WorldWideScience

Sample records for biomedical research

  1. Statistics in biomedical research

    OpenAIRE

    González-Manteiga, Wenceslao; Cadarso-Suárez, Carmen

    2007-01-01

    The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new p...

  2. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  3. On Biomedical Research Policy in the Future

    Science.gov (United States)

    1989-01-01

    0 ON BIOMEDICAL RESEARCH POLICY IN THE FUTURE Albert P. Williams January 1989 DTIC ELECTE P-7520 "’T,, . The RAND Corporation Papers are issued by...BIOMEDICAL RESEARCH POLICY IN THE FUTURE[l] Mr. Walden, members of the Science Policy Task Force, I am honored to be invited to appear on this panel and...to offer my thoughts on future biomedical research policy . My perspective is that of an outsider with a longstanding interest in federal biomedical

  4. Animals in biomedical space research

    Science.gov (United States)

    Phillips, Robert W.

    The use of experimental animals has been a major component of biomedical research progress. Using animals in space presents special problems, but also provides special opportunities. Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalian function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertebrate development. Following these preliminary animals experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.

  5. Evaluation of research in biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gkoutos, Georgios V

    2013-11-01

    Ontologies are now pervasive in biomedicine, where they serve as a means to standardize terminology, to enable access to domain knowledge, to verify data consistency and to facilitate integrative analyses over heterogeneous biomedical data. For this purpose, research on biomedical ontologies applies theories and methods from diverse disciplines such as information management, knowledge representation, cognitive science, linguistics and philosophy. Depending on the desired applications in which ontologies are being applied, the evaluation of research in biomedical ontologies must follow different strategies. Here, we provide a classification of research problems in which ontologies are being applied, focusing on the use of ontologies in basic and translational research, and we demonstrate how research results in biomedical ontologies can be evaluated. The evaluation strategies depend on the desired application and measure the success of using an ontology for a particular biomedical problem. For many applications, the success can be quantified, thereby facilitating the objective evaluation and comparison of research in biomedical ontology. The objective, quantifiable comparison of research results based on scientific applications opens up the possibility for systematically improving the utility of ontologies in biomedical research.

  6. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations.

  7. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  8. Capturing the Value of Biomedical Research.

    Science.gov (United States)

    Bertuzzi, Stefano; Jamaleddine, Zeina

    2016-03-24

    Assessing the real-world impact of biomedical research is notoriously difficult. Here, we present the framework for building a prospective science-centered information system from scratch that has been afforded by the Sidra Medical and Research Center in Qatar. This experiment is part of the global conversation on maximizing returns on research investment.

  9. Should biomedical research be like Airbnb?

    Science.gov (United States)

    Bonazzi, Vivien R; Bourne, Philip E

    2017-04-01

    The thesis presented here is that biomedical research is based on the trusted exchange of services. That exchange would be conducted more efficiently if the trusted software platforms to exchange those services, if they exist, were more integrated. While simpler and narrower in scope than the services governing biomedical research, comparison to existing internet-based platforms, like Airbnb, can be informative. We illustrate how the analogy to internet-based platforms works and does not work and introduce The Commons, under active development at the National Institutes of Health (NIH) and elsewhere, as an example of the move towards platforms for research.

  10. [Biomedical research in Revista de Biologia Tropical].

    Science.gov (United States)

    Gutiérrez, José María

    2002-01-01

    The contributions published in Revista de Biología Tropical in the area of Biomedical Sciences are reviewed in terms of number of contributions and scope of research subjects. Biomedical Sciences, particularly Parasitology and Microbiology, constituted the predominant subject in the Revista during the first decade, reflecting the intense research environment at the School of Microbiology of the University of Costa Rica and at Hospital San Juan de Dios. The relative weight of Biomedicine in the following decades diminished, due to the outstanding increment in publications in Biological Sciences; however, the absolute number of contributions in Biomedical Sciences remained constant throughout the last decades, with around 80 contributions per decade. In spite of the predominance of Parasitology as the main biomedical subject, the last decades have witnessed the emergence of new areas of interest in the Revista, such as Pharmacology of natural products, Toxinology, especially related to snake venoms, and Human Genetics. This retrospective analysis evidences that Biomedical Sciences, particularly those related to Tropical Medicine, were a fundamental component during the first years of Revista de Biología Tropical, and have maintained a significant presence in the scientific output of this journal, the most relevant scientific publication in biological sciences in Central America.

  11. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  12. Building interdisciplinary biomedical research using novel collaboratives.

    Science.gov (United States)

    Ravid, Katya; Faux, Russell; Corkey, Barbara; Coleman, David

    2013-02-01

    Traditionally, biomedical research has been carried out mainly within departmental boundaries. However, successful biomedical research increasingly relies on development of methods and concepts crossing these boundaries, requiring expertise in different disciplines. Recently, major research institutes have begun experimenting with ways to foster an interdisciplinary ethos. The Evans Center for Interdisciplinary Biomedical Research ("the Evans Center") at Boston University is a new organizational paradigm to address this challenge. The Evans Center is built around interdisciplinary research groups termed affinity research collaboratives (ARCs). Each ARC consists of investigators from several academic departments and at least two research disciplines, bound by a common goal to investigate biomedical problems concerning human disease. Novel aspects of the Evans Center include a "bottom-up" approach to identifying areas of ARC research (research vision and strategy are typically initiated by a core group of faculty with input from the center director); a pre-ARC period of faculty affiliation/project(s)' self-selection prior to formation of a peer-reviewed ARC; and Evans Center support for innovative ARCs for up to three years pending yearly metric evaluation, followed by continued administrative support as a group matures into an ARC program.Since its inception in early 2009, the Evans Center has documented achievements at discovery/publication, grant award, and educational levels. Enhanced interactions between members of individual ARCs, as assessed by quantitative networking analysis, are discussed in the context of high productivity. As universities seek new approaches to stimulate interdisciplinary research, the Evans Center and its ARCs are offered as a productive model for leveraging discovery.

  13. Environmental practices for biomedical research facilities.

    Science.gov (United States)

    Medlin, E L; Grupenhoff, J T

    2000-12-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12.

  14. Polar Biomedical Research - An Assessment.

    Science.gov (United States)

    1982-10-01

    Nutrition. .. *.... ... .. 33 Desic Sciences**.**................ 34 x SUMMARY AND RECOMMENDATIONS ............ 36 Toward an OveralliStrategy...because there is a -6- TABLE 1. High-Latitude Environmental Constraints Environmental Characteristics Nelor Consequences Sustained deep winter Restricts...Research Angus , R.G., D.G. Pearce, A.G. Buguet, and L. Olson. Vigilance performance of men sleeping under Arctic conditions, Aviation, Space and

  15. Breeding monkeys for biomedical research

    Science.gov (United States)

    Bourne, G. H.; Golarzdebourne, M. N.; Keeling, M. E.

    1973-01-01

    Captive bred rhesus monkeys show much less pathology than wild born animals. The monkeys may be bred in cages or in an outdoor compound. Cage bred animals are not psychologically normal which makes then unsuited for some types of space related research. Compound breeding provides contact between mother and infant and an opportunity for the infants to play with their peers which are important requirements to help maintain their behavioral integrity. Offspring harvested after a year in the compound appear behaviorally normal and show little histopathology. Compound breeding is also an economical method for the rapid production of young animals. The colony can double its size about every two and a half years.

  16. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  17. Fraud and deceit in biomedical research

    Directory of Open Access Journals (Sweden)

    Buitrago Juliana

    2004-05-01

    Full Text Available History: Scientists are supposed to be moved by lofty ideals and be taught to work restlessly in pursue of the truth, but sadly fraud in biomedical research can be traced through the entire history of science. Definition: Nowadays, typology of fraud is clearly defined. Principal types of misconduct are reviewed. Consequences: It is impossible to know to what extent the damage will remain. Fraud threats public confidence in the integrity of science and may change professional attitudes and health public policies leading to serious social consequences. Evaluation of the problem: Prevalence of research fraud is unknown but in almost every country where investigation has been largely developed, at least a corroborated case of mis-conduct has been known. Policies on the scientific process may eventually contribute to fraudulent behaviour. Situation in Colombia: Colombia lacks of comprehensive policies to deal with fraud in research. How to tackle this problem: Finally, some recommendations are given to prevent, detect and deal with fraud in biomedical research.

  18. Accelerator mass spectrometry in biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; Turteltaub, K.W.

    1993-10-20

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10{sup 9}) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10{sup 13--15} on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. {sup 14}C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. {sup 3} H, {sup 41}Ca and {sup 26}Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  19. Accelerator mass spectrometry in biomedical research

    Science.gov (United States)

    Vogel, J. S.; Turteltaub, K. W.

    1994-06-01

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10 9) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10 13-15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels for tracing biochemical pathways in natural systems. 14C-AMS has now been coupled to a variety of organic separation and definition technologies. Our primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subjects research using AMS includes nutrition, toxicity and elemental balance studies. 3H, 41Ca and 26Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  20. [The need for information in biomedical research].

    Science.gov (United States)

    Kumate, J

    1981-01-01

    This paper focuses on the need of every researcher to be informed on advances in his field. It reviews the means available for keeping abreast of developments in a specific area of scientific inquiry. In the author's view, articles in reference journals on a specific specialty are the best source of information. However, the interval between the writing and publication of a scientific paper is sometimes long, which poses a considerable impediment to the use of the traditional media as a means of keeping up. He also examines the limitations of information in biomedical research and reviews the characteristics of this research in Latin America. Finally, he makes a number of recommendations for improving scientific communications and making the most of the services of national and international information dissemination systems.

  1. Nanomaterials driven energy, environmental and biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F. [Department of Physics, College of Arts and Sciences, Tuskegee University, Tuskegee, AL 36088 (United States)

    2014-03-31

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO{sub 2} nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH{sub 2} and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe{sub 2}O{sub 4} have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)

  2. Nanomaterials driven energy, environmental and biomedical research

    Science.gov (United States)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F.

    2014-03-01

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO2 nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH2 and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe2O4 have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI).

  3. Commercializing biomedical research through securitization techniques.

    Science.gov (United States)

    Fernandez, Jose-Maria; Stein, Roger M; Lo, Andrew W

    2012-10-01

    Biomedical innovation has become riskier, more expensive and more difficult to finance with traditional sources such as private and public equity. Here we propose a financial structure in which a large number of biomedical programs at various stages of development are funded by a single entity to substantially reduce the portfolio's risk. The portfolio entity can finance its activities by issuing debt, a critical advantage because a much larger pool of capital is available for investment in debt versus equity. By employing financial engineering techniques such as securitization, it can raise even greater amounts of more-patient capital. In a simulation using historical data for new molecular entities in oncology from 1990 to 2011, we find that megafunds of $5–15 billion may yield average investment returns of 8.9–11.4% for equity holders and 5–8% for 'research-backed obligation' holders, which are lower than typical venture-capital hurdle rates but attractive to pension funds, insurance companies and other large institutional investors.

  4. [Biomedical research from philanthropy to scarcity.

    Science.gov (United States)

    Addis, Antonio; De Fiore, Luca; Traversa, Giuseppe

    2016-10-01

    Some huge information technology companies have increased investment in biomedical research: recently Google, Microsoft, and Facebook. The latter presented the ambitious Zuckerberg-Chan Initiative involving three major Californian universities: UC San Francisco, Berkeley and Stanford. These important private investments arouse reflections. First, investing in scientific research improves the corporate image of the most generous companies and it is a great marketing strategy. Second, the availability of private funds is surely useful, especially if these funds are directed to relevant projects, and produce studies conducted and disseminated in a transparent way. Third, private funding should not replace public ones, representing an integration that will not likely affect the determination of the research agenda, which should remain the prerogative of public institutions. Fourth, the researchers involved in public funded projects should benefit from the margin of freedom that private industry promises, both in the decision of research pathways and in their course. Finally, the scarcity of resources is likely to divert energy and attention of the public researchers and this aspect should be considered by decision makers when determining size and recipients of research funding.

  5. The diversity of experimental organisms in biomedical research may be influenced by biomedical funding.

    Science.gov (United States)

    Erick Peirson, B R; Kropp, Heather; Damerow, Julia; Laubichler, Manfred D

    2017-03-30

    Contrary to concerns of some critics, we present evidence that biomedical research is not dominated by a small handful of model organisms. An exhaustive analysis of research literature suggests that the diversity of experimental organisms in biomedical research has increased substantially since 1975. There has been a longstanding worry that organism-centric funding policies can lead to biases in experimental organism choice, and thus negatively impact the direction of research and the interpretation of results. Critics have argued that a focus on model organisms has unduly constrained the diversity of experimental organisms. The availability of large electronic databases of scientific literature, combined with interest in quantitative methods among philosophers of science, presents new opportunities for data-driven investigations into organism choice in biomedical research. The diversity of organisms used in NIH-funded research may be considerably lower than in the broader biomedical sciences, and may be subject to greater constraints on organism choice.

  6. Biomedical applications of poisonous plant research.

    Science.gov (United States)

    James, Lynn F; Panter, Kip E; Gaffield, William; Molyneux, Russell J

    2004-06-01

    Research designed to isolate and identify the bioactive compounds responsible for the toxicity of plants to livestock that graze them has been extremely successful. The knowledge gained has been used to design management techniques to prevent economic losses, predict potential outbreaks of poisoning, and treat affected animals. The availability of these compounds in pure form has now provided scientists with tools to develop animal models for human diseases, study modes of action at the molecular level, and apply such knowledge to the development of potential drug candidates for the treatment of a number of genetic and infectious conditions. These advances are illustrated by specific examples of biomedical applications of the toxins of Veratrum californicum (western false hellebore), Lupinus species (lupines), and Astragalus and Oxytropis species (locoweeds).

  7. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  8. Biomedical engineering research at DOE national labs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    Biomedical Engineering is the application of principles of physics, chemistry, nd engineering to problems of human health. The National Laboratories of the U.S. Department of Energy have been leaders in this scientific field since 1947. This inventory of their biomedical engineering projects was compiled in January 1999.

  9. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  10. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  11. Domestic animals as models for biomedical research.

    Science.gov (United States)

    Andersson, Leif

    2016-01-01

    Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene.

  12. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2001-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  13. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2004-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  14. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the... location changes have been made for the following panel meetings of the of the Joint Biomedical...

  15. Two-Photon Fluorescence Microscopy for Biomedical Research

    Science.gov (United States)

    Fischer, David; Zimmerli, Greg; Asipauskas, Marius

    2007-01-01

    This viewgraph presentation gives an overview of two-photon microscopy as it applies to biomedical research. The topics include: 1) Overview; 2) Background; 3) Principles of Operation; 4) Advantages Over Confocal; 5) Modes of Operation; and 6) Applications.

  16. Biomedical research applications of electromagnetically separated enriched stable isotopes

    Science.gov (United States)

    Lambrecht, R. M.

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.

  17. 78 FR 52777 - Implementation of the Revised International Guiding Principles for Biomedical Research Involving...

    Science.gov (United States)

    2013-08-26

    ... Principles for Biomedical Research Involving Animals SUMMARY: The National Institutes of Health (NIH) is... International Guiding Principles for Biomedical Research Involving Animals (``Guiding Principles''). The NIH is... ) that commits the institution to follow the International Guiding Principles for Biomedical...

  18. Status of Research in Biomedical Engineering 1968.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…

  19. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences.

  20. Artificial Sight Basic Research, Biomedical Engineering, and Clinical Advances

    CERN Document Server

    Humayun, Mark S; Chader, Gerald; Greenbaum, Elias

    2008-01-01

    Artificial sight is a frontier area of modern ophthalmology combining the multidisciplinary skills of surgical ophthalmology, biomedical engineering, biological physics, and psychophysical testing. Many scientific, engineering, and surgical challenges must be surmounted before widespread practical applications can be realized. The goal of Artificial Sight is to summarize the state-of-the-art research in this exciting area, and to describe some of the current approaches and initiatives that may help patients in a clinical setting. The Editors are active researchers in the fields of artificial sight, biomedical engineering and biological physics. They have received numerous professional awards and recognition for their work. The artificial sight team at the Doheny Eye Institute, led by Dr. Mark Humayun, is a world leader in this area of biomedical engineering and clinical research. Key Features Introduces and assesses the state of the art for a broad audience of biomedical engineers, biophysicists, and clinical...

  1. Professional ethics in biomedical engineering practice and research.

    Science.gov (United States)

    Monzon, Jorge E; Monzon-Wyngaard, Alvaro

    2008-01-01

    This paper discusses some guidelines for use with the accepted fundamental canons of ethics for engineers. We present some rules of practice and professional obligations emerging from these canons. Basic recommendations for engineers dissenting on ethical grounds are also presented. Ethical issues relating to Biomedical Engineering research are illustrated. We mention some cases that could be used to further understanding the ethical implications of biomedical engineering practice.

  2. A community of practice: librarians in a biomedical research network.

    Science.gov (United States)

    De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara

    2014-01-01

    Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine.

  3. Structural biology computing: Lessons for the biomedical research sciences.

    Science.gov (United States)

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields.

  4. A price index for biomedical research and development.

    Science.gov (United States)

    Holloway, T M; Reeb, J S

    1989-01-01

    Price changes of goods and services used in biomedical research and development have important effects on the costs of conducting research. We summarize the trends suggested by a recently constructed biomedical research and development price index, which measures the effects of price changes on the inputs to biomedical research from 1979 to 1986. The fixed-weighted index uses fiscal year 1984 National Institutes of Health expenditure patterns in developing the weights. The rate of increase shown in the price index peaked in 1981 and slowed in following years. However, in most years, the rate of increase in the price index has exceeded the rate of increase in other major price indexes, such as the consumer price index, the producer price index, and the Gross National Product fixed-weighted price index.

  5. Social Media and Mentoring in Biomedical Research Faculty Development

    Science.gov (United States)

    Teruya, Stacey Alan; Bazargan-Hejazi, Shahrzad

    2014-01-01

    Purpose: To determine how effective and collegial mentoring in biomedical research faculty development may be implemented and facilitated through social media. Method: The authors reviewed the literature for objectives, concerns, and limitations of career development for junior research faculty. They tabularized these as developmental goals, and…

  6. Livestock in biomedical research: history, current status and future prospective.

    Science.gov (United States)

    Polejaeva, Irina A; Rutigliano, Heloisa M; Wells, Kevin D

    2016-01-01

    Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.

  7. The Research of Biomedical Intelligent Polymer Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; CHEN Yuan-wei; TANG Chang-wei; QIU Kai; LUO Juan; XU Cheng-yin; WAN Chang-xiu

    2004-01-01

    The properties of biomedical intelligent polymer materials can be changed obviously when there is a little physical or chemical change caused by external condition. They are in the forms of solids, solutions and the polymers on the surface of carrier, and include water solution of hydrophilic polymers, cross-linking hydrophilic polymers(i.e. hydrogels) and the polymers on the surface of carrier. The environmental stimulating factors are temperature, pH value, composition of solution, ionic intention, light intention, electric field, stress field and magnetic field etc.. The properties of intelligent polymer are those of phase, photics, mechanics, electric field, surface energy,reaction ratio, penetrating ratio and recognition etc..Stimulation-response of intelligent water-soluble polymerWater-soluble intelligent polymer can be separated out from solution under special external condition. It can be used as the switch of temperature or pH indicator. When water-soluble intelligent polymer is mixed with soluble-enzyme matter or cell suspension, the polymer can bring phase separation and react with soluble-enzyme matter or cell membrane through accepting some external stimulation. Other water-soluble intelligent polymer is that can make the main chemical group of some natural biomolecular recognition sequence section to arrange on skeleton of polymer at random. It is the same ratio as natural biomolecules.Stimulation-response of intelligent polymer of carrier surface Intelligent polymer can be fixed on the surface of solid polymer carrier through chemical grafting or physical adsorption. When the external conditions are changed, the thickness, humidity and electric field of the surface layer will be changed. Intelligent polymer can be preparated the permanence switch by precipitating into the hole of porous surface, and it can control on-off state of the hole. When protein or cell interacts with intelligent polymer surface to be placed in to open or close, they can be

  8. Reasons behind the participation in biomedical research: a brief review

    OpenAIRE

    Sonia Mansoldo Dainesi; Moisés Goldbaum

    2014-01-01

    INTRODUCTION: Clinical research is essential for the advancement of Medicine, especially regarding the development of new drugs. Understanding the reasons behind patients' decision of participating in these studies is critical for the recruitment and retention in the research. OBJECTIVES: To examine the decision-making of participants in biomedical research, taking into account different settings and environments where clinical research is performed. Methods: A critical review of the lit...

  9. Trust me, I'm a researcher!: The role of trust in biomedical research.

    Science.gov (United States)

    Kerasidou, Angeliki

    2017-03-01

    In biomedical research lack of trust is seen as a great threat that can severely jeopardise the whole biomedical research enterprise. Practices, such as informed consent, and also the administrative and regulatory oversight of research in the form of research ethics committees and Institutional Review Boards, are established to ensure the protection of future research subjects and, at the same time, restore public trust in biomedical research. Empirical research also testifies to the role of trust as one of the decisive factors in research participation and lack of trust as a barrier for consenting to research. However, what is often missing is a clear definition of trust. This paper seeks to address this gap. It starts with a conceptual analysis of the term trust. It compares trust with two other related terms, those of reliance and trustworthiness, and offers a defence of Baier's attribute of 'good will' a basic characteristic of trust. It, then, proceeds to consider trust in the context of biomedical research by examining two questions: First, is trust necessary in biomedical research?; and second, do increases in regulatory oversight of biomedical research also increase trust in the field? This paper argues that regulatory oversight is important for increasing reliance in biomedical research, but it does not improve trust, which remains important for biomedical research. It finishes by pointing at professional integrity as a way of promoting trust and trustworthiness in this field.

  10. [Required procedure for nominal data files processing in biomedical research].

    Science.gov (United States)

    Chambon-Savanovitch, C; Dubray, C; Albuisson, E; Sauvant, M P

    2001-12-01

    To date, biomedical research using nominal data files for the data collection, data acquisition or data processing has had to comply with 2 French laws (Law of December, 20, 1988, modified, relating to the protection of patients participating in biomedical research, and the Law of January, 6, 1978, completed by the Law of July 1, 1994 n degrees 94-548, chapter V bis). This later law dictates rules not only for the establishment of nominal data files, but also confer individual rights to filed persons. These regulations concern epidemiological research, clinical trials, drug watch studies and economic health research. In this note, we describe the obligations and specific general and simplified procedure required for conducting biomedical research. Included in the requirements are an information and authorization procedure with the local and national consultative committees on data processing in biomedical research (CCTIRS, Comité Consultatif sur le Traitement de l'Information en Recherche Biomédicale, and CNIL, Commission Nationale Informatique et Libertés).

  11. Research and technology activities at Ames Research Center's Biomedical Research Division

    Science.gov (United States)

    Martello, N.

    1985-01-01

    Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.

  12. Labor and skills gap analysis of the biomedical research workforce.

    Science.gov (United States)

    Mason, Julie L; Johnston, Elizabeth; Berndt, Sam; Segal, Katie; Lei, Ming; Wiest, Jonathan S

    2016-08-01

    The United States has experienced an unsustainable increase of the biomedical research workforce over the past 3 decades. This expansion has led to a myriad of consequences, including an imbalance in the number of researchers and available tenure-track faculty positions, extended postdoctoral training periods, increasing age of investigators at first U.S. National Institutes of Health R01 grant, and exodus of talented individuals seeking careers beyond traditional academe. Without accurate data on the biomedical research labor market, challenges will remain in resolving these problems and in advising trainees of viable career options and the skills necessary to be productive in their careers. We analyzed workforce trends, integrating both traditional labor market information and real-time job data. We generated a profile of the current biomedical research workforce, performed labor gap analyses of occupations in the workforce at regional and national levels, and assessed skill transferability between core and complementary occupations. We conclude that although supply into the workforce and the number of job postings for occupations within that workforce have grown over the past decade, supply continues to outstrip demand. Moreover, we identify practical skill sets from real-time job postings to optimally equip trainees for an array of careers to effectively meet future workforce demand.-Mason, J. L., Johnston, E., Berndt, S., Segal, K., Lei, M., Wiest, J. S. Labor and skills gap analysis of the biomedical research workforce.

  13. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following three panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... review by the Board involve a wide range of medical specialties within the general areas of...

  14. ChE Undergraduate Research Projects in Biomedical Engineering.

    Science.gov (United States)

    Stroeve, Pieter

    1981-01-01

    Describes an undergraduate research program in biomedical engineering at the State University of New York at Buffalo. Includes goals and faculty comments on the program. Indicates that 58 percent of projects conducted between 1976 and 1980 have been presented at meetings or published. (SK)

  15. The importance of Zebrafish in biomedical research.

    Science.gov (United States)

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Introdução: O peixe-zebra (Danio rerio) é um excelente organismo modelo para o estudo do desenvolvimento dos vertebrados. Este facto deve-se às grandes ninhadas que cada casal produz, que podem atingir 200 embriões a cada sete dias, e ao facto dos embriões serem pequenos, transparentes e com um rápido desenvolvimento externo.Material e Métodos: Usando ferramentas de pesquisa bibliográfica científica disponíveis online e utilizando e as palavras-chave “Zebrafish”, “biomedical research”, “human disease” e “drug screening”, avaliámos estudos originais e revisões indexadas na PubMed.Resultados: Neste artigo de revisão fazemos um resumo do trabalho realizado com este modelo no melhoramento doconhecimento de várias doenças humanas. Fizemos ainda um breve relato da investigação biomédica realizada em Portugal com o modelo de peixe-zebra.Discussão: Têm sido desenvolvidas poderosas ferramentas genéticas e de microscopia in vivo, que também tornaram o peixe-zebra num modelo valioso em investigação biomédica. A conjugação destes atributos com a optimização de sistemas automatizados de triagem de medicamentos, transformaram o peixe-zebra num top model da investigação em biomedicina, nomeadamente na triagem de compostos químicos com efeitos terapêuticos e em testes de toxicidade. Além disso, com a otimização da tecnologia dos xenografos, será possível usar o peixe-zebra na escolha de uma terapia personalizada.Conclusão: O peixe-zebra é um excelente organismo modelo na pesquisa biomédica, em screens de medicamentos e na terapia clinica.

  16. Enabling biomedical research with designer quantum dots

    NARCIS (Netherlands)

    Tomczak, N.; Janczewski, D.; Dorokhin, D.V.; Han, M-Y; Vancso, G.J.; Navarro, Melba; Planell, Josep A.

    2012-01-01

    Quantum Dots (QDs) are a new class of semiconductor nanoparticulate luminophores, which are actively researched for novel applications in biology and nanomedicine. In this review, the recent progress in the design and applications of QD labels for in vitro and in vivo imaging of cells is presented.

  17. Consenting to Heteronormativity: Assumptions in Biomedical Research

    NARCIS (Netherlands)

    Cottingham, M.D.; Fisher, J.A.

    2015-01-01

    The process of informed consent is fundamental to basic scientific research with human subjects. As one aspect of the scientific enterprise, clinical drug trials rely on informed consent documents to safeguard the ethical treatment of trial participants. This paper explores the role of heteronormati

  18. Biomedical text mining and its applications in cancer research.

    Science.gov (United States)

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research.

  19. Reengineering Biomedical Translational Research with Engineering Ethics.

    Science.gov (United States)

    Sunderland, Mary E; Nayak, Rahul Uday

    2015-08-01

    It is widely accepted that translational research practitioners need to acquire special skills and knowledge that will enable them to anticipate, analyze, and manage a range of ethical issues. While there is a small but growing literature that addresses the ethics of translational research, there is a dearth of scholarship regarding how this might apply to engineers. In this paper we examine engineers as key translators and argue that they are well positioned to ask transformative ethical questions. Asking engineers to both broaden and deepen their consideration of ethics in their work, however, requires a shift in the way ethics is often portrayed and perceived in science and engineering communities. Rather than interpreting ethics as a roadblock to the success of translational research, we suggest that engineers should be encouraged to ask questions about the socio-ethical dimensions of their work. This requires expanding the conceptual framework of engineering beyond its traditional focus on "how" and "what" questions to also include "why" and "who" questions to facilitate the gathering of normative, socially-situated information. Empowering engineers to ask "why" and "who" questions should spur the development of technologies and practices that contribute to improving health outcomes.

  20. Swine in biomedical research. V. 1

    Energy Technology Data Exchange (ETDEWEB)

    Tumbleson, M.E.

    1986-01-01

    This volume presents information on the following topics: the history of pigs; conceptual and operational history of the development of miniature swine; breeding program and population standards of the Gottingen miniature swine; moral, social and scientific aspects of the use of swine in research; fertility in gilts inseminated with frozen boar semen stored at -196 C for eight years; ultrastructure of piglet liver; porcine models in surgical research; anesthesia in swine; pulse monitoring, intravascular and instramuscular injection sites in pigs; collagen biosynthesis and collagen content as a measure of dermal healing in experimental wounds in domestic swine; methods for hair removal; swine as a cardiac surgical model; bone marrow transplantation in miniature swine; technical aspects of small intestinal transplantation in young pigs; models; the pig in studies of diarrhea pathophysiology; use of swine to validate airflow perturbation device for airways resistance measurements in humans; swine as a model for human diabetes; and the weanling Yorkshire pig as an animal model for measuring percutaneous penetration.

  1. Multidisciplinary Russian biomedical research in space

    Science.gov (United States)

    Orlov, O. I.; Sychev, V. N.; Samarin, G. I.; Ilyin, E. A.; Belakovskiy, M. S.; Kussmaul, A. R.

    2014-08-01

    Research activities on a comprehensive multidisciplinary program are vital for enhancement of the system of crew's medical care, environmental health and hygiene in space missions. The primary goal of the program must be identification of patterns, intensity and dynamics of structural and functional shifts in organism induced by an aggregate of spaceflight factors including microgravity, isolation, artificial environment, space radiation, etc. Also, the program must pursue differential assessment of emerging deviations from the standpoint of adequacy to the spaceflight conditions and prospects of returning to Earth and guide the development of principles, methods and techniques necessary to maintain health and working capacity of humans during short- and long-duration missions and on return to Earth. Over 50 years, since 1963, the IBMP researchers apply systemic and innovational approaches to fundamental and exploratory studies in the fields of medical sciences, radiation biology, engineering science, biotechnology, etc. with participation of various biological specimens and human volunteers. Investigations aboard manned spacecrafts and biological satellites as well as in ground-based laboratories further enhancement of the medical care system for crews on orbital and remote space missions; they give insight into the fundamental problems of gravitational physiology and biology, psychophysiology, radiation biology, and contribute thereby to the development of knowledge, methods and technologies, as well as medical and scientific equipment.

  2. Education and research in biomedical engineering of the Budapest University of Technology and Economics.

    Science.gov (United States)

    Benyó, Z

    2006-03-01

    Biomedical Engineering is a relatively new interdisciplinary science. This review paper presents the biomedical engineering activity, which is carried out at the Budapest University of Technology and Economics (BUTE) and its partner institutions. In the first parts the main goals and the curriculum of the Biomedical Engineering Education Program is presented. The second part of the paper summarizes the most important biomedical engineering researches most of them carried out in the Biomedical Engineering Laboratory of BUTE.

  3. From biomedical-engineering research to clinical application and industrialization

    Science.gov (United States)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  4. Medical and biomedical research productivity from Palestine, 2002 – 2011

    Directory of Open Access Journals (Sweden)

    Sweileh Waleed M

    2013-02-01

    Full Text Available Abstract Background Medical research productivity reflects the level of medical education and practice in a particular country. The objective of this study was to examine the quantity and quality of medical and biomedical research published from Palestine. Findings Comprehensive review of the literature indexed by Scopus was conducted. Data from Jan 01, 2002 till December 31, 2011 was searched for authors affiliated with Palestine or Palestinian authority. Results were refined to limit the search to medical and biomedical subjects. The quality of publication was assessed using Journal Citation Report. The total number of publications was 2207. A total of 770 publications were in the medical and biomedical subject areas. The annual rate of publication was 0.077 articles per gross domestic product/capita. The 770 publications have an h-index of 32. One hundred and thirty eight (18% articles were published in 46 journals that were not indexed in the web of knowledge. Twenty two (22/770; 2.9% articles were published in journals with an IF > 10. Conclusions The quantity and quality of research originating from Palestinian institutions is promising given the scarce resources of Palestine. However, more effort is needed to bridge the gap in medical research productivity and to promote better health in Palestine.

  5. Critical Contexts for Biomedical Research in a Native American Community: Health Care, History, and Community Survival

    Science.gov (United States)

    Sahota, Puneet Chawla

    2012-01-01

    Native Americans have been underrepresented in previous studies of biomedical research participants. This paper reports a qualitative interview study of Native Americans' perspectives on biomedical research. In-depth interviews were conducted with 53 members of a Southwest tribal community. Many interviewees viewed biomedical research studies as a…

  6. Swine in biomedical research. V. 2

    Energy Technology Data Exchange (ETDEWEB)

    Tumbleson, M.E.

    1986-01-01

    This volume presents information on the following topics: the effect of dietary fiber on growing pigs; preparation of a cerebral perfusion model in the pig - anatomic considerations; a review of the utilization of lactose, glucose, sucrose, and cornstarch by neonatal piglets reared artificially; histology of piglet liver, swine hematology; use of swine as a model of musculoskeletal growth in animals; boar and human sperm as cellular models for membrane phospholipiid biosynthesis and degradation; a stereotaxic atlas of the developing swine (Sus Scrofa) forebrain; the effect of ethanol on liver mitochondrial Ca++-uptake; control of feed intake in pigs; the pig as a model of abberations associated with carbohydrate and lipid metabolism; whey and cholesterol in swine; vitamin and mineral nutrition and malnutrition; cadmium absorption, distribution and excretion in young and adult minature swine; a piglet model for infant total parenteral nutrition studies; swine in perinatal research; the endocrine pancreas of the fetal pig; cardiovascular physiology of the pig fetus; and the effect of sow's milk versus formula on the superior mesenteric blood flow of newborn piglets.

  7. [Ocean and bio-medical research].

    Science.gov (United States)

    Boeuf, par Gilles

    2007-01-01

    On the Planet Earth, oceans and seas today correspond to the largest volume offered to Life. Roughly, 275,000 species have been described from marine environments, only representing some 15% of all the present known living. But marine biomass can be enormous. Life appeared in the ancestral ocean 3 800 million years ago and determining events occurred there: appearance of the nuclear membrane and cell nucleus, "pluricellularity", capture of bacteria transformed into organelles, then sexuality. On the 33 phyla existing today on the Earth, 12 never have left the ocean and are exclusively marine. Such biodiversity, archaism of characters, organisational and behavioural patterns make these marine organisms an excellent reservoir for identifying and extracting very interesting pharmacological and cosmetic molecules (>5 000 today) and/or to represent very pertinent "models" for basic and applied research. Relationships between ocean and public health are physical, chemical, biological and physiological. A few marine species as "models" set the base for major advances in life sciences recognized by several Nobel Prices: from the discovery of phagocytosis to anaphylactic shock, and including nervous influx transmission, memory molecular bases, cyclins discovery, eye organisation, neurotransmitter membrane receptors, bases of the specific immune system... These marine models are very useful to understand the origin and functioning of important living mechanisms in the human and sometimes to deduce applications for efficient treatments. Ocean supplies mankind with renewable living resources, much threatened today. We have to manage and protect these to maintain ecosystems, stocks and biodiversity. Only because of the greenhouse effect and anthropic emissions, temperature is globally increasing: and, what if (tomorrow?) one million species would disappear (before 2050) because of global warming?

  8. [IPS an ethical paradigm for biomedical research].

    Science.gov (United States)

    Gámez Escalona, José Antonio

    2013-01-01

    One of the greatest advances in molecular and cell biology was the discovery of the Induced Pluripotent Stem cells (iPS) in mice, by Shinya Yamanka and his team in 2006. The possibility that these cells can be generated also in humans opens up unexpected ways of development for biomedicine. Its main contribution is the creation of a strong protocol that takes into account three major advances in biology such as; nuclear transfer techniques, the discovery of transcription factors associated with pluripotency and the isolation of mouse embryonic stem cells. A protocol that can be easily replicated in other laboratories to have the oportunity to design tests that allow modeling of many incurable diseases, drug testing for human cells or explore the possibilities of autologous transplants of tissues or organs. Yamanaka ethical motivation to find an alternative to embryonic stem cells (ES) and prevent the destruction of embryos produced by In Vitro Fertilization techniques (IVF), has proved to be a research model, in which the intuition of the ethical principles and its application in advanced biotechnology projects, has meant the opening of a whole new way of understanding the biology of embryonic development. It is clear that development, biologically understood (puede ser también ″treated″; tratado), is not a one-way street. The possibilities to deepen into the foundations of molecular biology and genetics, along with the expectations of its clinical applications have earned Yamanka the Nobel Prize in Medicine 2012, along with another great scholar Sir John Gurdon, discoverer of nuclear transfer techniques.

  9. Biomedical engineering education in developing countries: research synthesis.

    Science.gov (United States)

    Douglas, Tania S

    2011-01-01

    Biomedical engineering (BME) contributes to development through improving human health. This paper examines BME education to address the needs of developing countries. Components of different BME programs described in the literature are synthesized to represent what has been proposed or implemented for the production of graduates able to address health problems in a manner suited to the local environment in which they occur. Published research on BME education is reviewed with reference to problem context, interventions and their mechanisms, and intended outcomes.

  10. Legacy of Biomedical Research During the Space Shuttle Program

    Science.gov (United States)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  11. Tooth regeneration: challenges and opportunities for biomedical material research.

    Science.gov (United States)

    Du, Chang; Moradian-Oldak, Janet

    2006-03-01

    Tooth regeneration presents many challenges to researchers in the fields of biology, medicine and material science. This review considers the opportunities for biomedical material research to contribute to this multidisciplinary endeavor. We present short summaries and an overview on the collective knowledge of tooth developmental biology, advances in stem-cell research, and progress in the understanding of the tooth biomineralization principles as they provide the foundation for developing strategies for reparative and regenerative medicine. We emphasize that various biomaterials developed via biomimetic strategies have great potential for tooth tissue engineering and regeneration applications. The current practices in tooth tissue engineering approaches and applications of biomimetic carriers or scaffolds are also discussed.

  12. Monoamine theories of depression: historical impact on biomedical research.

    Science.gov (United States)

    Mulinari, Shai

    2012-01-01

    Monoamine theories associate depression with reduced brain monoamine levels. These theories achieved broad popularity in the mid-1960s. The present article reviews the historical development of monoamine theories and their subsequent impact on biomedical research. Alleged divisions between West European and US researchers over competing versions of the theories are investigated using bibliometrics. Subsequently, the application of monoamine theories in the NIMH Collaborative Program on the Psychobiology of Depression is covered. The article argues that the impact of monoamine theories is best explained by the ability of researchers, governmental agencies, and pharmaceutical companies to invoke theories that advance various projects and agendas.

  13. Nano-biotechnology for biomedical and diagnostic research

    CERN Document Server

    Zahavy, Eran; Yitzhaki, Shmuel

    2011-01-01

    The title ""Nano Biotechnology for Biomedical and Diagnostics Research"" will address research aspects related to nanomaterial in imaging and biological research, nanomaterials as a biosensing tool, DNA nanotechnology, nanomaterials for drug delivery, medicinal and therapeutic application and cytotoxicity of nanomaterials. These topics will be covered by 16 different manuscripts. Amongst the authors that will contribute to the book are major scientific leaders such as S. Weiss - UCLA, I. Willner, and G. Golomb -- HUJI, S. Esener - UCSD, E.C. Simmel - Tech. Univ. Munchen, I. Medintz -- NRL, N.

  14. Reaping the benefits of biomedical research: partnerships required.

    Science.gov (United States)

    Portilla, Lili M; Alving, Barbara

    2010-06-09

    Reaping the benefits of investments in biomedical research can be achieved most efficiently through active collaboration among industry, academia, government, and nonprofit organizations. The National Institutes of Health (NIH) are exploring multiple ways in which to increase the efficiency of the translational process. Investigators involved in the NIH-funded Clinical and Translational Science Awards are developing public-private partnerships, addressing the barriers to collaboration, training the next generation of interdisciplinary team-oriented researchers, and producing open-source tools for collaboration. NIH is engaging with industry through the Foundation for the NIH and the Small Business Innovation Research Awards.

  15. Reasons behind the participation in biomedical research: a brief review

    Directory of Open Access Journals (Sweden)

    Sonia Mansoldo Dainesi

    2014-12-01

    Full Text Available INTRODUCTION: Clinical research is essential for the advancement of Medicine, especially regarding the development of new drugs. Understanding the reasons behind patients' decision of participating in these studies is critical for the recruitment and retention in the research. OBJECTIVES: To examine the decision-making of participants in biomedical research, taking into account different settings and environments where clinical research is performed. Methods: A critical review of the literature was performed through several databases using the keywords: "motivation", "decision", "reason", "biomedical research", "clinical research", "recruitment", "enrollment", "participation", "benefits", "altruism", "decline", "vulnerability" and "ethics", between August and November 2013, in English and in Portuguese. RESULTS: The review pointed out that the reasons can be different according to some characteristics such as the disease being treated, study phase, prognoses and socioeconomic and cultural environment. Access to better health care, personal benefits, financial rewards and altruism are mentioned depending on the circumstances. CONCLUSION: Finding out more about individuals' reasons for taking part in the research will allow clinical investigators to design studies of greater benefit for the community and will probably help to remove undesirable barriers imposed to participation. Improving the information to health care professionals and patients on the benefits and risks of clinical trials is certainly a good start.

  16. Designing an Internet-based collaboratory for biomedical research.

    Science.gov (United States)

    Gantenbein, Rex E

    2002-01-01

    Several recent grants from the National Institutes of Health to the Universities of Wyoming, Idaho, and Montana have created a unique opportunity for collaboration in biomedical research among the three schools, as well as the community colleges in the region. NIH Center of Biomedical Research Excellence (COBRE) programs at Wyoming have been established to study the biological effect of nitric oxide and to investigate stressors that can contribute to the progression of cardiovascular disease. Funding from these and related grants have significantly upgraded Wyoming bioimaging and microscopy facilities, as well as provided support for faculty and students in a variety of research disciplines. In order to enhance these research efforts, the Center for Rural Health Research and Education at the University of Wyoming is spearheading an effort to create an Internet-based system for sharing data and research resources among the involved sites. This paper describes how such a "collaboratory" could be designed, using techniques developed for distributed research and development in the computer industry. The system, as envisioned, will support remote data acquisition, management, and visualization, while providing security in the form of authorization and authentication of users and virtual private networking for data transmitted between nodes of the network.

  17. Efficacy of the porcine species in biomedical research

    Directory of Open Access Journals (Sweden)

    Karina eGutierrez

    2015-09-01

    Full Text Available Since domestication, pigs have been used extensively in agriculture and kept as companion animals. More recently they have been used in biomedical research, given they share many physiological and anatomical similarities with humans. Recent technological advances in assisted reproduction, somatic cell cloning, stem cell culture, genome editing and transgenesis now enable the creation of unique porcine models of human diseases. Here we highlight the potential applications and advantages of using pigs, particularly minipigs, as indispensable large animal models in fundamental and clinical research, including the development of therapeutics for inherited and chronic disorders, and cancers.

  18. Death, cadavers and post-mortem biomedical research: a point of view from a Christian community.

    Science.gov (United States)

    Charlier, Philippe; Joly, Alain; Champagnat, Julie; Brun, Luc; de la Grandmaison, Geoffroy Lorin; Hervé, Christian

    2013-12-01

    Facing modern developments of medicine and biomedical researches, religious communities are a strong source of ethics principles and orientations. Human dignity does not disappear after life, in a context of biomedical research on cadavers. Moral, political, social and scientific aspects of research on human cadavers (mainly autopsies) have been widely discussed in biomedical publications, whereas the religious ones (which could be predominant for some) have rarely been analyzed and presented. This article will present the results of a survey carried out a French Benedictine Abbey (relative to death, cadaver's status and biomedical research) and subsequent Christian background according to canonic texts and practical cases from anthropological, historical, archeological and biomedical origin.

  19. Eli Lilly and Company's bioethics framework for human biomedical research.

    Science.gov (United States)

    Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J

    2015-11-01

    Current ethics and good clinical practice guidelines address various aspects of pharmaceutical research and development, but do not comprehensively address the bioethical responsibilities of sponsors. To fill this void, in 2010 Eli Lilly and Company developed and implemented a Bioethics Framework for Human Biomedical Research to guide ethical decisions. (See our companion article that describes how the framework was developed and implemented and provides a critique of its usefulness and limitations.) This paper presents the actual framework that serves as a company resource for employee education and bioethics deliberations. The framework consists of four basic ethical principles and 13 essential elements for ethical human biomedical research and resides within the context of our company's mission, vision and values. For each component of the framework, we provide a high-level overview followed by a detailed description with cross-references to relevant well regarded guidance documents. The principles and guidance described should be familiar to those acquainted with research ethics. Therefore the novelty of the framework lies not in the foundational concepts presented as much as the attempt to specify and compile a sponsor's bioethical responsibilities to multiple stakeholders into one resource. When such a framework is employed, it can serve as a bioethical foundation to inform decisions and actions throughout clinical planning, trial design, study implementation and closeout, as well as to inform company positions on bioethical issues. The framework is, therefore, a useful tool for translating ethical aspirations into action - to help ensure pharmaceutical human biomedical research is conducted in a manner that aligns with consensus ethics principles, as well as a sponsor's core values.

  20. Irreproducibility in Preclinical Biomedical Research: Perceptions, Uncertainties, and Knowledge Gaps.

    Science.gov (United States)

    Jarvis, Michael F; Williams, Michael

    2016-04-01

    Concerns regarding the reliability of biomedical research outcomes were precipitated by two independent reports from the pharmaceutical industry that documented a lack of reproducibility in preclinical research in the areas of oncology, endocrinology, and hematology. Given their potential impact on public health, these concerns have been extensively covered in the media. Assessing the magnitude and scope of irreproducibility is limited by the anecdotal nature of the initial reports and a lack of quantitative data on specific failures to reproduce published research. Nevertheless, remediation activities have focused on needed enhancements in transparency and consistency in the reporting of experimental methodologies and results. While such initiatives can effectively bridge knowledge gaps and facilitate best practices across established and emerging research disciplines and therapeutic areas, concerns remain on how these improve on the historical process of independent replication in validating research findings and their potential to inhibit scientific innovation.

  1. A biobank management model applicable to biomedical research

    Directory of Open Access Journals (Sweden)

    Patenaude Johane

    2006-04-01

    Full Text Available Abstract Background The work of Research Ethics Boards (REBs, especially when involving genetics research and biobanks, has become more challenging with the growth of biotechnology and biomedical research. Some REBs have even rejected research projects where the use of a biobank with coded samples was an integral part of the study, the greatest fear being the lack of participant protection and uncontrolled use of biological samples or related genetic data. The risks of discrimination and stigmatization are a recurrent issue. In light of the increasing interest in biomedical research and the resulting benefits to the health of participants, it is imperative that practical solutions be found to the problems associated with the management of biobanks: namely, protecting the integrity of the research participants, as well as guaranteeing the security and confidentiality of the participant's information. Methods We aimed to devise a practical and efficient model for the management of biobanks in biomedical research where a medical archivist plays the pivotal role as a data-protection officer. The model had to reduce the burden placed on REBs responsible for the evaluation of genetics projects and, at the same time, maximize the protection of research participants. Results The proposed model includes the following: 1 a means of protecting the information in biobanks, 2 offers ways to provide follow-up information requested about the participants, 3 protects the participant's confidentiality and 4 adequately deals with the ethical issues at stake in biobanking. Conclusion Until a governmental governance body is established in Quebec to guarantee the protection of research participants and establish harmonized guidelines for the management of biobanks in medical research, it is definitely up to REBs to find solutions that the present lack of guidelines poses. The model presented in this article offers a practical solution on a day-to-day basis for REBs

  2. The miniature pig as an animal model in biomedical research.

    Science.gov (United States)

    Vodicka, Petr; Smetana, Karel; Dvoránková, Barbora; Emerick, Teresa; Xu, Yingzhi Z; Ourednik, Jitka; Ourednik, Václav; Motlík, Jan

    2005-05-01

    Crucial prerequisites for the development of safe preclinical protocols in biomedical research are suitable animal models that would allow for human-related validation of valuable research information gathered from experimentation with lower mammals. In this sense, the miniature pig, sharing many physiological similarities with humans, offers several breeding and handling advantages (when compared to non-human primates), making it an optimal species for preclinical experimentation. The present review offers several examples taken from current research in the hope of convincing the reader that the porcine animal model has gained massively in importance in biomedical research during the last few years. The adduced examples are taken from the following fields of investigation: (a) the physiology of reproduction, where pig oocytes are being used to study chromosomal abnormalities (aneuploidy) in the adult human oocyte; (b) the generation of suitable organs for xenotransplantation using transgene expression in pig tissues; (c) the skin physiology and the treatment of skin defects using cell therapy-based approaches that take advantage of similarities between pig and human epidermis; and (d) neurotransplantation using porcine neural stem cells grafted into inbred miniature pigs as an alternative model to non-human primates xenografted with human cells.

  3. Improving biomedical journals' ethical policies: the case of research misconduct.

    Science.gov (United States)

    Bosch, Xavier

    2014-09-01

    Scientific journals may incur scientific error if articles are tainted by research misconduct. While some journals' ethical policies, especially those on conflicts of interest, have improved over recent years, with some adopting a uniform approach, only around half of biomedical journals, principally those with higher impact factors, currently have formal misconduct policies, mainly for handling allegations. Worryingly, since a response to allegations would reasonably require an a priori definition, far fewer journals have publicly available definitions of misconduct. While some journals and editors' associations have taken significant steps to prevent and detect misconduct and respond to allegations, the content, visibility of and access to these policies varies considerably. In addition, while the lack of misconduct policies may prompt and maintain a de novo approach for journals, potentially causing stress, publication delays and even legal disputes, the lack of uniformity may be a matter of contention for research stakeholders such as editors, authors and their institutions, and publishers. Although each case may need an individual approach, I argue that posting highly visible, readily accessible, comprehensive, consistent misconduct policies could prevent the publication of fraudulent papers, increase the number of retractions of already published papers and, perhaps, reduce research misconduct. Although legally problematic, a concerted approach, with sharing of information between editors, which is clearly explained in journal websites, could also help. Ideally, journals, editors' associations, and publishers should seek consistency and homogenise misconduct policies to maintain public confidence in the integrity of biomedical research publications.

  4. Life sciences biomedical research planning for Space Station

    Science.gov (United States)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  5. Biomedical Research Group, Health Division annual report 1954

    Energy Technology Data Exchange (ETDEWEB)

    Langham, W.H.; Storer, J.B.

    1955-12-31

    This report covers the activities of the Biomedical Research Group (H-4) of the Health Division during the period January 1 through December 31, 1954. Organizationally, Group H-4 is divided into five sections, namely, Biochemistry, Radiobiology, Radiopathology, Biophysics, and Organic Chemistry. The activities of the Group are summarized under the headings of the various sections. The general nature of each section`s program, publications, documents and reports originating from its members, and abstracts and summaries of the projects pursued during the year are presented.

  6. From global bioethics to ethical governance of biomedical research collaborations

    DEFF Research Database (Denmark)

    Wahlberg, Ayo; Rehmann-Sutter, Christoph; Sleeboom-Faulkner, Margaret

    2013-01-01

    standardisation under the rubric of ‘global bioethics’. Such a ‘global’, ‘Western’ or ‘universal’ bioethics has in turn been critiqued as an imposition upon resource-poor, non-Western or local medical settings. In this article, we propose that a different tack is necessary if we are to come to grips......One of the features of advanced life sciences research in recent years has been its internationalisation, with countries such as China and South Korea considered ‘emerging biotech’ locations. As a result, crosscontinental collaborations are becoming common generating moves towards ethical and legal...... with the ethical challenges that inter-continental biomedical research collaborations generate. In particular we ask how national systems of ethical governance of life science research might cope with increasingly global research collaborations with a focus on Sino-European collaboration. We propose four ‘spheres...

  7. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    Science.gov (United States)

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an earlier…

  8. Art and science of authorship for biomedical research publication

    Directory of Open Access Journals (Sweden)

    S S Harsoor

    2016-01-01

    Full Text Available Completion of research is logically followed by process of submission of the outcomes for publication. The objective of this article is to sensitise the young potential authors to improve their skill of writing so that the acceptance rate of publication is improved without significant comments and efforts of the editors of the journal. The article is based on the available literature combined with the experience of the author himself as reviewer and editor of biomedical journals. The treatment patterns of clinicians are moving towards evidence-based medical practice. Hence, a clinically relevant research question based on the contemporary knowledge gap is studied using appropriate research methodology. The writers are informed about the criteria to be fulfilled to claim authorship. Finally, emphasis is laid on the essentials of good medical writing necessary for publication. The writing for submission to biomedical journal is both an art and science in itself. A scientifically well-conducted study along with a sound knowledge of the mechanics of writing will enable the novices to achieve better acceptance rate for publication.

  9. Art and science of authorship for biomedical research publication.

    Science.gov (United States)

    Harsoor, S S

    2016-09-01

    Completion of research is logically followed by process of submission of the outcomes for publication. The objective of this article is to sensitise the young potential authors to improve their skill of writing so that the acceptance rate of publication is improved without significant comments and efforts of the editors of the journal. The article is based on the available literature combined with the experience of the author himself as reviewer and editor of biomedical journals. The treatment patterns of clinicians are moving towards evidence-based medical practice. Hence, a clinically relevant research question based on the contemporary knowledge gap is studied using appropriate research methodology. The writers are informed about the criteria to be fulfilled to claim authorship. Finally, emphasis is laid on the essentials of good medical writing necessary for publication. The writing for submission to biomedical journal is both an art and science in itself. A scientifically well-conducted study along with a sound knowledge of the mechanics of writing will enable the novices to achieve better acceptance rate for publication.

  10. A BRIEF HISTORY OF BIOMEDICAL RESEARCH ETHICS IN IRAN: CONFLICT OF PARADIGMS

    OpenAIRE

    Aramesh, Kiarash

    2014-01-01

    During the past two decades, Iran has experienced a noteworthy growth in its biomedical research sector. At the same time, ethical concerns and debates resulting from this burgeoning enterprise has led to increasing attention paid to biomedical ethics. In Iran, Biomedical research ethics and research oversight passed through major periods during the past decades, separated by a paradigm shift. Period 1, starting from the early 1970s, is characterized by research paternalism and complete relia...

  11. From global bioethics to ethical governance of biomedical research collaborations

    DEFF Research Database (Denmark)

    Wahlberg, Ayo; Rehmann-Sutter, Christoph; Sleeboom-Faulkner, Margaret;

    2013-01-01

    with the ethical challenges that inter-continental biomedical research collaborations generate. In particular we ask how national systems of ethical governance of life science research might cope with increasingly global research collaborations with a focus on Sino-European collaboration. We propose four ‘spheres...... standardisation under the rubric of ‘global bioethics’. Such a ‘global’, ‘Western’ or ‘universal’ bioethics has in turn been critiqued as an imposition upon resource-poor, non-Western or local medical settings. In this article, we propose that a different tack is necessary if we are to come to grips......’ e deliberation, regulation, oversight and interaction e as a helpful way to conceptualise national systems of ethical governance. Using a workshop-based mapping methodology (workshops held in Beijing, Shanghai, Changsha, Xian, Shenzen and London) we identified three specific ethical challenges...

  12. Radioactive ion beams for biomedical research and nuclear medical application

    CERN Document Server

    Beyer, Gerd-Jürgen

    2002-01-01

    The ISOLDE facility at CERN is the world leading on On-Line Isotope Separator installation. The main aspects which makes ISOLDE produced radio-isotopes such valuable for use in biomedical research are: the availability of exotic or uncommon radioisotopes, the high purity and the ion beam quality. A short overview on research strategies, on experimental work and application of ISOLDE produced radionuclides used in the field of biomedicine over a period of more than 2 decades will be given. Special attention will be directed to the radio- lanthanides, because they can be seen as one single element providing the unique possibility to study systematically relationships between molecule parameters and a biological response without changes in the basic tracer molecule. Among those radionuclides we find any radiation properties we wish (single photon emission) suitable for SPECT, positron emission suitable for positron emission tomography (PET), alpha -, beta /sup -/- and Auger electron emission. (21 refs).

  13. Biomedical Engineer's Role in Improving the Management of Devices Used for Genomic Medicine Research

    OpenAIRE

    Gutierrez, O.; B. Hernandez

    2014-01-01

    Today the biomedical engineers are very important in different health institutions around the world, yet the same impact has not been seen in research. All devices that are being used in biotechnology research have the same life cycle as in health care, so research units can learn from the biomedical engineers on how to improve the use of their instruments. The roles of biomedical engineers in the National Institute of Genomic Medicine (INMEGEN) are: (1) establish policies and guidelines to e...

  14. Advances in targeted proteomics and applications to biomedical research

    Science.gov (United States)

    Shi, Tujin; Song, Ehwang; Nie, Song; Rodland, Karin D.; Liu, Tao; Qian, Wei-Jun; Smith, Richard D.

    2016-01-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed. PMID:27302376

  15. Advances in targeted proteomics and applications to biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Tujin [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Song, Ehwang [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Nie, Song [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Rodland, Karin D. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Liu, Tao [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Qian, Wei-Jun [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Smith, Richard D. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA

    2016-08-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074–1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.

  16. From global bioethics to ethical governance of biomedical research collaborations.

    Science.gov (United States)

    Wahlberg, Ayo; Rehmann-Sutter, Christoph; Sleeboom-Faulkner, Margaret; Lu, Guangxiu; Döring, Ole; Cong, Yali; Laska-Formejster, Alicja; He, Jing; Chen, Haidan; Gottweis, Herbert; Rose, Nikolas

    2013-12-01

    One of the features of advanced life sciences research in recent years has been its internationalisation, with countries such as China and South Korea considered 'emerging biotech' locations. As a result, cross-continental collaborations are becoming common generating moves towards ethical and legal standardisation under the rubric of 'global bioethics'. Such a 'global', 'Western' or 'universal' bioethics has in turn been critiqued as an imposition upon resource-poor, non-Western or local medical settings. In this article, we propose that a different tack is necessary if we are to come to grips with the ethical challenges that inter-continental biomedical research collaborations generate. In particular we ask how national systems of ethical governance of life science research might cope with increasingly global research collaborations with a focus on Sino-European collaboration. We propose four 'spheres' - deliberation, regulation, oversight and interaction - as a helpful way to conceptualise national systems of ethical governance. Using a workshop-based mapping methodology (workshops held in Beijing, Shanghai, Changsha, Xian, Shenzen and London) we identified three specific ethical challenges arising from cross-continental research collaborations: (1) ambiguity as to which regulations are applicable; (2) lack of ethical review capacity not only among ethical review board members but also collaborating scientists; (3) already complex, researcher-research subject interaction is further complicated when many nationalities are involved.

  17. Welfare assessment in porcine biomedical research – Suggestion for an operational tool

    DEFF Research Database (Denmark)

    Søndergaard, Lene Vammen; Dagnæs-Hansen, Frederik; Herskin, Mette S

    2011-01-01

    of the extent of welfare assessment in pigs used in biomedical research and to suggest a welfare assessment standard for research facilities based on an exposition of ethological considerations relevant for the welfare of pigs in biomedical research. The tools for porcine welfare assessment presented suggest...

  18. Volunteers for biomedical research. Recruitment and screening of normal controls.

    Science.gov (United States)

    Shtasel, D L; Gur, R E; Mozley, P D; Richards, J; Taleff, M M; Heimberg, C; Gallacher, F; Gur, R C

    1991-11-01

    We examined the process of accruing healthy control subjects for biomedical research on brain function. Of 1670 responders to newspaper advertising, 23.1% were uninterested when learning more about the studies, and 50.9% of those remaining were found by structured telephone screening to meet exclusionary criteria for having a history of psychiatric, neurologic, or medical disease that might affect brain function. Of 312 volunteers passing the telephone screening who came to an in-person evaluation by a physician and agreed to participate, 49.7% were found to meet exclusionary criteria, and only 157 were admitted to the study. This underscores the importance of attending to the issue of screening and assessment of "normal volunteers." Alternative strategies should be considered for enriching the pool.

  19. Machine learning, medical diagnosis, and biomedical engineering research - commentary.

    Science.gov (United States)

    Foster, Kenneth R; Koprowski, Robert; Skufca, Joseph D

    2014-07-05

    A large number of papers are appearing in the biomedical engineering literature that describe the use of machine learning techniques to develop classifiers for detection or diagnosis of disease. However, the usefulness of this approach in developing clinically validated diagnostic techniques so far has been limited and the methods are prone to overfitting and other problems which may not be immediately apparent to the investigators. This commentary is intended to help sensitize investigators as well as readers and reviewers of papers to some potential pitfalls in the development of classifiers, and suggests steps that researchers can take to help avoid these problems. Building classifiers should be viewed not simply as an add-on statistical analysis, but as part and parcel of the experimental process. Validation of classifiers for diagnostic applications should be considered as part of a much larger process of establishing the clinical validity of the diagnostic technique.

  20. Atomic force microscopy in biomedical research - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Pier Carlo Braga and Davide Ricci are old friends not only for those researchers familiar with Atomic force microscopy (AFM but also for those beginners (like the undersigned that already enthusiastically welcomed their 2004 edition (for the same Humana press printing types of Atomic force microscopy: Biomedical methods and applications, eventhough I never had used the AFM. That book was much intended to overview the possible AFM applications for a wide range of readers so that they can be in some way stimulated toward the AFM use. In fact, the great majority of scientists is afraid both of the technology behind AFM (that is naturally thought highly demanding in term of concepts not so familiar to biologists and physicians and of the financial costs: both these two factors are conceived unapproachable by the medium range granted scientist usually not educated in terms of biophysics and electronic background....

  1. Research Training in the Biomedical, Behavioral, and Clinical Research Sciences

    Science.gov (United States)

    National Academies Press, 2011

    2011-01-01

    Comprehensive research and a highly-trained workforce are essential for the improvement of health and health care both nationally and internationally. During the past 40 years the National Research Services Award (NRSA) Program has played a large role in training the workforce responsible for dramatic advances in the understanding of various…

  2. Knowledge of the Nigerian Code of Health Research Ethics Among Biomedical Researchers in Southern Nigeria.

    Science.gov (United States)

    Ogunrin, Olubunmi A; Daniel, Folasade; Ansa, Victor

    2016-12-01

    Responsibility for protection of research participants from harm and exploitation rests on Research Ethics Committees and principal investigators. The Nigerian National Code of Health Research Ethics defines responsibilities of stakeholders in research so its knowledge among researchers will likely aid ethical conduct of research. The levels of awareness and knowledge of the Code among biomedical researchers in southern Nigerian research institutions was assessed. Four institutions were selected using a stratified random sampling technique. Research participants were selected by purposive sampling and completed a pre-tested structured questionnaire. A total of 102 biomedical researchers completed the questionnaires. Thirty percent of the participants were aware of the National Code though 64% had attended at least one training seminar in research ethics. Twenty-five percent had a fairly acceptable knowledge (scores 50%-74%) and 10% had excellent knowledge of the code (score ≥75%). Ninety-five percent expressed intentions to learn more about the National Code and agreed that it is highly relevant to the ethical conduct of research. Awareness and knowledge of the Code were found to be very limited among biomedical researchers in southern Nigeria. There is need to improve awareness and knowledge through ethics seminars and training. Use of existing Nigeria-specific online training resources is also encouraged.

  3. How Do Interaction Experiences Influence Doctoral Students' Academic Pursuits in Biomedical Research?

    Science.gov (United States)

    Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.; Tai, Robert H.

    2013-01-01

    This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based…

  4. Chitosan: A Promising Marine Polysaccharide for Biomedical Research.

    Science.gov (United States)

    Periayah, Mercy Halleluyah; Halim, Ahmad Sukari; Saad, Arman Zaharil Mat

    2016-01-01

    Biomaterials created 50 years ago are still receiving considerable attention for their potential to support development in the biomedical field. Diverse naturally obtained polysaccharides supply a broad range of resources applicable in the biomedical field. Lately, chitosan, a marine polysaccharide derived from chitins-which are extracted from the shells of arthropods such as crab, shrimp, and lobster-is becoming the most wanted biopolymer for use toward therapeutic interventions. This is a general short review of chitosan, highlighting the history, properties, chemical structure, processing method, and factors influencing the usage of chitosan derivatives in the biomedical field.

  5. Chitosan: A promising marine polysaccharide for biomedical research

    Directory of Open Access Journals (Sweden)

    Mercy Halleluyah Periayah

    2016-01-01

    Full Text Available Biomaterials created 50 years ago are still receiving considerable attention for their potential to support development in the biomedical field. Diverse naturally obtained polysaccharides supply a broad range of resources applicable in the biomedical field. Lately, chitosan, a marine polysaccharide derived from chitins—which are extracted from the shells of arthropods such as crab, shrimp, and lobster—is becoming the most wanted biopolymer for use toward therapeutic interventions. This is a general short review of chitosan, highlighting the history, properties, chemical structure, processing method, and factors influencing the usage of chitosan derivatives in the biomedical field.

  6. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L

    2010-06-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers' time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment.

  7. Karma, reincarnation, and medicine: Hindu perspectives on biomedical research.

    Science.gov (United States)

    Hutchinson, Janis Faye; Sharp, Richard

    2008-12-01

    population. This study suggests that minority status does not automatically indicate unwillingness to participate in genetic or medical research. Indian Americans were not skeptical about the potential benefits of biomedical research in comparison to other ethnic minority communities in the United States.

  8. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L.

    2010-01-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers’ time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment. PMID:20543892

  9. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O' Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving

  10. Guidelines for the care and use of laboratory animals in biomedical research.

    Science.gov (United States)

    Jones-Bolin, Susan

    2012-12-01

    This unit provides a general overview on topics related to the practical care and use of laboratory animals in biomedical research. These topics are briefly described and provide Web sites and/or research articles that can be accessed for more detailed information. While the primary focus is on the care and use of rats and mice bred for biomedical research, many of the Web sites listed provide information on other species used for this purpose.

  11. The two revolutions in bio-medical research

    Directory of Open Access Journals (Sweden)

    Ajai R. Singh

    2005-03-01

    by incentives in tax laws that resulted in a massive inflow of venture capital into biomedical research. As a result, academia was suddenly besieged by profit seeking industry that saw immense vistas of opportunity opening up before them. Pharmaceutical majors, propped up with massive private funding by venture capital, were quick to seize the initiative.[Abstract not available

  12. Non-animal methodologies within biomedical research and toxicity testing.

    Science.gov (United States)

    Knight, Andrew

    2008-01-01

    Laboratory animal models are limited by scientific constraints on human applicability, and increasing regulatory restrictions, driven by social concerns. Reliance on laboratory animals also incurs marked - and in some cases, prohibitive - logistical challenges, within high-throughput chemical testing programmes, such as those currently underway within Europe and the US. However, a range of non-animal methodologies is available within biomedical research and toxicity testing. These include: mechanisms to enhance the sharing and assessment of existing data prior to conducting further studies, and physicochemical evaluation and computerised modelling, including the use of structure-activity relationships and expert systems. Minimally-sentient animals from lower phylogenetic orders or early developmental vertebral stages may be used, as well as microorganisms and higher plants. A variety of tissue cultures, including immortalised cell lines, embryonic and adult stem cells, and organotypic cultures, are also available. In vitro assays utilising bacterial, yeast, protozoal, mammalian or human cell cultures exist for a wide range of toxic and other endpoints. These may be static or perfused, and may be used individually, or combined within test batteries. Human hepatocyte cultures and metabolic activation systems offer potential assessment of metabolite activity and organ-organ interaction. Microarray technology may allow genetic expression profiling, increasing the speed of toxin detection, well prior to more invasive endpoints. Enhanced human clinical trials utilising micro- dosing, staggered dosing, and more representative study populations and durations, as well as surrogate human tissues, advanced imaging modalities and human epidemiological, sociological and psycho- logical studies, may increase our understanding of illness aetiology and pathogenesis, and facilitate the development of safe and effective pharmacologic interventions. Particularly when human tissues

  13. Fluorescent nanodiamonds and their use in biomedical research

    Science.gov (United States)

    Suarez-Kelly, Lorena P.; Rampersaud, Isaac V.; Moritz, Charles E.; Campbell, Amanda R.; Hu, Zhiwei; Alkahtani, Masfer H.; Alghannam, Fahad S.; Hemmer, Phillip; Carson, William E.; Rampersaud, Arfaan A.

    2016-03-01

    Nanodiamonds containing color-centers produce non-quenching fluorescence that is easily detected. This makes them useful for cellular, proteomic and genomic applications. However, fluorescent nanodiamonds have yet to become popular in the biomedical research community as labeling reagents. We discuss production of nanodiamonds with distinct color-centers and assess their biocompatibility and techniques for bioconjugation. Fluorescent diamonds were fabricated by electron irradiation of high-pressure, high-temperature micron-sized diamonds which generated diamonds with vacancy-related defects (V). These diamonds were annealed to create nitrogen vacancy (NV)-centers then following a milling step were fractionated into nanoparticle sizes of 30, 60, and 95 nm. Optical characterization of Vand NV-center diamonds demonstrated fluorescence in two distinct green and red channels, respectively. In vitro studies demonstrated that these nanodiamonds are biocompatible and readily taken up by murine macrophage cells. Quantification of NV-center nanodiamond uptake by flow cytometry, showed that uptake was independent of nanodiamond size. Confocal microscopy demonstrated that NV-center nanodiamonds accumulate within the cytoplasm of these cells. NV-center nanodiamonds were then conjugated with streptavidin using a short polyethylene chain as linker. Conjugation was confirmed via a catalytic assay employing biotinylated-horseradish peroxidase. We present a technique for large-scale production of biocompatible conjugated V- or NV-center nanodiamonds. Functional testing is essential for standardization of fluorescent nanodiamond bioconjugates and quality control. Large-scale production of bioconjugated fluorescent nanodiamonds is crucial to their development as novel tools for biological and medical applications.

  14. Latino beliefs about biomedical research participation: a qualitative study on the U.S.-Mexico border.

    Science.gov (United States)

    Ceballos, Rachel M; Knerr, Sarah; Scott, Mary Alice; Hohl, Sarah D; Malen, Rachel C; Vilchis, Hugo; Thompson, Beti

    2014-10-01

    Latinos are under-represented in biomedical research conducted in the United States, impeding disease prevention and treatment efforts for this growing demographic group. We gathered perceptions of biomedical research and gauged willingness to participate through elicitation interviews and focus groups with Latinos living on the U.S.-Mexico border. Themes that emerged included a strong willingness to participate in biomedical studies and suggested that Latinos may be under-represented due to limited formal education and access to health information, not distrust. The conflation of research and clinical care was common and motivated participation. Outreach efforts and educational interventions to inform Latinos of participation opportunities and clarify harms and benefits associated with biomedical research participation will be essential to maintain trust within Latino communities.

  15. The Central Importance of Laboratories for Reducing Waste in Biomedical Research.

    Science.gov (United States)

    Stroth, Nikolas

    2016-12-01

    The global biomedical research enterprise is driving substantial advances in medicine and healthcare. Yet it appears that the enterprise is rather wasteful, falling short of its true innovative potential. Suggested reasons are manifold and involve various stakeholders, such that there is no single remedy. In the present paper, I will argue that laboratories are the basic working units of the biomedical research enterprise and an important site of action for corrective intervention. Keeping laboratories relatively small will enable better training and mentoring of individual scientists, which in turn will yield better performance of the scientific workforce. The key premise of this argument is that people are at the heart of the successes and failures of biomedical research, yet the human dimension of science has been unduly neglected in practice. Renewed focus on the importance of laboratories and their constituent scientists is one promising approach to reducing waste and increasing efficiency within the biomedical research enterprise.

  16. Towards a 21st century roadmap for biomedical research and drug discovery: Consensus report and recommendations

    Science.gov (United States)

    Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, govern...

  17. Biomedical Engineering: A Compendium of Research Training Programs.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This document was prepared to provide a comprehensive view of the programs in biomedical engineering in existence in 1969. These programs are supported by the National Institute of General Medical Sciences and are located at 18 universities. This compendium provides information as to the intent and content of these programs from data provided by…

  18. Bovine tuberculosis research: Immune mechanisms relevant to biomedical applications

    Science.gov (United States)

    Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual benefit approach, clearly demonstrating the relevance of veterinary studies for biomedical applications. Tuberculosis (TB), primarily due...

  19. How Do Interaction Experiences Influence Doctoral Students’ Academic Pursuits in Biomedical Research?

    OpenAIRE

    2013-01-01

    This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based our qualitative analytic approach on the work of Miles and Huberman. The results indicated that among different sources and types of interaction, ac...

  20. From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce.

    Science.gov (United States)

    Valantine, Hannah A; Lund, P Kay; Gammie, Alison E

    2016-01-01

    The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges. Over the past few decades, the biomedical research workforce has benefited from NIH programs aimed at enhancing diversity. However, there is considerable room for improvement, particularly at the level of independent scientists and within scientific leadership. We provide a rationale and specific opportunities to develop and sustain a diverse biomedical research workforce through interventions that promote the successful transitions to different stages on the path toward completion of training and entry into the biomedical workforce.

  1. Are we studying what matters? Health priorities and NIH-funded biomedical engineering research.

    Science.gov (United States)

    Rubin, Jessica B; Paltiel, A David; Saltzman, W Mark

    2010-07-01

    With the founding of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in 1999, the National Institutes of Health (NIH) made explicit its dedication to expanding research in biomedical engineering. Ten years later, we sought to examine how closely federal funding for biomedical engineering aligns with U.S. health priorities. Using a publicly accessible database of research projects funded by the NIH in 2008, we identified 641 grants focused on biomedical engineering, 48% of which targeted specific diseases. Overall, we found that these disease-specific NIH-funded biomedical engineering research projects align with national health priorities, as quantified by three commonly utilized measures of disease burden: cause of death, disability-adjusted survival losses, and expenditures. However, we also found some illnesses (e.g., cancer and heart disease) for which the number of research projects funded deviated from our expectations, given their disease burden. Our findings suggest several possibilities for future studies that would serve to further inform the allocation of limited research dollars within the field of biomedical engineering.

  2. Research to Develop Biomedical Applications of Free Electron Laser Technology

    Science.gov (United States)

    2011-03-31

    conventional endodontic treatment in patients with antibiotic resistant microflora. A Preliminary report. J Endodont , 2010; 36(9): 1463-1466. doi:10.1016...2008). 11. J. W. Goodman, "Some fundamental properties of speckle," Journal of the Optical Society of America 66, 1145-1150 (1976). 12. J. J...of human breast tissue using low coherence interferometry for fine needle aspiration breast biopsy." Journal of Biomedical Optics. 13(1): 014014

  3. Arab nations lagging behind other Middle Eastern countries in biomedical research: a comparative study

    Directory of Open Access Journals (Sweden)

    Bakoush Omran

    2009-04-01

    Full Text Available Abstract Background Analysis of biomedical research and publications in a country or group of countries is used to monitor research progress and trends. This study aims to assess the performance of biomedical research in the Arab world during 2001–2005 and to compare it with other Middle Eastern non-Arab countries. Methods PubMed and Science Citation Index Expanded (SCI-expanded were searched systematically for the original biomedical research publications and their citation frequencies of 16 Arab nations and three non-Arab Middle Eastern countries (Iran, Israel and Turkey, all of which are classified as middle or high income countries. Results The 16 Arab countries together have 5775 and 14,374 original research articles listed by PubMed and SCI-expanded, respectively, significantly less (p Conclusion The Arab world is producing fewer biomedical publications of lower quality than other Middle Eastern countries. Studies are needed to clarify the causes and to propose strategies to improve the biomedical research status in Arab countries.

  4. Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility

    Science.gov (United States)

    Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.

    1992-01-01

    In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.

  5. Medical and biomedical research productivity from the Kingdom of Saudi Arabia (2008-2012

    Directory of Open Access Journals (Sweden)

    Rabia Latif

    2015-01-01

    Full Text Available Background: Biomedical publications from a country mirror the standard of Medical Education and practice in that country. It is important that the performance of the health profession is occasionally documented. Aims: This study aimed to analyze the quantity and quality of biomedical publications from the Kingdom of Saudi Arabia (KSA in international journals indexed in PubMed between 2008 and 2012. Materials and Methods: PubMed was searched for publications associated with KSA from 2008 to 2012. The search was limited to medical and biomedical subjects. Results were saved in a text file and later checked carefully to exclude false positive errors. The quality of the publication was assessed using Journal Citation Report 2012. Results: Biomedical research production in KSA in those 5 years showed a clear linear progression. Riyadh was the main hub of medical and biomedical research activity. Most of the publications (40.9% originated from King Saud University (KSU. About half of the articles were published in journals with an Impact Factor (IF of < 1, one-fourth in journals with no IF, and the remaining one-fourth in journals with a high IF (≥1. Conclusion: This study revealed that research activity in KSA is increasing. However, there is an increasing trend of publishing in local journals with a low IF. More effort is required to promote medical research in Saudi Arabia.

  6. A new paradigm for graduate research and training in the biomedical sciences and engineering.

    Science.gov (United States)

    Humphrey, J D; Coté, G L; Walton, J R; Meininger, G A; Laine, G A

    2005-06-01

    98Emphasis on the individual investigator has fostered discovery for centuries, yet it is now recognized that the complexity of problems in the biomedical sciences and engineering requires collaborative efforts from individuals having diverse training and expertise. Various approaches can facilitate interdisciplinary interactions, but we submit that there is a critical need for a new educational paradigm for the way that we train biomedical engineers, life scientists, and mathematicians. We cannot continue to train graduate students in isolation within single disciplines, nor can we ask any one individual to learn all the essentials of biology, engineering, and mathematics. We must transform how students are trained and incorporate how real-world research and development are done-in diverse, interdisciplinary teams. Our fundamental vision is to create an innovative paradigm for graduate research and training that yields a new generation of biomedical engineers, life scientists, and mathematicians that is more diverse and that embraces and actively pursues a truly interdisciplinary, team-based approach to research based on a known benefit and mutual respect. In this paper, we describe our attempt to accomplish this via focused training in biomechanics, biomedical optics, mathematics, mechanobiology, and physiology. The overall approach is applicable, however, to most areas of biomedical research.

  7. Research Traceability using Provenance Services for Biomedical Analysis

    CERN Document Server

    Anjum, Ashiq; Branson, Andrew; Habib, Irfan; McClatchey, Richard; Solomonides, Tony

    2012-01-01

    We outline the approach being developed in the neuGRID project to use provenance management techniques for the purposes of capturing and preserving the provenance data that emerges in the specification and execution of workflows in biomedical analyses. In the neuGRID project a provenance service has been designed and implemented that is intended to capture, store, retrieve and reconstruct the workflow information needed to facilitate users in conducting user analyses. We describe the architecture of the neuGRID provenance service and discuss how the CRISTAL system from CERN is being adapted to address the requirements of the project and then consider how a generalised approach for provenance management could emerge for more generic application to the (Health)Grid community.

  8. Nano-liquid chromatography in pharmaceutical and biomedical research.

    Science.gov (United States)

    Gama, Mariana Roberto; Collins, Carol H; Bottoli, Carla B G

    2013-08-01

    Miniaturized separation techniques have emerged as environmentally friendly alternatives to available separation methods. Nano-liquid chromatography (nano-LC), microchip devices and nano-capillary electrophoresis are miniaturized methods that minimize reagent consumption and waste generation. Furthermore, the low levels of analytes, especially in biological samples, promote the search for more highly sensitive techniques; coupled to mass spectrometry, nano-LC has great potential to become an indispensable tool for routine analysis of biomolecules. This short review presents the fundamental aspects of nano-LC analytical instrumentation, discussing practical considerations and the primary differences between miniaturized and conventional instrumentation. Some theoretical aspects are discussed to better explain both the potential and the principal limitations of nano-LC. Recent pharmaceutical and biomedical applications of this separation technique are also presented to indicate the satisfactory performance for complex matrices, especially for proteomic analysis, that is obtained with nano-LC.

  9. A Brief History of Biomedical Research Ethics in Iran: Conflict of Paradigms.

    Science.gov (United States)

    Aramesh, Kiarash

    2015-08-01

    During the past two decades, Iran has experienced a noteworthy growth in its biomedical research sector. At the same time, ethical concerns and debates resulting from this burgeoning enterprise has led to increasing attention paid to biomedical ethics. In Iran, Biomedical research ethics and research oversight passed through major periods during the past decades, separated by a paradigm shift. Period 1, starting from the early 1970s, is characterized by research paternalism and complete reliance on researchers as virtuous and caring physicians. This approach was in concordance with the paternalistic clinical practice of physicians outside of research settings during the same period. Period 2, starting from the late 1990s, was partly due to revealing of ethical flaws that occurred in biomedical research in Iran. The regulatory and funding bodies concluded that it was not sufficient to rely solely on the personal and professional virtues of researchers to safeguard human subjects' rights and welfare. The necessity for independent oversight, emphasized by international declarations, became obvious and undeniable. This paradigm shift led to the establishment of research ethics committees throughout the country, the establishment of academic research centers focusing on medical ethics (MEHR) and the compilation of the first set of national ethical guidelines on biomedical research-one of the first and most important projects conducted by and in the MEHR. Although not yet arrived, 'period 3' is on its way. It is predictable from the obvious trends toward performance of high-quality clinical research and the appearance of a highly educated new generation, especially among women.

  10. Radiation protection in medical and biomedical research; Proteccion radiologica en la investigacion medica y biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Fuente Puch, A.E. de la, E-mail: andres@orasen.co.cuES [Centro Nacional de Seguridad Nuclear, La Habana (Cuba)

    2013-11-01

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation.

  11. Hypercompetition in biomedical research evaluation and its impact on young scientist careers.

    Science.gov (United States)

    Kamerlin, Shina Caroline Lynn

    2015-12-01

    Recent years have seen tremendous changes in the modes of publication and dissemination of biomedical information, with the introduction of countless new publishers and publishing models, as well as alternative modes of research evaluation. In parallel, we are witnessing an unsustainable explosion in the amount of information generated by each individual scientist, at the same time as many countries' shrinking research budgets are greatly increasing the competition for research funding. In such a hypercompetitive environment, how does one measure excellence? This contribution will provide an overview of some of the ongoing changes in authorship practices in the biomedical sciences, and also the consequences of hypercompetition to the careers of young scientists, from the perspective of a tenured young faculty member in the biomedical sciences. It will also provide some suggestions as to alternate dissemination and evaluation practices that could reverse current trends. [Int Microbiol 18(4):253-261 (2015)].

  12. Boundary-Work in the Health Research Field: Biomedical and Clinician Scientists' Perceptions of Social Science Research

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D.

    2009-01-01

    Funding agencies in Canada are attempting to break down the organizational boundaries between disciplines to promote interdisciplinary research and foster the integration of the social sciences into the health research field. This paper explores the extent to which biomedical and clinician scientists' perceptions of social science research operate…

  13. [Metrology research on biomedical engineering publications from China in recent years].

    Science.gov (United States)

    Yu, Lu; Su, Juan; Wang, Ying; Sha, Xianzheng

    2014-12-01

    The present paper is to evaluate the scientific research level and development trends of biomedical engineering in China using metrology analysis on Chinese biomedical engineering scientific literatures. Pubmed is used to search the biomedical engineering publications in recent 5 years which are indexed by Science Citation Index, and the number and cited times of these publications and the impact factor of the journals are analyzed. The results show that comparing with the world, although the number of the publication in China has increased in recent 5 years, there is still much room for improvement. Among Chinese mainland, Hongkong and Taiwan, Chinese mainland maintains the obvious advantage in this subject, but Hongkong has the highest average cited number. Shanghai and Beijing have better research ability than other areas in Chinese mainland.

  14. Nanocellulose in Polymer Composites and Biomedical: Research and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan [ORNL; Tekinalp, Halil L [ORNL; Peter, William H [ORNL; Eberle, Cliff [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL

    2014-01-01

    Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thus been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.

  15. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    Science.gov (United States)

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  16. Management control in biomedical research and pharmaceutical innovation

    NARCIS (Netherlands)

    Omta, Simon Willem Frederik

    1995-01-01

    This monograph concentrates on the research floor level, the research unit (the professors with their scientific, technical, analytical and administrative staff in universities, or the department heads with their staff in institutes), and the system of research units which together form the R&D proc

  17. Use of Laboratory Animals in Biomedical and Behavioral Research.

    Science.gov (United States)

    Ministry of Education, Addis Ababa (Ethiopia).

    The use of animals in scientific research has been a controversial issue for over a hundred years. Research with animals has saved human lives, lessened human suffering, and advanced scientific understanding, yet that same research can cause pain and distress for the animals involved and may result in their death. It is hardly surprising that…

  18. Effects of an educational intervention on female biomedical scientists' research self-efficacy.

    Science.gov (United States)

    Bakken, Lori L; Byars-Winston, Angela; Gundermann, Dawn M; Ward, Earlise C; Slattery, Angela; King, Andrea; Scott, Denise; Taylor, Robert E

    2010-05-01

    Women and people of color continue to be underrepresented among biomedical researchers to an alarming degree. Research interest and subsequent productivity have been shown to be affected by the research training environment through the mediating effects of research self-efficacy. This article presents the findings of a study to determine whether a short-term research training program coupled with an efficacy enhancing intervention for novice female biomedical scientists of diverse racial backgrounds would increase their research self-efficacy beliefs. Forty-three female biomedical scientists were randomized into a control or intervention group and 15 men participated as a control group. Research self-efficacy significantly increased for women who participated in the self-efficacy intervention workshop. Research self-efficacy within each group also significantly increased following the short-term research training program, but cross-group comparisons were not significant. These findings suggest that educational interventions that target sources of self-efficacy and provide domain-specific learning experiences are effective at increasing research self-efficacy for women and men. Further studies are needed to determine the longitudinal outcomes of this effort.

  19. A New Voice in Science : Patient participation in decision-making on biomedical research

    NARCIS (Netherlands)

    Caron-Flinterman, J.F.

    2005-01-01

    End-users are increasingly involved in decision-making concerning science and technology. This dissertation focuses on a specific kind of end-user participation: patient participation in decision-making on bio-medical research. Since patients can be considered relevant experts and stakeholders with

  20. Strategies for Disseminating Information on Biomedical Research on Autism to Hispanic Parents

    Science.gov (United States)

    Lajonchere, Clara M.; Wheeler, Barbara Y.; Valente, Thomas W.; Kreutzer, Cary; Munson, Aron; Narayanan, Shrikanth; Kazemzadeh, Abe; Cruz, Roxana; Martinez, Irene; Schrager, Sheree M.; Schweitzer, Lisa; Chklovski, Tara; Hwang, Darryl

    2016-01-01

    Low income Hispanic families experience multiple barriers to accessing evidence-based information on Autism Spectrum Disorders (ASD). This study utilized a mixed-strategy intervention to create access to information in published bio-medical research articles on ASD by distilling the content into parent-friendly English- and Spanish-language ASD…

  1. Alternative methods for the use of non-human primates in biomedical research.

    Science.gov (United States)

    Burm, Saskia M; Prins, Jan-Bas; Langermans, Jan; Bajramovic, Jeffrey J

    2014-01-01

    The experimental use of non-human primates (NHP) in Europe is tightly regulated and is only permitted when there are no alternatives available. As a result, NHP are most often used in late, pre-clinical phases of biomedical research. Although the impetus for scientists, politicians and the general public to replace, reduce and refine NHP in biomedical research is strong, the development of 3Rs technology for NHP poses specific challenges. In February 2014 a workshop on "Alternative methods for the use of NHP in biomedical research" was organized within the international exchange program of EUPRIM-Net II, a European infrastructure initiative that links biomedical primate research centers. The workshop included lectures by key scientists in the field of alternatives as well as by experts from governmental and non-governmental organizations. Furthermore, parallel sessions were organized to stimulate discussion on the challenges of advancing the use of alternative methods for NHP. Subgroups voted on four statements and together composed a list with opportunities and priorities. This report summarizes the presentations that were held, the content of the discussion sessions and concludes with recommendations on 3Rs development for NHP specifically. These include technical, conceptual as well as political topics.

  2. Biomedical engineering - A means to add new dimension to medicine and research

    Science.gov (United States)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  3. Governance of biomedical research in Singapore and the challenge of conflicts of interest.

    Science.gov (United States)

    Ho, Calvin Wai Loon; De Castro, Leonardo D; Campbell, Alastair V

    2014-07-01

    This article discusses the establishment of a governance framework for biomedical research in Singapore. It focuses on the work of the Bioethics Advisory Committee (BAC), which has been instrumental in institutionalizing a governance framework, through the provision of recommendations to the government, and through the coordination of efforts among government agencies. However, developing capabilities in biomedical sciences presents challenges that are qualitatively different from those of past technologies. The state has a greater role to play in balancing conflicting and potentially irreconcilable economic, social, and political goals. This article analyzes the various ways by which the BAC has facilitated this.

  4. Integrating Heterogeneous Biomedical Data for Cancer Research: the CARPEM infrastructure

    OpenAIRE

    2016-01-01

    Summary Cancer research involves numerous disciplines. The multiplicity of data sources and their heterogeneous nature render the integration and the exploration of the data more and more complex. Translational research platforms are a promising way to assist scientists in these tasks. In this article, we identify a set of scientific and technical principles needed to build a translational research platform compatible with ethical requirements, data protection and data-integration problems. W...

  5. Biomedical research ethics: an Islamic view--part I.

    Science.gov (United States)

    Afifi, Raafat Y

    2007-10-01

    Most of the currently accepted western basic principles of ethics in research are consistent with the instructions of Islam. This statement may come as a surprise to some western researchers. In this article, I will discuss why Islam rejects secularization and this is not because the ethical principles embedded in Islam's teachings are archaic and out of touch with current realities. In addition, I will point out the agreement between general broad principles of research ethics and Islamic teachings concerning life; this would show clearly that Islam has addressed the regulation of ethics in research more than 14 centuries ago.

  6. Chimpanzees in AIDS research: A biomedical and bioethical perspective.

    NARCIS (Netherlands)

    R. van den Akker (Ruud); M. Balls; J.W. Eichberg; J. Goodall; J.L. Heeney (Jonathan); A.D.M.E. Osterhaus (Albert); A.M. Prince; I. Spruit

    1993-01-01

    textabstractThe present article represents a consensus view of the appropriate utilization of chimpanzees in AIDS research arrived at as a result of a meeting of a group of scientists involved in AIDS research with chimpanzees and bioethicists. The paper considers which types of studies are scientif

  7. Development, implementation and critique of a bioethics framework for pharmaceutical sponsors of human biomedical research.

    Science.gov (United States)

    Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J

    2015-11-01

    Pharmaceutical human biomedical research is a multi-dimensional endeavor that requires collaboration among many parties, including those who sponsor, conduct, participate in, or stand to benefit from the research. Human subjects' protections have been promulgated to ensure that the benefits of such research are accomplished with respect for and minimal risk to individual research participants, and with an overall sense of fairness. Although these protections are foundational to clinical research, most ethics guidance primarily highlights the responsibilities of investigators and ethics review boards. Currently, there is no published resource that comprehensively addresses bioethical responsibilities of industry sponsors; including their responsibilities to parties who are not research participants, but are, nevertheless key stakeholders in the endeavor. To fill this void, in 2010 Eli Lilly and Company instituted a Bioethics Framework for Human Biomedical Research. This paper describes how the framework was developed and implemented and provides a critique based on four years of experience. A companion article provides the actual document used by Eli Lilly and Company to guide ethical decisions regarding all phases of human clinical trials. While many of the concepts presented in this framework are not novel, compiling them in a manner that articulates the ethical responsibilities of a sponsor is novel. By utilizing this type of bioethics framework, we have been able to develop bioethics positions on various topics, provide research ethics consultations, and integrate bioethics into the daily operations of our human biomedical research. We hope that by sharing these companion papers we will stimulate discussion within and outside the biopharmaceutical industry for the benefit of the multiple parties involved in pharmaceutical human biomedical research.

  8. Biomedical research ethics: an Islamic view part II.

    Science.gov (United States)

    Afifi, Raafat Y

    2007-12-01

    In part I of this article I discussed why Islam rejects secularization and this is not because the ethical principles embedded in Islam's teachings are archaic and out of touch with current realities. In addition, I pointed out the agreement between general broad principles of research ethics and Islamic teachings concerning life; which showed clearly that Islam has addressed the regulation of ethics in research more than 14 centuries ago. In this part, I will address two controversial issues concerning women's rights and age of consent for children as possible research subjects in a Muslim community.

  9. Measuring the Outcome of Biomedical Research: A Systematic Literature Review

    OpenAIRE

    Frédérique Thonon; Rym Boulkedid; Tristan Delory; Sophie Rousseau; Mahasti Saghatchian; Wim van Harten; Claire O'Neill; Corinne Alberti

    2015-01-01

    Background There is an increasing need to evaluate the production and impact of medical research produced by institutions. Many indicators exist, yet we do not have enough information about their relevance. The objective of this systematic review was (1) to identify all the indicators that could be used to measure the output and outcome of medical research carried out in institutions and (2) enlist their methodology, use, positive and negative points. Methodology We have searched 3 databases ...

  10. Biomedical informatics research network: building a national collaboratory to hasten the derivation of new understanding and treatment of disease.

    Science.gov (United States)

    Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H

    2005-01-01

    Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.

  11. Identifying reasons for failure in biomedical research and publishing

    Directory of Open Access Journals (Sweden)

    D. Bousfield

    2009-07-01

    Full Text Available The regular assessment of Brazilian scientific output means that individual university departments need to constantly improve the quantity and quality of their scientific output. A significant proportion of this output involves the work of Master’s and Doctoral students, but getting this work published in a suitable journal can often prove to be a challenge. Although students’ lack of fluency in English is a contributing factor, many of the problems observed have an early origin in the formulation of the research problem and its relevance to current research trends in the international literature. In short, more time needs to be spent in the library and less in the laboratory, and more effort needs to be made in teaching students basic research skills such as the effective use of bibliographic databases like PubMed, Web of Science and Scopus.

  12. Guidelines for euthanasia of laboratory animals used in biomedical research

    Directory of Open Access Journals (Sweden)

    Adina Baias,

    2012-06-01

    Full Text Available Laboratory animals are used in several fields of science research, especially in biology, medicine and veterinary medicine. The majority of laboratory animals used in research are experimental models that replace the human body in study regarding pharmacological or biological safety products, studies conducted for a betterunderstanding of oncologic processes, toxicology, genetic studies or even new surgical techniques. Experimental protocols include a stage in which animals are euthanized in order to remove organs and tissues,or for no unnecessary pain and suffering of animals (humane endpoints or to mark the end of research. The result of euthanasia techniques is a rapid loss of consciousness followed by cardiac arrest, respiratory arrest and disruption of brain activity. Nowadays, the accepted euthanasia techniques can use chemicals (inhalant agents like: carbon dioxide, nitrogen or argon, overdoses of injectable anesthetics or physical methods (decapitation, cervical spine dislocation, stunning, gunshot, pitching.

  13. Professor Mansour Ali Haseeb: Highlights from a pioneer of biomedical research, physician and scientist

    OpenAIRE

    2013-01-01

    The article highlights the career of Professor Mansour Ali Haseeb (1910 – 1973; DKSM, Dip Bact, FRCPath, FRCP [Lond]), a pioneer worker in health, medical services, biomedical research and medical education in the Sudan. After his graduation from the Kitchener School of Medicine (renamed, Faculty of Medicine, University of Khartoum [U of K]) in 1934, he devoted his life for the development of laboratory medicine. He became the first Sudanese Director of Stack Medical Research Laboratories (19...

  14. Measuring the outcome of biomedical research: a systematic literature review.

    Directory of Open Access Journals (Sweden)

    Frédérique Thonon

    Full Text Available There is an increasing need to evaluate the production and impact of medical research produced by institutions. Many indicators exist, yet we do not have enough information about their relevance. The objective of this systematic review was (1 to identify all the indicators that could be used to measure the output and outcome of medical research carried out in institutions and (2 enlist their methodology, use, positive and negative points.We have searched 3 databases (Pubmed, Scopus, Web of Science using the following keywords: [Research outcome* OR research output* OR bibliometric* OR scientometric* OR scientific production] AND [indicator* OR index* OR evaluation OR metrics]. We included articles presenting, discussing or evaluating indicators measuring the scientific production of an institution. The search was conducted by two independent authors using a standardised data extraction form. For each indicator we extracted its definition, calculation, its rationale and its positive and negative points. In order to reduce bias, data extraction and analysis was performed by two independent authors.We included 76 articles. A total of 57 indicators were identified. We have classified those indicators into 6 categories: 9 indicators of research activity, 24 indicators of scientific production and impact, 5 indicators of collaboration, 7 indicators of industrial production, 4 indicators of dissemination, 8 indicators of health service impact. The most widely discussed and described is the h-index with 31 articles discussing it.The majority of indicators found are bibliometric indicators of scientific production and impact. Several indicators have been developed to improve the h-index. This indicator has also inspired the creation of two indicators to measure industrial production and collaboration. Several articles propose indicators measuring research impact without detailing a methodology for calculating them. Many bibliometric indicators identified

  15. Accelerating Biomedical Research in Designing Diagnostic Assays, Drugs, and Vaccines

    Science.gov (United States)

    2010-10-01

    environmental samples. Advances Anders Wallqvist, Nela Zavaljevski, Ravi Vijaya Satya, Rajkumar Bondugula, Valmik Desai, Xin Hu, Kamal Kumar, Michael...Contact him at awallqvist@bioanalysis.org. nela Zavaljevski is a research scientist at US DoD Biotechnology HPC Software Applications Institute. CISE-12-5

  16. Analytical techniques and quality control in biomedical trace element research

    DEFF Research Database (Denmark)

    Heydorn, K.

    1994-01-01

    The small number of analytical results in trace element research calls for special methods of quality control. It is shown that when the analytical methods are in statistical control, only small numbers of duplicate or replicate results are needed to ascertain the absence of systematic errors cau...

  17. Adverse reproduction outcomes among employees working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Wennborg, H.; Bonde, Jens Peter; Stenbeck, M.

    2002-01-01

    Objectives The aim of the study was to investigate reproductive outcomes such as birthweight, preterm births, and postterm births among women working in research laboratories while pregnant. Methods Female university personnel were identified from a source cohort of Swedish laboratory employees, ...

  18. Cross-Cultural Communication Training for Students in Multidisciplinary Research Area of Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2014-08-01

    Full Text Available Biomedical Engineering makes multidisciplinary research area, which includes biology, medicine, engineering and others. Communication training is important for students, who have a potential to develop Biomedical Engineering. Communication is not easy in a multidisciplinary research area, because each area has its own background of thinking. Because each nation has its own background of culture, on the other hand, international communication is not easy, either. A cross-cultural student program has been designed for communication training in the multidisciplinary research area. Students from a variety of backgrounds of research area and culture have joined in the program: mechanical engineering, material science, environmental engineering, science of nursing, dentist, pharmacy, electronics, and so on. The program works well for communication training in the multidisciplinary research area of biomedical engineering. Foreign language and digital data give students chance to study several things: how to make communication precisely, how to quote previous data. The experience in the program helps students not only understand new idea in the laboratory visit, but also make a presentation in the international research conference. The program relates to author's several experiences: the student internship abroad, the cross-cultural student camp, multi PhD theses, various affiliations, and the creation of the interdisciplinary department.

  19. Motivational factors for participation in biomedical research: evidence from a qualitative study of biomedical research participation in Blantyre District, Malawi.

    Science.gov (United States)

    Mfutso-Bengo, Joseph; Manda-Taylor, Lucinda; Masiye, Francis

    2015-02-01

    Obtaining effective informed consent from research participants is a prerequisite to the conduct of an ethically sound research. Yet it is believed that obtaining quality informed consent is generally difficult in settings with low socioeconomic status. This is so because of the alleged undue inducements and therapeutic misconception among participants. However, there is a dearth of data on factors that motivate research participants to take part in research. Hence, this study was aimed at filling this gap in the Malawian context. We conducted 18 focus group discussions with community members in urban and rural communities of Blantyre in Malawi. Most participants reported that they accepted the invitation to participate in research because of better quality treatment during study also known as ancillary care, monetary and material incentives given to participants, and thorough medical diagnosis.

  20. Biobank Graz: The Hub for Innovative Biomedical Research

    OpenAIRE

    Huppertz, Berthold; Bayer, Michaela; Macheiner, Tanja; Sargsyan, Karine

    2016-01-01

    Biobank Graz was established in 2007 as publicly funded, non-profit central research facility of Medical University of Graz, Austria. Biobank Graz is ISO 9001:2008 certified and stores about 7.5 million samples and their associated data, including formalin fixed paraffin embedded (FFPE) and fresh frozen tissues plus fluid samples (serum, plasma, full blood, urine and cerebrospinal, follicular and seminal fluids, etc.) covering 30 years of collection. Samples are handled and stored in semi or ...

  1. Directions in biomedical research: a plea for ideological pluralism.

    Science.gov (United States)

    Malone, P Colm; Agutter, Paul S

    2003-08-01

    Feinstein [A.R. Feinstein, Am. J. Med. 107 (1999) 461] complained that 'basic medical science' has overwhelmed 'pathophysiological medical science' during the past half century, and 'destroyed the bridge between bedside and bench'. We agree that a 'drastic reorientation' will be necessary to correct the overemphasis and imbalance. Re-examining the roots of his problem, we believe that a plea to restore a balance between the 'status' (esteem) of 'large research' and 'small research' in medical science brings back into question the decision of academic physiologists to invoke the framework of Physics in/of 1847 [P.F. Cranefield, J. Hist. Med. Allied Sci. 12 (1957) 407] (together with an absolutist 'Prime Mover'/Metaphysic which Einstein would delete from Physics in 1905). The current 'imbalance' arose when that Cartesian 'Prime Mover' was NOT deleted from the Biological frame. Feinstein felt that the 'privileged status' (esteem) in which fund-giving bodies hold 'Small' researches compared to 'Large' should be cancelled. Once Biology replaces its Cartesian absolutism with a relativist framework, redress will follow naturally when living-material has regained the status of cause as well as effect. Descartes' 'Great Watchmaker' is a Dead God in Biology: a non-metaphysical Biological Perspective would restore balance between 'large' and 'small' investigations. ('Pluralism' implies that no scientific perspective would be second-rate in a relativist framework.)

  2. Smart textile-based wearable biomedical systems: a transition plan for research to reality.

    Science.gov (United States)

    Park, Sungmee; Jayaraman, Sundaresan

    2010-01-01

    The field of smart textile-based wearable biomedical systems (ST-WBSs) has of late been generating a lot of interest in the research and business communities since its early beginnings in the mid-nineties. However, the technology is yet to enter the marketplace and realize its original goal of enhancing the quality of life for individuals through enhanced real-time biomedical monitoring. In this paper, we propose a framework for analyzing the transition of ST-WBS from research to reality. We begin with a look at the evolution of the field and describe the major components of an ST-WBS. We then analyze the key issues encompassing the technical, medical, economic, public policy, and business facets from the viewpoints of various stakeholders in the continuum. We conclude with a plan of action for transitioning ST-WBS from "research to reality."

  3. Biomedical scientists' perceptions of ethical and social implications: is there a role for research ethics consultation?

    Directory of Open Access Journals (Sweden)

    Jennifer B McCormick

    Full Text Available BACKGROUND: Research ethics consultation programs are being established with a goal of addressing the ethical, societal, and policy considerations associated with biomedical research. A number of these programs are modelled after clinical ethics consultation services that began to be institutionalized in the 1980s. Our objective was to determine biomedical science researchers' perceived need for and utility of research ethics consultation, through examination of their perceptions of whether they and their institutions faced ethical, social or policy issues (outside those mandated by regulation and examination of willingness to seek advice in addressing these issues. We conducted telephone interviews and focus groups in 2006 with researchers from Stanford University and a mailed survey in December 2006 to 7 research universities in the U.S. FINDINGS: A total of 16 researchers were interviewed (75% response rate, 29 participated in focus groups, and 856 responded to the survey (50% response rate. Approximately half of researchers surveyed (51% reported that they would find a research ethics consultation service at their institution moderately, very or extremely useful, while over a third (36% reported that such a service would be useful to them personally. Respondents conducting human subjects research were more likely to find such a service very to extremely useful to them personally than respondents not conducting human subjects research (20% vs 10%; chi(2 p<0.001. CONCLUSION: Our findings indicate that biomedical researchers do encounter and anticipate encountering ethical and societal questions and concerns and a substantial proportion, especially clinical researchers, would likely use a consultation service if they were aware of it. These findings provide data to inform the development of such consultation programs in general.

  4. Use of Radioactive Beams for Bio-Medical Research

    CERN Multimedia

    Miederer, M; Allen, B

    2002-01-01

    %title\\\\ \\\\With this Proposal we wish to replace the two previous proposals P42 and P48 (corresponding to the ISOLDE Experiments IS330 and IS331, respectively, including the Addendum 1 dated 04.05.94). Based on experimental results obtained during the last four year's research in the framework of the two proposals and considering modern trends in radiopharmaceutical developments we propose as a first main direction to study systematically relationships between physico-chemical parameters, the concentration and specific activity of tracer molecules and the corresponding biological response. This kind of studies requires highest achievable quality and a universality of radio-tracers, available at ISOLDE. Special attention in this concern is paid to bio-specific tracers (receptor-binding ligands, bio-conjugates etc.) aiming to search for new and more efficient radiopharmaceuticals for radionuclide therapy. The second direction is to support clinical radionuclide therapy by a quantitative follow up of the radionu...

  5. The misuse and abuse of statistics in biomedical research.

    Science.gov (United States)

    Thiese, Matthew S; Arnold, Zachary C; Walker, Skyler D

    2015-01-01

    Statistics are the primary tools for assessing relationships and evaluating study questions. Unfortunately, these tools are often misused, either inadvertently because of ignorance or lack of planning, or conspicuously to achieve a specified result. Data abuses include the incorrect application of statistical tests, lack of transparency and disclosure about decisions that are made, incomplete or incorrect multivariate model building, or exclusion of outliers. Individually, each of these actions may completely invalidate a study, and often studies are victim to more than one offense. Increasingly there are tools and guidance for researchers to look to, including the development of an analysis plan and a series of study specific checklists, in order to prevent or mitigate these offenses.

  6. Microarrays—Current and Future Applications in Biomedical Research

    Directory of Open Access Journals (Sweden)

    Ulrich Certa

    2011-11-01

    Full Text Available Microarrays covers research where microarrays are applied to address complex biological questions. This new open access journal publishes articles where novel applications or state-of-the art technology developments in the field are reported. In addition, novel methods or data analysis algorithms are under the scope of Microarrays. This journal will serve as a platform for fast and efficient sharing of data within this large user community. As one of the first microarray users in Europe back in 1996, I am proud to serve as Editor-in-Chief and I believe we have assembled a highly proficient Editorial Board, responsible for a fair and fast peer-review of articles.

  7. National Space Biomedical Research Institute (NSBRI) JSC Summer Projects

    Science.gov (United States)

    Dowdy, Forrest Ryan

    2014-01-01

    This project optimized the calorie content in a breakfast meal replacement bar for the Advanced Food Technology group. Use of multivariable optimization yielded the highest weight savings possible while simultaneously matching NASA Human Standards nutritional guidelines. The scope of this research included the study of shelf-life indicators such as water activity, moisture content, and texture analysis. Key metrics indicate higher protein content, higher caloric density, and greater mass savings as a result of the reformulation process. The optimization performed for this study demonstrated wide application to other food bars in the Advanced Food Technology portfolio. Recommendations for future work include shelf life studies on bar hardening and overall acceptability data over increased time frames and temperature fluctuation scenarios.

  8. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2016-06-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  9. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E.; Altintas, Ilkay

    2016-01-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  10. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    Science.gov (United States)

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  11. A national human neuroimaging collaboratory enabled by the Biomedical Informatics Research Network (BIRN).

    Science.gov (United States)

    Keator, David B; Grethe, J S; Marcus, D; Ozyurt, B; Gadde, S; Murphy, Sean; Pieper, S; Greve, D; Notestine, R; Bockholt, H J; Papadopoulos, P

    2008-03-01

    The aggregation of imaging, clinical, and behavioral data from multiple independent institutions and researchers presents both a great opportunity for biomedical research as well as a formidable challenge. Many research groups have well-established data collection and analysis procedures, as well as data and metadata format requirements that are particular to that group. Moreover, the types of data and metadata collected are quite diverse, including image, physiological, and behavioral data, as well as descriptions of experimental design, and preprocessing and analysis methods. Each of these types of data utilizes a variety of software tools for collection, storage, and processing. Furthermore sites are reluctant to release control over the distribution and access to the data and the tools. To address these needs, the Biomedical Informatics Research Network (BIRN) has developed a federated and distributed infrastructure for the storage, retrieval, analysis, and documentation of biomedical imaging data. The infrastructure consists of distributed data collections hosted on dedicated storage and computational resources located at each participating site, a federated data management system and data integration environment, an Extensible Markup Language (XML) schema for data exchange, and analysis pipelines, designed to leverage both the distributed data management environment and the available grid computing resources.

  12. Patient identity management for secondary use of biomedical research data in a distributed computing environment.

    Science.gov (United States)

    Nitzlnader, Michael; Schreier, Günter

    2014-01-01

    Dealing with data from different source domains is of increasing importance in today's large scale biomedical research endeavours. Within the European Network for Cancer research in Children and Adolescents (ENCCA) a solution to share such data for secondary use will be established. In this paper the solution arising from the aims of the ENCCA project and regulatory requirements concerning data protection and privacy is presented. Since the details of secondary biomedical dataset utilisation are often not known in advance, data protection regulations are met with an identity management concept that facilitates context-specific pseudonymisation and a way of data aggregation using a hidden reference table later on. Phonetic hashing is proposed to prevent duplicated patient registration and re-identification of patients is possible via a trusted third party only. Finally, the solution architecture allows for implementation in a distributed computing environment, including cloud-based elements.

  13. [International regulation of ethics committees on biomedical research as protection mechanisms for people: analysis of the Additional Protocol to the Convention on Human Rights and Biomedicine, concerning Biomedical Research of the Council of Europe].

    Science.gov (United States)

    de Lecuona, Itziar

    2013-01-01

    The article explores and analyses the content of the Council of Europe's Additional Protocol to the Convention on Human Rights and Biomedicine concerning Biomedical Research regarding the standard legal instrument in biomedical research, issued by an international organization with leadership in bioethics. This implies ethics committees are mechanisms of protection of humans in biomedical research and not mere bureaucratic agencies and that a sound inescapable international regulatory framework exists for States to regulate biomedical research. The methodology used focuses on the analysis of the background, the context in which it is made and the nature and scope of the Protocol. It also identifies and analyses the characteristics and functions of ethics committees in biomedical research and, in particular, the information that should be provided to this bodies to develop their functions previously, during and at the end of research projects. This analysis will provide guidelines, suggestions and conclusions for the awareness and training of members of these committees in order to influence the daily practice. This paper may also be of interest to legal practitioners who work in different areas of biomedical research. From this practical perspective, the article examines the legal treatment of the Protocol to meet new challenges and classic issues in research: the treatment of human biological samples, the use of placebos, avoiding double standards, human vulnerability, undue influence and conflicts of interest, among others. Also, from a critical view, this work links the legal responses to develop work procedures that are required for an effective performance of the functions assigned of ethics committees in biomedical research. An existing international legal response that lacks doctrinal standards and provides little support should, however, serve as a guide and standard to develop actions that allow ethics committees -as key bodies for States- to advance in

  14. Progress and Prospects for Genetic Modification of Nonhuman Primate Models in Biomedical Research

    OpenAIRE

    Chan, Anthony W. S.

    2013-01-01

    The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and...

  15. [The marmoset in biomedical research. Value of this primate model for cardiovascular studies].

    Science.gov (United States)

    Michel, J B; Mahouy, G

    1990-03-01

    Because of its small size, low cost of maintenance, breeding capabilities in captivity, the marmoset, a New World monkey, appears well suited for clinical and fundamental investigations. The contribution of this laboratory animal in the main areas of biomedical research is succinctly described: viral oncology, infections diseases, immunology, reproduction, toxicology and teratology, odontology, behaviour and neuro-psychopathology. Emphasis is put upon the exceptional interest of the use of marmoset as a biological model in cardiovascular studies.

  16. Liberty to decide on dual use biomedical research: an acknowledged necessity.

    Science.gov (United States)

    Keuleyan, Emma

    2010-03-01

    Humanity entered the twenty-first century with revolutionary achievements in biomedical research. At the same time multiple "dual-use" results have been published. The battle against infectious diseases is meeting new challenges, with newly emerging and re-emerging infections. Both natural disaster epidemics, such as SARS, avian influenza, haemorrhagic fevers, XDR and MDR tuberculosis and many others, and the possibility of intentional mis-use, such as letters containing anthrax spores in USA, 2001, have raised awareness of the real threats. Many great men, including Goethe, Spinoza, J.B. Shaw, Fr. Engels, J.F. Kennedy and others, have recognized that liberty is also a responsibility. That is why the liberty to decide now represents an acknowledged necessity: biomedical research should be supported, conducted and published with appropriate measures to prevent potential "dual use". Biomedical scientists should work according to the ethical principles of their Code of Conduct, an analogue of Hippocrates Oath of doctors; and they should inform government, society and their juniors about the problem. National science consulting boards of experts should be created to prepare guidelines and control the problem at state level. An international board should develop minimum standards to be applicable by each country. Bio-preparedness is considered another key-measure.

  17. The first chimpanzee sanctuary in Japan: an attempt to care for the "surplus" of biomedical research.

    Science.gov (United States)

    Morimura, Naruki; Idani, Gen'ichi; Matsuzawa, Tetsuro

    2011-03-01

    This article specifically examines several aspects of the human-captive chimpanzee bond and the effort to create the first chimpanzee sanctuary in Japan. We discuss our ethical responsibility for captive chimpanzees that have been used in biomedical research. On April 1, 2007, the Chimpanzee Sanctuary Uto (CSU) was established as the first sanctuary for retired laboratory chimpanzees in Japan. This initiative was the result of the continuous efforts by members of Support for African/Asian Great Apes (SAGA), and the Great Ape Information Network to provide a solution to the large chimpanzee colony held in biomedical facilities. However, the cessation of invasive biomedical studies using chimpanzees has created a new set of challenges because Japan lacks registration and laws banning invasive ape experiments and lacks a national policy for the life-long care of retired laboratory chimpanzees. Therefore, CSU has initiated a relocation program in which 79 retired laboratory chimpanzees will be sent to domestic zoos and receive life-long care. By the end of 2009, the number of chimpanzees living at CSU had decreased from 79 to 59 individuals. A nationwide network of care facilities and CSU to provide life-long care of retired laboratory chimpanzees is growing across Japan. This will result in humane treatment of these research animals.

  18. Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research: scientific and cultural exchange in undergraduate engineering.

    Science.gov (United States)

    Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin

    2011-01-01

    A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.

  19. Evolution of the use of ionizing radiation in biomedical research; Evolucion del uso de las radiaciones ionizantes en investigacion biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Macias, M. T.

    2011-07-01

    This article presents the evolution, as a change of process, with the use of radioactivity in biomedical research, showing the consume of radioisotopes during the las 20 years indicating the evidences of these changes. The radioisotopic techniques applied at the present are described, and the future use of the radioisotopes in biomedical research is proposed, emphasizing the importance that the Molecular Imaging Techniques will have in this scientific area. (Author) 56 refs.

  20. The ethical justification for the use of animals in biomedical research

    Directory of Open Access Journals (Sweden)

    Kostomitsopoulos N.G.

    2010-01-01

    Full Text Available Despite all the benefits, the use of animals in biomedical research is still a subject of debate with respect to its true value. The sensitivity of the community and the interest of scientists who work in the field of laboratory animal science and welfare have clearly demonstrated that the use of animals in biomedical research must be conducted under specific scientific, legal and ethical rules. The ethical justification of a research project starts from its initial designing phase until its completion and the review of the obtained results. Justification of the necessity of the project and the need to use animals in the interests of human or animal health, the importance of conducting a pilot study and a systematic review of previously published animal research on the topic, and the availability of the proper facilities, equipment and personnel are the main issues of concern in the ethical review of a research project. The ethical justification of the proposed project by the scientists themselves involves team-work, and should be a sustainable rather than a one-off procedure. This justification reflects the interest and the responsibility of scientists to reduce the number of animals, refine the procedures, and possibly replace animals in their research projects. The end-results of the ethical review process will be the creation of a trust relationship between scientists and society. .

  1. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    Science.gov (United States)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  2. Towards government-funded special biomedical research programs to combat rare diseases in China.

    Science.gov (United States)

    Chen, Kai; Yao, Lan; Liu, Zhiyong

    2015-04-01

    Rare diseases are rarely conditions that are often debilitating and even life-threatening, which was identified by the World Health Organization (WHO) with a prevalence of 0.65-1‰. 5,000-7,000 rare diseases are thought to exist, which account for around 10% of diseases for individuals worldwide. It is estimated that over 10 million people were patients with rare disease in China. During the past years, public awareness of rare diseases has in fact heightened with the launching of campaigns by patients' organizations and spontaneous efforts by members of the public, not only in developed countries and regions including United States of America (USA), the European Union (EU), and in Japan, but also in China. However, the features of missed or delayed diagnosis, shortage of effective drugs, and the high cost of currently available drugs for rare diseases make it an important public health issue and a challenge to medical care worldwide. To combat rare disease, the government should assume the responsibility of taking on the important task of promoting the sustained development of a system of medical care for and research into rare diseases. Government-funded special biomedical research programs in the USA, EU, and Japan may serve as a reference for China coping with rare diseases. The government-funded special biomedical research programs consisting of leading clinicians and researchers to enhance basic and applied research on rare diseases were expected to be launched in China.

  3. Perceptions of Chinese Biomedical Researchers Towards Academic Misconduct: A Comparison Between 2015 and 2010.

    Science.gov (United States)

    Liao, Qing-Jiao; Zhang, Yuan-Yuan; Fan, Yu-Chen; Zheng, Ming-Hua; Bai, Yu; Eslick, Guy D; He, Xing-Xiang; Zhang, Shi-Bing; Xia, Harry Hua-Xiang; He, Hua

    2017-04-10

    Publications by Chinese researchers in scientific journals have dramatically increased over the past decade; however, academic misconduct also becomes more prevalent in the country. The aim of this prospective study was to understand the perceptions of Chinese biomedical researchers towards academic misconduct and the trend from 2010 to 2015. A questionnaire comprising 10 questions was designed and then validated by ten biomedical researchers in China. In the years 2010 and 2015, respectively, the questionnaire was sent as a survey to biomedical researchers at teaching hospitals, universities, and medical institutes in mainland China. Data were analyzed by the Chi squared test, one-way analysis of variance with the Tukey post hoc test, or Spearman's rank correlation method, where appropriate. The overall response rates in 2010 and 2015 were 4.5% (446/9986) and 5.5% (832/15,127), respectively. Data from 15 participants in 2010 were invalid, and analysis was thus performed for 1263 participants. Among the participants, 54.7% thought that academic misconduct was serious-to-extremely serious, and 71.2% believed that the Chinese authorities paid no or little attention to the academic misconduct. Moreover, 70.2 and 65.2% of participants considered that the punishment for academic misconduct at the authority and institution levels, respectively, was not appropriate or severe enough. Inappropriate authorship and plagiarism were the most common forms of academic misconduct. The most important factor underlying academic misconduct was the academic assessment system, as judged by 50.7% of the participants. Participants estimated that 40.1% (39.8 ± 23.5% in 2010; 40.2 ± 24.5% in 2015) of published scientific articles were associated with some form of academic misconduct. Their perceptions towards academic misconduct had not significantly changed over the 5 years. Reform of the academic assessment system should be the fundamental approach to tackling this problem in

  4. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  5. Collaborative mining and interpretation of large-scale data for biomedical research insights.

    Directory of Open Access Journals (Sweden)

    Georgia Tsiliki

    Full Text Available Biomedical research becomes increasingly interdisciplinary and collaborative in nature. Researchers need to efficiently and effectively collaborate and make decisions by meaningfully assembling, mining and analyzing available large-scale volumes of complex multi-faceted data residing in different sources. In line with related research directives revealing that, in spite of the recent advances in data mining and computational analysis, humans can easily detect patterns which computer algorithms may have difficulty in finding, this paper reports on the practical use of an innovative web-based collaboration support platform in a biomedical research context. Arguing that dealing with data-intensive and cognitively complex settings is not a technical problem alone, the proposed platform adopts a hybrid approach that builds on the synergy between machine and human intelligence to facilitate the underlying sense-making and decision making processes. User experience shows that the platform enables more informed and quicker decisions, by displaying the aggregated information according to their needs, while also exploiting the associated human intelligence.

  6. Contrasting the ethical perspectives of biospecimen research among individuals with familial risk for hereditary cancer and biomedical researchers: implications for researcher training.

    Science.gov (United States)

    Quinn, Gwendolyn P; Koskan, Alexis; Sehovic, Ivana; Pal, Tuya; Meade, Cathy; Gwede, Clement K

    2014-07-01

    While ethical concerns about participating in biospecimen research have been previously identified, few studies have reported the concerns among individuals with familial risk for hereditary cancer (IFRs). At the same time, biomedical researchers often lack training in discussing such concerns to potential donors. This study explores IFRs' and biomedical researchers' perceptions of ethical concerns about participating in biobanking research. In separate focus groups, IFRs and biomedical researchers participated in 90-min telephone focus groups. Focus group questions centered on knowledge about laws that protect the confidentiality of biospecimen donors, understanding of informed consent and study procedures, and preferences for being recontacted about potential incidental discovery and also study results. A total of 40 IFRs and 32 biomedical researchers participated in the focus groups. Results demonstrated discrepancies between the perceptions of IFRs and researchers. IFRs' concerns centered on health information protection; potential discrimination by insurers and employers; and preferences for being recontacted upon discovery of gene mutations or to communicate study results. Researchers perceived that participants understood laws protecting donors' privacy and (detailed study information outlined in the informed consent process), study outcomes were used to create a training tool kit to increase researchers' understanding of IFRs' concerns about biobanking.

  7. Critically engaging: integrating the social and the biomedical in international microbicides research.

    Science.gov (United States)

    Montgomery, Catherine M; Pool, Robert

    2011-09-27

    Randomized controlled trials and critical social theory are known not to be happy bedfellows. Such trials are embedded in a positivist view of the world, seeking definitive answers to testable questions; critical social theory questions the methods by which we deem the world knowable and may consider experiments in the biomedical sciences as social artifacts. Yet both of these epistemologically and methodologically divergent fields offer potentially important advances in HIV research. In this paper, we describe collaboration between social and biomedical researchers on a large, publicly funded programme to develop vaginal microbicides for HIV prevention. In terms of critical engagement, having integrated and qualitative social science components in the protocol meant potentially nesting alternative epistemologies at the heart of the randomized controlled trial. The social science research highlighted the fallibility and fragility of trial data by demonstrating inconsistencies in key behavioural measurements. It also foregrounded the disjuncture between biomedical conceptions of microbicides and the meanings and uses of the study gel in the context of users' everyday lives. These findings were communicated to the clinical and epidemiological members of the team on an ongoing basis via a feedback loop, through which new issues of concern could also be debated and, in theory, data collection adjusted to the changing needs of the programme. Although critical findings were taken on board by the trialists, a hierarchy of evidence nonetheless remained that limited the utility of some social science findings. This was in spite of mutual respect between clinical epidemiologists and social scientists, equal representation in management and coordination bodies, and equity in funding for the different disciplines. We discuss the positive role that social science integrated into an HIV prevention trial can play, but nonetheless highlight tensions that remain where a hierarchy

  8. Progress and prospects for genetic modification of nonhuman primate models in biomedical research.

    Science.gov (United States)

    Chan, Anthony W S

    2013-01-01

    The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model.

  9. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-09-30

    Progress is reported on biomedical studies using cyclotron-produced /sup 18/F, /sup 15/O, /sup 11/C, /sup 13/N, /sup 52/Fe, /sup 38/K, /sup 206/Bi, /sup 73/Se, /sup 53/Co, and /sup 43/K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; /sup 38/K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments. (HLW)

  10. Extending VIVO ontology to represent research and educational resources in an academic biomedical informatics department.

    Science.gov (United States)

    Nakikj, Drashko; Weng, Chunhua

    2013-01-01

    The increasing need for interdisciplinary team sciences makes it vital for academic research departments to publicize their research and educational resources as part of "linked data" on the semantic web to facilitate research networking and recruitment. We extended an open-source ontology, VIVO, to represent the research and educational resources in an academic biomedical informatics department to enable ontology-based information storage and retrieval. Using participatory design methods, we surveyed representative types of visitors to the department web site to understand their information needs, and incorporated these needs into the ontology design. We added 114 classes and 186 properties to VIVO. Generalizability and scalability are the measures used in our theoretical evaluation.

  11. Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical andTranslational Science Award programs.

    Science.gov (United States)

    Bernstam, Elmer V; Hersh, William R; Johnson, Stephen B; Chute, Christopher G; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark G; Miller, Perry; DiLaura, Robert P; Overcash, Marc; Lehmann, Harold P; Eichmann, David; Athey, Brian D; Scheuermann, Richard H; Anderson, Nick; Starren, Justin; Harris, Paul A; Smith, Jack W; Barbour, Ed; Silverstein, Jonathan C; Krusch, David A; Nagarajan, Rakesh; Becich, Michael J

    2009-07-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally oriented groups including information technology (IT) professionals, computer scientists, and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays, and suboptimal results. Although written from the perspective of Clinical and Translational Science Award (CTSA) programs within academic medical centers, this article addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science, and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information, and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers.

  12. Biomedical informatics: development of a comprehensive data warehouse for clinical and genomic breast cancer research.

    Science.gov (United States)

    Hu, Hai; Brzeski, Henry; Hutchins, Joe; Ramaraj, Mohan; Qu, Long; Xiong, Richard; Kalathil, Surendran; Kato, Rand; Tenkillaya, Santhosh; Carney, Jerry; Redd, Rosann; Arkalgudvenkata, Sheshkumar; Shahzad, Kashif; Scott, Richard; Cheng, Hui; Meadow, Stephen; McMichael, John; Sheu, Shwu-Lin; Rosendale, David; Kvecher, Leonid; Ahern, Stephen; Yang, Song; Zhang, Yonghong; Jordan, Rick; Somiari, Stella B; Hooke, Jeffrey; Shriver, Craig D; Somiari, Richard I; Liebman, Michael N

    2004-10-01

    The Windber Research Institute is an integrated high-throughput research center employing clinical, genomic and proteomic platforms to produce terabyte levels of data. We use biomedical informatics technologies to integrate all of these operations. This report includes information on a multi-year, multi-phase hybrid data warehouse project currently under development in the Institute. The purpose of the warehouse is to host the terabyte-level of internal experimentally generated data as well as data from public sources. We have previously reported on the phase I development, which integrated limited internal data sources and selected public databases. Currently, we are completing phase II development, which integrates our internal automated data sources and develops visualization tools to query across these data types. This paper summarizes our clinical and experimental operations, the data warehouse development, and the challenges we have faced. In phase III we plan to federate additional manual internal and public data sources and then to develop and adapt more data analysis and mining tools. We expect that the final implementation of the data warehouse will greatly facilitate biomedical informatics research.

  13. search.bioPreprint: a discovery tool for cutting edge, preprint biomedical research articles.

    Science.gov (United States)

    Iwema, Carrie L; LaDue, John; Zack, Angela; Chattopadhyay, Ansuman

    2016-01-01

    The time it takes for a completed manuscript to be published traditionally can be extremely lengthy. Article publication delay, which occurs in part due to constraints associated with peer review, can prevent the timely dissemination of critical and actionable data associated with new information on rare diseases or developing health concerns such as Zika virus. Preprint servers are open access online repositories housing preprint research articles that enable authors (1) to make their research immediately and freely available and (2) to receive commentary and peer review prior to journal submission. There is a growing movement of preprint advocates aiming to change the current journal publication and peer review system, proposing that preprints catalyze biomedical discovery, support career advancement, and improve scientific communication. While the number of articles submitted to and hosted by preprint servers are gradually increasing, there has been no simple way to identify biomedical research published in a preprint format, as they are not typically indexed and are only discoverable by directly searching the specific preprint server websites. To address this issue, we created a search engine that quickly compiles preprints from disparate host repositories and provides a one-stop search solution. Additionally, we developed a web application that bolsters the discovery of preprints by enabling each and every word or phrase appearing on any web site to be integrated with articles from preprint servers. This tool, search.bioPreprint, is publicly available at http://www.hsls.pitt.edu/resources/preprint.

  14. Critical evaluation of the use of dogs in biomedical research and testing in Europe.

    Science.gov (United States)

    Hasiwa, Nina; Bailey, Jarrod; Clausing, Peter; Daneshian, Mardas; Eileraas, Marianne; Farkas, Sándor; Gyertyán, István; Hubrecht, Robert; Kobel, Werner; Krummenacher, Goran; Leist, Marcel; Lohi, Hannes; Miklósi, Adám; Ohl, Frauke; Olejniczak, Klaus; Schmitt, Georg; Sinnett-Smith, Patrick; Smith, David; Wagner, Kristina; Yager, James D; Zurlo, Joanne; Hartung, Thomas

    2011-01-01

    Dogs are sometimes referred to as "man's best friend" and with the increase in urbanization and lifestyle changes, dogs are seen by their owners as family members. Society expresses specific concerns about the experimental use of dogs, as they are sometimes perceived to have a special status for humans. This may appear somewhat conflicting with the idea that the intrinsic value of all animals is the same, and that also several other animal species are used in biomedical research and toxicology. This aspect and many others are discussed in an introductory chapter dealing with ethical considerations on the use of dogs as laboratory animals. The report gives an overview on the use of dogs in biomedical research, safety assessment and the drug developmental process and reflects the discussion on the use of dogs as second (non-rodent)species in toxicity testing. Approximately 20,000 dogs are used in scientific procedures in Europe every year, and their distinct genetic, physiological and behavioral characteristics may support their use as models for e.g. behavioral analysis and genetic research. Advances in the 3Rs (Replacement, Reduction and Refinement of experiments using dogs) are described, potential opportunities are discussed and recommendations for further progress in this area are made.

  15. Proposal for a new LEIR Slow Extraction Scheme dedicated to Biomedical Research

    CERN Document Server

    Garonna, A; Carli, C

    2014-01-01

    This report presents a proposal for a new slow extraction scheme for the Low Energy Ion Ring (LEIR) in the context of the feasibility study for a biomedical research facility at CERN. LEIR has to be maintained as a heavy ion accumulator ring for LHC and for fixed-target experiments with the SPS. In parallel to this on-going operation for physics experiments, an additional secondary use of LEIR for a biomedical research facility was proposed [Dosanjh2013, Holzscheiter2012, PHE2010]. This facility would complement the existing research beam-time available at other laboratories for studies related to ion beam therapy. The new slow extraction [Abler2013] is based on the third-integer resonance. The reference beam is composed of fully stripped carbon ions with extraction energies of 20-440 MeV/u, transverse physical emittances of 5-25 µm and momentum spreads of ±2-9•10-4. Two resonance driving mechanisms have been studied: the quadrupole-driven method and the RF-knockout technique. Both were made compatible...

  16. Prediction of junior faculty success in biomedical research: comparison of metrics and effects of mentoring programs.

    Science.gov (United States)

    von Bartheld, Christopher S; Houmanfar, Ramona; Candido, Amber

    2015-01-01

    Measuring and predicting the success of junior faculty is of considerable interest to faculty, academic institutions, funding agencies and faculty development and mentoring programs. Various metrics have been proposed to evaluate and predict research success and impact, such as the h-index, and modifications of this index, but they have not been evaluated and validated side-by-side in a rigorous empirical study. Our study provides a retrospective analysis of how well bibliographic metrics and formulas (numbers of total, first- and co-authored papers in the PubMed database, numbers of papers in high-impact journals) would have predicted the success of biomedical investigators (n = 40) affiliated with the University of Nevada, Reno, prior to, and after completion of significant mentoring and research support (through funded Centers of Biomedical Research Excellence, COBREs), or lack thereof (unfunded COBREs), in 2000-2014. The h-index and similar indices had little prognostic value. Publishing as mid- or even first author in only one high-impact journal was poorly correlated with future success. Remarkably, junior investigators with >6 first-author papers within 10 years were significantly (p COBRE-support increased the success rate of junior faculty approximately 3-fold, from 15% to 47%. Our work defines a previously neglected set of metrics that predicted the success of junior faculty with high fidelity-thus defining the pool of faculty that will benefit the most from faculty development programs such as COBREs.

  17. Credibility Assessment of Deterministic Computational Models and Simulations for Space Biomedical Research and Operations

    Science.gov (United States)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Myers, Jerry

    2015-01-01

    Human missions beyond low earth orbit to destinations, such as to Mars and asteroids will expose astronauts to novel operational conditions that may pose health risks that are currently not well understood and perhaps unanticipated. In addition, there are limited clinical and research data to inform development and implementation of health risk countermeasures for these missions. Consequently, NASA's Digital Astronaut Project (DAP) is working to develop and implement computational models and simulations (M&S) to help predict and assess spaceflight health and performance risks, and enhance countermeasure development. In order to effectively accomplish these goals, the DAP evaluates its models and simulations via a rigorous verification, validation and credibility assessment process to ensure that the computational tools are sufficiently reliable to both inform research intended to mitigate potential risk as well as guide countermeasure development. In doing so, DAP works closely with end-users, such as space life science researchers, to establish appropriate M&S credibility thresholds. We will present and demonstrate the process the DAP uses to vet computational M&S for space biomedical analysis using real M&S examples. We will also provide recommendations on how the larger space biomedical community can employ these concepts to enhance the credibility of their M&S codes.

  18. Big Data Application in Biomedical Research and Health Care: A Literature Review.

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care.

  19. Big Data Application in Biomedical Research and Health Care: A Literature Review

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812

  20. MaPSeq, A Service-Oriented Architecture for Genomics Research within an Academic Biomedical Research Institution

    Directory of Open Access Journals (Sweden)

    Jason Reilly

    2015-07-01

    Full Text Available Genomics research presents technical, computational, and analytical challenges that are well recognized. Less recognized are the complex sociological, psychological, cultural, and political challenges that arise when genomics research takes place within a large, decentralized academic institution. In this paper, we describe a Service-Oriented Architecture (SOA—MaPSeq—that was conceptualized and designed to meet the diverse and evolving computational workflow needs of genomics researchers at our large, hospital-affiliated, academic research institution. We present the institutional challenges that motivated the design of MaPSeq before describing the architecture and functionality of MaPSeq. We then discuss SOA solutions and conclude that approaches such as MaPSeq enable efficient and effective computational workflow execution for genomics research and for any type of academic biomedical research that requires complex, computationally-intense workflows.

  1. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications

    Science.gov (United States)

    Geissner, Andreas; Seeberger, Peter H.

    2016-06-01

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

  2. Strom Thurmond Biomedical Research Center at the Medical Univesity for South Carolina Charleston, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the proposed construction and operation of the Strom Thurmond Biomedical Research Center (Center) at the Medical University of South Carolina (MUSC), Charleston, SC. The DOE is evaluating a grant proposal to authorize the MUSC to construct, equip and operate the lower two floors of the proposed nine-story Center as an expansion of on-going clinical research and out-patient diagnostic activities of the Cardiology Division of the existing Gazes Cardiac Research Institute. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the NEPA. Therefore, the preparation of an Environmental Impact Statement is not required.

  3. Assessing the impact of biomedical research in academic institutions of disparate sizes

    Directory of Open Access Journals (Sweden)

    Hatzakis Angelos

    2009-05-01

    Full Text Available Abstract Background The evaluation of academic research performance is nowadays a priority issue. Bibliometric indicators such as the number of publications, total citation counts and h-index are an indispensable tool in this task but their inherent association with the size of the research output may result in rewarding high production when evaluating institutions of disparate sizes. The aim of this study is to propose an indicator that may facilitate the comparison of institutions of disparate sizes. Methods The Modified Impact Index (MII was defined as the ratio of the observed h-index (h of an institution over the h-index anticipated for that institution on average, given the number of publications (N it produces i.e. (α and β denote the intercept and the slope, respectively, of the line describing the dependence of the h-index on the number of publications in log10 scale. MII values higher than 1 indicate that an institution performs better than the average, in terms of its h-index. Data on scientific papers published during 2002–2006 and within 36 medical fields for 219 Academic Medical Institutions from 16 European countries were used to estimate α and β and to calculate the MII of their total and field-specific production. Results From our biomedical research data, the slope β governing the dependence of h-index on the number of publications in biomedical research was found to be similar to that estimated in other disciplines (≈0.4. The MII was positively associated with the average number of citations/publication (r = 0.653, p Conclusion The MII should complement the use of h-index when comparing the research output of institutions of disparate sizes. It has a conceptual interpretation and, with the data provided here, can be computed for the total research output as well as for field-specific publication sets of institutions in biomedicine.

  4. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  5. The Impact of CRISPR/Cas9-Based Genomic Engineering on Biomedical Research and Medicine.

    Science.gov (United States)

    Go, D E; Stottmann, R W

    2016-01-01

    There has been prolonged and significant interest in manipulating the genome for a wide range of applications in biomedical research and medicine. An existing challenge in realizing this potential has been the inability to precisely edit specific DNA sequences. Past efforts to generate targeted double stranded DNA cleavage have fused DNA-targeting elements such as zinc fingers and DNA-binding proteins to endonucleases. However, these approaches are limited by both design complexity and inefficient, costineffective operation. The discovery of CRISPR/Cas9, a branch of the bacterial adaptive immune system, as a potential genomic editing tool holds the promise of facile targeted cleavage. Its novelty lies in its RNA-guided endonuclease activity, which enhances its efficiency, scalability, and ease of use. The only necessary components are a Cas9 endonuclease protein and an RNA molecule tailored to the gene of interest. This lowbarrier of adoption has facilitated a plethora of advances in just the past three years since its discovery. In this review, we will discuss the impact of CRISPR/Cas9 on biomedical research and its potential implications in medicine.

  6. "Personality" in laboratory mice used for biomedical research: a way of understanding variability?

    Science.gov (United States)

    Lewejohann, Lars; Zipser, Benjamin; Sachser, Norbert

    2011-09-01

    The mouse, including countless lines of transgenic and knockout mice, has become the most prominent model organism in biomedical research. Behavioral characterization is often conducted in batteries of short tests on locomotion, anxiety, learning and memory, etc. In such tests, any individual differences within groups are usually considered to be disturbing variance. In order to reduce variance in experimental animal research enormous efforts of standardization have been made. While a substantial reduction of variability has been reached compared to the earlier years of experimental animal studies a considerable amount of inter-individual differences still seems to escape standardization. This effect is demonstrated and evaluated by re-analyzing data from two experiments conducted in our laboratory with inbred mice. Interestingly, behavioral patterns of individual animals seem to be correlated across context and time. In evolutionary biology, "animal personalities" have been discussed recently to comprise such stable patterns. We argue here, that nonrandom behavioral correlations across contexts and time might underlie the variability commonly found in biomedical mouse studies.

  7. Developing an Open-Source Bibliometric Ranking Website Using Google Scholar Citation Profiles for Researchers in the Field of Biomedical Informatics.

    Science.gov (United States)

    Sittig, Dean F; McCoy, Allison B; Wright, Adam; Lin, Jimmy

    2015-01-01

    We developed the Biomedical Informatics Researchers ranking website (rank.informatics-review.com) to overcome many of the limitations of previous scientific productivity ranking strategies. The website is composed of four key components that work together to create an automatically updating ranking website: (1) list of biomedical informatics researchers, (2) Google Scholar scraper, (3) display page, and (4) updater. The site has been useful to other groups in evaluating researchers, such as tenure and promotions committees in interpreting the various citation statistics reported by candidates. Creation of the Biomedical Informatics Researchers ranking website highlights the vast differences in scholarly productivity among members of the biomedical informatics research community.

  8. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  9. A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research.

    Science.gov (United States)

    Ireland, J J; Roberts, R M; Palmer, G H; Bauman, D E; Bazer, F W

    2008-10-01

    outstanding scientists dedicated to using domestic animal models for agricultural and biomedical research, strong incentives for scientists to take advantage of training opportunities to write NIH grants, and greater NIH and USDA cooperation to sponsor the use of agricultural animals as dual-purpose animal models that benefit agriculture and biomedicine will also be necessary. In conclusion, the broad diversity of animal models needed for agricultural and biomedical research is at risk unless research priorities at the land grant universities are critically evaluated and financial support for such research is dramatically increased.

  10. Proposal for a data publication and citation framework when sharing biomedical research resources.

    Science.gov (United States)

    He, Shan; Ganzinger, Matthias; Hurdle, John F; Knaup, Petra

    2013-01-01

    Research data and biospecimen repositories are valuable resources for biomedical investigators. Sharing these resources has great potential benefits including efficient use of resources, avoiding duplicate experiments, gathering adequate sample sizes, and promoting collaboration. However, concerns from data producers about difficulties of getting proper acknowledgement for their data contributions are increasingly becoming obstacles for efficient and large-scale data sharing in reality. In this research project we analyzed the inadequacy of current policy-based solution for promoting data sharing. The recommendations in this paper emphasize data publication and citation. This project aims to promote the acknowledgement of data contributors with realizable informatics tools that augment informal policy-level strategies, and do so in a way that promotes data sharing.

  11. [The legal question of the obtention of human stem cells for biomedical research. Legislation policy considerations].

    Science.gov (United States)

    Romeo Casabona, Carlos María

    2006-01-01

    The future Law on Biomedical Research, whose draft bill has been approved by the Council of Ministers and that will soon begin its parliamentary process of approval, will regulate, among other matters, the research with embryos. Likewise, it will make a pronouncement on the so-called therapeutic cloning. This report makes a detailed analysis of different matters that must be borne in mind by the legislator in order to face the process of evaluation and approval of said Law in relation with the aforementioned matters. It makes a special analysis of the legal texts of an international nature to which Spain is unavoidably subjected to, in such a way that the legislative text that will finally be approved is not contrary to the dispositions that are within such.

  12. The Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) Data Repository

    Science.gov (United States)

    Shin, David D.; Ozyurt, I. Burak; Brown, Gregory G.; Fennema-Notestine, Christine; Liu, Thomas T.

    2015-01-01

    Arterial spin labeling (ASL) MRI provides an accurate and reliable measure of cerebral blood flow (CBF). A rapidly growing number of CBF measures are being collected both in clinical and research settings around the world, resulting in a large volume of data across a wide spectrum of study populations and health conditions. Here, we describe a central CBF data repository with integrated processing workflows, referred to as the Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN). The CBFBIRN provides an integrated framework for the analysis and comparison of CBF measures across studies and sites. In this work, we introduce the main capabilities of the CBFBIRN (data storage, processing and sharing), describe what types of data are available, explain how users can contribute to the data repository and access existing data from it, and discuss our long term plans for the CBFBIRN. PMID:26032887

  13. Resolving complex research data management issues in biomedical laboratories: Qualitative study of an industry-academia collaboration.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L; Bova, G Steven; Wang, Jian; Ackerman, Christopher F; Berlinicke, Cynthia A; Chen, Steve H; Lindvall, Mikael; Zack, Donald J

    2016-04-01

    This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to (1) characterize specific problems faced by biomedical researchers with traditional information management practices, (2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to (3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity.

  14. Research in intelligent biomedical clothing vs. realities in the European textile business.

    Science.gov (United States)

    Walter, Lutz

    2004-01-01

    In order to make intelligent biomedical clothing a market reality, a critical mass of scientific, technical and industrial capacities from various disciplines and industries must be successfully brought together. The textiles and clothing sector, i.e. the industry that transform natural or man-made fibres into yarns then with a myriad of processing options into complex tissues and finally into clothing, is undoubtedly a crucial element in such development. With Europe disposing of the world's most diverse, productive and innovative textiles and clothing industry, in addition to relevant expertise and resources in other scientific disciplines and industrial sectors, it could play a leading role in the advancement of the concept of intelligent biomedical clothing. In this process, a great number of challenges--firstly scientific and technical in nature--still need to be overcome and support from public funding programmes could constitute the necessary trigger for research and industrial efforts to be seriously undertaken. In view of the great benefits of such new products for the individual consumer, national health care systems and the society as a whole, a concerted effort in private-public partnership seems merited.

  15. Selection mechanisms underlying high impact biomedical research--a qualitative analysis and causal model.

    Directory of Open Access Journals (Sweden)

    Hilary Zelko

    Full Text Available BACKGROUND: Although scientific innovation has been a long-standing topic of interest for historians, philosophers and cognitive scientists, few studies in biomedical research have examined from researchers' perspectives how high impact publications are developed and why they are consistently produced by a small group of researchers. Our objective was therefore to interview a group of researchers with a track record of high impact publications to explore what mechanism they believe contribute to the generation of high impact publications. METHODOLOGY/PRINCIPAL FINDINGS: Researchers were located in universities all over the globe and interviews were conducted by phone. All interviews were transcribed using standard qualitative methods. A Grounded Theory approach was used to code each transcript, later aggregating concept and categories into overarching explanation model. The model was then translated into a System Dynamics mathematical model to represent its structure and behavior. Five emerging themes were found in our study. First, researchers used heuristics or rules of thumb that came naturally to them. Second, these heuristics were reinforced by positive feedback from their peers and mentors. Third, good communication skills allowed researchers to provide feedback to their peers, thus closing a positive feedback loop. Fourth, researchers exhibited a number of psychological attributes such as curiosity or open-mindedness that constantly motivated them, even when faced with discouraging situations. Fifth, the system is dominated by randomness and serendipity and is far from a linear and predictable environment. Some researchers, however, took advantage of this randomness by incorporating mechanisms that would allow them to benefit from random findings. The aggregation of these themes into a policy model represented the overall expected behavior of publications and their impact achieved by high impact researchers. CONCLUSIONS: The proposed

  16. An Examination of How Women and Underrepresented Racial/Ethnic Minorities Experience Barriers in Biomedical Research and Medical Programs

    Science.gov (United States)

    Chakraverty, Devasmita

    2013-01-01

    Women in medicine and biomedical research often face challenges to their retention, promotion, and advancement to leadership positions (McPhillips et al., 2007); they take longer to advance their careers, tend to serve at less research-intensive institutions and have shorter tenures compared to their male colleagues (White, McDade, Yamagata, &…

  17. Prediction of junior faculty success in biomedical research: comparison of metrics and effects of mentoring programs

    Directory of Open Access Journals (Sweden)

    Christopher S. von Bartheld

    2015-09-01

    Full Text Available Measuring and predicting the success of junior faculty is of considerable interest to faculty, academic institutions, funding agencies and faculty development and mentoring programs. Various metrics have been proposed to evaluate and predict research success and impact, such as the h-index, and modifications of this index, but they have not been evaluated and validated side-by-side in a rigorous empirical study. Our study provides a retrospective analysis of how well bibliographic metrics and formulas (numbers of total, first- and co-authored papers in the PubMed database, numbers of papers in high-impact journals would have predicted the success of biomedical investigators (n = 40 affiliated with the University of Nevada, Reno, prior to, and after completion of significant mentoring and research support (through funded Centers of Biomedical Research Excellence, COBREs, or lack thereof (unfunded COBREs, in 2000–2014. The h-index and similar indices had little prognostic value. Publishing as mid- or even first author in only one high-impact journal was poorly correlated with future success. Remarkably, junior investigators with >6 first-author papers within 10 years were significantly (p < 0.0001 more likely (93% to succeed than those with ≤6 first-author papers (4%, regardless of the journal’s impact factor. The benefit of COBRE-support increased the success rate of junior faculty approximately 3-fold, from 15% to 47%. Our work defines a previously neglected set of metrics that predicted the success of junior faculty with high fidelity—thus defining the pool of faculty that will benefit the most from faculty development programs such as COBREs.

  18. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  19. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    Science.gov (United States)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey

  20. The Benefits of Attending the Annual Biomedical Research Conference for Minority Students (ABRCMS): The Role of Research Confidence

    Science.gov (United States)

    Casad, Bettina J.; Chang, Amy L.; Pribbenow, Christine M.

    2016-01-01

    The Annual Biomedical Research Conference for Minority Students (ABRCMS) is designed to support undergraduate students’ professional development as future scientists. Juniors, seniors, and postbaccalaureates who attended ABRCMS during 2008–2011 were emailed a link to an online questionnaire in which they reported their experiences at the conference. Attendees reported many ABRCMS-provided benefits. Frequency of attending or presenting at ABRCMS is positively related to science self-efficacy, research confidence, sense of belonging in science, and intentions to pursue a research degree in graduate school. Increased research confidence predicts graduate school plans and intentions for a research career in science; however, men were slightly more likely to intend to pursue a research career than women, likely due to higher research confidence. Although all attendees benefited from ABRCMS, underrepresented minority (URM) students had higher science self-efficacy and sense of belonging in science after attending ABRCMS than non-URM students. This finding demonstrates the effectiveness of ABRCMS as an intervention to increase the representation and success of URMs in science. Results highlight the importance of attending a minority-oriented research conference where URMs can develop their science self-efficacy, research confidence, and sense of belonging in science. However, changes to the conference and undergraduate research experiences may be necessary to reduce gender gaps. PMID:27562962

  1. The Benefits of Attending the Annual Biomedical Research Conference for Minority Students (ABRCMS): The Role of Research Confidence.

    Science.gov (United States)

    Casad, Bettina J; Chang, Amy L; Pribbenow, Christine M

    2016-01-01

    The Annual Biomedical Research Conference for Minority Students (ABRCMS) is designed to support undergraduate students' professional development as future scientists. Juniors, seniors, and postbaccalaureates who attended ABRCMS during 2008-2011 were emailed a link to an online questionnaire in which they reported their experiences at the conference. Attendees reported many ABRCMS-provided benefits. Frequency of attending or presenting at ABRCMS is positively related to science self-efficacy, research confidence, sense of belonging in science, and intentions to pursue a research degree in graduate school. Increased research confidence predicts graduate school plans and intentions for a research career in science; however, men were slightly more likely to intend to pursue a research career than women, likely due to higher research confidence. Although all attendees benefited from ABRCMS, underrepresented minority (URM) students had higher science self-efficacy and sense of belonging in science after attending ABRCMS than non-URM students. This finding demonstrates the effectiveness of ABRCMS as an intervention to increase the representation and success of URMs in science. Results highlight the importance of attending a minority-oriented research conference where URMs can develop their science self-efficacy, research confidence, and sense of belonging in science. However, changes to the conference and undergraduate research experiences may be necessary to reduce gender gaps.

  2. Concept for linking de-identified biomedical research data using a study participant management system.

    Science.gov (United States)

    Stahmann, Alexander; Bauer, Christian R K D; Schwanke, Jens

    2014-01-01

    Biomedical research projects show an increasing demand of large numbers of participants from different recruiting centers to achieve statistically significant results. The collected types of data are stored in distributed databases and are linked to the participant by different non-resolvable identifiers (layered pseudonyms) for de-identification. To ensure the quality of the gathered data, regular quality assurance analyses are required at each local center. Because of the distributed databases and layered pseudonyms the analyses can only be achieved manually. Therefore, the process is error-prone and laborious. The objective of this paper is to propose a solution concept to automate the manual process by using a local study participant management system. It orchestrates the process and enables the quality assurance analyses within a clinical data warehouse.

  3. The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics.

    Science.gov (United States)

    Jones, Ian L; Livi, Paolo; Lewandowska, Marta K; Fiscella, Michele; Roscic, Branka; Hierlemann, Andreas

    2011-03-01

    Planar microelectrode arrays (MEAs) are devices that can be used in biomedical and basic in vitro research to provide extracellular electrophysiological information about biological systems at high spatial and temporal resolution. Complementary metal oxide semiconductor (CMOS) is a technology with which MEAs can be produced on a microscale featuring high spatial resolution and excellent signal-to-noise characteristics. CMOS MEAs are specialized for the analysis of complete electrogenic cellular networks at the cellular or subcellular level in dissociated cultures, organotypic cultures, and acute tissue slices; they can also function as biosensors to detect biochemical events. Models of disease or the response of cellular networks to pharmacological compounds can be studied in vitro, allowing one to investigate pathologies, such as cardiac arrhythmias, memory impairment due to Alzheimer's disease, or vision impairment caused by ganglion cell degeneration in the retina.

  4. [Biomedical research practice and therapeutic practice: to whom does the human body belong?].

    Science.gov (United States)

    Gaille-Nikodimov, Marie

    2006-02-01

    Who owns the human body? This issue has been formerly raised about the status of the slave. Today, it has become a prominent stake for when reflecting on biomedical research and healthcare practices. In our cultures, many answers may be given to this question : they are derived from philosophical or theological traditions ; they are borrowed from anthropological, sociological or psychological knowledge ; they may be formulated in a moral or political perspective. All of them give different insights and reveal one of the various dimensions of the question. When examining the status of the body and its relation to the human subject in the various stages of his/her life (including his/her death), one of the main difficulties is to deal with each of these answers and to understand how they meet and interact in the public debate. Another matter is related to the fact that law also plays a crucial role in the process of giving an answer to this question. In our book, A qui appartient le corps humain ? Médecine, politique et droit (Paris, Belles Lettres, 2004), Claire Crignon-De Oliveira and I have tried to deal with both difficulties. In this article, I focus on the meaning of the various law traditions. In western world, the laws are all derived, up to a certain extent, from the Roman tradition. Whether they have chosen to consider the human body as a property or to associate the body to the person, they have taken very different options. However, an examination of the ways laws are elaborated on this topic shows that these two conceptions can meet in unexpected manners and that lawmaking can give creative answers to both the problem of protecting the person and to the requirements of biomedical research and healthcare practices.

  5. Design, implementation, and evaluation of principles of writing biomedical research paper course

    Directory of Open Access Journals (Sweden)

    ALI AKBAR NEKOOEIAN

    2013-10-01

    Full Text Available Introduction: Graduate (PhD students in medical sciences, who will form future faculties and investigators in Iran’s Universities of Medical Sciences, are not trained on scientific writing during their training. The present study describes the design, implementation, and evaluation of Principles of Writing Biomedical Research Paper course. Methods: The course, prepared based on an extensive search of the literature and books on writing biomedical research papers, was offered as an elective course to PhD students at Shiraz University of Medical Sciences in the second semester of 2011-2012 academic year. The structure and function of various sections of a paper and publication ethics were discussed in lecture and practical sessions over a period of 12 weeks. The course was then evaluated using a self-designed questionnaire. Results: The majority of students gave the highest score (20 to the content and implementation of all sessions of the course. Moreover, most of them believed that the allotted time to the course was not enough, and suggested that it should be increased to 32 hours (equal to two credits. Also, almost all the participants believed that overall the materials lectured were comprehensive, the practical sessions were important in learning the lectured materials, and the course was useful in advancing their abilities and skills to write papers. Conclusion: The evaluation of the present course showed that it was able to increase the participants’ knowledge of the structure of scientific papers, and enhanced their abilities and skills to write papers. The evaluation was used as a basis to modify the course.

  6. The Brazilian Research and Teaching Center in Biomedicine and Aerospace Biomedical Engineering

    Science.gov (United States)

    Russomano, T; Falcao, P F; Dalmarco, G; Martinelli, L; Cardoso, R; Santos, M A; Sparenberg, A

    2008-01-01

    The recent engagement of Brazil in the construction and utilization of the International Space Station has motivated several Brazilian research institutions and universities to establish study centers related to Space Sciences. The Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) is no exception. Method: The University initiated in 1993 the first degree course training students to operate commercial aircraft in South America (the School of Aeronautical Sciences. A further step was the decision to build the first Brazilian laboratory dedicated to the conduct of experiments in ground-based microgravity simulation. Established in 1998, the Microgravity Laboratory, which was located in the Instituto de Pesquisas Cientificas e Tecnologicas (IPCT), was supported by the Schools of Medicine, Aeronautical Sciences and Electrical Engineering/Biomedical Engineering. At the end of 2006, the Microgravity Laboratory became a Center and was transferred to the School of Engineering. Results: The principal activities of the Microgravity Centre are the development of research projects related to human physiology before, during and after ground-based microgravity simulation and parabolic flights, to aviation medicine in the 21st century and to aerospace biomedical engineering. Conclusion: The history of Brazilian, and why not say worldwide, space science should unquestionably go through PUCRS. As time passes, the pioneering spirit of our University in the aerospace area has become undeniable. This is due to the group of professionals, students, technicians and staff in general that have once worked or are still working in the Center of Microgravity, a group of faculty and students that excel in their undeniable technical-scientific qualifications. PMID:19048090

  7. Challenges facing academic research in commercializing event-detector implantable devices for an in-vivo biomedical subcutaneous device for biomedical analysis

    Science.gov (United States)

    Juanola-Feliu, E.; Colomer-Farrarons, J.; Miribel-Català, P.; Samitier, J.; Valls-Pasola, J.

    2011-05-01

    It is widely recognized that the welfare of the most advanced economies is at risk, and that the only way to tackle this situation is by controlling the knowledge economies and dealing with. To achieve this ambitious goal, we need to improve the performance of each dimension in the "knowledge triangle": education, research and innovation. Indeed, recent findings point to the importance of strategies of adding-value and marketing during R+D processes so as to bridge the gap between the laboratory and the market and so ensure the successful commercialization of new technology-based products. Moreover, in a global economy in which conventional manufacturing is dominated by developing economies, the future of industry in the most advanced economies must rely on its ability to innovate in those high-tech activities that can offer a differential added-value, rather than on improving existing technologies and products. It seems quite clear, therefore, that the combination of health (medicine) and nanotechnology in a new biomedical device is very capable of meeting these requisites. This work propose a generic CMOS Front-End Self-Powered In-Vivo Implantable Biomedical Device, based on a threeelectrode amperometric biosensor approach, capable of detecting threshold values for targeted concentrations of pathogens, ions, oxygen concentration, etc. Given the speed with which diabetes can spread, as diabetes is the fastest growing disease in the world, the nano-enabled implantable device for in-vivo biomedical analysis needs to be introduced into the global diabetes care devices market. In the case of glucose monitoring, the detection of a threshold decrease in the glucose level it is mandatory to avoid critic situations like the hypoglycemia. Although the case study reported in this paper is complex because it involves multiple organizations and sources of data, it contributes to extend experience to the best practices and models on nanotechnology applications and

  8. Biomedical research in france and brazil: an analysis of significant differences and ethical issues

    Directory of Open Access Journals (Sweden)

    Hervé Moizan

    2016-06-01

    Full Text Available At first sight, Brazil and France seem pretty distant from one another, but on the map, they are not separated by the Atlantic Ocean, but by the Oyapock River, located between the state of Amapa and French Guiana (French overseas department, creating a 730 km long international border. If the distance does exist, it is very different when we finely analyze some similarities in the field of biomedical research. France is the biggest country of Western Europe and covers 1/5 of the European Union. Apart from Metropolitan France, the country contains overseas territories, remnants of its colonial past. Over the centuries, France has known several political systems, from Ancient History to the current Republic. According to Ernest Renan, the French nation is more an ideology than a reality, primarily based on “the desire of living together and the wish to highlight our legacy”(1. The tragic attacks of November 2015 and all the reactions over the next days illustrate this. Brazil, discovered by the Portuguese explorer Pedro Alvares during the 16th century, is established on half of South America and is about 16 times bigger than France. This giant does not look to the past but is always moving forward. The concept of nation is really strong throughout the country, as shown by the enthusiasm of soccer players wearing the national auriverde jersey and the National Team supporters. Furthermore, they possess a strong culture of entrepreneurship defined by Stefan Zweig as the legacy of the early colonial era(2. Biomedical research is a human activity which aims to give expected solutions, and sometimes unexpected ones too, to a major and insoluble problem at a given time. This research is based on knowledge and will question it with a scientific approach, spread between what is known today and what will be known tomorrow. Ideally, the point of getting new knowledge is to improve a group of people or the entire population’s health. The researcher is a

  9. Integrating behavioral and biomedical research in HIV interventions: challenges and opportunities.

    Science.gov (United States)

    Rausch, Dianne M; Grossman, Cynthia I; Erbelding, Emily J

    2013-06-01

    Recent clinical trials have demonstrated overwhelming success of biomedical tools to prevent the spread of HIV infection. However, the complex and somewhat disparate results of some of these trials have highlighted the need for effective integration of biomedical and behavioral sciences in the design and implementation of any future intervention trial. Integrating behavioral and biomedical sciences will require appropriate behavioral theories that can be used in the context of biomedical clinical trials and multidisciplinary teams working together from the earliest stages of trial design through to completion. It is also clear that integration of behavioral science will be necessary to implement prevention at the population level and reverse the HIV epidemic.

  10. Opening pathways for underrepresented high school students to biomedical research careers: the Emory University RISE program.

    Science.gov (United States)

    Rohrbaugh, Margaret C; Corces, Victor G

    2011-12-01

    Increasing the college graduation rates of underrepresented minority students in science disciplines is essential to attain a diverse workforce for the 21st century. The Research Internship and Science Education (RISE) program attempts to motivate and prepare students from the Atlanta Public School system, where underrepresented minority (URM) students comprise a majority of the population, for biomedical science careers by offering the opportunity to participate in an original research project. Students work in a research laboratory from the summer of their sophomore year until graduation, mentored by undergraduate and graduate students and postdoctoral fellows (postdocs). In addition, they receive instruction in college-level biology, scholastic assessment test (SAT) preparation classes, and help with the college application process. During the last 4 yr, RISE students have succeeded in the identification and characterization of a series of proteins involved in the regulation of nuclear organization and transcription. All but 1 of 39 RISE students have continued on to 4-year college undergraduate studies and 61% of those students are currently enrolled in science-related majors. These results suggest that the use of research-based experiences at the high school level may contribute to the increased recruitment of underrepresented students into science-related careers.

  11. CollaborationViz: interactive visual exploration of biomedical research collaboration networks.

    Directory of Open Access Journals (Sweden)

    Jiang Bian

    Full Text Available Social network analysis (SNA helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs. Especially, in the Clinical Translational Science Award (CTSA community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences--a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization.

  12. Professor Mansour Ali Haseeb: Highlights from a pioneer of biomedical research, physician and scientist.

    Science.gov (United States)

    Salih, Mustafa Abdalla M

    2013-01-01

    The article highlights the career of Professor Mansour Ali Haseeb (1910 - 1973; DKSM, Dip Bact, FRCPath, FRCP [Lond]), a pioneer worker in health, medical services, biomedical research and medical education in the Sudan. After his graduation from the Kitchener School of Medicine (renamed, Faculty of Medicine, University of Khartoum [U of K]) in 1934, he devoted his life for the development of laboratory medicine. He became the first Sudanese Director of Stack Medical Research Laboratories (1952 - 1962). He made valuable contributions by his services in the vaccine production and implementation programs, most notably in combating small pox, rabies and epidemic meningitis. In 1963 he became the first Sudanese Professor of Microbiology and Parasitology and served as the first Sudanese Dean of the Faculty of Medicine, U of K (1963-1969). He was an active loyal citizen in public life and served in various fields outside the medical profession. As Mayor of Omdurman, he was invited to visit Berlin in 1963 by Willy Brandt, Mayor of West Berlin (1957-1966) and Chancellor of the Federal Republic of Germany (1969 to 1974). Also as Mayor of Omdurman, he represented the City in welcoming Queen Elizabeth II during her visit to Sudan in February 1965. He also received State Medals from Egypt and Ethiopia. In 1973 he was appointed Chairman of the Sudan Medical Research Council, and was awarded the international Dr. Shousha Foundation Prize and Medal by the WHO for his contribution in the advancement of health, research and medical services.

  13. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  14. The NIH-NIAID Schistosomiasis Resource Center at the Biomedical Research Institute: Molecular Redux

    Science.gov (United States)

    Cody, James J.; Ittiprasert, Wannaporn; Miller, André N.; Henein, Lucie; Mentink-Kane, Margaret M.; Hsieh, Michael H.

    2016-01-01

    Schistosomiasis remains a health burden in many parts of the world. The complex life cycle of Schistosoma parasites and the economic and societal conditions present in endemic areas make the prospect of eradication unlikely in the foreseeable future. Continued and vigorous research efforts must therefore be directed at this disease, particularly since only a single World Health Organization (WHO)-approved drug is available for treatment. The National Institutes of Health (NIH)–National Institute of Allergy and Infectious Diseases (NIAID) Schistosomiasis Resource Center (SRC) at the Biomedical Research Institute provides investigators with the critical raw materials needed to carry out this important research. The SRC makes available, free of charge (including international shipping costs), not only infected host organisms but also a wide array of molecular reagents derived from all life stages of each of the three main human schistosome parasites. As the field of schistosomiasis research rapidly advances, it is likely to become increasingly reliant on omics, transgenics, epigenetics, and microbiome-related research approaches. The SRC has and will continue to monitor and contribute to advances in the field in order to support these research efforts with an expanding array of molecular reagents. In addition to providing investigators with source materials, the SRC has expanded its educational mission by offering a molecular techniques training course and has recently organized an international schistosomiasis-focused meeting. This review provides an overview of the materials and services that are available at the SRC for schistosomiasis researchers, with a focus on updates that have occurred since the original overview in 2008. PMID:27764112

  15. Scientific Reproducibility in Biomedical Research: Provenance Metadata Ontology for Semantic Annotation of Study Description.

    Science.gov (United States)

    Sahoo, Satya S; Valdez, Joshua; Rueschman, Michael

    2016-01-01

    Scientific reproducibility is key to scientific progress as it allows the research community to build on validated results, protect patients from potentially harmful trial drugs derived from incorrect results, and reduce wastage of valuable resources. The National Institutes of Health (NIH) recently published a systematic guideline titled "Rigor and Reproducibility " for supporting reproducible research studies, which has also been accepted by several scientific journals. These journals will require published articles to conform to these new guidelines. Provenance metadata describes the history or origin of data and it has been long used in computer science to capture metadata information for ensuring data quality and supporting scientific reproducibility. In this paper, we describe the development of Provenance for Clinical and healthcare Research (ProvCaRe) framework together with a provenance ontology to support scientific reproducibility by formally modeling a core set of data elements representing details of research study. We extend the PROV Ontology (PROV-O), which has been recommended as the provenance representation model by World Wide Web Consortium (W3C), to represent both: (a) data provenance, and (b) process provenance. We use 124 study variables from 6 clinical research studies from the National Sleep Research Resource (NSRR) to evaluate the coverage of the provenance ontology. NSRR is the largest repository of NIH-funded sleep datasets with 50,000 studies from 36,000 participants. The provenance ontology reuses ontology concepts from existing biomedical ontologies, for example the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), to model the provenance information of research studies. The ProvCaRe framework is being developed as part of the Big Data to Knowledge (BD2K) data provenance project.

  16. The impact of biomedical literature published in the province of Vojvodina on researchers in the world and in Yugoslavia.

    Science.gov (United States)

    Brkić, S

    2001-01-01

    This study uses bibliometric analysis to evaluate scientific biomedical literature published on the territory of Vojvodina and its impact on researchers in Yugoslavia and in the world. The study sample comprised 6.979 publications from the territory of Vojvodina published in the period 1986-1997. The following parameters were determined: productivity of authors and institutions where they were employed and some other bibliometric parameters. The impact of these publications on other researches was analyzed for the same period, by citation analysis of papers published in 3 most eminent medical journals in Yugoslavia (3.440 articles, 58.484 references) and in Science Citation Index. Results of the study revealed that production of biomedical literature on the territory of Vojvodina was at high level. Medical research presented in journals of Vojvodina, which are the carriers of current information and accomplishments in science, technique, and practice in biomedicine, was satisfactory. Biomedical articles published in Vojvodina showed a tendency towards increase in number of authors, whereas the greater number of publications were written by a small number of extremely productive authors and institutions. Biomedical researches in Yugoslavia usually cite only foreign literature, while domestic references are mostly self-citations or citations of older literature. The impact of publications published in Vojvodina on other researchers in Yugoslavia is evident, but it is greatest on the territory where they are published. In regard to biomedical journals from Vojvodina "Medical review" is the most cited journal in Yugoslavia and in SCI. Most of the cited references belong to a small number of authors. Thus, according to bibliometric criteria the impact of medical science and professional practice in Vojvodina on international scientific streems is negligible, as well as the impact of papers published in Vojvodina on researchers in the world. Only 0.4 works published in

  17. Using a popular science nonfiction book to introduce biomedical research ethics in a biology majors course.

    Science.gov (United States)

    Walton, Kristen L W

    2014-12-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  18. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course

    Directory of Open Access Journals (Sweden)

    Kristen L.W. Walton

    2014-08-01

    Full Text Available Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States.  Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course.  The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research.  Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research.  Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course.  This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  19. Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute.

    Science.gov (United States)

    Guerrero, Santiago; Dujardin, Gwendal; Cabrera-Andrade, Alejandro; Paz-Y-Miño, César; Indacochea, Alberto; Inglés-Ferrándiz, Marta; Nadimpalli, Hima Priyanka; Collu, Nicola; Dublanche, Yann; De Mingo, Ismael; Camargo, David

    2016-01-01

    Electronic laboratory notebooks (ELNs) will probably replace paper laboratory notebooks (PLNs) in academic research due to their advantages in data recording, sharing and security. Despite several reports describing technical characteristics of ELNs and their advantages over PLNs, no study has directly tested ELN performance among researchers. In addition, the usage of tablet-based devices or wearable technology as ELN complements has never been explored in the field. To implement an ELN in our biomedical research institute, here we first present a technical comparison of six ELNs using 42 parameters. Based on this, we chose two ELNs, which were tested by 28 scientists for a 3-month period and by 80 students via hands-on practical exercises. Second, we provide two survey-based studies aimed to compare these two ELNs (PerkinElmer Elements and Microsoft OneNote) and to analyze the use of tablet-based devices. We finally explore the advantages of using wearable technology as ELNs tools. Among the ELNs tested, we found that OneNote presents almost all parameters evaluated (39/42) and both surveyed groups preferred OneNote as an ELN solution. In addition, 80% of the surveyed scientists reported that tablet-based devices improved the use of ELNs in different respects. We also describe the advantages of using OneNote application for Apple Watch as an ELN wearable complement. This work defines essential features of ELNs that could be used to improve ELN implementation and software development.

  20. The tree shrews: adjuncts and alternatives to primates as models for biomedical research.

    Science.gov (United States)

    Cao, J; Yang, E-B; Su, J-J; Li, Y; Chow, P

    2003-06-01

    The tree shrews are non-rodent, primate-like, small animals. There is increasing interest in using them to establish animal models for medical and biological research. This review focuses on the use of the tree shrews in in vivo studies on viral hepatitis, hepatocellular carcinoma (HCC), myopia, and psychosocial stress. Because of the susceptibility of the tree shrews (Tupaia belangeri) and their hepatocytes to infection with human hepatitis B virus (HBV) in vivo and in vitro, these animals have been used to establish human hepatitis virus-induced hepatitis and human HBV- and aflatoxin B1-associated HCC models. As these animals are phylogenetically close to primates in evolution and have a well-developed visual system and color vision in some species, they have been utilized to establish myopia models. Because dramatic behavioral, physiological, and neuroendocrine changes in subordinate male tree shrews are similar to those observed in depressed human patients, the tree shrews have been successfully employed to experimentally study psychosocial stress. However, the tree shrews holds significant promise as research models and great use could be made of these animals in biomedical research.

  1. The "Research Audit" Model: A Prototype for Data-Driven Discovery of Interdisciplinary Biomedical Research

    Science.gov (United States)

    Burnette, Margaret H.

    2015-01-01

    The increasing interdisciplinarity of scientific research creates both challenges and opportunities for librarians. The liaison model may be inadequate for supporting campus research that represents multiple disciplines and geographically dispersed departments. The identification of units, researchers, and projects is a first step in planning and…

  2. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  3. Technical aspects of exposure to magnetic fields of extremely low frequencies (ELF in biomedical research

    Directory of Open Access Journals (Sweden)

    Paweł Bieńkowski

    2015-06-01

    Full Text Available Background: Experiments on the electromagnetic field influence on organisms are an important part of biophysical studies. It is an interdisciplinary research spanning biology and medicine with the engineering in generation and measurement of electromagnetic fields. The aim of the study consists in the analysis of parameters estimations and measurements of extremely low frequency magnetic field (ELF MF as well as exposure systems parameters in biomedical research. Material and Methods: Experiments were performed on 2 most popular low magnetic field exposure systems: the solenoid and Helmholtz coils. A theoretical analysis and a measurement verification of the magnetic field distribution inside the systems were carried out to evaluate the homogeneity of the magnetic field. Additional factors, vibrations and temperature changes, affecting the assessment of the biological effects of magnetic field exposure were also examined. Results: Based on the study results, a comparative analysis of solenoids and Helmholtz coils as the magnetic field exposure systems was presented. Proposals for the description of magnetic field exposure were also formulated. Conclusions: The authors emphasize the importance of a conscious choice of exposure conditions and their explicit description. These are fundamental requirements for both the reproduction of experimental conditions and the verification of results. Med. Pr. 2015;66(2:185–197

  4. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Science.gov (United States)

    Barzegari, Abolfazl; Saei, Amir Ata

    2012-01-01

    Introduction The severe need for constructing replacement tissues in organ transplanta-tion has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV) bioreactors initially developed by NASA. Methods In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results Research is now focused on assembly of 3 dimensional (3D) tissue fragments from various cell types in human body such as chon-drocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of vari-ous cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion Tissue engineering in (simulated) microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth. PMID:23678438

  5. The role of ontologies in biological and biomedical research: a functional perspective.

    Science.gov (United States)

    Hoehndorf, Robert; Schofield, Paul N; Gkoutos, Georgios V

    2015-11-01

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  6. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  7. Lessons learned in the generation of biomedical research datasets using Semantic Open Data technologies.

    Science.gov (United States)

    Legaz-García, María del Carmen; Miñarro-Giménez, José Antonio; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2015-01-01

    Biomedical research usually requires combining large volumes of data from multiple heterogeneous sources. Such heterogeneity makes difficult not only the generation of research-oriented dataset but also its exploitation. In recent years, the Open Data paradigm has proposed new ways for making data available in ways that sharing and integration are facilitated. Open Data approaches may pursue the generation of content readable only by humans and by both humans and machines, which are the ones of interest in our work. The Semantic Web provides a natural technological space for data integration and exploitation and offers a range of technologies for generating not only Open Datasets but also Linked Datasets, that is, open datasets linked to other open datasets. According to the Berners-Lee's classification, each open dataset can be given a rating between one and five stars attending to can be given to each dataset. In the last years, we have developed and applied our SWIT tool, which automates the generation of semantic datasets from heterogeneous data sources. SWIT produces four stars datasets, given that fifth one can be obtained by being the dataset linked from external ones. In this paper, we describe how we have applied the tool in two projects related to health care records and orthology data, as well as the major lessons learned from such efforts.

  8. The reincarnation of a biomedical researcher: from bench science to medical education.

    Science.gov (United States)

    Brawer, James R

    2008-02-01

    After 33 years as a biomedical research scientist, I embarked on a new career in medical education. The transformation was awkward, difficult and exciting. Although I had assumed that previous experience in research and scholarship would stand me in good stead, such was hardly the case. I had to learn to navigate a strange new literature, replete with terms that I did not understand, and to deal with concepts that challenged my physico-chemical mindset. As I learned, I found myself discovering a field rich in essential questions, controversial hypotheses, and important potential applications. With my newly acquired knowledge and skills, I began to reflect on my own educational endeavors. I identified a number of outstanding issues and I designed studies to address them. What made these investigations particularly significant for me was their applicability. Although medical education is an exciting and meaningful career path, because of its low profile in most medical schools, few faculty are aware of the academic opportunities that it affords.

  9. Caring for nonhuman primates in biomedical research facilities: scientific, moral and emotional considerations.

    Science.gov (United States)

    Coleman, Kristine

    2011-03-01

    Animal care for nonhuman primates (NHPs) in biomedical facilities has undergone major changes in the past few decades. Today, most primate facilities have dedicated and highly trained animal care technicians who go to great efforts to ensure the physiological and psychological well being of the primates in their charge. These caretakers work closely with the animals and, as a result, often develop strong relationships with them. Once discouraged and considered a potential threat to scientific objectivity, such positive relationships are now seen as important components to animal care. Positive interactions between caretakers and primates can benefit the primates by reducing their stress and improving their overall well being which can, in turn, help the scientific endeavor. Further, providing the best possible care is our moral responsibility. However, there can also be emotional costs associated with caring for NHPs in research facilities, particularly when animals become ill or have to be euthanized. Facilities can do much to help ease this conflict. High-quality and conscientious animal care is good for the animals, science, and public perception of research facilities.

  10. Basic neuroscience research with nonhuman primates : a small but indispensable component of biomedical research

    NARCIS (Netherlands)

    Roelfsema, Pieter R; Treue, Stefan

    2014-01-01

    Research with nonhuman primates represents a small component of neuroscience with far-reaching relevance that is irreplaceable for essential insights into cognitive functions, brain disease, and therapy. Transparency and widespread information about this research and its importance is central to ens

  11. [The use of transgenic animals in biomedical research in Germany. Part 2: Ethical evaluation of the use of transgenic animals in biomedical research and perspectives for the changeover in research to research animal-free methods].

    Science.gov (United States)

    Sauer, Ursula G; Kolar, Roman; Rusche, Brigitte

    2006-01-01

    As a rule, transgenic animals are being used in in vivo experiments to examine gene functions, their regulation or the contribution of genetic alterations to the development of diseases. Many transgenic animals already are affected in their wellbeing due to the genetic modification alone regardless of the procedures performed with them. Moreover, it is to be questioned whether the experimental use of transgenic animals led to results that were of such outstanding scientific relevance that they legitimated the suffering of the animals. In order to point to possible approaches to avoiding the use of transgenic animals in the areas of research identified, subsequent investigations aimed at collecting information on non-animal test methods that might be applied in pursuing the aforesaid questions. In particular, these were non-animal test methods that make use of genetic techniques. Amongst these are in vitro cell culture methods with genetically modified cells, such as the so called Transfected Cell Array, as well as in vitro test methods, in which specifically targeted genes can be turned on or off selectively for example by the so-called RNA interference technique or by antisense oligonucleotide genes. Since such technologies can also be applied to cell cultures with human cells, investigations with these methods enable direct information on the function of human genes. Even though a one to one replacement of animal experiments with transgenic animals by non-animal test methods is considered unlikely, from the point of view of animal welfare the broad spectrum of already available non animal test methods with which to study the function of genes and genetically caused pathophysiological reactions proves that waiving of animal tests with transgenic animals is possible without impeding biomedical research. Even if it cannot be totally excluded that some very specific questions linked to the respective animal experiment might not be pursued for the time being

  12. Low statistical power in biomedical science: a review of three human research domains

    Science.gov (United States)

    Dumas-Mallet, Estelle; Button, Katherine S.; Boraud, Thomas; Gonon, Francois

    2017-01-01

    Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0–10% or 11–20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation.

  13. Biomedical research platforms and their influence on article submissions and journal rankings: an update.

    Science.gov (United States)

    Lippi, Giuseppe; Favalor, Emmanuel J; Simundic, Ana-Maria

    2012-01-01

    After being indexed in 2006 in EMBASE/Excerpta Medica and Scopus, and later in Science Citation Index Expanded and Journal Citation Reports/ Science Edition citation databases, Biochemia Medica launched a new web page and online manuscript submission system in 2010, and celebrated its first Impact Factor in the same year. Now, starting from the end of the 2011, the journal will also be indexed in PubMed/Medline, and this will contribute to increase the journal's exposure and accessibility worldwide. This is an important breakthrough, which is expected to further increase the popularity of the journal, as well as the submission rate and citations. Although several tools are currently available as Web resources to retrieve scientific articles, whose functioning and basic criteria are thought to be rather similar, the functionality, coverage, notoriety and prominence may differ widely. The recent indexing of Biochemia Medica in PubMed/Medline has thereby given us the opportunity to provide a timely update on biomedical research platforms, their relationship with article submissions and journal rankings.

  14. Medical and biomedical research productivity from the Kingdom of Saudi Arabia (2008-2012)

    OpenAIRE

    Rabia Latif

    2015-01-01

    Background: Biomedical publications from a country mirror the standard of Medical Education and practice in that country. It is important that the performance of the health profession is occasionally documented. Aims: This study aimed to analyze the quantity and quality of biomedical publications from the Kingdom of Saudi Arabia (KSA) in international journals indexed in PubMed between 2008 and 2012. Materials and Methods: PubMed was searched for publications associated with KSA from 2008 to ...

  15. Towards Multidisciplinary HIV-Cure Research: Integrating Social Science with Biomedical Research.

    Science.gov (United States)

    Grossman, Cynthia I; Ross, Anna Laura; Auerbach, Judith D; Ananworanich, Jintanat; Dubé, Karine; Tucker, Joseph D; Noseda, Veronica; Possas, Cristina; Rausch, Dianne M

    2016-01-01

    The quest for a cure for HIV remains a timely and key challenge for the HIV research community. Despite significant scientific advances, current HIV therapy regimens do not completely eliminate the negative impact of HIV on the immune system; and the economic impact of treating all people infected with HIV globally, for the duration of their lifetimes, presents significant challenges. This article discusses, from a multidisciplinary approach, critical social, behavioral, ethical, and economic issues permeating the HIV-cure research agenda. As part of a search for an HIV cure, both the perspective of patients/participants and clinical researchers should be taken into account. In addition, continued efforts should be made to involve and educate the broader community.

  16. Using Multicriteria Decision Analysis to Support Research Priority Setting in Biomedical Translational Research Projects

    Directory of Open Access Journals (Sweden)

    Gimon de Graaf

    2015-01-01

    Full Text Available Translational research is conducted to achieve a predefined set of economic or societal goals. As a result, investment decisions on where available resources have the highest potential in achieving these goals have to be made. In this paper, we first describe how multicriteria decision analysis can assist in defining the decision context and in ensuring that all relevant aspects of the decision problem are incorporated in the decision making process. We then present the results of a case study to support priority setting in a translational research consortium aimed at reducing the burden of disease of type 2 diabetes. During problem structuring, we identified four research alternatives (primary, secondary, tertiary microvascular, and tertiary macrovascular prevention and a set of six decision criteria. Scoring of these alternatives against the criteria was done using a combination of expert judgement and previously published data. Lastly, decision analysis was performed using stochastic multicriteria acceptability analysis, which allows for the combined use of numerical and ordinal data. We found that the development of novel techniques applied in secondary prevention would be a poor investment of research funds. The ranking of the remaining alternatives was however strongly dependent on the decision maker’s preferences for certain criteria.

  17. A Perspective on Promoting Diversity in the Biomedical Research Workforce: The National Heart, Lung, and Blood Institute's PRIDE Program.

    Science.gov (United States)

    Boyington, Josephine E A; Maihle, Nita J; Rice, Treva K; Gonzalez, Juan E; Hess, Caryl A; Makala, Levi H; Jeffe, Donna B; Ogedegbe, Gbenga; Rao, Dabeeru C; Dávila-Román, Victor G; Pace, Betty S; Jean-Louis, Girardin; Boutjdir, Mohamed

    2016-01-01

    Aspiring junior investigators from groups underrepresented in the biomedical sciences face various challenges as they pursue research independence. However, the biomedical research enterprise needs their participation to effectively address critical research issues such as health disparities and health inequities. In this article, we share a research education and mentoring initiative that seeks to address this challenge: Programs to Increase Diversity among Individuals Engaged in Health Related Research (PRIDE), funded by the National Heart, Lung, and Blood Institute (NHLBI). This longitudinal research-education and mentoring program occurs through summer institute programs located at US-based academic institutions. Recruited participants are exposed to didactic and lab-based research-skill enhancement experiences, with year-round mentoring over the course of two years. Mentor-mentee matching is based on shared research interests to promote congruence and to enhance skill acquisition. Program descriptions and sample narratives of participants' perceptions of PRIDE's impact on their career progress are showcased. Additionally, we highlight the overall program design and structure of four of seven funded summer institutes that focus on cardiovascular disease, related conditions, and health disparities. Mentees' testimonials about the value of the PRIDE mentoring approach in facilitating career development are also noted. Meeting the clinical and research needs of an increasingly diverse US population is an issue of national concern. The PRIDE initiative, which focuses on increasing research preparedness and professional development of groups underrepresented in the biomedical research workforce, with an emphasis on mentoring as the critical approach, provides a robust model that is impacting the careers of future investigators.

  18. Desegregating undergraduate mathematics and biology--interdisciplinary instruction with emphasis on ongoing biomedical research.

    Science.gov (United States)

    Robeva, Raina

    2009-01-01

    The remarkable advances in the field of biology in the last decade, specifically in the areas of biochemistry, genetics, genomics, proteomics, and systems biology, have demonstrated how critically important mathematical models and methods are in addressing questions of vital importance for these disciplines. There is little doubt that the need for utilizing and developing mathematical methods for biology research will only grow in the future. The rapidly increasing demand for scientists with appropriate interdisciplinary skills and knowledge, however, is not being reflected in the way undergraduate mathematics and biology courses are structured and taught in most colleges and universities nationwide. While a number of institutions have stepped forward and addressed this need by creating and offering interdisciplinary courses at the juncture of mathematics and biology, there are still many others at which there is little, if any, interdisciplinary interaction between the curricula. This chapter describes an interdisciplinary course and a textbook in mathematical biology developed collaboratively by faculty from Sweet Briar College and the University of Virginia School of Medicine. The course and textbook are designed to provide a bridge between the mathematical and biological sciences at the lower undergraduate level. The course is developed for and is being taught in a liberal arts setting at Sweet Briar College, Virginia, but some of the advanced modules are used in a course at the University of Virginia for advanced undergraduate and beginning graduate students. The individual modules are relatively independent and can be used as stand-alone projects in conventional mathematics and biology courses. Except for the introductory material, the course and textbook topics are based on current biomedical research.

  19. Building up careers in translational neuroscience and mental health research: Education and training in the Centre for Biomedical Research in Mental Health.

    Science.gov (United States)

    Rapado-Castro, Marta; Pazos, Ángel; Fañanás, Lourdes; Bernardo, Miquel; Ayuso-Mateos, Jose Luis; Leza, Juan Carlos; Berrocoso, Esther; de Arriba, Jose; Roldán, Laura; Sanjuán, Julio; Pérez, Victor; Haro, Josep M; Palomo, Tomás; Valdizan, Elsa M; Micó, Juan Antonio; Sánchez, Manuel; Arango, Celso

    2015-01-01

    The number of large collaborative research networks in mental health is increasing. Training programs are an essential part of them. We critically review the specific implementation of a research training program in a translational Centre for Biomedical Research in Mental Health in order to inform the strategic integration of basic research into clinical practice to have a positive impact in the mental health system and society. Description of training activities, specific educational programs developed by the research network, and challenges on its implementation are examined. The Centre for Biomedical Research in Mental Health has focused on training through different activities which have led to the development of an interuniversity master's degree postgraduate program in mental health research, certified by the National Spanish Agency for Quality Evaluation and Accreditation. Consolidation of training programs within the Centre for Biomedical Research in Mental Health has considerably advanced the training of researchers to meet competency standards on research. The master's degree constitutes a unique opportunity to accomplish neuroscience and mental health research career-building within the official framework of university programs in Spain.

  20. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research Part 1: Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1995-04-01

    Research in the biomedical sciences at PNL is described. Activities reported include: inhaled plutonium in dogs; national radiobiology archives; statistical analysis of data from animal studies; genotoxicity of inhaled energy effluents; molecular events during tumor initiation; biochemistry of free radical induced DNA damage; radon hazards in homes; mechanisms of radon injury; genetics of radon induced lung cancer; and in vivo/in vitro radon induced cellular damage.

  1. Biomedical research involving patients with disorders of consciousness: ethical and legal dimensions

    Directory of Open Access Journals (Sweden)

    Michele Farisco

    2014-09-01

    Full Text Available The directive 2001/20/UE and the research involving patients with docs. Research involving patients with disorders of consciousness (DOCs deserves special ethical and legal attention because of its Janus-faced nature. On the one hand, it raises concerns about the risk to expose the involved subjects to disproportionate risks not respecting their individual dignity, particularly their right to be cared for; on the other hand, research is an essential tool in order to improve the clinical condition of patients with DOCs. The present paper concerns the ethical and legal dimensions of biomedical research involving patients with disorders of consciousness. In particular, it focuses on informed consent to experimental treatments, which is a challenging issue both from an ethical and legal point of view. The first part reads the Directive 2001/20/EU in the light of the experimentation of patients with DOCs, and suggests a revision in order to better assess the issue of informed consent. The particular case of informed consent for observational studies of non-communicative patients. The second part presents an informed consent form for studies through video-recording of patients unable to communicate their own consent. This form has been elaborated by the bioethics unit of the project "Review of the nosography of vegetative states: application of methods of behavioral analysis to individuals in coma or vegetative state" developed at the Italian National Institute of Health. Relevance of the suggested form. The paper describes the conceptual framework of the form for informed consent to studies through video-recoding, which is a relevant example of what issues should be included in an informed consent for any type of studies through video-recording of patients unable to express their own consent. The article has been sent on November the 7th 2013, before the adoption of the Regulation (EU no. 536/2014 (and consequent abrogation of the Directive 2001

  2. Biomedical research involving patients with disorders of consciousness: ethical and legal dimensions.

    Science.gov (United States)

    Farisco, Michele; Evers, Kathinka; Petrini, Carlo

    2014-01-01

    THE DIRECTIVE 2001/20/UE AND THE RESEARCH INVOLVING PATIENTS WITH DOCS: Research involving patients with disorders of consciousness (DOCs) deserves special ethical and legal attention because of its Janus-faced nature. On the one hand, it raises concerns about the risk to expose the involved subjects to disproportionate risks not respecting their individual dignity, particularly their right to be cared for; on the other hand, research is an essential tool in order to improve the clinical condition of patients with DOCs. The present paper concerns the ethical and legal dimensions of biomedical research involving patients with disorders of consciousness. In particular, it focuses on informed consent to experimental treatments, which is a challenging issue both from an ethical and legal point of view. The first part reads the Directive 2001/20/EU in the light of the experimentation of patients with DOCs, and suggests a revision in order to better assess the issue of informed consent. THE PARTICULAR CASE OF INFORMED CONSENT FOR OBSERVATIONAL STUDIES OF NON-COMMUNICATIVE PATIENTS: The second part presents an informed consent form for studies through video-recording of patients unable to communicate their own consent. This form has been elaborated by the bioethics unit of the project "Review of the nosography of vegetative states: application of methods of behavioral analysis to individuals in coma or vegetative state" developed at the Italian National Institute of Health. RELEVANCE OF THE SUGGESTED FORM: The paper describes the conceptual framework of the form for informed consent to studies through video-recoding, which is a relevant example of what issues should be included in an informed consent for any type of studies through video-recording of patients unable to express their own consent. The article has been sent on November the 7th 2013, before the adoption of the Regulation (EU) no. 536/2014 (and consequent abrogation of the Directive 2001/20/EU) and the release

  3. A Critical Look at Biomedical Journals’ Policies on Animal Research by Use of a Novel Tool: The EXEMPLAR Scale

    Science.gov (United States)

    Martins, Ana Raquel; Franco, Nuno Henrique

    2015-01-01

    Simple Summary Biomedical journals have the responsibility to promote humane research. To gauge and evaluate journal policies on animal research, the EXEMPLAR—For “Excellence in Mandatory Policies on Animal Research”—scale is presented and applied to evaluate a sample of 170 biomedical journals, providing an overview of the current landscape of editorial policies on the ethical treatment of animals. Abstract Animal research is not only regulated by legislation but also by self-regulatory mechanisms within the scientific community, which include biomedical journals’ policies on animal use. For editorial policies to meaningfully impact attitudes and practice, they must not only be put into effect by editors and reviewers, but also be set to high standards. We present a novel tool to classify journals’ policies on animal use—the EXEMPLAR scale—as well as an analysis by this scale of 170 journals publishing studies on animal models of three human diseases: Amyotrophic Lateral Sclerosis, Type-1 Diabetes and Tuberculosis. Results show a much greater focus of editorial policies on regulatory compliance than on other domains, suggesting a transfer of journals’ responsibilities to scientists, institutions and regulators. Scores were not found to vary with journals’ impact factor, country of origin or antiquity, but were, however, significantly higher for open access journals, which may be a result of their greater exposure and consequent higher public scrutiny. PMID:26479237

  4. ["Investigación Clínica": 50 years disseminating biomedical research].

    Science.gov (United States)

    Ryder, Elena

    2010-06-01

    INVESTIGACION CLINICA was founded by the initiative of Américo Negrette, who became its first editor, and it has been published uninterruptedly since July 1960, with a quarterly frequency. The first issues consisted mainly of a collection of reviews of seminars held at the now called Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, its publisher. Very soon, original research results from this institution were included in the novel journal. In the 60's, papers on results obtained during the outbreaks of Venezuelan Equine Encephalitis present in the area, were prominent. Originally, the journal published 3-4 papers, but due to the increased number of contributions, in 2001, its format changed from 1/16 to 1/8, and now each number includes 11 original articles. Currently, INVESTIGACION CLINICA publishes 44 papers a year, in Spanish or English on different biomedical topics, from contributors all around the world. Progressively it has been included in different renowned indexes, such as PubMed/MEDLINE, Science Citation Index Expanded, Excerpta Medica, Tropical Diseases Bulletin, Copernicus, Scopus, Periodica, and several others. Besides, it can be found in open access through www.Scielo.org.ve, www.freemedicaljournals.com and in our new Web page: https://sites. google.com/site/revistainvestigacionesclinicas/home. Most papers published in INVESTIGACION CLINICA have been cited in the regional or foreign literature accumulating more than 1200 citations by now. For this particular issue, to celebrate the 50th anniversary of INVESTIGACION CLINICA, we have invited some of our more recent referees or authors to contribute with Reviews in their respective areas of expertise.

  5. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  6. International Space Station as Analog of Interplanetary Transit Vehicle For Biomedical Research

    Science.gov (United States)

    Charles, John B.

    2012-01-01

    Astronaut missions lasting up to six months aboard the International Space Station (ISS) have much in common with interplanetary flights, especially the outbound, Earth-to-Mars transit portion of a Mars mission. Utilization of ISS and other appropriate platforms to prepare for crewed expeditions to planetary destinations including Mars has been the work of NASA's Human Research Program (HRP) since 2005. HRP is charged specifically to understand and reduced the risks to astronaut health and performance in space exploration missions: everything HRP does and has done is directly related to that responsibility. Two major categories of human research have capitalized on ISS capabilities. The first category centers on the biomedical aspects of long-duration exposure to spaceflight factors, including prolonged weightlessness, radiation exposure, isolation and confinement, and actual risk to life and limb. These studies contribute to astronaut safety, health and efficiency on any long-duration missions, whether in low Earth orbit (LEO) or beyond. Qualitatively, weightlessness is weightlessness, whether in LEO or en route to Mars. The HRP sponsors investigations into losses in muscle and bone integrity, cardiovascular function, sensory-motor capability, immune capacity and psychosocial health, and development and demonstration of appropriate treatments and preventative measures. The second category includes studies that are focused on planetary expeditions beyond LEO. For these, ISS offers a high fidelity analog to investigate the combined effects of spaceflight factors (described above) plus the isolation and autonomy associated with simulated increasing distance from Earth. Investigations address crew cohesion, performance and workload, and mission control performance. The behavioral health and performance and space human factors aspects of planetary missions dominate this category. Work has already begun on a new investigation in this category which will examine the

  7. Size and characteristics of the biomedical research workforce associated with U.S. National Institutes of Health extramural grants.

    Science.gov (United States)

    Pool, Lindsay R; Wagner, Robin M; Scott, Lindsey L; RoyChowdhury, Deepshikha; Berhane, Rediet; Wu, Charles; Pearson, Katrina; Sutton, Jennifer A; Schaffer, Walter T

    2016-03-01

    The U.S. National Institutes of Health (NIH) annually invests approximately $22 billion in biomedical research through its extramural grant programs. Since fiscal year (FY) 2010, all persons involved in research during the previous project year have been required to be listed on the annual grant progress report. These new data have enabled the production of the first-ever census of the NIH-funded extramural research workforce. Data were extracted from All Personnel Reports submitted for NIH grants funded in FY 2009, including position title, months of effort, academic degrees obtained, and personal identifiers. Data were de-duplicated to determine a unique person count. Person-years of effort (PYE) on NIH grants were computed. In FY 2009, NIH funded 50,885 grant projects, which created 313,049 full- and part-time positions spanning all job functions involved in biomedical research. These positions were staffed by 247,457 people at 2,604 institutions. These persons devoted 121,465 PYE to NIH grant-supported research. Research project grants each supported 6 full- or part-time positions, on average. Over 20% of positions were occupied by postdoctoral researchers and graduate and undergraduate students. These baseline data were used to project workforce estimates for FYs 2010-2014 and will serve as a foundation for future research.

  8. Japanese research and development on metallic biomedical, dental, and healthcare materials

    Science.gov (United States)

    Niinomi, Mitsuo; Hanawa, Takao; Narushima, Takayuki

    2005-04-01

    There is considerable demand for metallic materials for use in medical and dental devices. Metals and alloys are widely used as biomedical materials and are indispensable in the medical field. In dentistry, metal is used for restorations, orthodontic wires, and dental implants. This article describes R&D on metallic biomaterials primarily conducted by the members of the Japan Institute of Metals.

  9. Overview of some biomedical research projects in tropical medicine conducted at the Instituto Venezolano de Investigaciones Cientificas.

    Science.gov (United States)

    Romano, E; Cesari, I; Escalante, A; Liprandi, F; O'Daly, J A; Perez, H; Takiff, H

    2000-01-01

    The Instituto Venezolano de Investigaciones Cientificas (IVIC) is a government-funded multidisciplinary academic institution dedicated to research, development and technology in many areas of knowledge. Biomedical projects and publications comprise about 40% of the total at IVIC. In this article, we present an overview of some selected research and development projects conducted at IVIC which we believe contain new and important aspects related to malaria, ancylostomiasis, dengue fever, leishmaniasis and tuberculosis. Other projects considered of interest in the general area of tropical medicine are briefly described. This article was prepared as a small contribution to honor and commemorate the centenary of the Instituto Oswaldo Cruz.

  10. Overview of some biomedical research projects in tropical medicine conducted at the Instituto Venezolano de Investigaciones Cientificas

    Directory of Open Access Journals (Sweden)

    Romano Egidio

    2000-01-01

    Full Text Available The Instituto Venezolano de Investigaciones Cientificas (IVIC is a government-funded multidisciplinary academic institution dedicated to research, development and technology in many areas of knowledge. Biomedical projects and publications comprise about 40% of the total at IVIC. In this article, we present an overview of some selected research and development projects conducted at IVIC which we believe contain new and important aspects related to malaria, ancylostomiasis, dengue fever, leishmaniasis and tuberculosis. Other projects considered of interest in the general area of tropical medicine are briefly described. This article was prepared as a small contribution to honor and commemorate the centenary of the Instituto Oswaldo Cruz.

  11. The Role of Scientific Communication Skills in Trainees' Intention to Pursue Biomedical Research Careers: A Social Cognitive Analysis.

    Science.gov (United States)

    Cameron, Carrie; Lee, Hwa Young; Anderson, Cheryl; Byars-Winston, Angela; Baldwin, Constance D; Chang, Shine

    2015-01-01

    Scientific communication (SciComm) skills are indispensable for success in biomedical research, but many trainees may not have fully considered the necessity of regular writing and speaking for research career progression. Our purpose was to investigate the relationship between SciComm skill acquisition and research trainees' intentions to remain in research careers. We used social cognitive career theory (SCCT) to test a model of the relationship of SciComm skills to SciComm-related cognitive variables in explaining career intentions. A sample of 510 graduate students and postdoctoral fellows at major academic health science centers in the Texas Medical Center, Houston, Texas, were surveyed online. Results suggested that interest in performing SciComm tasks, SciComm outcome expectations (SCOEs), and SciComm productivity predicted intention to remain in a research career, while SciComm self-efficacy did not directly predict career intention. SCOEs also predicted interest in performing SciComm tasks. As in other SCCT studies, SciComm self-efficacy predicted SCOEs. We conclude that social cognitive factors of SciComm skill acquisition and SciComm productivity significantly predict biomedical trainees' intentions to pursue research careers whether within or outside academia. While further studies are needed, these findings may lead to evidence-based interventions to help trainees remain in their chosen career paths.

  12. Research and development of biomedical fiber%生物医学纤维的研究与开发

    Institute of Scientific and Technical Information of China (English)

    汪云燕; 沈新元

    2005-01-01

    OBJECTIVE: To introduce the sorts of biomedical fibers, collagenous fibers, chitin fibers polyactic acid(PLA) fibers, etc. , and their preparation,properties and application respectively, and suggest China to pay attention to the research and development of biomedical fiber.DATA SOURCES: Literatures from January 1993 to December 2001 were computer-searched in http://www.sciencedirect.com, http://worldscinet.lib.tsinghua.edu.cn, with the key words of "biomedical and polymer,fibre" and the language was limited to English.: Literatures from January 1999 to December 2004 were computer-searched in http://www.wanfangdata.com.cn,with the key words of "Biological, medical, polymer and Chitin Fibers" and the language was limited to Chinese.STUDY SELECTION: Inclusion criteria: ①Chitin fibers②Collagenous fibers and PLA fibers③Alginic acid fibers④Polyglycolide fibers⑤β-hy droxybutanoic acid ester (PHB)⑥Polycaprolactone fiber. Exclusion criteria:① Obsolete literatures. ② Repeated study. DATA EXTRACTION: Totally 60 tests on biomedical fiber were collected, but only 15 literatures met the inclusion criteria. Altogether 45 literatures were excluded due to older and repeated study.DATA SYNTHESIS: ①The sorts of biomedical fibers: Classified according to the sources, biomedical fibers include metal ones (e.g. stainless steel wire), inorganic and nonmetal ones (e.g. alumina fibers) and macromolecular ones. Classified according to the interaction between living tissues and materials, they include bioinert fibers, bioactive fibers and bioabsobable fibers. Classified according to biomedical use, they include biomedical fibers compatible with hard tissues, biomedical fibers compatible with parenchyma, biomedical fibers compatible with blood and biomedical fibers used as medicine or for regulating the release of medicine ②The main biodegradable fibers include chitin fibers, collagenous fibers, PLA fibers and their copolymer fibers.CONCLUSION: As one of the important

  13. Epidemiology and Reporting Characteristics of Systematic Reviews of Biomedical Research: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Matthew J Page

    2016-05-01

    Full Text Available Systematic reviews (SRs can help decision makers interpret the deluge of published biomedical literature. However, a SR may be of limited use if the methods used to conduct the SR are flawed, and reporting of the SR is incomplete. To our knowledge, since 2004 there has been no cross-sectional study of the prevalence, focus, and completeness of reporting of SRs across different specialties. Therefore, the aim of our study was to investigate the epidemiological and reporting characteristics of a more recent cross-section of SRs.We searched MEDLINE to identify potentially eligible SRs indexed during the month of February 2014. Citations were screened using prespecified eligibility criteria. Epidemiological and reporting characteristics of a random sample of 300 SRs were extracted by one reviewer, with a 10% sample extracted in duplicate. We compared characteristics of Cochrane versus non-Cochrane reviews, and the 2014 sample of SRs versus a 2004 sample of SRs. We identified 682 SRs, suggesting that more than 8,000 SRs are being indexed in MEDLINE annually, corresponding to a 3-fold increase over the last decade. The majority of SRs addressed a therapeutic question and were conducted by authors based in China, the UK, or the US; they included a median of 15 studies involving 2,072 participants. Meta-analysis was performed in 63% of SRs, mostly using standard pairwise methods. Study risk of bias/quality assessment was performed in 70% of SRs but was rarely incorporated into the analysis (16%. Few SRs (7% searched sources of unpublished data, and the risk of publication bias was considered in less than half of SRs. Reporting quality was highly variable; at least a third of SRs did not report use of a SR protocol, eligibility criteria relating to publication status, years of coverage of the search, a full Boolean search logic for at least one database, methods for data extraction, methods for study risk of bias assessment, a primary outcome, an

  14. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1989-06-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1988. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals.

  15. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1988-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology.

  16. An examination of how women and underrepresented racial/ethnic minorities experience barriers in biomedical research and medical programs

    Science.gov (United States)

    Chakraverty, Devasmita

    Women in medicine and biomedical research often face challenges to their retention, promotion, and advancement to leadership positions (McPhillips et al., 2007); they take longer to advance their careers, tend to serve at less research-intensive institutions and have shorter tenures compared to their male colleagues (White, McDade, Yamagata, & Morahan, 2012). Additionally, Blacks and Hispanics are the two largest minority groups that are vastly underrepresented in medicine and biomedical research in the United States (AAMC, 2012; NSF, 2011). The purpose of this study is to examine specific barriers reported by students and post-degree professionals in the field through the following questions: 1. How do women who are either currently enrolled or graduated from biomedical research or medical programs define and make meaning of gender-roles as academic barriers? 2. How do underrepresented groups in medical schools and biomedical research institutions define and make meaning of the academic barriers they face and the challenges these barriers pose to their success as individuals in the program? These questions were qualitatively analyzed using 146 interviews from Project TrEMUR applying grounded theory. Reported gender-role barriers were explained using the "Condition-Process-Outcome" theoretical framework. About one-third of the females (across all three programs; majority White or Black between 25-35 years of age) reported gender-role barriers, mostly due to poor mentoring, time constraints, set expectations and institutional barriers. Certain barriers act as conditions, causing gender-role issues, and gender-role issues influence certain barriers that act as outcomes. Strategies to overcome barriers included interventions mostly at the institutional level (mentor support, proper specialty selection, selecting academia over medicine). Barrier analysis for the two largest URM groups indicated that, while Blacks most frequently reported racism, gender barriers

  17. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    Science.gov (United States)

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future.

  18. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1987-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1986. The research develops the knowledge and scientific principles necessary to identify, understand and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect the PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological methods for assessing health risks among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include effects of radiation and of energy-related chemicals. The last section is related to medical applications of nuclear technology.

  19. ReRouting biomedical innovation: observations from a mapping of the alternative research and development (R&D) landscape.

    Science.gov (United States)

    Greenberg, Alexandra; Kiddell-Monroe, Rachel

    2016-09-14

    In recent years, the world has witnessed the tragic outcomes of multiple global health crises. From Ebola to high prices to antibiotic resistance, these events highlight the fundamental constraints of the current biomedical research and development (R&D) system in responding to patient needs globally.To mitigate this lack of responsiveness, over 100 self-identified "alternative" R&D initiatives, have emerged in the past 15 years. To begin to make sense of this panoply of initiatives working to overcome the constraints of the current system, UAEM began an extensive, though not comprehensive, mapping of the alternative biomedical R&D landscape. We developed a two phase approach: (1) an investigation, via the RE:Route Mapping, of both existing and proposed initiatives that claim to offer an alternative approach to R&D, and (2) evaluation of those initiatives to determine which are in fact achieving increased access to and innovation in medicines. Through phase 1, the RE:Route Mapping, we examined 81 initiatives that claim to redress the inequity perpetuated by the current system via one of five commonly recognized mechanisms necessary for truly alternative R&D.Preliminary analysis of phase 1 provides the following conclusions: 1. No initiative presents a completely alternative model of biomedical R&D. 2. The majority of initiatives focus on developing incentives for drug discovery. 3. The majority of initiatives focus on rare diseases or diseases of the poor and marginalized. 4. There is an increasing emphasis on the use of push, pull, pool, collaboration and open mechanisms alongside the concept of delinkage in alternative R&D. 5. There is a trend towards public funding and launching of initiatives by the Global South. Given the RE:Route Mapping's inevitable limitations and the assumptions made in its methodology, it is not intended to be the final word on a constantly evolving and complex field; however, its findings are significant. The Mapping's value lies in its

  20. Architecture for an advanced biomedical collaboration domain for the European paediatric cancer research community (ABCD-4-E).

    Science.gov (United States)

    Nitzlnader, Michael; Falgenhauer, Markus; Gossy, Christian; Schreier, Günter

    2015-01-01

    Today, progress in biomedical research often depends on large, interdisciplinary research projects and tailored information and communication technology (ICT) support. In the context of the European Network for Cancer Research in Children and Adolescents (ENCCA) project the exchange of data between data source (Source Domain) and data consumer (Consumer Domain) systems in a distributed computing environment needs to be facilitated. This work presents the requirements and the corresponding solution architecture of the Advanced Biomedical Collaboration Domain for Europe (ABCD-4-E). The proposed concept utilises public as well as private cloud systems, the Integrating the Healthcare Enterprise (IHE) framework and web-based applications to provide the core capabilities in accordance with privacy and security needs. The utility of crucial parts of the concept was evaluated by prototypic implementation. A discussion of the design indicates that the requirements of ENCCA are fully met. A whole system demonstration is currently being prepared to verify that ABCD-4-E has the potential to evolve into a domain-bridging collaboration platform in the future.

  1. search.bioPreprint: a discovery tool for cutting edge, preprint biomedical research articles [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Carrie L. Iwema

    2016-07-01

    Full Text Available The time it takes for a completed manuscript to be published traditionally can be extremely lengthy. Article publication delay, which occurs in part due to constraints associated with peer review, can prevent the timely dissemination of critical and actionable data associated with new information on rare diseases or developing health concerns such as Zika virus. Preprint servers are open access online repositories housing preprint research articles that enable authors (1 to make their research immediately and freely available and (2 to receive commentary and peer review prior to journal submission. There is a growing movement of preprint advocates aiming to change the current journal publication and peer review system, proposing that preprints catalyze biomedical discovery, support career advancement, and improve scientific communication. While the number of articles submitted to and hosted by preprint servers are gradually increasing, there has been no simple way to identify biomedical research published in a preprint format, as they are not typically indexed and are only discoverable by directly searching the specific preprint server websites. To address this issue, we created a search engine that quickly compiles preprints from disparate host repositories and provides a one-stop search solution. Additionally, we developed a web application that bolsters the discovery of preprints by enabling each and every word or phrase appearing on any web site to be integrated with articles from preprint servers. This tool, search.bioPreprint, is publicly available at http://www.hsls.pitt.edu/resources/preprint.

  2. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research.

    Science.gov (United States)

    King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  3. Clustering cliques for graph-based summarization of the biomedical research literature

    DEFF Research Database (Denmark)

    Zhang, Han; Fiszman, Marcelo; Shin, Dongwook

    2013-01-01

    Background: Graph-based notions are increasingly used in biomedical data mining and knowledge discovery tasks. In this paper, we present a clique-clustering method to automatically summarize graphs of semantic predications produced from PubMed citations (titles and abstracts).Results: Sem......Rep is used to extract semantic predications from the citations returned by a PubMed search. Cliques were identified from frequently occurring predications with highly connected arguments filtered by degree centrality. Themes contained in the summary were identified with a hierarchical clustering algorithm...

  4. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1986-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology.

  5. BIMS: Biomedical Information Management System

    OpenAIRE

    Mora, Oscar; Bisbal, Jesús

    2013-01-01

    In this paper, we present BIMS (Biomedical Information Management System). BIMS is a software architecture designed to provide a flexible computational framework to manage the information needs of a wide range of biomedical research projects. The main goal is to facilitate the clinicians' job in data entry, and researcher's tasks in data management, in high data quality biomedical research projects. The BIMS architecture has been designed following the two-level modeling paradigm, a promising...

  6. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  7. Mentoring Strategies and Outcomes of Two Federally Funded Cancer Research Training Programs for Underrepresented Students in the Biomedical Sciences.

    Science.gov (United States)

    Ford, Marvella E; Abraham, Latecia M; Harrison, Anita L; Jefferson, Melanie S; Hazelton, Tonya R; Varner, Heidi; Cannady, Kimberly; Frichtel, Carla S; Bagasra, Omar; Davis, Leroy; Rivers, David E; Slaughter, Sabra C; Salley, Judith D

    2016-06-01

    The US is experiencing a severe shortage of underrepresented biomedical researchers. The purpose of this paper is to present two case examples of cancer research mentoring programs for underrepresented biomedical sciences students. The first case example is a National Institutes of Health/National Cancer Institute (NIH/NCI) P20 grant titled "South Carolina Cancer Disparities Research Center (SC CaDRe)" Training Program, contributing to an increase in the number of underrepresented students applying to graduate school by employing a triple-level mentoring strategy. Since 2011, three undergraduate and four graduate students have participated in the P20 SC CaDRe program. One graduate student published a peer-reviewed scientific paper. Two graduate students (50 %) have completed their master's degrees, and the other two graduate students will receive their degrees in spring 2015. Two undergraduate students (67 %) are enrolled in graduate or professional school (grad./prof. school), and the other graduate student is completing her final year of college. The second case example is a prostate cancer-focused Department of Defense grant titled "The SC Collaborative Undergraduate HBCU Student Summer Training Program," providing 24 students training since 2009. Additionally, 47 students made scientific presentations, and two students have published peer-reviewed scientific papers. All 24 students took a GRE test preparation course; 15 (63 %) have applied to graduate school, and 11 of them (73 %) are enrolled in grad./prof. school. Thirteen remaining students (54 %) are applying to grad./prof. school. Leveraged funding provided research-training opportunities to an additional 201 National Conference on Health Disparities Student Forum participants and to 937 Ernest E. Just Research Symposium participants at the Medical University of South Carolina.

  8. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  9. Gender Writ Small: Gender Enactments and Gendered Narratives about Lab Organization and Knowledge Transmission in a Biomedical Engineering Research Setting

    Science.gov (United States)

    Malone, Kareen Ror; Nersessian, Nancy J.; Newstetter, Wendy

    This article presents qualitative data and offers some innovative theoretical approaches to frame the analysis of gender in science, technology, engineering, and mathematics (STEM) settings. It begins with a theoretical discussion of a discursive approach to gender that captures how gender is lived "on the ground." The authors argue for a less individualistic approach to gender. Data for this research project was gathered from intensive interviews with lab members and ethnographic observations in a biomedical engineering lab. Data analysis relied on a mixed methodology involving qualitative approaches and dialogues with findings from other research traditions. Three themes are highlighted: lab dynamics in relation to issues of critical mass, the division of labor, and knowledge transmission. The data illustrate how gender is created in interactions and is inflected through forms of social organization.

  10. Designing a socio-economic assessment method for integrative biomedical research: the Osteoporotic Virtual Physiological Human project.

    Science.gov (United States)

    Thiel, Rainer; Stroetmann, Karl A; Stroetmann, Veli N; Viceconti, Marco

    2009-01-01

    In integrative biomedical research, methods assessing the clinical or even socio-economic impact of more complex technologies such as Information and Communication Technology (ICT)-based tools for modelling and simulation of human physiology have rarely been applied. The EU funded Osteoporotic Virtual Physiological Human (VPHOP) research project, part of the Virtual Physiological Human (VPH) European initiative, will create a patient-specific hypermodel to predict the absolute risk of bone fracture much more accurately than predictions based on current clinical practice. The project has developed an innovative, multilevel generic methodological framework to assess the clinical and socio-economic impact of biocomputational models. The assessment framework consists of three components: a socio-economic cost benefit analysis, health economic analysis of care pathways, and disease cost simulation models. Through its holistic perspective, the method provides a tool to appraise the overall value of biocomputational models for society.

  11. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery.

    Science.gov (United States)

    Dumontier, Michel; Baker, Christopher Jo; Baran, Joachim; Callahan, Alison; Chepelev, Leonid; Cruz-Toledo, José; Del Rio, Nicholas R; Duck, Geraint; Furlong, Laura I; Keath, Nichealla; Klassen, Dana; McCusker, James P; Queralt-Rosinach, Núria; Samwald, Matthias; Villanueva-Rosales, Natalia; Wilkinson, Mark D; Hoehndorf, Robert

    2014-03-06

    The Semanticscience Integrated Ontology (SIO) is an ontology to facilitate biomedical knowledge discovery. SIO features a simple upper level comprised of essential types and relations for the rich description of arbitrary (real, hypothesized, virtual, fictional) objects, processes and their attributes. SIO specifies simple design patterns to describe and associate qualities, capabilities, functions, quantities, and informational entities including textual, geometrical, and mathematical entities, and provides specific extensions in the domains of chemistry, biology, biochemistry, and bioinformatics. SIO provides an ontological foundation for the Bio2RDF linked data for the life sciences project and is used for semantic integration and discovery for SADI-based semantic web services. SIO is freely available to all users under a creative commons by attribution license. See website for further information: http://sio.semanticscience.org.

  12. FT-IR and FT-NIR Raman spectroscopy in biomedical research

    Science.gov (United States)

    Naumann, D.

    1998-06-01

    FT-IR and FT-NIR Raman spectra of intact microbial, plant animal or human cells, tissues, and body fluids are highly specific, fingerprint-like signatures which can be used to discriminate between diverse microbial species and strains, characterize growth-dependent phenomena and cell-drug interactions, and differentiate between various disease states. The spectral information potentially useful for biomedical characterizations may be distributed over the entire infrared region of the electromagnetic spectrum, i.e. over the near-, mid-, and far-infrared. It is therefore a key problem how the characteristic vibrational spectroscopic information can be systematically extracted from the infrared spectra of complex biological samples. In this report these questions are addressed by applying factor and cluster analysis treating the classification problem of microbial infrared spectra as a model task. Particularly interesting applications arise by means of a light microscope coupled to the FT-IR spectrometer. FT-IR spectra of single microcolonies of less than 40 μm in diameter can be obtained from colony replica applying a stamping technique that transfers the different, spatially separated microcolonies from the culture plate to a special IR-sample holder. Using a computer controlled x,y-stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro-organisms can be integrated in one single apparatus. Since high quality, essentially fluorescence free Raman spectra may now be obtained in relatively short time intervals on previously intractable biological specimens, FT-IR and NIR-FT-Raman spectroscopy can be used in tandem to characterize biological samples. This approach seems to open up new horizons for biomedical characterizations of complex biological systems.

  13. Research Progress of Biomedical Titanium Alloys%生物医用钛合金的研究进展

    Institute of Scientific and Technical Information of China (English)

    李红梅; 雷霆; 方树铭; 黄光明

    2011-01-01

    钛合金具有较低的弹性模量、优异的耐腐蚀性能和生物相容性,是理想的生物医用材料.综述了医用钛合金的发展过程及新型医用β钛合金的研究现状,以及开发的新合金系列.目前开发的医用钛合金中,Ti-35Nb-7Zr-5Ta和Ti-29Nb-13Ta-7.1Zr合金的弹性模量为55 GPa,与致密骨的弹性模量很接近,与人体骨有较好的力学相容性.%Titanium alloys offering lower elastic modulus,excellent corrosion resistance and enhanced bioeompatibility are ideal biomedical materials. The development history of medical titanium alloys and research status of new β-type titanium alloys and developed new alloy system are summarized. Among current developed biomedical titanium alloys, the modulus of elasticity of Ti-35Nb-7Zr-5Ta and Ti-29Nb-13Ta-7. 1Zr alloys is 55GPa , very near the modulus of density bone , and have better mechanical compatibility with natural bone.

  14. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  15. NIH Funding for Biomedical Imaging

    Science.gov (United States)

    Conroy, Richard

    Biomedical imaging, and in particular MRI and CT, is often identified as among the top 10 most significant advances in healthcare in the 20th century. This presentation will describe some of the recent advances in medical physics and imaging being funded by NIH in this century and current funding opportunities. The presentation will also highlight the role of multidisciplinary research in bringing concepts from the physical sciences and applying them to challenges in biological and biomedical research.. NIH Funding for Biomedical Imaging.

  16. A Study of the Information Literacy of Biomedical Graduate Students: Based on the Thesis Topic Discovery Process in Molecular Biology Research

    Directory of Open Access Journals (Sweden)

    Jhao-Yen Huang

    2014-06-01

    Full Text Available The biomedical information environment is in a state of constant and rapid change due to the increase in research data and rapid technological advances. In Taiwan, few research has investigated the information literacy of biomedical graduate students. This exploratory study examined the information literacy abilities and training of biomedical graduate students in Taiwan. Semi-structured interviews based on the Association of College and Research Libraries Information Literacy Competency Standards for Science and Engineering/Technology were conducted with 20 molecular biological graduate students. The interview inquired about their information-seeking channels and information literacy education. The findings show that the biomedical graduate students developed a workable thesis topic with their advisors. Through various information-seeking channels and retrieval strategies, they obtained and critically evaluated information to address different information needs for their thesis research. Through seminars, annual conferences and papers, the interviewees were informed of current developments in their field. Subsequently, through written or oral communications, they were able to integrate and exchange the information. Most interviewees cared about the social, economic, legal, and ethical issues surrounding the use of information. College courses and labs were the main information literacy education environment for them to learn about research skills and knowledge. The study concludes four areas to address for the information literacy of biomedical graduate students, i.e., using professional information, using the current information, efficiency in assessing the domain information, and utilization of diverse information channels. Currently, the interviewees showed rather low usage of library resources, which is a concern for biomedical educators and libraries. [Article content in Chinese

  17. Data federation in the Biomedical Informatics Research Network: tools for semantic annotation and query of distributed multiscale brain data.

    Science.gov (United States)

    Bug, William; Astahkov, Vadim; Boline, Jyl; Fennema-Notestine, Christine; Grethe, Jeffrey S; Gupta, Amarnath; Kennedy, David N; Rubin, Daniel L; Sanders, Brian; Turner, Jessica A; Martone, Maryann E

    2008-11-06

    The broadly defined mission of the Biomedical Informatics Research Network (BIRN, www.nbirn.net) is to better understand the causes human disease and the specific ways in which animal models inform that understanding. To construct the community-wide infrastructure for gathering, organizing and managing this knowledge, BIRN is developing a federated architecture for linking multiple databases across sites contributing data and knowledge. Navigating across these distributed data sources requires a shared semantic scheme and supporting software framework to actively link the disparate repositories. At the core of this knowledge organization is BIRNLex, a formally-represented ontology facilitating data exchange. Source curators enable database interoperability by mapping their schema and data to BIRNLex semantic classes thereby providing a means to cast BIRNLex-based queries against specific data sources in the federation. We will illustrate use of the source registration, term mapping, and query tools.

  18. Primates in biomedical research and their maintenance in captivity. I primati nella ricerca biomedica ed il loro allevamento in cattivita

    Energy Technology Data Exchange (ETDEWEB)

    Monaco, V.

    1983-01-01

    This conference is intended to provide to biologists, phychologists, zoologists etc., some criteria on use of non-human primates in biomedical research and to assess their value in procedures and tests of products by a pharmaceutical industry (i.e., poliomyelitis vaccine). After a review of scientific achievements during last decades and of the possibility of development of use of primates for medical experimentation, a numerical estimation of the subjects employed in different countries and of the basic needs as indicated by OMS and EEC is reported. In an attempt to promote a programme for production of primates in Italy, this communication describes the project of primates breeding by using areas near electro-nuclear power stations. 5 refs.

  19. Trust, protocol, gender, and power in interwar British biomedical research: Kathleen Chevassut and the "germ" of multiple sclerosis.

    Science.gov (United States)

    Casper, Stephen T

    2011-04-01

    In March 1930, reports of the discovery of an organism causative of multiple sclerosis circulated in the British press. At the same time, news of a therapeutically efficacious vaccine also reached the ears of neurologists and patients afflicted with the debilitating degenerative disease. It was soon shown that no organism had been discovered. The events leading up to this ultimately painful episode reveal many of the central problems created when social conventions and a sense of decorum scripted received understanding of good scientific practice rather than actual regulatory frameworks. In the absence of such frameworks, few means were present to censor inappropriate scientific conduct. This story thus provides a window into an emergent world of state-sponsored biomedical research; a world where recrimination, gossip, misogyny, uncertainty, exaggeration, and dreams and delusions of scientific and therapeutic progress were collapsed together.

  20. Trust, Protocol, Gender, and Power in Interwar British Biomedical Research: Kathleen Chevassut and the “Germ” of Multiple Sclerosis

    Science.gov (United States)

    Casper, Stephen T.

    2011-01-01

    In March 1930, reports of the discovery of an organism causative of multiple sclerosis circulated in the British press. At the same time, news of a therapeutically efficacious vaccine also reached the ears of neurologists and patients afflicted with the debilitating degenerative disease. It was soon shown that no organism had been discovered. The events leading up to this ultimately painful episode reveal many of the central problems created when social conventions and a sense of decorum scripted received understanding of good scientific practice rather than actual regulatory frameworks. In the absence of such frameworks, few means were present to censor inappropriate scientific conduct. This story thus provides a window into an emergent world of state-sponsored biomedical research; a world where recrimination, gossip, misogyny, uncertainty, exaggeration, and dreams and delusions of scientific and therapeutic progress were collapsed together. PMID:20478897

  1. Ethics in biomedical research La ética de la investigación biomédica

    Directory of Open Access Journals (Sweden)

    John J. Estrada

    1990-02-01

    Full Text Available

    The present article addresses some ethical and legal aspects of biomedical research. It analyzes the existing regulations and gives reasons for the need of precise guidelines to regulate experimentation in humans and animals at our institutions. Special attention is given to the importance of obtaining legal informed consent from the subjects of biomedical research and to the conformation and duties to be assigned to institutional review boards. Aspects related to the use of animals in experimentation are also discussed. A list of references is given for those who want to delve further into this subject.

    El presente artículo trata de algunos aspectos éticos y legales de la experimentación biomédica. Analiza las normas existentes y pone de presente la necesidad de códigos precisos que regulen la experimentación en humanos y en animales. Se da especial atención a los aspectos prácticos de la obtención del consentimiento legal de los individuos que van a ser sujetos de experimentación biomédica ya la conformación y responsabilidades de los comités institucionales para la ética en dicha investigación. Se incluye además una lista de referencias para aquéllos que quieran profundizar en el tema.

  2. Imaging tissues for biomedical research using the high-resolution micro-tomography system nanotom® m

    Science.gov (United States)

    Deyhle, Hans; Schulz, Georg; Khimchenko, Anna; Bikis, Christos; Hieber, Simone E.; Jaquiery, Claude; Kunz, Christoph; Müller-Gerbl, Magdalena; H öchel, Sebastian; Saxer, Till; Stalder, Anja K.; Ilgenstein, Bernd; Beckmann, Felix; Thalmann, Peter; Buscema, Marzia; Rohr, Nadja; Holme, Margaret N.; Müller, Bert

    2016-10-01

    Micro computed tomography (mCT) is well established in virtually all fields of biomedical research, allowing for the non-destructive volumetric visualization of tissue morphology. A variety of specimens can be investigated, ranging from soft to hard tissue to engineered structures like scaffolds. Similarly, the size of the objects of interest ranges from a fraction of a millimeter to several tens of centimeters. While synchrotron radiation-based μCT still offers unrivaled data quality, the ever-improving technology of cathodic tube-based machines offers a valuable and more accessible alternative. The Biomaterials Science Center of the University of Basel operates a nanotomOR m (phoenix|x-ray, GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany), with a 180 kV source and a minimal spot size of about 0.9 μm. Through the adjustable focus-specimen and focus-detector distances, the effective pixel size can be adjusted from below 500 nm to about 80 μm. On the high-resolution side, it is for example possible to visualize the tubular network in sub-millimeter thin dentin specimens. It is then possible to locally extract parameters such as tubule diameter, density, or alignment, giving information on cell movements during tooth formation. On the other side, with a horizontal shift of the 3,072 pixels x 2,400 pixels detector, specimens up to 35 cm in diameter can be scanned. It is possible, for example, to scan an entire human knee, albeit with inferior resolution. Lab source μCT machines are thus a powerful and flexible tool for the advancement of biomedical research, and a valuable and more accessible alternative to synchrotron radiation facilities.

  3. Integrating clinical medicine into biomedical graduate education to promote translational research: strategies from two new PhD programs.

    Science.gov (United States)

    Smith, Carolyn L; Jarrett, Marcia; Bierer, S Beth

    2013-01-01

    For several decades, a barrier has existed between research and clinical medicine, making it difficult for aspiring scientists to gain exposure to human pathophysiology and access to clinical/translational research mentors during their graduate training. In 2005, the Howard Hughes Medical Institute announced the Med Into Grad initiative to support graduate programs that integrate clinical knowledge into PhD biomedical training, with the goal of preparing a new cadre of translational researchers to work at the interface of the basic sciences and clinical medicine. Two institutions, Baylor College of Medicine and the Cleveland Clinic/Case Western Reserve University, developed new PhD programs in translational biology and/or molecular medicine. These programs teach the topics and skills that today's translational researchers must learn and expose students to clinical medicine. In this article, the authors compare and contrast the history, implementation, and evaluation of the Translational Biology and Molecular Medicine program at Baylor College of Medicine and the Molecular Medicine program at the Cleveland Clinic/Case Western Reserve University. The authors also demonstrate the feasibility of creating a multidisciplinary graduate program in molecular medicine that integrates pathophysiology and clinical medicine without extending training time. They conclude with a discussion of the similarities in training approaches that exist despite the fact that each program was independently developed and offer observations that emerged during their collaboration that may benefit others who are considering developing similar programs.

  4. Development of a Pilot Data Management Infrastructure for Biomedical Researchers at University of Manchester – Approach, Findings, Challenges and Outlook of the MaDAM Project

    Directory of Open Access Journals (Sweden)

    Meik Poschen

    2012-12-01

    Full Text Available Management and curation of digital data has been becoming ever more important in a higher education and research environment characterised by large and complex data, demand for more interdisciplinary and collaborative work, extended funder requirements and use of e-infrastructures to facilitate new research methods and paradigms. This paper presents the approach, technical infrastructure, findings, challenges and outlook (including future development within the successor project, MiSS of the ‘MaDAM: Pilot data management infrastructure for biomedical researchers at University of Manchester’ project funded under the infrastructure strand of the JISC Managing Research Data (JISCMRD programme. MaDAM developed a pilot research data management solution at the University of Manchester based on biomedical researchers’ requirements, which includes technical and governance components with the flexibility to meet future needs across multiple research groups and disciplines.

  5. An ontology-based approach for data integration - an application in biomedical research

    NARCIS (Netherlands)

    Herman, I.; Marshall, M.S.; et al, not CWI; Cardoso, J.; et al, not CWI

    2008-01-01

    Background A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly stru

  6. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  7. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course †

    Science.gov (United States)

    Walton, Kristen L. W.

    2014-01-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research. PMID:25574289

  8. Use of enclosures with functional vertical space by captive rhesus monkeys (Macaca mulatta) involved in biomedical research.

    Science.gov (United States)

    Clarence, Wendy M; Scott, Jennifer P; Dorris, Michael C; Paré, Martin

    2006-09-01

    We assessed space use by 2 pairs of captive female rhesus monkeys recently transferred into 2 enclosures moderately larger than their former traditional research cages and providing elevated perches at or above human eye level for all monkeys. This new space did not affect the ongoing biomedical research in which these captive monkeys were involved, and we sought to determine whether they used the elevated positions preferentially, as do wild animals. The frequency and duration of visits at each of the 9 distinct regions within these enclosures was calculated during 30-min morning and evening sessions over 20 d. We found that the monkeys frequented all regions of their enclosures in a similar manner during both morning and evening sessions. However, the duration spent at each region varied significantly between morning and evening sessions, with high perches being chosen preferentially in the evenings. Overall, the monkeys spent the majority of their time at elevated positions. These results support the view that access to functional vertical space provides a preferred environment for species- specific behavior and is an option that should be considered by other research facilities.

  9. Biases in grant proposal success rates, funding rates and award sizes affect the geographical distribution of funding for biomedical research.

    Science.gov (United States)

    Wahls, Wayne P

    2016-01-01

    The ability of the United States to most efficiently make breakthroughs on the biology, diagnosis and treatment of human diseases requires that physicians and scientists in each state have equal access to federal research grants and grant dollars. However, despite legislative and administrative efforts to ensure equal access, the majority of funding for biomedical research is concentrated in a minority of states. To gain insight into the causes of such disparity, funding metrics were examined for all NIH research project grants (RPGs) from 2004 to 2013. State-by-state differences in per application success rates, per investigator funding rates, and average award size each contributed significantly to vast disparities (greater than 100-fold range) in per capita RPG funding to individual states. To the extent tested, there was no significant association overall between scientific productivity and per capita funding, suggesting that the unbalanced allocation of funding is unrelated to the quality of scientists in each state. These findings reveal key sources of bias in, and new insight into the accuracy of, the funding process. They also support evidence-based recommendations for how the NIH could better utilize the scientific talent and capacity that is present throughout the United States.

  10. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Science.gov (United States)

    Nisbet, Matthew; Markowitz, Ezra M

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  11. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Directory of Open Access Journals (Sweden)

    Matthew Nisbet

    Full Text Available As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  12. Technology transfer from biomedical research to clinical practice: measuring innovation performance.

    Science.gov (United States)

    Balas, E Andrew; Elkin, Peter L

    2013-12-01

    Studies documented 17 years of transfer time from clinical trials to practice of care. Launched in 2002, the National Institutes of Health (NIH) translational research initiative needs to develop metrics for impact assessment. A recent White House report highlighted that research and development productivity is declining as a result of increased research spending while the new drugs output is flat. The goal of this study was to develop an expanded model of research-based innovation and performance thresholds of transfer from research to practice. Models for transfer of research to practice have been collected and reviewed. Subsequently, innovation pathways have been specified based on common characteristics. An integrated, intellectual property transfer model is described. The central but often disregarded role of research innovation disclosure is highlighted. Measures of research transfer and milestones of progress have been identified based on the Association of University Technology Managers 2012 performance reports. Numeric milestones of technology transfer are recommended at threshold (top 50%), target (top 25%), and stretch goal (top 10%) performance levels. Transfer measures and corresponding target levels include research spending to disclosure (0.81), patents to start-up (>0.1), patents to licenses (>2.25), and average per license income (>$48,000). Several limitations of measurement are described. Academic institutions should take strategic steps to bring innovation to the center of scholarly discussions. Research on research, particularly on pathways to disclosures, is needed to improve R&D productivity. Researchers should be informed about the technology transfer performance of their institution and regulations should better support innovators.

  13. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  14. Biomedical Research and the Animal Rights Movement: A Contrast in Values.

    Science.gov (United States)

    Morrison, Adrian R.

    1993-01-01

    This article explains how animals are used in research in an effort to counteract animal rights literature. Reveals how medical professionals and others trained in scholarship have misquoted the scientific literature to bolster their claims against the utility of animal research. (PR)

  15. Demand for Interdisciplinary Laboratories for Physiology Research by Undergraduate Students in Biosciences and Biomedical Engineering

    Science.gov (United States)

    Clase, Kari L.; Hein, Patrick W.; Pelaez, Nancy J.

    2008-01-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary…

  16. F1000Research: Tics welcomes you to 21st century biomedical publishing.

    Science.gov (United States)

    Black, Kevin J

    2014-01-01

    Tics are repeated, usually suppressible movements or vocalizations. They are the defining features of tic disorders including Tourette syndrome, but many people have them for shorter durations at some point in childhood. This editorial marks the beginning of the F1000RESEARCH: Tics specialty section, an effort to provide a single portal to modern research on tics and tic disorders. Publications in F1000RESEARCH: Tics benefit from F1000RESEARCH's novel approach to publishing, in which articles can be published within days of submission. Peer review happens after publication and is fully open. When the submitted article or a revision is approved, it is promptly submitted to repositories including NIH's PubMed Central. In addition to research articles and reviews, F1000RESEARCH: Tics will publish study protocols, clinical practice articles, case reports, and data notes. The home page will also provide links to expert recommendations of articles that have appeared elsewhere, and to relevant posters from scientific meetings (http://f1000.com/posters/). F1000RESEARCH's approach is enabled by the capabilities of internet publication, including space to publish the full results of a study rather than just a few graphs selected from the data. Publishing methodologically sound studies without requiring subjective editorial judgments of novelty or broad appeal brings numerous advantages, including minimizing publication bias and shining the light of openness on peer review. To celebrate the launch of the Tics section, F1000RESEARCH is offering discounted article processing charges for manuscripts submitted by March 1st 2015. I have had good experiences publishing in F1000RESEARCH, and look forward to seeing a wide range of tic-related manuscripts submitted.

  17. The use of stem cells in biomedical research. Biotechnology Industry Organization (BIO) position statement.

    Science.gov (United States)

    1999-01-01

    On March 22, 1999, Carl B. Feldbaum, President of the Biotechnology Industry Organization (BIO), submitted comments to the National Bioethics Advisory Committee (NBAC) in response to their request for comments on stem cell research. In the statement submitted to Harold Shapiro, PhD (Chair, NBAC), Mr. Feldbaum made clear that BIO members want to ensure that the promise of new therapies and cures from research using stem cells is realized in a responsible and ethical way. In addition, all BIO members are committed to ensuring that every avenue of promising research can be responsibly explored to improve the health of individuals living with currently intractable diseases.

  18. Molecular image in biomedical research. Molecular imaging unit of the National Cancer Research Center; Imagen molecular an investigation biomedica. La Unidad de Imagen Molecular del Centro Nacional de Investigaciones Oncologicas

    Energy Technology Data Exchange (ETDEWEB)

    Perez Bruzon, J.; Mulero Anhiorte, F.

    2010-07-01

    This article has two basic objectives. firstly, it will review briefly the most important imaging techniques used in biomedical research indicting the most significant aspects related to their application in the preclinical stage. Secondly, it will present a practical application of these techniques in a pure biomedical research centre (not associated to a clinical facility). Practical aspects such as organisation, equipment, work norms, shielding of the Spanish National Cancer Research Centre (CNIO) Imaging Unit will be shown. This is a pioneering facility in the application of these techniques in research centres without any dependence or any direct relationship with other hospital Nuclear Medicine services. (Author) 7 refs.

  19. The South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLAM BRC case register: development and descriptive data

    Directory of Open Access Journals (Sweden)

    Denis Mike

    2009-08-01

    Full Text Available Abstract Background Case registers have been used extensively in mental health research. Recent developments in electronic medical records, and in computer software to search and analyse these in anonymised format, have the potential to revolutionise this research tool. Methods We describe the development of the South London and Maudsley NHS Foundation Trust (SLAM Biomedical Research Centre (BRC Case Register Interactive Search tool (CRIS which allows research-accessible datasets to be derived from SLAM, the largest provider of secondary mental healthcare in Europe. All clinical data, including free text, are available for analysis in the form of anonymised datasets. Development involved both the building of the system and setting in place the necessary security (with both functional and procedural elements. Results Descriptive data are presented for the Register database as of October 2008. The database at that point included 122,440 cases, 35,396 of whom were receiving active case management under the Care Programme Approach. In terms of gender and ethnicity, the database was reasonably representative of the source population. The most common assigned primary diagnoses were within the ICD mood disorders (n = 12,756 category followed by schizophrenia and related disorders (8158, substance misuse (7749, neuroses (7105 and organic disorders (6414. Conclusion The SLAM BRC Case Register represents a 'new generation' of this research design, built on a long-running system of fully electronic clinical records and allowing in-depth secondary analysis of both numerical, string and free text data, whilst preserving anonymity through technical and procedural safeguards.

  20. [The role of bioethics committees in the systems protecting scientific biomedical research participants in France and in Poland].

    Science.gov (United States)

    Czarkowski, Marek; Sieczych, Alicja

    2013-08-01

    Bioethics committees are along with ethic regulations and rules of law one of three main pillars in the system of protection of scientific biomedical research participants. Although principal directives for bioethics committees are established by international guidelines, detailed regulations may differ in particular states. The aim of this article was to compare two bioethic committees systems: French and Polish one. Historical beginnings of the bioethics committees system in France and in Poland are briefly mentioned, Subsequently, the networks of bioethics committees in both countries are compared. Although the number of bioethics committees (Research Ethic Committees) in both countries is comparable, the procedure of their establishment varies. French committees are based on administrative division of the country and divide on regional and interregional committees. In Poland, bioethics committees are established by medical universities, medical research and development units or regional chambers of physicians and dentists. In France there is no equivalent of Appeal Bioethics Committee, however one could appeal from the negative bioethics committee's opinion. The composition of French bioethics committees is more diverse and half of the members are not related to medical professions. Members of French committees are named on indefinite term by headmaster of Regional Health Agency after having been chosen in competition for the post. In Poland members are called on three-year-term but the rotation of members is not overwhelming since there is no limit of terms for one member. French legal solutions seems more secure for scientific bioethics research participants. For this reason, a detailed research on legislation in other countries is necessary before introducing any new regulations in Polish law.

  1. [First South american network of biomedical research. Education and biotechnology for health].

    Science.gov (United States)

    Perone, Marcelo J; Velázquez, Graciela; Rojas de Arias, Antonieta; Chamorro, Gustavo; Coluchi, Norma; Pirmez, Claude; Savino, Wilson; Barbeito, Luis; Arzt, Eduardo

    2013-01-01

    It is in our interest, in this brief manuscript, to report the creation of the first program of regional integration of a network of research institutes in Biomedicine belonging to members of the MERCOSUR countries. We discuss some of the foundations that gave sustenance to its creation and its objectives in the medium and long term. In addition, we consider the potential of the results of this program in the fields of applied medical research, education and biotechnology.

  2. Research enrichment: evaluation of structured research in the curriculum for dental medicine students as part of the vertical and horizontal integration of biomedical training and discovery

    Directory of Open Access Journals (Sweden)

    Stewart Tanis

    2008-02-01

    Full Text Available Abstract Background Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their students. Methods A series of structured seminars, incorporating faculty research, was designed for first-year dental students at the University of Nevada, Las Vegas, School of Dental Medicine to reinforce and support the concepts and skills taught in concurrent courses. A structured research enrichment period was also created to facilitate student engagement in active research using faculty and student curricular release time. Course evaluations and surveys were administered to gauge student perceptions of the curricular integration of research, the impact of these seminars on recruitment to the research program, and overall levels of student satisfaction with research enrichment. Results The analysis of course surveys revealed that students perceived the research-containing seminars effectively illustrated concepts, were logically sequenced, and were well-integrated into their curriculum. In addition, analysis of surveys revealed that the Integration Seminar courses motivated students to engage in research enrichment. Finally, this analysis provided evidence that students were very satisfied with their overall learning experience during research enrichment. Conclusion Curricular integration is one method of improving the teaching and learning of complicated and inter-related concepts, providing an opportunity to incorporate research training and objectives into traditionally separate didactic courses. Despite the benefits of curricular integration, finding

  3. Understanding the relative valuation of research impact: a best–worst scaling experiment of the general public and biomedical and health researchers

    Science.gov (United States)

    Pollitt, Alexandra; Potoglou, Dimitris; Patil, Sunil; Burge, Peter; Guthrie, Susan; King, Suzanne; Wooding, Steven; Grant, Jonathan

    2016-01-01

    Objectives (1) To test the use of best–worst scaling (BWS) experiments in valuing different types of biomedical and health research impact, and (2) to explore how different types of research impact are valued by different stakeholder groups. Design Survey-based BWS experiment and discrete choice modelling. Setting The UK. Participants Current and recent UK Medical Research Council grant holders and a representative sample of the general public recruited from an online panel. Results In relation to the study's 2 objectives: (1) we demonstrate the application of BWS methodology in the quantitative assessment and valuation of research impact. (2) The general public and researchers provided similar valuations for research impacts such as improved life expectancy, job creation and reduced health costs, but there was less agreement between the groups on other impacts, including commercial capacity development, training and dissemination. Conclusions This is the second time that a discrete choice experiment has been used to assess how the general public and researchers value different types of research impact, and the first time that BWS has been used to elicit these choices. While the 2 groups value different research impacts in different ways, we note that where they agree, this is generally about matters that are seemingly more important and associated with wider social benefit, rather than impacts occurring within the research system. These findings are a first step in exploring how the beneficiaries and producers of research value different kinds of impact, an important consideration given the growing emphasis on funding and assessing research on the basis of (potential) impact. Future research should refine and replicate both the current study and that of Miller et al in other countries and disciplines. PMID:27540096

  4. Poor antibody validation is a challenge in biomedical research: a case study for detection of c-FLIP.

    Science.gov (United States)

    Bucur, Octavian; Pennarun, Bodvael; Stancu, Andreea Lucia; Nadler, Monica; Muraru, Maria Sinziana; Bertomeu, Thierry; Khosravi-Far, Roya

    2013-10-01

    Successful translation of findings derived from preclinical studies into effective therapies is critical in biomedical research. Lack of robustness and reproducibility of the preclinical data, due to insufficient number of repeats, inadequate cell-based and mouse models contribute to the poor success rate. Antibodies are widely used in preclinical research, notably to determine the expression of potential therapeutic targets in tissues of interest, including tumors, but also to identify disease and/or treatment response biomarkers. We sought to determine whether the current antibody characterization standards in preclinical research are sufficient to ensure reliability of the data found in peer-reviewed publications. To address this issue, we used detection of the protein c-FLIP, a major factor of resistance to apoptosis, as a proof of concept. Accurate detection of endogenous c-FLIP levels in the preclinical settings is imperative since it is considered as a potential theranostic biomarker. Several sources of c-FLIP antibodies validated by their manufacturer and recommended for western blotting were therefore rigorously tested. We found a wide divergence in immune recognition properties. While these antibodies have been used in many publications, our results show that several of them failed to detect endogenous c-FLIP protein by Western blotting. Our results suggest that antibody validation standards are inadequate, and that systematic use of genetic knockdowns and/or knockouts to establish proof of specificity is critical, even for antibodies previously used in the scientific literature. Because antibodies are fundamental tools in both preclinical and clinical research, ensuring their specificity is crucial.

  5. The challenges of implementing pathogen control strategies for fishes used in biomedical research

    Science.gov (United States)

    Lawrence, C.; Ennis, D.G.; Harper, C.; Kent, M.L.; Murray, K.; Sanders, G.E.

    2012-01-01

    Over the past several decades, a number of fish species, including the zebrafish, medaka, and platyfish/swordtail, have become important models for human health and disease. Despite the increasing prevalence of these and other fish species in research, methods for health maintenance and the management of diseases in laboratory populations of these animals are underdeveloped. There is a growing realization that this trend must change, especially as the use of these species expands beyond developmental biology and more towards experimental applications where the presence of underlying disease may affect the physiology animals used in experiments and potentially compromise research results. Therefore, there is a critical need to develop, improve, and implement strategies for managing health and disease in aquatic research facilities. The purpose of this review is to report the proceedings of a workshop entitled "Animal Health and Disease Management in Research Animals" that was recently held at the 5th Aquatic Animal Models for Human Disease in September 2010 at Corvallis, Oregon to discuss the challenges involved with moving the field forward on this front. ?? 2011 Elsevier Inc. All rights reserved.

  6. Ethical and legal controversies in cloning for biomedical research--a South African perspective.

    Science.gov (United States)

    Dhai, A; Moodley, J; McQuoid-Mason, D J; Rodeck, C

    2004-11-01

    Therapeutic embryonic stem cell research raises a number of ethical and legal issues. The promised benefits are new and important knowledge of human embryological development, gene action, and the production of transplantable tissue and organs that could be effective in reversing or curing currently irreversible disease processes. However, this research involves the deliberate production, use, and ultimate destruction of cloned embryos, hence re-awakening the debate on the moral status of the embryo. Other moral anxieties include the possibility that women (as donors of ova) would be exploited, that this research would land on the slippery slope of reproductive cloning, and that promises made too early could lead to false hope among sick patients. It also raises the question of intellectual and actual property rights in human cell lines and the techniques by which they are produced. Review of legal systems internationally reveals that there is no global consensus on therapeutic embryonic stem cell research. Legal considerations are very much influenced by ethical deliberations on the moral status of the embryo. The South African parliament is promulgating legislation permitting therapeutic cloning, thereby demonstrating a commitment by the state to act in the best interests of patients and of regenerative medicine.

  7. A national survey of policies on disclosure of conflicts of interest in biomedical research

    Science.gov (United States)

    McCrary, S. V.; Anderson, C. B.; Jakovljevic, J.; Khan, T.; McCullough, L. B.; Wray, N. P.; Brody, B. A.

    2000-01-01

    BACKGROUND: Conflicts of interest pose a threat to the integrity of scientific research. The current regulations of the U.S. Public Health Service and the National Science Foundation require that medical schools and other research institutions report the existence of conflicts of interest to the funding agency but allow the institutions to manage conflicts internally. The regulations do not specify how to do so. METHODS: We surveyed all medical schools (127) and other research institutions (170) that received more than $5 million in total grants annually from the National Institutes of Health or the National Science Foundation; 48 journals in basic science and clinical medicine; and 17 federal agencies in order to analyze their policies on conflicts of interest. RESULTS: Of the 297 institutions, 250 (84 percent) responded by March 2000, as did 47 of the 48 journals and 16 of the 17 federal agencies. Fifteen of the 250 institutions (6 percent)--5 medical schools and 10 other research institutions--reported that they had no policy on conflicts of interest. Among the institutions that had policies, there was marked variation in the definition and management of conflicts. Ninety-one percent had policies that adhered to the federal threshold for disclosure ($10,000 in annual income or equity in a relevant company or 5 percent ownership), and 9 percent had policies that exceeded the federal guidelines. Only 8 percent had policies requiring disclosure to funding agencies, only 7 percent had such policies regarding journals, and only 1 percent had policies requiring the disclosure of information to the relevant institutional review boards or to research subjects. Twenty journals (43 percent) reported that they had policies requiring disclosure of conflicts of interest. Only four federal agencies had policies that explicitly addressed conflicts of interest in extramural research, and all but one of the agencies relied primarily on institutional discretion. CONCLUSIONS

  8. Biomedical Libraries

    Science.gov (United States)

    Pizer, Irwin H.

    1978-01-01

    Biomedical libraries are discussed as a distinct and specialized group of special libraries and their unique services and user interactions are described. The move toward professional standards, as evidenced by the Medical Library Association's new certification program, and the current state of development for a new section of IFLA established…

  9. Ethics of open access to biomedical research: Just a special case of ethics of open access to research

    Directory of Open Access Journals (Sweden)

    Harnad Stevan

    2007-12-01

    Full Text Available Abstract The ethical case for Open Access (OA (free online access to research findings is especially salient when it is public health that is being compromised by needless access restrictions. But the ethical imperative for OA is far more general: It applies to all scientific and scholarly research findings published in peer-reviewed journals. And peer-to-peer access is far more important than direct public access. Most research is funded so as to be conducted and published, by researchers, in order to be taken up, used, and built upon in further research and applications, again by researchers (pure and applied, including practitioners, for the benefit of the public that funded it – not in order to generate revenue for the peer-reviewed journal publishing industry (nor even because there is a burning public desire to read much of it. Hence OA needs to be mandated, by researchers' institutions and funders, for all research.

  10. Ethics of open access to biomedical research: just a special case of ethics of open access to research.

    Science.gov (United States)

    Harnad, Stevan

    2007-12-07

    The ethical case for Open Access (OA) (free online access) to research findings is especially salient when it is public health that is being compromised by needless access restrictions. But the ethical imperative for OA is far more general: It applies to all scientific and scholarly research findings published in peer-reviewed journals. And peer-to-peer access is far more important than direct public access. Most research is funded so as to be conducted and published, by researchers, in order to be taken up, used, and built upon in further research and applications, again by researchers (pure and applied, including practitioners), for the benefit of the public that funded it - not in order to generate revenue for the peer-reviewed journal publishing industry (nor even because there is a burning public desire to read much of it). Hence OA needs to be mandated, by researchers' institutions and funders, for all research.

  11. BioMedBridges: Mapping and registry of biomedical science research infrastructure standards

    OpenAIRE

    McMurry, Julie; Parkinson, Helen; Gormanns, Philipp; Muilu, Juha; Sariyar, Murat; Swertz, Morris; Hendriksen, Dennis; Kelpin, Fleur; Jetten, Jonathan; Pang, Chao

    2015-01-01

    The development of a prototype data model registry is the objective of BioMedBridges Deliverable 3.2, with contributions from project partners and in collaboration with BBMRI. The overall aim is to promote FAIR principles for data (Find, Access, Integrate and Reuse), therefore the Meta Models and Mappings Registry is designed to make it easier for researchers, data stewards and tools producers to find, compare, and choose existing data models, formats, and guidelines, and in particular to pro...

  12. Splicing-Sensitive DNA-Microarrays: Peculiarities and Application in Biomedical Research (Review)

    OpenAIRE

    2015-01-01

    Alternative splicing (АS) provides a variety of protein and mature mRNA isoforms encoded by a single gene, and is the essential component of cell and tissue differentiation and functioning. DNA-microarrays are highly productive transcriptome research technique both at the level of total gene expression assessment and alternatively spliced mRNA isoforms exploration. The study of AS patterns requires thorough probe design to achieve appropriate accuracy of the analysis. There are tw...

  13. Splicing-Sensitive DNA-Microarrays: Peculiarities and Applicationin Biomedical Research (Review)

    OpenAIRE

    2015-01-01

    Alternative splicing (АS) provides a variety of protein and mature mRNA isoforms encoded by a single gene, and is the essential component of cell and tissue differentiation and functioning. DNA-microarrays are highly productive transcriptome research technique both at the level of total gene expression assessment and alternatively spliced mRNA isoforms exploration. The study of AS patterns requires thorough probe design to achieve appropriate accuracy of the analysis. There are two types ...

  14. Locating tissue collections in tissue economies--deriving value from biomedical research

    DEFF Research Database (Denmark)

    Tupasela, Aaro Mikael

    2006-01-01

    This paper examines diverging notions of value in the use of tissue sample collections and other information resources using a case study of hereditary colorectal cancer research in Finland. Recent science and technology policies that emphasize the production of commercial value derived from tiss...... society in relation to the goals of national health care policies, as well as the role of the state as a mediator of knowledge production and commercial development....

  15. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1984-02-01

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base.

  16. A Critical Look at Biomedical Journals’ Policies on Animal Research by Use of a Novel Tool: The EXEMPLAR Scale

    Directory of Open Access Journals (Sweden)

    Ana Raquel Martins

    2015-04-01

    Full Text Available Animal research is not only regulated by legislation but also by self-regulatory mechanisms within the scientific community, which include biomedical journals’ policies on animal use. For editorial policies to meaningfully impact attitudes and practice, they must not only be put into effect by editors and reviewers, but also be set to high standards. We present a novel tool to classify journals’ policies on animal use—the EXEMPLAR scale—as well as an analysis by this scale of 170 journals publishing studies on animal models of three human diseases: Amyotrophic Lateral Sclerosis, Type-1 Diabetes and Tuberculosis. Results show a much greater focus of editorial policies on regulatory compliance than on other domains, suggesting a transfer of journals’ responsibilities to scientists, institutions and regulators. Scores were not found to vary with journals’ impact factor, country of origin or antiquity, but were, however, significantly higher for open access journals, which may be a result of their greater exposure and consequent higher public scrutiny.

  17. Essential diagnostics - the role of the Department of Biomedical Research of the Royal Tropical Institute in the 21st century

    Directory of Open Access Journals (Sweden)

    Paul R Klatser

    2000-01-01

    Full Text Available In the light of emerging and overlooked infectious diseases and widespread drug resistance, diagnostics have become increasingly important in supporting surveillance, disease control and outbreak management programs. In many low-income countries the diagnostic service has been a neglected part of health care, often lacking quantity and quality or even non-existing at all. High-income countries have exploited few of their advanced technical abilities for the much-needed development of low-cost, rapid diagnostic tests to improve the accuracy of diagnosis and accelerate the start of appropriate treatment. As is now also recognized by World Healt Organization, investment in the development of affordable diagnostic tools is urgently needed to further our ability to control a variety of diseases that form a major threat to humanity. The Royal Tropical Institute's Department of Biomedical Research aims to contribute to the health of people living in the tropics. To this end, its multidisciplinary group of experts focuses on the diagnosis of diseases that are major health problems in low-income countries. In partnership we develop, improve and evaluate simple and cheap diagnostic tests, and perform epidemiological studies. Moreover, we advice and support others - especially those in developing countries - in their efforts to diagnose infectious diseases.

  18. Influence of the Cholinergic System on the Immune Response of Teleost Fishes: Potential Model in Biomedical Research

    Directory of Open Access Journals (Sweden)

    G. A. Toledo-Ibarra

    2013-01-01

    Full Text Available Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system; however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals.

  19. Translational systems biology using an agent-based approach for dynamic knowledge representation: An evolutionary paradigm for biomedical research.

    Science.gov (United States)

    An, Gary C

    2010-01-01

    The greatest challenge facing the biomedical research community is the effective translation of basic mechanistic knowledge into clinically effective therapeutics. This challenge is most evident in attempts to understand and modulate "systems" processes/disorders, such as sepsis, cancer, and wound healing. Formulating an investigatory strategy for these issues requires the recognition that these are dynamic processes. Representation of the dynamic behavior of biological systems can aid in the investigation of complex pathophysiological processes by augmenting existing discovery procedures by integrating disparate information sources and knowledge. This approach is termed Translational Systems Biology. Focusing on the development of computational models capturing the behavior of mechanistic hypotheses provides a tool that bridges gaps in the understanding of a disease process by visualizing "thought experiments" to fill those gaps. Agent-based modeling is a computational method particularly well suited to the translation of mechanistic knowledge into a computational framework. Utilizing agent-based models as a means of dynamic hypothesis representation will be a vital means of describing, communicating, and integrating community-wide knowledge. The transparent representation of hypotheses in this dynamic fashion can form the basis of "knowledge ecologies," where selection between competing hypotheses will apply an evolutionary paradigm to the development of community knowledge.

  20. Biomedical implantable microelectronics.

    Science.gov (United States)

    Meindl, J D

    1980-10-17

    Innovative applications of microelectronics in new biomedical implantable instruments offer a singular opportunity for advances in medical research and practice because of two salient factors: (i) beyond all other types of biomedical instruments, implants exploit fully the inherent technical advantages--complex functional capability, high reliability, lower power drain, small size and weight-of microelectronics, and (ii) implants bring microelectronics into intimate association with biological systems. The combination of these two factors enables otherwise impossible new experiments to be conducted and new paostheses developed that will improve the quality of human life.

  1. Ethics in biomedical engineering.

    Science.gov (United States)

    Morsy, Ahmed; Flexman, Jennifer

    2008-01-01

    This session focuses on a number of aspects of the subject of Ethics in Biomedical Engineering. The session starts by providing a case study of a company that manufactures artificial heart valves where the valves were failing at an unexpected rate. The case study focuses on Biomedical Engineers working at the company and how their education and training did not prepare them to deal properly with such situation. The second part of the session highlights the need to learn about various ethics rules and policies regulating research involving human or animal subjects.

  2. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research.

    Science.gov (United States)

    Jain, Dharmendra; Bar-Shalom, Daniel

    2014-12-01

    Alginates are natural polymers widely used in the food industry because of their biocompatible, biodegradable character, nontoxicity and easy availability. The bioadhesive character of alginates makes them useful in the pharmaceutical industry as well. The application areas of sodium alginate-based drug delivery systems are many and these systems can be formulated as gels, matrices, membranes, nanospheres, microspheres, etc. Worldwide researchers are exploring possible applications of alginates as coating material, preparation of controlled-release drug delivery systems such as microspheres, beads, pellets, gels, fibers, membranes, etc. In the present review, such applications of alginates are discussed.

  3. Adverse pregnancy outcomes in offspring of fathers working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Magnusson, Linda L; Bodin, Lennart; Wennborg, Helena

    2006-01-01

    exposed, and of non-laboratory employees unexposed (n = 1,909). Exposure data were obtained by questionnaires to research group leaders. Logistic regression analysis estimated odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: Paternal laboratory work in general showed no statistically...... significant increased ORs concerning birth weight and/or gestational age, but work specifically with radioactive isotopes gave OR 1.8 (CI 1.0-3.2) for high birth weight and a relative risk of 1.2 (CI 1.0-1.4) for sex ratio (male/female). CONCLUSIONS: There was no clear association between periconceptional...

  4. Advantages of using aquatic animals for biomedical research on reproductive toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Mottet, N.K.; Landolt, M.L.

    1987-04-01

    Major advantages of the use of aquatic animals, such as trout, English sole, or sea urchins, for studying the mechanisms of reproductive toxicology are discussed. The remarkable synchrony of differentiation of gametes in large quantities for detailed morphologic and biochemical measurements enables research not readily done on mammalian nonseasonal breeders. Structural differences such as the absence of a fibrous sheath in the more simple structure of fish and sea urchin sperm flagella facilitates comparative study of the mechanism of action of microtubules in flagella movement and the coupling of mitochondrial energy production to microtubules movement.

  5. Balanced biomedical program plan. Volume X. Fusion analysis for and environmental research

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    In this draft planning document for health and environmental research needs relevant to the development of fusion technology, an attempt is made to integrate input from the participating laboratories on the basis of the King-Muir study categories. The general description covers only those concepts and features that are considered important to an understanding of possible and probable effects of thermonuclear reactors on health and the environment. Appendixes are included which reflect an understanding of three areas of special interest: materials requirements, effects from magnetic fields, and tritium effects.

  6. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  7. Bioethical responsibilities of the health authority in health care and biomedical research

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Salinas

    2015-01-01

    Full Text Available The reflection on bioethical contents of health policies and their effects on the demands for social justice has been a preferred concern of those who have driven the health reforms that were behind the creation of the National Health Service and, more recently, the regime of health guarantees. In the course of the years, the concern for the vindication of individual rights in the context of health care and research has joined to citizen demands for equitable access to health actions. For this purpose, in 2006 and 2012, specific laws addressing these matters were enacted and in the last year, regulations that make them operative emerged and are being implemented. The wording of the articles of both laws, in the effort to rescue individual rights, raises an imbalance in some respects, with regard to the social impact of their implementation. In certain subjects, its provisions run counter to existing codes of professional ethics in the country and in others; its implementation allows the privatization of the process of ethical review of pharmacological research, which was restricted to public health services. The absence of starting up of the National Bioethics Commission, pending since 2006, has prevented the creation of a pluralistic spaTce for deliberation on these issues and others as provided by law.

  8. A draft map of rhesus monkey tissue proteome for biomedical research.

    Science.gov (United States)

    Lee, Jin-Gyun; McKinney, Kimberly Q; Lee, Yong-Yook; Chung, Hae-Na; Pavlopoulos, Antonis J; Jung, Kook Y; Kim, Woong-Ki; Kuroda, Marcelo J; Han, David K; Hwang, Sunil

    2015-01-01

    Though the rhesus monkey is one of the most valuable non-human primate animal models for various human diseases because of its manageable size and genetic and proteomic similarities with humans, proteomic research using rhesus monkeys still remains challenging due to the lack of a complete protein sequence database and effective strategy. To investigate the most effective and high-throughput proteomic strategy, comparative data analysis was performed employing various protein databases and search engines. The UniProt databases of monkey, human, bovine, rat and mouse were used for the comparative analysis and also a universal database with all protein sequences from all available species was tested. At the same time, de novo sequencing was compared to the SEQUEST search algorithm to identify an optimal work flow for monkey proteomics. Employing the most effective strategy, proteomic profiling of monkey organs identified 3,481 proteins at 0.5% FDR from 9 male and 10 female tissues in an automated, high-throughput manner. Data are available via ProteomeXchange with identifier PXD001972. Based on the success of this alternative interpretation of MS data, the list of proteins identified from 12 organs of male and female subjects will benefit future rhesus monkey proteome research.

  9. A draft map of rhesus monkey tissue proteome for biomedical research.

    Directory of Open Access Journals (Sweden)

    Jin-Gyun Lee

    Full Text Available Though the rhesus monkey is one of the most valuable non-human primate animal models for various human diseases because of its manageable size and genetic and proteomic similarities with humans, proteomic research using rhesus monkeys still remains challenging due to the lack of a complete protein sequence database and effective strategy. To investigate the most effective and high-throughput proteomic strategy, comparative data analysis was performed employing various protein databases and search engines. The UniProt databases of monkey, human, bovine, rat and mouse were used for the comparative analysis and also a universal database with all protein sequences from all available species was tested. At the same time, de novo sequencing was compared to the SEQUEST search algorithm to identify an optimal work flow for monkey proteomics. Employing the most effective strategy, proteomic profiling of monkey organs identified 3,481 proteins at 0.5% FDR from 9 male and 10 female tissues in an automated, high-throughput manner. Data are available via ProteomeXchange with identifier PXD001972. Based on the success of this alternative interpretation of MS data, the list of proteins identified from 12 organs of male and female subjects will benefit future rhesus monkey proteome research.

  10. [Bioethical responsibilities of the health authority in health care and biomedical research].

    Science.gov (United States)

    Salinas, Rodrigo A; Fuenzalida, Max C

    2015-01-30

    The reflection on bioethical contents of health policies and their effects on the demands for social justice has been a preferred concern of those who have driven the health reforms that were behind the creation of the National Health Service and, more recently, the regime of health guarantees. In the course of the years, the concern for the vindication of individual rights in the context of health care and research has joined to citizen demands for equitable access to health actions. For this purpose, in 2006 and 2012, specific laws addressing these matters were enacted and in the last year, regulations that make them operative emerged and are being implemented. The wording of the articles of both laws, in the effort to rescue individual rights, raises an imbalance in some respects, with regard to the social impact of their implementation. In certain subjects, its provisions run counter to existing codes of professional ethics in the country and in others; its implementation allows the privatization of the process of ethical review of pharmacological research, which was restricted to public health services. The absence of starting up of the National Bioethics Commission, pending since 2006, has prevented the creation of a pluralistic spaTce for deliberation on these issues and others as provided by law.

  11. Magnetic resonance imaging in Malawi: contributions to clinical care, medical education and biomedical research.

    Science.gov (United States)

    Potchen, M J; Kampondeni, S; Birbeck, G L; Hammond, C A; Gonani, A; Phiri, K S; Seydel, K B; Taylors, T E

    2011-06-01

    Advanced medical imaging technologies are generally unavailable in low income, tropical settings despite the reality that neurologic disorders are disproportionately common in such environments. Through a series of donations as well as extramural research funding support, an MRI facility opened in Blantyre, Malawi in July 2008. Resulting opportunities for studying common tropical disorders, such as malaria and schistosomiasis, in vivo are promising. The subsequent improvements in local patient care were expected and exceptional and include major revisions in basic care protocols that may eventually impact care protocols at facilities in the region that do not have recourse to MRI. In addition, advanced neuroimaging technology has energized the medical education system, possibly slowing the brain drain. Advanced technologies, though potentially associated with significant fiscal opportunity costs, may bring unexpected and extensive benefits to the healthcare and medical education systems involved.

  12. Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research

    Directory of Open Access Journals (Sweden)

    Norman Moullan

    2015-03-01

    Full Text Available In recent years, tetracyclines, such as doxycycline, have become broadly used to control gene expression by virtue of the Tet-on/Tet-off systems. However, the wide range of direct effects of tetracycline use has not been fully appreciated. We show here that these antibiotics induce a mitonuclear protein imbalance through their effects on mitochondrial translation, an effect that likely reflects the evolutionary relationship between mitochondria and proteobacteria. Even at low concentrations, tetracyclines induce mitochondrial proteotoxic stress, leading to changes in nuclear gene expression and altered mitochondrial dynamics and function in commonly used cell types, as well as worms, flies, mice, and plants. Given that tetracyclines are so widely applied in research, scientists should be aware of their potentially confounding effects on experimental results. Furthermore, these results caution against extensive use of tetracyclines in livestock due to potential downstream impacts on the environment and human health.

  13. Critical evaluation of challenges and future use of animals in experimentation for biomedical research.

    Science.gov (United States)

    Singh, Vijay Pal; Pratap, Kunal; Sinha, Juhi; Desiraju, Koundinya; Bahal, Devika; Kukreti, Ritushree

    2016-12-01

    Animal experiments that are conducted worldwide contribute to significant findings and breakthroughs in the understanding of the underlying mechanisms of various diseases, bringing up appropriate clinical interventions. However, their predictive value is often low, leading to translational failure. Problems like translational failure of animal studies and poorly designed animal experiments lead to loss of animal lives and less translatable data which affect research outcomes ethically and economically. Due to increasing complexities in animal usage with changes in public perception and stringent guidelines, it is becoming difficult to use animals for conducting studies. This review deals with challenges like poor experimental design and ethical concerns and discusses key concepts like sample size, statistics in experimental design, humane endpoints, economic assessment, species difference, housing conditions, and systematic reviews and meta-analyses that are often neglected. If practiced, these strategies can refine the procedures effectively and help translate the outcomes efficiently.

  14. Africa: continent of genome contrasts with implications for biomedical research and health.

    Science.gov (United States)

    Ramsay, Michèle

    2012-08-31

    The genomic architecture of African populations is poorly understood and there is considerable variation between ethno-linguistic groups. Genome-wide approaches have been extensively applied to search for genetic associations to complex traits in Europeans, but rarely in Africans. This is largely attributed to lower levels of funding, poor infrastructure and public health systems, and to the small pool of trained scientists. High levels of genetic variation and underlying population structure in Africans present significant challenges, but lower levels of linkage disequilibrium provide an opportunity for more effective localisation of causal variants. High throughput technologies, including dense genotyping arrays, genome sequencing and epigenome studies, together with plummeting costs, are making research more affordable, even for African scientists. Understanding the interactions between genome structure and environmental influences is essential to interpreting their contributions to the increase in infectious diseases and non-communicable diseases, exacerbated by adverse environments and lifestyle choices. The unique genome dynamics in African populations have an important role to play in understanding human health and susceptibility to disease.

  15. Growing applications of "click chemistry" for bioconjugation in contemporary biomedical research.

    Science.gov (United States)

    Nwe, Kido; Brechbiel, Martin W

    2009-06-01

    This update summarizes the growing application of "click" chemistry in diverse areas such as bioconjugation, drug discovery, materials science, and radiochemistry. This update also discusses click chemistry reactions that proceed rapidly with high selectivity, specificity, and yield. Two important characteristics make click chemistry so attractive for assembling compounds, reagents, and biomolecules for preclinical and clinical applications. First, click reactions are bio-orthogonal; neither the reactants nor their product's functional groups interact with functionalized biomolecules. Second, the reactions proceed with ease under mild nontoxic conditions, such as at room temperature and, usually, in water. The copper-catalyzed Huisgen cycloaddition, azide-alkyne [3 + 2] dipolar cycloaddition, Staudinger ligation, and azide-phosphine ligation each possess these unique qualities. These reactions can be used to modify one cellular component while leaving others unharmed or untouched. Click chemistry has found increasing applications in all aspects of drug discovery in medicinal chemistry, such as for generating lead compounds through combinatorial methods. Bioconjugation via click chemistry is rigorously employed in proteomics and nucleic research. In radiochemistry, selective radiolabeling of biomolecules in cells and living organisms for imaging and therapy has been realized by this technology. Bifunctional chelating agents for several radionuclides useful for positron emission tomography and single-photon emission computed tomography imaging have also been prepared by using click chemistry. This review concludes that click chemistry is not the perfect conjugation and assembly technology for all applications, but provides a powerful, attractive alternative to conventional chemistry. This chemistry has proven itself to be superior in satisfying many criteria (e.g., biocompatibility, selectivity, yield, stereospecificity, and so forth); thus, one can expect it will

  16. Current millennium biotechniques for biomedical research on parasites and host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Teixeira Antonio RL

    2000-01-01

    Full Text Available The development of biotechnology in the last three decades has generated the feeling that the newest scientific achievements will deliver high standard quality of life through abundance of food and means for successfully combating diseases. Where the new biotechnologies give access to genetic information, there is a common belief that physiological and pathological processes result from subtle modifications of gene expression. Trustfully, modern genetics has produced genetic maps, physical maps and complete nucleotide sequences from 141 viruses, 51 organelles, two eubacteria, one archeon and one eukaryote (Saccharomices cerevisiae. In addition, during the Centennial Commemoration of the Oswaldo Cruz Institute the nearly complete human genome map was proudly announced, whereas the latest Brazilian key stone contribution to science was the publication of the Shillela fastidiosa genomic sequence highlythed on a Nature cover issue. There exists a belief among the populace that further scientific accomplishments will rapidly lead to new drugs and methodological approaches to cure genetic diseases and other incurable ailments. Yet, much evidence has been accumulated, showing that a large information gap exists between the knowledge of genome sequence and our knowledge of genome function. Now that many genome maps are available, people wish to know what are we going to do with them. Certainly, all these scientific accomplishments will shed light on many more secrets of life. Nevertheless, parsimony in the weekly announcements of promising scientific achievements is necessary. We also need many more creative experimental biologists to discover new, as yet un-envisaged biotechnological approaches, and the basic resource needed for carrying out mile stone research necessary for leading us to that "promised land"often proclaimed by the mass media.

  17. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  18. Biomedical ontologies: a functional perspective.

    Science.gov (United States)

    Rubin, Daniel L; Shah, Nigam H; Noy, Natalya F

    2008-01-01

    The information explosion in biology makes it difficult for researchers to stay abreast of current biomedical knowledge and to make sense of the massive amounts of online information. Ontologies--specifications of the entities, their attributes and relationships among the entities in a domain of discourse--are increasingly enabling biomedical researchers to accomplish these tasks. In fact, bio-ontologies are beginning to proliferate in step with accruing biological data. The myriad of ontologies being created enables researchers not only to solve some of the problems in handling the data explosion but also introduces new challenges. One of the key difficulties in realizing the full potential of ontologies in biomedical research is the isolation of various communities involved: some workers spend their career developing ontologies and ontology-related tools, while few researchers (biologists and physicians) know how ontologies can accelerate their research. The objective of this review is to give an overview of biomedical ontology in practical terms by providing a functional perspective--describing how bio-ontologies can and are being used. As biomedical scientists begin to recognize the many different ways ontologies enable biomedical research, they will drive the emergence of new computer applications that will help them exploit the wealth of research data now at their fingertips.

  19. 75 FR 70270 - Submission for OMB Review; Comment Request; Pretesting of NIAID's Biomedical HIV Prevention...

    Science.gov (United States)

    2010-11-17

    ... NIAID's Biomedical HIV Prevention Research Communication Messages SUMMARY: In compliance with the... Collection: Title: Pretesting of NIAID's Biomedical HIV Prevention Research Communication Messages. Type of... biomedical HIV prevention research. The primary objectives of the pretests are to (1) Assess...

  20. 76 FR 6484 - Submission for OMB Review; Comment Request; Pretesting of NIAID's Biomedical HIV Prevention...

    Science.gov (United States)

    2011-02-04

    ... NIAID's Biomedical HIV Prevention Research Communication Messages SUMMARY: Under the provisions of...: Title: Pretesting of NIAID's Biomedical HIV Prevention Research Communication Messages. Type of... biomedical HIV prevention research. The primary objectives of the pretests are to (1) assess...

  1. A Ten-Year Assessment of a Biomedical Engineering Summer Research Internship within a Comprehensive Cancer Center

    Science.gov (United States)

    Wright, A. S.; Wu, X.; Frye, C. A.; Mathur, A. B.; Patrick, C. W., Jr.

    2007-01-01

    A Biomedical Engineering Internship Program conducted within a Comprehensive Cancer Center over a 10 year period was assessed and evaluated. Although this is a non-traditional location for an internship, it is an ideal site for a multidisciplinary training program for science, technology, engineering, and mathematics (STEM) students. We made a…

  2. Report on the Results of the 1988 Survey of Former Biomedical Engineering Technology Students. Research Report Number 56.

    Science.gov (United States)

    Livieratos, Barbara B.

    In spring 1988, a telephone survey was conducted of students who had been enrolled in Howard Community College's (HCC's) Biomedical Engineering Technology (BMET) program between 1972 and 1987. The study sought to gather information for future student recruitment and program planning efforts. Responses were obtained from 43 (35%) of a potential…

  3. Holography In Biomedical Sciences

    Science.gov (United States)

    von Bally, G.

    1988-01-01

    Today not only physicists and engineers but also biological and medical scientists are exploring the potentials of holographic methods in their special field of work. Most of the underlying physical principles such as coherence, interference, diffraction and polarization as well as general features of holography e.g. storage and retrieval of amplitude and phase of a wavefront, 3-d-imaging, large field of depth, redundant storage of information, spatial filtering, high-resolving, non-contactive, 3-d form and motion analysis are explained in detail in other contributions to this book. Therefore, this article is confined to the applications of holography in biomedical sciences. Because of the great number of contributions and the variety of applications [1,2,3,4,5,6,7,8] in this review the investigations can only be mentioned briefly and the survey has to be confined to some examples. As in all fields of optics and laser metrology, a review of biomedical applications of holography would be incomplete if military developments and their utilization are not mentioned. As will be demonstrated by selected examples the increasing interlacing of science with the military does not stop at domains that traditionally are regarded as exclusively oriented to human welfare like biomedical research [9]. This fact is actually characterized and stressed by the expression "Star Wars Medicine", which becomes increasingly common as popular description for laser applications (including holography) in medicine [10]. Thus, the consequence - even in such highly specialized fields like biomedical applications of holography - have to be discussed.

  4. What is biomedical informatics?

    Science.gov (United States)

    Bernstam, Elmer V; Smith, Jack W; Johnson, Todd R

    2010-02-01

    Biomedical informatics lacks a clear and theoretically-grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine.

  5. The Concept of the Three Rs in Biomedical Research The Ethical and Scientific Basis for the Humane Treatment of Laboratory Animals --The British Experience

    Institute of Scientific and Technical Information of China (English)

    GC BANTIN

    2001-01-01

    @@ 1 Introduction 1.1 THE CONCEPT OF ANIMAL CARE.Ethics and the developing demand for relevant legislation During the late 19th Century there was an increasing concern in the UK with respect to a aspects of illtreatment of animals. This was reflected in the thinking of the research community and in 1871 The British Association For the Advancement of Science issued a set of basic principles of animal experimentation.This was a response to the growing awareness by the BA of the need for an ethical approach to biomedical research and for the considerate treatment of laboratory animals.

  6. Implementation of Pharmacokinetic and Pharmacodynamic Strategies in Early Research Phases of Drug Discovery and Development at Novartis Institute of Biomedical Research

    Directory of Open Access Journals (Sweden)

    Tove eTuntland

    2014-07-01

    Full Text Available Characterizing the relationship between the pharmacokinetics (PK, concentration vs. time and pharmacodynamics (PD, effect vs. time is an important tool in the discovery and development of new drugs in the pharmaceutical industry. The purpose of this publication is to serve as a guide for drug discovery scientists towards optimal design and conduct of PK/PD studies in the research phase. This review is a result of the collaborative efforts of DMPK scientists from various Metabolism and Pharmacokinetic (MAP departments of the global organization Novartis Institute of Biomedical Research (NIBR. We recommend that PK/PD strategies be implemented in early research phases of drug discovery projects to enable successful transition to drug development. Effective PK/PD study design, analysis, and interpretation can help scientists elucidate the relationship between PK and PD, understand the mechanism of drug action and identify PK properties for further improvement and optimal compound design. Additionally, PK/PD modeling can help increase the translation of in vitro compound potency to the in vivo setting, reduce the number of in vivo animal studies, and improve translation of findings from preclinical species into the clinical setting. This review focuses on three important elements of successful PK/PD studies, namely partnership among key scientists involved in the study execution; parameters that influence study designs; and data analysis and interpretation. Specific examples and case studies are highlighted to help demonstrate key points for consideration. The intent is to provide a broad PK/PD foundation for colleagues in the pharmaceutical industry and serve as a tool to promote appropriate discussions on early research project teams with key scientists involved in PK/PD studies.

  7. Some Aspects of the State-of-the-Arts in Biomedical Science Research: A Perspective for Organizational Change in African Academia.

    Science.gov (United States)

    John, Theresa Adebola

    2014-01-01

    In the biomedical sciences, there is need to generate solutions for Africa's health and economic problems through the impact of university research. To guide organizational transformation, the author here presents some aspects of the state-of-the-arts of biomedical science research in advanced countries using a perspective derived from the FASEB journal publications. The author examines the thirty three peer reviewed scientific research articles in a centennial (April 2012) issue of the FASEB Journal [Volume 26(4)] using the following parameters: number of authors contributing to the paper; number of academic departments contributing to the paper; number of academic institutions contributing to the paper; funding of the research reported in the article. The articles were written by 7.97±0.61 authors from 3.46±0.3 departments of 2.79±0.29 institutions. The contributors were classified into four categories: basic sciences, clinical sciences, institutions and centers, and programs and labs. Amongst the publications, 21.2% were single disciplinary. Two tier collaboration amongst any two of the four categories were observed in 16/33 (48.5%) of the articles. Three tier and four tier collaborations were observed amongst 7/33 (21.2%) and 3/33 (9%) of the articles respectively. Therefore 26/33 (78.7%) of the articles were multidisciplinary. Collaborative efforts between basic science and clinical science departments were observed in 9/33 (27.3%) articles. Public funding through government agencies provided 85 out of a total of 143 (59.5%) grants. The collaborative and multidisciplinary nature and government support are characteristic of biomedical science in the US where research tends to result in solutions to problems and economic benefits.

  8. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  9. Biomedical research, development, and engineering at the Johns Hopkins University Applied Physics Laboratory. Annual report 1 October 1978-30 September 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems, patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.

  10. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.

    Science.gov (United States)

    Loroch, Stefan; Schommartz, Tim; Brune, Wolfram; Zahedi, René Peiman; Sickmann, Albert

    2015-05-01

    Quantitative proteomics and phosphoproteomics have become key disciplines in understanding cellular processes. Fundamental research can be done using cell culture providing researchers with virtually infinite sample amounts. In contrast, clinical, pre-clinical and biomedical research is often restricted to minute sample amounts and requires an efficient analysis with only micrograms of protein. To address this issue, we generated a highly sensitive workflow for combined LC-MS-based quantitative proteomics and phosphoproteomics by refining an ERLIC-based 2D phosphoproteomics workflow into an ERLIC-based 3D workflow covering the global proteome as well. The resulting 3D strategy was successfully used for an in-depth quantitative analysis of both, the proteome and the phosphoproteome of murine cytomegalovirus-infected mouse fibroblasts, a model system for host cell manipulation by a virus. In a 2-plex SILAC experiment with 150 μg of a tryptic digest per condition, the 3D strategy enabled the quantification of ~75% more proteins and even ~134% more peptides compared to the 2D strategy. Additionally, we could quantify ~50% more phosphoproteins by non-phosphorylated peptides, concurrently yielding insights into changes on the levels of protein expression and phosphorylation. Beside its sensitivity, our novel three-dimensional ERLIC-strategy has the potential for semi-automated sample processing rendering it a suitable future perspective for clinical, pre-clinical and biomedical research.

  11. Getting our house in order: an audit of the registration and publication of clinical trials supported by the National Institute for Health Research Oxford Biomedical Research Centre and the Musculoskeletal Biomedical Research Unit.

    OpenAIRE

    Tompson, AC; Petit-Zeman, S; Goldacre, B.; Heneghan, CJ

    2016-01-01

    Objectives To audit the proportion of clinical trials that had been publically registered and, of the completed trials, the proportion published. Setting 2 major research institutions supported by the National Institute of Health Research (NIHR). Primary and secondary outcome measures The proportion of trials reporting results within 12 months, 24 months and ‘ever’. Factors associated with non-publication were analysed using logistic regression. Inclusion criteria Phases 2–4 clinical trials i...

  12. Biomedical accelerator mass spectrometry

    Science.gov (United States)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  13. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  14. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery.

  15. Reflexiones sobre los principios éticos en investigación biomedica en seres humanos Ethical principles in biomedical research involving human beings

    Directory of Open Access Journals (Sweden)

    MARIANNE GAUDLITZ H

    2008-01-01

    Full Text Available La investigación biomedica en seres humanos plantea problemas valóneos. Una investigación científica debe ir de la mano de una serie de requisitos para que sea una investigación ética. La trayectoria de la investigación en el mundo occidental no ha estado libre de abusos. Las normas éticas internacionales han aparecido después de las transgresiones. La protección de los probandos que participan libre y voluntariamente en una investigación biomedica es una obligación ética, la dignidad de éstos está por sobre el progreso de la ciencia y el bienestar que éste acarrearíaBiomedical research involving human subjects present valoric problems. A scientific research must go hand in hand with several requisites to be ethic. Human experimentation through its history in the occidental world has not been exempt from abuses. Ethic international rules have appeared after the transgressions. The protection of the human beings that freely and willingly participate in a biomedical research is an ethic obligation. The dignity of the human beings is above the progress of science and the wealth it carries with it

  16. 医用316L不锈钢表面改性的研究进展%Research Progress in Surface Modification of Biomedical 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    孙建华; 刘金龙; 王庆良; 吴高峰

    2011-01-01

    316L不锈钢作为生物医用材料在近20年内被广泛应用在矫形外科植入物、牙种植体和冠状动脉支架等领域.分析了目前医用316L不锈钢在临床应用中存在的主要问题.指出生物相客性、耐腐蚀性和耐磨损性有待提高和表面改性是改善上述问题的有效途径.综述了医用316L不锈钢表面改性的各种途径及研究成果,并展望了316L不锈钢表面改性的研究趋势.%316L stainless steel is an extensively used biomedical material for orthopedic implants, dental implant and cardiovascular stents in the last two decades. Based on the primary problem of biomedical 316L stainless steel in biocompatibility, corrosion resistance and wear resistance properties, it is pointed out that surface modifacation is an effective way to improve these properties. The various approaches and research achievement of surface modification for biomeical 316L stainless steel are reviewed, and the research trend of surface modification is also presented.

  17. A Review of Biomedical Composite Materials

    Institute of Scientific and Technical Information of China (English)

    吴珊珊

    2013-01-01

    This article addresses the review of the biomedical composite materials.It introduces the operational definition,the classification of biomedical composite materials,and its constituents within itself.In this thesis,the last part presents the application of this kind of material.By writing this paper,I hope that people will get a comprehensive knowledge of the biomedical composite material and make further and deeper research in this material by which way to animate the material science industry.

  18. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  19. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  20. 形状记忆高分子材料在生物医学领域的应用%Research and Application of SMPs in Biomedical Field

    Institute of Scientific and Technical Information of China (English)

    陈辉玲; 童德文; 曹新宇; 尚红梅; 李引乾; 马永梅

    2011-01-01

    As a kind of "smart" functional material, shape memory polymers (SMPs) have good biocompatibility, large deformation ratio, adjustable range of deformation temperature, easy processing, and possible biological degradability, and they have drawn much great attention in the field of biomedical research and application in recent years. The research and application of SMPs in biomedical field are reviewed, for example, in orthopaedic fixed materials, drug release system, surgical equipment, suture and tissue engineering. Further perspectives are discussed for SMPs, and their research progress and relevant mechanism are briefly introduced meanwhile.%形状记忆高分子材料(SMPs)作为一种新型功能材料具有生物相容性好、形变率大、形变温度可调、易于加工、可引人生物降解组分等特点,近年来,特别是在生物医药领域,SMPs已成为研究人员广泛关注的焦点之一。根据SMPs的功能及其应用研究现状,着重综述了近年来SMPs在矫形固定材料、药物缓释体系、手术缝合、微创医疗器械以及组织工程等生物医学领域的主要研究和应用,并展望了SMPs在生物医学领域未来的研究方向和前景,同时,简要介绍了SMPs的发展概况及其具有形状记忆效应的原理。

  1. Magnetic Resonance Imaging in Biomedical Engineering

    Science.gov (United States)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  2. 生物医学研究伦理审查信息系统的应用%Application of biomedical research ethics review information system

    Institute of Scientific and Technical Information of China (English)

    彭智才; 尚政琴

    2016-01-01

    目的:探讨生物医学研究伦理审查信息系统在医院生物医学研究伦理审查中的应用.方法:系统设计依据国际协调会议(ICH)、临床试验管理规范(GCP)、世界卫生组织与热带病研究部门(WHO/TDR)的《生物医学研究审查伦理委员会操作指南》以及世界卫生组织、发展伦理委员会审查能力的战略行动(WHO SIDCER)认证有关伦理委员会操作规范进行开发.结果:新型生物医学研究伦理审查系统的应用,解决了伦理委员会务实高效地开展伦理审查和研究者有效遵循伦理原则来开展研究的问题,实现了伦理审查的申请、受理、审查、传达决定以及跟踪审查等操作规程的电子程序化.结论:生物医学研究伦理审查系统的应用,使伦理审查流程更加合理,操作更加简捷,可极大提高医院伦理审查的工作效率,方便和规范伦理审查的文档管理,提升伦理审查的质量管理,对生物医学研究伦理审查工作具有重要意义.%Objective:To discuss the application of "ethical review of biomedical research" system in the hospital ethical review of biomedical research.Methods: To design based on the ICH GCP specification, WHO/TDR" biomedical research ethics committee guidelines" Systematic, WHO SIDCER authentication on the ethics committee specification development.Results: The application of this system can realize the ethical review application, acceptance, examination and decision, convey the follow-up review procedures for electronic program.Conclusion: "The ethical review of biomedical research ethics review" system to make process more reasonable, operation more convenient, greatly improves the work efficiency of the hospital ethics review, document management, facilitate and regulate the ethical review, enhance the quality of management ethics review, plays an important role inbiomedical research ethics review.

  3. Interdisciplinary Area of Research Offers Tool of Cross-Cultural Understanding: Cross-Cultural Student Seminar for Communication Training on Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-12-01

    Full Text Available Misunderstanding often occurs in a multidisciplinary field of study, because each field has its own background of thinking. Communication training is important for students, who have a potential to develop the multidisciplinary field of study. Because each nation has its own cultural background, communication in an international seminar is not easy, either. A cross-cultural student seminar has been designed for communication training in the multidisciplinary field of study. Students from a variety of back grounds have joined in the seminar. Both equations and figures are effective tools for communication in the field of science. The seminar works well for communication training in the multidisciplinary field of study of biomedical engineering. An interdisciplinary area of research offers the tool of cross-cultural understanding. The present study refers to author's several experiences: the student internship abroad, the cross-cultural student camp, multi PhD theses, various affiliations, and the creation of the interdisciplinary department.

  4. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  5. GPU computing and its application in biomedical research%CPU计算及其在生物医学研究中的应用

    Institute of Scientific and Technical Information of China (English)

    李江域; 赵东升; 王玉民

    2011-01-01

    High-performance computing is an important tool and method for modern biomedical research. The traditional central processing unit( CPU )-based computer is unable to satisfy all the demands in computing performance, efficiency and cost of biomedical research. In recent years, graphics processing unit( GPU ) computing has emerged to become a hot-spot in high-performance computing. The concept, programming method and feature of GPU computing is introduced in the is paper, then applications of and problems with GPU computing in biomedicine are summarized. Finally, the author gives advice on GPU computing application in our academy.%高性能计算是现代生物医学研究的重要工具和手段,传统的基于通用处理器(CPU)的计算机已很难满足生物医学研究对计算性能、效率和成本等多方面的综合性要求.近年来,图形处理器(GPU)计算技术异军突起,成为高性能计算领域的研究热点.本文介绍了GPU计算的基本概念、编程方法和特点,总结和讨论了GPU计算在生物医学中的应用现状和存在问题.最后,结合实际情况提出了利用GPU计算的一些研究工作设想.

  6. Mathematical modeling in biomedical imaging

    CERN Document Server

    2009-01-01

    This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

  7. Mathematical modeling in biomedical imaging

    CERN Document Server

    2012-01-01

    This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools.  It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.

  8. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  9. International symposium on Biomedical Data Infrastructure (BDI 2013)

    CERN Document Server

    Dhillon, Sarinder; Advances in biomedical infrastructure 2013

    2013-01-01

    Current Biomedical Databases are independently administered in geographically distinct locations, lending them almost ideally to adoption of intelligent data management approaches. This book focuses on research issues, problems and opportunities in Biomedical Data Infrastructure identifying new issues and directions for future research in Biomedical Data and Information Retrieval, Semantics in Biomedicine, and Biomedical Data Modeling and Analysis. The book will be a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development in biomedical data management.

  10. Innovations in Biomedical Engineering 2016

    CERN Document Server

    Tkacz, Ewaryst; Paszenda, Zbigniew; Piętka, Ewa

    2017-01-01

    This book presents the proceedings of the “Innovations in Biomedical Engineering IBE’2016” Conference held on October 16–18, 2016 in Poland, discussing recent research on innovations in biomedical engineering. The past decade has seen the dynamic development of more and more sophisticated technologies, including biotechnologies, and more general technologies applied in the area of life sciences. As such the book covers the broadest possible spectrum of subjects related to biomedical engineering innovations. Divided into four parts, it presents state-of-the-art achievements in: • engineering of biomaterials, • modelling and simulations in biomechanics, • informatics in medicine • signal analysis The book helps bridge the gap between technological and methodological engineering achievements on the one hand and clinical requirements in the three major areas diagnosis, therapy and rehabilitation on the other.

  11. Biomedical nanosensors

    CERN Document Server

    Irudayaraj, Joseph M

    2012-01-01

    This book draws together recent data on both cytoplasmic and flagellar dyneins and the proteins they interact with, to give the reader a clear picture of what is currently known about the structure and mechanics of these remarkable macro-molecular machines. Each chapter is written by active researchers, with a focus on currently used biophysical, biochemical, and cell biological methods. In addition to comprehensive coverage of structural information gained by electron microscopy, electron cryo-tomography, X-ray crystallography, and nuclear magnetic resonance, this book provides detailed descr

  12. To Share or Not to Share? A Survey of Biomedical Researchers in the U.S. Southwest, an Ethnically Diverse Region.

    Directory of Open Access Journals (Sweden)

    Mai H Oushy

    Full Text Available Cancer health disparities research depends on access to biospecimens from diverse racial/ethnic populations. This multimethodological study, using mixed methods for quantitative and qualitative analysis of survey results, assessed barriers, concerns, and practices for sharing biospecimens/data among researchers working with biospecimens from minority populations in a 5 state region of the United States (Arizona, Colorado, New Mexico, Oklahoma, and Texas. The ultimate goals of this research were to understand data sharing barriers among biomedical researchers; guide strategies to increase participation in biospecimen research; and strengthen collaborative opportunities among researchers.Email invitations to anonymous participants (n = 605 individuals identified by the NIH RePORT database, resulted in 112 responses. The survey assessed demographics, specimen collection data, and attitudes about virtual biorepositories. Respondents were primarily principal investigators at PhD granting institutions (91.1% conducting basic (62.3% research; most were non-Hispanic White (63.4% and men (60.6%. The low response rate limited the statistical power of the analyses, further the number of respondents for each survey question was variable.Findings from this study identified barriers to biospecimen research, including lack of access to sufficient biospecimens, and limited availability of diverse tissue samples. Many of these barriers can be attributed to poor annotation of biospecimens, and researchers' unwillingness to share existing collections. Addressing these barriers to accessing biospecimens is essential to combating cancer in general and cancer health disparities in particular. This study confirmed researchers' willingness to participate in a virtual biorepository (n = 50 respondents agreed. However, researchers in this region listed clear specifications for establishing and using such a biorepository: specifications related to standardized procedures

  13. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

    Science.gov (United States)

    Wu, Hulin; Xue, Hongqi; Kumar, Arun

    2012-06-01

    Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches.

  14. Biomedical ethics.

    Science.gov (United States)

    Walters, LeRoy

    1985-10-25

    An overview is provided of bioethical issues recently under discussion in the United States. Six topics dominated the field in 1984 and early 1985: human gene therapy; in vitro fertilization and research with human embryos; appropriate care for dying patients, both adults and newborns; organ transplantation; resource allocation and payment for health care services; and the role of hospital ethics committees in medical decision making. Walters focuses on three of these topics: (1) the issuing of standards for somatic-cell gene therapy; (2) developments in the death and dying arena, including state living will legislation, the emergence of a viewpoint that artificial nutrition and hydration are not qualitatively different from respiratory life-support systems, and federal efforts to regulate appropriate treatment for handicapped newborns; and (3) the growing support among medical organizations for hospital ethics committees.

  15. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, C.C. [ed.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  16. Special Issue: 3D Printing for Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2017-02-01

    Full Text Available Three-dimensional (3D printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  17. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1992-09-01

    This report summarizes progress in OHER biological research and general life sciences research programs conducted conducted at PNL in FLY 1991. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long- term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and newly developed energy-related technologies through an increased understanding of the ways in which radiation and chemicals cause biological damage.

  18. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research - Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1990-05-01

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiological studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.

  19. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  20. The 1 MV multi-element AMS system for biomedical applications at the Netherlands Organization for Applied Scientific Research (TNO)

    NARCIS (Netherlands)

    Klein, M.; Vaes, W.H.J.; Fabriek, B.; Sandman, H.; Mous, D.J.W.; Gottdang, A.

    2013-01-01

    The Netherlands Organization for Applied Scientific Research (TNO) has installed a compact 1 MV multi-element AMS system manufactured by High Voltage Engineering Europa B.V., The Netherlands. TNO performs clinical research programs for pharmaceutical and innovative foods industry to obtain early pha

  1. Why Flies? Inexpensive Public Engagement Exercises to Explain the Value of Basic Biomedical Research on "Drosophila melanogaster"

    Science.gov (United States)

    Pulver, Stefan R.; Cognigni, Paola; Denholm, Barry; Fabre, Caroline; Gu, Wendy X. W.; Linneweber, Gerit; Prieto-Godino, Lucia; Urbancic, Vasja; Zwart, Maarten; Miguel-Aliaga, Irene

    2011-01-01

    Invertebrate model organisms are powerful systems for uncovering conserved principles of animal biology. Despite widespread use in scientific communities, invertebrate research is often severely undervalued by laypeople. Here, we present a set of simple, inexpensive public outreach exercises aimed at explaining to the public why basic research on…

  2. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  3. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  4. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  5. Design and analysis of biomedical studies

    DEFF Research Database (Denmark)

    Hansen, Merete Kjær

    Biomedicine is a field that has great influence on the majority of mankind. The constant development has considerably changed our way of life during the last centuries. This has been achieved through the dedication of biomedical researchers along with the tremendous ressources that over time have...... been allocated this field. It is utterly important to utilize these ressources responsibly and efficiently by constantly striving to ensure high-quality biomedical studies. This involves the use of a sound statistical methodology regarding both the design and analysis of biomedical studies. The focus...... for biomedical studies are a recurring theme in this thesis. Data collected in some biomedical studies are positively skewed; hence methods relying on the normal distribution are not directly applicable. We investigated how data from one of these studies are suitably analyzed. We extracted 23 different summary...

  6. How should we regulate risk in biomedical research? An ethical analysis of recent policy proposals and initiatives.

    Science.gov (United States)

    Rid, Annette

    2014-09-01

    The existing regulatory framework for research is increasingly attacked for its "one-size-fits-all" approach. Many stakeholders contend that existing regulations formulate the same regulatory requirements for research involving very different levels of risk, and thereby unnecessarily stifle medical progress. To address this criticism, regulators are currently developing more risk-adapted approaches to regulating research. A key feature of these approaches is that they aim to calibrate subject protections, including ethical review and safety monitoring, to the risks that studies pose to participants. Risk-adapted systems of research oversight are ethically appealing because they have the potential to promote research within the constraints of adequate subject protection. However, this potential can only be realized if the complexities surrounding research risk can be addressed. The present paper offers the first systematic overview and ethical analysis of how European and U.S. regulators approach the development of more risk-adapted regulations. The analysis finds that so-called stratified approaches are ethically preferable because they specify risk categories with corresponding subject protections, and thereby reduce unwarranted variation in how research participants are protected in different studies. But the recent proposals for stratifying risk and subject protections raise various ethical concerns, for example regarding the accuracy of risk categories. Building on this analysis, the paper develops recommendations for future policy.

  7. Checklists in biomedical publications

    Directory of Open Access Journals (Sweden)

    Pardal-Refoyo JL

    2013-12-01

    Full Text Available Introduction and objectives: the authors, reviewers, editors and readers must have specific tools that help them in the process of drafting, review, or reading the articles. Objective: to offer a summary of the major checklists for different types of biomedical research articles. Material and method: review literature and resources of the EQUATOR Network and adaptations in Spanish published by Medicina Clínica and Evidencias en Pediatría journals. Results: are the checklists elaborated by various working groups. (CONSORT and TREND, experimental studies for observational studies (STROBE, accuracy (STARD diagnostic studies, systematic reviews and meta-analyses (PRISMA and for studies to improve the quality (SQUIRE. Conclusions: the use of checklists help to improve the quality of articles and help to authors, reviewers, to the editor and readers in the development and understanding of the content.

  8. Application prospects of naked mole rats in biomedical research%裸鼹鼠在生物医学研究中的应用前景

    Institute of Scientific and Technical Information of China (English)

    崔淑芳

    2016-01-01

    裸鼹鼠是一种奇特的动物,具有寿命长、抗肿瘤、耐缺氧、新陈代谢率低、痛觉缺失、触觉灵敏、视觉功能低下、骨骼再生能力强等诸多特点。本文在概述裸鼹鼠上述生物学特点的基础上,结合当前肿瘤、衰老、低氧适应以及疼痛等领域研究趋势,对裸鼹鼠在生物医学研究中的应用前景进行分析与展望。%Naked mole rats are unique animals with long lifetime, anti-tumor properties, hypoxia tolerance, low metabolic rate, analgesia, tactile sensitiveness, poor eyesight and strong bone regeneration ability. Based on the basic bio-logical characteristics of naked mole rats, and the current research trends in the field of cancer, aging, hypoxia tolerance, as well as algesia, this review focuses on the application prospects of naked mole rats in biomedical research.

  9. Factors Affecting the Use of Human Tissues in Biomedical Research: Implications in the Design and Operation of a Biorepository.

    Science.gov (United States)

    Atherton, Daniel S; Sexton, Katherine C; Otali, Dennis; Bell, Walter C; Grizzle, William E

    2016-01-01

    The availability of high-quality human tissues is necessary to advance medical research. Although there are inherent and induced limitations on the use of human tissues in research, biorepositories play critical roles in minimizing the effects of such limitations. Specifically, the optimal utilization of tissues in research requires tissues to be diagnosed accurately, and the actual specimens provided to investigators must be carefully described (i.e., there must be quality control of each aliquot of the tissue provided for research, including a description of any damage to tissues). Tissues also should be collected, processed, stored, and distributed (i.e., handled) uniformly under a rigorous quality management system (QMS). Frequently, tissues are distributed to investigators by tissue banks which have collected, processed, and stored them by standard operating procedures (SOPs). Alternatively, tissues for research may be handled via SOPs that are modified to the specific requirements of investigators (i.e., using a prospective biorepository model). The primary goal of any type of biorepository should be to ensure its specimens are of high quality and are utilized appropriately in research; however, approaches may vary based on the tissues available and requested. For example, extraction of specific molecules (e.g., microRNA) to study molecular characteristics of a tissue may require less clinical annotation than tissues that are utilized to identify how the molecular expression might be used to clarify a clinical outcome of a disease or the response to a specific therapy. This review focuses on the limitations of the use of tissues in research and how the design and operations of a tissue biorepository can minimize some of these limitations.

  10. Dealing with misconduct in biomedical research: a review of the problems and the proposed methods for improvement.

    Science.gov (United States)

    Kumar, Malhar N

    2009-11-01

    The increasing complexity of scientific research has been followed by increasing varieties of research misconduct. Dealing with misconduct involves the processes of detection, reporting, and investigation of misconduct. Each of these steps is associated with numerous problems which need to be addressed. Misconduct investigation should not stop with inquiries and disciplinary actions in specific episodes of misconduct. It is necessary to decrease the personal price paid by those who expose misconduct and to protect the personal and professional interests of honest researchers accused of misconduct unfairly or mistakenly. There is no dearth of suggestions to improve the objectivity and fairness of investigations. What is needed is the willingness to test the various options and implement the most suitable ones.

  11. Biomedical Engineering Laboratory

    Science.gov (United States)

    2007-11-02

    The Masters of Engineering program with concentration in Biomedical Engineering at Tennessee State University was established in fall 2000. Under... biomedical engineering . The lab is fully equipped with 10 Pentium5-based, 2 Pentium4-based laptops for mobile experiments at remote locations, 8 Biopac...students (prospective graduate students in biomedical engineering ) are regularly using this lab. This summer, 8 new prospective graduate students

  12. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use

    Directory of Open Access Journals (Sweden)

    Schneider Erich

    2007-08-01

    Full Text Available Abstract Background In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation in concert with the AO Research Institute (ARI, and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musculoskeletal research. Methods The group narrowed the field to fracture research. The consensus opinion resulting from this workshop can be summarized as follows: Results & Conclusion Anaesthesia and pain management protocols for research animals should follow standard protocols applied in clinical work for the species involved. This will improve morbidity and mortality outcomes. A database should be established to facilitate selection of anaesthesia and pain management protocols for specific experimental surgical procedures and adopted as an International Standard (IS according to animal species selected. A list of 10 golden rules and requirements for conduction of animal experiments in musculoskeletal research was drawn up comprising 1 Intelligent study designs to receive appropriate answers; 2 Minimal complication rates (5 to max. 10%; 3 Defined end-points for both welfare and scientific outputs analogous to quality assessment (QA audit of protocols in GLP studies; 4 Sufficient details for materials and methods applied; 5 Potentially confounding variables (genetic background, seasonal, hormonal, size, histological, and biomechanical differences; 6 Post-operative management with emphasis on analgesia and follow-up examinations; 7 Study protocols to satisfy criteria established for a "justified animal study"; 8 Surgical expertise to conduct surgery on animals; 9 Pilot studies as a critical part of model validation and powering of the definitive study design

  13. Keynote Lecture: The Problems and Challenges in Biomedical Sciences

    OpenAIRE

    Bruce Albert

    2015-01-01

    Distressed by the perverse incentives that have generated the current hyper-competitive biomedical research environment in the United States, four of us published an open-access article in April 2014 entitled: Rescuing US biomedical research from its systemic flaws (Alberts, B., Kirschner, Marc W., Tilghman, Shirley, and  Varmus, H.; Proc. Natl. Acad. Sci. USA 111, 5773-5777 (2014)). As announced in our follow-up piece, Opinion: Addressing systemic problems in the biomedical research enterpri...

  14. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  15. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  16. Biomedical ethics and the biomedical engineer: a review.

    Science.gov (United States)

    Saha, S; Saha, P S

    1997-01-01

    Biomedical engineering is responsible for many of the dramatic advances in modern medicine. This has resulted in improved medical care and better quality of life for patients. However, biomedical technology has also contributed to new ethical dilemmas and has challenged some of our moral values. Bioengineers often lack adequate training in facing these moral and ethical problems. These include conflicts of interest, allocation of scarce resources, research misconduct, animal experimentation, and clinical trials for new medical devices. This paper is a compilation of our previous published papers on these topics, and it summarizes many complex ethical issues that a bioengineer may face during his or her research career or professional practice. The need for ethics training in the education of a bioengineering student is emphasized. We also advocate the adoption of a code of ethics for bioengineers.

  17. The Impact of Animal Rights on the Use of Animals for Biomedical Research, Product Testing and Evaluation.

    Science.gov (United States)

    Baier, Stephen W.

    1993-01-01

    Clarifies the issues of animal rights as they effect animal use in research and education through an examination of the current use of animals, a historical look at animal use, and a consideration of the philosophical underpinnings of the animal rights and pro-use viewpoints. (PR)

  18. Criteria for Assessing Quality in Academic Research: The Views of Biomedical Scientists, Clinical Scientists and Social Scientists

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne; McGuire, Wendy

    2012-01-01

    This study empirically addresses the claim made by Gibbons et al ("The new production of knowledge: The dynamics of science and research in contemporary societies." Sage, Thousand Oaks, 1994) that a novel form of quality control (associated with Mode 2 knowledge production) is supplementing the "traditional" peer-review process (associated with…

  19. The little death: Rigoni-Stern and the problem of sex and cancer in 20th-century biomedical research.

    Science.gov (United States)

    Aviles, Natalie B

    2015-06-01

    Approaches to the organization and conduct of cancer research changed dramatically throughout the 20th century. Despite marked differences between the epidemiological approaches of the first half of the century and molecular techniques that gained dominance in the 1980s, prominent 20th-century researchers investigating the link between sexual activity and anogenital cancers continuously invoked the same 1842 treatise by Italian surgeon Domenico Rigoni-Stern, who is said to originate the problem of establishing a causal link between sex and cancer. In this article, I investigate 20th-century references to Rigoni-Stern as a case of a broader phenomenon: scientists situating their work through narratives of venerated ancestors, or originators. By explaining shifting versions of originator narratives in light of their authors' cultural context and research practices, we can reimagine as meaningful cultural symbols the references that previous scholars have treated as specious rhetorical maneuvers. In this case, references to Rigoni-Stern provide an interpretive anchor for American scientists to construct continuity between their work and a diverse historical legacy of cancer research.

  20. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  1. U.S. Army Biomedical Research and Development Laboratory Bibliography FY91-FY80 (Reverse Order). Appendix

    Science.gov (United States)

    1991-01-01

    J.H. Nelson, and D.L. Danley. 1991. Pulsed, non-thermal, high frequency electromagnetic energy (diapulse) in the treatment of grades I and II ankle... wave locator for radiotransparent foreign bodies. Final report, phase I, DAMD17-91-C-1016. Newton Center, MA: Geo-Center, Incorporated. UBLJCAIONi...Research. Kawakami, T.G., N. Cone, J.D. Henderson, L.S. Rosenblatt, N. Goldman, J.C. Dacre, and B.W. Wilson. 1990. Genotoxicity of the

  2. Perioperative Ruminal pH Changes in Domestic Sheep (Ovis aries) Housed in a Biomedical Research Setting

    OpenAIRE

    Jasmin, Bambi H; Boston, Ray C.; Modesto, Rolf B.; Schaer, Thomas P.

    2011-01-01

    Little information is available on normal ruminal pH values for domestic sheep (Ovis aries) housed in a research setting and fed a complete pelleted ration. Sheep maintained on pelleted diets undergoing surgical procedures often present with postoperative anorexia and rumen atony. To determine the relationship between diet and postoperative rumen acidosis and associated atony, we studied dietary effects on ruminal pH in an ovine surgical model. Sheep undergoing orthopedic surgical procedures ...

  3. Developing research competencies through a project-based tissue-engineering module in the biomedical engineering undergraduate curriculum.

    Science.gov (United States)

    Wallen, M; Pandit, A

    2009-05-01

    In addressing the task of developing an undergraduate module in the field of tissue engineering, the greatest challenge lies in managing to capture what is a growing and rapidly changing field. Acknowledging the call for the development of greater critical thinking and interpersonal skills among the next generation of engineers as well as encouraging students to engage actively with the dynamic nature of research in the field, the module was developed to include both project-based and cooperative-learning experiences. These learning activities include developing hypotheses for the application of newly introduced laboratory procedures, a collaborative mock grant submission, and debates on ethical issues in which students are assigned roles as various stakeholders. Feedback from module evaluations has indicated that, while students find the expectations challenging, they are able to gain an advanced insight into a dynamic field. More importantly, students develop research competencies by engaging in activities that require them to link current research directions with their own development of hypotheses for future tissue-engineering applications.

  4. The Washington Academy of Biomedical Engineering (WABME) Quarterly Workshops: Clinical Problems and Engineering Solutions

    Science.gov (United States)

    2005-01-01

    The Washington Academy of Biomedical Engineering (WABME) is an interdisciplinary and multi-institutional effort to promote research, technology...transfer, and education in biomedical engineering in the national capital region. The core members of WABME are faculty from the biomedical engineering /bioengineering...solution-rich engineering and scientific disciplines. These workshops build connections within the local biomedical engineering community and enable

  5. Tumor immunoscintigraphy by means of radiolabeled monoclonal antibodies: Multicenter studies of the Italian National Research Council--Special Project Biomedical Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, A.G. (Universita di Milano (Italy))

    1990-02-01

    Four radioimmunopharmaceuticals ({sup 99m}Tc- and 111In-labeled anti-melanoma and {sup 111}In- and {sup 131}I-labeled anti-carcinoembryonic antigen F(ab')2 fragments derived from monoclonal antibodies 225.28S and F023C5) were developed by means of a collaborative effort coordinated by the Italian National Research Council, Special Project Biomedical Engineering. After appropriate pilot studies, the radioimmunopharmaceuticals, prepared by Sorin Biomedica (Saluggia, Italy), were distributed to 31 Nuclear Medicine departments in Italy and in 10 other European countries within the framework of three immunoscintigraphy multicenter studies. A total of 1245 patients were studied, 898 of whom carried 1725 documented tumor lesions; 1596 of 2193 tumor lesions (468 of which were previously unknown) were imaged by immunoscintigraphy in 785 of 990 lesion-bearing patients. Among the occult lesions, 173 were imaged in 92 patients admitted to the study as lesion-free patients. The results have been analyzed in terms of the reliability, reproducibility, and diagnostic usefulness of the method and of each immunoradiopharmaceutical.

  6. Rhythm Analysis by Heartbeat Classification in the Electrocardiogram (Review article of the research achievements of the members of the Centre of Biomedical Engineering, Bulgarian Academy of Sciences

    Directory of Open Access Journals (Sweden)

    Irena Jekova

    2009-08-01

    Full Text Available The morphological and rhythm analysis of the electrocardiogram (ECG is based on ventricular beats detection, wave parameters measurement, as amplitudes, widths, polarities, intervals and relations between them, and a subsequent classification supporting the diagnostic process. Number of algorithms for detection and classification of the QRS complexes have been developed by researchers in the Centre of Biomedical Engineering - Bulgarian Academy of Sciences, and are reviewed in this material. Combined criteria have been introduced dealing with the QRS areas and amplitudes, the waveshapes evaluated by steep slopes and sharp peaks, vectorcardiographic (VCG loop descriptors, RR intervals irregularities. Algorithms have been designed for application on a single ECG lead, a synthesized lead derived by multichannel synchronous recordings, or simultaneous multilead analysis. Some approaches are based on templates matching, cross-correlation or rely on a continuous updating of adaptive thresholds. Various beat classification methods have been designed involving discriminant analysis, the K-th nearest neighbors, fuzzy sets, genetic algorithms, neural networks, etc. The efficiency of the developed methods has been assessed using internationally recognized arrhythmia ECG databases with annotated beats and rhythm disturbances. In general, high values for specificity and sensitivity competitive to those reported in the literature have been achieved.

  7. Laboratory Animal Welfare Issues in Biomedical Research%生物医学研究中的实验动物福利问题

    Institute of Scientific and Technical Information of China (English)

    张建红; 刘田福; 武冬梅; 王锐利; 王海龙; 陈朝阳

    2001-01-01

    Animal welfare issues are facing each scientist i n biomedicalresearch.These problems are complex,involve a diversity of views ,and will not disa ppear in the future.Biomedical scientists need to be knowledgeable about the i ssues,develop sensitivity to the diversity of thought about these issues,and take an active stance toward animal welfare.Scientists must go beyond compliance and use skills to maximize well-being of experimental animals.It is essential that scientists should advocate animal well-being and adhere to appropriate guidelines for animal care and use when conducting research with laboratory animals .%动物福利问题形式多样,涉及科学进步和社会发展的多个层次。在生物医学研究过程中,每位科学家都应正确看待这些问题,增进对问题多样性的了解,倡导人道的使用和管理实验动物,并采取积极有效措施,遵循有关的规章制度和操作要求扩大动物福利,推进我国实验动物标准化进程和生物医学事业的发展。

  8. Enhancing biomedical design with design thinking.

    Science.gov (United States)

    Kemnitzer, Ronald; Dorsa, Ed

    2009-01-01

    The development of biomedical equipment is justifiably focused on making products that "work." However, this approach leaves many of the people affected by these designs (operators, patients, etc.) with little or no representation when it comes to the design of these products. Industrial design is a "user focused" profession which takes into account the needs of diverse groups when making design decisions. The authors propose that biomedical equipment design can be enhanced, made more user and patient "friendly" by adopting the industrial design approach to researching, analyzing, and ultimately designing biomedical products.

  9. Comparing the performance of biomedical clustering methods

    DEFF Research Database (Denmark)

    Wiwie, Christian; Baumbach, Jan; Röttger, Richard

    2015-01-01

    Identifying groups of similar objects is a popular first step in biomedical data analysis, but it is error-prone and impossible to perform manually. Many computational methods have been developed to tackle this problem. Here we assessed 13 well-known methods using 24 data sets ranging from gene......-ranging comparison we were able to develop a short guideline for biomedical clustering tasks. ClustEval allows biomedical researchers to pick the appropriate tool for their data type and allows method developers to compare their tool to the state of the art....

  10. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Felton, D.L. (ed.)

    1985-02-01

    Research progress is reported in the following areas: (1) evaluation of possible health effects among nuclear workers; (2) dose-effect relationship studies of carcinogenesis from both nuclear materials and complex mixtures; (3) microbial mutagenesis studies with 6-aminochrysene and benzo(a)pyrene in coal-derived complex mixtures; and (4) a variety of studies relating to noncarcinogenic and nonmutagenic endpoints, including teratology, perinatal studies and studies to determine absorption, metabolism, and doses to critical tissues and organs of coal-derived mixtures and radionuclides. Items have been individually abstracted for the data base. (ACR)

  11. Biomedical Applications of Biodegradable Polyesters

    OpenAIRE

    Iman Manavitehrani; Ali Fathi; Hesham Badr; Sean Daly; Ali Negahi Shirazi; Fariba Dehghani

    2016-01-01

    The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have be...

  12. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  13. The Salient Map Analysis for Research and Teaching (SMART) method: Powerful potential as a formative assessment in the biomedical sciences

    Science.gov (United States)

    Cathcart, Laura Anne

    This dissertation consists of two studies: 1) development and characterization of the Salient Map Analysis for Research and Teaching (SMART) method as a formative assessment tool and 2) a case study exploring how a paramedic instructor's beliefs about learners affect her utilization of the SMART method and vice versa. The first study explored: How can a novel concept map analysis method be designed as an effective formative assessment tool? The SMART method improves upon existing concept map analysis methods because it does not require hierarchically structured concept maps and it preserves the rich content of the maps instead of reducing each map down to a numerical score. The SMART method is performed by comparing a set of students' maps to each other and to an instructor's map. The resulting composite map depicts, in percentages and highlighted colors, the similarities and differences between all of the maps. Some advantages of the SMART method as a formative assessment tool include its ability to highlight changes across time, problematic or alternative conceptions, and patterns of student responses at a glance. Study two explored: How do a paramedic instructor's beliefs about students and learning affect---and become affected by---her use of the SMART method as a formative assessment tool? This case study of Angel, an expert paramedic instructor, begins to address a gap in the emergency medical services (EMS) education literature, which contains almost no research on teachers or pedagogy. Angel and I worked together as participant co-researchers (Heron & Reason, 1997) exploring the affordances of the SMART method. This study, based on those interactions with Angel, involved using open coding to identify themes (Strauss & Corbin, 1998) from Angel's views of students and use of the SMART method. Angel views learning as a sense-making process. She has a multi-faceted view of her students as novices and invests substantial time trying to understand their concept

  14. Research-Oriented Series: A Portal into the Culture of Biomedical Research for Junior Medical Students at Alfaisal University in Saudi Arabia

    Science.gov (United States)

    Shareef, Mohammad Abrar; Dweik, Loai M.; Abudan, Zainab; Gazal, Abdalla M.; Abu-Dawas, Reema B.; Chamseddin, Ranim A.; Albali, Nawaf H.; Ali, Alaa A.; Khan, Tehreem A.; AlAmodi, Abdulhadi A.

    2015-01-01

    Student contributions to research have been shown to effectively reflect on their communication and critical thinking skills. Short-term research courses offer opportunities for medical students to advance their research experience in subsequent high-demanding long-term research opportunities. The purpose of the present study was to describe the…

  15. Nitrogen-Based Diazeniumdiolates: Versatile Nitric Oxide-Releasing Compounds for Biomedical Research and Potential Clinical Applications

    Science.gov (United States)

    Saavedra, Joseph E.; Keefer, Larry K.

    2002-12-01

    Nitric oxide-generating ions of the nitrogen-diazeniumdiolate class with the general structure R1R2N-[N(O)NO]1 have been prepared by exposing primary, secondary, and polyamines to nitric oxide (NO). The resulting complexes regenerate bioactive NO at physiological pH with half-lives ranging from 2 seconds to 20 hours. An important goal in our research is to deliver NO to a specific organ or cell type where it is needed without affecting other NO-sensitive parts of the anatomy. By taking advantage of the remarkable chemical versatility of diazeniumdiolates, we have developed general strategies to prepare either tissue-selective NO donor drugs or materials containing NO delivery agents that can be physically placed near the target sites. Inhibition of blood coagulation, induction of penile erection, relief of pulmonary hypertension, and reversal of cerebral vasospasm are a few examples of their potential clinical applications. See Featured Molecules.

  16. The BIRN Project: Distributed Information Infrastructure and Multi-scale Imaging of the Nervous System (BIRN = Biomedical Informatics Research Network)

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences and protein products. The general premise of the neuroscience goal is simple; namely that with "complete" knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their ...

  17. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  18. Extension of research data repository system to support direct compute access to biomedical datasets: enhancing Dataverse to support large datasets.

    Science.gov (United States)

    McKinney, Bill; Meyer, Peter A; Crosas, Mercè; Sliz, Piotr

    2017-01-01

    Access to experimental X-ray diffraction image data is important for validation and reproduction of macromolecular models and indispensable for the development of structural biology processing methods. In response to the evolving needs of the structural biology community, we recently established a diffraction data publication system, the Structural Biology Data Grid (SBDG, data.sbgrid.org), to preserve primary experimental datasets supporting scientific publications. All datasets published through the SBDG are freely available to the research community under a public domain dedication license, with metadata compliant with the DataCite Schema (schema.datacite.org). A proof-of-concept study demonstrated community interest and utility. Publication of large datasets is a challenge shared by several fields, and the SBDG has begun collaborating with the Institute for Quantitative Social Science at Harvard University to extend the Dataverse (dataverse.org) open-source data repository system to structural biology datasets. Several extensions are necessary to support the size and metadata requirements for structural biology datasets. In this paper, we describe one such extension-functionality supporting preservation of file system structure within Dataverse-which is essential for both in-place computation and supporting non-HTTP data transfers.

  19. Synthesis and characterization of lanthanum bonded agar-carbomer hydrogel:a promising tool for biomedical research

    Institute of Scientific and Technical Information of China (English)

    Filippo Rossi; Marco Santoro; Tommaso Casalini; Giuseppe Perale

    2011-01-01

    Agar-Carbomer (branched poly (acrylic acid)) hydrogel, an injectable bio-resorbable scaffold with a controlled nanostructure specifically designed for neural cell housing, was developed together with a new protocol for building three dimensional biohybrid cell/hydrogel systems. In order to overcome classic strucrural analysis inconveniences due to the high water amount, which affects instruments results and reliability, agar-Carbomer hydrogels were synthesized by microwave-assisted block copolymerizaton together with La3+ salts. Propylene glycol, glycerol and buffered saline solution were used as cross-linking agents and solvent, respectively. Biomaterial properties were not affected by the presence of lanthanum, and were checked via swelling and rheological analysis. Moreover, the presence of La3+ within the polymeric network was characterized by thermogravimetric analysis, environmental scanning electron microscopy and Fourier transformed infrared spectroscopy. The results showed that the rare earth presented uniform distribution in the hydrogel network due to the formation of chemical bonds after polymerization without being modified its luminescence emission spectrum that allowed hydrogel detection. These results made the obtained host-guest system a useful tool for analytical research studies concerning regenerative medical applications that could also be potentially taken up within vivo experiments.

  20. Perioperative ruminal pH changes in domestic sheep (Ovis aries) housed in a biomedical research setting.

    Science.gov (United States)

    Jasmin, Bambi H; Boston, Ray C; Modesto, Rolf B; Schaer, Thomas P

    2011-01-01

    Little information is available on normal ruminal pH values for domestic sheep (Ovis aries) housed in a research setting and fed a complete pelleted ration. Sheep maintained on pelleted diets undergoing surgical procedures often present with postoperative anorexia and rumen atony. To determine the relationship between diet and postoperative rumen acidosis and associated atony, we studied dietary effects on ruminal pH in an ovine surgical model. Sheep undergoing orthopedic surgical procedures were randomized into 2 diet groups. Group 1 (n = 6) was fed complete pelleted diet during the pre- and postoperative period, and group 2 (n = 6) was fed timothy grass hay exclusively throughout the study. Measures included ruminal pH, ruminal motility, and rate of feed refusal, which was monitored throughout the pre- and postoperative periods. The 2 groups did not differ significantly before surgery, and the ruminal parameters remained largely within normal limits. However, a downward trend in the strength and frequency of rumen contractions was observed in pellet-fed sheep. After surgery, the pellet-fed group showed clinical signs consistent with ruminal acidosis, supported by decreased ruminal motility, anorexia, putrid-smelling ruminal material, and death of ruminal protozoa. Intervention by transfaunation in clinically affected sheep resulted in resolution of signs. Our findings suggest that sheep fed grass hay appear to have a more stable ruminal pH, are less likely to experience anorexia and rumen atony, and thereby exhibit fewer postoperative gastrointestinal complications than do sheep on a pellet diet.

  1. Analyzing HT-SELEX data with the Galaxy Project tools--A web based bioinformatics platform for biomedical research.

    Science.gov (United States)

    Thiel, William H; Giangrande, Paloma H

    2016-03-15

    The development of DNA and RNA aptamers for research as well as diagnostic and therapeutic applications is a rapidly growing field. In the past decade, the process of identifying aptamers has been revolutionized with the advent of high-throughput sequencing (HTS). However, bioinformatics tools that enable the average molecular biologist to analyze these large datasets and expedite the identification of candidate aptamer sequences have been lagging behind the HTS revolution. The Galaxy Project was developed in order to efficiently analyze genome, exome, and transcriptome HTS data, and we have now applied these tools to aptamer HTS data. The Galaxy Project's public webserver is an open source collection of bioinformatics tools that are powerful, flexible, dynamic, and user friendly. The online nature of the Galaxy webserver and its graphical interface allow users to analyze HTS data without compiling code or installing multiple programs. Herein we describe how tools within the Galaxy webserver can be adapted to pre-process, compile, filter and analyze aptamer HTS data from multiple rounds of selection.

  2. Manpower development for the biomedical industry space.

    Science.gov (United States)

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  3. 基于知识组织系统的生物医学文本挖掘研究%Research on Biomedical Text Mining Based on Knowledge Organization System

    Institute of Scientific and Technical Information of China (English)

    钱庆

    2016-01-01

    With the rapid development of biomedical information technology, biological medical literatures grow exponential y. It's hard to read and understand the required knowledge by manual, how to integrate knowledge from huge amounts of biomedical literatures, mining new knowledge has been becoming the current hot spot. Knowledge organization system construction in the field of biological medicine is more normative and complete than other fields, which is the foundation for biomedical text mining. A large number of text mining methodsand systems based on knowledge organization system have fast development. This paper investigates the existing medical knowledge organization systems and summarizes the process of biomedical text mining. It also summaries the researches andrecentprogressand analyzes the characteristics of biomedical text mining based on knowledge organization system. The knowledge organization systems play an important role in biomedical text mining and the chal enge for the current study are summarized, so as to provide references for biomedical workers.%随着生物医学信息技术的飞速发展,生物医学文献呈“指数型”增长,单纯依靠人工阅读获取和理解所需知识变得异常困难,如何从海量生物医学文献中整合已有知识、挖掘新知识成为当前研究热点。生物医学领域的知识组织系统建设相比其他领域更加规范和完整,为生物医学文本挖掘奠定了基础,大量基于知识组织系统的文本挖掘方法、系统得到快速发展。本文主要梳理现有医学知识组织系统,归纳生物医学文本挖掘的主要流程,按照挖掘任务探讨当前的主要研究和进展情况,并进一步分析基于知识组织系统的生物医学文本挖掘的特点,对知识组织系统在生物医学文本挖掘中发挥的主要作用和当前研究面临的挑战进行总结,以期为生物医学工作者提供借鉴。

  4. ISIFC - dual Biomedical Engineering School.

    Science.gov (United States)

    Butterlin, Nadia; Soto-Romero, Georges; Duffaud, Jacques; Blagosklonov, Oleg

    2007-01-01

    The Superior Institute for Biomedical Engineering (ISIFC), created in 2001, is part of the Franche-Comté University and is accredited by the French Ministry of National Education. Its originality lies in its innovative course of studies, which trains engineers in the scientific and medical fields to get both competencies. The Institute therefore collaborates with the University Hospital Centre of Besançon (CHU), biomedical companies and National Research Centres (CNRS and INSERM). The dual expertise trainees will have acquired at the end of their 3 years course covers medical and biological skills, scientific and Technical expertises. ISIFC engineers answer to manufacturer needs for skilled scientific and technical staff in instrumentation and techniques adapted to diagnosis, therapeutics and medical control, as well as the needs of potential users for biomedical devices, whether they are doctors, hospital staff, patients, laboratories, etc... Both the skills and the knowledge acquired by an ISIFC engineer will enable him/her to fulfil functions of study, research and development in the industrial sector.

  5. Biomedical Applications of Biodegradable Polyesters

    Directory of Open Access Journals (Sweden)

    Iman Manavitehrani

    2016-01-01

    Full Text Available The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have been driven by a need to target the general hydrophobic nature of polyesters and their limited cell motif sites. This review provides a comprehensive investigation into advanced strategies to modify polyesters and their clinical potential for future biomedical applications.

  6. 借鉴看板管理思想探索生物医药产业的研发管理%Exploration of research and development in biomedical industry by reference of kanban management concept

    Institute of Scientific and Technical Information of China (English)

    蔡雨阳; 李际; 任军; 芮明杰

    2009-01-01

    从总结看板管理的理论与特点人手,分析了生物医药产业与研发的特点,提出了将看板管理的思想应用于生物医药研发的思路,并在任务分解、团队沟通与周期压缩三方面提出具体建议,以产业案例佐证了看板管理的思想对于生物医药产业研发管理创新的借鉴作用.%This paper summarized the theory and characteristics of Kanban management,analyzed characteristics of the biomedical industry,research and development.The Kanban management put forward some ideas for the managemerit of biomedical research and development,also the task decomposition,team communication and the compression cycle were proposed respectively in it.The industry case would corroborate the Kanban management for the management of the biomedical research and development to be able to use as a reference to management innovation.

  7. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  8. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  9. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D; Bronzino, Joseph D

    2006-01-01

    Over the last century,medicine has come out of the "black bag" and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiology to informatics and signal processing. Reflecting the enormous growth and change in biomedical engineering during the infancy of the 21st century, The Biomedical Engineering Handbook enters its third edition as a set of three carefully focused and

  10. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  11. Handbook of photonics for biomedical engineering

    CERN Document Server

    Kim, Donghyun; Somekh, Michael

    2017-01-01

    Nanophotonics has emerged rapidly into technological mainstream with the advent and maturity of nanotechnology available in photonics and enabled many new exciting applications in the area of biomedical science and engineering that were unimagined even a few years ago with conventional photonic engineering techniques. Handbook of Nanophotonics in Biomedical Engineering is intended to be a reliable resource to a wealth of information on nanophotonics that can inspire readers by detailing emerging and established possibilities of nanophotonics in biomedical science and engineering applications. This comprehensive reference presents not only the basics of nanophotonics but also explores recent experimental and clinical methods used in biomedical and bioengineering research. Each peer-reviewed chapter of this book discusses fundamental aspects and materials/fabrication issues of nanophotonics, as well as applications in interfaces, cell, tissue, animal studies, and clinical engineering. The organization provides ...

  12. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  13. Sensors for biomedical applications

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.

  14. Statistical Challenges in Biomedical Research

    Science.gov (United States)

    Feiveson, Alan H.; Ploutz-Snyder, Rob; Fiedler, James

    2010-01-01

    Potentially debilitating effects of spaceflight environment include: a) Bone Demineralization - Osteoporosis. b)Impaired Fracture Healing - Non-Union. c) Renal Stone Formation & Soft Tissue Calcification. d) Orthostatic Intolerance (on return to gravity). e) Cardiac Arrhythmias. f) Dehydration (on return to gravity). g) Decreased Aerobic Capacity. h) Impaired Coordination. i) Muscle Atrophy (Loss of Strength). j) Radiation Sickness. k) Increased Cancer Risk. l) Impaired Immune Function. m) Behavioral Changes & Performance Decrements n) Altitude Decompression Sickness during EVA.

  15. Modeling in biomedical informatics - An exploratory analysis (Part 1)

    NARCIS (Netherlands)

    A. Hasman; R. Haux

    2006-01-01

    Objectives: Modeling is a significant part of research, education and practice in biomedical and health informatics. Our objective was to explore, which types of models of processes are used in current biomedical/health informatics research, as reflected in publications of scientific journals in thi

  16. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  17. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  18. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  19. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations

    OpenAIRE

    Xiao Li; Jiankang He; Weijie Zhang; Nan Jiang; Dichen Li

    2016-01-01

    Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, dep...

  20. 5th International Conference on Biomedical Engineering in Vietnam

    CERN Document Server

    Phuong, Tran

    2015-01-01

    This volume presents the proceedings of the Fifth International Conference on the Development of Biomedical Engineering in Vietnam which was held from June 16-18, 2014 in Ho Chi Minh City. The volume reflects the progress of Biomedical Engineering and discusses problems and solutions. I aims identifying new challenges, and shaping future directions for research in biomedical engineering fields including medical instrumentation, bioinformatics, biomechanics, medical imaging, drug delivery therapy, regenerative medicine and entrepreneurship in medical devices.

  1. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it\\'s also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  2. Exploring subdomain variation in biomedical language

    Directory of Open Access Journals (Sweden)

    Séaghdha Diarmuid Ó

    2011-05-01

    Full Text Available Abstract Background Applications of Natural Language Processing (NLP technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. Results Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. Conclusions We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers.

  3. Writing intelligible English prose for biomedical journals.

    Science.gov (United States)

    Ludbrook, John

    2007-01-01

    1. I present a combination of semi-objective and subjective evidence that the quality of English prose in biomedical scientific writing is deteriorating. 2. I consider seven possible strategies for reversing this apparent trend. These refer to a greater emphasis on good writing by students in schools and by university students, consulting books on science writing, one-on-one mentoring, using 'scientific' measures to reveal lexical poverty, making use of freelance science editors and encouraging the editors of biomedical journals to pay more attention to the problem. 3. I conclude that a fruitful, long-term, strategy would be to encourage more biomedical scientists to embark on a career in science editing. This strategy requires a complementary initiative on the part of biomedical research institutions and universities to employ qualified science editors. 4. An immediately realisable strategy is to encourage postgraduate students in the biomedical sciences to undertake the service courses provided by many universities on writing English prose in general and scientific prose in particular. This strategy would require that heads of departments and supervisors urge their postgraduate students to attend such courses. 5. Two major publishers of biomedical journals, Blackwell Publications and Elsevier Science, now provide lists of commercial editing services on their web sites. I strongly recommend that authors intending to submit manuscripts to their journals (including Blackwell's Clinical and Experimental Pharmacology and Physiology) make use of these services. This recommendation applies especially to those for whom English is a second language.

  4. Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research

    OpenAIRE

    Tuntland, Tove; Ethell, Brian; Kosaka, Takatoshi; Blasco, Francesca; Zang, Richard Xu; Jain, Monish; Gould, Ty; Hoffmaster, Keith

    2014-01-01

    Characterizing the relationship between the pharmacokinetics (PK, concentration vs. time) and pharmacodynamics (PD, effect vs. time) is an important tool in the discovery and development of new drugs in the pharmaceutical industry. The purpose of this publication is to serve as a guide for drug discovery scientists toward optimal design and conduct of PK/PD studies in the research phase. This review is a result of the collaborative efforts of DMPK scientists from various Metabolism and Pharma...

  5. Optimization and Data Analysis in Biomedical Informatics

    CERN Document Server

    Pardalos, Panos M; Xanthopoulos, Petros

    2012-01-01

    This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines

  6. Review of Biomedical Image Processing

    Directory of Open Access Journals (Sweden)

    Ciaccio Edward J

    2011-11-01

    Full Text Available Abstract This article is a review of the book: 'Biomedical Image Processing', by Thomas M. Deserno, which is published by Springer-Verlag. Salient information that will be useful to decide whether the book is relevant to topics of interest to the reader, and whether it might be suitable as a course textbook, are presented in the review. This includes information about the book details, a summary, the suitability of the text in course and research work, the framework of the book, its specific content, and conclusions.

  7. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  8. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  9. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  10. ENLIGHT and LEIR biomedical facility.

    Science.gov (United States)

    Dosanjh, M; Cirilli, M; Navin, S

    2014-07-01

    Particle therapy (including protons and carbon ions) allows a highly conformal treatment of deep-seated tumours with good accuracy and minimal dose to surrounding tissues, compared to conventional radiotherapy using X-rays. Following impressive results from early phase trials, over the last decades particle therapy in Europe has made considerable progress in terms of new institutes dedicated to charged particle therapy in several countries. Particle therapy is a multidisciplinary subject that involves physicists, biologists, radio-oncologists, engineers and computer scientists. The European Network for Light Ion Hadron Therapy (ENLIGHT) was created in response to the growing needs of the European community to coordinate such efforts. A number of treatment centres are already operational and treating patients across Europe, including two dual ion (protons and carbon ions) centres in Heidelberg (the pioneer in Europe) and Pavia. However, much more research needs to be carried out and beamtime is limited. Hence there is a strong interest from the biomedical research community to have a facility with greater access to relevant beamtime. Such a facility would facilitate research in radiobiology and the development of more accurate techniques of dosimetry and imaging. The Low Energy Ion Ring (LEIR) accelerator at CERN presents such an opportunity, and relies partly on CERN's existing infrastructure. The ENLIGHT network, European Commission projects under the ENLIGHT umbrella and the future biomedical facility are discussed.

  11. Biomedical engineering and society: policy and ethics.

    Science.gov (United States)

    Flexman, J A; Lazareck, L

    2007-01-01

    Biomedical engineering impacts health care and contributes to fundamental knowledge in medicine and biology. Policy, such as through regulation and research funding, has the potential to dramatically affect biomedical engineering research and commercialization. New developments, in turn, may affect society in new ways. The intersection of biomedical engineering and society and related policy issues must be discussed between scientists and engineers, policy-makers and the public. As a student, there are many ways to become engaged in the issues surrounding science and technology policy. At the University of Washington in Seattle, the Forum on Science Ethics and Policy (FOSEP, www.fosep.org) was started by graduate students and post-doctoral fellows interested in improving the dialogue between scientists, policymakers and the public and has received support from upper-level administration. This is just one example of how students can start thinking about science policy and ethics early in their careers.

  12. Teaching of parasitology to students of veterinary medicine and biomedical sciences.

    Science.gov (United States)

    Thompson, R C A; Lymbery, A J; Hobbs, R P

    2002-10-02

    The teaching of an applied parasitology course suitable for both veterinary and biomedical students is described. A common lecture course is given complemented by separate and specific practical, research and problem-based learning components designed for veterinary and biomedical students. For veterinary and biomedical students, teaching of parasitology during the full course comprises a total of 46 lectures; 13 practical classes for veterinary students and five for biomedical students who also undertake an independent research project.

  13. Industry careers for the biomedical engineer.

    Science.gov (United States)

    Munzner, Robert F

    2004-01-01

    This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.

  14. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society.

  15. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  16. A robust approach to extract biomedical events from literature

    NARCIS (Netherlands)

    Bui, Q.C.; Sloot, P.M.A.

    2012-01-01

    Motivation: The abundance of biomedical literature has attracted significant interest in novel methods to automatically extract biomedical relations from the literature. Until recently, most research was focused on extracting binary relations such as protein-protein interactions and drug-disease rel

  17. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  18. Anatomy for Biomedical Engineers

    Science.gov (United States)

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  19. Micro and Nano Manipulations for Biomedical Applications

    CERN Document Server

    Yih, Tachung C

    2007-01-01

    Taking bio-device research and development to "the next level," this book covers the latest advances in biomedical microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). The book presents new developments in the synthesis and use of metallic nanoparticles in bio-sensing and drug delivery, including quantum dots semiconductors nanocrystals.

  20. Biomedical engineering at UCT - challenges and opportunities.

    Science.gov (United States)

    Douglas, Tania S

    2012-03-02

    The biomedical engineering programme at the University of Cape Town has the potential to address some of South Africa's unique public health challenges and to contribute to growth of the local medical device industry, directly and indirectly, through research activities and postgraduate education. Full realisation of this potential requires engagement with the clinical practice environment and with industry.

  1. Biomedical Applications of Terahertz Spectroscopy and Imaging.

    Science.gov (United States)

    Yang, Xiang; Zhao, Xiang; Yang, Ke; Liu, Yueping; Liu, Yu; Fu, Weiling; Luo, Yang

    2016-10-01

    Terahertz (THz=10(12)Hz) radiation has attracted wide attention for its unprecedented sensing ability and its noninvasive and nonionizing properties. Tremendous strides in THz instrumentation have prompted impressive breakthroughs in THz biomedical research. Here, we review the current state of THz spectroscopy and imaging in various biomedical applications ranging from biomolecules, including DNA/RNA, amino acids/peptides, proteins, and carbohydrates, to cells and tissues. We also address the potential biological effects of THz radiation during its biological applications and propose future prospects for this cutting-edge technology.

  2. Ontology-Oriented Programming for Biomedical Informatics.

    Science.gov (United States)

    Lamy, Jean-Baptiste

    2016-01-01

    Ontologies are now widely used in the biomedical domain. However, it is difficult to manipulate ontologies in a computer program and, consequently, it is not easy to integrate ontologies with databases or websites. Two main approaches have been proposed for accessing ontologies in a computer program: traditional API (Application Programming Interface) and ontology-oriented programming, either static or dynamic. In this paper, we will review these approaches and discuss their appropriateness for biomedical ontologies. We will also present an experience feedback about the integration of an ontology in a computer software during the VIIIP research project. Finally, we will present OwlReady, the solution we developed.

  3. Functionalized Gold Nanoparticles and Their Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Shree R. Singh

    2011-06-01

    Full Text Available Metal nanoparticles are being extensively used in various biomedical applications due to their small size to volume ratio and extensive thermal stability. Gold nanoparticles (GNPs are an obvious choice due to their amenability of synthesis and functionalization, less toxicity and ease of detection. The present review focuses on various methods of functionalization of GNPs and their applications in biomedical research. Functionalization facilitates targeted delivery of these nanoparticles to various cell types, bioimaging, gene delivery, drug delivery and other therapeutic and diagnostic applications. This review is an amalgamation of recent advances in the field of functionalization of gold nanoparticles and their potential applications in the field of medicine and biology.

  4. Developing biomedical devices design, innovation and protection

    CERN Document Server

    Andreoni, Giuseppe; Colombo, Barbara

    2013-01-01

    During the past two decades incredible progress has been achieved in the instruments and devices used in the biomedical field. This progress stems from continuous scientific research that has taken advantage of many findings and advances in technology made available by universities and industry. Innovation is the key word, and in this context legal protection and intellectual property rights (IPR) are of crucial importance. This book provides students and practitioners with the fundamentals for designing biomedical devices and explains basic design principles. Furthermore, as an aid to the dev

  5. Biomedical publishing and the internet: evolution or revolution?

    Science.gov (United States)

    Jacobson, M W

    2000-01-01

    The Internet is challenging traditional publishing patterns. In the biomedical domain, medical journals are providing more and more content online, both free and for a fee. Beyond this, however, a number of commentators believe that traditional notions of copyright and intellectual property ownership are no longer suited to the information age and that ownership of copyright to research reports should be and will be wrested from publishers and returned to authors. In this paper, it is argued that, although the Internet will indeed profoundly affect the distribution of biomedical research results, the biomedical publishing industry is too intertwined with the research establishment and too powerful to fall prey to such a copyright revolution.

  6. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  7. Application Research of Collagen as Biomedical Materials%胶原作为生物医学材料的应用研究

    Institute of Scientific and Technical Information of China (English)

    杨延慧; 严涵; 康晓梅; 曾宪仕; 陈红; 徐静; 陈晓浪; 张志斌

    2011-01-01

    胶原是生物体内的一种纤维蛋白,由于其较高的抗张强度,目前被广泛用于生物医学领域.该文主要介绍了胶原作为组织工程支架材料和药物释放载体材料的应用.%Collagen is one kind of fibrin which is widely used in biomedical scope due to its high tensile strength. Hie paper mainly introduces the application of collagen as tissue engineering scaffold material and medicine carrier material.

  8. Biomedical wellness challenges and opportunities

    Science.gov (United States)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  9. Microfabrication materials for biomedical microdevices

    Science.gov (United States)

    Hansford, Derek James

    Major hurdles to the implementation of microfabricated devices for therapeutic applications include materials processing and biocompatibility issues. This dissertation reports research on improving the materials selection and fabrication for biomedical microdevices, using a microfabricated immunoisolation biocapsule as an example. Two material classes in the microfabrication protocol were examined based on the requirements determined for biomedical microdevices: the adhesive layer for bonding devices to encapsulate delicate biological substances and the thin film structural materials for surface structures, such as the biocapsule membrane. The major requirements for the adhesive layer material included non-cytotoxicity during bonding, adhesive strength, and durability under physiological conditions. Low glassy-phase transition temperature (Tg) methacrylates were found to be suitable candidates for adhesives of biomedical microdevices. A comparison study of poly propy1methacrylate (PPMA), poly (butyl, ethyl) methacrylate (PBEMA), and the higher Tg PMMA showed that all of the methacrylates had similar biocompatibility, adhesive strength, and durability. The adhesive strengths were found to be suitable for the adhesion of biomedical microdevices, as shown by measurement using a pressurized plate test and the current use of PMMA as bone cement. None of the methacrylates showed evidence of cytotoxicity, as measured by both optical and cytometric cell culture cytotoxicity tests. A protocol for the selective placement of smooth, thin films of PPMA using a Gel-PakTM transfer substrate was developed and demonstrated. The major requirements determined for the thin film structural materials were based on processing, mechanical, and biological parameters. Several candidates were identified as for structural materials based on these requirements: polycrystalline silicon. silicon nitride, fluoropolymers, PMMA, and silicone. A new fabrication protocol was developed to allow the

  10. [Biomedical engineering today : An overview from the viewpoint of the German Biomedical Engineering Society].

    Science.gov (United States)

    Schlötelburg, C; Becks, T; Stieglitz, T

    2010-08-01

    Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.

  11. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  12. 微图形化技术及其在生物医学研究中的应用%Micropatterning and Its Applications in Biomedical Research

    Institute of Scientific and Technical Information of China (English)

    任大海; 崔明洋; 夏亦秋; 尤政

    2012-01-01

    结合生物物理学与生物化学的微细加工技术已可以获得与生物大分子相近的特征尺寸,推动了微图形化技术在药物筛选与新药开发、组织工程、疾病诊断等领域的应用.综述了微图形化技术在生物医学领域的发展,讨论了光刻、软光刻、模板辅助构图、扫描探针加工、喷墨构图、激光诱导图形化等方法,分析了各种方法的优势、局限性与适用范围,指出分辨力与精度、图形化规模、实验加工条件等是选择不同图形化方法的主要依据.而基于生物物理学和生物化学等对纳米尺度的处理过程进行定量分析、进一步提高其生物兼容性及材料适应性、发展适合图形化芯片的体内微环境模拟技术等是微图形化技术进一步发展的方向.%Based on the micro-fabrication techniques combining with biochemistry and biophysics, we can get function structures with feature sizes close to the biomacromolecule scale, which promotes the applications of micropatterning in many research fields such as drug screening and discovery, tissue engineering and disease diagnosis. This review summarizes the development of micropatterning techniques in biomedical field and analyzes the advantages, limitations and application scopes of each micropatterning approach including photolithography, soft lithography, stencil-assisted patterning, scanning-probe lithography, jet patterning and laser guided patterning. Photolithography usually includes several steps such as exposure, development, lift-off and so on. Although it has the advantages of high accuracy, high efficiency and accurate alignment system, it depends on super-clean labs and lift-off processes, which means high cost and unsatisfied bio-compatibility. Soft lithography and stencil-assisted patterning methods avoid exposure and lift-off steps by using elastomeric stamps, which can enhance the bio-compatibility and reduce the cost. However, these two methods have

  13. Biomedical information retrieval across languages.

    Science.gov (United States)

    Daumke, Philipp; Markü, Kornél; Poprat, Michael; Schulz, Stefan; Klar, Rüdiger

    2007-06-01

    This work presents a new dictionary-based approach to biomedical cross-language information retrieval (CLIR) that addresses many of the general and domain-specific challenges in current CLIR research. Our method is based on a multilingual lexicon that was generated partly manually and partly automatically, and currently covers six European languages. It contains morphologically meaningful word fragments, termed subwords. Using subwords instead of entire words significantly reduces the number of lexical entries necessary to sufficiently cover a specific language and domain. Mediation between queries and documents is based on these subwords as well as on lists of word-n-grams that are generated from large monolingual corpora and constitute possible translation units. The translations are then sent to a standard Internet search engine. This process makes our approach an effective tool for searching the biomedical content of the World Wide Web in different languages. We evaluate this approach using the OHSUMED corpus, a large medical document collection, within a cross-language retrieval setting.

  14. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  15. Multilingual biomedical dictionary.

    Science.gov (United States)

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical information from a domain-specific, multilingual corpus.

  16. Adaptive Biomedical Innovation.

    Science.gov (United States)

    Honig, P K; Hirsch, G

    2016-12-01

    Adaptive Biomedical Innovation (ABI) is a multistakeholder approach to product and process innovation aimed at accelerating the delivery of clinical value to patients and society. ABI offers the opportunity to transcend the fragmentation and linearity of decision-making in our current model and create a common collaborative framework that optimizes the benefit and access of new medicines for patients as well as creating a more sustainable innovation ecosystem.

  17. [Biomedical activity of biosurfactants].

    Science.gov (United States)

    Krasowska, Anna

    2010-07-23

    Biosurfactants, amphiphilic compounds, synthesized by microorganisms have surface, antimicrobial and antitumor properties. Biosurfactants prevent adhesion and biofilms formation by bacteria and fungi on various surfaces. For many years microbial surfactants are used as antibiotics with board spectrum of activity against microorganisms. Biosurfactants act as antiviral compounds and their antitumor activities are mediated through induction of apoptosis. This work presents the current state of knowledge related to biomedical activity of biosurfactants.

  18. Medical and biomedical applications of shock waves

    CERN Document Server

    Loske, Achim M

    2017-01-01

    This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...

  19. Advancement of Women in the Biomedical Workforce: Insights for Success.

    Science.gov (United States)

    Barfield, Whitney L; Plank-Bazinet, Jennifer L; Austin Clayton, Janine

    2016-08-01

    Women continue to face unique barriers in the biomedical workforce that affect their advancement and retention in this field. The National Institutes of Health (NIH) formed the Working Group on Women in Biomedical Careers to address these issues. Through the efforts of the working group, the NIH funded 14 research grants to identify barriers or to develop and/or test interventions to support women in the biomedical workforce. The grantees that were funded through this endeavor later established the grassroots Research Partnership on Women in Biomedical Careers, and they continue to conduct research and disseminate information on the state of women in academic medicine. This Commentary explores the themes introduced in a collection of articles organized by the research partnership and published in this issue of Academic Medicine. The authors highlight the role that government plays in the advancement of women in academic medicine and highlight the findings put forward in this collection.

  20. The panacea statistical toolbox of a biomedical peer reviewer.

    Science.gov (United States)

    Skaik, Younis

    2015-01-01

    The main role of a peer reviewer is to make judgments on the research articles by asking a number of questions to evaluate the quality of the research article. Statistics is a major part of any biomedical research article, and most reviewers gain their experiences in manuscript reviewing by undertaking it but not through an educational process. Therefore, reviewers of the biomedical journals normally do not have enough knowledge and skills to evaluate the validity of statistical methods used in biomedical research articles submitted for consideration. Hence, inappropriate statistical analysis in medical journals can lead to misleading conclusions and incorrect results. In this paper, the most common basic statistical guidelines are described that might be a road map to the biomedical reviewers. It is not meant for statisticians or medical editors who have special interest and expertise in statistical analysis.