Biomedical Practice in Health Research in Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    Then, they will propose an ethical framework for health research and put forward the basic elements of a training course for professionals, researchers and decision-makers in the area of bioethics and health and the environment. The work will be carried out in three West African Countries (Bénin, Cameroon and Nigeria), ...

  5. Ethical Medical and Biomedical Practice in Health Research in Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    African countries have an urgent need for research to battle the diseases that ravage their populations and hamper their economic and social development. This research entails both benefits and risks for the people involved. Particular effort must be made to respect their integrity, all the more so because they are poor and ...

  6. Ethical and legal controversies in cloning for biomedical research - a ...

    African Journals Online (AJOL)

    However, this research involves the deliberate production, use, and ultimate destruction of cloned embryos, hence re-awakening the debate on the moral status of the embryo. Other moral anxieties include the possibility that women (as donors of ova) would be exploited, that this research would land on the slippery slope of ...

  7. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  8. Instructions to Prospective Authors by Indian Biomedical Journals: An Opportunity to Promote Responsible Conduct of Research.

    Science.gov (United States)

    Bhat, Anup; Shah, Akash; Sherighar, Swathi G

    2017-04-01

    Journals provide instructions to prospective authors to facilitate the process of manuscript publication. The information provided under such instructions could be a potential opportunity to promote responsible conduct of research (RCR). We analyzed 74 Indian biomedical journals for the type of information provided in the "instructions to authors" section and adherence to the International Committee of Medical Journal Editors (ICMJE) recommendations. Among the 71 journals that had an "instructions to authors" section, 53 journals adhered to ICMJE recommendations. We discuss sections of the ICMJE recommendations detailed by Indian biomedical journals under the "instructions to authors" section and emphasize components that require greater exposure.

  9. Lecture 10: The European Bioinformatics Institute - "Big data" for biomedical sciences

    CERN Multimedia

    CERN. Geneva; Dana, Jose

    2013-01-01

    Part 1: Big data for biomedical sciences (Tom Hancocks) Ten years ago witnessed the completion of the first international 'Big Biology' project that sequenced the human genome. In the years since biological sciences, have seen a vast growth in data. In the coming years advances will come from integration of experimental approaches and the translation into applied technologies is the hospital, clinic and even at home. This talk will examine the development of infrastructure, physical and virtual, that will allow millions of life scientists across Europe better access to biological data Tom studied Human Genetics at the University of Leeds and McMaster University, before completing an MSc in Analytical Genomics at the University of Birmingham. He has worked for the UK National Health Service in diagnostic genetics and in training healthcare scientists and clinicians in bioinformatics. Tom joined the EBI in 2012 and is responsible for the scientific development and delivery of training for the BioMedBridges pr...

  10. Suitability of customer relationship management systems for the management of study participants in biomedical research.

    Science.gov (United States)

    Schwanke, J; Rienhoff, O; Schulze, T G; Nussbeck, S Y

    2013-01-01

    Longitudinal biomedical research projects study patients or participants over a course of time. No IT solution is known that can manage study participants, enhance quality of data, support re-contacting of participants, plan study visits, and keep track of informed consent procedures and recruitments that may be subject to change over time. In business settings management of personal is one of the major aspects of customer relationship management systems (CRMS). To evaluate whether CRMS are suitable IT solutions for study participant management in biomedical research. Three boards of experts in the field of biomedical research were consulted to get an insight into recent IT developments regarding study participant management systems (SPMS). Subsequently, a requirements analysis was performed with stakeholders of a major biomedical research project. The successive suitability evaluation was based on the comparison of the identified requirements with the features of six CRMS. Independently of each other, the interviewed expert boards confirmed that there is no generic IT solution for the management of participants. Sixty-four requirements were identified and prioritized in a requirements analysis. The best CRMS was able to fulfill forty-two of these requirements. The non-fulfilled requirements demand an adaption of the CRMS, consuming time and resources, reducing the update compatibility, the system's suitability, and the security of the CRMS. A specific solution for the SPMS is favored instead of a generic and commercially-oriented CRMS. Therefore, the development of a small and specific SPMS solution was commenced and is currently on the way to completion.

  11. Conflicts of interests and access to information resulting from biomedical research: an international legal perspective.

    Science.gov (United States)

    Byk, Christian

    2002-07-01

    Recently adopted international texts have given a new focus on conflicts of interests and access to information resulting from biomedical research. They confirmed ethical review committees as a central point to guarantee individual rights and the effective application of ethical principles. Therefore specific attention should be paid in giving such committees all the facilities necessary to keep them independent and qualified.

  12. Capital Investment for the Future of Biomedical Research: A University Chief Financial Officer's View.

    Science.gov (United States)

    Massy, William F.

    1989-01-01

    Three principal aspects of capital needs in biomedical research are discussed: the significant and growing need for capital; sources; and the role of federal policy. Important assumptions, questions, and possible future trends are discussed. Consolidated thinking and effort are encouraged. (MSE)

  13. From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce

    Science.gov (United States)

    Valantine, Hannah A.; Lund, P. Kay; Gammie, Alison E.

    2016-01-01

    The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges.…

  14. ETHICAL REVIEW OF BIOMEDICAL RESEARCH IN BELARUS: CURRENT STATUS, PROBLEMS AND PERSPECTIVES.

    Science.gov (United States)

    Famenka, Andrei

    2011-04-01

    The paper provides description of the system of ethical review for biomedical research in Belarus, with special emphasis on its historical background, legal and regulatory framework, structure and functioning. It concludes that the situation with research ethics in Belarus corresponds to the tendency of bureaucratic approach to establishment of systems of ethical review for biomedical research, observed in a number of countries of Central and Eastern Europe. Different social, economical and political factors of transition have major impact on capacities of the Belarusian RECs to ensure adequate protection of human subjects. Among the main problems identified are non-equivalent stringency of ethical review for different types of biomedical research; lack of independence, multidisciplinarity, pluralism and lay representation experienced by RECs; low level of research ethics education and transparency of RECs activities. Recommendations are made to raise the issue of research ethics on the national agenda in order to develop and maintain the research ethics system capable to effectively protect research participants and promote ethical conduct in research.

  15. Conflict of interest in biomedical research: a view from Europe.

    Science.gov (United States)

    Salvi, Maurizio

    2003-01-01

    In this paper I address the conflict of interest (CoI) issue from a legal point of view at a European level. We will see that the regulatory framework that exists in Europe does state the need for the independence of ethics committee involved in authorisation of research and clinical trials. We will see that CoI is an element that has to be closely monitored at National and International level. Therefore, Member States and Newly Associated States do have to address CoI in the authorisation process of research and clinical protocols of biomedicine.

  16. Government Cloud Computing Policies: Potential Opportunities for Advancing Military Biomedical Research.

    Science.gov (United States)

    Lebeda, Frank J; Zalatoris, Jeffrey J; Scheerer, Julia B

    2018-02-07

    indicated that the security infrastructure in cloud services may be more compliant with the Health Insurance Portability and Accountability Act of 1996 regulations than traditional methods. To gauge the DoD's adoption of cloud technologies proposed metrics included cost factors, ease of use, automation, availability, accessibility, security, and policy compliance. Since 2009, plans and policies were developed for the use of cloud technology to help consolidate and reduce the number of data centers which were expected to reduce costs, improve environmental factors, enhance information technology security, and maintain mission support for service members. Cloud technologies were also expected to improve employee efficiency and productivity. Federal cloud computing policies within the last decade also offered increased opportunities to advance military healthcare. It was assumed that these opportunities would benefit consumers of healthcare and health science data by allowing more access to centralized cloud computer facilities to store, analyze, search and share relevant data, to enhance standardization, and to reduce potential duplications of effort. We recommend that cloud computing be considered by DoD biomedical researchers for increasing connectivity, presumably by facilitating communications and data sharing, among the various intra- and extramural laboratories. We also recommend that policies and other guidances be updated to include developing additional metrics that will help stakeholders evaluate the above mentioned assumptions and expectations. Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Direction od developmentup until 2025 unmanned space systams for biomedical research

    Science.gov (United States)

    Prudkoglyad, Valeria

    In the period up to 2025 will be provided for the continuation of biomedical research using two specialized unmanned spacecraft "Bion -M" (launch planned in 2019 and 2021 ) with a service life of 60-90 days in orbit up to 1000 km , the possibility of developing a platform with the recovery vehicle intended for radiobiological research in the radiation belts of the Earth in orbit ~ 2000 km ( launch planned in 2021 ) , and into a high orbit of ~ 200 000 km (launch planned in 2025 ) Also considered the possibility of biological research on the board of served by ISS free-flying spacecraft "OKA-T" during periodic docking with the ISS which is planned for the period 2019-2025 years. The report presents the results of design studies and basic technical characteristics of developed and proposed the development of unmanned space systems research and applied purposes, proposals for scientific equipment and experiments in the areas of biomedical research using these spacecraft

  18. Basic Science Research and the Protection of Human Research Participants

    Science.gov (United States)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  19. The miniature pig as an animal model in biomedical research

    Czech Academy of Sciences Publication Activity Database

    Vodička, Petr; Smetana Jr., K.; Dvořánková, B.; Emerick, T.; Xu, Y.; Ourednik, J.; Ourednik, V.; Motlík, Jan

    2005-01-01

    Roč. 1049, - (2005), s. 161-171 ISSN 0077-8923 R&D Projects: GA MŠk(CZ) LN00A065 Institutional research plan: CEZ:AV0Z50450515 Keywords : animal model * stem cell * transgenic pig Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.971, year: 2005

  20. Sierra Leone Journal of Biomedical Research: Advanced Search

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  1. Archives of Medical and Biomedical Research: Advanced Search

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  2. Journal of Medicine and Biomedical Research: Advanced Search

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  3. Federal Policies Regarding Scientific Integrity in Biomedical Research.

    Science.gov (United States)

    Gordon, Stephen L.

    1992-01-01

    Existing federal government policies and systems to protect against scientific misconduct in government-supported research projects are described, and additional considerations not covered in federal policy are enumerated. Misconduct inquiries and review procedures are outlined. Applicant and institutional responsibility and the role of prevention…

  4. Development, implementation and critique of a bioethics framework for pharmaceutical sponsors of human biomedical research.

    Science.gov (United States)

    Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J

    2015-11-01

    Pharmaceutical human biomedical research is a multi-dimensional endeavor that requires collaboration among many parties, including those who sponsor, conduct, participate in, or stand to benefit from the research. Human subjects' protections have been promulgated to ensure that the benefits of such research are accomplished with respect for and minimal risk to individual research participants, and with an overall sense of fairness. Although these protections are foundational to clinical research, most ethics guidance primarily highlights the responsibilities of investigators and ethics review boards. Currently, there is no published resource that comprehensively addresses bioethical responsibilities of industry sponsors; including their responsibilities to parties who are not research participants, but are, nevertheless key stakeholders in the endeavor. To fill this void, in 2010 Eli Lilly and Company instituted a Bioethics Framework for Human Biomedical Research. This paper describes how the framework was developed and implemented and provides a critique based on four years of experience. A companion article provides the actual document used by Eli Lilly and Company to guide ethical decisions regarding all phases of human clinical trials. While many of the concepts presented in this framework are not novel, compiling them in a manner that articulates the ethical responsibilities of a sponsor is novel. By utilizing this type of bioethics framework, we have been able to develop bioethics positions on various topics, provide research ethics consultations, and integrate bioethics into the daily operations of our human biomedical research. We hope that by sharing these companion papers we will stimulate discussion within and outside the biopharmaceutical industry for the benefit of the multiple parties involved in pharmaceutical human biomedical research.

  5. Motivational factors for participation in biomedical research: evidence from a qualitative study of biomedical research participation in Blantyre District, Malawi.

    Science.gov (United States)

    Mfutso-Bengo, Joseph; Manda-Taylor, Lucinda; Masiye, Francis

    2015-02-01

    Obtaining effective informed consent from research participants is a prerequisite to the conduct of an ethically sound research. Yet it is believed that obtaining quality informed consent is generally difficult in settings with low socioeconomic status. This is so because of the alleged undue inducements and therapeutic misconception among participants. However, there is a dearth of data on factors that motivate research participants to take part in research. Hence, this study was aimed at filling this gap in the Malawian context. We conducted 18 focus group discussions with community members in urban and rural communities of Blantyre in Malawi. Most participants reported that they accepted the invitation to participate in research because of better quality treatment during study also known as ancillary care, monetary and material incentives given to participants, and thorough medical diagnosis. © The Author(s) 2014.

  6. Twitter and Health Science Research.

    Science.gov (United States)

    Finfgeld-Connett, Deborah

    2015-10-01

    Twitter is a communication platform that can be used to conduct health science research, but a full understanding of its use remains unclear. The purpose of this narrative literature review was to examine how Twitter is currently being used to conduct research in the health sciences and to consider how it might be used in the future. A time-limited search of the health-related research was conducted, which resulted in 31 peer-reviewed articles for review. Information relating to how Twitter is being used to conduct research was extracted and categorized, and an explanatory narrative was developed. To date, Twitter is largely being used to conduct large-scale studies, but this research is complicated by challenges relating to collecting and analyzing big data. Conversely, the use of Twitter to conduct small-scale investigations appears to be relatively unexplored. © The Author(s) 2014.

  7. Misrepresentation and distortion of research in biomedical literature.

    Science.gov (United States)

    Boutron, Isabelle; Ravaud, Philippe

    2018-03-13

    Publication in peer-reviewed journals is an essential step in the scientific process. However, publication is not simply the reporting of facts arising from a straightforward analysis thereof. Authors have broad latitude when writing their reports and may be tempted to consciously or unconsciously "spin" their study findings. Spin has been defined as a specific intentional or unintentional reporting that fails to faithfully reflect the nature and range of findings and that could affect the impression the results produce in readers. This article, based on a literature review, reports the various practices of spin from misreporting by "beautification" of methods to misreporting by misinterpreting the results. It provides data on the prevalence of some forms of spin in specific fields and the possible effects of some types of spin on readers' interpretation and research dissemination. We also discuss why researchers would spin their reports and possible ways to avoid it.

  8. Adverse reproduction outcomes among employees working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Wennborg, H.; Bonde, Jens Peter; Stenbeck, M.

    2002-01-01

    Objectives The aim of the study was to investigate reproductive outcomes such as birthweight, preterm births, and postterm births among women working in research laboratories while pregnant. Methods Female university personnel were identified from a source cohort of Swedish laboratory employees.......4). Conclusions There was a slightly elevated risk for some reproductive outcomes among the women working with certain laboratory tasks, specifically for preterm and postterm births in relation to work with solvents and bacteria....

  9. Ethical considerations in biomedical research: a personal view.

    Science.gov (United States)

    Dahlöf, Carl

    2013-06-01

    Ethical considerations are made when an experiment is planned and take a regulatory system of moral principles into account. Ethical considerations should first and foremost be made in order to protect the individual subject/animal from being exposed to any unethical and perhaps even illegal intervention and to ensure that the experimental conditions used are appropriate. The main role of research ethics committees is to assess the scientific and ethical aspects of submitted protocols and follow up the trial until its closure.

  10. Disparate foundations of scientists' policy positions on contentious biomedical research.

    Science.gov (United States)

    Edelmann, Achim; Moody, James; Light, Ryan

    2017-06-13

    What drives scientists' position taking on matters where empirical answers are unavailable or contradictory? We examined the contentious debate on whether to limit experiments involving the creation of potentially pandemic pathogens. Hundreds of scientists, including Nobel laureates, have signed petitions on the debate, providing unique insights into how scientists take a public stand on important scientific policies. Using 19,257 papers published by participants, we reconstructed their collaboration networks and research specializations. Although we found significant peer associations overall, those opposing "gain-of-function" research are more sensitive to peers than are proponents. Conversely, specializing in fields directly related to gain-of-function research (immunology, virology) predicts public support better than specializing in fields related to potential pathogenic risks (such as public health) predicts opposition. These findings suggest that different social processes might drive support compared with opposition. Supporters are embedded in a tight-knit scholarly community that is likely both more familiar with and trusting of the relevant risk mitigation practices. Opponents, on the other hand, are embedded in a looser federation of widely varying academic specializations with cognate knowledge of disease and epidemics that seems to draw more heavily on peers. Understanding how scientists' social embeddedness shapes the policy actions they take is important for helping sides interpret each other's position accurately, avoiding echo-chamber effects, and protecting the role of scientific expertise in social policy.

  11. [Scientific information systems: tools for measures of biomedical research impact].

    Science.gov (United States)

    Navarrete Cortés, José; Banqueri Ozáez, Jesús

    2008-12-01

    The present article provides an analysis and description of the use of scientific information systems as instruments to measure and monitor results and investigative activity in biomedicine. Based on the current situation concerning the use and implementation of these systems, we offer a detailed description of the actors of these systems and propose a functional architecture for this class of software. In addition, the instruments that these types of systems offer for the measurement of the impact of the results of research are described in depth, as these instruments can help in decision making. Finally, a selection of national and international scientific information systems are listed and reviewed.

  12. Analytical techniques and quality control in biomedical trace element research

    DEFF Research Database (Denmark)

    Heydorn, K.

    1994-01-01

    The small number of analytical results in trace element research calls for special methods of quality control. It is shown that when the analytical methods are in statistical control, only small numbers of duplicate or replicate results are needed to ascertain the absence of systematic errors...... caused by sample contamination or interference from other elements. The distribution of determinations of Cu in chorion villi from normal pregnant women is used as an example, and after screening it proved to be closely approximated by a logarithmic normal distribution with a mean value of 0.6 mg...

  13. The Role of Scientific Communication Skills in Trainees' Intention to Pursue Biomedical Research Careers: A Social Cognitive Analysis.

    Science.gov (United States)

    Cameron, Carrie; Lee, Hwa Young; Anderson, Cheryl; Byars-Winston, Angela; Baldwin, Constance D; Chang, Shine

    2015-01-01

    Scientific communication (SciComm) skills are indispensable for success in biomedical research, but many trainees may not have fully considered the necessity of regular writing and speaking for research career progression. Our purpose was to investigate the relationship between SciComm skill acquisition and research trainees' intentions to remain in research careers. We used social cognitive career theory (SCCT) to test a model of the relationship of SciComm skills to SciComm-related cognitive variables in explaining career intentions. A sample of 510 graduate students and postdoctoral fellows at major academic health science centers in the Texas Medical Center, Houston, Texas, were surveyed online. Results suggested that interest in performing SciComm tasks, SciComm outcome expectations (SCOEs), and SciComm productivity predicted intention to remain in a research career, while SciComm self-efficacy did not directly predict career intention. SCOEs also predicted interest in performing SciComm tasks. As in other SCCT studies, SciComm self-efficacy predicted SCOEs. We conclude that social cognitive factors of SciComm skill acquisition and SciComm productivity significantly predict biomedical trainees' intentions to pursue research careers whether within or outside academia. While further studies are needed, these findings may lead to evidence-based interventions to help trainees remain in their chosen career paths. © 2015 C. Cameron et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Web of Science, Scopus, and Google Scholar citation rates: a case study of medical physics and biomedical engineering: what gets cited and what doesn't?

    Science.gov (United States)

    Trapp, Jamie

    2016-12-01

    There are often differences in a publication's citation count, depending on the database accessed. Here, aspects of citation counts for medical physics and biomedical engineering papers are studied using papers published in the journal Australasian physical and engineering sciences in medicine. Comparison is made between the Web of Science, Scopus, and Google Scholar. Papers are categorised into subject matter, and citation trends are examined. It is shown that review papers as a group tend to receive more citations on average; however the highest cited individual papers are more likely to be research papers.

  15. Desegregating undergraduate mathematics and biology--interdisciplinary instruction with emphasis on ongoing biomedical research.

    Science.gov (United States)

    Robeva, Raina

    2009-01-01

    The remarkable advances in the field of biology in the last decade, specifically in the areas of biochemistry, genetics, genomics, proteomics, and systems biology, have demonstrated how critically important mathematical models and methods are in addressing questions of vital importance for these disciplines. There is little doubt that the need for utilizing and developing mathematical methods for biology research will only grow in the future. The rapidly increasing demand for scientists with appropriate interdisciplinary skills and knowledge, however, is not being reflected in the way undergraduate mathematics and biology courses are structured and taught in most colleges and universities nationwide. While a number of institutions have stepped forward and addressed this need by creating and offering interdisciplinary courses at the juncture of mathematics and biology, there are still many others at which there is little, if any, interdisciplinary interaction between the curricula. This chapter describes an interdisciplinary course and a textbook in mathematical biology developed collaboratively by faculty from Sweet Briar College and the University of Virginia School of Medicine. The course and textbook are designed to provide a bridge between the mathematical and biological sciences at the lower undergraduate level. The course is developed for and is being taught in a liberal arts setting at Sweet Briar College, Virginia, but some of the advanced modules are used in a course at the University of Virginia for advanced undergraduate and beginning graduate students. The individual modules are relatively independent and can be used as stand-alone projects in conventional mathematics and biology courses. Except for the introductory material, the course and textbook topics are based on current biomedical research.

  16. [The role of animal testing advisory committees in biomedical research in Germany].

    Science.gov (United States)

    Sauer, Ursula G

    2006-01-01

    In accordance with the German Animal Welfare Act, animal experiments in fundamental biomedical research may only be performed after licensing by the responsible authority. This license may only be granted if the experiments are considered indispensable and if the distress of the animals seems ethically acceptable in relation to the purpose of the study. Since 1987 advisory committees have been established to support the authorities in the evaluation of these provisions. Animal welfare organisations had expected case-by-case evaluations of the in-dispensability of research proposals and of the distress of the animals and the scientific benefit of the experiments to take place in these committees, so that such projects that would not meet the criteria of ethical acceptability could be prevented. However, already the lack of parity in the advisory committees alone, in which as a rule four scientists counterpart two representatives from animal welfare organisations, often-times prevents a balanced discussion of these provisions from taking place. Additionally, due to the freedom of science granted in the German Constitution without reservations, until 2002 also the licensing authorities were merely permitted to perform a formal examination of the applications. In the mean time, by including animal welfare as a national objective in the Constitution, the preconditions were made to enable an examination of the contents. From the point of view of animal welfare it therefore is to be requested that now also the advisory committees are ascribed more importance in the course of the licensing procedure and to establish the legal framework for this, if necessary by a revision of the Animal Welfare Act.

  17. Use of Radioactive Beams for Bio-Medical Research

    CERN Multimedia

    Miederer, M; Allen, B

    2002-01-01

    %title\\\\ \\\\With this Proposal we wish to replace the two previous proposals P42 and P48 (corresponding to the ISOLDE Experiments IS330 and IS331, respectively, including the Addendum 1 dated 04.05.94). Based on experimental results obtained during the last four year's research in the framework of the two proposals and considering modern trends in radiopharmaceutical developments we propose as a first main direction to study systematically relationships between physico-chemical parameters, the concentration and specific activity of tracer molecules and the corresponding biological response. This kind of studies requires highest achievable quality and a universality of radio-tracers, available at ISOLDE. Special attention in this concern is paid to bio-specific tracers (receptor-binding ligands, bio-conjugates etc.) aiming to search for new and more efficient radiopharmaceuticals for radionuclide therapy. The second direction is to support clinical radionuclide therapy by a quantitative follow up of the radionu...

  18. National Space Biomedical Research Institute (NSBRI) JSC Summer Projects

    Science.gov (United States)

    Dowdy, Forrest Ryan

    2014-01-01

    This project optimized the calorie content in a breakfast meal replacement bar for the Advanced Food Technology group. Use of multivariable optimization yielded the highest weight savings possible while simultaneously matching NASA Human Standards nutritional guidelines. The scope of this research included the study of shelf-life indicators such as water activity, moisture content, and texture analysis. Key metrics indicate higher protein content, higher caloric density, and greater mass savings as a result of the reformulation process. The optimization performed for this study demonstrated wide application to other food bars in the Advanced Food Technology portfolio. Recommendations for future work include shelf life studies on bar hardening and overall acceptability data over increased time frames and temperature fluctuation scenarios.

  19. Computer science and operations research

    CERN Document Server

    Balci, Osman

    1992-01-01

    The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat

  20. A Study of the Information Literacy of Biomedical Graduate Students: Based on the Thesis Topic Discovery Process in Molecular Biology Research

    Directory of Open Access Journals (Sweden)

    Jhao-Yen Huang

    2014-06-01

    Full Text Available The biomedical information environment is in a state of constant and rapid change due to the increase in research data and rapid technological advances. In Taiwan, few research has investigated the information literacy of biomedical graduate students. This exploratory study examined the information literacy abilities and training of biomedical graduate students in Taiwan. Semi-structured interviews based on the Association of College and Research Libraries Information Literacy Competency Standards for Science and Engineering/Technology were conducted with 20 molecular biological graduate students. The interview inquired about their information-seeking channels and information literacy education. The findings show that the biomedical graduate students developed a workable thesis topic with their advisors. Through various information-seeking channels and retrieval strategies, they obtained and critically evaluated information to address different information needs for their thesis research. Through seminars, annual conferences and papers, the interviewees were informed of current developments in their field. Subsequently, through written or oral communications, they were able to integrate and exchange the information. Most interviewees cared about the social, economic, legal, and ethical issues surrounding the use of information. College courses and labs were the main information literacy education environment for them to learn about research skills and knowledge. The study concludes four areas to address for the information literacy of biomedical graduate students, i.e., using professional information, using the current information, efficiency in assessing the domain information, and utilization of diverse information channels. Currently, the interviewees showed rather low usage of library resources, which is a concern for biomedical educators and libraries. [Article content in Chinese

  1. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    Directory of Open Access Journals (Sweden)

    Wendy Arneson

    2013-06-01

    Full Text Available Background: There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Objectives: Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA. Method: Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. Results: The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. Conclusions: These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  2. Science and technology of biocompatible thin films for implantable biomedical devices.

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Kabius, B.; Auciello, O.; Materials Science Division

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: (1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye) - the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and (2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human body.

  3. Peer Review Practices for Evaluating Biomedical Research Grants: A Scientific Statement From the American Heart Association.

    Science.gov (United States)

    Liaw, Lucy; Freedman, Jane E; Becker, Lance B; Mehta, Nehal N; Liscum, Laura

    2017-08-04

    The biomedical research enterprise depends on the fair and objective peer review of research grants, leading to the distribution of resources through efficient and robust competitive methods. In the United States, federal funding agencies and foundations collectively distribute billions of dollars annually to support biomedical research. For the American Heart Association, a Peer Review Subcommittee is charged with establishing the highest standards for peer review. This scientific statement reviews the current literature on peer review practices, describes the current American Heart Association peer review process and those of other agencies, analyzes the strengths and weaknesses of American Heart Association peer review practices, and recommends best practices for the future. © 2017 American Heart Association, Inc.

  4. Bayes' theorem: A paradigm research tool in biomedical sciences

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... accurate test, but Bayes' theorem will reveal a potential flaw. Let us assume a corporation decides to test its employees for opium use, and 0.5% of the employees use the drug. We want to know the probability that, given a positive drug test, an employee is actually a drug user. Let “D” be the event of being a ...

  5. Contributions of aeromedical research to flight and biomedical science.

    Science.gov (United States)

    Wood, E H

    1986-10-01

    Pilot and plane capabilities to withstand high-Gz combat maneuvers are tactically important. Sustained 10-15 Gz capabilities of current and future planes outstrip safe physiologic limits in spite of the combined use of World War II-vintage straining maneuvers and relatively ineffective anti-G suits to prevent losses of vision and consciousness. However, the extreme arterial pressure increases needed to maintain cerebral blood flow (e.g. 400 mm Hg at heart level during exposures to 13.5 G when sitting upright) carry risks of anatomic damage to the circulatory system and rupture of air-containing, essentially unprotectable, lungs. These could be minimized, and incapacitating losses of consciousness avoided, by use of horizontal positions designed to eliminate heart-to-head hydrostatic gradients. Development of a prone-position cockpit with a counterweighted, forward-looking head support plus optical-electronically aided all-directional visibility is the most physiologic, safest, and surest way to achieve this goal.

  6. Important techniques in today's biomedical science research that ...

    African Journals Online (AJOL)

    olayemitoyin

    PhD's include anatomy, physiology, biochemistry, microbiology, pathology, and pharmacology. As our body of knowledge expands, the need for more subject areas for PhD's ..... Princeton, NJ, The Robert Wood Johnson. Foundation. Bryan GT (1994). The role and responsibility of the dean in promoting curricular innovation.

  7. Pioneer Valley Life Sciences Institute Translational Biomedical Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sallie; Shao, Rong; Schwartz, Lawrence; Jerry, D Joseph

    2012-09-20

    1. Analysis of angiogenic factors in breast cancer angiogenesis. Determine whether Acheron and YKL-40 were elevated in subsets of primary breast cancers and if they participated directly in determining the behavior of tumors. 2. Use of polymers for chemotherapeutic delivery to breast cancer tumors. The experiments were designed to define the utility of biocompatible polymers for addressing certain limitations and establish a flexible platform for delivery of diverse compound.

  8. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View.

    Science.gov (United States)

    Luo, Wei; Phung, Dinh; Tran, Truyen; Gupta, Sunil; Rana, Santu; Karmakar, Chandan; Shilton, Alistair; Yearwood, John; Dimitrova, Nevenka; Ho, Tu Bao; Venkatesh, Svetha; Berk, Michael

    2016-12-16

    As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity and consistent interpretation of model outputs. To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence. A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using an iterative process in accordance with the Delphi method. The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article and (2) a set of practical sequential steps for developing predictive models. A set of guidelines was generated to enable correct application of machine learning models and consistent reporting of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big data analysis, particularly with machine learning methods, in the biomedical research community. ©Wei Luo, Dinh Phung, Truyen Tran, Sunil Gupta, Santu Rana, Chandan Karmakar, Alistair Shilton, John Yearwood, Nevenka Dimitrova, Tu Bao Ho, Svetha Venkatesh, Michael Berk. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.12.2016.

  9. Career Coaches as a Source of Vicarious Learning for Racial and Ethnic Minority PhD Students in the Biomedical Sciences: A Qualitative Study.

    Science.gov (United States)

    Williams, Simon N; Thakore, Bhoomi K; McGee, Richard

    2016-01-01

    Many recent mentoring initiatives have sought to help improve the proportion of underrepresented racial and ethnic minorities (URMs) in academic positions across the biomedical sciences. However, the intractable nature of the problem of underrepresentation suggests that many young scientists may require supplemental career development beyond what many mentors are able to offer. As an adjunct to traditional scientific mentoring, we created a novel academic career "coaching" intervention for PhD students in the biomedical sciences. To determine whether and how academic career coaches can provide effective career-development-related learning experiences for URM PhD students in the biomedical sciences. We focus specifically on vicarious learning experiences, where individuals learn indirectly through the experiences of others. The intervention is being tested as part of a longitudinal randomized control trial (RCT). Here, we describe a nested qualitative study, using a framework approach to analyze data from a total of 48 semi-structured interviews from 24 URM PhD students (2 interviews per participant, 1 at baseline, 1 at 12-month follow-up) (16 female, 8 male; 11 Black, 12 Hispanic, 1 Native-American). We explored the role of the coach as a source of vicarious learning, in relation to the students' goal of being future biomedical science faculty. Coaches were resources through which most students in the study were able to learn vicariously about how to pursue, and succeed within, an academic career. Coaches were particularly useful in instances where students' research mentors are unable to provide such vicarious learning opportunities, for example because the mentor is too busy to have career-related discussions with a student, or because they have, or value, a different type of academic career to the type the student hopes to achieve. Coaching can be an important way to address the lack of structured career development that students receive in their home training

  10. Career Coaches as a Source of Vicarious Learning for Racial and Ethnic Minority PhD Students in the Biomedical Sciences: A Qualitative Study

    Science.gov (United States)

    Williams, Simon N.; Thakore, Bhoomi K.; McGee, Richard

    2016-01-01

    Introduction Many recent mentoring initiatives have sought to help improve the proportion of underrepresented racial and ethnic minorities (URMs) in academic positions across the biomedical sciences. However, the intractable nature of the problem of underrepresentation suggests that many young scientists may require supplemental career development beyond what many mentors are able to offer. As an adjunct to traditional scientific mentoring, we created a novel academic career “coaching” intervention for PhD students in the biomedical sciences. Objective To determine whether and how academic career coaches can provide effective career-development-related learning experiences for URM PhD students in the biomedical sciences. We focus specifically on vicarious learning experiences, where individuals learn indirectly through the experiences of others. Method The intervention is being tested as part of a longitudinal randomized control trial (RCT). Here, we describe a nested qualitative study, using a framework approach to analyze data from a total of 48 semi-structured interviews from 24 URM PhD students (2 interviews per participant, 1 at baseline, 1 at 12-month follow-up) (16 female, 8 male; 11 Black, 12 Hispanic, 1 Native-American). We explored the role of the coach as a source of vicarious learning, in relation to the students’ goal of being future biomedical science faculty. Results Coaches were resources through which most students in the study were able to learn vicariously about how to pursue, and succeed within, an academic career. Coaches were particularly useful in instances where students’ research mentors are unable to provide such vicarious learning opportunities, for example because the mentor is too busy to have career-related discussions with a student, or because they have, or value, a different type of academic career to the type the student hopes to achieve. Implications Coaching can be an important way to address the lack of structured career

  11. Geopolitical research in ukrainian science

    Directory of Open Access Journals (Sweden)

    O. V. Dashevs’ka

    2015-12-01

    Full Text Available The intensity and diversity of political and geopolitical processes in Ukraine give greater empirical basis for Geopolitical Studies. However, the popularity of this research is purely populist currents, leaving only a quarter of all science research. The aim of the study is to examine the specific dynamics and geopolitical studies in modern Ukrainian political thought. This paper reviews the dissertation research of local scientists. It was noted that most of the work falls on political sciences, specialty 23.00.04 - political problems of international systems and global development. The main trends in domestic geopolitical studies: 1. Identification of Ukraine’s place on the geopolitical map of the world by analyzing the geopolitical position and historical and political research; 2. Study regional issues, bilateral relations between countries; 3. Research general issues of international security, terrorism and the role of Ukraine in the system of international security; 4. Analysis of ethnic and political problems in Ukraine and their impact on international relations; 5. Investigation euro integration aspirations of Ukraine as the only right in terms of the geopolitical position; 6. General geopolitical studies that examined the practice of various geopolitical theories and concepts in different times and different countries. The analysis presented dissertations and other scientific literature suggests domestic authors only the first stage of mastering such important political science as geopolitics.

  12. Computer Science Research at Langley

    Science.gov (United States)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  13. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.

    Science.gov (United States)

    Boon, Mieke

    2017-10-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. ["Investigación Clínica": 50 years disseminating biomedical research].

    Science.gov (United States)

    Ryder, Elena

    2010-06-01

    INVESTIGACION CLINICA was founded by the initiative of Américo Negrette, who became its first editor, and it has been published uninterruptedly since July 1960, with a quarterly frequency. The first issues consisted mainly of a collection of reviews of seminars held at the now called Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, its publisher. Very soon, original research results from this institution were included in the novel journal. In the 60's, papers on results obtained during the outbreaks of Venezuelan Equine Encephalitis present in the area, were prominent. Originally, the journal published 3-4 papers, but due to the increased number of contributions, in 2001, its format changed from 1/16 to 1/8, and now each number includes 11 original articles. Currently, INVESTIGACION CLINICA publishes 44 papers a year, in Spanish or English on different biomedical topics, from contributors all around the world. Progressively it has been included in different renowned indexes, such as PubMed/MEDLINE, Science Citation Index Expanded, Excerpta Medica, Tropical Diseases Bulletin, Copernicus, Scopus, Periodica, and several others. Besides, it can be found in open access through www.Scielo.org.ve, www.freemedicaljournals.com and in our new Web page: https://sites. google.com/site/revistainvestigacionesclinicas/home. Most papers published in INVESTIGACION CLINICA have been cited in the regional or foreign literature accumulating more than 1200 citations by now. For this particular issue, to celebrate the 50th anniversary of INVESTIGACION CLINICA, we have invited some of our more recent referees or authors to contribute with Reviews in their respective areas of expertise.

  15. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    Science.gov (United States)

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  16. The Vulnerability of Study Participants in the Context of Transnational Biomedical Research: From Conceptual Considerations to Practical Implications.

    Science.gov (United States)

    Orth, Helen Grete; Schicktanz, Silke

    2017-08-01

    Outsourcing clinical trials sponsored by pharmaceutical companies from industrialized countries to low- (middle)-income countries - summarized as transnational biomedical research (TBR) - has lead to many concerns about ethical standards. Whether study participants are particularly vulnerable is one of those concerns. However, the concept of vulnerability is still vague and varies in its definition. Despite the fact that important international ethical guidelines such as the Declaration of Helsinki by the World Medical Association or the Ethical Guidelines for Biomedical Research Involving Human Subjects by the Council of International Organizations of Medical Sciences refer to vulnerability as ethical principle, each of their approaches are different. To overcome these shortcomings, we analyze and unite different approaches of vulnerability and develop practical criteria in order to operationalize the concept especially for the context of TBR. These criteria refer to the context of a study as well as the characteristics and the current living situation of study participants. Based on a case study of an HIV-vaccine-trial conducted in India we demonstrate how those criteria can be applied in a retrospective way to identify potential ethical conflicts. The criteria can also indicate a prospective function for ethical pre-assessment. For this, we provide an outlook for three major topics: 1. Vulnerability as a normative concept: Different ways of protection; 2. The relevance of transparency and 3. Vulnerability as an instrument to increase decision participation of human subjects. © 2016 John Wiley & Sons Ltd.

  17. Multiple choice questions are superior to extended matching questions to identify medicine and biomedical sciences students who perform poorly.

    NARCIS (Netherlands)

    Eijsvogels, T.M.H.; Brand, T.L. van den; Hopman, M.T.E.

    2013-01-01

    In recent years, medical faculties at Dutch universities have implemented a legally binding study advice to students of medicine and biomedical sciences during their propaedeutic phase. Appropriate examination is essential to discriminate between poor (grade <6), moderate (grade 6-8) and excellent

  18. Mentoring Interventions for Underrepresented Scholars in Biomedical and Behavioral Sciences: Effects on Quality of Mentoring Interactions and Discussions

    Science.gov (United States)

    Lewis, Vivian; Martina, Camille A.; McDermott, Michael P.; Chaudron, Linda; Trief, Paula M.; LaGuardia, Jennifer G.; Sharp, Daryl; Goodman, Steven R.; Morse, Gene D.; Ryan, Richard M.

    2017-01-01

    Mentors rarely receive education about the unique needs of underrepresented scholars in the biomedical and behavioral sciences. We hypothesized that mentor-training and peer-mentoring interventions for these scholars would enrich the perceived quality and breadth of discussions between mentor-protégé dyads (i.e., mentor-protégé pairs). Our…

  19. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    Science.gov (United States)

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  20. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  1. Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Eggermont, G.

    2001-01-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised

  2. Translational Biomedical Informatics and Pharmacometrics Approaches in the Drug Interactions Research

    Science.gov (United States)

    Zhang, Pengyue; Wu, Heng‐Yi; Chiang, Chien‐Wei; Wang, Lei; Binkheder, Samar; Wang, Xueying; Zeng, Donglin; Quinney, Sara K.

    2018-01-01

    Drug interaction is a leading cause of adverse drug events and a major obstacle for current clinical practice. Pharmacovigilance data mining, pharmacokinetic modeling, and text mining are computation and informatic tools on integrating drug interaction knowledge and generating drug interaction hypothesis. We provide a comprehensive overview of these translational biomedical informatics methodologies with related databases. We hope this review illustrates the complementary nature of these informatic approaches and facilitates the translational drug interaction research. PMID:29193890

  3. The ICMJE and URM: Providing Independent Advice for the Conduct of Biomedical Research and Publication

    OpenAIRE

    Van der Weyden, Martin B

    2007-01-01

    The International Committee of Medical Journal Editors (ICMJE) is a working group of editors of selected medical journals that meets annually. Founded in Vancouver, Canada, in 1978, it currently consists of 11 member journals and a representative of the US National Library of Medicine. The major purpose of the Committee is to address and provide guidance for the conduct and publishing of biomedical research and the ethical tenets underpinning these activities. This advice is detailed in the C...

  4. Maximising value from a United Kingdom Biomedical Research Centre: study protocol

    OpenAIRE

    Greenhalgh, Trisha; Ovseiko, Pavel V.; Fahy, Nick; Shaw, Sara; Kerr, Polly; Rushforth, Alexander D.; Channon, Keith M.; Kiparoglou, Vasiliki

    2017-01-01

    Background Biomedical Research Centres (BRCs) are partnerships between healthcare organisations and universities in England. Their mission is to generate novel treatments, technologies, diagnostics and other interventions that increase the country’s international competitiveness, to rapidly translate these innovations into benefits for patients, and to improve efficiency and reduce waste in healthcare. As NIHR Oxford BRC (Oxford BRC) enters its third 5-year funding period, we seek to (1) a...

  5. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-01-01

    Progress is reported on biomedical studies using cyclotron-produced 18 F, 15 O, 11 C, 13 N, 52 Fe, 38 K, 206 Bi, 73 Se, 53 Co, and 43 K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; 38 K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments

  6. Biomedical Research, A Tool to Address the Health Issues that Affect African Populations.

    OpenAIRE

    Peprah, Emmanuel; Wonkam, Ambroise

    2013-01-01

    Traditionally, biomedical research endeavors in low to middle resources countries have focused on communicable diseases. However, data collected over the past 20 years by the World Health Organization (WHO) show a significant increase in the number of people suffering from non-communicable diseases (e.g. heart disease, diabetes, cancer and pulmonary diseases). Within the coming years, WHO predicts significant decreases in communicable diseases while non-communicable diseases are expected to d...

  7. The potential improvement of team-working skills in Biomedical and Natural Science students using a problem-based learning approach

    Directory of Open Access Journals (Sweden)

    Forough L. Nowrouzian

    2013-08-01

    Full Text Available Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled. This development requires that students gain experience of team-work before they start their professional career. Students working in teams this may increase productivity, confidence, innovative capacity and improvement of interpersonal skills. Problem-based learning (PBL is an instructional approach focusing on real analytical problems as a means of training an analytical scientist. PBL may have a positive impact on team-work skills that are important for undergraduates and postgraduates to enable effective collaborative work. This survey of the current literature explores the development of the team-work skills in Biomedical Science students using PBL.

  8. [International regulation of ethics committees on biomedical research as protection mechanisms for people: analysis of the Additional Protocol to the Convention on Human Rights and Biomedicine, concerning Biomedical Research of the Council of Europe].

    Science.gov (United States)

    de Lecuona, Itziar

    2013-01-01

    The article explores and analyses the content of the Council of Europe's Additional Protocol to the Convention on Human Rights and Biomedicine concerning Biomedical Research regarding the standard legal instrument in biomedical research, issued by an international organization with leadership in bioethics. This implies ethics committees are mechanisms of protection of humans in biomedical research and not mere bureaucratic agencies and that a sound inescapable international regulatory framework exists for States to regulate biomedical research. The methodology used focuses on the analysis of the background, the context in which it is made and the nature and scope of the Protocol. It also identifies and analyses the characteristics and functions of ethics committees in biomedical research and, in particular, the information that should be provided to this bodies to develop their functions previously, during and at the end of research projects. This analysis will provide guidelines, suggestions and conclusions for the awareness and training of members of these committees in order to influence the daily practice. This paper may also be of interest to legal practitioners who work in different areas of biomedical research. From this practical perspective, the article examines the legal treatment of the Protocol to meet new challenges and classic issues in research: the treatment of human biological samples, the use of placebos, avoiding double standards, human vulnerability, undue influence and conflicts of interest, among others. Also, from a critical view, this work links the legal responses to develop work procedures that are required for an effective performance of the functions assigned of ethics committees in biomedical research. An existing international legal response that lacks doctrinal standards and provides little support should, however, serve as a guide and standard to develop actions that allow ethics committees -as key bodies for States- to advance in

  9. Structure determination of biological macromolecules by NMR in solution: impact in biomedical research

    International Nuclear Information System (INIS)

    Wuethrich, K.

    1995-01-01

    Three-dimensional protein structures have a key role in biological and biomedical research, both as a basis for investigating correlations between molecular structure and physiological functions in natural systems, and as a platform for protein design and protein engineering. Although in this article little consideration was given to compounds other than peptides and proteins, the same applies to other biological macromolecules, in particular nucleic acids and their interactions with effector molecules and drugs. Eight years ago NMR spectroscopy in solution was introduced as a second method for structure determination of biopolymers, besides X-ray diffraction in protein crystals. In the meantime more than 200 NMR solution structures of proteins, nucleic acids, and complexes of drugs with molecules of these two classes of compounds have been determined, which is an important contribution toward easing the bottleneck in protein engineering and drug design caused by the scarcity of data on 3D structures. More importantly, perhaps, the structural data collected by NMR in solution complement the information obtained from crystallography, in particular by additional characterization of dynamic molecular properties. Combined use of information from the two techniques can therefore establish a more reliable structural foundation for modern biomedical research. In the present report this is illustrated with the cyclophilin-cyclosporin A system, which is of keen interest in the biomedical field. (author). 54 refs., 7 figs., 1 tab

  10. Orientations and outcome of interdisciplinary research: the case of research behaviour in translational medical science

    DEFF Research Database (Denmark)

    Valentin, Finn; Norn, Maria Theresa; Alkærsig, Lars

    2016-01-01

    as they venture into a promising space for interdisciplinary research, namely translational research—a bridge between basic and applied biomedical research. More specifically, we ask (1) whether the researchers who choose to engage in translational research have a strong scientific record, (2) how......The importance of interdisciplinary research in accelerating the progress and commercialization of science is widely recognized, yet little is known about how academic research self-organizes towards interdisciplinarity. In this paper, we therefore explore the micro-level behavior of researchers...... interdisciplinary research spanning basic and applied research influences the output of academic research, and (3) how different disciplinary distance in interdisciplinary research contributes to reputational benefits of researchers. We find that for some types of collaboration, interdisciplinarity results in more...

  11. Temporalités dans la recherche biomédicale : la science au travail saisie par le temps Temporalities in biomedical research: time as a factor in scientific work Temporalidades en la investigación biomédica: el trabajo científico atrapado por el tiempo

    Directory of Open Access Journals (Sweden)

    Philippe Brunet

    2012-12-01

    Full Text Available Cet article s’attache à comprendre et à analyser l’importance prise par le temps dans le travail scientifique. Le plus souvent, étant considérée comme une activité au rythme intrinsèque, la science semble échapper au temps. Pourtant, généré par le phénomène de contextualisation, on montrera que le temps s’installe comme mesure de son procès de travail. À partir de données extraites d’une étude d’un laboratoire développant des recherches en biomédecine, l’analyse permet d’identifier trois temporalités différentes : une temporalité professionnelle intrinsèque, une temporalité sociétale extrinsèque et une temporalité gestionnaire hybride. C’est à l’articulation de ces trois temporalités que des tensions s’exercent sur le procès de travail du laboratoire. Elles ont pour enjeu l’autonomie professionnelle des scientifiques. Dans le cas analysé, la temporalité gestionnaire apparaît alors comme une mesure du temps dans la science, protectrice de cette autonomie.The article seeks to understand and analyse the growing importance of time in scientific work. Science is usually seen as an activity with an intrinsic rhythm that seems to escape time. Based on the phenomenon of contextualisation, however, we will show that time has become a way of measuring work processes. Using data from a biomedical research laboratory study, the analysis identifies three time scales: an intrinsic professional temporality; an extrinsic social temporality; and a hybrid managerial temporality. It is at the interface between these three temporalities that tensions affect laboratory work processes. The main issue at stake is scientists’ professional autonomy. In the case being analysed here, managerial temporality appears as something that measures time in science and protects the autonomy thereof.En este artículo buscamos comprender y analizar la importancia que ha adquirido el tiempo en el trabajo científico. La mayor

  12. Science Academies' Summer Research Fellowship Programme for ...

    Indian Academy of Sciences (India)

    IAS Admin

    2013-11-30

    Nov 30, 2013 ... Science Academies' Summer Research Fellowship Programme for. Students and Teachers – 2014. Sponspored by. Indian Academy of Sciences, Bangalore. Indian National Science Academy, New Delhi. The National Academy of Sciences, India, Allahabad. The three national science academies offer ...

  13. Redefining responsible research and innovation for the advancement of biobanking and biomedical research.

    Science.gov (United States)

    Yu, Helen

    2016-12-01

    One of the core objectives of responsible research and innovation (RRI) is to maximize the value of publicly funded research so that it may be returned to benefit society. However, while RRI encourages innovation through societal engagement, it can give rise to complex and previously untested issues that challenge the existing legal frameworks on intellectual property (IP) and public entitlement to benefits of research. In the case of biobanking, the personal nature of human biological materials and often altruistic intention of participants to donate samples intensifies the need to adhere to RRI principles with respect to the research, development, and commercialization of innovations derived from biobanks. However, stakeholders participate and collaborate with others in the innovation process to fulfill their own agenda. Without IP to safeguard investments in R&D, stakeholders may hesitate to contribute to the translation of discoveries into innovations. To realize the public benefit objective, RRI principles must protect the interests of stakeholders involved in the translation and commercialization of knowledge. This article explores the seemingly contradictory and competing objectives of open science and commercialization and proposes a holistic innovation framework directed at improving RRI practice for positive impact on obtaining the optimal social and economic values from research.

  14. Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research: scientific and cultural exchange in undergraduate engineering.

    Science.gov (United States)

    Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin

    2011-01-01

    A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.

  15. Evolution of the use of ionizing radiation in biomedical research; Evolucion del uso de las radiaciones ionizantes en investigacion biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Macias, M. T.

    2011-07-01

    This article presents the evolution, as a change of process, with the use of radioactivity in biomedical research, showing the consume of radioisotopes during the las 20 years indicating the evidences of these changes. The radioisotopic techniques applied at the present are described, and the future use of the radioisotopes in biomedical research is proposed, emphasizing the importance that the Molecular Imaging Techniques will have in this scientific area. (Author) 56 refs.

  16. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  17. Archives: Eastern Africa Social Science Research Review

    African Journals Online (AJOL)

    Items 1 - 34 of 34 ... Archives: Eastern Africa Social Science Research Review. Journal Home > Archives: Eastern Africa Social Science Research Review. Log in or Register to get access to full text downloads.

  18. Eastern Africa Social Science Research Review: Contact

    African Journals Online (AJOL)

    Eastern Africa Social Science Research Review: Contact. Journal Home > About the Journal > Eastern Africa Social Science Research Review: Contact. Log in or Register to get access to full text downloads.

  19. Archives: Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Items 1 - 16 of 16 ... Archives: Science, Technology and Arts Research Journal. Journal Home > Archives: Science, Technology and Arts Research Journal. Log in or Register to get access to full text downloads.

  20. 20% Research & Design Science Project

    Science.gov (United States)

    Spear, Beth A.

    2015-04-01

    A project allowing employees to use 15 % of their time on independent projects was established at 3M in the 1950's. The result of this project included products like post it notes and masking tape. Google allows its employees to use 20% of their time on independently pursued projects. The company values creativity and innovation. Employees are allowed to explore projects of interest to them one day out of the week, 20 % of their work week. Products like AdSense, Gmail, Google Transit, Google News, and Google Talk are the result of this 20 % program. My school is implementing the Next Generation Science Standards (NGSS) as part of our regularly scheduled curriculum review. These new standards focus on the process of learning by doing and designing. The NGSS are very hands on and active. The new standards emphasize learning how to define, understand and solve problems in science and technology. In today's society everyone needs to be familiar with science and technology. This project allows students to develop and practice skills to help them be more comfortable and confident with science and technology while exploring something of interest to them. This project includes three major parts: research, design, and presentation. Students will spend approximately 2-4 weeks defining a project proposal and educating themselves by researching a science and technology topic that is of interest to them. In the next phase, 2-4 weeks, students design a product or plan to collect data for something related to their topic. The time spent on research and design will be dependant on the topic students select. Projects should be ambitious enough to encompass about six weeks. Lastly a presentation or demonstration incorporating the research and design of the project is created, peer reviewed and presented to the class. There are some problems anticipated or already experienced with this project. It is difficult for all students to choose a unique topic when you have large class sizes

  1. Perceptions of Chinese Biomedical Researchers Towards Academic Misconduct: A Comparison Between 2015 and 2010.

    Science.gov (United States)

    Liao, Qing-Jiao; Zhang, Yuan-Yuan; Fan, Yu-Chen; Zheng, Ming-Hua; Bai, Yu; Eslick, Guy D; He, Xing-Xiang; Zhang, Shi-Bing; Xia, Harry Hua-Xiang; He, Hua

    2018-04-01

    Publications by Chinese researchers in scientific journals have dramatically increased over the past decade; however, academic misconduct also becomes more prevalent in the country. The aim of this prospective study was to understand the perceptions of Chinese biomedical researchers towards academic misconduct and the trend from 2010 to 2015. A questionnaire comprising 10 questions was designed and then validated by ten biomedical researchers in China. In the years 2010 and 2015, respectively, the questionnaire was sent as a survey to biomedical researchers at teaching hospitals, universities, and medical institutes in mainland China. Data were analyzed by the Chi squared test, one-way analysis of variance with the Tukey post hoc test, or Spearman's rank correlation method, where appropriate. The overall response rates in 2010 and 2015 were 4.5% (446/9986) and 5.5% (832/15,127), respectively. Data from 15 participants in 2010 were invalid, and analysis was thus performed for 1263 participants. Among the participants, 54.7% thought that academic misconduct was serious-to-extremely serious, and 71.2% believed that the Chinese authorities paid no or little attention to the academic misconduct. Moreover, 70.2 and 65.2% of participants considered that the punishment for academic misconduct at the authority and institution levels, respectively, was not appropriate or severe enough. Inappropriate authorship and plagiarism were the most common forms of academic misconduct. The most important factor underlying academic misconduct was the academic assessment system, as judged by 50.7% of the participants. Participants estimated that 40.1% (39.8 ± 23.5% in 2010; 40.2 ± 24.5% in 2015) of published scientific articles were associated with some form of academic misconduct. Their perceptions towards academic misconduct had not significantly changed over the 5 years. Reform of the academic assessment system should be the fundamental approach to tackling this problem in

  2. Contrasting the ethical perspectives of biospecimen research among individuals with familial risk for hereditary cancer and biomedical researchers: implications for researcher training.

    Science.gov (United States)

    Quinn, Gwendolyn P; Koskan, Alexis; Sehovic, Ivana; Pal, Tuya; Meade, Cathy; Gwede, Clement K

    2014-07-01

    While ethical concerns about participating in biospecimen research have been previously identified, few studies have reported the concerns among individuals with familial risk for hereditary cancer (IFRs). At the same time, biomedical researchers often lack training in discussing such concerns to potential donors. This study explores IFRs' and biomedical researchers' perceptions of ethical concerns about participating in biobanking research. In separate focus groups, IFRs and biomedical researchers participated in 90-min telephone focus groups. Focus group questions centered on knowledge about laws that protect the confidentiality of biospecimen donors, understanding of informed consent and study procedures, and preferences for being recontacted about potential incidental discovery and also study results. A total of 40 IFRs and 32 biomedical researchers participated in the focus groups. Results demonstrated discrepancies between the perceptions of IFRs and researchers. IFRs' concerns centered on health information protection; potential discrimination by insurers and employers; and preferences for being recontacted upon discovery of gene mutations or to communicate study results. Researchers perceived that participants understood laws protecting donors' privacy and (detailed study information outlined in the informed consent process), study outcomes were used to create a training tool kit to increase researchers' understanding of IFRs' concerns about biobanking.

  3. Mathematics and physics of emerging biomedical imaging

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Physical Sciences, Mathematics, and Applications; Division on Engineering and Physical Sciences; National Research Council; National Academy of Sciences

    ... of Emerging Dynamic Biomedical Imaging Board on Mathematical Sciences Board on Physics and Astronomy Commission on Physical Sciences, Mathematics, and Applications National Research Council and Board on Biobehavioral Sciences and Mental Disorders Institute of Medicine National Academy Press Washington, D.C. 1996 i Copyrightthe true use are Please ...

  4. PhysioNet: a research resource for studies of complex physiologic and biomedical signals.

    Science.gov (United States)

    Moody, G B; Mark, R G; Goldberger, A L

    2000-01-01

    PhysioNet (http://www.physionet.org/) is a web-based resource supplying well-characterized physiologic signals and related open-source software to the biomedical research community. Inaugurated in September 1999 under the auspices of the NIH's National Center for Research Resources (NCRR), PhysioNet provides an on-line forum for free dissemination and exchange of research data and software, with facilities for cooperative analysis of data and evaluation of new analytic methods. As of September 2000, PhysioBank, the data archive made available via PhysioNet, contained roughly 35 gigabytes of recorded signals and annotations. PhysioNet is a public service of the Research Resource for Complex Physiologic Signals, a cooperative project initiated by researchers at Boston's Beth Israel Deaconess Medical Center/Harvard Medical School, Boston University, McGill University, and MIT.

  5. Translations on USSR Science and Technology, Biomedical and Behavioral Sciences, Number 20

    Science.gov (United States)

    1978-01-17

    Agricultur Romania. "Receptura de fabricatie nutret urilor combinate ,"" Bucharest, 1972. 6. Sorensen, E. and Havskov, P., "Basic Principles Involved in...antibiotics - - bacitracin, kormogrizein, hygromycin, flavomycin, virginiamycin, tylosin ; growth stimulants - — dimetridazol, karbadox...Czechoslovakia of a scientific research laboratory on the problem of lysine technology for purposes of combining the efforts of interested CEMA

  6. Translations on USSR Science and Technology, Biomedical and Behavioral Sciences, Number 37

    Science.gov (United States)

    1978-07-19

    and the body of the cell became narrow and pyknomorphous. Dystrophie changes in the astrocytes could be observed in several preparations. The...circulation is associated with an increase in the tone of the internal carotid arteries resulting from dominance of sympathetic over parasympathetic...defensive reflex was determined in the course of prolonged administration of cephedrine. The numerical research results were treated statistically

  7. Translations on USSR Science and Technology, Biomedical and Behavioral Sciences, Number 45, Effects of Nonionizing Electromagnetic Radiation

    National Research Council Canada - National Science Library

    1978-01-01

    ... Tropicalis Culture, Biomedical Effects of Millimeter Radio Waves, New Scientific Branch Established for Electromagnetic Hygiene Study, The Combined Effect of an SHF Field and an Unfavorable, and Microclimate...

  8. Collaborative mining and interpretation of large-scale data for biomedical research insights.

    Directory of Open Access Journals (Sweden)

    Georgia Tsiliki

    Full Text Available Biomedical research becomes increasingly interdisciplinary and collaborative in nature. Researchers need to efficiently and effectively collaborate and make decisions by meaningfully assembling, mining and analyzing available large-scale volumes of complex multi-faceted data residing in different sources. In line with related research directives revealing that, in spite of the recent advances in data mining and computational analysis, humans can easily detect patterns which computer algorithms may have difficulty in finding, this paper reports on the practical use of an innovative web-based collaboration support platform in a biomedical research context. Arguing that dealing with data-intensive and cognitively complex settings is not a technical problem alone, the proposed platform adopts a hybrid approach that builds on the synergy between machine and human intelligence to facilitate the underlying sense-making and decision making processes. User experience shows that the platform enables more informed and quicker decisions, by displaying the aggregated information according to their needs, while also exploiting the associated human intelligence.

  9. Impact of a short biostatistics course on knowledge and performance of postgraduate scholars: Implications for training of African doctors and biomedical researchers.

    Science.gov (United States)

    Chima, S C; Nkwanyana, N M; Esterhuizen, T M

    2015-12-01

    This study was designed to evaluate the impact of a short biostatistics course on knowledge and performance of statistical analysis by biomedical researchers in Africa. It is recognized that knowledge of biostatistics is essential for understanding and interpretation of modern scientific literature and active participation in the global research enterprise. Unfortunately, it has been observed that basic education of African scholars may be deficient in applied mathematics including biostatistics. Forty university affiliated biomedical researchers from South Africa volunteered for a 4-day short-course where participants were exposed to lectures on descriptive and inferential biostatistics and practical training on using a statistical software package for data analysis. A quantitative questionnaire was used to evaluate participants' statistical knowledge and performance pre- and post-course. Changes in knowledge and performance were measured using objective and subjective criteria. Data from completed questionnaires were captured and analyzed using Statistical Package for Social Sciences. Participants' pre- and post-course data were compared using nonparametric Wilcoxon signed ranks tests for nonnormally distributed variables. A P researchers in this cohort and highlights the potential benefits of short-courses in biostatistics to improve the knowledge and skills of biomedical researchers and scholars in Africa.

  10. More regulation of industry-supported biomedical research: are we asking the right questions?

    Science.gov (United States)

    Fry-Revere, Sigrid; Malmstrom, David Bjorn

    2009-01-01

    Industry-sponsored biomedical research is under the microscope. In an attempt to achieve just results in extraordinary cases, critics are suggesting regulations that would pervert the U.S. clinical trial process. However, the arguments made to justify such regulation are weak at best. All the proposals to regulate industry sponsorship of clinical trials that we surveyed (over a hundred articles and ten books, most written in the past decade) suffer from some form of fallacious reasoning. In the interest of advocating sound policy, this article points out some of the most common reasoning errors found in the literature on financial conflicts of interest in clinical trials.

  11. Jupyter and Galaxy: Easing entry barriers into complex data analyses for biomedical researchers.

    Directory of Open Access Journals (Sweden)

    Björn A Grüning

    2017-05-01

    Full Text Available What does it take to convert a heap of sequencing data into a publishable result? First, common tools are employed to reduce primary data (sequencing reads to a form suitable for further analyses (i.e., the list of variable sites. The subsequent exploratory stage is much more ad hoc and requires the development of custom scripts and pipelines, making it problematic for biomedical researchers. Here, we describe a hybrid platform combining common analysis pathways with the ability to explore data interactively. It aims to fully encompass and simplify the "raw data-to-publication" pathway and make it reproducible.

  12. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-09-30

    Progress is reported on biomedical studies using cyclotron-produced /sup 18/F, /sup 15/O, /sup 11/C, /sup 13/N, /sup 52/Fe, /sup 38/K, /sup 206/Bi, /sup 73/Se, /sup 53/Co, and /sup 43/K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; /sup 38/K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments. (HLW)

  13. Biomedical research in france and brazil: an analysis of significant differences and ethical issues

    OpenAIRE

    Hervé Moizan

    2016-01-01

    At first sight, Brazil and France seem pretty distant from one another, but on the map, they are not separated by the Atlantic Ocean, but by the Oyapock River, located between the state of Amapa and French Guiana (French overseas department), creating a 730 km long international border. If the distance does exist, it is very different when we finely analyze some similarities in the field of biomedical research. France is the biggest country of Western Europe and covers 1/5 of the European ...

  14. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  15. Opening of the national biobank of Korea as the infrastructure of future biomedical science in Korea.

    Science.gov (United States)

    Cho, Sang Yun; Hong, Eun Jung; Nam, Jung Min; Han, Bogkee; Chu, Chaeshin; Park, Ok

    2012-09-01

    On April 26, 2012, the Korea National Institute of Health officially held the opening ceremony of newly dedicated biobank building, 'NationalBiobank of Korea'. The stocked biospecimens and related information have been distributed for medical and public health researches. The Korea Biobank Project, which was initiated in 2008, constructed the Korea Biobank Network consisting of the National Biobank of Korea (NBK) with 17 regional biobanks in Korea. As of December 2011, a total of 525,416 biospecimens with related information have been secured: 325,952 biospecimens from the general population obtained through cohort studies and 199,464 biospecimens of patients from regional biobanks. A large scale genomic study, Korea Association Resource (KARE) and many researches utilized the biospecimens secured through Korea Genome Epidemiology Study (KoGES) and Korea Biobank Project (KBP). Construction of 'National Biobank of Korea', a dedicated biobank building at Osong means that NBK can manage and check quality of the biospecimens with promising distribution of 26 million vials of biospecimen, which provide the infrastructure for the development of health technology in Korea. The NBK and the National Library of Medicine (to be constructed in 2014) will play a central role in future biomedical research in Korea.

  16. Informed consent document improvement does not increase patients' comprehension in biomedical research.

    Science.gov (United States)

    Paris, Adeline; Brandt, Christian; Cornu, Catherine; Maison, Patrick; Thalamas, Claire; Cracowski, Jean-Luc

    2010-03-01

    International guidelines on ethics in biomedical research require that the informed consent of all enrolled participants is obtained. A written document describing the research, the informed consent (IC) document, must be given to all participants by the investigator. Most IC documents are long, containing much information. The aim of the present study was to determine whether the modification of the IC document by a working group or systematic improvement in its lexicosyntactic readability can improve comprehension of the written information given to patients participating in biomedical research. One hundred and fifty-nine patients were randomized to read one of the three versions of the IC document: unchanged document, document modified using systematic improvement of lexicosyntactic readability and document modified by a working group. Neither the improvement in the lexicosyntactic readability, nor the intervention of the working group significantly improved the score of objective comprehension for the subjects included in this study: it was 66.6 (95% confidence interval 64.0, 69.2) for the control group, 68.8 (66.2, 71.4) for the group with the document improved for lexicosyntactic readability and 69.2 (66.0, 72.4) for the group who read the document improved by the working group (P= 0.38). We failed to show that improving IC document comprehension through a lexicosyntactic approach or by a working group leads to better comprehension.

  17. Proposal for a new LEIR Slow Extraction Scheme dedicated to Biomedical Research

    CERN Document Server

    Garonna, A; Carli, C

    2014-01-01

    This report presents a proposal for a new slow extraction scheme for the Low Energy Ion Ring (LEIR) in the context of the feasibility study for a biomedical research facility at CERN. LEIR has to be maintained as a heavy ion accumulator ring for LHC and for fixed-target experiments with the SPS. In parallel to this on-going operation for physics experiments, an additional secondary use of LEIR for a biomedical research facility was proposed [Dosanjh2013, Holzscheiter2012, PHE2010]. This facility would complement the existing research beam-time available at other laboratories for studies related to ion beam therapy. The new slow extraction [Abler2013] is based on the third-integer resonance. The reference beam is composed of fully stripped carbon ions with extraction energies of 20-440 MeV/u, transverse physical emittances of 5-25 µm and momentum spreads of ±2-9•10-4. Two resonance driving mechanisms have been studied: the quadrupole-driven method and the RF-knockout technique. Both were made compatible...

  18. Critical evaluation of the use of dogs in biomedical research and testing in Europe.

    Science.gov (United States)

    Hasiwa, Nina; Bailey, Jarrod; Clausing, Peter; Daneshian, Mardas; Eileraas, Marianne; Farkas, Sándor; Gyertyán, István; Hubrecht, Robert; Kobel, Werner; Krummenacher, Goran; Leist, Marcel; Lohi, Hannes; Miklósi, Adám; Ohl, Frauke; Olejniczak, Klaus; Schmitt, Georg; Sinnett-Smith, Patrick; Smith, David; Wagner, Kristina; Yager, James D; Zurlo, Joanne; Hartung, Thomas

    2011-01-01

    Dogs are sometimes referred to as "man's best friend" and with the increase in urbanization and lifestyle changes, dogs are seen by their owners as family members. Society expresses specific concerns about the experimental use of dogs, as they are sometimes perceived to have a special status for humans. This may appear somewhat conflicting with the idea that the intrinsic value of all animals is the same, and that also several other animal species are used in biomedical research and toxicology. This aspect and many others are discussed in an introductory chapter dealing with ethical considerations on the use of dogs as laboratory animals. The report gives an overview on the use of dogs in biomedical research, safety assessment and the drug developmental process and reflects the discussion on the use of dogs as second (non-rodent)species in toxicity testing. Approximately 20,000 dogs are used in scientific procedures in Europe every year, and their distinct genetic, physiological and behavioral characteristics may support their use as models for e.g. behavioral analysis and genetic research. Advances in the 3Rs (Replacement, Reduction and Refinement of experiments using dogs) are described, potential opportunities are discussed and recommendations for further progress in this area are made.

  19. Canine as a biomedical research model: immunological, hematological, and oncological aspects

    International Nuclear Information System (INIS)

    Shifrine, M.; Wilson, F.D.

    1980-01-01

    The canine has been used as a biomedical research model in radiation studies by a number of laboratories supported primarily by the US Department of Energy and its predecessors. These studies were unique in that they covered the life spans of the canines and permitted the collection of data from birth to death under controlled conditions. Since these were multiparametric studies, an extensive data base has been established, not the least of which are normative values covering all biologic systems, including immunohematology. The canine model has also been extensively used by other groups, such as transplantation biologists. The virtues of the canine as a model in these and many other endeavors are becoming increasingly more apparent with the passing of time. One of the primary goals of this volume was to compile the knowledge and experience of researchers using the canine model and to focus their expertise on furthering the use of the canine for studies in immunology, hematology, and oncology. We have attempted to present some of the contemporary, diverse uses of the canine in biomedical research, emphasizing immunologic endpoints, and also to present in detail some of the latest technology used in such studies

  20. A Ten-Year Assessment of a Biomedical Engineering Summer Research Internship within a Comprehensive Cancer Center

    Science.gov (United States)

    Wright, A. S.; Wu, X.; Frye, C. A.; Mathur, A. B.; Patrick, C. W., Jr.

    2007-01-01

    A Biomedical Engineering Internship Program conducted within a Comprehensive Cancer Center over a 10 year period was assessed and evaluated. Although this is a non-traditional location for an internship, it is an ideal site for a multidisciplinary training program for science, technology, engineering, and mathematics (STEM) students. We made a…