WorldWideScience

Sample records for biomedical research

  1. Biomimicry in biomedical research

    OpenAIRE

    Zhang, Ge

    2012-01-01

    Biomimicry (literally defined as the imitation of life or nature) has sparked a variety of human innovations and inspired countless cutting-edge designs. From spider silk-made artificial skin to lotus leaf-inspired self-cleaning materials, biomimicry endeavors to solve human problems. Biomimetic approaches have contributed significantly to advances biomedical research during recent years. Using polyacrylamide gels to mimic the elastic modulus of different biological tissues, Disher’s lab has ...

  2. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  3. National Space Biomedical Research Institute

    Science.gov (United States)

    2004-01-01

    This report outlines the National Space Biomedical Research Institute's (NSBRI) activities during FY 2004, the Institute's seventh year. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  4. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research. PMID:24640781

  5. National Space Biomedical Research Institute

    Science.gov (United States)

    1999-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 1999, the second full year of existence of the NSBRI's research program, and is prepared in accordance with Cooperative Agreement NCC9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI). The report consists of progress reports on projects related to the effects of microgravity and space on physiology. The research is broken up in nine areas: (1) Bone loss, (2) Cardiovascular alterations, (3) human performance, (3) immunology, infection and hematology, (4) muscle alterations and atrophy,(5) Neurovestibular adaptation, radiation effects, (6) technology development, and (7) synergy projects.

  6. The Obligation to Participate in Biomedical Research

    OpenAIRE

    Schaefer, G. Owen; Emanuel, Ezekiel J; Wertheimer, Alan

    2009-01-01

    The prevailing view is that participation in biomedical research is above and beyond the call of duty. While some commentators have offered reasons against this, we propose a novel public goods argument for an obligation to participate in biomedical research. Biomedical knowledge is a public good, available to any individual even if that individual does not contribute to it. Participation in research is a critical way to support that important public good. Consequently, we all have a duty to ...

  7. Simbody: multibody dynamics for biomedical research

    OpenAIRE

    Sherman, Michael A.; Seth, Ajay; Delp, Scott L.

    2011-01-01

    Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an...

  8. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. PMID:26851671

  9. The growth of biomedical terahertz research

    International Nuclear Information System (INIS)

    Interest in biomedical terahertz research is growing rapidly and there are now several terahertz groups in Asia, Europe and the US investigating potential applications such as pharmaceutical quality control, protein characterization and cancer detection. This review article outlines the technological bottlenecks that have been overcome which have made biomedical terahertz research possible. Key research findings will be presented, and the limitations that remain and the research initiatives that strive to address them will also be discussed. (paper)

  10. Environmental practices for biomedical research facilities.

    OpenAIRE

    Medlin, E L; Grupenhoff, J T

    2000-01-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing ...

  11. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  12. [Open access :an opportunity for biomedical research].

    OpenAIRE

    Duchange, Nathalie; Autard, Delphine; Pinhas, Nicole

    2008-01-01

    International audience Open access within the scientific community depends on the scientific context and the practices of the field. In the biomedical domain, the communication of research results is characterised by the importance of the peer reviewing process, the existence of a hierarchy among journals and the transfer of copyright to the editor. Biomedical publishing has become a lucrative market and the growth of electronic journals has not helped lower the costs. Indeed, it is diffic...

  13. Communication Patterns in a Biomedical Research Center

    Science.gov (United States)

    Gorry, G. Anthony; And Others

    1978-01-01

    Studies of the communication patterns among scientists in a biomedical research center should help in the assessment of the center's impact on research processes. Such a study at the National Heart and Blood Vessel Research and Demonstration Center (NRDC) at Baylor College of Medicine is reported. (LBH)

  14. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  15. Understanding Metabolomics in Biomedical Research.

    Science.gov (United States)

    Kim, Su Jung; Kim, Su Hee; Kim, Ji Hyun; Hwang, Shin; Yoo, Hyun Ju

    2016-03-01

    The term "omics" refers to any type of specific study that provides collective information on a biological system. Representative omics includes genomics, proteomics, and metabolomics, and new omics is constantly being added, such as lipidomics or glycomics. Each omics technique is crucial to the understanding of various biological systems and complements the information provided by the other approaches. The main strengths of metabolomics are that metabolites are closely related to the phenotypes of living organisms and provide information on biochemical activities by reflecting the substrates and products of cellular metabolism. The transcriptome does not always correlate with the proteome, and the translated proteome might not be functionally active. Therefore, their changes do not always result in phenotypic alterations. Unlike the genome or proteome, the metabolome is often called the molecular phenotype of living organisms and is easily translated into biological conditions and disease states. Here, we review the general strategies of mass spectrometry-based metabolomics. Targeted metabolome or lipidome analysis is discussed, as well as nontargeted approaches, with a brief explanation of the advantages and disadvantages of each platform. Biomedical applications that use mass spectrometry-based metabolomics are briefly introduced. PMID:26676338

  16. National Space Biomedical Research Institute Annual Report

    Science.gov (United States)

    2000-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2000. The NSBRI is responsible for the development of countermeasures against the deleterious effects of long-duration space flight and performs fundamental and applied space biomedical research directed towards this specific goal. Its mission is to lead a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan by focusing on the enabling of long-term human presence in, development of, and exploration of space. This is accomplished by: designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of mankind, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through NASA's Lyndon B. Johnson Space Center. Attachment:Appendices (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, and P.).

  17. The Need for Veterinarians in Biomedical Research

    OpenAIRE

    Rosol, Thomas J.; Moore, Rustin M.; Saville, William J. A.; Oglesbee, Michael J.; Rush, Laura J; Mathes, Lawrence E.; Lairmore, Michael D

    2009-01-01

    The number of veterinarians in the United States is inadequate to meet societal needs in biomedical research and public health. Areas of greatest need include translational medical research, veterinary pathology, laboratory-animal medicine, emerging infectious diseases, public health, academic medicine, and production-animal medicine. Veterinarians have unique skill sets that enable them to serve as leaders or members of interdisciplinary research teams involved in basic science and biomedica...

  18. Breeding monkeys for biomedical research

    Science.gov (United States)

    Bourne, G. H.; Golarzdebourne, M. N.; Keeling, M. E.

    1973-01-01

    Captive bred rhesus monkeys show much less pathology than wild born animals. The monkeys may be bred in cages or in an outdoor compound. Cage bred animals are not psychologically normal which makes then unsuited for some types of space related research. Compound breeding provides contact between mother and infant and an opportunity for the infants to play with their peers which are important requirements to help maintain their behavioral integrity. Offspring harvested after a year in the compound appear behaviorally normal and show little histopathology. Compound breeding is also an economical method for the rapid production of young animals. The colony can double its size about every two and a half years.

  19. [Biomimetic sensors in biomedical research].

    Science.gov (United States)

    Gayet, Landry; Lenormand, Jean-Luc

    2015-01-01

    The recent research on both the synthesis of membrane proteins by cell-free systems and the reconstruction of planar lipid membranes, has led to the development of a cross-technology to produce biosensors or filters. Numerous biomimetic membranes are currently being standardized and used by the industry, such as filters containing aquaporin for water desalination, or used in routine at the laboratory scale, for example the bacteriorhodopsin as a light sensor. In the medical area, several fields of application of these biomimetic membranes are under consideration today, particularly for the screening of therapeutic molecules and for the developing of new tools in diagnosis, patient monitoring and personalized medicine. PMID:26152170

  20. Biomedical research in a Digital Health Framework.

    Science.gov (United States)

    Cano, Isaac; Lluch-Ariet, Magí; Gomez-Cabrero, David; Maier, Dieter; Kalko, Susana; Cascante, Marta; Tegnér, Jesper; Miralles, Felip; Herrera, Diego; Roca, Josep

    2014-11-28

    This article describes a Digital Health Framework (DHF), benefitting from the lessons learnt during the three-year life span of the FP7 Synergy-COPD project. The DHF aims to embrace the emerging requirements--data and tools--of applying systems medicine into healthcare with a three-tier strategy articulating formal healthcare, informal care and biomedical research. Accordingly, it has been constructed based on three key building blocks, namely, novel integrated care services with the support of information and communication technologies, a personal health folder (PHF) and a biomedical research environment (DHF-research). Details on the functional requirements and necessary components of the DHF-research are extensively presented. Finally, the specifics of the building blocks strategy for deployment of the DHF, as well as the steps toward adoption are analyzed. The proposed architectural solutions and implementation steps constitute a pivotal strategy to foster and enable 4P medicine (Predictive, Preventive, Personalized and Participatory) in practice and should provide a head start to any community and institution currently considering to implement a biomedical research platform. PMID:25472554

  1. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  2. Biomedical research in a Digital Health Framework

    OpenAIRE

    Cano, Isaac; Lluch-Ariet, Magí; Gomez-Cabrero, David; Maier, Dieter; Kalko, Susana; Cascante, Marta; Tegnér, Jesper; Miralles, Felip; Herrera, Diego; Roca, Josep; ,

    2014-01-01

    This article describes a Digital Health Framework (DHF), benefitting from the lessons learnt during the three-year life span of the FP7 Synergy-COPD project. The DHF aims to embrace the emerging requirements - data and tools - of applying systems medicine into healthcare with a three-tier strategy articulating formal healthcare, informal care and biomedical research. Accordingly, it has been constructed based on three key building blocks, namely, novel integrated care services with the suppor...

  3. Biomedical Research Institute, Biomedical Research Foundation of Northwest Louisiana, Shreveport, Louisiana

    International Nuclear Information System (INIS)

    Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0789, evaluating the environmental impacts of construction and operation of a Biomedical Research Institute (BRI) at the Louisiana State University (LSU) Medical Center, Shreveport, Louisiana. The purpose of the BRI is to accelerate the development of biomedical research in cardiovascular disease, molecular biology, and neurobiology. Based on the analyses in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  4. Fraud and deceit in biomedical research

    Directory of Open Access Journals (Sweden)

    Buitrago Juliana

    2004-05-01

    Full Text Available History: Scientists are supposed to be moved by lofty ideals and be taught to work restlessly in pursue of the truth, but sadly fraud in biomedical research can be traced through the entire history of science. Definition: Nowadays, typology of fraud is clearly defined. Principal types of misconduct are reviewed. Consequences: It is impossible to know to what extent the damage will remain. Fraud threats public confidence in the integrity of science and may change professional attitudes and health public policies leading to serious social consequences. Evaluation of the problem: Prevalence of research fraud is unknown but in almost every country where investigation has been largely developed, at least a corroborated case of mis-conduct has been known. Policies on the scientific process may eventually contribute to fraudulent behaviour. Situation in Colombia: Colombia lacks of comprehensive policies to deal with fraud in research. How to tackle this problem: Finally, some recommendations are given to prevent, detect and deal with fraud in biomedical research.

  5. Accelerator mass spectrometry in biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; Turteltaub, K.W.

    1993-10-20

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10{sup 9}) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10{sup 13--15} on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. {sup 14}C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. {sup 3} H, {sup 41}Ca and {sup 26}Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  6. Accelerator mass spectrometry in biomedical research

    International Nuclear Information System (INIS)

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:109) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 1013--15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. 14C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. 3 H, 41Ca and 26Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications

  7. A price index for biomedical research and development.

    OpenAIRE

    Holloway, T M; Reeb, J S

    1989-01-01

    Price changes of goods and services used in biomedical research and development have important effects on the costs of conducting research. We summarize the trends suggested by a recently constructed biomedical research and development price index, which measures the effects of price changes on the inputs to biomedical research from 1979 to 1986. The fixed-weighted index uses fiscal year 1984 National Institutes of Health expenditure patterns in developing the weights. The rate of increase sh...

  8. Applying environmental product design to biomedical products research.

    OpenAIRE

    Messelbeck, J; Sutherland, L

    2000-01-01

    The principal themes for the Biomedical Research and the Environment Conference Committee on Environmental Economics in Biomedical Research include the following: healthcare delivery companies and biomedical research organizations, both nonprofit and for-profit, need to improve their environmental performance; suppliers of healthcare products will be called upon to support this need; and improving the environmental profile of healthcare products begins in research and development (R&D). The c...

  9. Nanomaterials driven energy, environmental and biomedical research

    International Nuclear Information System (INIS)

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO2 nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH2 and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe2O4 have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)

  10. Commercializing biomedical research through securitization techniques.

    Science.gov (United States)

    Fernandez, Jose-Maria; Stein, Roger M; Lo, Andrew W

    2012-10-01

    Biomedical innovation has become riskier, more expensive and more difficult to finance with traditional sources such as private and public equity. Here we propose a financial structure in which a large number of biomedical programs at various stages of development are funded by a single entity to substantially reduce the portfolio's risk. The portfolio entity can finance its activities by issuing debt, a critical advantage because a much larger pool of capital is available for investment in debt versus equity. By employing financial engineering techniques such as securitization, it can raise even greater amounts of more-patient capital. In a simulation using historical data for new molecular entities in oncology from 1990 to 2011, we find that megafunds of $5–15 billion may yield average investment returns of 8.9–11.4% for equity holders and 5–8% for 'research-backed obligation' holders, which are lower than typical venture-capital hurdle rates but attractive to pension funds, insurance companies and other large institutional investors. PMID:23023199

  11. Nanomaterials driven energy, environmental and biomedical research

    Science.gov (United States)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F.

    2014-03-01

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO2 nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH2 and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe2O4 have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI).

  12. High level radiation dosimetry in biomedical research

    International Nuclear Information System (INIS)

    The physical and biological dosimetries relating to cancer therapy with radiation were taken up at the first place in the late intercomparison on high LET radiation therapy in Japan-US cancer research cooperative study. The biological dosimetry, the large dose in biomedical research, the high dose rate in biomedical research and the practical dosimeters for pulsed neutrons or protons are outlined with the main development history and the characteristics which were obtained in the relating experiments. The clinical neutron facilities in the US and Japan involved in the intercomparison are presented. Concerning the experimental results of dosimeters, the relation between the R.B.E. compared with Chiba (Cyclotron in National Institute of Radiological Sciences) and the energy of deuterons or protons used for neutron production, the survival curves of three cultured cell lines derived from human cancers, after the irradiation of 250 keV X-ray, cyclotron neutrons of about 13 MeV and Van de Graaff neutrons of about 2 MeV, the hatchability of dry Artemia eggs at the several depths in an absorber stack irradiated by 60 MeV proton beam of 40, 120 and 200 krad, the peak skin reaction of mouse legs observed at various sets of average and instantaneous dose rates, and the peak skin reaction versus three instantaneous dose rates at fixed average dose rate of 7,300 rad/min are shown. These actual data were evaluated numerically and in relation to the physical meaning from the viewpoint of the fundamental aspect of cancer therapy, comparing the Japanese measured values to the US data. The discussion record on the high dose rate effect of low LET particles on biological substances and others is added. (Nakai, Y.)

  13. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... Hotel. A. Aging and Clinical Geriatrics........ November 28, 2012...... *VA Central Office....

  14. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  15. The Light Ion Biomedical Research Accelerator (LIBRA)

    International Nuclear Information System (INIS)

    LIBRA is a concept to place a light-ion, charged-particle facility in a hospital environment, and to dedicate it to applications in biology and medicine. There are two aspects of the program envisaged for LIBRA: a basic research effort coupled with a program in clinical applications of accelerated charged particles. The operational environment to be provided for LIBRA is one in which both of these components can coexist and flourish, and one that will promote the transfer of technology and knowledge from one to the other. In order to further investigate the prospects for a Light Ion Biomedical Research Accelerator (LIBRA), discussions are underway with the Merritt Peralta Medical Center (MPMC) in Oakland, California, and the University of California at San Francisco (UCSF). In this paper, a brief discussion of the technical requirements for such a facility is given, together with an outline of the accelerator technology required. While still in a preliminary stage, it is possible nevertheless to develop an adequate working description of the type, size, performance and cost of the accelerator facilities required to meet the preliminary goals for LIBRA

  16. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  17. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  18. Can patents deter innovation? The anticommons in biomedical research.

    Science.gov (United States)

    Heller, M A; Eisenberg, R S

    1998-05-01

    The "tragedy of the commons" metaphor helps explain why people overuse shared resources. However, the recent proliferation of intellectual property rights in biomedical research suggests a different tragedy, an "anticommons" in which people underuse scarce resources because too many owners can block each other. Privatization of biomedical research must be more carefully deployed to sustain both upstream research and downstream product development. Otherwise, more intellectual property rights may lead paradoxically to fewer useful products for improving human health. PMID:9563938

  19. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2001-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  20. Two-Photon Fluorescence Microscopy for Biomedical Research

    Science.gov (United States)

    Fischer, David; Zimmerli, Greg; Asipauskas, Marius

    2007-01-01

    This viewgraph presentation gives an overview of two-photon microscopy as it applies to biomedical research. The topics include: 1) Overview; 2) Background; 3) Principles of Operation; 4) Advantages Over Confocal; 5) Modes of Operation; and 6) Applications.

  1. 78 FR 52777 - Implementation of the Revised International Guiding Principles for Biomedical Research Involving...

    Science.gov (United States)

    2013-08-26

    ... Principles for Biomedical Research Involving Animals SUMMARY: The National Institutes of Health (NIH) is... International Guiding Principles for Biomedical Research Involving Animals (``Guiding Principles''). The NIH is... ) that commits the institution to follow the International Guiding Principles for Biomedical...

  2. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. PMID:26972838

  3. Artificial Sight Basic Research, Biomedical Engineering, and Clinical Advances

    CERN Document Server

    Humayun, Mark S; Chader, Gerald; Greenbaum, Elias

    2008-01-01

    Artificial sight is a frontier area of modern ophthalmology combining the multidisciplinary skills of surgical ophthalmology, biomedical engineering, biological physics, and psychophysical testing. Many scientific, engineering, and surgical challenges must be surmounted before widespread practical applications can be realized. The goal of Artificial Sight is to summarize the state-of-the-art research in this exciting area, and to describe some of the current approaches and initiatives that may help patients in a clinical setting. The Editors are active researchers in the fields of artificial sight, biomedical engineering and biological physics. They have received numerous professional awards and recognition for their work. The artificial sight team at the Doheny Eye Institute, led by Dr. Mark Humayun, is a world leader in this area of biomedical engineering and clinical research. Key Features Introduces and assesses the state of the art for a broad audience of biomedical engineers, biophysicists, and clinical...

  4. A community of practice: librarians in a biomedical research network.

    Science.gov (United States)

    De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara

    2014-01-01

    Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine. PMID:24528265

  5. Animal Experiments in Biomedical Research: A Historical Perspective

    Directory of Open Access Journals (Sweden)

    Nuno Henrique Franco

    2013-03-01

    Full Text Available The use of non-human animals in biomedical research has given important contributions to the medical progress achieved in our day, but it has also been a cause of heated public, scientific and philosophical discussion for hundreds of years. This review, with a mainly European outlook, addresses the history of animal use in biomedical research, some of its main protagonists and antagonists, and its effect on society from Antiquity to the present day, while providing a historical context with which to understand how we have arrived at the current paradigm regarding the ethical treatment of animals in research.

  6. Social Media and Mentoring in Biomedical Research Faculty Development

    Science.gov (United States)

    Teruya, Stacey Alan; Bazargan-Hejazi, Shahrzad

    2014-01-01

    Purpose: To determine how effective and collegial mentoring in biomedical research faculty development may be implemented and facilitated through social media. Method: The authors reviewed the literature for objectives, concerns, and limitations of career development for junior research faculty. They tabularized these as developmental goals, and…

  7. The Research of Biomedical Intelligent Polymer Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; CHEN Yuan-wei; TANG Chang-wei; QIU Kai; LUO Juan; XU Cheng-yin; WAN Chang-xiu

    2004-01-01

    The properties of biomedical intelligent polymer materials can be changed obviously when there is a little physical or chemical change caused by external condition. They are in the forms of solids, solutions and the polymers on the surface of carrier, and include water solution of hydrophilic polymers, cross-linking hydrophilic polymers(i.e. hydrogels) and the polymers on the surface of carrier. The environmental stimulating factors are temperature, pH value, composition of solution, ionic intention, light intention, electric field, stress field and magnetic field etc.. The properties of intelligent polymer are those of phase, photics, mechanics, electric field, surface energy,reaction ratio, penetrating ratio and recognition etc..Stimulation-response of intelligent water-soluble polymerWater-soluble intelligent polymer can be separated out from solution under special external condition. It can be used as the switch of temperature or pH indicator. When water-soluble intelligent polymer is mixed with soluble-enzyme matter or cell suspension, the polymer can bring phase separation and react with soluble-enzyme matter or cell membrane through accepting some external stimulation. Other water-soluble intelligent polymer is that can make the main chemical group of some natural biomolecular recognition sequence section to arrange on skeleton of polymer at random. It is the same ratio as natural biomolecules.Stimulation-response of intelligent polymer of carrier surface Intelligent polymer can be fixed on the surface of solid polymer carrier through chemical grafting or physical adsorption. When the external conditions are changed, the thickness, humidity and electric field of the surface layer will be changed. Intelligent polymer can be preparated the permanence switch by precipitating into the hole of porous surface, and it can control on-off state of the hole. When protein or cell interacts with intelligent polymer surface to be placed in to open or close, they can be

  8. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following three panels of the Joint Biomedical Laboratory Research and Development and Clinical Science.... Clinical Research Program will meet on June 7-8, 2012, at *VA Central Office and not at Sheraton...

  9. 76 FR 24974 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-05-03

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following four panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... clinical science research. The panel meetings will be open to the public for approximately one hour at...

  10. 77 FR 20489 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-04-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services.... Neurobiology-A June 1, 2012..... Sheraton Suites--Old Town Alexandria. Clinical Application of June 1,...

  11. 77 FR 23810 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-04-20

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services.... Neurobiology-A June 1, 2012........ Sheraton Suites--Old Town Alexandria. Clinical Application of June 1,...

  12. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... location changes have been made for the following panel meetings of the of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit...

  13. Animal Experiments in Biomedical Research: A Historical Perspective

    OpenAIRE

    Nuno Henrique Franco

    2013-01-01

    Simple Summary This article reviews the use of non-human animals in biomedical research from a historical viewpoint, providing an insight into the most relevant social and moral issues on this topic across time, as well as to how the current paradigm for ethically and publically acceptable use of animals in biomedicine has been achieved. Abstract The use of non-human animals in biomedical research has given important contributions to the medical progress achieved in our day, but it has also b...

  14. Reasons behind the participation in biomedical research: a brief review

    OpenAIRE

    Sonia Mansoldo Dainesi; Moisés Goldbaum

    2014-01-01

    INTRODUCTION: Clinical research is essential for the advancement of Medicine, especially regarding the development of new drugs. Understanding the reasons behind patients' decision of participating in these studies is critical for the recruitment and retention in the research. OBJECTIVES: To examine the decision-making of participants in biomedical research, taking into account different settings and environments where clinical research is performed. Methods: A critical review of the lit...

  15. Developing expertise in bioinformatics for biomedical research in Africa

    OpenAIRE

    Karikari, Thomas K.; Emmanuel Quansah; Wael M.Y. Mohamed

    2015-01-01

    Research in bioinformatics has a central role in helping to advance biomedical research. However, its introduction to Africa has been met with some challenges (such as inadequate infrastructure, training opportunities, research funding, human resources, biorepositories and databases) that have contributed to the slow pace of development in this field across the continent. Fortunately, recent improvements in areas such as research funding, infrastructural support and capacity building are help...

  16. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... City Hotel. Clinical Application of Genetics....... December 5, 2013 *VA Central Office....

  17. Improved reproducibility by assuring confidence in measurements in biomedical research.

    Science.gov (United States)

    Plant, Anne L; Locascio, Laurie E; May, Willie E; Gallagher, Patrick D

    2014-09-01

    ‘Irreproducibility’ is symptomatic of a broader challenge in measurement in biomedical research. From the US National Institute of Standards and Technology (NIST) perspective of rigorous metrology, reproducibility is only one aspect of establishing confidence in measurements. Appropriate controls, reference materials, statistics and informatics are required for a robust measurement process. Research is required to establish these tools for biological measurements, which will lead to greater confidence in research results. PMID:25166868

  18. Algal lectins as promising biomolecules for biomedical research.

    Science.gov (United States)

    Singh, Ram Sarup; Thakur, Shivani Rani; Bansal, Parveen

    2015-02-01

    Lectins are natural bioactive ubiquitous proteins or glycoproteins of non-immune response that bind reversibly to glycans of glycoproteins, glycolipids and polysaccharides possessing at least one non-catalytic domain causing agglutination. Some of them consist of several carbohydrate-binding domains which endow them with the properties of cell agglutination or precipitation of glycoconjugates. Lectins are rampant in nature from plants, animals and microorganisms. Among microorganisms, algae are the potent source of lectins with unique properties specifically from red algae. The demand of peculiar and neoteric biologically active substances has intensified the developments on isolation and biomedical applications of new algal lectins. Comprehensively, algal lectins are used in biomedical research for antiviral, antinociceptive, anti-inflammatory, anti-tumor activities, etc. and in pharmaceutics for the fabrication of cost-effective protein expression systems and nutraceutics. In this review, an attempt has been made to collate the information on various biomedical applications of algal lectins. PMID:23855360

  19. Biomedical research coverage in English-language Indian newspapers

    Directory of Open Access Journals (Sweden)

    Bharvi Dutt

    2012-01-01

    Full Text Available The present paper explores biomedical research coverage in the Indian English-language newspapers. Science and technology coverage in the Indian English-language newspapers revealed dominant representation of biomedical research. The research reported was mainly from foreign sources, mostly performed in US, UK and other developed countries of Europe. Plausibly, this was the major reason that areas of medical concerns in foreign countries such as Neuroscience, Oncology, Genetics and Cardiovascular research constituted more than one-third of the total space whereas neglected tropical diseases have almost been neglected in the coverage. This is despite the fact that tropical and other neglected diseases constitute the greatest health problem in India. The study discusses the significance of this research for policy planners, media, health information dissemination and those concerned about informed and science literate citizenry in the country.

  20. Enabling biomedical research with designer quantum dots

    NARCIS (Netherlands)

    Tomczak, N.; Janczewski, D.; Dorokhin, D.V.; Han, M-Y; Vancso, G.J.; Navarro, Melba; Planell, Josep A.

    2012-01-01

    Quantum Dots (QDs) are a new class of semiconductor nanoparticulate luminophores, which are actively researched for novel applications in biology and nanomedicine. In this review, the recent progress in the design and applications of QD labels for in vitro and in vivo imaging of cells is presented.

  1. Comparative Case Study of Two Biomedical Research Collaboratories

    OpenAIRE

    Schleyer, Titus KL; Teasley, Stephanie D; Bhatnagar, Rishi

    2005-01-01

    Background Working together efficiently and effectively presents a significant challenge in large-scale, complex, interdisciplinary research projects. Collaboratories are a nascent method to help meet this challenge. However, formal collaboratories in biomedical research centers are the exception rather than the rule. Objective The main purpose of this paper is to compare and describe two collaboratories that used off-the-shelf tools and relatively modest resources to support the scientific a...

  2. Introduction to Oxidative Stress in Biomedical and Biological Research

    OpenAIRE

    Michael Breitenbach; Peter Eckl

    2015-01-01

    Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field.

  3. A new cyclotron for biomedical research

    International Nuclear Information System (INIS)

    This paper presents the rationale for replacing the old AEG Compact Cyclotron (built in 1969/71) of the Institute for Radiology and Pathophysiology at the German Cancer Research Center by a 30 MeV H-/15 MeV D- cyclotron. A status report is followed by the scientific and technical reasoning as well as budgetary and organizational considerations. In the appendix we tried to explain the function of a cyclotron in a simple and comprehensive manner. (orig.)

  4. Reengineering Biomedical Translational Research with Engineering Ethics.

    Science.gov (United States)

    Sunderland, Mary E; Nayak, Rahul Uday

    2015-08-01

    It is widely accepted that translational research practitioners need to acquire special skills and knowledge that will enable them to anticipate, analyze, and manage a range of ethical issues. While there is a small but growing literature that addresses the ethics of translational research, there is a dearth of scholarship regarding how this might apply to engineers. In this paper we examine engineers as key translators and argue that they are well positioned to ask transformative ethical questions. Asking engineers to both broaden and deepen their consideration of ethics in their work, however, requires a shift in the way ethics is often portrayed and perceived in science and engineering communities. Rather than interpreting ethics as a roadblock to the success of translational research, we suggest that engineers should be encouraged to ask questions about the socio-ethical dimensions of their work. This requires expanding the conceptual framework of engineering beyond its traditional focus on "how" and "what" questions to also include "why" and "who" questions to facilitate the gathering of normative, socially-situated information. Empowering engineers to ask "why" and "who" questions should spur the development of technologies and practices that contribute to improving health outcomes. PMID:24928281

  5. What is the future of biomedical research?

    Science.gov (United States)

    Tebala, Giovanni Domenico

    2015-10-01

    Randomized controlled trials require hard work and financial commitment, whereas meta-analyses and systematic reviews can be relatively easy to perform and often get published in high impact journals. Many researchers might decide to devote themselves to the latter approach, resulting in a negative impact on clinical research. We have reviewed the number of indexed meta-analyses and systematic reviews on PubMed and compared it with the number of randomized controlled trials over the same period. Statistical analysis showed an exponential increase of synthetic studies with respect to randomized trials. The ratio between RCTs and synthetic studies is quickly decreasing. These results suggest that a growing number of researchers might prefer to commit themselves to synthetic studies more than be involved in more time consuming and funds demanding observational trials. If we are unable to invert this trend, in the future we will have a growing number of synthetic studies utilizing someone else's original data and fewer raw data to base our knowledge upon. PMID:26194725

  6. Biomedical text mining and its applications in cancer research.

    Science.gov (United States)

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research. PMID:23159498

  7. Whole Body Counters in Biomedical Research

    Directory of Open Access Journals (Sweden)

    S. C. Jain

    1994-01-01

    Full Text Available Whole body counter plays an important role in medical diagnosis and clinical research. It has been used for monitoring of radiation workers for the assessment of internal contamination or assessment of activity in persons exposed to radiation fallout. In a nuclear emergency like Chernobyl, neutron exposure to the radiation victims was assessed by measuring the induced activity of /sup 24/Na. Apart from its use in determining certain element composition in the body, it has got a number of clinical applications like absorption tests, and metabolic and kinetic studies. The work done at INMAS whole body counter facility is also discussed.

  8. Race in Biological and Biomedical Research

    OpenAIRE

    Richard S Cooper

    2013-01-01

    The concept of race has had a significant influence on research in human biology since the early 19th century. But race was given its meaning and social impact in the political sphere and subsequently intervened in science as a foreign concept, not grounded in the dominant empiricism of modern biology. The uses of race in science were therefore often disruptive and controversial; at times, science had to be retrofitted to accommodate race, and science in turn was often used to explain and jus...

  9. From biomedical-engineering research to clinical application and industrialization

    Science.gov (United States)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  10. Adipoparacrinology: an Emerging Field in Biomedical Research

    Directory of Open Access Journals (Sweden)

    George N. Chaldakov

    2012-03-01

    Full Text Available White adipose tissue (WAT is a dynamic multicellular assembly composed of adipocytes and stromovascular cells, including fibroblasts, endothelial and immune cells, nerve fibers, and stem cells. In humans, WAT is a responsive and secretory (endocrine and paracrine tissue partitioned into two large depots (subcutaneous and visceral and many small depots associated with the heart, blood vessels, major lymph nodes, prostate gland, ovaries and mammary glands. This short review conceptualizes evidence for the paracrine activity of adipose tissue in founding a new research field, designated adipoparacrinology. Here we focus on (i epicardial and periadventitial adipose tissue in atherogenesis, (ii mammary gland-associated adipose tissue in breast cancer, and (iii periprostatic adipose tissue in prostate cancer. Other examples include: (i mesenteric adipose tissue in Crohn’s disease, (ii lymph node-associated (perinodal adipose tissue in Crohn’s disease and HIV-associated adipose redistribution syndrome, (iii infrapatellar fat pad (Hoffa’s fat pad in knee osteoarthritis, (iv orbital adipose tissue in thyroid-associated (Graves’ ophthalmopathy, and (v parasellar region-associated adipose tissue in brain disorders. The therapy aspect of adipoparacrinology is also discussed.

  11. Radwaste requirements at a biomedical research facility

    International Nuclear Information System (INIS)

    The low-level radioactive waste (LLRW) federal legislation that was passed during the 1980s was intended to provide an orderly system of LLRW disposal as the country's three waste sites proceeded toward excluding out-of-state generators. The system was based on a regional interstate compact system. As originally envisioned, several contiguous states were to form an association (compact) with one state receiving radwaste from the compact. Everyone is aware of the difficulties that followed as attempts were made to implement these laws and to meet the prescribed milestones to avoid financial penalties. Although the states (compacts) have labored for over 12 yr along this rocky road, no compact has developed and licensed a new disposal site prior to the January 1, 1993 deadline. A recent report by the Center for the Study of American Business at Washington University in St. Louis states that open-quotes The current regional interstate compact system for disposal of low-level radioactive waste is fatally flawed on both technical and practical political grounds.close quotes Thus, the system has broken down and the three original LLRW sites closed their gates (with the possible exception of Barnwell) as planned on January 1, 1993. It would appear that the fate of LLRW will be the same as that of high-level waste (HLW); it will be stored at the site of the generator until a solution to the problem is found. For the nonutility generator, storage is an entirely new problem. It must be appreciated that almost all nonutility generators are in the business of research or medical treatment and not in the business of storing LLRW. Thus, storage represents a new turn of events and a new aspect of doing business. It also means the diversion of limited resources to a problem that should not exist. Lastly, on-site LLRW storage for the nonutility generator will also require additional regulatory approval for the handling, storage, and ongoing monitoring of this waste

  12. Medical and biomedical research productivity from Palestine, 2002 – 2011

    Directory of Open Access Journals (Sweden)

    Sweileh Waleed M

    2013-02-01

    Full Text Available Abstract Background Medical research productivity reflects the level of medical education and practice in a particular country. The objective of this study was to examine the quantity and quality of medical and biomedical research published from Palestine. Findings Comprehensive review of the literature indexed by Scopus was conducted. Data from Jan 01, 2002 till December 31, 2011 was searched for authors affiliated with Palestine or Palestinian authority. Results were refined to limit the search to medical and biomedical subjects. The quality of publication was assessed using Journal Citation Report. The total number of publications was 2207. A total of 770 publications were in the medical and biomedical subject areas. The annual rate of publication was 0.077 articles per gross domestic product/capita. The 770 publications have an h-index of 32. One hundred and thirty eight (18% articles were published in 46 journals that were not indexed in the web of knowledge. Twenty two (22/770; 2.9% articles were published in journals with an IF > 10. Conclusions The quantity and quality of research originating from Palestinian institutions is promising given the scarce resources of Palestine. However, more effort is needed to bridge the gap in medical research productivity and to promote better health in Palestine.

  13. Critical Contexts for Biomedical Research in a Native American Community: Health Care, History, and Community Survival

    Science.gov (United States)

    Sahota, Puneet Chawla

    2012-01-01

    Native Americans have been underrepresented in previous studies of biomedical research participants. This paper reports a qualitative interview study of Native Americans' perspectives on biomedical research. In-depth interviews were conducted with 53 members of a Southwest tribal community. Many interviewees viewed biomedical research studies as a…

  14. Mixed Methods in Biomedical and Health Services Research

    OpenAIRE

    Curry, Leslie A; Krumholz, Harlan M; O’Cathain, Alicia; Plano Clark, Vicki L.; Cherlin, Emily; Bradley, Elizabeth H.

    2013-01-01

    Mixed methods studies, in which qualitative and quantitative methods are combined in a single program of inquiry, can be valuable in biomedical and health services research, where the complementary strengths of each approach can yield greater insight into complex phenomena than either approach alone. Although interest in mixed methods is growing among science funders and investigators, written guidance on how to conduct and assess rigorous mixed methods studies is not readily accessible to th...

  15. The use of 'race' as a variable in biomedical research

    OpenAIRE

    Efstathiou, Sophia

    2009-01-01

    The use of 'ace' as a variable in biomedical research is facilitated by embedding ordinary concepts of race in particular scientific domains. The dissertation articulates a process for how this can happen. The process has two parts: 1. Finding and 2. Founding a concept in a scientific context. The results of this process are called "found science" by analogy to found art. Chapter 1 TOOLS draws distinctions between different race concepts following those of Michael Hardimon and Sally Haslanger...

  16. The Function Biomedical Informatics Research Network Data Repository

    OpenAIRE

    Keator, DB; van Erp, TGM; Turner, JA; Glover, GH; Mueller, BA; Liu, TT; Voyvodic, JT; Rasmussen, J.; Calhoun, VD; Lee, HJ.; Toga, AW; McEwen, S.; Ford, JM; Mathalon, DH; Diaz, M

    2016-01-01

    © 2015 Elsevier Inc. The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associa...

  17. Nano-biotechnology for biomedical and diagnostic research

    CERN Document Server

    Zahavy, Eran; Yitzhaki, Shmuel

    2011-01-01

    The title ""Nano Biotechnology for Biomedical and Diagnostics Research"" will address research aspects related to nanomaterial in imaging and biological research, nanomaterials as a biosensing tool, DNA nanotechnology, nanomaterials for drug delivery, medicinal and therapeutic application and cytotoxicity of nanomaterials. These topics will be covered by 16 different manuscripts. Amongst the authors that will contribute to the book are major scientific leaders such as S. Weiss - UCLA, I. Willner, and G. Golomb -- HUJI, S. Esener - UCSD, E.C. Simmel - Tech. Univ. Munchen, I. Medintz -- NRL, N.

  18. Architecture of a Biomedical Informatics Research Data Management Pipeline.

    Science.gov (United States)

    Bauer, Christian R; Umbach, Nadine; Baum, Benjamin; Buckow, Karoline; Franke, Thomas; Grütz, Romanus; Gusky, Linda; Nussbeck, Sara Yasemin; Quade, Matthias; Rey, Sabine; Rottmann, Thorsten; Rienhoff, Otto; Sax, Ulrich

    2016-01-01

    In University Medical Centers, heterogeneous data are generated that cannot always be clearly attributed to patient care or biomedical research. Each data set has to adhere to distinct intrinsic and operational quality standards. However, only if high-quality data, tools to work with the data, and most importantly guidelines and rules of how to work with the data are addressed adequately, an infrastructure can be sustainable. Here, we present the IT Research Architecture of the University Medical Center Göttingen and describe our ten years' experience and lessons learned with infrastructures in networked medical research. PMID:27577384

  19. From global bioethics to ethical governance of biomedical research collaborations

    DEFF Research Database (Denmark)

    Wahlberg, Ayo; Rehmann-Sutter, Christoph; Sleeboom-Faulkner, Margaret;

    2013-01-01

    arising from cross-continental research collaborations: (1) ambiguity as to which regulations are applicable; (2) lack of ethical review capacity not only among ethical review board members but also collaborating scientists; (3) already complex, researcher-research subject interaction is further......One of the features of advanced life sciences research in recent years has been its internationalisation, with countries such as China and South Korea considered ‘emerging biotech’ locations. As a result, crosscontinental collaborations are becoming common generating moves towards ethical and legal...... with the ethical challenges that inter-continental biomedical research collaborations generate. In particular we ask how national systems of ethical governance of life science research might cope with increasingly global research collaborations with a focus on Sino-European collaboration. We propose four ‘spheres...

  20. Eli Lilly and Company's bioethics framework for human biomedical research.

    Science.gov (United States)

    Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J

    2015-11-01

    Current ethics and good clinical practice guidelines address various aspects of pharmaceutical research and development, but do not comprehensively address the bioethical responsibilities of sponsors. To fill this void, in 2010 Eli Lilly and Company developed and implemented a Bioethics Framework for Human Biomedical Research to guide ethical decisions. (See our companion article that describes how the framework was developed and implemented and provides a critique of its usefulness and limitations.) This paper presents the actual framework that serves as a company resource for employee education and bioethics deliberations. The framework consists of four basic ethical principles and 13 essential elements for ethical human biomedical research and resides within the context of our company's mission, vision and values. For each component of the framework, we provide a high-level overview followed by a detailed description with cross-references to relevant well regarded guidance documents. The principles and guidance described should be familiar to those acquainted with research ethics. Therefore the novelty of the framework lies not in the foundational concepts presented as much as the attempt to specify and compile a sponsor's bioethical responsibilities to multiple stakeholders into one resource. When such a framework is employed, it can serve as a bioethical foundation to inform decisions and actions throughout clinical planning, trial design, study implementation and closeout, as well as to inform company positions on bioethical issues. The framework is, therefore, a useful tool for translating ethical aspirations into action - to help ensure pharmaceutical human biomedical research is conducted in a manner that aligns with consensus ethics principles, as well as a sponsor's core values. PMID:26325585

  1. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System

    OpenAIRE

    Myneni, Sahiti; Patel, Vimla L.

    2010-01-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers’ time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, ...

  2. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A December...

  3. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and ] Development Services Scientific Merit.... Clinical Research Program June 9, 2010 *VA Central Office. Oncology June 10-11, 2010....... L'Enfant...

  4. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit.... Clinical Research Program June 13, 2011 VA Central Office.* Gastroenterology June 13, 2011 L'Enfant...

  5. A biobank management model applicable to biomedical research

    Directory of Open Access Journals (Sweden)

    Patenaude Johane

    2006-04-01

    Full Text Available Abstract Background The work of Research Ethics Boards (REBs, especially when involving genetics research and biobanks, has become more challenging with the growth of biotechnology and biomedical research. Some REBs have even rejected research projects where the use of a biobank with coded samples was an integral part of the study, the greatest fear being the lack of participant protection and uncontrolled use of biological samples or related genetic data. The risks of discrimination and stigmatization are a recurrent issue. In light of the increasing interest in biomedical research and the resulting benefits to the health of participants, it is imperative that practical solutions be found to the problems associated with the management of biobanks: namely, protecting the integrity of the research participants, as well as guaranteeing the security and confidentiality of the participant's information. Methods We aimed to devise a practical and efficient model for the management of biobanks in biomedical research where a medical archivist plays the pivotal role as a data-protection officer. The model had to reduce the burden placed on REBs responsible for the evaluation of genetics projects and, at the same time, maximize the protection of research participants. Results The proposed model includes the following: 1 a means of protecting the information in biobanks, 2 offers ways to provide follow-up information requested about the participants, 3 protects the participant's confidentiality and 4 adequately deals with the ethical issues at stake in biobanking. Conclusion Until a governmental governance body is established in Quebec to guarantee the protection of research participants and establish harmonized guidelines for the management of biobanks in medical research, it is definitely up to REBs to find solutions that the present lack of guidelines poses. The model presented in this article offers a practical solution on a day-to-day basis for REBs

  6. Legacy of Biomedical Research During the Space Shuttle Program

    Science.gov (United States)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  7. Biomedical Research Group, Health Division annual report 1954

    Energy Technology Data Exchange (ETDEWEB)

    Langham, W.H.; Storer, J.B.

    1955-12-31

    This report covers the activities of the Biomedical Research Group (H-4) of the Health Division during the period January 1 through December 31, 1954. Organizationally, Group H-4 is divided into five sections, namely, Biochemistry, Radiobiology, Radiopathology, Biophysics, and Organic Chemistry. The activities of the Group are summarized under the headings of the various sections. The general nature of each section`s program, publications, documents and reports originating from its members, and abstracts and summaries of the projects pursued during the year are presented.

  8. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    Science.gov (United States)

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an earlier…

  9. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... June 7, 2013 U.S. Access Board. Aging and Clinical Geriatrics........ June 10, 2013 VA Central...

  10. Lipidomics as a Principal Tool for Advancing Biomedical Research

    Institute of Scientific and Technical Information of China (English)

    Sin Man Lam; Guanghou Shui

    2013-01-01

    Lipidomics,which targets at the construction of a comprehensive map of lipidome comprising the entire lipid pool within a cell or tissue,is currently emerging as an independent discipline at the interface of lipid biology,technology and medicine.The diversity and complexity of the biological lipidomes call for technical innovatin and improvement to meet the needs of various biomedical studies.The recent wave of expansion in the field of lipidomic research is mainly attributed to advances in analytical technologies,in particular,the development of new mass spectrometric and chromatographic tools for the characterization and quantification of the wide array of diverse lipid species in the cellular lipidome.Here,we review some of the key technical advances in lipidome analysis and put forth the applications of lipidomics in addressing the biological roles of lipids in numerous disease models including the metabolic syndrome,neurodegenerative diseases and infectious diseases,as well as the increasing urgency to construct the lipidome inventory for various mammalian/organism models useful for biomedical research.

  11. Wire gaseous coordinate detectors and their applications in biomedical research

    International Nuclear Information System (INIS)

    Wire gaseous coordinate detectors continue to be a basic tool in experimental high-energy physics and are being intensively introduced into related areas of science and technology, particularly biomedical research. The constant evolution of these detectors allows broad application of their new modificatons: multistep chambers, low-pressure detectors, time-projection chambers, and so on, so that detector systems are enriched with new possibilities. In this review we give the operating principles and fundamental parameters of these detectors and discuss some examples of how they are used in experimental physics. We also explore some of the features of the use of these detectors for research in molecular biology and medical diagnostics for examples of existing and projected setups

  12. Biomedical research and corporate interests: a question of academic freedom.

    Science.gov (United States)

    McHenry, Leemon

    2008-01-01

    The current situation in medicine has been described as a crisis of credibility, as the profit motive of industry has taken control of clinical trials and the dissemination of data. Pharmaceutical companies maintain a stranglehold over the content of medical journals in three ways: (1) by ghostwriting articles that bias the results of clinical trials, (2) by the sheer economic power they exert on journals due to the purchase of drug advertisements and journal reprints, and (3) by the threat of legal action against those researchers who seek to correct the misrepresentation of study results. This paper argues that Karl Popper's critical rationalism provides a corrective to the failure of academic freedom in biomedical research. PMID:22013356

  13. Research Training in the Biomedical, Behavioral, and Clinical Research Sciences

    Science.gov (United States)

    National Academies Press, 2011

    2011-01-01

    Comprehensive research and a highly-trained workforce are essential for the improvement of health and health care both nationally and internationally. During the past 40 years the National Research Services Award (NRSA) Program has played a large role in training the workforce responsible for dramatic advances in the understanding of various…

  14. Atomic force microscopy in biomedical research - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Pier Carlo Braga and Davide Ricci are old friends not only for those researchers familiar with Atomic force microscopy (AFM but also for those beginners (like the undersigned that already enthusiastically welcomed their 2004 edition (for the same Humana press printing types of Atomic force microscopy: Biomedical methods and applications, eventhough I never had used the AFM. That book was much intended to overview the possible AFM applications for a wide range of readers so that they can be in some way stimulated toward the AFM use. In fact, the great majority of scientists is afraid both of the technology behind AFM (that is naturally thought highly demanding in term of concepts not so familiar to biologists and physicians and of the financial costs: both these two factors are conceived unapproachable by the medium range granted scientist usually not educated in terms of biophysics and electronic background....

  15. Measuring how people view biomedical research: Reliability and validity analysis of the Research Attitudes Questionnaire

    OpenAIRE

    Rubright, Jonathan D.; Cary, Mark S.; Karlawish, Jason H.; Kim, Scott Y. H.

    2011-01-01

    With increasing numbers of studies on research ethics and a need to improve the recruitment of research subjects, the ability to measure attitudes toward biomedical research has become important. The Research Attitudes Questionnaire is a significant predictor of the public’s attitudes toward and willingness to participate in research, yet limited data are available on its psychometric properties. This study establishes the scale’s internal consistency and dimensionality using a large Internet...

  16. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-10-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings The Department of Veterans Affairs gives notice under the Public Law 92-463...

  17. Informed consent among nursing students participating in biomedical research.

    Science.gov (United States)

    Nambiar, Anupama; Christopher, D J; Mammen, Joy; David, Thambu; Kang, Gagandeep; David, Shirley

    2012-01-01

    For consent in biomedical research, it is essential that research participants understand the need for research, the study protocol, the risk and benefits of participation, the freedom to participate or decline and the right to leave the study at any time. A structured questionnaire was used to assess understanding and knowledge among nursing trainees participating in a cohort study investigating exposure and latent tuberculosis at a tertiary care hospital. Data were collected for 138 participants. While 97% were aware of their enrollment into a research protocol, only 78% could state that it was a study on tuberculosis. Approximately two-thirds were aware of plans for blood collection, but not all of them knew the timings or number of samples. The majority (59%) participants had consulted others before making the decision to participate, and only 73% felt that their participation was completely voluntary. Even among healthcare trainees, emphasis needs to be placed on testing both the knowledge and understanding of participants to ensure the principle and practice of truly informed consent. PMID:22864079

  18. Health Benefits of Animal Research: The Mouse in Biomedical Research.

    Science.gov (United States)

    Jonas, Albert M.

    1984-01-01

    Traces the history of using mice for medical research and discusses the benefits of using these animals for studies in bacteriology, virology, genetics (considering X-linked genetic homologies between mice and humans), molecular biology, immunology, hematology, immune response disorders, oncology, radiobiology, pharmacology, behavior genetics,…

  19. Biomedical and Behavioral Research Scientists: Their Training and Supply. Volume 1: Findings.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Office of Scientific and Engineering Personnel.

    This is the first of three volumes which presents the Committee on Biomedical and Behavioral Research Personnel's examination of the educational process that leads to doctoral degrees in biomedical and behavioral science (and to postdoctoral study in some cases) and the role of the National Research Service Awards (NRSA) training programs in it.…

  20. How Do Interaction Experiences Influence Doctoral Students' Academic Pursuits in Biomedical Research?

    Science.gov (United States)

    Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.; Tai, Robert H.

    2013-01-01

    This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based…

  1. Derivation of porcine pluripotent stem cells for biomedical research.

    Science.gov (United States)

    Shiue, Yow-Ling; Yang, Jenn-Rong; Liao, Yu-Jing; Kuo, Ting-Yung; Liao, Chia-Hsin; Kang, Ching-Hsun; Tai, Chein; Anderson, Gary B; Chen, Lih-Ren

    2016-07-01

    Pluripotent stem cells including embryonic stem cells (ESCs), embryonic germ cells (EGCs), and induced pluripotent stem cells (iPSCs) are capable of self-renew and limitlessly proliferating in vitro with undifferentiated characteristics. They are able to differentiate in vitro, spontaneously or responding to suitable signals, into cells of all three primary germ layers. Consequently, these pluripotent stem cells will be valuable sources for cell replacement therapy in numerous disorders. However, the promise of human ESCs and EGCs is cramped by the ethical argument about destroying embryos and fetuses for cell line creation. Moreover, there are still carcinogenic risks existing toward the goal of clinical application for human ESCs, EGCs, and iPSCs. Therefore, a suitable animal model for stem cell research will benefit the further development of human stem cell technology. The pigs, on the basis of their similarity in anatomy, immunology, physiology, and biochemical properties, have been wide used as model animals in the study of various human diseases. The development of porcine pluripotent stem cell lines will hold the opportunity to provide an excellent material for human counterpart to the transplantation in biomedical research and further development of cell-based therapeutic strategy. PMID:27158128

  2. Karma, reincarnation, and medicine: Hindu perspectives on biomedical research.

    Science.gov (United States)

    Hutchinson, Janis Faye; Sharp, Richard

    2008-12-01

    population. This study suggests that minority status does not automatically indicate unwillingness to participate in genetic or medical research. Indian Americans were not skeptical about the potential benefits of biomedical research in comparison to other ethnic minority communities in the United States. PMID:19479363

  3. The Function Biomedical Informatics Research Network Data Repository.

    Science.gov (United States)

    Keator, David B; van Erp, Theo G M; Turner, Jessica A; Glover, Gary H; Mueller, Bryon A; Liu, Thomas T; Voyvodic, James T; Rasmussen, Jerod; Calhoun, Vince D; Lee, Hyo Jong; Toga, Arthur W; McEwen, Sarah; Ford, Judith M; Mathalon, Daniel H; Diaz, Michele; O'Leary, Daniel S; Jeremy Bockholt, H; Gadde, Syam; Preda, Adrian; Wible, Cynthia G; Stern, Hal S; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G

    2016-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. PMID:26364863

  4. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L.

    2010-01-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers’ time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment. PMID:20543892

  5. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O' Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving

  6. The two revolutions in bio-medical research

    Directory of Open Access Journals (Sweden)

    Ajai R. Singh

    2005-03-01

    by incentives in tax laws that resulted in a massive inflow of venture capital into biomedical research. As a result, academia was suddenly besieged by profit seeking industry that saw immense vistas of opportunity opening up before them. Pharmaceutical majors, propped up with massive private funding by venture capital, were quick to seize the initiative.[Abstract not available

  7. [Big Data: the great opportunities and challenges to microbiome and other biomedical research].

    Science.gov (United States)

    Xu, Zhenjiang

    2015-02-01

    With the development of high-throughput technologies, biomedical data has been increasing exponentially in an explosive manner. This brings enormous opportunities and challenges to biomedical researchers on how to effectively utilize big data. Big data is different from traditional data in many ways, described as 3Vs - volume, variety and velocity. From the perspective of biomedical research, here I introduced the characteristics of big data, such as its messiness, re-usage and openness. Focusing on microbiome research of meta-analysis, the author discussed the prospective principles in data collection, challenges of privacy protection in data management, and the scalable tools in data analysis with examples from real life. PMID:25736105

  8. DIVERSITY IN THE BIOMEDICAL RESEARCH WORKFORCE: DEVELOPING TALENT

    Science.gov (United States)

    McGee, Richard; Saran, Suman; Krulwich, Terry A.

    2012-01-01

    Much has been written about the need for and barriers to achievement of greater diversity in the biomedical workforce from the perspectives of gender, race and ethnicity; this is not a new topic. These discussions often center around a ‘pipeline metaphor’ which imagines students flowing through a series of experiences to eventually arrive at a science career. Here we argue that diversity will only be achieved if the primary focus is on: what is happening within the pipeline, not just counting individuals entering and leaving it; de-emphasizing achieving academic milestones by ‘typical’ ages; and adopting approaches that most effectively develop talent. Students may develop skills at different rates based on factors such as earlier access to educational resources, exposure to science (especially research experiences), and competing demands for time and attention during high school and college. Therefore, there is wide variety among students at any point along the pipeline. Taking this view requires letting go of imagining the pipeline as a sequence of age-dependent steps in favor of milestones of skill and talent development decoupled from age or educational stage. Emphasizing talent development opens up many new approaches for science training outside of traditional degree programs. This article provides examples of such approaches, including interventions at the post-baccalaureate and PhD levels, as well as a novel coaching model that incorporates well-established social science theories and complements traditional mentoring. These approaches could significantly impact diversity by developing scientific talent, especially among currently underrepresented minorities. PMID:22678863

  9. The ethical justification for the use of animals in biomedical research

    OpenAIRE

    Kostomitsopoulos N.G.; Đurašević S.F.

    2010-01-01

    Despite all the benefits, the use of animals in biomedical research is still a subject of debate with respect to its true value. The sensitivity of the community and the interest of scientists who work in the field of laboratory animal science and welfare have clearly demonstrated that the use of animals in biomedical research must be conducted under specific scientific, legal and ethical rules. The ethical justification of a research project starts from its initial designing phase until its ...

  10. Use of dual isotope tracers in biomedical research

    NARCIS (Netherlands)

    Stellaard, F

    2005-01-01

    Biomedical stable isotope studies involve administration of tracer and measurement of isotope enrichment in blood, urine, feces or breath. The aim of the studies is to gather quantitative information about a specific metabolic function. However, the measured isotope enrichment may be affected by oth

  11. Bovine tuberculosis research: Immune mechanisms relevant to biomedical applications

    Science.gov (United States)

    Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual benefit approach, clearly demonstrating the relevance of veterinary studies for biomedical applications. Tuberculosis (TB), primarily due...

  12. Bridging the social and the biomedical: engaging the social and political sciences in HIV research

    OpenAIRE

    Kippax Susan C; Holt Martin; Friedman Samuel R

    2011-01-01

    Abstract This supplement to the Journal of the International AIDS Society focuses on the engagement of the social and political sciences within HIV research and, in particular, maintaining a productive relationship between social and biomedical perspectives on HIV. It responds to a number of concerns raised primarily by social scientists, but also recognized as important by biomedical and public health researchers. These concerns include how best to understand the impact of medical technologi...

  13. Biomedical research leaders: report on needs, opportunities, difficulties, education and training, and evaluation.

    OpenAIRE

    Wilson, S H; Merkle, S.; Moskowitz, J; Hurley, D; D. Brown; Bailey, B J; McClain, M; Misenhimer, M; Buckalew, J; Burks, T.

    2000-01-01

    The National Association of Physicians for the Environment (NAPE) has assumed a leadership role in protecting environmental health in recent years. The Committee of Biomedical Research Leaders was convened at the recent NAPE Leadership Conference: Biomedical Research and the Environment held on 1--2 November 1999, at the National Institutes of Health, Bethesda, Maryland. This report summarizes the discussion of the committee and its recommendations. The charge to the committee was to raise an...

  14. Cross-Cultural Communication Training for Students in Multidisciplinary Research Area of Biomedical Engineering

    OpenAIRE

    Shigehiro Hashimoto

    2014-01-01

    Biomedical Engineering makes multidisciplinary research area, which includes biology, medicine, engineering and others. Communication training is important for students, who have a potential to develop Biomedical Engineering. Communication is not easy in a multidisciplinary research area, because each area has its own background of thinking. Because each nation has its own background of culture, on the other hand, international communication is not easy, either. A cross-cultural student progr...

  15. From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce.

    Science.gov (United States)

    Valantine, Hannah A; Lund, P Kay; Gammie, Alison E

    2016-01-01

    The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges. Over the past few decades, the biomedical research workforce has benefited from NIH programs aimed at enhancing diversity. However, there is considerable room for improvement, particularly at the level of independent scientists and within scientific leadership. We provide a rationale and specific opportunities to develop and sustain a diverse biomedical research workforce through interventions that promote the successful transitions to different stages on the path toward completion of training and entry into the biomedical workforce. PMID:27587850

  16. The Biomedical Resource Ontology (BRO) to enable resource discovery in clinical and translational research.

    Science.gov (United States)

    Tenenbaum, Jessica D; Whetzel, Patricia L; Anderson, Kent; Borromeo, Charles D; Dinov, Ivo D; Gabriel, Davera; Kirschner, Beth; Mirel, Barbara; Morris, Tim; Noy, Natasha; Nyulas, Csongor; Rubenson, David; Saxman, Paul R; Singh, Harpreet; Whelan, Nancy; Wright, Zach; Athey, Brian D; Becich, Michael J; Ginsburg, Geoffrey S; Musen, Mark A; Smith, Kevin A; Tarantal, Alice F; Rubin, Daniel L; Lyster, Peter

    2011-02-01

    The biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development and use of the Biomedical Resource Ontology (BRO) to enable semantic annotation and discovery of biomedical resources. We also describe the Resource Discovery System (RDS) which is a federated, inter-institutional pilot project that uses the BRO to facilitate resource discovery on the Internet. Through the RDS framework and its associated Biositemaps infrastructure, the BRO facilitates semantic search and discovery of biomedical resources, breaking down barriers and streamlining scientific research that will improve human health. PMID:20955817

  17. e-Science platform for translational biomedical imaging research: running, statistics, and analysis

    Science.gov (United States)

    Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo

    2015-03-01

    In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.

  18. Effects of an Educational Intervention on Female Biomedical Scientists' Research Self-Efficacy

    Science.gov (United States)

    Bakken, Lori L.; Byars-Winston, Angela; Gundermann, Dawn M.; Ward, Earlise C.; Slattery, Angela; King, Andrea; Scott, Denise; Taylor, Robert E.

    2010-01-01

    Women and people of color continue to be underrepresented among biomedical researchers to an alarming degree. Research interest and subsequent productivity have been shown to be affected by the research training environment through the mediating effects of research self-efficacy. This article presents the findings of a study to determine whether a…

  19. Acoustic separation and biomedical research: lessons from Indian regulation of compensation for research injury.

    Science.gov (United States)

    Larkin, Megan E

    2015-01-01

    In early 2013, the Indian government introduced new rules governing the conduct of clinical trials involving human participants. Among other provisions, the law requires that sponsors of research compensate participants who are injured during the course of their research participation. This article examines the effects of India's compensation law and the efforts that policymakers in India have made to tailor the law since its passage. I use the legal concept of acoustic separation as a framework to explain and justify the approach that India has taken in refining its regulation of research related injuries. I conclude that India's example may provide useful lessons for research sponsors and lawmakers in other regulatory states seeking to promote a well-regulated biomedical research industry. PMID:25846042

  20. Leveraging dialog systems research to assist biomedical researchers' interrogation of Big Clinical Data.

    Science.gov (United States)

    Hoxha, Julia; Weng, Chunhua

    2016-06-01

    The worldwide adoption of electronic health records (EHR) promises to accelerate clinical research, which lies at the heart of medical advances. However, the interrogation of such Big Data by clinical researchers can be laborious and error-prone, involving iterative and ineffective communication of data requests to data analysts. Research on this communication process is rare. There also exists no contemporary system that offers intelligent solutions to assist clinical researchers in their quest for clinical data. In this article, we first provide a detailed characterization of the challenges encountered in this communication space. Second, we identify promising synergies between fields studying human-to-human and human-machine communication that can shed light on biomedical data query mediation. We propose a mixed-initiative dialog-based approach to support autonomous clinical data access and recommend needed technology development and communication study for accelerating clinical research. PMID:27067901

  1. Disadvantages of publishing biomedical research articles in English for non-native speakers of English

    OpenAIRE

    Rezaeian, Mohsen

    2015-01-01

    OBJECTIVES: English has become the most frequently used language for scientific communication in the biomedical field. Therefore, scholars from all over the world try to publish their findings in English. This trend has a number of advantages, along with several disadvantages. METHODS: In the current article, the most important disadvantages of publishing biomedical research articles in English for non-native speakers of English are reviewed. RESULTS: The most important disadvantages of publi...

  2. Recruiting intergenerational African American males for biomedical research Studies: a major research challenge.

    Science.gov (United States)

    Byrd, Goldie S; Edwards, Christopher L; Kelkar, Vinaya A; Phillips, Ruth G; Byrd, Jennifer R; Pim-Pong, Dora Som; Starks, Takiyah D; Taylor, Ashleigh L; Mckinley, Raechel E; Li, Yi-Ju; Pericak-Vance, Margaret

    2011-06-01

    The health and well-being of all individuals, independent of race, ethnicity, or gender, is a significant public health concern. Despite many improvements in the status of minority health, African American males continue to have the highest age-adjusted mortality rate of any race-sex group in the United States. Such disparities are accounted for by deaths from a number of diseases such as diabetes, human immunodeficiency virus (HIV), cancer, and cardiovascular disease, as well as by many historical and present social and cultural constructs that present as obstacles to better health outcomes. Distrust of the medical community, inadequate education, low socioeconomic status, social deprivation, and underutilized primary health care services all contribute to disproportionate health and health care outcomes among African Americans compared to their Caucasian counterparts. Results of clinical research on diseases that disproportionately affect African American males are often limited in their reliability due to common sampling errors existing in the majority of biomedical research studies and clinical trials. There are many reasons for underrepresentation of African American males in clinical trials, including their common recollection and interpretation of relevant historical of biomedical events where minorities were abused or exposed to racial discrimination or racist provocation. In addition, African American males continue to be less educated and more disenfranchised from the majority in society than Caucasian males and females and their African American female counterparts. As such, understanding their perceptions, even in early developmental years, about health and obstacles to involvement in research is important. In an effort to understand perspectives about their level of participation, motivation for participation, impact of education, and engagement in research, this study was designed to explore factors that impact their willingness to participate. Our

  3. Research report: learning styles of biomedical engineering students.

    Science.gov (United States)

    Dee, Kay C; Nauman, Eric A; Livesay, Glen A; Rice, Janet

    2002-09-01

    Examining students' learning styles can yield information useful to the design of learning activities, courses, and curricula. A variety of measures have been used to characterize learning styles, but the literature contains little information specific to biomedical engineering (BMEN) students. We, therefore, utilized Felder's Index of Learning Styles to investigate the learning style preferences of BMEN students at Tulane University. Tulane BMEN students preferred to receive information visually (preferred by 88% of the student sample) rather than verbally, focus on sensory information (55%) instead of intuitive information, process information actively (66%) instead of reflectively, and understand information globally (59%) rather than sequentially. These preferences varied between cohorts (freshman, sophomore, etc.) and a significantly higher percentage of female students preferred active and sensing learning styles. Compared to other engineering student populations, our sample of Tulane BMEN students contained the highest percentage of students preferring the global learning style. Whether this is a general trend for all BMEN students or a trait specific to Tulane engineers requires further investigation. Regardless, this study confirms the existence of a range of learning styles within biomedical engineering students, and provides motivation for instructors to consider how well their teaching style engages multiple learning styles. PMID:12449770

  4. Analyser-based x-ray imaging for biomedical research

    International Nuclear Information System (INIS)

    Analyser-based imaging (ABI) is one of the several phase-contrast x-ray imaging techniques being pursued at synchrotron radiation facilities. With advancements in compact source technology, there is a possibility that ABI will become a clinical imaging modality. This paper presents the history of ABI as it has developed from its laboratory source to synchrotron imaging. The fundamental physics of phase-contrast imaging is presented both in a general sense and specifically for ABI. The technology is dependent on the use of perfect crystal monochromator optics. The theory of the x-ray optics is developed and presented in a way that will allow optimization of the imaging for specific biomedical systems. The advancement of analytical algorithms to produce separate images of the sample absorption, refraction angle map and small-angle x-ray scattering is detailed. Several detailed applications to biomedical imaging are presented to illustrate the broad range of systems and body sites studied preclinically to date: breast, cartilage and bone, soft tissue and organs. Ultimately, the application of ABI in clinical imaging will depend partly on the availability of compact sources with sufficient x-ray intensity comparable with that of the current synchrotron environment. (paper)

  5. Arab nations lagging behind other Middle Eastern countries in biomedical research: a comparative study

    Directory of Open Access Journals (Sweden)

    Bakoush Omran

    2009-04-01

    Full Text Available Abstract Background Analysis of biomedical research and publications in a country or group of countries is used to monitor research progress and trends. This study aims to assess the performance of biomedical research in the Arab world during 2001–2005 and to compare it with other Middle Eastern non-Arab countries. Methods PubMed and Science Citation Index Expanded (SCI-expanded were searched systematically for the original biomedical research publications and their citation frequencies of 16 Arab nations and three non-Arab Middle Eastern countries (Iran, Israel and Turkey, all of which are classified as middle or high income countries. Results The 16 Arab countries together have 5775 and 14,374 original research articles listed by PubMed and SCI-expanded, respectively, significantly less (p Conclusion The Arab world is producing fewer biomedical publications of lower quality than other Middle Eastern countries. Studies are needed to clarify the causes and to propose strategies to improve the biomedical research status in Arab countries.

  6. Research Traceability using Provenance Services for Biomedical Analysis

    CERN Document Server

    Anjum, Ashiq; Branson, Andrew; Habib, Irfan; McClatchey, Richard; Solomonides, Tony

    2012-01-01

    We outline the approach being developed in the neuGRID project to use provenance management techniques for the purposes of capturing and preserving the provenance data that emerges in the specification and execution of workflows in biomedical analyses. In the neuGRID project a provenance service has been designed and implemented that is intended to capture, store, retrieve and reconstruct the workflow information needed to facilitate users in conducting user analyses. We describe the architecture of the neuGRID provenance service and discuss how the CRISTAL system from CERN is being adapted to address the requirements of the project and then consider how a generalised approach for provenance management could emerge for more generic application to the (Health)Grid community.

  7. Medical and biomedical research productivity from the Kingdom of Saudi Arabia (2008-2012

    Directory of Open Access Journals (Sweden)

    Rabia Latif

    2015-01-01

    Full Text Available Background: Biomedical publications from a country mirror the standard of Medical Education and practice in that country. It is important that the performance of the health profession is occasionally documented. Aims: This study aimed to analyze the quantity and quality of biomedical publications from the Kingdom of Saudi Arabia (KSA in international journals indexed in PubMed between 2008 and 2012. Materials and Methods: PubMed was searched for publications associated with KSA from 2008 to 2012. The search was limited to medical and biomedical subjects. Results were saved in a text file and later checked carefully to exclude false positive errors. The quality of the publication was assessed using Journal Citation Report 2012. Results: Biomedical research production in KSA in those 5 years showed a clear linear progression. Riyadh was the main hub of medical and biomedical research activity. Most of the publications (40.9% originated from King Saud University (KSU. About half of the articles were published in journals with an Impact Factor (IF of < 1, one-fourth in journals with no IF, and the remaining one-fourth in journals with a high IF (≥1. Conclusion: This study revealed that research activity in KSA is increasing. However, there is an increasing trend of publishing in local journals with a low IF. More effort is required to promote medical research in Saudi Arabia.

  8. Radiation protection in medical and biomedical research; Proteccion radiologica en la investigacion medica y biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Fuente Puch, A.E. de la, E-mail: andres@orasen.co.cuES [Centro Nacional de Seguridad Nuclear, La Habana (Cuba)

    2013-11-01

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation.

  9. Biomedical Informatics Research and Education at the EuroMISE Center

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2006-01-01

    Roč. 45, Suppl. (2006), s. 166-173. ISSN 0026-1270 Grant ostatní: Evropské sociální fondy CZ04307/42011/0013 Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * research * education * healthcare * information society Subject RIV: BJ - Thermodynamics Impact factor: 1.684, year: 2006

  10. Effects of government spending on research workforce development: evidence from biomedical postdoctoral researchers.

    Directory of Open Access Journals (Sweden)

    Hyungjo Hur

    Full Text Available We examine effects of government spending on postdoctoral researchers' (postdocs productivity in biomedical sciences, the largest population of postdocs in the US. We analyze changes in the productivity of postdocs before and after the US government's 1997 decision to increase NIH funding. In the first round of analysis, we find that more government spending has resulted in longer postdoc careers. We see no significant changes in researchers' productivity in terms of publication and conference presentations. However, when the population is segmented by citizenship, we find that the effects are heterogeneous; US citizens stay longer in postdoc positions with no change in publications and, in contrast, international permanent residents (green card holders produce more conference papers and publications without significant changes in postdoc duration. Possible explanations and policy implications of the analysis are discussed.

  11. Reproducible Research Practices and Transparency across the Biomedical Literature

    Science.gov (United States)

    Khoury, Muin J.; Schully, Sheri D.; Ioannidis, John P. A.

    2016-01-01

    There is a growing movement to encourage reproducibility and transparency practices in the scientific community, including public access to raw data and protocols, the conduct of replication studies, systematic integration of evidence in systematic reviews, and the documentation of funding and potential conflicts of interest. In this survey, we assessed the current status of reproducibility and transparency addressing these indicators in a random sample of 441 biomedical journal articles published in 2000–2014. Only one study provided a full protocol and none made all raw data directly available. Replication studies were rare (n = 4), and only 16 studies had their data included in a subsequent systematic review or meta-analysis. The majority of studies did not mention anything about funding or conflicts of interest. The percentage of articles with no statement of conflict decreased substantially between 2000 and 2014 (94.4% in 2000 to 34.6% in 2014); the percentage of articles reporting statements of conflicts (0% in 2000, 15.4% in 2014) or no conflicts (5.6% in 2000, 50.0% in 2014) increased. Articles published in journals in the clinical medicine category versus other fields were almost twice as likely to not include any information on funding and to have private funding. This study provides baseline data to compare future progress in improving these indicators in the scientific literature. PMID:26726926

  12. Nanocellulose in Polymer Composites and Biomedical: Research and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan [ORNL; Tekinalp, Halil L [ORNL; Peter, William H [ORNL; Eberle, Cliff [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL

    2014-01-01

    Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thus been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.

  13. Boundary-Work in the Health Research Field: Biomedical and Clinician Scientists' Perceptions of Social Science Research

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D.

    2009-01-01

    Funding agencies in Canada are attempting to break down the organizational boundaries between disciplines to promote interdisciplinary research and foster the integration of the social sciences into the health research field. This paper explores the extent to which biomedical and clinician scientists' perceptions of social science research operate…

  14. [Metrology research on biomedical engineering publications from China in recent years].

    Science.gov (United States)

    Yu, Lu; Su, Juan; Wang, Ying; Sha, Xianzheng

    2014-12-01

    The present paper is to evaluate the scientific research level and development trends of biomedical engineering in China using metrology analysis on Chinese biomedical engineering scientific literatures. Pubmed is used to search the biomedical engineering publications in recent 5 years which are indexed by Science Citation Index, and the number and cited times of these publications and the impact factor of the journals are analyzed. The results show that comparing with the world, although the number of the publication in China has increased in recent 5 years, there is still much room for improvement. Among Chinese mainland, Hongkong and Taiwan, Chinese mainland maintains the obvious advantage in this subject, but Hongkong has the highest average cited number. Shanghai and Beijing have better research ability than other areas in Chinese mainland. PMID:25868256

  15. Selection Mechanisms Underlying High Impact Biomedical Research - A Qualitative Analysis and Causal Model

    OpenAIRE

    Zelko, Hilary; Zammar, Guilherme Roberto; Bonilauri Ferreira, Ana Paula; Phadtare, Amruta; Shah, Jatin; Pietrobon, Ricardo

    2010-01-01

    Background Although scientific innovation has been a long-standing topic of interest for historians, philosophers and cognitive scientists, few studies in biomedical research have examined from researchers' perspectives how high impact publications are developed and why they are consistently produced by a small group of researchers. Our objective was therefore to interview a group of researchers with a track record of high impact publications to explore what mechanism they believe contribute ...

  16. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    Science.gov (United States)

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123

  17. Biomedical engineering. A means to add new dimension to medicine and research.

    Science.gov (United States)

    Doerr, D F

    1992-08-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described. PMID:1402774

  18. Biomedical engineering - A means to add new dimension to medicine and research

    Science.gov (United States)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  19. Publication planning: promoting an ethics of transparency and integrity in biomedical research.

    Science.gov (United States)

    DeTora, L; Foster, C; Skobe, C; Yarker, Y E; Crawley, F P

    2015-09-01

    Biomedical research should include plans to communicate complete and accurate results to the scientific community and the public in a timely manner. All too often, however, such planning is lacking until after data have been generated. We developed a collaborative professional statement following review of the indexed biomedical literature and relevant professional society guidelines. Planning for publications before, during and after biomedical research studies are conducted promotes the timely dissemination of accurate and comprehensive results. Effective publication planning accounts for the work of all contributors, encourages full transparency and contributes to overall scientific integrity. Although the most obvious contribution of publication planning is to result dissemination, the best planning may also help improve the overall quality of research study design and the overall integrity of study conduct by keeping the final audience in the forefront of the investigators' attention. Publication planning can help biomedical researchers achieve and maintain high standards of transparency and integrity. Table 1 below highlights briefly some of the aspects to be included in a publication plan. PMID:26311328

  20. Strategies for Disseminating Information on Biomedical Research on Autism to Hispanic Parents

    Science.gov (United States)

    Lajonchere, Clara M.; Wheeler, Barbara Y.; Valente, Thomas W.; Kreutzer, Cary; Munson, Aron; Narayanan, Shrikanth; Kazemzadeh, Abe; Cruz, Roxana; Martinez, Irene; Schrager, Sheree M.; Schweitzer, Lisa; Chklovski, Tara; Hwang, Darryl

    2016-01-01

    Low income Hispanic families experience multiple barriers to accessing evidence-based information on Autism Spectrum Disorders (ASD). This study utilized a mixed-strategy intervention to create access to information in published bio-medical research articles on ASD by distilling the content into parent-friendly English- and Spanish-language ASD…

  1. Patterns of biomedical science production in a sub-Saharan research center

    OpenAIRE

    Agnandji Selidji T; Tsassa Valerie; Conzelmann Cornelia; Köhler Carsten; Ehni Hans-Jörg

    2012-01-01

    Abstract Background Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing ...

  2. Chimpanzees in AIDS research: A biomedical and bioethical perspective.

    NARCIS (Netherlands)

    R. van den Akker (Ruud); M. Balls; J.W. Eichberg; J. Goodall; J.L. Heeney (Jonathan); A.D.M.E. Osterhaus (Albert); A.M. Prince; I. Spruit

    1993-01-01

    textabstractThe present article represents a consensus view of the appropriate utilization of chimpanzees in AIDS research arrived at as a result of a meeting of a group of scientists involved in AIDS research with chimpanzees and bioethicists. The paper considers which types of studies are scientif

  3. Integrating Heterogeneous Biomedical Data for Cancer Research: the CARPEM infrastructure.

    Science.gov (United States)

    Rance, Bastien; Canuel, Vincent; Countouris, Hector; Laurent-Puig, Pierre; Burgun, Anita

    2016-01-01

    Cancer research involves numerous disciplines. The multiplicity of data sources and their heterogeneous nature render the integration and the exploration of the data more and more complex. Translational research platforms are a promising way to assist scientists in these tasks. In this article, we identify a set of scientific and technical principles needed to build a translational research platform compatible with ethical requirements, data protection and data-integration problems. We describe the solution adopted by the CARPEM cancer research program to design and deploy a platform able to integrate retrospective, prospective, and day-to-day care data. We designed a three-layer architecture composed of a data collection layer, a data integration layer and a data access layer. We leverage a set of open-source resources including i2b2 and tranSMART. PMID:27437039

  4. Integrating Heterogeneous Biomedical Data for Cancer Research: the CARPEM infrastructure

    Science.gov (United States)

    Canuel, Vincent; Countouris, Hector; Laurent-Puig, Pierre; Burgun, Anita

    2016-01-01

    Summary Cancer research involves numerous disciplines. The multiplicity of data sources and their heterogeneous nature render the integration and the exploration of the data more and more complex. Translational research platforms are a promising way to assist scientists in these tasks. In this article, we identify a set of scientific and technical principles needed to build a translational research platform compatible with ethical requirements, data protection and data-integration problems. We describe the solution adopted by the CARPEM cancer research program to design and deploy a platform able to integrate retrospective, prospective, and day-to-day care data. We designed a three-layer architecture composed of a data collection layer, a data integration layer and a data access layer. We leverage a set of open-source resources including i2b2 and tranSMART. PMID:27437039

  5. Measuring the Outcome of Biomedical Research: A Systematic Literature Review

    OpenAIRE

    Thonon, Frédérique; Boulkedid, Rym; Delory, Tristan; Rousseau, Sophie; Saghatchian, Mahasti; van Harten, Wim; O’Neill, Claire; Alberti, Corinne

    2015-01-01

    Background There is an increasing need to evaluate the production and impact of medical research produced by institutions. Many indicators exist, yet we do not have enough information about their relevance. The objective of this systematic review was (1) to identify all the indicators that could be used to measure the output and outcome of medical research carried out in institutions and (2) enlist their methodology, use, positive and negative points. Methodology We have searched 3 databases ...

  6. Development, implementation and critique of a bioethics framework for pharmaceutical sponsors of human biomedical research.

    Science.gov (United States)

    Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J

    2015-11-01

    Pharmaceutical human biomedical research is a multi-dimensional endeavor that requires collaboration among many parties, including those who sponsor, conduct, participate in, or stand to benefit from the research. Human subjects' protections have been promulgated to ensure that the benefits of such research are accomplished with respect for and minimal risk to individual research participants, and with an overall sense of fairness. Although these protections are foundational to clinical research, most ethics guidance primarily highlights the responsibilities of investigators and ethics review boards. Currently, there is no published resource that comprehensively addresses bioethical responsibilities of industry sponsors; including their responsibilities to parties who are not research participants, but are, nevertheless key stakeholders in the endeavor. To fill this void, in 2010 Eli Lilly and Company instituted a Bioethics Framework for Human Biomedical Research. This paper describes how the framework was developed and implemented and provides a critique based on four years of experience. A companion article provides the actual document used by Eli Lilly and Company to guide ethical decisions regarding all phases of human clinical trials. While many of the concepts presented in this framework are not novel, compiling them in a manner that articulates the ethical responsibilities of a sponsor is novel. By utilizing this type of bioethics framework, we have been able to develop bioethics positions on various topics, provide research ethics consultations, and integrate bioethics into the daily operations of our human biomedical research. We hope that by sharing these companion papers we will stimulate discussion within and outside the biopharmaceutical industry for the benefit of the multiple parties involved in pharmaceutical human biomedical research. PMID:26325424

  7. Increasing disparities between resource inputs and outcomes, as measured by certain health deliverables, in biomedical research.

    Science.gov (United States)

    Bowen, Anthony; Casadevall, Arturo

    2015-09-01

    Society makes substantial investments in biomedical research, searching for ways to better human health. The product of this research is principally information published in scientific journals. Continued investment in science relies on society's confidence in the accuracy, honesty, and utility of research results. A recent focus on productivity has dominated the competitive evaluation of scientists, creating incentives to maximize publication numbers, citation counts, and publications in high-impact journals. Some studies have also suggested a decreasing quality in the published literature. The efficiency of society's investments in biomedical research, in terms of improved health outcomes, has not been studied. We show that biomedical research outcomes over the last five decades, as estimated by both life expectancy and New Molecular Entities approved by the Food and Drug Administration, have remained relatively constant despite rising resource inputs and scientific knowledge. Research investments by the National Institutes of Health over this time correlate with publication and author numbers but not with the numerical development of novel therapeutics. We consider several possibilities for the growing input-outcome disparity including the prior elimination of easier research questions, increasing specialization, overreliance on reductionism, a disproportionate emphasis on scientific outputs, and other negative pressures on the scientific enterprise. Monitoring the efficiency of research investments in producing positive societal outcomes may be a useful mechanism for weighing the efficacy of reforms to the scientific enterprise. Understanding the causes of the increasing input-outcome disparity in biomedical research may improve society's confidence in science and provide support for growing future research investments. PMID:26283360

  8. Guidelines for euthanasia of laboratory animals used in biomedical research

    Directory of Open Access Journals (Sweden)

    Adina Baias,

    2012-06-01

    Full Text Available Laboratory animals are used in several fields of science research, especially in biology, medicine and veterinary medicine. The majority of laboratory animals used in research are experimental models that replace the human body in study regarding pharmacological or biological safety products, studies conducted for a betterunderstanding of oncologic processes, toxicology, genetic studies or even new surgical techniques. Experimental protocols include a stage in which animals are euthanized in order to remove organs and tissues,or for no unnecessary pain and suffering of animals (humane endpoints or to mark the end of research. The result of euthanasia techniques is a rapid loss of consciousness followed by cardiac arrest, respiratory arrest and disruption of brain activity. Nowadays, the accepted euthanasia techniques can use chemicals (inhalant agents like: carbon dioxide, nitrogen or argon, overdoses of injectable anesthetics or physical methods (decapitation, cervical spine dislocation, stunning, gunshot, pitching.

  9. New Program Aims $300-Million at Young Biomedical Researchers

    Science.gov (United States)

    Goodall, Hurley

    2008-01-01

    Medical scientists just starting at universities have been, more and more often, left empty-handed when the federal government awards grants. To offset this, the Howard Hughes Medical Institute, a nonprofit organization dedicated to medical research, announced a new program that will award $300-million to as many as 70 young scientists. The Early…

  10. Biomedical Informatics Research for Individualized Life - Long Shared Healthcare

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana; Hanzlíček, Petr; Nagy, Miroslav; Přečková, Petra; Zvára, K.; Seidl, L.; Bureš, V.; Šubrt, D.; Dostálová, T.; Seydlová, M.

    2009-01-01

    Roč. 29, č. 2 (2009), s. 31-41. ISSN 0208-5216 R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : electronic health record * semantic interoperability * dentistry * cardiology Subject RIV: IN - Informatics, Computer Science

  11. Adverse reproduction outcomes among employees working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Wennborg, H.; Bonde, Jens Peter; Stenbeck, M.;

    2002-01-01

    Objectives The aim of the study was to investigate reproductive outcomes such as birthweight, preterm births, and postterm births among women working in research laboratories while pregnant. Methods Female university personnel were identified from a source cohort of Swedish laboratory employees...

  12. The application of electron paramagnetic resonance in biomedical research

    International Nuclear Information System (INIS)

    Electron paramagnetic resonance technique has been found more than half a century, for free radicals detection application, it has been applied to various research studies, and promotes the development of the biomedicine. This article summarized the various free radicals measurement by the electron paramagnetic resonance in biology tissue, and the application of the spin labeling and electron paramagnetic resonance imaging technology in biomedicine. (authors)

  13. The Biomedical Resource Ontology (BRO) to Enable Resource Discovery in Clinical and Translational Research

    OpenAIRE

    Tenenbaum, Jessica D; Whetzel, Patricia L.; Anderson, Kent; Borromeo, Charles D; Ivo D. Dinov; Gabriel, Davera; Kirschner, Beth; Mirel, Barbara; Morris, Tim; Noy, Natasha; NYULAS, CSONGOR; Rubenson, David; Saxman, Paul R.; Singh, Harpreet; Whelan, Nancy

    2010-01-01

    The biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development...

  14. Analytical techniques and quality control in biomedical trace element research

    DEFF Research Database (Denmark)

    Heydorn, K.

    1994-01-01

    The small number of analytical results in trace element research calls for special methods of quality control. It is shown that when the analytical methods are in statistical control, only small numbers of duplicate or replicate results are needed to ascertain the absence of systematic errors....../kg. Measurement compatibility is obtained by control of traceability to certified reference materials, (C) 1994 Wiley-Liss, Inc....

  15. Microarrays—Current and Future Applications in Biomedical Research

    OpenAIRE

    Ulrich Certa

    2011-01-01

    Microarrays covers research where microarrays are applied to address complex biological questions. This new open access journal publishes articles where novel applications or state-of-the art technology developments in the field are reported. In addition, novel methods or data analysis algorithms are under the scope of Microarrays. This journal will serve as a platform for fast and efficient sharing of data within this large user community. As one of the first microarray users in Europe back ...

  16. Proteomics and Mass Spectrometry Applications in Biomedical Research

    OpenAIRE

    Chow, M; Zheng, R; Silva-Sanchez, C.; Koh, J; Chen, S.; Diaz, C.

    2011-01-01

    Proteomics and mass spectrometry have provided unprecedented tools for fast, accurate, high throughput biomolecular separation and characterization, which are indispensable towards understanding the biological and medical systems. Studying at the protein level allows researchers to investigate how proteins, their dynamics and modifications affect cellular processes and how cellular processes and the environment affect proteins. The mission of our facility is to provide excellent service and t...

  17. Karma, reincarnation, and medicine: Hindu perspectives on biomedical research

    OpenAIRE

    Hutchinson, Janis Faye; Sharp, Richard

    2008-01-01

    Prior to the completion of the Human Genome Project, bioethicists and other academics debated the impact of this new genetic information on medicine, health care, group identification, and peoples’ lives. A major issue is the potential for unintended and intended adverse consequences to groups and individuals. When conducting research in, for instance, American Indian and Alaskan native (AI/AN) populations, political, cultural, religious and historical issues must be considered. Among African...

  18. PS1-59: Collecting Biomedical Specimens in Health Research

    OpenAIRE

    Ulrich, Kevin

    2012-01-01

    Survey research organizations are increasingly being tasked with obtaining consent and, in some cases, collecting biological specimens from potential respondents. In order to obtain high response rates in these types of studies, it is crucial that survey methodologists investigate best practices to improve response in the collection of these types of data. Under what circumstances are participants willing to consent to these procedures? What methods can be utilized to best facilitate the coll...

  19. Image-based Informatics for Preclinical Biomedical Research

    Energy Technology Data Exchange (ETDEWEB)

    Tobin Jr, Kenneth William [ORNL; Aykac, Deniz [ORNL; Muthusamy Govindasamy, Vijaya Priya [ORNL; Karnowski, Thomas Paul [ORNL; Price, Jeffery R [ORNL; Wall, Jonathan [ORNL; Gregor, Jens [ORNL; Gleason, Shaun Scott [ORNL

    2006-01-01

    In 2006, the New England Journal of Medicine selected medical imaging as one of the eleven most important innovations of the past 1,000 years, primarily due to its ability to allow physicians and researchers to visualize the very nature of disease. As a result of the broad-based adoption of micro imaging technologies, preclinical researchers today are generating terabytes of image data from both anatomic and functional imaging modes. In this paper we describe our early research to apply content-based image retrieval to index and manage large image libraries generated in the study of amyloid disease in mice. Amyloidosis is associated with diseases such as Alzheimer's, type 2 diabetes, chronic inflammation and myeloma. In particular, we will focus on results to date in the area of small animal organ segmentation and description for CT, SPECT, and PET modes and present a small set of preliminary retrieval results for a specific disease state in kidney CT crosssections.

  20. Cross-Cultural Communication Training for Students in Multidisciplinary Research Area of Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2014-08-01

    Full Text Available Biomedical Engineering makes multidisciplinary research area, which includes biology, medicine, engineering and others. Communication training is important for students, who have a potential to develop Biomedical Engineering. Communication is not easy in a multidisciplinary research area, because each area has its own background of thinking. Because each nation has its own background of culture, on the other hand, international communication is not easy, either. A cross-cultural student program has been designed for communication training in the multidisciplinary research area. Students from a variety of backgrounds of research area and culture have joined in the program: mechanical engineering, material science, environmental engineering, science of nursing, dentist, pharmacy, electronics, and so on. The program works well for communication training in the multidisciplinary research area of biomedical engineering. Foreign language and digital data give students chance to study several things: how to make communication precisely, how to quote previous data. The experience in the program helps students not only understand new idea in the laboratory visit, but also make a presentation in the international research conference. The program relates to author's several experiences: the student internship abroad, the cross-cultural student camp, multi PhD theses, various affiliations, and the creation of the interdisciplinary department.

  1. [Biomedical research: the debate on the reduction and emergence concepts].

    Science.gov (United States)

    Boury, D; Deschamps, C; Dante Menozzi, F; Raze, D; Vandenbunder, B; de Bouvet, A; Dei-Cas, E

    2005-01-01

    The theoretical bases of medical knowledge exert a strong influence on both clinical practice and representations of living and health. In this perspective, reduction and emergence notions play a major role. Microreduction is the predominant analytical strategy used today in biology, as it is usually considered that essential life mechanisms can be reduced to molecular processes. Likewise, macroreduction proposes that parts can be defined in terms of their belonging to wholes, as it is usually assumed, for instance, in genetic epidemiology. With regard to emergence, this notion, which focuses on properties of a whole that cannot be deduced from properties of its parts, is consistent with both nature of living and evolution theory. The apparent success of reduction like analytical modality has generated in scientific community and public opinion an ideological reductionism, which corresponds, ontologically, to both physicalism (things can be entirely understood in terms of their parts), and atomism (things go their own way, independently of other things). Genetic reductionism has generated new cosmological representations of living, where past, present and future of living beings could potentially be deduced from fallacious, simple views of genome sequences. These views may lead to quantitative or qualitative definitions of standard patterns and hierarchies. In practical terms, research activity should integrate limits, strains as well as reductionism advantages. Biologists should also consider risks associated with an ideological, unrestricted reductionism, applied to any existence aspect, a notion with questionable legitimacy and with potential ethical, philosophical, and political involvements that go beyond the simple selection of a research strategy. PMID:16330375

  2. Use of Radioactive Beams for Bio-Medical Research

    CERN Multimedia

    Miederer, M; Allen, B

    2002-01-01

    %title\\\\ \\\\With this Proposal we wish to replace the two previous proposals P42 and P48 (corresponding to the ISOLDE Experiments IS330 and IS331, respectively, including the Addendum 1 dated 04.05.94). Based on experimental results obtained during the last four year's research in the framework of the two proposals and considering modern trends in radiopharmaceutical developments we propose as a first main direction to study systematically relationships between physico-chemical parameters, the concentration and specific activity of tracer molecules and the corresponding biological response. This kind of studies requires highest achievable quality and a universality of radio-tracers, available at ISOLDE. Special attention in this concern is paid to bio-specific tracers (receptor-binding ligands, bio-conjugates etc.) aiming to search for new and more efficient radiopharmaceuticals for radionuclide therapy. The second direction is to support clinical radionuclide therapy by a quantitative follow up of the radionu...

  3. National Space Biomedical Research Institute (NSBRI) JSC Summer Projects

    Science.gov (United States)

    Dowdy, Forrest Ryan

    2014-01-01

    This project optimized the calorie content in a breakfast meal replacement bar for the Advanced Food Technology group. Use of multivariable optimization yielded the highest weight savings possible while simultaneously matching NASA Human Standards nutritional guidelines. The scope of this research included the study of shelf-life indicators such as water activity, moisture content, and texture analysis. Key metrics indicate higher protein content, higher caloric density, and greater mass savings as a result of the reformulation process. The optimization performed for this study demonstrated wide application to other food bars in the Advanced Food Technology portfolio. Recommendations for future work include shelf life studies on bar hardening and overall acceptability data over increased time frames and temperature fluctuation scenarios.

  4. Biomedical scientists' perceptions of ethical and social implications: is there a role for research ethics consultation?

    Directory of Open Access Journals (Sweden)

    Jennifer B McCormick

    Full Text Available BACKGROUND: Research ethics consultation programs are being established with a goal of addressing the ethical, societal, and policy considerations associated with biomedical research. A number of these programs are modelled after clinical ethics consultation services that began to be institutionalized in the 1980s. Our objective was to determine biomedical science researchers' perceived need for and utility of research ethics consultation, through examination of their perceptions of whether they and their institutions faced ethical, social or policy issues (outside those mandated by regulation and examination of willingness to seek advice in addressing these issues. We conducted telephone interviews and focus groups in 2006 with researchers from Stanford University and a mailed survey in December 2006 to 7 research universities in the U.S. FINDINGS: A total of 16 researchers were interviewed (75% response rate, 29 participated in focus groups, and 856 responded to the survey (50% response rate. Approximately half of researchers surveyed (51% reported that they would find a research ethics consultation service at their institution moderately, very or extremely useful, while over a third (36% reported that such a service would be useful to them personally. Respondents conducting human subjects research were more likely to find such a service very to extremely useful to them personally than respondents not conducting human subjects research (20% vs 10%; chi(2 p<0.001. CONCLUSION: Our findings indicate that biomedical researchers do encounter and anticipate encountering ethical and societal questions and concerns and a substantial proportion, especially clinical researchers, would likely use a consultation service if they were aware of it. These findings provide data to inform the development of such consultation programs in general.

  5. Strategies for Disseminating Information on Biomedical Research on Autism to Hispanic Parents.

    Science.gov (United States)

    Lajonchere, Clara M; Wheeler, Barbara Y; Valente, Thomas W; Kreutzer, Cary; Munson, Aron; Narayanan, Shrikanth; Kazemzadeh, Abe; Cruz, Roxana; Martinez, Irene; Schrager, Sheree M; Schweitzer, Lisa; Chklovski, Tara; Hwang, Darryl

    2016-03-01

    Low income Hispanic families experience multiple barriers to accessing evidence-based information on Autism Spectrum Disorders (ASD). This study utilized a mixed-strategy intervention to create access to information in published bio-medical research articles on ASD by distilling the content into parent-friendly English- and Spanish-language ASD Science Briefs and presenting them to participants using two socially-oriented dissemination methods. There was a main effect for short-term knowledge gains associated with the Science Briefs but no effect for the dissemination method. After 5 months, participants reported utilizing the information learned and 90 % wanted to read more Science Briefs. These preliminary findings highlight the potential benefits of distilling biomedical research articles on ASD into parent-friendly educational products for currently underserved Hispanic parents. PMID:26563948

  6. EuroMISE Center: Research and Education in Biomedical and Healthcare Informatics

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana; Svačina, Š.; Rauch, J.; Haase, J.; Grünfeldová, H.

    Amsterdam: IOS Press, 2012 - (Blobel, B.; Engelbrecht, R.; Ahifrin, M.), s. 53-56. (Studies in Health Technology and Informatics. 174). ISBN 978-1-61499-051-2. [STC 2012. EFMI Special Topic Conference. Moscow (RU), 18.04.2012-20.04.2012] Institutional support: RVO:67985807 Keywords : biomedical informatics * e-Health * edication * research Subject RIV: IN - Informatics, Computer Science http://www.booksonline.iospress.nl/Content/View.aspx?piid=30305

  7. A Microcosm of the Biomedical Research Experience for Upper-level Undergraduates

    OpenAIRE

    Hurd, Daryl D.

    2008-01-01

    The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John F...

  8. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Progress is reported on biomedical studies using cyclotron-produced 18F, 15O, 11C, 13N, 52Fe, 38K, 206Bi, 73Se, 53Co, and 43K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; 38K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments

  9. A new paradigm for improved co-ordination and efficacy of European biomedical research: taking diabetes as a model

    OpenAIRE

    Halban, Philippe A.; Boulton, A. J. M.; Smith, U

    2013-01-01

    Today, European biomedical and health-related research is insufficiently well funded and is fragmented, with no common vision, less-than-optimal sharing of resources, and inadequate support and training in clinical research. Improvements to the competitiveness of European biomedical research will depend on the creation of new infrastructures that must be dynamic and free of bureaucracy, involve all stakeholders and facilitate faster delivery of new discoveries from bench to bedside. Taking di...

  10. A Critical Look at Biomedical Journals’ Policies on Animal Research by Use of a Novel Tool: The EXEMPLAR Scale

    OpenAIRE

    Ana Raquel Martins; Nuno Henrique Franco

    2015-01-01

    Simple Summary Biomedical journals have the responsibility to promote humane research. To gauge and evaluate journal policies on animal research, the EXEMPLAR—For “Excellence in Mandatory Policies on Animal Research”—scale is presented and applied to evaluate a sample of 170 biomedical journals, providing an overview of the current landscape of editorial policies on the ethical treatment of animals. Abstract Animal research is not only regulated by legislation but also by self-regulatory mech...

  11. Participation in biomedical research is an imperfect moral duty: a response to John Harris

    OpenAIRE

    Shapshay, Sandra; Pimple, Kenneth D

    2007-01-01

    In his paper “Scientific research is a moral duty”, John Harris argues that individuals have a moral duty to participate in biomedical research by volunteering as research subjects. He supports his claim with reference to what he calls the principle of beneficence as embodied in the “rule of rescue” (the moral obligation to prevent serious harm), and the principle of fairness embodied in the prohibition on “free riding” (we are obliged to share the sacrifices that make possible social practic...

  12. International Careers of Researchers in Biomedical Sciences: A Comparison of the US and the UK.

    OpenAIRE

    Lawson, Cornelia; Geuna, Aldo; Ana Fernández-Zubieta; Toselli, Manuel; Kataishi, Rodrigo

    2015-01-01

    This chapter analyses the mobility of academic biomedical researchers in the US and the UK. Both countries are at the forefront of research in biomedicine, and able to attract promising researchers from other countries as well as fostering mobility between the US and the UK. Using a database of 292 UK based academics and 327 US based academics covering the period 1956 to 2012, the descriptive analysis shows a high level of international mobility at education level (BA, PhD and Postdoc) with s...

  13. The ICMJE and URM: Providing Independent Advice for the Conduct of Biomedical Research and Publication

    Directory of Open Access Journals (Sweden)

    Martin B. Van der Weyden

    2007-01-01

    Full Text Available The International Committee of Medical Journal Editors (ICMJE is a working group of editors of selected medical journals that meets annually. Founded in Vancouver, Canada, in 1978, it currently consists of 11 member journals and a representative of the US National Library of Medicine. The major purpose of the Committee is to address and provide guidance for the conduct and publishing of biomedical research and the ethical tenets underpinning these activities. This advice is detailed in the Committee's Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Writing and Editing for Biomedical Publication (URM. Recently, the ICMJE has adopted an interventionist role to ensure transparency of conflict of interest revelations in the conduct and publication of industry supported research. It also pursues a policy for the lodgement with trial registries of specified details of Phase III clinical trials. Failure to comply would jeopardise publication of trial outcomes in ICMJE member journals. This policy has resulted in the coming on stream of trial registries, international agreement on trial minimal datasets and compliance with trial registration requirements.

  14. Evolution of the use of ionizing radiation in biomedical research; Evolucion del uso de las radiaciones ionizantes en investigacion biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Macias, M. T.

    2011-07-01

    This article presents the evolution, as a change of process, with the use of radioactivity in biomedical research, showing the consume of radioisotopes during the las 20 years indicating the evidences of these changes. The radioisotopic techniques applied at the present are described, and the future use of the radioisotopes in biomedical research is proposed, emphasizing the importance that the Molecular Imaging Techniques will have in this scientific area. (Author) 56 refs.

  15. The ethical justification for the use of animals in biomedical research

    Directory of Open Access Journals (Sweden)

    Kostomitsopoulos N.G.

    2010-01-01

    Full Text Available Despite all the benefits, the use of animals in biomedical research is still a subject of debate with respect to its true value. The sensitivity of the community and the interest of scientists who work in the field of laboratory animal science and welfare have clearly demonstrated that the use of animals in biomedical research must be conducted under specific scientific, legal and ethical rules. The ethical justification of a research project starts from its initial designing phase until its completion and the review of the obtained results. Justification of the necessity of the project and the need to use animals in the interests of human or animal health, the importance of conducting a pilot study and a systematic review of previously published animal research on the topic, and the availability of the proper facilities, equipment and personnel are the main issues of concern in the ethical review of a research project. The ethical justification of the proposed project by the scientists themselves involves team-work, and should be a sustainable rather than a one-off procedure. This justification reflects the interest and the responsibility of scientists to reduce the number of animals, refine the procedures, and possibly replace animals in their research projects. The end-results of the ethical review process will be the creation of a trust relationship between scientists and society. .

  16. Patterns of biomedical science production in a sub-Saharan research center

    Directory of Open Access Journals (Sweden)

    Agnandji Selidji T

    2012-03-01

    Full Text Available Abstract Background Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing in sub-Saharan Africa. This study aims to describe the patterns of clinical research activities at a sub-Saharan biomedical research center. Methods In-depth interviews were conducted with a core group of researchers at the Medical Research Unit of the Albert Schweitzer Hospital from June 2009 to February 2010 in Lambaréné, Gabon. Scientific activities running at the MRU as well as the implementation of ethical and regulatory standards were covered by the interview sessions. Results The framework of clinical research includes transnational studies and research initiated locally. In transnational collaborations, a sub-Saharan research institution may be limited to producing confirmatory and late-stage data with little impact on economic and social innovation. However, ethical and regulatory guidelines are being implemented taking into consideration the local contexts. Similarly, the scientific content of studies designed by researchers at the MRU, if local needs are taken into account, may potentially contribute to a scientific production with long-term value on social and economic innovation in sub-Saharan Africa. Conclusion Further research questions and methods in social sciences should comprehensively address the construction of scientific content with the social, economic and cultural contexts surrounding research activities.

  17. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    Science.gov (United States)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  18. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  19. Environmental Assessment: UCLA biomedical research CS-22 cyclotron replacement, University of California at Los Angeles

    International Nuclear Information System (INIS)

    DOE proposes to participate in the joint funding, along with the National Institutes of Health (NIH) and private donors, of a new biomedical cyclotron research instrument for UCLA. DOE proposes to provide funding in the amount of $500,000 to UCLA for removal and disposal of the existing 19 year old CS-22 cyclotron and refitting of the existing room, plus $900,000 (of the $1.5 million total cost) for installation of a new generation Cyclone 18/9 biomedical isotope compact cyclotron. The remaining $600,000 for the new instrument would be provided by NIH and private donors. The total cost for the entire project is $2,0000,000. Operation and use of the instrument would be entirely by UCLA. The Biomedical Cyclotron Facility is a line item included on UCLA's Broad Scope A License. The CS-22 cyclotron was turned over to UCLA's jurisdiction by DOE in 1989 when the Laboratory of Biomedical and Environmental Sciences General Contract with DOE was changed to a Cooperative Agreement, and ''Clause B'' involving safety responsibility was terminated. In support of this, a large closeout survey was performed, licensing actions were completed, and it was agreed that environmental, health and safety compliance would be UCLA's responsibility. Since the CS022 cyclotron was DOE property prior to the above changes, DOE proposes to provide this entire funding for its removal and disposal, and to provide partial funding for its replacement. This report describes the removal of the existing cyclotron, and the operation and installation of a new cyclotron as well as any associated environmental impacts

  20. Managing the future: the Special Virus Leukemia Program and the acceleration of biomedical research.

    Science.gov (United States)

    Scheffler, Robin Wolfe

    2014-12-01

    After the end of the Second World War, cancer virus research experienced a remarkable revival, culminating in the creation in 1964 of the United States National Cancer Institute's Special Virus Leukemia Program (SVLP), an ambitious program of directed biomedical research to accelerate the development of a leukemia vaccine. Studies of cancer viruses soon became the second most highly funded area of research at the Institute, and by far the most generously funded area of biological research. Remarkably, this vast infrastructure for cancer vaccine production came into being before a human leukemia virus was shown to exist. The origins of the SVLP were rooted in as much as shifts in American society as laboratory science. The revival of cancer virus studies was a function of the success advocates and administrators achieved in associating cancer viruses with campaigns against childhood diseases such as polio and leukemia. To address the urgency borne of this new association, the SVLP's architects sought to lessen the power of peer review in favor of centralized Cold War management methods, fashioning viruses as "administrative objects" in order to accelerate the tempo of biomedical research and discovery. PMID:25459347

  1. Contrasting the ethical perspectives of biospecimen research among individuals with familial risk for hereditary cancer and biomedical researchers: implications for researcher training.

    Science.gov (United States)

    Quinn, Gwendolyn P; Koskan, Alexis; Sehovic, Ivana; Pal, Tuya; Meade, Cathy; Gwede, Clement K

    2014-07-01

    While ethical concerns about participating in biospecimen research have been previously identified, few studies have reported the concerns among individuals with familial risk for hereditary cancer (IFRs). At the same time, biomedical researchers often lack training in discussing such concerns to potential donors. This study explores IFRs' and biomedical researchers' perceptions of ethical concerns about participating in biobanking research. In separate focus groups, IFRs and biomedical researchers participated in 90-min telephone focus groups. Focus group questions centered on knowledge about laws that protect the confidentiality of biospecimen donors, understanding of informed consent and study procedures, and preferences for being recontacted about potential incidental discovery and also study results. A total of 40 IFRs and 32 biomedical researchers participated in the focus groups. Results demonstrated discrepancies between the perceptions of IFRs and researchers. IFRs' concerns centered on health information protection; potential discrimination by insurers and employers; and preferences for being recontacted upon discovery of gene mutations or to communicate study results. Researchers perceived that participants understood laws protecting donors' privacy and (detailed study information outlined in the informed consent process), study outcomes were used to create a training tool kit to increase researchers' understanding of IFRs' concerns about biobanking. PMID:24786355

  2. Collaborative mining and interpretation of large-scale data for biomedical research insights.

    Directory of Open Access Journals (Sweden)

    Georgia Tsiliki

    Full Text Available Biomedical research becomes increasingly interdisciplinary and collaborative in nature. Researchers need to efficiently and effectively collaborate and make decisions by meaningfully assembling, mining and analyzing available large-scale volumes of complex multi-faceted data residing in different sources. In line with related research directives revealing that, in spite of the recent advances in data mining and computational analysis, humans can easily detect patterns which computer algorithms may have difficulty in finding, this paper reports on the practical use of an innovative web-based collaboration support platform in a biomedical research context. Arguing that dealing with data-intensive and cognitively complex settings is not a technical problem alone, the proposed platform adopts a hybrid approach that builds on the synergy between machine and human intelligence to facilitate the underlying sense-making and decision making processes. User experience shows that the platform enables more informed and quicker decisions, by displaying the aggregated information according to their needs, while also exploiting the associated human intelligence.

  3. Critically engaging: integrating the social and the biomedical in international microbicides research.

    Science.gov (United States)

    Montgomery, Catherine M; Pool, Robert

    2011-01-01

    Randomized controlled trials and critical social theory are known not to be happy bedfellows. Such trials are embedded in a positivist view of the world, seeking definitive answers to testable questions; critical social theory questions the methods by which we deem the world knowable and may consider experiments in the biomedical sciences as social artifacts. Yet both of these epistemologically and methodologically divergent fields offer potentially important advances in HIV research. In this paper, we describe collaboration between social and biomedical researchers on a large, publicly funded programme to develop vaginal microbicides for HIV prevention. In terms of critical engagement, having integrated and qualitative social science components in the protocol meant potentially nesting alternative epistemologies at the heart of the randomized controlled trial. The social science research highlighted the fallibility and fragility of trial data by demonstrating inconsistencies in key behavioural measurements. It also foregrounded the disjuncture between biomedical conceptions of microbicides and the meanings and uses of the study gel in the context of users' everyday lives. These findings were communicated to the clinical and epidemiological members of the team on an ongoing basis via a feedback loop, through which new issues of concern could also be debated and, in theory, data collection adjusted to the changing needs of the programme. Although critical findings were taken on board by the trialists, a hierarchy of evidence nonetheless remained that limited the utility of some social science findings. This was in spite of mutual respect between clinical epidemiologists and social scientists, equal representation in management and coordination bodies, and equity in funding for the different disciplines. We discuss the positive role that social science integrated into an HIV prevention trial can play, but nonetheless highlight tensions that remain where a hierarchy

  4. Critically engaging: integrating the social and the biomedical in international microbicides research

    Directory of Open Access Journals (Sweden)

    Montgomery Catherine M

    2011-09-01

    Full Text Available Abstract Randomized controlled trials and critical social theory are known not to be happy bedfellows. Such trials are embedded in a positivist view of the world, seeking definitive answers to testable questions; critical social theory questions the methods by which we deem the world knowable and may consider experiments in the biomedical sciences as social artifacts. Yet both of these epistemologically and methodologically divergent fields offer potentially important advances in HIV research. In this paper, we describe collaboration between social and biomedical researchers on a large, publicly funded programme to develop vaginal microbicides for HIV prevention. In terms of critical engagement, having integrated and qualitative social science components in the protocol meant potentially nesting alternative epistemologies at the heart of the randomized controlled trial. The social science research highlighted the fallibility and fragility of trial data by demonstrating inconsistencies in key behavioural measurements. It also foregrounded the disjuncture between biomedical conceptions of microbicides and the meanings and uses of the study gel in the context of users’ everyday lives. These findings were communicated to the clinical and epidemiological members of the team on an ongoing basis via a feedback loop, through which new issues of concern could also be debated and, in theory, data collection adjusted to the changing needs of the programme. Although critical findings were taken on board by the trialists, a hierarchy of evidence nonetheless remained that limited the utility of some social science findings. This was in spite of mutual respect between clinical epidemiologists and social scientists, equal representation in management and coordination bodies, and equity in funding for the different disciplines. We discuss the positive role that social science integrated into an HIV prevention trial can play, but nonetheless highlight tensions

  5. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-09-30

    Progress is reported on biomedical studies using cyclotron-produced /sup 18/F, /sup 15/O, /sup 11/C, /sup 13/N, /sup 52/Fe, /sup 38/K, /sup 206/Bi, /sup 73/Se, /sup 53/Co, and /sup 43/K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; /sup 38/K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments. (HLW)

  6. Critical evaluation of the use of dogs in biomedical research and testing in Europe

    OpenAIRE

    Hasiwa, Nina; Bailey, Jarrod; Clausing, Peter; Daneshian, Mardas; Eileraas, Marianne; Farkas, Sándor; Gyertyán, István; Hubrecht, Robert; Kobel, Werner; Krummenacher, Goran; Leist, Marcel; Lohi, Hannes; Miklósi, Ádám; Ohl, Frauke; Olejniczak, Klaus

    2011-01-01

    Dogs are sometimes referred to as “man’s best friend” and with the increase in urbanization and lifestyle changes, dogs are seen by their owners as family members. Society expresses specific concerns about the experimental use of dogs, as they are sometimes perceived to have a special status for humans. This may appear somewhat conflicting with the idea that the intrinsic value of all animals is the same, and that also several other animal species are used in biomedical research and toxicolog...

  7. Requirements for data integration platforms in biomedical research networks: a reference model

    Directory of Open Access Journals (Sweden)

    Matthias Ganzinger

    2015-02-01

    Full Text Available Biomedical research networks need to integrate research data among their members and with external partners. To support such data sharing activities, an adequate information technology infrastructure is necessary. To facilitate the establishment of such an infrastructure, we developed a reference model for the requirements. The reference model consists of five reference goals and 15 reference requirements. Using the Unified Modeling Language, the goals and requirements are set into relation to each other. In addition, all goals and requirements are described textually in tables. This reference model can be used by research networks as a basis for a resource efficient acquisition of their project specific requirements. Furthermore, a concrete instance of the reference model is described for a research network on liver cancer. The reference model is transferred into a requirements model of the specific network. Based on this concrete requirements model, a service-oriented information technology architecture is derived and also described in this paper.

  8. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  9. Credibility Assessment of Deterministic Computational Models and Simulations for Space Biomedical Research and Operations

    Science.gov (United States)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Myers, Jerry

    2015-01-01

    Human missions beyond low earth orbit to destinations, such as to Mars and asteroids will expose astronauts to novel operational conditions that may pose health risks that are currently not well understood and perhaps unanticipated. In addition, there are limited clinical and research data to inform development and implementation of health risk countermeasures for these missions. Consequently, NASA's Digital Astronaut Project (DAP) is working to develop and implement computational models and simulations (M&S) to help predict and assess spaceflight health and performance risks, and enhance countermeasure development. In order to effectively accomplish these goals, the DAP evaluates its models and simulations via a rigorous verification, validation and credibility assessment process to ensure that the computational tools are sufficiently reliable to both inform research intended to mitigate potential risk as well as guide countermeasure development. In doing so, DAP works closely with end-users, such as space life science researchers, to establish appropriate M&S credibility thresholds. We will present and demonstrate the process the DAP uses to vet computational M&S for space biomedical analysis using real M&S examples. We will also provide recommendations on how the larger space biomedical community can employ these concepts to enhance the credibility of their M&S codes.

  10. Proposal for a new LEIR Slow Extraction Scheme dedicated to Biomedical Research

    CERN Document Server

    Garonna, A; Carli, C

    2014-01-01

    This report presents a proposal for a new slow extraction scheme for the Low Energy Ion Ring (LEIR) in the context of the feasibility study for a biomedical research facility at CERN. LEIR has to be maintained as a heavy ion accumulator ring for LHC and for fixed-target experiments with the SPS. In parallel to this on-going operation for physics experiments, an additional secondary use of LEIR for a biomedical research facility was proposed [Dosanjh2013, Holzscheiter2012, PHE2010]. This facility would complement the existing research beam-time available at other laboratories for studies related to ion beam therapy. The new slow extraction [Abler2013] is based on the third-integer resonance. The reference beam is composed of fully stripped carbon ions with extraction energies of 20-440 MeV/u, transverse physical emittances of 5-25 µm and momentum spreads of ±2-9•10-4. Two resonance driving mechanisms have been studied: the quadrupole-driven method and the RF-knockout technique. Both were made compatible...

  11. Big Data Application in Biomedical Research and Health Care: A Literature Review.

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812

  12. Big Data Application in Biomedical Research and Health Care: A Literature Review

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812

  13. MaPSeq, A Service-Oriented Architecture for Genomics Research within an Academic Biomedical Research Institution

    Directory of Open Access Journals (Sweden)

    Jason Reilly

    2015-07-01

    Full Text Available Genomics research presents technical, computational, and analytical challenges that are well recognized. Less recognized are the complex sociological, psychological, cultural, and political challenges that arise when genomics research takes place within a large, decentralized academic institution. In this paper, we describe a Service-Oriented Architecture (SOA—MaPSeq—that was conceptualized and designed to meet the diverse and evolving computational workflow needs of genomics researchers at our large, hospital-affiliated, academic research institution. We present the institutional challenges that motivated the design of MaPSeq before describing the architecture and functionality of MaPSeq. We then discuss SOA solutions and conclude that approaches such as MaPSeq enable efficient and effective computational workflow execution for genomics research and for any type of academic biomedical research that requires complex, computationally-intense workflows.

  14. Advances in porcine genomics and proteomics - a toolbox for developing the pig as a model organism for molecular biomedical research

    DEFF Research Database (Denmark)

    Bendixen, Emøke; Danielsen, Marianne; Larsen, Knud;

    2010-01-01

    genetics. Pigs, although not easily kept for laboratory research, are, however, readily available for biomedical research through the large scale industrial production of pigs produced for human consumption. Recent research has facilitated the biological experimentation with pigs, and helped develop the...... pig into a novel model organism for biomedical research. This toolbox includes the near completion of the pig genome, catalogues of genes and genetic variation in pigs, extensive characterization of pig proteomes and transcriptomes, as well as the development of transgenic disease models. The aim of...... this review is to highlight the current progress of these ongoing areas of research, which are mandatory for successful development of biomedical pig models that are in demand for understanding human biology in health and disease....

  15. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications.

    Science.gov (United States)

    Geissner, Andreas; Seeberger, Peter H

    2016-06-12

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings. PMID:27306309

  16. Strom Thurmond Biomedical Research Center at the Medical Univesity for South Carolina Charleston, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the proposed construction and operation of the Strom Thurmond Biomedical Research Center (Center) at the Medical University of South Carolina (MUSC), Charleston, SC. The DOE is evaluating a grant proposal to authorize the MUSC to construct, equip and operate the lower two floors of the proposed nine-story Center as an expansion of on-going clinical research and out-patient diagnostic activities of the Cardiology Division of the existing Gazes Cardiac Research Institute. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the NEPA. Therefore, the preparation of an Environmental Impact Statement is not required.

  17. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications

    Science.gov (United States)

    Geissner, Andreas; Seeberger, Peter H.

    2016-06-01

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

  18. A new paradigm for improved co-ordination and efficacy of European biomedical research: taking diabetes as a model.

    Science.gov (United States)

    Halban, P A; Boulton, A J M; Smith, U

    2013-03-01

    Today, European biomedical and health-related research is insufficiently well funded and is fragmented, with no common vision, less-than-optimal sharing of resources, and inadequate support and training in clinical research. Improvements to the competitiveness of European biomedical research will depend on the creation of new infrastructures that must be dynamic and free of bureaucracy, involve all stakeholders and facilitate faster delivery of new discoveries from bench to bedside. Taking diabetes research as the model, a new paradigm for European biomedical research is presented, which offers improved co-ordination and common resources that will benefit both academic and industrial clinical research. This includes the creation of a European Council for Health Research, first proposed by the Alliance for Biomedical Research in Europe, which will bring together and consult with all health stakeholders to develop strategic and multidisciplinary research programmes addressing the full innovation cycle. A European Platform for Clinical Research in Diabetes is proposed by the Alliance for European Diabetes Research (EURADIA) in response to the special challenges and opportunities presented by research across the European region, with the need for common standards and shared expertise and data. PMID:23238786

  19. The Impact of CRISPR/Cas9-Based Genomic Engineering on Biomedical Research and Medicine.

    Science.gov (United States)

    Go, D E; Stottmann, R W

    2016-01-01

    There has been prolonged and significant interest in manipulating the genome for a wide range of applications in biomedical research and medicine. An existing challenge in realizing this potential has been the inability to precisely edit specific DNA sequences. Past efforts to generate targeted double stranded DNA cleavage have fused DNA-targeting elements such as zinc fingers and DNA-binding proteins to endonucleases. However, these approaches are limited by both design complexity and inefficient, costineffective operation. The discovery of CRISPR/Cas9, a branch of the bacterial adaptive immune system, as a potential genomic editing tool holds the promise of facile targeted cleavage. Its novelty lies in its RNA-guided endonuclease activity, which enhances its efficiency, scalability, and ease of use. The only necessary components are a Cas9 endonuclease protein and an RNA molecule tailored to the gene of interest. This lowbarrier of adoption has facilitated a plethora of advances in just the past three years since its discovery. In this review, we will discuss the impact of CRISPR/Cas9 on biomedical research and its potential implications in medicine. PMID:26980700

  20. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    International Nuclear Information System (INIS)

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed

  1. Current practice of public involvement activities in biomedical research and innovation: a systematic qualitative review.

    Directory of Open Access Journals (Sweden)

    Jonas Lander

    Full Text Available BACKGROUND: A recent report from the British Nuffield Council on Bioethics associated 'emerging biotechnologies' with a threefold challenge: 1 uncertainty about outcomes, 2 diverse public views on the values and implications attached to biotechnologies and 3 the possibility of creating radical changes regarding societal relations and practices. To address these challenges, leading international institutions stress the need for public involvement activities (PIAs. The objective of this study was to assess the state of PIA reports in the field of biomedical research. METHODS: PIA reports were identified via a systematic literature search. Thematic text analysis was employed for data extraction. RESULTS: After filtering, 35 public consultation and 11 public participation studies were included in this review. Analysis and synthesis of all 46 PIA studies resulted in 6 distinguishable PIA objectives and 37 corresponding PIA methods. Reports of outcome translation and PIA evaluation were found in 9 and 10 studies respectively (20% and 22%. The paper presents qualitative details. DISCUSSION: The state of PIAs on biomedical research and innovation is characterized by a broad range of methods and awkward variation in the wording of objectives. Better comparability of PIAs might improve the translation of PIA findings into further policy development. PIA-specific reporting guidelines would help in this regard. The modest level of translation efforts is another pointer to the "deliberation to policy gap". The results of this review could inform the design of new PIAs and future efforts to improve PIA comparability and outcome translation.

  2. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    Energy Technology Data Exchange (ETDEWEB)

    Wolfram, J.H.; Radtke, M.; Wey, J.E.; Rogers, R.D. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Rau, E.H. [National Inst. of Health, Bethesda, MD (United States). Div. of Safety

    1997-10-01

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed.

  3. Assessing the impact of biomedical research in academic institutions of disparate sizes

    Directory of Open Access Journals (Sweden)

    Hatzakis Angelos

    2009-05-01

    Full Text Available Abstract Background The evaluation of academic research performance is nowadays a priority issue. Bibliometric indicators such as the number of publications, total citation counts and h-index are an indispensable tool in this task but their inherent association with the size of the research output may result in rewarding high production when evaluating institutions of disparate sizes. The aim of this study is to propose an indicator that may facilitate the comparison of institutions of disparate sizes. Methods The Modified Impact Index (MII was defined as the ratio of the observed h-index (h of an institution over the h-index anticipated for that institution on average, given the number of publications (N it produces i.e. (α and β denote the intercept and the slope, respectively, of the line describing the dependence of the h-index on the number of publications in log10 scale. MII values higher than 1 indicate that an institution performs better than the average, in terms of its h-index. Data on scientific papers published during 2002–2006 and within 36 medical fields for 219 Academic Medical Institutions from 16 European countries were used to estimate α and β and to calculate the MII of their total and field-specific production. Results From our biomedical research data, the slope β governing the dependence of h-index on the number of publications in biomedical research was found to be similar to that estimated in other disciplines (≈0.4. The MII was positively associated with the average number of citations/publication (r = 0.653, p Conclusion The MII should complement the use of h-index when comparing the research output of institutions of disparate sizes. It has a conceptual interpretation and, with the data provided here, can be computed for the total research output as well as for field-specific publication sets of institutions in biomedicine.

  4. Biomedical neutron research at the Californium User Facility for neutron science

    International Nuclear Information System (INIS)

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252Cf sources. Three projects at the CUF that demonstrate the versatility of 252Cf for biological and biomedical neutron-based research are described: future establishment of a 252Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy

  5. Study of beam transport lines for a biomedical research facility at CERN based on LEIR

    CERN Document Server

    Abler, D; Garonna, A; Peach, K

    2014-01-01

    The Low Energy Ion Ring (LEIR) at CERN has been proposed to provide ion beams with magnetic rigidities up to 6.7 T.m for biomedical research, in parallel to its continued operation for LHC and SPS fixed target physics experiments. In the context of this project, two beamlines are proposed for transporting the extracted beam to future experimental end-stations: a vertical beamline for specific low-energy radiobiological research, and a horizontal beamline for radiobiology and medical physics experimentation. This study presents a first linear-optics design for the delivery of 1–5mm FWHM pencil beams and 5 cm 5 cm homogeneous broad beams to both endstations. High field uniformity is achieved by selection of the central part of a strongly defocused Gaussian beam, resulting in low beam utilisation.

  6. Cell line cross-contamination in biomedical research: a call to prevent unawareness

    Institute of Scientific and Technical Information of China (English)

    Armando ROJAS; Ueana GONZALEZ; Hector FIGUEROA

    2008-01-01

    During the 1950s, cross-contamination of cell lines emerged as a problem with serious consequences on the quality of biomedical research. Unfortunately, this situation has worsened over years. In this context, some actions should be ur-gently undertaken to avoid the generation of misleading data due to the increas-ingly and sometimes neglected use of cross-contaminated cell lines. Unaware-ness about this problem may then turn many scientists into victims or even perpe-trators of this unwanted situation. Collaborative actions involving researchers, cell banks, journals, and funding agencies are needed to save the scientific repu-tation as well as many public or private resources that are used to produce mis-leading data.

  7. Biomedical neutron research at the Californium User Facility for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.C. [Oak Ridge National Lab., TN (United States); Byrne, T.E. [Roane State Community College, Harriman, TN (United States); Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-04-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact {sup 252}Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with {sup 252}Cf sources. Three projects at the CUF that demonstrate the versatility of {sup 252}Cf for biological and biomedical neutron-based research are described: future establishment of a {sup 252}Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded {sup 252}Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy.

  8. [The legal question of the obtention of human stem cells for biomedical research. Legislation policy considerations].

    Science.gov (United States)

    Romeo Casabona, Carlos María

    2006-01-01

    The future Law on Biomedical Research, whose draft bill has been approved by the Council of Ministers and that will soon begin its parliamentary process of approval, will regulate, among other matters, the research with embryos. Likewise, it will make a pronouncement on the so-called therapeutic cloning. This report makes a detailed analysis of different matters that must be borne in mind by the legislator in order to face the process of evaluation and approval of said Law in relation with the aforementioned matters. It makes a special analysis of the legal texts of an international nature to which Spain is unavoidably subjected to, in such a way that the legislative text that will finally be approved is not contrary to the dispositions that are within such. PMID:17124973

  9. Resolving complex research data management issues in biomedical laboratories: Qualitative study of an industry-academia collaboration.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L; Bova, G Steven; Wang, Jian; Ackerman, Christopher F; Berlinicke, Cynthia A; Chen, Steve H; Lindvall, Mikael; Zack, Donald J

    2016-04-01

    This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to (1) characterize specific problems faced by biomedical researchers with traditional information management practices, (2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to (3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. PMID:26652980

  10. [The application progresses of the two dimensional electrophoresis in biomedical research].

    Science.gov (United States)

    Wang, Yuebin; Tang, Hong

    2011-12-01

    Research about proteomics is of great significance. Two-dimensional electrophoresis (2-DE) is a core technology of proteomics research, which is used for analysis of the protein extracted from cell, tissue and other sam-nology of proteomics research, which is used for analysis of the protein extracted from cell, tissue and other samples. In recent years, 2-DE combined with mass spectrum (MS) technology is widely used to identify differentialples. In recent years, 2-DE combined with mass spectrum (MS) technology is widely used to identify differential protein, to screen tumor markers, to detect drug targets and so on. Proteomics research has become key technology,protein, to screen tumor markers, to detect drug targets and so on. Proteomics research has become key technology, with its high throughput, high resolution and repeatability, and is widely used in various fields, particularly in bio-with its high throughput, high resolution and repeatability, and is widely used in various fields, particularly in biomedical research. We provided here a short review about the application development of 2-DE, especially its contribution on biological medicine. PMID:22295720

  11. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  12. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately

  13. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    Science.gov (United States)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey

  14. Recent advances in three-dimensional multicellular spheroid culture for biomedical research.

    Science.gov (United States)

    Lin, Ruei-Zeng; Lin, Ruei-Zhen; Chang, Hwan-You

    2008-10-01

    Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques. PMID:18566957

  15. Biomedical research funding: when the game gets tough, winners start to play.

    Science.gov (United States)

    Ascoli, Giorgio A

    2007-09-01

    Extramural funding provides major support for biomedical research in academia, and National Institutes of Health (NIH) grants often constitute direct evaluation criteria for promotions and tenure. Therefore, NIH budget trends influence long-term scientific strategies and career decisions, as well as the progress of science itself. Our analysis of the last 37 years of NIH awards, however, reveals that the success rate of grant applications submitted for funding is negatively related to the total yearly amount of (inflation-adjusted) NIH extramural expenditure. Instead, as might be expected, the ratio between available funding and the number of submission directly predicts the probability of winning support in any given year. We purport that the considerable success rate variability can be parsimoniously explained by a proportional but delayed reaction of the number of applications to budget fluctuations. As a counterintuitive consequence, grant proposals conceived during lean periods might stand the best chance of success. PMID:17688241

  16. Design, implementation, and evaluation of principles of writing biomedical research paper course

    Directory of Open Access Journals (Sweden)

    ALI AKBAR NEKOOEIAN

    2013-10-01

    Full Text Available Introduction: Graduate (PhD students in medical sciences, who will form future faculties and investigators in Iran’s Universities of Medical Sciences, are not trained on scientific writing during their training. The present study describes the design, implementation, and evaluation of Principles of Writing Biomedical Research Paper course. Methods: The course, prepared based on an extensive search of the literature and books on writing biomedical research papers, was offered as an elective course to PhD students at Shiraz University of Medical Sciences in the second semester of 2011-2012 academic year. The structure and function of various sections of a paper and publication ethics were discussed in lecture and practical sessions over a period of 12 weeks. The course was then evaluated using a self-designed questionnaire. Results: The majority of students gave the highest score (20 to the content and implementation of all sessions of the course. Moreover, most of them believed that the allotted time to the course was not enough, and suggested that it should be increased to 32 hours (equal to two credits. Also, almost all the participants believed that overall the materials lectured were comprehensive, the practical sessions were important in learning the lectured materials, and the course was useful in advancing their abilities and skills to write papers. Conclusion: The evaluation of the present course showed that it was able to increase the participants’ knowledge of the structure of scientific papers, and enhanced their abilities and skills to write papers. The evaluation was used as a basis to modify the course.

  17. Bias in the reporting of sex and age in biomedical research on mouse models.

    Science.gov (United States)

    Flórez-Vargas, Oscar; Brass, Andy; Karystianis, George; Bramhall, Michael; Stevens, Robert; Cruickshank, Sheena; Nenadic, Goran

    2016-01-01

    In animal-based biomedical research, both the sex and the age of the animals studied affect disease phenotypes by modifying their susceptibility, presentation and response to treatment. The accurate reporting of experimental methods and materials, including the sex and age of animals, is essential so that other researchers can build on the results of such studies. Here we use text mining to study 15,311 research papers in which mice were the focus of the study. We find that the percentage of papers reporting the sex and age of mice has increased over the past two decades: however, only about 50% of the papers published in 2014 reported these two variables. We also compared the quality of reporting in six preclinical research areas and found evidence for different levels of sex-bias in these areas: the strongest male-bias was observed in cardiovascular disease models and the strongest female-bias was found in infectious disease models. These results demonstrate the ability of text mining to contribute to the ongoing debate about the reproducibility of research, and confirm the need to continue efforts to improve the reporting of experimental methods and materials. PMID:26939790

  18. Challenges facing academic research in commercializing event-detector implantable devices for an in-vivo biomedical subcutaneous device for biomedical analysis

    Science.gov (United States)

    Juanola-Feliu, E.; Colomer-Farrarons, J.; Miribel-Català, P.; Samitier, J.; Valls-Pasola, J.

    2011-05-01

    It is widely recognized that the welfare of the most advanced economies is at risk, and that the only way to tackle this situation is by controlling the knowledge economies and dealing with. To achieve this ambitious goal, we need to improve the performance of each dimension in the "knowledge triangle": education, research and innovation. Indeed, recent findings point to the importance of strategies of adding-value and marketing during R+D processes so as to bridge the gap between the laboratory and the market and so ensure the successful commercialization of new technology-based products. Moreover, in a global economy in which conventional manufacturing is dominated by developing economies, the future of industry in the most advanced economies must rely on its ability to innovate in those high-tech activities that can offer a differential added-value, rather than on improving existing technologies and products. It seems quite clear, therefore, that the combination of health (medicine) and nanotechnology in a new biomedical device is very capable of meeting these requisites. This work propose a generic CMOS Front-End Self-Powered In-Vivo Implantable Biomedical Device, based on a threeelectrode amperometric biosensor approach, capable of detecting threshold values for targeted concentrations of pathogens, ions, oxygen concentration, etc. Given the speed with which diabetes can spread, as diabetes is the fastest growing disease in the world, the nano-enabled implantable device for in-vivo biomedical analysis needs to be introduced into the global diabetes care devices market. In the case of glucose monitoring, the detection of a threshold decrease in the glucose level it is mandatory to avoid critic situations like the hypoglycemia. Although the case study reported in this paper is complex because it involves multiple organizations and sources of data, it contributes to extend experience to the best practices and models on nanotechnology applications and

  19. Biomedical optical imaging

    CERN Document Server

    Fujimoto, James G

    2009-01-01

    Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this tech

  20. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  1. Recurrent Aspergillus contamination in a biomedical research facility: a case study.

    Science.gov (United States)

    Cornelison, Christopher T; Stubblefield, Bryan; Gilbert, Eric; Crow, Sidney A

    2012-02-01

    Fungal contamination of biomedical processes and facilities can result in major revenue loss and product delay. A biomedical research facility (BRF) culturing human cell lines experienced recurring fungal contamination of clean room incubators over a 3-year period. In 2010, as part of the plan to mitigate contamination, 20 fungal specimens were isolated by air and swab samples at various locations within the BRF. Aspergillus niger and Aspergillus fumigatus were isolated from several clean-room incubators. A. niger and A. fumigatus were identified using sequence comparison of the 18S rRNA gene. To determine whether the contaminant strains isolated in 2010 were the same as or different from strains isolated between 2007 and 2009, a novel forensic approach to random amplified polymorphic DNA (RAPD) PCR was used. The phylogenetic relationship among isolates showed two main genotypic clusters, and indicated the continual presence of the same A. fumigatus strain in the clean room since 2007. Biofilms can serve as chronic sources of contamination; visual inspection of plugs within the incubators revealed fungal biofilms. Moreover, confocal microscopy imaging of flow cell-grown biofilms demonstrated that the strains isolated from the incubators formed dense biofilms relative to other environmental isolates from the BRF. Lastly, the efficacies of various disinfectants employed at the BRF were examined for their ability to prevent spore germination. Overall, the investigation found that the use of rubber plugs around thermometers in the tissue culture incubators provided a microenvironment where A. fumigatus could survive regular surface disinfection. A general lesson from this case study is that the presence of microenvironments harboring contaminants can undermine decontamination procedures and serve as a source of recurrent contamination. PMID:22143434

  2. Identifying the ‘Vulnerables’ in Biomedical Research: the vox populis from the Tuskegee Legacy Project

    Science.gov (United States)

    Wiley, John

    2011-01-01

    Objectives This report presents, for the first time, findings on the vox populis as to who constitutes the ‘vulnerables in biomedical research’. Methods The 3-City Tuskegee Legacy Project (TLP) study used the TLP Questionnaire as administered via RDD telephone interviews to 1,162 adult Blacks, non-Hispanic Whites, and two Puerto Rican (PR) Hispanic groups: Mainland U.S. and San Juan (SJ) in 3 cities. The classification schema was based upon respondents’ answers to an open-ended question asking which groups of people were the most vulnerable when participating in biomedical research. Results Subjects provided 749 valid open-ended responses which were grouped into 29 direct response categories, leading to a 4 tier classification schema for vulnerability traits. Tier 1, the summary tier, had five vulnerability categories: 1) Race/ethnicity; 2) Age; 3) SES; 4) Health; and, 5) Gender. Blacks and Mainland U.S. PR Hispanics most frequently identified Race/Ethnicity as a vulnerability trait (42.1% of Blacks and 42.6% of Mainland U.S. PR Hispanics vs. 15.4% of Whites and 16.7% of San Juan R Hispanics) (p<.007), while Whites and SJ PR Hispanics most frequently identified Age (48.3% and 29.2%) as a vulnerability trait. Conclusions The response patterns on ‘who was vulnerable’ were similar for the two minority groups (Blacks and Mainland U.S. PR Hispanics), and notably different from the response patterns of the two majority groups (Whites and SJPR Hispanics). Further, the vox populis definition of vulnerables differed from the current official definitions as used by the U.S. federal government. PMID:21972462

  3. Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute

    Science.gov (United States)

    Dujardin, Gwendal; Cabrera-Andrade, Alejandro; Paz-y-Miño, César; Indacochea, Alberto; Inglés-Ferrándiz, Marta; Nadimpalli, Hima Priyanka; Collu, Nicola; Dublanche, Yann; De Mingo, Ismael; Camargo, David

    2016-01-01

    Electronic laboratory notebooks (ELNs) will probably replace paper laboratory notebooks (PLNs) in academic research due to their advantages in data recording, sharing and security. Despite several reports describing technical characteristics of ELNs and their advantages over PLNs, no study has directly tested ELN performance among researchers. In addition, the usage of tablet-based devices or wearable technology as ELN complements has never been explored in the field. To implement an ELN in our biomedical research institute, here we first present a technical comparison of six ELNs using 42 parameters. Based on this, we chose two ELNs, which were tested by 28 scientists for a 3-month period and by 80 students via hands-on practical exercises. Second, we provide two survey-based studies aimed to compare these two ELNs (PerkinElmer Elements and Microsoft OneNote) and to analyze the use of tablet-based devices. We finally explore the advantages of using wearable technology as ELNs tools. Among the ELNs tested, we found that OneNote presents almost all parameters evaluated (39/42) and both surveyed groups preferred OneNote as an ELN solution. In addition, 80% of the surveyed scientists reported that tablet-based devices improved the use of ELNs in different respects. We also describe the advantages of using OneNote application for Apple Watch as an ELN wearable complement. This work defines essential features of ELNs that could be used to improve ELN implementation and software development. PMID:27479083

  4. A microcosm of the biomedical research experience for upper-level undergraduates.

    Science.gov (United States)

    Hurd, Daryl D

    2008-01-01

    The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John Fisher College, features two independent projects that take advantage of the biology of the nematode Caenorhabditis elegans, a premier yet simple model organism. First, students perform a miniature epigenetic screen for novel phenotypes using RNA interference. The results of this screen combined with literature research direct students toward a singe gene that they attempt to subclone in the second project. The biology of the chosen gene/protein also becomes an individualized focal point with respect to the content of the laboratory. Progress toward course goals is evaluated using written, oral, and group-produced assignments, including a concept map. Pre- and postassessment indicates a significant increase in the understanding of broad concepts in cell biological research. PMID:18519612

  5. Integrating Clinical Medicine into Biomedical Graduate Education to Promote Translational Research: Strategies from Two New PhD Programs

    OpenAIRE

    Smith, Carolyn L; Jarrett, Marcia; Bierer, S. Beth

    2013-01-01

    For several decades, a barrier has existed between research and clinical medicine, making it difficult for aspiring scientists to gain exposure to human pathophysiology and access to clinical/translational research mentors during their graduate training. In 2005, the Howard Hughes Medical Institute announced the Med Into Grad initiative to support graduate programs that integrate clinical knowledge into PhD biomedical training, with the goal of preparing a new cadre of translational researche...

  6. Technical aspects of exposure to magnetic fields of extremely low frequencies (ELF in biomedical research

    Directory of Open Access Journals (Sweden)

    Paweł Bieńkowski

    2015-06-01

    Full Text Available Background: Experiments on the electromagnetic field influence on organisms are an important part of biophysical studies. It is an interdisciplinary research spanning biology and medicine with the engineering in generation and measurement of electromagnetic fields. The aim of the study consists in the analysis of parameters estimations and measurements of extremely low frequency magnetic field (ELF MF as well as exposure systems parameters in biomedical research. Material and Methods: Experiments were performed on 2 most popular low magnetic field exposure systems: the solenoid and Helmholtz coils. A theoretical analysis and a measurement verification of the magnetic field distribution inside the systems were carried out to evaluate the homogeneity of the magnetic field. Additional factors, vibrations and temperature changes, affecting the assessment of the biological effects of magnetic field exposure were also examined. Results: Based on the study results, a comparative analysis of solenoids and Helmholtz coils as the magnetic field exposure systems was presented. Proposals for the description of magnetic field exposure were also formulated. Conclusions: The authors emphasize the importance of a conscious choice of exposure conditions and their explicit description. These are fundamental requirements for both the reproduction of experimental conditions and the verification of results. Med. Pr. 2015;66(2:185–197

  7. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  8. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  9. Real-time Data Fusion Platforms: The Need of Multi-dimensional Data-driven Research in Biomedical Informatics.

    Science.gov (United States)

    Raje, Satyajeet; Kite, Bobbie; Ramanathan, Jay; Payne, Philip

    2015-01-01

    Systems designed to expedite data preprocessing tasks such as data discovery, interpretation, and integration that are required before data analysis drastically impact the pace of biomedical informatics research. Current commercial interactive and real-time data integration tools are designed for large-scale business analytics requirements. In this paper we identify the need for end-to-end data fusion platforms from the researcher's perspective, supporting ad-hoc data interpretation and integration. PMID:26262406

  10. Customizable Electronic Laboratory Online (CELO): A Web-based Data Management System Builder for Biomedical Research Laboratories

    OpenAIRE

    Fong, Christine; Brinkley, James F.

    2006-01-01

    A common challenge among today’s biomedical research labs is managing growing amounts of research data. In order to reduce the time and resource costs of building data management tools, we designed the Customizable Electronic Laboratory Online (CELO) system. CELO automatically creates a generic database and web interface for laboratories that submit a simple web registration form. Laboratories can then use a collection of predefined XML templates to assist with the design of a database schema...

  11. Lessons Learned from Development of De-identification System for Biomedical Research in a Korean Tertiary Hospital

    OpenAIRE

    Shin, Soo-Yong; Lyu, Yongman; Shin, Yongdon; Choi, Hyo Joung; Park, Jihyun; Kim, Woo-Sung; Lee, Jae Ho

    2013-01-01

    Objectives The Korean government has enacted two laws, namely, the Personal Information Protection Act and the Bioethics and Safety Act to prevent the unauthorized use of medical information. To protect patients' privacy by complying with governmental regulations and improve the convenience of research, Asan Medical Center has been developing a de-identification system for biomedical research. Methods We reviewed Korean regulations to define the scope of the de-identification methods and well...

  12. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    OpenAIRE

    Mitsuo Niinomi

    2003-01-01

    Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys f...

  13. Laboratory maintenance, breeding, rearing, and biomedical research potential of the Yucatan octopus (Octopus maya).

    Science.gov (United States)

    Van Heukelem, W F

    1977-10-01

    Eggs of the Yucatan octopus, Octopus maya, were collected at Campeche, Mexico, transported to Hawaii, and incubated in glass funnels. Benthic juveniles hatched from the large (17-mm) eggs and were reared on a variety of live and frozen foods. As many as 200 animals were reared for the first month in a 20-liter aquarium. No disease or parasite problems were encountered and nearly all well-fed juveniles survived to sexual maturity. The species was reared through four generations in the laboratory. Animals weighed 0.1 g at hatching and within 8.5 months attained an average weight of 3231 g. Mating was promiscuous and sperm were stored in the oviducts until spawning. Spawning occurred at 8-9 months of age. Up to 5,000 eggs were laid by large females and nearly 100% of fertilized eggs developed to hatching. Females brooded eggs during the 45-day period of development but artificial was as successful as natural incubation by the mother. Pos-reproductive senescent decline of both males and females was rapid and average life span was 300 days from hatching. Areas of biomedical research in which O maya could be a useful model were suggested and included neurobiology, comparative psychology, ontogeny of behavior, immunology, endocrinology, and studies of aging. PMID:592733

  14. Nuclear magnetic resonance (NMR) spectroscopy and its application to biomedical research

    International Nuclear Information System (INIS)

    The principles of nuclear magnetic resonance (NMR) spectroscopy were explained and its application to biomedical research discussed. With 31P-NMR, it is feasible to conduct a continuous, non-invasive measurement of the contents of myocardial high-energy phosphate compounds and the intracellular pH (determined by monitoring the pH dependent shift of the inorganic phosphate peak relative to that of creatine phosphate), and to correlate them with the mechanical function. The determination of the free magnesium concentration is also possible on a similar principle to that for pH determination (the shift of MgATP peaks relative to ATP is utilized in this case). It is estimated to be 0.3 mM and was found not to be changed during ischemia. Several examples of studies including our own conducted to delineate the ischemic derangements of the myocardial energy metabolism and the effects of various interventions thereupon were illustrated. Finally a brief mention was made of the saturation transfer technique. This is the only method with which one can study the kinetics of the enzyme reactions under in vivo conditions. The application of the method for analysis of the creatine kinase reaction and the ATP synthesis was demonstrated. (author) 49 refs

  15. High pressure FT-IR spectroscopy for biomedical and cancer research

    Science.gov (United States)

    Wong, Patrick T. T.

    1994-07-01

    By resolving technical and methodological problems, we are now able to obtain extremely high quality infrared spectra of animal and human tissues and cells as a function of pressure. This allows us to analyze the spectra in great details in terms of structural and dynamic properties at the molecular level in a wide range of biological and biomedical problems. For instance, in our cancer research we found that many structural modifications of cellular molecules in the malignant transformation are common to all the cancers that we have studied to data. Recently, large scale evaluation of the use of high-pressure FT-IR spectroscopy for the prescreening of cancer as well as preinvasive lesions of the cervix has been initiated in our laboratory. In order to optimize the specificity of the FT-IR technology for cervical screening, we have systematically studied and analyzed the high-pressure infrared spectra of individual abnormal lessons of the cervix. The results of one of these studies, differentiation between malignancy and inflammation in the human uterine cervix are given in this paper.

  16. Performing Drug Safety Research During Pregnancy and Lactation: Biomedical HIV Prevention Research as a Template.

    Science.gov (United States)

    Beigi, Richard H; Noguchi, Lisa; Brown, Gina; Piper, Jeanna; Watts, D Heather

    2016-07-01

    Evidence-based guidance regarding use of nearly all pharmaceuticals by pregnant and lactating women is limited. Models for performing research may assist in filling these knowledge gaps. Internationally, reproductive age women are at high risk of human immunodeficiency virus (HIV) acquisition. Susceptibility to HIV infection may be increased during pregnancy, and risk of maternal-child transmission is increased with incident HIV infection during pregnancy and lactation. A multidisciplinary meeting of experts was convened at the United States National Institutes of Health to consider paradigms for drug research in pregnancy and lactation applicable to HIV prevention. This report summarizes the meeting proceedings and describes a framework for research on candidate HIV prevention agent use during pregnancy and lactation that may also have broader applications to other pharmaceutical products. PMID:23808668

  17. Using multicriteria decision analysis to support research priority setting in biomedical translational research projects.

    Science.gov (United States)

    de Graaf, Gimon; Postmus, Douwe; Buskens, Erik

    2015-01-01

    Translational research is conducted to achieve a predefined set of economic or societal goals. As a result, investment decisions on where available resources have the highest potential in achieving these goals have to be made. In this paper, we first describe how multicriteria decision analysis can assist in defining the decision context and in ensuring that all relevant aspects of the decision problem are incorporated in the decision making process. We then present the results of a case study to support priority setting in a translational research consortium aimed at reducing the burden of disease of type 2 diabetes. During problem structuring, we identified four research alternatives (primary, secondary, tertiary microvascular, and tertiary macrovascular prevention) and a set of six decision criteria. Scoring of these alternatives against the criteria was done using a combination of expert judgement and previously published data. Lastly, decision analysis was performed using stochastic multicriteria acceptability analysis, which allows for the combined use of numerical and ordinal data. We found that the development of novel techniques applied in secondary prevention would be a poor investment of research funds. The ranking of the remaining alternatives was however strongly dependent on the decision maker's preferences for certain criteria. PMID:26495288

  18. Climate Change, Human Health, and Biomedical Research: Analysis of the National Institutes of Health Research Portfolio

    OpenAIRE

    Jessup, Christine M.; Balbus, John M.; Christian, Carole; Haque, Ehsanul; Howe, Sally E.; Newton, Sheila A.; Reid, Britt C.; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P.

    2013-01-01

    Background: According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. Objectives: In this commentary we p...

  19. [The role of animal testing advisory committees in biomedical research in Germany].

    Science.gov (United States)

    Sauer, Ursula G

    2006-01-01

    In accordance with the German Animal Welfare Act, animal experiments in fundamental biomedical research may only be performed after licensing by the responsible authority. This license may only be granted if the experiments are considered indispensable and if the distress of the animals seems ethically acceptable in relation to the purpose of the study. Since 1987 advisory committees have been established to support the authorities in the evaluation of these provisions. Animal welfare organisations had expected case-by-case evaluations of the in-dispensability of research proposals and of the distress of the animals and the scientific benefit of the experiments to take place in these committees, so that such projects that would not meet the criteria of ethical acceptability could be prevented. However, already the lack of parity in the advisory committees alone, in which as a rule four scientists counterpart two representatives from animal welfare organisations, often-times prevents a balanced discussion of these provisions from taking place. Additionally, due to the freedom of science granted in the German Constitution without reservations, until 2002 also the licensing authorities were merely permitted to perform a formal examination of the applications. In the mean time, by including animal welfare as a national objective in the Constitution, the preconditions were made to enable an examination of the contents. From the point of view of animal welfare it therefore is to be requested that now also the advisory committees are ascribed more importance in the course of the licensing procedure and to establish the legal framework for this, if necessary by a revision of the Animal Welfare Act. PMID:16477346

  20. A Perspective on Promoting Diversity in the Biomedical Research Workforce: The National Heart, Lung, and Blood Institute's PRIDE Program.

    Science.gov (United States)

    Boyington, Josephine E A; Maihle, Nita J; Rice, Treva K; Gonzalez, Juan E; Hess, Caryl A; Makala, Levi H; Jeffe, Donna B; Ogedegbe, Gbenga; Rao, Dabeeru C; Dávila-Román, Victor G; Pace, Betty S; Jean-Louis, Girardin; Boutjdir, Mohamed

    2016-01-01

    Aspiring junior investigators from groups underrepresented in the biomedical sciences face various challenges as they pursue research independence. However, the biomedical research enterprise needs their participation to effectively address critical research issues such as health disparities and health inequities. In this article, we share a research education and mentoring initiative that seeks to address this challenge: Programs to Increase Diversity among Individuals Engaged in Health Related Research (PRIDE), funded by the National Heart, Lung, and Blood Institute (NHLBI). This longitudinal research-education and mentoring program occurs through summer institute programs located at US-based academic institutions. Recruited participants are exposed to didactic and lab-based research-skill enhancement experiences, with year-round mentoring over the course of two years. Mentor-mentee matching is based on shared research interests to promote congruence and to enhance skill acquisition. Program descriptions and sample narratives of participants' perceptions of PRIDE's impact on their career progress are showcased. Additionally, we highlight the overall program design and structure of four of seven funded summer institutes that focus on cardiovascular disease, related conditions, and health disparities. Mentees' testimonials about the value of the PRIDE mentoring approach in facilitating career development are also noted. Meeting the clinical and research needs of an increasingly diverse US population is an issue of national concern. The PRIDE initiative, which focuses on increasing research preparedness and professional development of groups underrepresented in the biomedical research workforce, with an emphasis on mentoring as the critical approach, provides a robust model that is impacting the careers of future investigators. PMID:27440978

  1. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research Part 1: Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1995-04-01

    Research in the biomedical sciences at PNL is described. Activities reported include: inhaled plutonium in dogs; national radiobiology archives; statistical analysis of data from animal studies; genotoxicity of inhaled energy effluents; molecular events during tumor initiation; biochemistry of free radical induced DNA damage; radon hazards in homes; mechanisms of radon injury; genetics of radon induced lung cancer; and in vivo/in vitro radon induced cellular damage.

  2. Public views on the donation and use of human biological samples in biomedical research: a mixed methods study

    OpenAIRE

    Lewis, C.; Clotworthy, M.; Hilton, S; MaGee, C.; Robertson, M. J.; Stubbins, L.J.; Corfield, J.

    2013-01-01

    Objective A mixed methods study exploring the UK general public's willingness to donate human biosamples (HBSs) for biomedical research. Setting Cross-sectional focus groups followed by an online survey. Participants Twelve focus groups (81 participants) selectively sampled to reflect a range of demographic groups; 1110 survey responders recruited through a stratified sampling method with quotas set on sex, age, geographical location, socioeconomic group and ethnicity. Main outcom...

  3. Biomedical research involving patients with disorders of consciousness: ethical and legal dimensions

    Directory of Open Access Journals (Sweden)

    Michele Farisco

    2014-09-01

    Full Text Available The directive 2001/20/UE and the research involving patients with docs. Research involving patients with disorders of consciousness (DOCs deserves special ethical and legal attention because of its Janus-faced nature. On the one hand, it raises concerns about the risk to expose the involved subjects to disproportionate risks not respecting their individual dignity, particularly their right to be cared for; on the other hand, research is an essential tool in order to improve the clinical condition of patients with DOCs. The present paper concerns the ethical and legal dimensions of biomedical research involving patients with disorders of consciousness. In particular, it focuses on informed consent to experimental treatments, which is a challenging issue both from an ethical and legal point of view. The first part reads the Directive 2001/20/EU in the light of the experimentation of patients with DOCs, and suggests a revision in order to better assess the issue of informed consent. The particular case of informed consent for observational studies of non-communicative patients. The second part presents an informed consent form for studies through video-recording of patients unable to communicate their own consent. This form has been elaborated by the bioethics unit of the project "Review of the nosography of vegetative states: application of methods of behavioral analysis to individuals in coma or vegetative state" developed at the Italian National Institute of Health. Relevance of the suggested form. The paper describes the conceptual framework of the form for informed consent to studies through video-recoding, which is a relevant example of what issues should be included in an informed consent for any type of studies through video-recording of patients unable to express their own consent. The article has been sent on November the 7th 2013, before the adoption of the Regulation (EU no. 536/2014 (and consequent abrogation of the Directive 2001

  4. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Wehrl, Hans F.; Judenhofer, Martin S.; Wiehr, Stefan; Pichler, Bernd J. [University of Tuebingen, Department of Radiology, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Tuebingen (Germany)

    2009-03-15

    Combined PET/MRI allows for multi-parametric imaging and reveals one or more functional processes simultaneously along with high-resolution morphology. Especially in small-animal research, where high soft tissue contrast is required, and the scan time as well as radiation dose are critical factors, the combination of PET and MRI would be beneficial compared with PET/CT. In the mid-1990's, several research groups used different approaches to integrate PET detectors into high-field MRI. First, systems were based on optical fibres guiding the scintillation light to the PMT's, which reside outside the fringe magnetic field. Recent advances in gamma ray detector technology, which were initiated mainly by the advent of avalanche photodiodes (APD's) as well as the routine availability of fast scintillation materials like lutetium oxyorthosilicate (LSO), paved the way towards the development of fully magnetic-field-insensitive high-performance PET detectors. Current animal PET/MR technologies are reviewed and pitfalls when engineering a full integration of a PET and a high-field MRI are discussed. Compact PET detectors can be integrated in small-bore, high-field MRI tomographs. Detailed performance evaluations have shown that the mutual interference between the two imaging systems could be minimized. The performance of all major MR applications, ranging from T1- or T2-weighted imaging up to echo-planar imaging (EPI) for functional MRI (fMRI) or magnetic resonance spectroscopy (MRS), could be maintained, even when the PET insert was built into the MRI and acquiring PET data simultaneously. Similarly, the PET system performance was not influenced by the static magnetic field or applied MRI sequences. Initial biomedical research applications range from the combination of functional information from PET with the anatomical information from the MRI to multi-functional imaging combining metabolic PET and MRI data. Compared to other multi-modality approaches PET

  5. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  6. Size and characteristics of the biomedical research workforce associated with U.S. National Institutes of Health extramural grants.

    Science.gov (United States)

    Pool, Lindsay R; Wagner, Robin M; Scott, Lindsey L; RoyChowdhury, Deepshikha; Berhane, Rediet; Wu, Charles; Pearson, Katrina; Sutton, Jennifer A; Schaffer, Walter T

    2016-03-01

    The U.S. National Institutes of Health (NIH) annually invests approximately $22 billion in biomedical research through its extramural grant programs. Since fiscal year (FY) 2010, all persons involved in research during the previous project year have been required to be listed on the annual grant progress report. These new data have enabled the production of the first-ever census of the NIH-funded extramural research workforce. Data were extracted from All Personnel Reports submitted for NIH grants funded in FY 2009, including position title, months of effort, academic degrees obtained, and personal identifiers. Data were de-duplicated to determine a unique person count. Person-years of effort (PYE) on NIH grants were computed. In FY 2009, NIH funded 50,885 grant projects, which created 313,049 full- and part-time positions spanning all job functions involved in biomedical research. These positions were staffed by 247,457 people at 2,604 institutions. These persons devoted 121,465 PYE to NIH grant-supported research. Research project grants each supported 6 full- or part-time positions, on average. Over 20% of positions were occupied by postdoctoral researchers and graduate and undergraduate students. These baseline data were used to project workforce estimates for FYs 2010-2014 and will serve as a foundation for future research.-Pool, L. R., Wagner, R. M., Scott, L. L., RoyChowdhury, D., Berhane, R., Wu, C., Pearson, K., Sutton, J. A., Schaffer, W. T. Size and characteristics of the biomedical research workforce associated with U.S. National Institutes of Health extramural grants. PMID:26625903

  7. International Space Station as Analog of Interplanetary Transit Vehicle For Biomedical Research

    Science.gov (United States)

    Charles, John B.

    2012-01-01

    Astronaut missions lasting up to six months aboard the International Space Station (ISS) have much in common with interplanetary flights, especially the outbound, Earth-to-Mars transit portion of a Mars mission. Utilization of ISS and other appropriate platforms to prepare for crewed expeditions to planetary destinations including Mars has been the work of NASA's Human Research Program (HRP) since 2005. HRP is charged specifically to understand and reduced the risks to astronaut health and performance in space exploration missions: everything HRP does and has done is directly related to that responsibility. Two major categories of human research have capitalized on ISS capabilities. The first category centers on the biomedical aspects of long-duration exposure to spaceflight factors, including prolonged weightlessness, radiation exposure, isolation and confinement, and actual risk to life and limb. These studies contribute to astronaut safety, health and efficiency on any long-duration missions, whether in low Earth orbit (LEO) or beyond. Qualitatively, weightlessness is weightlessness, whether in LEO or en route to Mars. The HRP sponsors investigations into losses in muscle and bone integrity, cardiovascular function, sensory-motor capability, immune capacity and psychosocial health, and development and demonstration of appropriate treatments and preventative measures. The second category includes studies that are focused on planetary expeditions beyond LEO. For these, ISS offers a high fidelity analog to investigate the combined effects of spaceflight factors (described above) plus the isolation and autonomy associated with simulated increasing distance from Earth. Investigations address crew cohesion, performance and workload, and mission control performance. The behavioral health and performance and space human factors aspects of planetary missions dominate this category. Work has already begun on a new investigation in this category which will examine the

  8. A comparison of image communication protocols in e-science platform for biomedical imaging research and applications

    Science.gov (United States)

    Wang, Tusheng; Yang, Yuanyuan; Hu, Haibo; Zhang, Jianguo

    2012-02-01

    In designing of e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals, it needs to find out the best communication protocol to transmit various kinds of biomedical images acquired from Shanghai Synchrotron Radiation Source (SSRS), micro-PET, Micro-CT which includes both types of DICOM and non-DICOM images. In this presentation, we presented several image communication scenarios required in e-Science platform and several possible image communication protocols, and then tested and evaluated the performance of these image communication protocols in e-Science data flows to find out which protocol is the best candidate to be used in e-Science platform for the purpose for security, communication performance, easy implementation and management.

  9. Japanese research and development on metallic biomedical, dental, and healthcare materials

    Science.gov (United States)

    Niinomi, Mitsuo; Hanawa, Takao; Narushima, Takayuki

    2005-04-01

    There is considerable demand for metallic materials for use in medical and dental devices. Metals and alloys are widely used as biomedical materials and are indispensable in the medical field. In dentistry, metal is used for restorations, orthodontic wires, and dental implants. This article describes R&D on metallic biomaterials primarily conducted by the members of the Japan Institute of Metals.

  10. Clustering cliques for graph-based summarization of the biomedical research literature

    DEFF Research Database (Denmark)

    Zhang, Han; Fiszman, Marcelo; Shin, Dongwook;

    2013-01-01

    Background: Graph-based notions are increasingly used in biomedical data mining and knowledge discovery tasks. In this paper, we present a clique-clustering method to automatically summarize graphs of semantic predications produced from PubMed citations (titles and abstracts).Results: SemRep is u...

  11. Research enrichment: evaluation of structured research in the curriculum for dental medicine students as part of the vertical and horizontal integration of biomedical training and discovery

    OpenAIRE

    Stewart Tanis; O'Malley Susan; Kingsley Karl; Howard Katherine M

    2008-01-01

    Abstract Background Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their s...

  12. Is there a trade-off between academic research and faculty entrepreneurship? : evidence from U.S. NIH supported biomedical researchers

    OpenAIRE

    Czarnitzki, Dirk; Toole, Andrew A.

    2009-01-01

    Is there a trade-off of scholarly research productivity when faculty members found or join for-profit firms? This paper offers an empirical examination of this question for a subpopulation of biomedical academic scientists who received research funding from the U.S. National Institutes of Health (NIH). In this study, we are able to distinguish between permanent versus temporary employment transitions by entrepreneurial faculty members and examine how their journal article publication rates ch...

  13. Overview of some biomedical research projects in tropical medicine conducted at the Instituto Venezolano de Investigaciones Cientificas

    Directory of Open Access Journals (Sweden)

    Romano Egidio

    2000-01-01

    Full Text Available The Instituto Venezolano de Investigaciones Cientificas (IVIC is a government-funded multidisciplinary academic institution dedicated to research, development and technology in many areas of knowledge. Biomedical projects and publications comprise about 40% of the total at IVIC. In this article, we present an overview of some selected research and development projects conducted at IVIC which we believe contain new and important aspects related to malaria, ancylostomiasis, dengue fever, leishmaniasis and tuberculosis. Other projects considered of interest in the general area of tropical medicine are briefly described. This article was prepared as a small contribution to honor and commemorate the centenary of the Instituto Oswaldo Cruz.

  14. The Role of Scientific Communication Skills in Trainees’ Intention to Pursue Biomedical Research Careers: A Social Cognitive Analysis

    Science.gov (United States)

    Cameron, Carrie; Lee, Hwa Young; Anderson, Cheryl; Byars-Winston, Angela; Baldwin, Constance D.; Chang, Shine

    2015-01-01

    Scientific communication (SciComm) skills are indispensable for success in biomedical research, but many trainees may not have fully considered the necessity of regular writing and speaking for research career progression. Our purpose was to investigate the relationship between SciComm skill acquisition and research trainees’ intentions to remain in research careers. We used social cognitive career theory (SCCT) to test a model of the relationship of SciComm skills to SciComm-related cognitive variables in explaining career intentions. A sample of 510 graduate students and postdoctoral fellows at major academic health science centers in the Texas Medical Center, Houston, Texas, were surveyed online. Results suggested that interest in performing SciComm tasks, SciComm outcome expectations (SCOEs), and SciComm productivity predicted intention to remain in a research career, while SciComm self-efficacy did not directly predict career intention. SCOEs also predicted interest in performing SciComm tasks. As in other SCCT studies, SciComm self-efficacy predicted SCOEs. We conclude that social cognitive factors of SciComm skill acquisition and SciComm productivity significantly predict biomedical trainees’ intentions to pursue research careers whether within or outside academia. While further studies are needed, these findings may lead to evidence-based interventions to help trainees remain in their chosen career paths. PMID:26628562

  15. The Role of Scientific Communication Skills in Trainees' Intention to Pursue Biomedical Research Careers: A Social Cognitive Analysis.

    Science.gov (United States)

    Cameron, Carrie; Lee, Hwa Young; Anderson, Cheryl; Byars-Winston, Angela; Baldwin, Constance D; Chang, Shine

    2015-01-01

    Scientific communication (SciComm) skills are indispensable for success in biomedical research, but many trainees may not have fully considered the necessity of regular writing and speaking for research career progression. Our purpose was to investigate the relationship between SciComm skill acquisition and research trainees' intentions to remain in research careers. We used social cognitive career theory (SCCT) to test a model of the relationship of SciComm skills to SciComm-related cognitive variables in explaining career intentions. A sample of 510 graduate students and postdoctoral fellows at major academic health science centers in the Texas Medical Center, Houston, Texas, were surveyed online. Results suggested that interest in performing SciComm tasks, SciComm outcome expectations (SCOEs), and SciComm productivity predicted intention to remain in a research career, while SciComm self-efficacy did not directly predict career intention. SCOEs also predicted interest in performing SciComm tasks. As in other SCCT studies, SciComm self-efficacy predicted SCOEs. We conclude that social cognitive factors of SciComm skill acquisition and SciComm productivity significantly predict biomedical trainees' intentions to pursue research careers whether within or outside academia. While further studies are needed, these findings may lead to evidence-based interventions to help trainees remain in their chosen career paths. PMID:26628562

  16. Epidemiology and Reporting Characteristics of Systematic Reviews of Biomedical Research: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Matthew J Page

    2016-05-01

    Full Text Available Systematic reviews (SRs can help decision makers interpret the deluge of published biomedical literature. However, a SR may be of limited use if the methods used to conduct the SR are flawed, and reporting of the SR is incomplete. To our knowledge, since 2004 there has been no cross-sectional study of the prevalence, focus, and completeness of reporting of SRs across different specialties. Therefore, the aim of our study was to investigate the epidemiological and reporting characteristics of a more recent cross-section of SRs.We searched MEDLINE to identify potentially eligible SRs indexed during the month of February 2014. Citations were screened using prespecified eligibility criteria. Epidemiological and reporting characteristics of a random sample of 300 SRs were extracted by one reviewer, with a 10% sample extracted in duplicate. We compared characteristics of Cochrane versus non-Cochrane reviews, and the 2014 sample of SRs versus a 2004 sample of SRs. We identified 682 SRs, suggesting that more than 8,000 SRs are being indexed in MEDLINE annually, corresponding to a 3-fold increase over the last decade. The majority of SRs addressed a therapeutic question and were conducted by authors based in China, the UK, or the US; they included a median of 15 studies involving 2,072 participants. Meta-analysis was performed in 63% of SRs, mostly using standard pairwise methods. Study risk of bias/quality assessment was performed in 70% of SRs but was rarely incorporated into the analysis (16%. Few SRs (7% searched sources of unpublished data, and the risk of publication bias was considered in less than half of SRs. Reporting quality was highly variable; at least a third of SRs did not report use of a SR protocol, eligibility criteria relating to publication status, years of coverage of the search, a full Boolean search logic for at least one database, methods for data extraction, methods for study risk of bias assessment, a primary outcome, an

  17. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1988-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology.

  18. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1989-06-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1988. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals.

  19. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    International Nuclear Information System (INIS)

    This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology

  20. An examination of how women and underrepresented racial/ethnic minorities experience barriers in biomedical research and medical programs

    Science.gov (United States)

    Chakraverty, Devasmita

    Women in medicine and biomedical research often face challenges to their retention, promotion, and advancement to leadership positions (McPhillips et al., 2007); they take longer to advance their careers, tend to serve at less research-intensive institutions and have shorter tenures compared to their male colleagues (White, McDade, Yamagata, & Morahan, 2012). Additionally, Blacks and Hispanics are the two largest minority groups that are vastly underrepresented in medicine and biomedical research in the United States (AAMC, 2012; NSF, 2011). The purpose of this study is to examine specific barriers reported by students and post-degree professionals in the field through the following questions: 1. How do women who are either currently enrolled or graduated from biomedical research or medical programs define and make meaning of gender-roles as academic barriers? 2. How do underrepresented groups in medical schools and biomedical research institutions define and make meaning of the academic barriers they face and the challenges these barriers pose to their success as individuals in the program? These questions were qualitatively analyzed using 146 interviews from Project TrEMUR applying grounded theory. Reported gender-role barriers were explained using the "Condition-Process-Outcome" theoretical framework. About one-third of the females (across all three programs; majority White or Black between 25-35 years of age) reported gender-role barriers, mostly due to poor mentoring, time constraints, set expectations and institutional barriers. Certain barriers act as conditions, causing gender-role issues, and gender-role issues influence certain barriers that act as outcomes. Strategies to overcome barriers included interventions mostly at the institutional level (mentor support, proper specialty selection, selecting academia over medicine). Barrier analysis for the two largest URM groups indicated that, while Blacks most frequently reported racism, gender barriers

  1. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 1, Biomedical sciences

    International Nuclear Information System (INIS)

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1986. The research develops the knowledge and scientific principles necessary to identify, understand and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect the PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological methods for assessing health risks among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include effects of radiation and of energy-related chemicals. The last section is related to medical applications of nuclear technology

  2. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1987-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1986. The research develops the knowledge and scientific principles necessary to identify, understand and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect the PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological methods for assessing health risks among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include effects of radiation and of energy-related chemicals. The last section is related to medical applications of nuclear technology.

  3. search.bioPreprint: a discovery tool for cutting edge, preprint biomedical research articles [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Carrie L. Iwema

    2016-07-01

    Full Text Available The time it takes for a completed manuscript to be published traditionally can be extremely lengthy. Article publication delay, which occurs in part due to constraints associated with peer review, can prevent the timely dissemination of critical and actionable data associated with new information on rare diseases or developing health concerns such as Zika virus. Preprint servers are open access online repositories housing preprint research articles that enable authors (1 to make their research immediately and freely available and (2 to receive commentary and peer review prior to journal submission. There is a growing movement of preprint advocates aiming to change the current journal publication and peer review system, proposing that preprints catalyze biomedical discovery, support career advancement, and improve scientific communication. While the number of articles submitted to and hosted by preprint servers are gradually increasing, there has been no simple way to identify biomedical research published in a preprint format, as they are not typically indexed and are only discoverable by directly searching the specific preprint server websites. To address this issue, we created a search engine that quickly compiles preprints from disparate host repositories and provides a one-stop search solution. Additionally, we developed a web application that bolsters the discovery of preprints by enabling each and every word or phrase appearing on any web site to be integrated with articles from preprint servers. This tool, search.bioPreprint, is publicly available at http://www.hsls.pitt.edu/resources/preprint.

  4. Implementation of the Three Rs in biomedical research - has the turn of the century turned the tide?

    Science.gov (United States)

    Obora, Shoko; Kurosawa, Tsutomu

    2009-04-01

    There has been increasing pressure from the public against animal experimentation for testing and research purposes. The Three Rs (replacement, reduction, and refinement) principle is thought to be a key foundation concept in optimising the welfare of animals used in experiments. This retrospective study attempts to investigate the transition of the Three Rs in biomedical research through a review of articles published in Nature Medicine. We categorised all of the articles published in Nature Medicine from 1998 to 2003, on the basis of the pain and distress of the animals used in the experiments featured in the analysed article. We found there were no large fluctuations in the distribution of these categories over this time period. We also examined each article for the presence of a statement relating to the humane use of laboratory animals, and found that the number of articles which included such a statement dramatically increased in 2002. Over the years studied, there was a decreasing trend in the total number of animal types used for the experiments in the articles. Our results suggest that: a) more encouragement by journal editors might improve the attitude of scientists in terms of animal welfare; and b) the progress of replacement appears to be a more long-term effort in the field of biomedical research. PMID:19453216

  5. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science). PMID:25592607

  6. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1986-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology.

  7. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology

  8. Harmonising and linking biomedical and clinical data across disparate data archives to enable integrative cross-biobank research.

    Science.gov (United States)

    Spjuth, Ola; Krestyaninova, Maria; Hastings, Janna; Shen, Huei-Yi; Heikkinen, Jani; Waldenberger, Melanie; Langhammer, Arnulf; Ladenvall, Claes; Esko, Tõnu; Persson, Mats-Åke; Heggland, Jon; Dietrich, Joern; Ose, Sandra; Gieger, Christian; Ried, Janina S; Peters, Annette; Fortier, Isabel; de Geus, Eco J C; Klovins, Janis; Zaharenko, Linda; Willemsen, Gonneke; Hottenga, Jouke-Jan; Litton, Jan-Eric; Karvanen, Juha; Boomsma, Dorret I; Groop, Leif; Rung, Johan; Palmgren, Juni; Pedersen, Nancy L; McCarthy, Mark I; van Duijn, Cornelia M; Hveem, Kristian; Metspalu, Andres; Ripatti, Samuli; Prokopenko, Inga; Harris, Jennifer R

    2016-04-01

    A wealth of biospecimen samples are stored in modern globally distributed biobanks. Biomedical researchers worldwide need to be able to combine the available resources to improve the power of large-scale studies. A prerequisite for this effort is to be able to search and access phenotypic, clinical and other information about samples that are currently stored at biobanks in an integrated manner. However, privacy issues together with heterogeneous information systems and the lack of agreed-upon vocabularies have made specimen searching across multiple biobanks extremely challenging. We describe three case studies where we have linked samples and sample descriptions in order to facilitate global searching of available samples for research. The use cases include the ENGAGE (European Network for Genetic and Genomic Epidemiology) consortium comprising at least 39 cohorts, the SUMMIT (surrogate markers for micro- and macro-vascular hard endpoints for innovative diabetes tools) consortium and a pilot for data integration between a Swedish clinical health registry and a biobank. We used the Sample avAILability (SAIL) method for data linking: first, created harmonised variables and then annotated and made searchable information on the number of specimens available in individual biobanks for various phenotypic categories. By operating on this categorised availability data we sidestep many obstacles related to privacy that arise when handling real values and show that harmonised and annotated records about data availability across disparate biomedical archives provide a key methodological advance in pre-analysis exchange of information between biobanks, that is, during the project planning phase. PMID:26306643

  9. Mentoring Strategies and Outcomes of Two Federally Funded Cancer Research Training Programs for Underrepresented Students in the Biomedical Sciences.

    Science.gov (United States)

    Ford, Marvella E; Abraham, Latecia M; Harrison, Anita L; Jefferson, Melanie S; Hazelton, Tonya R; Varner, Heidi; Cannady, Kimberly; Frichtel, Carla S; Bagasra, Omar; Davis, Leroy; Rivers, David E; Slaughter, Sabra C; Salley, Judith D

    2016-06-01

    The US is experiencing a severe shortage of underrepresented biomedical researchers. The purpose of this paper is to present two case examples of cancer research mentoring programs for underrepresented biomedical sciences students. The first case example is a National Institutes of Health/National Cancer Institute (NIH/NCI) P20 grant titled "South Carolina Cancer Disparities Research Center (SC CaDRe)" Training Program, contributing to an increase in the number of underrepresented students applying to graduate school by employing a triple-level mentoring strategy. Since 2011, three undergraduate and four graduate students have participated in the P20 SC CaDRe program. One graduate student published a peer-reviewed scientific paper. Two graduate students (50 %) have completed their master's degrees, and the other two graduate students will receive their degrees in spring 2015. Two undergraduate students (67 %) are enrolled in graduate or professional school (grad./prof. school), and the other graduate student is completing her final year of college. The second case example is a prostate cancer-focused Department of Defense grant titled "The SC Collaborative Undergraduate HBCU Student Summer Training Program," providing 24 students training since 2009. Additionally, 47 students made scientific presentations, and two students have published peer-reviewed scientific papers. All 24 students took a GRE test preparation course; 15 (63 %) have applied to graduate school, and 11 of them (73 %) are enrolled in grad./prof. school. Thirteen remaining students (54 %) are applying to grad./prof. school. Leveraged funding provided research-training opportunities to an additional 201 National Conference on Health Disparities Student Forum participants and to 937 Ernest E. Just Research Symposium participants at the Medical University of South Carolina. PMID:25869579

  10. Optical coherence tomography—current technology and applications in clinical and biomedical research

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Sander, Birgit; Mogensen, Mette;

    2011-01-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such...... as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of...... developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application....

  11. Optical coherence tomography-current technology and applications in clinical and biomedical research

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Sander, Birgit; Mogensen, Mette;

    2011-01-01

    as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of...... retinal diseases, and OCT is becoming an important instrument for clinical cardiology. New applications are emerging in various medical fields, such as early-stage cancer detection, surgical guidance, and the early diagnosis of musculoskeletal diseases. OCT has also proven its value as a tool for...... developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application....

  12. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery.

    Science.gov (United States)

    Dumontier, Michel; Baker, Christopher Jo; Baran, Joachim; Callahan, Alison; Chepelev, Leonid; Cruz-Toledo, José; Del Rio, Nicholas R; Duck, Geraint; Furlong, Laura I; Keath, Nichealla; Klassen, Dana; McCusker, James P; Queralt-Rosinach, Núria; Samwald, Matthias; Villanueva-Rosales, Natalia; Wilkinson, Mark D; Hoehndorf, Robert

    2014-01-01

    The Semanticscience Integrated Ontology (SIO) is an ontology to facilitate biomedical knowledge discovery. SIO features a simple upper level comprised of essential types and relations for the rich description of arbitrary (real, hypothesized, virtual, fictional) objects, processes and their attributes. SIO specifies simple design patterns to describe and associate qualities, capabilities, functions, quantities, and informational entities including textual, geometrical, and mathematical entities, and provides specific extensions in the domains of chemistry, biology, biochemistry, and bioinformatics. SIO provides an ontological foundation for the Bio2RDF linked data for the life sciences project and is used for semantic integration and discovery for SADI-based semantic web services. SIO is freely available to all users under a creative commons by attribution license. See website for further information: http://sio.semanticscience.org. PMID:24602174

  13. FT-IR and FT-NIR Raman spectroscopy in biomedical research

    Science.gov (United States)

    Naumann, D.

    1998-06-01

    FT-IR and FT-NIR Raman spectra of intact microbial, plant animal or human cells, tissues, and body fluids are highly specific, fingerprint-like signatures which can be used to discriminate between diverse microbial species and strains, characterize growth-dependent phenomena and cell-drug interactions, and differentiate between various disease states. The spectral information potentially useful for biomedical characterizations may be distributed over the entire infrared region of the electromagnetic spectrum, i.e. over the near-, mid-, and far-infrared. It is therefore a key problem how the characteristic vibrational spectroscopic information can be systematically extracted from the infrared spectra of complex biological samples. In this report these questions are addressed by applying factor and cluster analysis treating the classification problem of microbial infrared spectra as a model task. Particularly interesting applications arise by means of a light microscope coupled to the FT-IR spectrometer. FT-IR spectra of single microcolonies of less than 40 μm in diameter can be obtained from colony replica applying a stamping technique that transfers the different, spatially separated microcolonies from the culture plate to a special IR-sample holder. Using a computer controlled x,y-stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro-organisms can be integrated in one single apparatus. Since high quality, essentially fluorescence free Raman spectra may now be obtained in relatively short time intervals on previously intractable biological specimens, FT-IR and NIR-FT-Raman spectroscopy can be used in tandem to characterize biological samples. This approach seems to open up new horizons for biomedical characterizations of complex biological systems.

  14. The 1 MV multi-element AMS system for biomedical applications at the Netherlands Organization for Applied Scientific Research (TNO)

    International Nuclear Information System (INIS)

    The Netherlands Organization for Applied Scientific Research (TNO) has installed a compact 1 MV multi-element AMS system manufactured by High Voltage Engineering Europa B.V., The Netherlands. TNO performs clinical research programs for pharmaceutical and innovative foods industry to obtain early pharmacokinetic data and to provide anti-osteoporotic efficacy data of new treatments. The AMS system will analyze carbon, iodine and calcium samples for this purpose. The first measurements on blank samples indicate background levels in the low 10−12 for calcium and iodine, making the system well suited for these biomedical applications. Carbon blanks have been measured at low 10−16. For unattended, around-the-clock analysis, the system features the 200 sample version of the SO110 hybrid ion source and user friendly control software.

  15. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  16. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  17. Advanced Biomedical Computing Center (ABCC) | DSITP

    Science.gov (United States)

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  18. An exercise in leadership training for veterinary students aiming for careers in biomedical research.

    Science.gov (United States)

    Fraser, David R; McGregor, Douglas D

    2002-01-01

    A group discussion on the theme of "leadership" has been a central event in the annual Cornell Leadership Program for Veterinary Students since 1990. However, these discussions were often unfocused and did not readily demonstrate the leadership skills of distinguished guests who were invited to participate. Since 1998, a new format for this session has been developed in which students and guests are assigned individual roles in a scenario that is unfolded by a moderator over two to three hours. This role-playing exercise ensures that every student is obliged to participate and has an opportunity to practice such leadership skills as critical thinking, verbal communication, and decision making under pressure and with inadequate information. The distinguished guests, in their assigned roles, are able to interact freely with the student fellows and thus demonstrate their expertise as experienced leaders. This challenging experience has become an enjoyable part of the 10-week Leadership Program and one that shows the importance of leadership skills for those who aspire to careers in the biomedical sciences. PMID:12378434

  19. A Study of the Information Literacy of Biomedical Graduate Students: Based on the Thesis Topic Discovery Process in Molecular Biology Research

    Directory of Open Access Journals (Sweden)

    Jhao-Yen Huang

    2014-06-01

    Full Text Available The biomedical information environment is in a state of constant and rapid change due to the increase in research data and rapid technological advances. In Taiwan, few research has investigated the information literacy of biomedical graduate students. This exploratory study examined the information literacy abilities and training of biomedical graduate students in Taiwan. Semi-structured interviews based on the Association of College and Research Libraries Information Literacy Competency Standards for Science and Engineering/Technology were conducted with 20 molecular biological graduate students. The interview inquired about their information-seeking channels and information literacy education. The findings show that the biomedical graduate students developed a workable thesis topic with their advisors. Through various information-seeking channels and retrieval strategies, they obtained and critically evaluated information to address different information needs for their thesis research. Through seminars, annual conferences and papers, the interviewees were informed of current developments in their field. Subsequently, through written or oral communications, they were able to integrate and exchange the information. Most interviewees cared about the social, economic, legal, and ethical issues surrounding the use of information. College courses and labs were the main information literacy education environment for them to learn about research skills and knowledge. The study concludes four areas to address for the information literacy of biomedical graduate students, i.e., using professional information, using the current information, efficiency in assessing the domain information, and utilization of diverse information channels. Currently, the interviewees showed rather low usage of library resources, which is a concern for biomedical educators and libraries. [Article content in Chinese

  20. The role of electromagnetic separators in the production of radiotracers for bio-medical research and nuclear medical application

    Science.gov (United States)

    Beyer, Gerd J.; Ruth, Thomas J.

    2003-05-01

    With the growing complexity of positron emission tomography/single photon emission computed tomography imaging and the new developments in systemic radionuclide therapy there is a growing need for radioisotope preparations with higher radiochemical and radionuclidic purity that has not been achievable before. Especially important for the new applications is the specific activity of the radiotracer. Conventional methods in medical isotope production have reached their technical limitations. The role of isotope separators is discussed with examples of typical production and characterization experiments conducted at the ISOLDE and TRIUMF facilities. These preliminary experiments indicate that isotope separators have a definite role to play in the future for the production of radioisotopes for biomedical research and medical application.

  1. Data federation in the Biomedical Informatics Research Network: tools for semantic annotation and query of distributed multiscale brain data.

    Science.gov (United States)

    Bug, William; Astahkov, Vadim; Boline, Jyl; Fennema-Notestine, Christine; Grethe, Jeffrey S; Gupta, Amarnath; Kennedy, David N; Rubin, Daniel L; Sanders, Brian; Turner, Jessica A; Martone, Maryann E

    2008-01-01

    The broadly defined mission of the Biomedical Informatics Research Network (BIRN, www.nbirn.net) is to better understand the causes human disease and the specific ways in which animal models inform that understanding. To construct the community-wide infrastructure for gathering, organizing and managing this knowledge, BIRN is developing a federated architecture for linking multiple databases across sites contributing data and knowledge. Navigating across these distributed data sources requires a shared semantic scheme and supporting software framework to actively link the disparate repositories. At the core of this knowledge organization is BIRNLex, a formally-represented ontology facilitating data exchange. Source curators enable database interoperability by mapping their schema and data to BIRNLex semantic classes thereby providing a means to cast BIRNLex-based queries against specific data sources in the federation. We will illustrate use of the source registration, term mapping, and query tools. PMID:18999211

  2. Primates in biomedical research and their maintenance in captivity. I primati nella ricerca biomedica ed il loro allevamento in cattivita

    Energy Technology Data Exchange (ETDEWEB)

    Monaco, V.

    1983-01-01

    This conference is intended to provide to biologists, phychologists, zoologists etc., some criteria on use of non-human primates in biomedical research and to assess their value in procedures and tests of products by a pharmaceutical industry (i.e., poliomyelitis vaccine). After a review of scientific achievements during last decades and of the possibility of development of use of primates for medical experimentation, a numerical estimation of the subjects employed in different countries and of the basic needs as indicated by OMS and EEC is reported. In an attempt to promote a programme for production of primates in Italy, this communication describes the project of primates breeding by using areas near electro-nuclear power stations. 5 refs.

  3. The role of electromagnetic separators in the production of radiotracers for bio-medical research and nuclear medical application

    CERN Document Server

    Beyer, Gerd-Jürgen

    2003-01-01

    With the growing complexity of positron emission tomography/single photon emission computed tomography imaging and the new developments in systemic radionuclide therapy there is a growing need for radioisotope preparations with higher radiochemical and radionuclidic purity that has not been achievable before. Especially important for the new applications is the specific activity of the radiotracer. Conventional methods in medical isotope production have reached their technical limitations. The role of isotope separators is discussed with examples of typical production and characterization experiments conducted at the ISOLDE and TRIUMF facilities. These preliminary experiments indicate that isotope separators have a definite role to play in the future for the production of radioisotopes for biomedical research and medical application.

  4. Science gateways for biomedical big data analysis

    NARCIS (Netherlands)

    S. Shahand

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists fr

  5. Moessbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nano technological research

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakha, M.I., E-mail: oshtrakh@mail.utnet.ru [Faculty of Physical Techniques and Devices for Quality Control, Ural Federal University, Ekaterinburg (Russian Federation); Semionkina, V.A. [Faculty of Experimental Physics, Ural Federal University, Ekaterinburg (Russian Federation)

    2011-07-01

    created. Characteristics of this system demonstrated a high stability, precision and accuracy in the measurement of Moessbauer spectra in 4096 channels. In spite of substantial increase in the measurement time, spectra measured with a high velocity resolution permitted to obtain Moessbauer hyperfine parameters with systematic errors at least 8 times less than in the case of spectra measurement in 512 channels as well as to fit complicated Moessbauer spectra with better quality. Various applications of Moessbauer spectroscopy with a high velocity resolution demonstrated new possibilities of technique. Biomedical applications. New results were obtained in the study of human liver ferritin, its pharmaceutically important models as well as liver and spleen tissues from normal and leukemia chicken; in comparative study of various human and animals' normal oxyhemoglobins and oxyhemoglobins from patients; in the study of iron containing pharmaceutical products. Cosmochemical applications. In the study of various meteorites new results were obtained in analysis of Fe-Ni alloys with variations in Ni concentration, in the study of silicate phases and Fe-Ni phosphides with crystallographically non-equivalent sites for Fe. Nanotechnological applications. New results were obtained in the study of cupric ferrite nanoparticles with tin oxide adding as well as in the study of ferric oxide nanoparticles developed for magnetic fluids for biomedical purposes. (author)

  6. Development of a Pilot Data Management Infrastructure for Biomedical Researchers at University of Manchester – Approach, Findings, Challenges and Outlook of the MaDAM Project

    Directory of Open Access Journals (Sweden)

    Meik Poschen

    2012-12-01

    Full Text Available Management and curation of digital data has been becoming ever more important in a higher education and research environment characterised by large and complex data, demand for more interdisciplinary and collaborative work, extended funder requirements and use of e-infrastructures to facilitate new research methods and paradigms. This paper presents the approach, technical infrastructure, findings, challenges and outlook (including future development within the successor project, MiSS of the ‘MaDAM: Pilot data management infrastructure for biomedical researchers at University of Manchester’ project funded under the infrastructure strand of the JISC Managing Research Data (JISCMRD programme. MaDAM developed a pilot research data management solution at the University of Manchester based on biomedical researchers’ requirements, which includes technical and governance components with the flexibility to meet future needs across multiple research groups and disciplines.

  7. The Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) database and analysis pipeline for arterial spin labeling MRI data.

    Science.gov (United States)

    Shin, David D; Ozyurt, I Burak; Liu, Thomas T

    2013-01-01

    Arterial spin labeling (ASL) is a magnetic resonance imaging technique that provides a non-invasive and quantitative measure of cerebral blood flow (CBF). After more than a decade of active research, ASL is now emerging as a robust and reliable CBF measurement technique with increased availability and ease of use. There is a growing number of research and clinical sites using ASL for neuroscience research and clinical care. In this paper, we present an online CBF Database and Analysis Pipeline, collectively called the Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) that allows researchers to upload and share ASL and clinical data. In addition to serving the role as a central data repository, the CBFBIRN provides a streamlined data processing infrastructure for CBF quantification and group analysis, which has the potential to accelerate the discovery of new scientific and clinical knowledge. All capabilities and features built into the CBFBIRN are accessed online using a web browser through a secure login. In this work, we begin with a general description of the CBFBIRN system data model and its architecture, then devote the remainder of the paper to the CBFBIRN capabilities. The latter part of our work is divided into two processing modules: (1) Data Upload and CBF Quantification Module; (2) Group Analysis Module that supports three types of analysis commonly used in neuroscience research. To date, the CBFBIRN hosts CBF maps and associated clinical data from more than 1,300 individual subjects. The data have been contributed by more than 20 different research studies, investigating the effect of various conditions on CBF including Alzheimer's, schizophrenia, bipolar disorder, depression, traumatic brain injury, HIV, caffeine usage, and methamphetamine abuse. Several example results, generated by the CBFBIRN processing modules, are presented. We conclude with the lessons learned during implementation and deployment of the CBFBIRN and our

  8. Biomedical research with cyclotron-produced radionuclides. Progress report, August 1, 1982-February 28, 1983

    International Nuclear Information System (INIS)

    Progress in the following research areas is reported: (1) exploratory clinical metabolic studies; (2) compound synthesis labeling and associated biological studies; and (3) data analysis, modeling and instrumentation

  9. Biases in grant proposal success rates, funding rates and award sizes affect the geographical distribution of funding for biomedical research.

    Science.gov (United States)

    Wahls, Wayne P

    2016-01-01

    The ability of the United States to most efficiently make breakthroughs on the biology, diagnosis and treatment of human diseases requires that physicians and scientists in each state have equal access to federal research grants and grant dollars. However, despite legislative and administrative efforts to ensure equal access, the majority of funding for biomedical research is concentrated in a minority of states. To gain insight into the causes of such disparity, funding metrics were examined for all NIH research project grants (RPGs) from 2004 to 2013. State-by-state differences in per application success rates, per investigator funding rates, and average award size each contributed significantly to vast disparities (greater than 100-fold range) in per capita RPG funding to individual states. To the extent tested, there was no significant association overall between scientific productivity and per capita funding, suggesting that the unbalanced allocation of funding is unrelated to the quality of scientists in each state. These findings reveal key sources of bias in, and new insight into the accuracy of, the funding process. They also support evidence-based recommendations for how the NIH could better utilize the scientific talent and capacity that is present throughout the United States. PMID:27077009

  10. Biomedical Research and the Animal Rights Movement: A Contrast in Values.

    Science.gov (United States)

    Morrison, Adrian R.

    1993-01-01

    This article explains how animals are used in research in an effort to counteract animal rights literature. Reveals how medical professionals and others trained in scholarship have misquoted the scientific literature to bolster their claims against the utility of animal research. (PR)

  11. Demand for Interdisciplinary Laboratories for Physiology Research by Undergraduate Students in Biosciences and Biomedical Engineering

    Science.gov (United States)

    Clase, Kari L.; Hein, Patrick W.; Pelaez, Nancy J.

    2008-01-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary…

  12. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  13. Bevalac biomedical facility

    International Nuclear Information System (INIS)

    This paper describes the physical layout of the Bevalac Facility and the research programs carried out at the facility. Beam time on the Bevalac is divided between two disciplines: one-third for biomedical research and two-thirds for nuclear science studies. The remainder of the paper discusses the beam delivery system including dosimetry, beam sharing and beam scanning

  14. Molecular image in biomedical research. Molecular imaging unit of the National Cancer Research Center; Imagen molecular an investigation biomedica. La Unidad de Imagen Molecular del Centro Nacional de Investigaciones Oncologicas

    Energy Technology Data Exchange (ETDEWEB)

    Perez Bruzon, J.; Mulero Anhiorte, F.

    2010-07-01

    This article has two basic objectives. firstly, it will review briefly the most important imaging techniques used in biomedical research indicting the most significant aspects related to their application in the preclinical stage. Secondly, it will present a practical application of these techniques in a pure biomedical research centre (not associated to a clinical facility). Practical aspects such as organisation, equipment, work norms, shielding of the Spanish National Cancer Research Centre (CNIO) Imaging Unit will be shown. This is a pioneering facility in the application of these techniques in research centres without any dependence or any direct relationship with other hospital Nuclear Medicine services. (Author) 7 refs.

  15. Research enrichment: evaluation of structured research in the curriculum for dental medicine students as part of the vertical and horizontal integration of biomedical training and discovery

    Directory of Open Access Journals (Sweden)

    Stewart Tanis

    2008-02-01

    Full Text Available Abstract Background Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their students. Methods A series of structured seminars, incorporating faculty research, was designed for first-year dental students at the University of Nevada, Las Vegas, School of Dental Medicine to reinforce and support the concepts and skills taught in concurrent courses. A structured research enrichment period was also created to facilitate student engagement in active research using faculty and student curricular release time. Course evaluations and surveys were administered to gauge student perceptions of the curricular integration of research, the impact of these seminars on recruitment to the research program, and overall levels of student satisfaction with research enrichment. Results The analysis of course surveys revealed that students perceived the research-containing seminars effectively illustrated concepts, were logically sequenced, and were well-integrated into their curriculum. In addition, analysis of surveys revealed that the Integration Seminar courses motivated students to engage in research enrichment. Finally, this analysis provided evidence that students were very satisfied with their overall learning experience during research enrichment. Conclusion Curricular integration is one method of improving the teaching and learning of complicated and inter-related concepts, providing an opportunity to incorporate research training and objectives into traditionally separate didactic courses. Despite the benefits of curricular integration, finding

  16. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  17. Understanding the relative valuation of research impact: a best–worst scaling experiment of the general public and biomedical and health researchers

    Science.gov (United States)

    Pollitt, Alexandra; Potoglou, Dimitris; Patil, Sunil; Burge, Peter; Guthrie, Susan; King, Suzanne; Wooding, Steven; Grant, Jonathan

    2016-01-01

    Objectives (1) To test the use of best–worst scaling (BWS) experiments in valuing different types of biomedical and health research impact, and (2) to explore how different types of research impact are valued by different stakeholder groups. Design Survey-based BWS experiment and discrete choice modelling. Setting The UK. Participants Current and recent UK Medical Research Council grant holders and a representative sample of the general public recruited from an online panel. Results In relation to the study's 2 objectives: (1) we demonstrate the application of BWS methodology in the quantitative assessment and valuation of research impact. (2) The general public and researchers provided similar valuations for research impacts such as improved life expectancy, job creation and reduced health costs, but there was less agreement between the groups on other impacts, including commercial capacity development, training and dissemination. Conclusions This is the second time that a discrete choice experiment has been used to assess how the general public and researchers value different types of research impact, and the first time that BWS has been used to elicit these choices. While the 2 groups value different research impacts in different ways, we note that where they agree, this is generally about matters that are seemingly more important and associated with wider social benefit, rather than impacts occurring within the research system. These findings are a first step in exploring how the beneficiaries and producers of research value different kinds of impact, an important consideration given the growing emphasis on funding and assessing research on the basis of (potential) impact. Future research should refine and replicate both the current study and that of Miller et al in other countries and disciplines. PMID:27540096

  18. The Minipig as an Animal Model in Biomedical Stem Cell Research

    Czech Academy of Sciences Publication Activity Database

    Vodička, Petr; Hlučilová, Jana; Klíma, Jiří; Procházka, Radek; Ourednik, J.; Motlík, Jan

    Totowa, New Jersey : Humana Press, 2008 - (Conn, P.), s. 241-248 ISBN 978-1-58829-933-8. - (Medicine) R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z50450515 Keywords : Animal model * Minipig * Neural stem cell Subject RIV: FH - Neurology

  19. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base

  20. Working with Concepts: The Role of Community in International Collaborative Biomedical Research.

    Science.gov (United States)

    Marsh, V M; Kamuya, D K; Parker, M J; Molyneux, C S

    2011-04-01

    The importance of communities in strengthening the ethics of international collaborative research is increasingly highlighted, but there has been much debate about the meaning of the term 'community' and its specific normative contribution. We argue that 'community' is a contingent concept that plays an important normative role in research through the existence of morally significant interplay between notions of community and individuality. We draw on experience of community engagement in rural Kenya to illustrate two aspects of this interplay: (i) that taking individual informed consent seriously involves understanding and addressing the influence of communities in which individuals' lives are embedded; (ii) that individual participation can generate risks and benefits for communities as part of the wider implications of research. We further argue that the contingent nature of a community means that defining boundaries is generally a normative process itself, with ethical implications. Community engagement supports the enactment of normative roles; building mutual understanding and trust between researchers and community members have been important goals in Kilifi, requiring a broad range of approaches. Ethical dilemmas are continuously generated as part of these engagement activities, including the risks of perverse outcomes related to existing social relations in communities and conditions of 'half knowing' intrinsic to processes of developing new understandings. PMID:21416064

  1. Locating tissue collections in tissue economies--deriving value from biomedical research

    DEFF Research Database (Denmark)

    Tupasela, Aaro Mikael

    2006-01-01

    This paper examines diverging notions of value in the use of tissue sample collections and other information resources using a case study of hereditary colorectal cancer research in Finland. Recent science and technology policies that emphasize the production of commercial value derived from tiss...

  2. The challenges of implementing pathogen control strategies for fishes used in biomedical research

    Science.gov (United States)

    Lawrence, C.; Ennis, D.G.; Harper, C.; Kent, M.L.; Murray, K.; Sanders, G.E.

    2012-01-01

    Over the past several decades, a number of fish species, including the zebrafish, medaka, and platyfish/swordtail, have become important models for human health and disease. Despite the increasing prevalence of these and other fish species in research, methods for health maintenance and the management of diseases in laboratory populations of these animals are underdeveloped. There is a growing realization that this trend must change, especially as the use of these species expands beyond developmental biology and more towards experimental applications where the presence of underlying disease may affect the physiology animals used in experiments and potentially compromise research results. Therefore, there is a critical need to develop, improve, and implement strategies for managing health and disease in aquatic research facilities. The purpose of this review is to report the proceedings of a workshop entitled "Animal Health and Disease Management in Research Animals" that was recently held at the 5th Aquatic Animal Models for Human Disease in September 2010 at Corvallis, Oregon to discuss the challenges involved with moving the field forward on this front. ?? 2011 Elsevier Inc. All rights reserved.

  3. A national survey of policies on disclosure of conflicts of interest in biomedical research

    Science.gov (United States)

    McCrary, S. V.; Anderson, C. B.; Jakovljevic, J.; Khan, T.; McCullough, L. B.; Wray, N. P.; Brody, B. A.

    2000-01-01

    BACKGROUND: Conflicts of interest pose a threat to the integrity of scientific research. The current regulations of the U.S. Public Health Service and the National Science Foundation require that medical schools and other research institutions report the existence of conflicts of interest to the funding agency but allow the institutions to manage conflicts internally. The regulations do not specify how to do so. METHODS: We surveyed all medical schools (127) and other research institutions (170) that received more than $5 million in total grants annually from the National Institutes of Health or the National Science Foundation; 48 journals in basic science and clinical medicine; and 17 federal agencies in order to analyze their policies on conflicts of interest. RESULTS: Of the 297 institutions, 250 (84 percent) responded by March 2000, as did 47 of the 48 journals and 16 of the 17 federal agencies. Fifteen of the 250 institutions (6 percent)--5 medical schools and 10 other research institutions--reported that they had no policy on conflicts of interest. Among the institutions that had policies, there was marked variation in the definition and management of conflicts. Ninety-one percent had policies that adhered to the federal threshold for disclosure ($10,000 in annual income or equity in a relevant company or 5 percent ownership), and 9 percent had policies that exceeded the federal guidelines. Only 8 percent had policies requiring disclosure to funding agencies, only 7 percent had such policies regarding journals, and only 1 percent had policies requiring the disclosure of information to the relevant institutional review boards or to research subjects. Twenty journals (43 percent) reported that they had policies requiring disclosure of conflicts of interest. Only four federal agencies had policies that explicitly addressed conflicts of interest in extramural research, and all but one of the agencies relied primarily on institutional discretion. CONCLUSIONS

  4. Prospective Integration of Cultural Consideration in Biomedical Research for Patients with Advanced Cancer: Recommendations from an International Conference on Malignant Bowel Obstruction in Palliative Care

    OpenAIRE

    Fineberg, Iris Cohen; Grant, Marcia; Aziz, Noreen M.; Payne, Richard; Kagawa-Singer, Marjorie; Dunn, Geoffrey P.; Kinzbrunner, Barry M.; Palos, Guadalupe; Shinagawa, Susan Matsuko; Krouse, Robert S.

    2007-01-01

    In the setting of an international conference on malignant bowel obstruction as a model for randomized control trials (RCT) in palliative care, we discuss the importance of incorporating prospective cultural considerations in research design. The approach commonly used in biomedical research has traditionally valued the RCT as the ultimate “way of knowing” about how to best treat a medical condition. The foremost limitation of this approach is the lack of recognition of the impact of cultural...

  5. Biomedical research with cyclotron-produced radionuclides. Progress report, August 1, 1981-July 31, 1982

    International Nuclear Information System (INIS)

    Research progress for the period August 1981 through July 1982 is reported. Subject areas include the evaluation of solid tumor chemotherapy with N-13 labeled L-amino acids, in-vivo studies of L-amino acid metabolism in the liver, myocardium, pancreas and skeletal muscle of man, synthesis, labeling and associated tracer studies of N-13 ammonia, N-13 L-amino acids, C-11 amino acids, radiation exposure control through automation, quantitative positron-1 emission tomography, and data analysis

  6. The CRISP system: an untapped resource for biomedical research project information.

    OpenAIRE

    Collins, K. A.

    1989-01-01

    CRISP (Computer Retrieval of Information on Scientific Projects) is a large database maintained and operated by the National Institutes of Health (NIH). It contains comprehensive scientific and selected administrative data on research carried out by the U.S. Public Health Service (PHS) or supported by PHS grants and contracts. Developed originally to meet the needs of NIH, it is an excellent, largely untapped resource for health information professionals at large, revealing new trends, method...

  7. The use of neutron activation analysis in environmental and biomedical research

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan

    Melville : AMER INST PHYSICS, 2007 - (Granja, C.; Leroy, C.; Štekl, I.), s. 28-32 ISBN 978-0-7354-0472-4. ISSN 0094-243X. - (AIP Conference Proceedings. 958). [4th International Summer School on Nuclear Physics Methods and Accelerators in Biology and Medicine . Praha (CZ), 08.07.2007-19.07.2007] Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron activation analysis * environmental pollutants * Vanadium exposure Subject RIV: CB - Analytical Chemistry, Separation

  8. Contribution of Turkish Researchers to the World’s Biomedical Literature (1988-1997)

    OpenAIRE

    Tonta, Yaşar

    2000-01-01

    The contribution of Turkish researchers to positive sciences is increasing. Turkish scientists published more than 5.100 articles in 1998 in scientific journals indexed by the Institute for Scientific Information’s Science Citation Index, which elevated Turkey to the 25th place in the world rankings in terms of total contribution to science. In this paper, we report the preliminary findings of the bibliometric characteristics (authors and affiliations, medical journals and their impact fact...

  9. Biomedical research with cyclotron produced radionuclides: Progress report, February 1, 1988-September 30, 1988

    International Nuclear Information System (INIS)

    This report covers the completion of research carried out in the second year of a 3 year grant. During this period the new gamma camera system, which was designed in the Biophysics Laboratory and whose fabrication was funded by the Institute, was completed and bought into operation. It has capability to monitor simultaneously 3 different radionuclide labels, and to do so rapidly. These features are essential to the metabolic studies being carried out collaboratively by Dr. James Bading and Dr. Brennan's surgical research team. Design and fabrication of this instrument was essential regardless of whether there was access to a PET unit or not. Another instrumental development is the replacement of the cyclotron magnet coils, the addition of harmonic tuning coils and other improvements. The metabolic study program with labeled amino acids in man and animals has progressed significantly as is summarized. The list of compounds prepared and labeled with positron-emitting nuclides in our laboratory, some originally prepared here, illustrates another vital and active contribution to metabolic research from this laboratory

  10. Relationship between quality and editorial leadership of biomedical research journals: a comparative study of Italian and UK journals.

    Directory of Open Access Journals (Sweden)

    Valerie Matarese

    Full Text Available BACKGROUND: The quality of biomedical reporting is guided by statements of several organizations. Although not all journals adhere to these guidelines, those that do demonstrate "editorial leadership" in their author community. To investigate a possible relationship between editorial leadership and journal quality, research journals from two European countries, one Anglophone and one non-Anglophone, were studied and compared. Quality was measured on a panel of bibliometric parameters while editorial leadership was evaluated from journals' instructions to authors. METHODOLOGY/PRINCIPAL FINDINGS: The study considered all 76 Italian journals indexed in Medline and 76 randomly chosen UK journals; only journals both edited and published in these countries were studied. Compared to UK journals, Italian journals published fewer papers (median, 60 vs. 93; p = 0.006, less often had online archives (43 vs. 74; p<0.001 and had lower median values of impact factor (1.2 vs. 2.7, p<0.001 and SCImago journal rank (0.09 vs. 0.25, p<0.001. Regarding editorial leadership, Italian journals less frequently required manuscripts to specify competing interests (p<0.001, authors' contributions (p = 0.005, funding (p<0.001, informed consent (p<0.001, ethics committee review (p<0.001. No Italian journal adhered to COPE or the CONSORT and QUOROM statements nor required clinical trial registration, while these characteristics were observed in 15%-43% of UK journals (p<0.001. At multiple regression, editorial leadership predicted 37.1%-49.9% of the variance in journal quality defined by citation statistics (p<0.0001; confounding variables inherent to a cross-cultural comparison had a relatively small contribution, explaining an additional 6.2%-13.8% of the variance. CONCLUSIONS/SIGNIFICANCE: Journals from Italy scored worse for quality and editorial leadership than did their UK counterparts. Editorial leadership predicted quality for the entire set of journals. Greater

  11. Splicing-Sensitive DNA-Microarrays: Peculiarities and Applicationin Biomedical Research (Review

    Directory of Open Access Journals (Sweden)

    D.I. Knyazev

    2015-12-01

    Full Text Available Alternative splicing (АS provides a variety of protein and mature mRNA isoforms encoded by a single gene, and is the essential component of cell and tissue differentiation and functioning. DNA-microarrays are highly productive transcriptome research technique both at the level of total gene expression assessment and alternatively spliced mRNA isoforms exploration. The study of AS patterns requires thorough probe design to achieve appropriate accuracy of the analysis. There are two types of splicing-sensitive DNA-microarrays. The first type contain probes targeted to internal exonic sequences (exon bodies; the second type contain probes targeted to exon bodies and exon–exon and exon–intron junctions. So, the first section focused on probe sequence design, general features of splicing-sensitive DNA-microarrays and their main advantages and limitations. The results of AS research obtained using DNA-microarrays have been reviewed in special section. In particular, DNA-microarrays were used to reveal a number pre-mRNA processing and splicing mechanisms, to investigate AS patterns associated with cancer, cell and tissue differentiation. Splicing machinery regulation was demonstrated to be an essential step during carcinogenesis and differentiation. The examples of application of splicing-sensitive DNA-microarrays for diagnostic markers discovering and pathology mechanism elucidation were also reviewed. Investigations of AS role in pluripotency, stem cell commitment, immune and infected cells functioning during immune response are the promising future directions. Splicing-sensitive DNA-microarrays are relatively inexpensive but powerful research tool that give reason to suppose their introduction in clinical practice within the next few years.

  12. National Space Biomedical Research Institute Education and Public Outreach Program: Education for the next generation of space explorers

    Science.gov (United States)

    MacLeish, Marlene Y.; Thomson, William A.; Moreno, Nancy; Gannon, Patrick J.; Smith, Roland B.; Houston, Clifford W.; Coulter, Gary; Vogt, Gregory L.

    2007-02-01

    The National Space Biomedical Research Institute (NSBRI) Education and Public Outreach Program (EPOP) is supporting the National Aeronautics and Space Administration's (NASA) new vision for space exploration by educating and inspiring the next generation of students through a seamless pipeline of kindergarten through postdoctoral education programs. NSBRI EPOP initiatives are designed to train scientists and to communicate the significance of NSBRI science, as well as other space exploration science, to schools, families and lay audiences. The NSBRI EPOP team is comprised of eight main partners: Baylor College of Medicine (BCM), Binghamton University-State University of New York (BUSUNY), Colorado Consortium for Earth and Space Science Education (CCESSE), Massachusetts Institute of Technology (MIT), Morehouse School of Medicine (MSM), Mount Sinai School of Medicine (MSSM), Rice University and the University of Texas Medical Branch (RU-UTMB), and Texas A&M University (TAMU). The current kindergarten through undergraduate college (K-16) team, which was funded through an open national competition in 2004, consolidates the past 7 years of K-16 education activities and expands the team's outreach activities to more museums and science centers across the nation. NSBRI also recently expanded its education mission to include doctoral and postdoctoral level programs. This paper describes select K-16 EPOP activities and products developed over the past 7 years, and reports on new activities planned for the next 3 years. The paper also describes plans for a doctoral program and reports on 1st-year outcomes of the new postdoctoral program.

  13. Essential diagnostics - the role of the Department of Biomedical Research of the Royal Tropical Institute in the 21st century

    Directory of Open Access Journals (Sweden)

    Paul R Klatser

    2000-01-01

    Full Text Available In the light of emerging and overlooked infectious diseases and widespread drug resistance, diagnostics have become increasingly important in supporting surveillance, disease control and outbreak management programs. In many low-income countries the diagnostic service has been a neglected part of health care, often lacking quantity and quality or even non-existing at all. High-income countries have exploited few of their advanced technical abilities for the much-needed development of low-cost, rapid diagnostic tests to improve the accuracy of diagnosis and accelerate the start of appropriate treatment. As is now also recognized by World Healt Organization, investment in the development of affordable diagnostic tools is urgently needed to further our ability to control a variety of diseases that form a major threat to humanity. The Royal Tropical Institute's Department of Biomedical Research aims to contribute to the health of people living in the tropics. To this end, its multidisciplinary group of experts focuses on the diagnosis of diseases that are major health problems in low-income countries. In partnership we develop, improve and evaluate simple and cheap diagnostic tests, and perform epidemiological studies. Moreover, we advice and support others - especially those in developing countries - in their efforts to diagnose infectious diseases.

  14. A Critical Look at Biomedical Journals’ Policies on Animal Research by Use of a Novel Tool: The EXEMPLAR Scale

    Directory of Open Access Journals (Sweden)

    Ana Raquel Martins

    2015-04-01

    Full Text Available Animal research is not only regulated by legislation but also by self-regulatory mechanisms within the scientific community, which include biomedical journals’ policies on animal use. For editorial policies to meaningfully impact attitudes and practice, they must not only be put into effect by editors and reviewers, but also be set to high standards. We present a novel tool to classify journals’ policies on animal use—the EXEMPLAR scale—as well as an analysis by this scale of 170 journals publishing studies on animal models of three human diseases: Amyotrophic Lateral Sclerosis, Type-1 Diabetes and Tuberculosis. Results show a much greater focus of editorial policies on regulatory compliance than on other domains, suggesting a transfer of journals’ responsibilities to scientists, institutions and regulators. Scores were not found to vary with journals’ impact factor, country of origin or antiquity, but were, however, significantly higher for open access journals, which may be a result of their greater exposure and consequent higher public scrutiny.

  15. Applying Semiconductor Technologies and Metrology Tools to Biomedical Research: Manipulation and Detection of Single Molecules

    Science.gov (United States)

    Berlin, Andrew A.; Sundararajan, Narayan; Koo, Tae-Woong

    2005-09-01

    Intel's Precision Biology research effort is working to combine Intel's expertise in nanotechnology with aspects of biology and medicine to create highly sensitive instrumentation for biomolecular analysis. The ability to manipulate, detect, and identify biological molecules at ultra-low concentrations is important for applications ranging from whole-genome DNA sequencing to protein-based early disease detection. In this paper we describe our work to develop a molecular labeling system based on Surface-Enhanced Raman Spectroscopy (SERS), to enable highly sensitive protein detection. We also present a set of microfluidic and spectroscopic techniques that our team has developed for transporting and identifying single molecules in solution.

  16. Biomedical research with cyclotron-produced radionuclides. Progress report, August 1, 1982-July 31, 1983

    International Nuclear Information System (INIS)

    The contents include brief descriptions of the following research programs: an evaluation of chemotherapeutic regimens in solid tumors with N-13 labelled L-amino acids, studies of N-13 L-amino acid metabolism in vivo, and evaluation of N-13 labelled amino acids and ammonia for physiological studies of patients undergoing chemotherapy; biological studies with N-13 and C-11 labelled amino acids and ammonia; synthesis and development of N-13 and, C-11 labelled compounds; data analysis, modelling and instrumentation; and radionuclide production

  17. Balanced biomedical program plan. Volume X. Fusion analysis for and environmental research

    International Nuclear Information System (INIS)

    In this draft planning document for health and environmental research needs relevant to the development of fusion technology, an attempt is made to integrate input from the participating laboratories on the basis of the King-Muir study categories. The general description covers only those concepts and features that are considered important to an understanding of possible and probable effects of thermonuclear reactors on health and the environment. Appendixes are included which reflect an understanding of three areas of special interest: materials requirements, effects from magnetic fields, and tritium effects

  18. Balanced program plan. Volume XI. Fission analysis for biomedical and environmental research

    International Nuclear Information System (INIS)

    Factors involved in the formulation of an ERDA-sponsored program for health and environmental research in connection with the fission fuel cycle are discussed under the following section headings: major issues associated with the use of nuclear power; fission fuel cycle technology: milling, UF6 production, uranium enrichment, plutonium fuel fabrication, power production (reactors), fuel reprocessing, waste management, fuel and waste transportation; problem definition: characterization, measurement and monitoring, transport processes, health effects, ecological processes and effects, and integrated assessment; budget; characterization, measuring and monitoring program units; transport processes program units; health effects program units; ecological processes and effects program units; and integrated assessment program units

  19. Biomedical research and application utilizing cyclotron produced radionuclides. Progress report, January 1 1977--December 31, 1977

    International Nuclear Information System (INIS)

    Progress is reported on cyclotron production of short-lived positron-emitting radionuclides (18F, 15O, 11C, 13N, 52Fe, 38K, 206Bi, 73Se, and 48Cr) for use in the preparation labelled compounds for metabolic research in patients and animals. The chemical preparation of radiopharmaceuticals labelled with cyclotron-produced radionuclides for pancreas and tumor scanning is discussed. The imaging capabilities of a total organ kinetic imaging monitor (TOKIM) gamma camera system operated in the positron coincidence mode were improved with the addition of computerized iterative correction procedures

  20. Balanced biomedical program plan. Volume X. Fusion analysis for and environmental research

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-01

    In this draft planning document for health and environmental research needs relevant to the development of fusion technology, an attempt is made to integrate input from the participating laboratories on the basis of the King-Muir study categories. The general description covers only those concepts and features that are considered important to an understanding of possible and probable effects of thermonuclear reactors on health and the environment. Appendixes are included which reflect an understanding of three areas of special interest: materials requirements, effects from magnetic fields, and tritium effects.

  1. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base

  2. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1984-02-01

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base.

  3. A draft map of rhesus monkey tissue proteome for biomedical research.

    Directory of Open Access Journals (Sweden)

    Jin-Gyun Lee

    Full Text Available Though the rhesus monkey is one of the most valuable non-human primate animal models for various human diseases because of its manageable size and genetic and proteomic similarities with humans, proteomic research using rhesus monkeys still remains challenging due to the lack of a complete protein sequence database and effective strategy. To investigate the most effective and high-throughput proteomic strategy, comparative data analysis was performed employing various protein databases and search engines. The UniProt databases of monkey, human, bovine, rat and mouse were used for the comparative analysis and also a universal database with all protein sequences from all available species was tested. At the same time, de novo sequencing was compared to the SEQUEST search algorithm to identify an optimal work flow for monkey proteomics. Employing the most effective strategy, proteomic profiling of monkey organs identified 3,481 proteins at 0.5% FDR from 9 male and 10 female tissues in an automated, high-throughput manner. Data are available via ProteomeXchange with identifier PXD001972. Based on the success of this alternative interpretation of MS data, the list of proteins identified from 12 organs of male and female subjects will benefit future rhesus monkey proteome research.

  4. Bioethical responsibilities of the health authority in health care and biomedical research

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Salinas

    2015-01-01

    Full Text Available The reflection on bioethical contents of health policies and their effects on the demands for social justice has been a preferred concern of those who have driven the health reforms that were behind the creation of the National Health Service and, more recently, the regime of health guarantees. In the course of the years, the concern for the vindication of individual rights in the context of health care and research has joined to citizen demands for equitable access to health actions. For this purpose, in 2006 and 2012, specific laws addressing these matters were enacted and in the last year, regulations that make them operative emerged and are being implemented. The wording of the articles of both laws, in the effort to rescue individual rights, raises an imbalance in some respects, with regard to the social impact of their implementation. In certain subjects, its provisions run counter to existing codes of professional ethics in the country and in others; its implementation allows the privatization of the process of ethical review of pharmacological research, which was restricted to public health services. The absence of starting up of the National Bioethics Commission, pending since 2006, has prevented the creation of a pluralistic spaTce for deliberation on these issues and others as provided by law.

  5. MaPSeq, A Service-Oriented Architecture for Genomics Research within an Academic Biomedical Research Institution

    OpenAIRE

    Jason Reilly; Stanley Ahalt; John McGee; Phillips Owen; Charles Schmitt; Kirk Wilhelmsen

    2015-01-01

    Genomics research presents technical, computational, and analytical challenges that are well recognized. Less recognized are the complex sociological, psychological, cultural, and political challenges that arise when genomics research takes place within a large, decentralized academic institution. In this paper, we describe a Service-Oriented Architecture (SOA)—MaPSeq—that was conceptualized and designed to meet the diverse and evolving computational workflow needs of genomics researchers at ...

  6. Biomedical research with cyclotron produced radionuclides. Final report, February 1977-March 1986

    International Nuclear Information System (INIS)

    The period covered by this report coincides with the advent of positron emission tomography. A commercial version of Dr. Gordon Brownell's PC-II whole-body PET was on loan from King Faisal Hospital and Research Center of Saudi Arabia to our laboratory for clinical evaluation from August 1978, until May 1981. Our use of it is reflected in 11 papers and a book chapter. Since then we have to a large extent redirected our work to projects and methods for which 3-dimensional quantitative imaging is not essential. While acquisition of a state-of-the-art, whole-body PET remains a major long-range objective for the Laboratory, it is by no means sine qua non; our HPLC studies of tumor metabolism and multiple indicator, dynamic gamma camera studies of tissue transport would remain high priorities even if we had a PET system. 96 refs., 4 figs., 4 tabs

  7. Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research

    Directory of Open Access Journals (Sweden)

    Norman Moullan

    2015-03-01

    Full Text Available In recent years, tetracyclines, such as doxycycline, have become broadly used to control gene expression by virtue of the Tet-on/Tet-off systems. However, the wide range of direct effects of tetracycline use has not been fully appreciated. We show here that these antibiotics induce a mitonuclear protein imbalance through their effects on mitochondrial translation, an effect that likely reflects the evolutionary relationship between mitochondria and proteobacteria. Even at low concentrations, tetracyclines induce mitochondrial proteotoxic stress, leading to changes in nuclear gene expression and altered mitochondrial dynamics and function in commonly used cell types, as well as worms, flies, mice, and plants. Given that tetracyclines are so widely applied in research, scientists should be aware of their potentially confounding effects on experimental results. Furthermore, these results caution against extensive use of tetracyclines in livestock due to potential downstream impacts on the environment and human health.

  8. Three-dimensional laser optoacoustic and laser ultrasound imaging system for biomedical research

    Science.gov (United States)

    Ermilov, Sergey A.; Su, Richard; Conjusteau, Andre; Oruganti, Tanmayi; Wang, Kun; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.

    2015-03-01

    In this work, we introduce an improved prototype of the imaging system that combines three-dimensional optoacoustic tomography (3D-OAT) and laser ultrasound tomography slicer (2D-LUT) to obtain coregistered maps of tissue optical absorption and speed of sound (SOS). The imaging scan is performed by a 360 degree rotation of a phantom/mouse with respect to a static arc-shaped array of ultrasonic transducers. A Q-switched laser system is used to establish optoacoustic illumination pattern appropriate for deep tissue imaging with a tunable (730-840 nm) output wavelengths operated at 10 Hz pulse repetition rate. For the LUT slicer scans, the array is pivoted by 90 degrees with respect to the central transducers providing accurate registration of optoacoustic and SOS maps, the latter being reconstructed using waveform inversion with source encoding (WISE) technique. The coregistered OAT-LUT modality is validated by imaging a phantom and a live mouse. SOS maps acquired in the imaging system can be employed by an iterative optoacoustic reconstruction algorithm capable of compensating for acoustic wavefield aberrations. The most promising applications of the imaging system include 3D angiography, cancer research, and longitudinal studies of biological distributions of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, fluorophores, etc.).

  9. Developmental Origins of Health and Disease in swine: implications for animal production and biomedical research.

    Science.gov (United States)

    Gonzalez-Bulnes, A; Astiz, S; Ovilo, C; Lopez-Bote, C J; Torres-Rovira, L; Barbero, A; Ayuso, M; Garcia-Contreras, C; Vazquez-Gomez, M

    2016-07-01

    The concept of Developmental Origins of Health and Disease (DOHaD) addresses, from a large set of epidemiological evidences in human beings and translational studies in animal models, both the importance of genetic predisposition and the determinant role of maternal nutrition during pregnancy on adult morphomics and homeostasis. Compelling evidences suggest that both overnutrition and undernutrition may modify the intrauterine environment of the conceptus and may alter the expression of its genome and therefore its phenotype during prenatal and postnatal life. In fact, the DOHaD concept is an extreme shift in the vision of the factors conditioning adult phenotype and supposes a drastic change from a gene-centric perspective, only modified by lifestyle and nutritional strategies during juvenile development and adulthood, to a more holistic approach in which environmental, parental, and prenatal conditions are strongly determining postnatal development and homeostasis. The implications of DOHaD are profound in all the mammalian species and the present review summarizes current knowledge on causes and consequences of DOHaD in pigs, both for meat production and as a well-recognized model for biomedicine research. PMID:27238437

  10. Implantable CMOS Biomedical Devices

    Directory of Open Access Journals (Sweden)

    Toshihiko Noda

    2009-11-01

    Full Text Available The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented.

  11. Current millennium biotechniques for biomedical research on parasites and host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Teixeira Antonio RL

    2000-01-01

    Full Text Available The development of biotechnology in the last three decades has generated the feeling that the newest scientific achievements will deliver high standard quality of life through abundance of food and means for successfully combating diseases. Where the new biotechnologies give access to genetic information, there is a common belief that physiological and pathological processes result from subtle modifications of gene expression. Trustfully, modern genetics has produced genetic maps, physical maps and complete nucleotide sequences from 141 viruses, 51 organelles, two eubacteria, one archeon and one eukaryote (Saccharomices cerevisiae. In addition, during the Centennial Commemoration of the Oswaldo Cruz Institute the nearly complete human genome map was proudly announced, whereas the latest Brazilian key stone contribution to science was the publication of the Shillela fastidiosa genomic sequence highlythed on a Nature cover issue. There exists a belief among the populace that further scientific accomplishments will rapidly lead to new drugs and methodological approaches to cure genetic diseases and other incurable ailments. Yet, much evidence has been accumulated, showing that a large information gap exists between the knowledge of genome sequence and our knowledge of genome function. Now that many genome maps are available, people wish to know what are we going to do with them. Certainly, all these scientific accomplishments will shed light on many more secrets of life. Nevertheless, parsimony in the weekly announcements of promising scientific achievements is necessary. We also need many more creative experimental biologists to discover new, as yet un-envisaged biotechnological approaches, and the basic resource needed for carrying out mile stone research necessary for leading us to that "promised land"often proclaimed by the mass media.

  12. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  13. Building the HIVe: disrupting biomedical HIV and AIDS research with gay men, other men who have sex with men (MSM) and transgenders

    OpenAIRE

    Walsh, Christopher; Singh, Gurmit

    2012-01-01

    Networked and digital technologies now mediate the sexual behaviors of many gay men, other men that have sex with men and transgenders, challenging the effectiveness of biomedical HIV/AIDS research and prevention practices. Driven by the normative positivist philosophy of science, these approaches—while paramount to fighting the epidemic—have neglected to rethink their ontological and epistemological assumptions when confronting the social drivers of HIV. Building the HIVe responds by forefro...

  14. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  15. 76 FR 6484 - Submission for OMB Review; Comment Request; Pretesting of NIAID's Biomedical HIV Prevention...

    Science.gov (United States)

    2011-02-04

    ... NIAID's Biomedical HIV Prevention Research Communication Messages SUMMARY: Under the provisions of...: Title: Pretesting of NIAID's Biomedical HIV Prevention Research Communication Messages. Type of... biomedical HIV prevention research. The primary objectives of the pretests are to (1) assess...

  16. 75 FR 70270 - Submission for OMB Review; Comment Request; Pretesting of NIAID's Biomedical HIV Prevention...

    Science.gov (United States)

    2010-11-17

    ... NIAID's Biomedical HIV Prevention Research Communication Messages SUMMARY: In compliance with the... Collection: Title: Pretesting of NIAID's Biomedical HIV Prevention Research Communication Messages. Type of... biomedical HIV prevention research. The primary objectives of the pretests are to (1) Assess...

  17. Prospective integration of cultural consideration in biomedical research for patients with advanced cancer: recommendations from an international conference on malignant bowel obstruction in palliative care.

    Science.gov (United States)

    Fineberg, Iris Cohen; Grant, Marcia; Aziz, Noreen M; Payne, Richard; Kagawa-Singer, Marjorie; Dunn, Geoffrey P; Kinzbrunner, Barry M; Palos, Guadalupe; Shinagawa, Susan Matsuko; Krouse, Robert S

    2007-07-01

    In the setting of an international conference on malignant bowel obstruction as a model for randomized controlled trials (RCTs) in palliative care, we discuss the importance of incorporating prospective cultural considerations into research design. The approach commonly used in biomedical research has traditionally valued the RCT as the ultimate "way of knowing" about how to best treat a medical condition. The foremost limitation of this approach is the lack of recognition of the impact of cultural viewpoints on research outcomes. We propose that interest relevant to cultural viewpoints should be emphasized in conceptualizing and interpreting research questions, designs, and results. In addition to recognizing our cultural biases as individuals and researchers, we recommend two major shifts in designing and implementing RCTs: 1) inclusion of a multidisciplinary team of researchers to inform the diversity of perspectives and expertise brought to the research, and 2) use of mixed methods of inquiry, reflecting both deductive and inductive modes of inference. PMID:17532174

  18. The Concept of the Three Rs in Biomedical Research The Ethical and Scientific Basis for the Humane Treatment of Laboratory Animals --The British Experience

    Institute of Scientific and Technical Information of China (English)

    GC BANTIN

    2001-01-01

    @@ 1 Introduction 1.1 THE CONCEPT OF ANIMAL CARE.Ethics and the developing demand for relevant legislation During the late 19th Century there was an increasing concern in the UK with respect to a aspects of illtreatment of animals. This was reflected in the thinking of the research community and in 1871 The British Association For the Advancement of Science issued a set of basic principles of animal experimentation.This was a response to the growing awareness by the BA of the need for an ethical approach to biomedical research and for the considerate treatment of laboratory animals.

  19. Holography In Biomedical Sciences

    Science.gov (United States)

    von Bally, G.

    1988-01-01

    Today not only physicists and engineers but also biological and medical scientists are exploring the potentials of holographic methods in their special field of work. Most of the underlying physical principles such as coherence, interference, diffraction and polarization as well as general features of holography e.g. storage and retrieval of amplitude and phase of a wavefront, 3-d-imaging, large field of depth, redundant storage of information, spatial filtering, high-resolving, non-contactive, 3-d form and motion analysis are explained in detail in other contributions to this book. Therefore, this article is confined to the applications of holography in biomedical sciences. Because of the great number of contributions and the variety of applications [1,2,3,4,5,6,7,8] in this review the investigations can only be mentioned briefly and the survey has to be confined to some examples. As in all fields of optics and laser metrology, a review of biomedical applications of holography would be incomplete if military developments and their utilization are not mentioned. As will be demonstrated by selected examples the increasing interlacing of science with the military does not stop at domains that traditionally are regarded as exclusively oriented to human welfare like biomedical research [9]. This fact is actually characterized and stressed by the expression "Star Wars Medicine", which becomes increasingly common as popular description for laser applications (including holography) in medicine [10]. Thus, the consequence - even in such highly specialized fields like biomedical applications of holography - have to be discussed.

  20. 75 FR 35820 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-23

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special..., ARRA Related Biomedical Research and Research Support Awards, National Institutes of Health, HHS)...

  1. Reflexiones sobre los principios éticos en investigación biomedica en seres humanos Ethical principles in biomedical research involving human beings

    Directory of Open Access Journals (Sweden)

    MARIANNE GAUDLITZ H

    2008-01-01

    Full Text Available La investigación biomedica en seres humanos plantea problemas valóneos. Una investigación científica debe ir de la mano de una serie de requisitos para que sea una investigación ética. La trayectoria de la investigación en el mundo occidental no ha estado libre de abusos. Las normas éticas internacionales han aparecido después de las transgresiones. La protección de los probandos que participan libre y voluntariamente en una investigación biomedica es una obligación ética, la dignidad de éstos está por sobre el progreso de la ciencia y el bienestar que éste acarrearíaBiomedical research involving human subjects present valoric problems. A scientific research must go hand in hand with several requisites to be ethic. Human experimentation through its history in the occidental world has not been exempt from abuses. Ethic international rules have appeared after the transgressions. The protection of the human beings that freely and willingly participate in a biomedical research is an ethic obligation. The dignity of the human beings is above the progress of science and the wealth it carries with it

  2. Intranuclear-cascade-evaporation model for inelastic nuclear collisions and its application in biomedical and MFE research

    International Nuclear Information System (INIS)

    A brief description of the intranuclear cascade evaporation model is given and comparisons between results obtained with this model and experimental cross section data are presented. Also transport calculations carried out using differential cross section data obtained with the studied model are presented and compared with experimental data. These comparisons are, it is expected, sufficient to indicate that the model is not completely unreliable in the energy region of interest below 50 MeV and to indicate that transport calculations of interest in biomedical and magnetic fusion energy applications can at present be carried out. 26 references

  3. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. PMID:27179985

  4. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  5. A Matrix Mentoring Model That Effectively Supports Clinical and Translational Scientists and Increases Inclusion in Biomedical Research: Lessons From the University of Utah.

    Science.gov (United States)

    Byington, Carrie L; Keenan, Heather; Phillips, John D; Childs, Rebecca; Wachs, Erin; Berzins, Mary Anne; Clark, Kim; Torres, Maria K; Abramson, Jan; Lee, Vivian; Clark, Edward B

    2016-04-01

    Physician-scientists and scientists in all the health professions are vital members of the U.S. biomedical workforce, but their numbers at academic health centers are declining. Mentorship has been identified as a key component in retention of faculty members at academic health centers. Effective mentoring may promote the retention of clinician-scientists in the biomedical workforce. The authors describe a holistic institutional mentoring program to support junior faculty members engaged in clinical and translational science at the University of Utah. The clinical and translational scholars (CATS) program leverages the resources of the institution, including the Center for Clinical and Translational Science, to augment departmental resources to support junior faculty investigators and uses a multilevel mentoring matrix that includes self, senior, scientific, peer, and staff mentorship. Begun in the Department of Pediatrics, the program was expanded in 2013 to include all departments in the school of medicine and the health sciences. During the two-year program, scholars learn management essentials and have leadership training designed to develop principal investigators. Of the 86 program participants since fiscal year 2008, 92% have received extramural awards, 99% remain in academic medicine, and 95% remain at the University of Utah. The CATS program has also been associated with increased inclusion of women and underrepresented minorities in the institutional research enterprise. The CATS program manifests institutional collaboration and coordination of resources, which have benefited faculty members and the institution. The model can be applied to other academic health centers to support and sustain the biomedical workforce. PMID:26650676

  6. A Review of Biomedical Composite Materials

    Institute of Scientific and Technical Information of China (English)

    吴珊珊

    2013-01-01

    This article addresses the review of the biomedical composite materials.It introduces the operational definition,the classification of biomedical composite materials,and its constituents within itself.In this thesis,the last part presents the application of this kind of material.By writing this paper,I hope that people will get a comprehensive knowledge of the biomedical composite material and make further and deeper research in this material by which way to animate the material science industry.

  7. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  8. Technical Note: Synchrotron-based high-energy x-ray phase sensitive microtomography for biomedical research

    International Nuclear Information System (INIS)

    Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed by phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure

  9. Technical Note: Synchrotron-based high-energy x-ray phase sensitive microtomography for biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huiqiang [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn [Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35249 (United States); Xiao, Tiqiao, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-10-15

    Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed by phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure.

  10. Network fingerprint: a knowledge-based characterization of biomedical networks

    OpenAIRE

    Xiuliang Cui; Haochen He; Fuchu He; Shengqi Wang; Fei Li; Xiaochen Bo

    2015-01-01

    It can be difficult for biomedical researchers to understand complex molecular networks due to their unfamiliarity with the mathematical concepts employed. To represent molecular networks with clear meanings and familiar forms for biomedical researchers, we introduce a knowledge-based computational framework to decipher biomedical networks by making systematic comparisons to well-studied “basic networks”. A biomedical network is characterized as a spectrum-like vector called “network fingerpr...

  11. Interdisciplinary Area of Research Offers Tool of Cross-Cultural Understanding: Cross-Cultural Student Seminar for Communication Training on Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-12-01

    Full Text Available Misunderstanding often occurs in a multidisciplinary field of study, because each field has its own background of thinking. Communication training is important for students, who have a potential to develop the multidisciplinary field of study. Because each nation has its own cultural background, communication in an international seminar is not easy, either. A cross-cultural student seminar has been designed for communication training in the multidisciplinary field of study. Students from a variety of back grounds have joined in the seminar. Both equations and figures are effective tools for communication in the field of science. The seminar works well for communication training in the multidisciplinary field of study of biomedical engineering. An interdisciplinary area of research offers the tool of cross-cultural understanding. The present study refers to author's several experiences: the student internship abroad, the cross-cultural student camp, multi PhD theses, various affiliations, and the creation of the interdisciplinary department.

  12. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  13. Biomedical applications of supermagnetic nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Babič, Michal; Kubinová, Šárka; Schmiedtová, M.; Poledne, R.; Herynek, V.; Sundstrom, T.; Altanerova, V.; Borisova, T.

    Prague : Institute of Macromolecular Chemistry AS CR, 2015. s. 18. [Research Postdoctoral Colloquium. 14.05.2015, Prague] R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:68378041 Keywords : biomedical applications * supermagnetic nanoparticles Subject RIV: CE - Biochemistry

  14. Mathematical modeling in biomedical imaging

    CERN Document Server

    2009-01-01

    This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

  15. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, C.C. [ed.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  16. International symposium on Biomedical Data Infrastructure (BDI 2013)

    CERN Document Server

    Dhillon, Sarinder; Advances in biomedical infrastructure 2013

    2013-01-01

    Current Biomedical Databases are independently administered in geographically distinct locations, lending them almost ideally to adoption of intelligent data management approaches. This book focuses on research issues, problems and opportunities in Biomedical Data Infrastructure identifying new issues and directions for future research in Biomedical Data and Information Retrieval, Semantics in Biomedicine, and Biomedical Data Modeling and Analysis. The book will be a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development in biomedical data management.

  17. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use

    OpenAIRE

    Schneider Erich; Hofmann-Amtenbrinck Margarethe; von Rechenberg Brigitte; Claes Lutz; Price Jill; Pearce Simon; Arnoczky Steven; Goodship Allen; Auer Jorg A; Müller-Terpitz R; Thiele F; Rippe Klaus-Peter; Grainger David W

    2007-01-01

    Abstract Background In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation) in concert with the AO Research Institute (ARI), and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musc...

  18. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1992-09-01

    This report summarizes progress in OHER biological research and general life sciences research programs conducted conducted at PNL in FLY 1991. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long- term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and newly developed energy-related technologies through an increased understanding of the ways in which radiation and chemicals cause biological damage.

  19. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research - Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1990-05-01

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiological studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.

  20. Misconduct Policies in High-Impact Biomedical Journals

    OpenAIRE

    Bosch, Xavier; Hernández, Cristina; Pericas, Juan M.; Doti, Pamela; Marušić, Ana

    2012-01-01

    Background It is not clear which research misconduct policies are adopted by biomedical journals. This study assessed the prevalence and content policies of the most influential biomedical journals on misconduct and procedures for handling and responding to allegations of misconduct. Methods We conducted a cross-sectional study of misconduct policies of 399 high-impact biomedical journals in 27 biomedical categories of the Journal Citation Reports in December 2011. Journal websites were revie...

  1. State-of-the-art ProteinChips Offer a Powerful Tool for Bio-medical Research

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Aresearch group led by Prof.JIN Gang from the National Microgravity Laboratory at the CAS Institute of Mechanics has made major progress in the research and development of optical protein micro-array chips.

  2. Frequency and Type of Conflicts of Interest in the Peer Review of Basic Biomedical Research Funding Applications: Self-Reporting Versus Manual Detection.

    Science.gov (United States)

    Gallo, Stephen A; Lemaster, Michael; Glisson, Scott R

    2016-02-01

    Despite the presumed frequency of conflicts of interest in scientific peer review, there is a paucity of data in the literature reporting on the frequency and type of conflicts that occur, particularly with regard to the peer review of basic science applications. To address this gap, the American Institute of Biological Sciences (AIBS) conducted a retrospective analysis of conflict of interest data from the peer review of 282 biomedical research applications via several onsite review panels. The overall conflicted-ness of these panels was significantly lower than that reported for regulatory review. In addition, the majority of identified conflicts were institutional or collaborative in nature. No direct financial conflicts were identified, although this is likely due to the relatively basic science nature of the research. It was also found that 65 % of identified conflicts were manually detected by AIBS staff searching reviewer CVs and application documents, with the remaining 35 % resulting from self-reporting. The lack of self-reporting may be in part attributed to a lack of perceived risk of the conflict. This result indicates that many potential conflicts go unreported in peer review, underscoring the importance of improving detection methods and standardizing the reporting of reviewer and applicant conflict of interest information. PMID:25649072

  3. Factors Affecting the Use of Human Tissues in Biomedical Research: Implications in the Design and Operation of a Biorepository.

    Science.gov (United States)

    Atherton, Daniel S; Sexton, Katherine C; Otali, Dennis; Bell, Walter C; Grizzle, William E

    2016-01-01

    The availability of high-quality human tissues is necessary to advance medical research. Although there are inherent and induced limitations on the use of human tissues in research, biorepositories play critical roles in minimizing the effects of such limitations. Specifically, the optimal utilization of tissues in research requires tissues to be diagnosed accurately, and the actual specimens provided to investigators must be carefully described (i.e., there must be quality control of each aliquot of the tissue provided for research, including a description of any damage to tissues). Tissues also should be collected, processed, stored, and distributed (i.e., handled) uniformly under a rigorous quality management system (QMS). Frequently, tissues are distributed to investigators by tissue banks which have collected, processed, and stored them by standard operating procedures (SOPs). Alternatively, tissues for research may be handled via SOPs that are modified to the specific requirements of investigators (i.e., using a prospective biorepository model). The primary goal of any type of biorepository should be to ensure its specimens are of high quality and are utilized appropriately in research; however, approaches may vary based on the tissues available and requested. For example, extraction of specific molecules (e.g., microRNA) to study molecular characteristics of a tissue may require less clinical annotation than tissues that are utilized to identify how the molecular expression might be used to clarify a clinical outcome of a disease or the response to a specific therapy. This review focuses on the limitations of the use of tissues in research and how the design and operations of a tissue biorepository can minimize some of these limitations. PMID:26667452

  4. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  5. Environmental/Biomedical Terminology Index

    International Nuclear Information System (INIS)

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index

  6. The human capacity to reflect and decide: bioethics and the reconfiguration of the research subject in the British biomedical sciences.

    Science.gov (United States)

    Reubi, David

    2012-06-01

    This article examines how a fundamental element of the British bioethical assemblage - the literature on informed consent published between 1980 and 2000, a period when bioethics became a powerful force in the UK--has influenced contemporary understandings of the research subject. Drawing on Foucault, the article argues that this corpus of texts has created a sphere of possibilities in which research subjects can imagine themselves as human beings who reflect and decide whether they want to participate in medical experimentation. In particular, it shows how the narratives found in these texts portray relationships between researchers and their human subjects as 'paternalistic', and calls for their replacement by new, more ethical relationships characterized by both 'dialogue' and 'respect' and articulated around subjects who can 'think and take decisions'. It also discusses the different strategies- using patient information sheets, a list of possible questions and invitations to take time to reflect--which the bioethical literature has developed in order to realise these new, ethical relationships. As the article suggests, these narratives and strategies provide researchers and research subjects with models and examples of how to interact with each other that are very different from the ones that prevailed before the emergence of bioethics. PMID:23035387

  7. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  8. The Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN Database and Analysis Pipeline for Arterial Spin Labeling MRI Data

    Directory of Open Access Journals (Sweden)

    David D. Shin

    2013-10-01

    Full Text Available Arterial spin labeling (ASL is a MRI technique that provides a noninvasive and quantitative measure of cerebral blood flow (CBF. After more than a decade of active research, ASL is now emerging as a robust and reliable CBF measurement technique with increased availability and ease of use. There is a growing number of research and clinical sites using ASL for neuroscience research and clinical care. In this paper, we present an online CBF Database and Analysis Pipeline, collectively called the CBFBIRN that allows researchers to upload and share ASL and clinical data. In addition to serving the role as a central data repository, the CBFBIRN provides a streamlined data processing infrastructure for CBF quantification and group analysis, which has the potential to accelerate the discovery of new scientific and clinical knowledge. All capabilities and features built into the CBFBIRN are accessed online using a web browser through a secure login. In this work, we begin with a general description of the CBFBIRN system data model and its architecture, then devote the remainder of the paper to the CBFBIRN capabilities. The latter part of our work is divided into two processing modules: 1 Data Upload and CBF Quantification Module; 2 Group Analysis Module that supports three types of analysis commonly used in neuroscience research. To date, the CBFBIRN hosts CBF maps and associated clinical data from more than 1300 individual subjects. The data have been contributed by more than 20 different research studies, investigating the effect of various conditions on CBF including Alzheimer’s, schizophrenia, bipolar disorder, depression, traumatic brain injury, HIV, caffeine usage and Methamphetamine abuse. Several example results, generated by the CBFBIRN processing modules, are presented. We conclude with the lessons learned during implementation and deployment of the CBFBIRN and our experience in promoting data sharing.

  9. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use

    Directory of Open Access Journals (Sweden)

    Schneider Erich

    2007-08-01

    Full Text Available Abstract Background In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation in concert with the AO Research Institute (ARI, and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musculoskeletal research. Methods The group narrowed the field to fracture research. The consensus opinion resulting from this workshop can be summarized as follows: Results & Conclusion Anaesthesia and pain management protocols for research animals should follow standard protocols applied in clinical work for the species involved. This will improve morbidity and mortality outcomes. A database should be established to facilitate selection of anaesthesia and pain management protocols for specific experimental surgical procedures and adopted as an International Standard (IS according to animal species selected. A list of 10 golden rules and requirements for conduction of animal experiments in musculoskeletal research was drawn up comprising 1 Intelligent study designs to receive appropriate answers; 2 Minimal complication rates (5 to max. 10%; 3 Defined end-points for both welfare and scientific outputs analogous to quality assessment (QA audit of protocols in GLP studies; 4 Sufficient details for materials and methods applied; 5 Potentially confounding variables (genetic background, seasonal, hormonal, size, histological, and biomechanical differences; 6 Post-operative management with emphasis on analgesia and follow-up examinations; 7 Study protocols to satisfy criteria established for a "justified animal study"; 8 Surgical expertise to conduct surgery on animals; 9 Pilot studies as a critical part of model validation and powering of the definitive study design

  10. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  11. The Impact of Animal Rights on the Use of Animals for Biomedical Research, Product Testing and Evaluation.

    Science.gov (United States)

    Baier, Stephen W.

    1993-01-01

    Clarifies the issues of animal rights as they effect animal use in research and education through an examination of the current use of animals, a historical look at animal use, and a consideration of the philosophical underpinnings of the animal rights and pro-use viewpoints. (PR)

  12. Criteria for Assessing Quality in Academic Research: The Views of Biomedical Scientists, Clinical Scientists and Social Scientists

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne; McGuire, Wendy

    2012-01-01

    This study empirically addresses the claim made by Gibbons et al ("The new production of knowledge: The dynamics of science and research in contemporary societies." Sage, Thousand Oaks, 1994) that a novel form of quality control (associated with Mode 2 knowledge production) is supplementing the "traditional" peer-review process (associated with…

  13. Moessbauer spectroscopy with high velocity resolution. New possibilities of chemical analysis in material science and biomedical research

    International Nuclear Information System (INIS)

    An improvement in velocity resolution of Moessbauer spectroscopy permitted us to carry out a more detailed study of iron chemical state in various iron-containing compounds in a wide range of research. New possibilities of Moessbauer spectroscopy with high velocity resolution were shown in the studies of meteorites, nanocomposites, pharmaceuticals and biological subjects. (author)

  14. Science gateways for biomedical big data analysis

    OpenAIRE

    Kampen, van, PJW; Olabarriaga, S.D.; Shahand, S.

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists from different organizations. Data-driven or e-Science methods are defined as a combination of Information Technology (IT) and science that enables scientists to tackle the data deluge challenges. Th...

  15. Statistics and Biomedical Informatics in Forensic Sciences

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2009-01-01

    Roč. 20, č. 6 (2009), s. 743-750. ISSN 1180-4009. [TIES 2007. Annual Meeting of the International Environmental Society /18./. Mikulov, 16.08.2007-20.08.2007] Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * biomedical statistics * genetic information * forensic dentistry Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.000, year: 2009

  16. Cohort profile of the South London and Maudsley NHS Foundation Trust Biomedical Research Centre (SLaM BRC) Case Register : current status and recent enhancement of an Electronic Mental Health Record-derived data resource.

    OpenAIRE

    Perera, Gayan Surendrajith; Chang, Chin-Kuo; Broadbent, Matthew; Callard, Felicity; Downs, Jonathan Muir; Dutta, Rina; Fernandes, Andrea Carmen; Hayes, Richard Derek; Henderson, Max Joseph; Jackson, Richard George; Jewell, A; Kadra, Giouliana; Little, Ryan; Pritchard, Megan Ruth; Shetty, Hitesh

    2016-01-01

    Purpose: The South London and Maudsley National Health Service (NHS) Foundation Trust Biomedical Research Centre (SLaM BRC) Case Register and itsClinical Record Interactive Search (CRIS) application were developed in 2008, generating a research repository of real-time, anonymised, structured andopen-text data derived from the electronic health record system used by SLaM, a large mental healthcare provider in southeast London. In this paper, we updatethis register’s descriptive data, and descr...

  17. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John

    2011-01-01

    Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering e

  18. Management and Analysis of Biological and Clinical Data: How Computer Science May Support Biomedical and Clinical Research

    Science.gov (United States)

    Veltri, Pierangelo

    The use of computer based solutions for data management in biology and clinical science has contributed to improve life-quality and also to gather research results in shorter time. Indeed, new algorithms and high performance computation have been using in proteomics and genomics studies for curing chronic diseases (e.g., drug designing) as well as supporting clinicians both in diagnosis (e.g., images-based diagnosis) and patient curing (e.g., computer based information analysis on information gathered from patient). In this paper we survey on examples of computer based techniques applied in both biology and clinical contexts. The reported applications are also results of experiences in real case applications at University Medical School of Catanzaro and also part of experiences of the National project Staywell SH 2.0 involving many research centers and companies aiming to study and improve citizen wellness.

  19. The use of non-human primates in biomedical research: addressing the replacement impasse through the social dynamics of science

    OpenAIRE

    Hudson-Shore, Michelle

    2015-01-01

    Non-human primate experimentation provokes passionate and opposing exchanges, particularly in the UK. This disagreement contributes to an impasse which in turn has prevented the exploration of the important question, if and how primate research could be ended. This project aims to support the examination of this question of impasse presenting data on how it might be overcome by providing a novel and challenging perspective using a multi-method approach, and insights from science and technolog...

  20. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  1. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  2. Laboratory Animal Welfare Issues in Biomedical Research%生物医学研究中的实验动物福利问题

    Institute of Scientific and Technical Information of China (English)

    张建红; 刘田福; 武冬梅; 王锐利; 王海龙; 陈朝阳

    2001-01-01

    Animal welfare issues are facing each scientist i n biomedicalresearch.These problems are complex,involve a diversity of views ,and will not disa ppear in the future.Biomedical scientists need to be knowledgeable about the i ssues,develop sensitivity to the diversity of thought about these issues,and take an active stance toward animal welfare.Scientists must go beyond compliance and use skills to maximize well-being of experimental animals.It is essential that scientists should advocate animal well-being and adhere to appropriate guidelines for animal care and use when conducting research with laboratory animals .%动物福利问题形式多样,涉及科学进步和社会发展的多个层次。在生物医学研究过程中,每位科学家都应正确看待这些问题,增进对问题多样性的了解,倡导人道的使用和管理实验动物,并采取积极有效措施,遵循有关的规章制度和操作要求扩大动物福利,推进我国实验动物标准化进程和生物医学事业的发展。

  3. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Felton, D.L. (ed.)

    1985-02-01

    Research progress is reported in the following areas: (1) evaluation of possible health effects among nuclear workers; (2) dose-effect relationship studies of carcinogenesis from both nuclear materials and complex mixtures; (3) microbial mutagenesis studies with 6-aminochrysene and benzo(a)pyrene in coal-derived complex mixtures; and (4) a variety of studies relating to noncarcinogenic and nonmutagenic endpoints, including teratology, perinatal studies and studies to determine absorption, metabolism, and doses to critical tissues and organs of coal-derived mixtures and radionuclides. Items have been individually abstracted for the data base. (ACR)

  4. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Research progress is reported in the following areas: (1) evaluation of possible health effects among nuclear workers; (2) dose-effect relationship studies of carcinogenesis from both nuclear materials and complex mixtures; (3) microbial mutagenesis studies with 6-aminochrysene and benzo[a]pyrene in coal-derived complex mixtures; and (4) a variety of studies relating to noncarcinogenic and nonmutagenic endpoints, including teratology, perinatal studies and studies to determine absorption, metabolism, and doses to critical tissues and organs of coal-derived mixtures and radionuclides. Items have been individually abstracted for the data base

  5. U.S./Belarus/Ukraine joint research on the biomedical effects of the Chernobyl Reactor Accident. Final report

    International Nuclear Information System (INIS)

    The National Cancer Institute has negotiated with the governments of Belarus and Ukraine (Ministers/Ministries of Health, institutions and scientists) to develop scientific research protocols to study the effects of radioactive iodine released by the Chernobyl accident upon thyroid anatomy and function in defined cohorts of persons under the age of 19 years at the time of the accident. These studies include prospective long term medical follow-up of the cohort and the reconstruction of the radiation dose to each cohort subject's thyroid. The protocol for the study in Belarus was signed by the US and Belorussian governments in May 1994 and the protocol for the study in Ukraine was signed by the US and Ukraine in May 1995. A second scientific research protocol also was negotiated with Ukraine to study the feasibility of a long term study to follow the development of leukemia and lymphoma among Ukrainian cleanup workers; this protocol was signed by the US and Ukraine in October 1996

  6. The BIRN Project: Distributed Information Infrastructure and Multi-scale Imaging of the Nervous System (BIRN = Biomedical Informatics Research Network)

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences and protein products. The general premise of the neuroscience goal is simple; namely that with "complete" knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their ...

  7. Shape-Memory Polymers for Biomedical Applications

    Science.gov (United States)

    Yakacki, Christopher M.; Gall, Ken

    Shape-memory polymers (SMPs) are a class of mechanically functional "smart" materials that have generated substantial interest for biomedical applications. SMPs offer the ability to promote minimally invasive surgery, provide structural support, exert stabilizing forces, elute therapeutic agents, and biodegrade. This review focuses on several areas of biomedicine including vascular, orthopedic, and neuronal applications with respect to the progress and potential for SMPs to improve the standard of treatment in these areas. Fundamental studies on proposed biomedical SMP systems are discussed with regards to biodegradability, tailorability, sterilization, and biocompatibility. Lastly, a proposed research and development pathway for SMP-based biomedical devices is proposed based on trends in the recent literature.

  8. Comparing the performance of biomedical clustering methods

    DEFF Research Database (Denmark)

    Wiwie, Christian; Baumbach, Jan; Röttger, Richard

    2015-01-01

    Identifying groups of similar objects is a popular first step in biomedical data analysis, but it is error-prone and impossible to perform manually. Many computational methods have been developed to tackle this problem. Here we assessed 13 well-known methods using 24 data sets ranging from gene......-ranging comparison we were able to develop a short guideline for biomedical clustering tasks. ClustEval allows biomedical researchers to pick the appropriate tool for their data type and allows method developers to compare their tool to the state of the art....

  9. Analyzing HT-SELEX data with the Galaxy Project tools--A web based bioinformatics platform for biomedical research.

    Science.gov (United States)

    Thiel, William H; Giangrande, Paloma H

    2016-03-15

    The development of DNA and RNA aptamers for research as well as diagnostic and therapeutic applications is a rapidly growing field. In the past decade, the process of identifying aptamers has been revolutionized with the advent of high-throughput sequencing (HTS). However, bioinformatics tools that enable the average molecular biologist to analyze these large datasets and expedite the identification of candidate aptamer sequences have been lagging behind the HTS revolution. The Galaxy Project was developed in order to efficiently analyze genome, exome, and transcriptome HTS data, and we have now applied these tools to aptamer HTS data. The Galaxy Project's public webserver is an open source collection of bioinformatics tools that are powerful, flexible, dynamic, and user friendly. The online nature of the Galaxy webserver and its graphical interface allow users to analyze HTS data without compiling code or installing multiple programs. Herein we describe how tools within the Galaxy webserver can be adapted to pre-process, compile, filter and analyze aptamer HTS data from multiple rounds of selection. PMID:26481156

  10. Synthesis and characterization of lanthanum bonded agar-carbomer hydrogel:a promising tool for biomedical research

    Institute of Scientific and Technical Information of China (English)

    Filippo Rossi; Marco Santoro; Tommaso Casalini; Giuseppe Perale

    2011-01-01

    Agar-Carbomer (branched poly (acrylic acid)) hydrogel, an injectable bio-resorbable scaffold with a controlled nanostructure specifically designed for neural cell housing, was developed together with a new protocol for building three dimensional biohybrid cell/hydrogel systems. In order to overcome classic strucrural analysis inconveniences due to the high water amount, which affects instruments results and reliability, agar-Carbomer hydrogels were synthesized by microwave-assisted block copolymerizaton together with La3+ salts. Propylene glycol, glycerol and buffered saline solution were used as cross-linking agents and solvent, respectively. Biomaterial properties were not affected by the presence of lanthanum, and were checked via swelling and rheological analysis. Moreover, the presence of La3+ within the polymeric network was characterized by thermogravimetric analysis, environmental scanning electron microscopy and Fourier transformed infrared spectroscopy. The results showed that the rare earth presented uniform distribution in the hydrogel network due to the formation of chemical bonds after polymerization without being modified its luminescence emission spectrum that allowed hydrogel detection. These results made the obtained host-guest system a useful tool for analytical research studies concerning regenerative medical applications that could also be potentially taken up within vivo experiments.

  11. 静电纺纤维在生物医药应用领域的研究进展∗%Research progress on electrospinning fiber for biomedical applications

    Institute of Scientific and Technical Information of China (English)

    刘延波; 孙健; 赵雪菲; 马素梅

    2015-01-01

    随着人们对纳米纤维材料特殊性能和高度适应性认识的不断提高,越来越多的研究在关注纳米纤维的制备方法。其中,静电纺丝技术是一种操作简单、原料适应性广且易于实现规模化生产的纺丝方法。静电纺纳米纤维具有较高的比表面积及孔隙率,在生物医药领域有着广泛的应用。介绍生物医药应用领域静电纺纤维的研究状况,着重阐述静电纺技术在组织工程支架、药物控释、创伤敷料、生物酶固定化、生物传感器及医学诊断应用等方面的最新研究进展。%With increasing awareness of the special properties and broad applicability of nanofiber materials, more and more researches focused on the preparation methods of nanofiber, of which electrospinning tech-nique was one of spinning methods with simple operation, extensive adaptation of raw materials and easily realizing mass production. Due to the higher specific surface area and porosity, electrospun nanofibers had been applied in the biomedical field widely. The application status of electrospinning concerning biological medicines, especially the latest research progress of electrospinning technique in-cluding tissue engineering scaffold, drug delivery, wound dressing, biologic enzyme immobilization, biosensor and medical diagnosis application and so on, was introduced.

  12. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  13. Biomedical Analyses of Mice Body Hair Exposed to Long-term Space Flight as a Compliment of Human Research

    Science.gov (United States)

    Mukai, Chiaki

    Introduction: To understand the effect of space environment characterized by microgravity and radiation on protein and mineral metabolisms is important for developing the countermeasures to the adverse effects happening on the astronauts who stay long-term in space. Thus JAXA has started a human research to study the effects of long-term exposure in space flight on gene expression and mineral metabolism by analyzing astronaut's hair grown in space since December 2009 (Experiment nicknamed "HAIR"). Ten human subjects who are the crew of the International Space Station (ISS) will be expected to complete this experiment. Thanks to the tissue sharing program of space-flown mice which is presented and organized by AGI(Italian Space Agency), we can also have an opportunity to analyze rodents samples which will greatly compliment human hair experiment by enable us to conduct more detailed analysis with the expansion of skin analysis which is not include in human experiment. The purpose of this flown-mice experiment is to study the effects of long-term exposure to space environment such as microgravity and space radiation on mineral and protein metabolism, the biological responses to the stress levels, and the initial process of skin carcinogenesis by analyzing hair shaft, its root cells, and skin. Approach and Method In this experiment, we analyzed hair shaft, hair root and skin. Hair samples with skin were taken from 3-month space-flown mice and ground-control mice in the AGI's tissue sharing program in 2009. The sample numbers of space-flown mice and control-mice were three and six, respectively. And they were at the Mice Drawer System (MDS) in ISS and in the laboratory of Geneva University. For the hair shaft, the mineral balance is investi-gated by energy dispersive X-ray spectroscopy (SEM-EDX). For hair root, the extracted RNA undergoes DNA microarray analysis, and will be further examined particular interests of gene-expression by real time Reverse Transcription

  14. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  15. The National Space Biomedical Research Institute's education and public outreach program: Working toward a global 21st century space exploration society

    Science.gov (United States)

    MacLeish, Marlene Y.; Thomson, William A.; Moreno, Nancy P.

    2011-05-01

    Space Exploration educators worldwide are confronting challenges and embracing opportunities to prepare students for the global 21st century workforce. The National Space Biomedical Research Institute (NSBRI), established in 1997 through a NASA competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) is advancing the Institute's mission by responding to global educational challenges through activities that: provide teacher professional development; develop curricula that teach students to communicate with their peers across the globe; provide women and minority US populations with greater access to, and awareness of science careers; and promote international science education partnerships. A recent National Research Council (NRC) Space Studies Board Report, America's Future in Space: Aligning the Civil Program with National Needs, acknowledges that "a capable workforce for the 21st century is a key strategic objective for the US space program… (and that) US problems requiring best efforts to understand and resolve…are global in nature and must be addressed through mutual worldwide action". [1] This sentiment has gained new momentum through a recent National Aeronautics and Space Administration (NASA) report, which recommends that the life of the International Space Station be extended beyond the planned 2016 termination. [2] The two principles of globalization and ISS utility have elevated NSBRI EPOP efforts to design and disseminate science, technology, engineering and mathematics (STEM) educational materials that prepare students for full participation in a globalized, high technology society; promote and provide teacher professional development; create research opportunities for women and underserved populations; and build international educational partnerships. This paper describes select EPOP projects and makes the case for using innovative, emerging information

  16. 基于知识组织系统的生物医学文本挖掘研究%Research on Biomedical Text Mining Based on Knowledge Organization System

    Institute of Scientific and Technical Information of China (English)

    钱庆

    2016-01-01

    With the rapid development of biomedical information technology, biological medical literatures grow exponential y. It's hard to read and understand the required knowledge by manual, how to integrate knowledge from huge amounts of biomedical literatures, mining new knowledge has been becoming the current hot spot. Knowledge organization system construction in the field of biological medicine is more normative and complete than other fields, which is the foundation for biomedical text mining. A large number of text mining methodsand systems based on knowledge organization system have fast development. This paper investigates the existing medical knowledge organization systems and summarizes the process of biomedical text mining. It also summaries the researches andrecentprogressand analyzes the characteristics of biomedical text mining based on knowledge organization system. The knowledge organization systems play an important role in biomedical text mining and the chal enge for the current study are summarized, so as to provide references for biomedical workers.%随着生物医学信息技术的飞速发展,生物医学文献呈“指数型”增长,单纯依靠人工阅读获取和理解所需知识变得异常困难,如何从海量生物医学文献中整合已有知识、挖掘新知识成为当前研究热点。生物医学领域的知识组织系统建设相比其他领域更加规范和完整,为生物医学文本挖掘奠定了基础,大量基于知识组织系统的文本挖掘方法、系统得到快速发展。本文主要梳理现有医学知识组织系统,归纳生物医学文本挖掘的主要流程,按照挖掘任务探讨当前的主要研究和进展情况,并进一步分析基于知识组织系统的生物医学文本挖掘的特点,对知识组织系统在生物医学文本挖掘中发挥的主要作用和当前研究面临的挑战进行总结,以期为生物医学工作者提供借鉴。

  17. Manpower development for the biomedical industry space.

    Science.gov (United States)

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  18. Sample Preparations Used in Biomedical Research and Training at the Special Training Division of the Oak Ridge Institute of Nuclear Studies

    International Nuclear Information System (INIS)

    A very wide variety of sample preparation is used in the Special Training Division's research and teaching programmes. These range from simple source holders such as metal, cardboard and plastic source mounts, to precipitation devices using stainless steel and fibreglass mounts, and special source holders for liquid counting of samples. In addition to these techniques, a number of procedures of special interest in biomedical problems have been developed. One of the most important of these is the use of a catalytic synthesis of benzene which has been developed to the point to which an over-all yield of better than 90% is obtained. This synthesis can be used for carbon-containing compounds of interest in low-level tracing experiments and age dating problems. Since the synthesis involves the production of carbon dioxide at one step and the hydration of metallic carbide in another, it can be used either for the measurement of 14C or 3H or both in double labelling experiments. Considerable work is done on activation analysis of biological materials, particularly in the Division's radioecological programmes. Special techniques for the preparation of these materials for activation analysis and other radiochemical procedures are described. Since the problem of resolution in alpha-ray spectroscopy remains a very difficult one, considerable work is carried out by the oceanography and environmental studies group in the development of very thin samples which are capable of permitting higher resolution of alpha-ray spectra. These employ electrodeposition procedures from mixed solvents. Measurements are made with a special bank of Fairstein-Frisch grid counters associated with a 512-channel analyser for simultaneous recording of more than one spectrum. Solid-state detectors are also used and comparative results of gridded and solid-state detectors are shown. (author)

  19. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    OpenAIRE

    Wilson, Alphus D.; Manuela Baietto

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and futu...

  20. Quality assurance of biomedical equipment repair process on technical condition

    OpenAIRE

    Кучеренко, Валентина Леонідівна

    2014-01-01

    Construction of a system of biomedical equipment repair on the actual technical condition is considered, and results of research in this area are given in the paper. The purpose of the research is to analyze the ways of quality assurance of biomedical equipment repair process in transition to the operation on the actual technical condition. Using the methods and means for the repair process stages automation allows to estimate actual technical condition of biomedical equipment. The analysis o...

  1. Statistical Challenges in Biomedical Research

    Science.gov (United States)

    Feiveson, Alan H.; Ploutz-Snyder, Rob; Fiedler, James

    2010-01-01

    Potentially debilitating effects of spaceflight environment include: a) Bone Demineralization - Osteoporosis. b)Impaired Fracture Healing - Non-Union. c) Renal Stone Formation & Soft Tissue Calcification. d) Orthostatic Intolerance (on return to gravity). e) Cardiac Arrhythmias. f) Dehydration (on return to gravity). g) Decreased Aerobic Capacity. h) Impaired Coordination. i) Muscle Atrophy (Loss of Strength). j) Radiation Sickness. k) Increased Cancer Risk. l) Impaired Immune Function. m) Behavioral Changes & Performance Decrements n) Altitude Decompression Sickness during EVA.

  2. Animals in biomedical space research

    Science.gov (United States)

    Phillips, R. W.

    1986-01-01

    Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalism function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertibrate development. Following these preliminary animal experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.

  3. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  4. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  5. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  6. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D; Bronzino, Joseph D

    2006-01-01

    Over the last century,medicine has come out of the "black bag" and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiology to informatics and signal processing. Reflecting the enormous growth and change in biomedical engineering during the infancy of the 21st century, The Biomedical Engineering Handbook enters its third edition as a set of three carefully focused and

  7. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  8. Sensors for biomedical applications

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.

  9. Sharing big biomedical data

    OpenAIRE

    Toga, Arthur W.; Dinov, Ivo D.

    2015-01-01

    Background The promise of Big Biomedical Data may be offset by the enormous challenges in handling, analyzing, and sharing it. In this paper, we provide a framework for developing practical and reasonable data sharing policies that incorporate the sociological, financial, technical and scientific requirements of a sustainable Big Data dependent scientific community. Findings Many biomedical and healthcare studies may be significantly impacted by using large, heterogeneous and incongruent data...

  10. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  11. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  12. What is biomedical informatics?

    OpenAIRE

    Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R

    2009-01-01

    Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of info...

  13. Effective written communication in biomedical sciences.

    Science.gov (United States)

    Rugh, K S; Hahn, A W

    1996-01-01

    The written word is the biomedical scientist's most important and most enduring communication tool. Nevertheless, the development of writing skills receives little attention in most scientific disciplines and the ability to conduct research is often viewed as more important than the ability to communicate the results of that research. Consequently, many scientists lack the writing skills necessary to effectively convey essential aspects of their research. In this paper, we will discuss the importance of good writing skills, give examples of common mistakes that are made in biomedical science writing and offer suggestions on how to improve written communication. PMID:8672681

  14. Modeling in biomedical informatics - An exploratory analysis (Part 1)

    NARCIS (Netherlands)

    A. Hasman; R. Haux

    2006-01-01

    Objectives: Modeling is a significant part of research, education and practice in biomedical and health informatics. Our objective was to explore, which types of models of processes are used in current biomedical/health informatics research, as reflected in publications of scientific journals in thi

  15. The Ontology for Biomedical Investigations.

    Directory of Open Access Journals (Sweden)

    Anita Bandrowski

    Full Text Available The Ontology for Biomedical Investigations (OBI is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI and Phenotype Attribute and Trait Ontology (PATO without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT. The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org providing details on the people, policies, and issues being

  16. The Ontology for Biomedical Investigations

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H.; Chibucos, Marcus C.; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A.; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L.; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A.; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H.; Schober, Daniel; Smith, Barry; Soldatova, Larisa N.; Stoeckert, Christian J.; Taylor, Chris F.; Torniai, Carlo; Turner, Jessica A.; Vita, Randi; Whetzel, Patricia L.; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  17. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  18. 15 years of research in the biomedical effects of electromagnetic fields at the electropathological research center of Witten/Herdecke University - an interim statement

    Energy Technology Data Exchange (ETDEWEB)

    Reissenweber, J.H.; Wojtysiak, A.; David, E. [Zentrum fuer Elektropathologie, Universitaet Witten/Herdecke (Germany)

    2004-07-01

    Among other issues the phenomenon of self-reported electromagnetic hypersensitivity is still a problem in modern industrial societies discussed in context with electromagnetic fields. When persons suffer from uneasiness or dizziness which they subjectively attribute to the hypothetical health effects of weak electromagnetic fields they will need professional help by specialized physicians. This medical help can be provided at ERC. Here electromagnetically hypersensitive persons are taken seriously and their individual situation and subjective burden of suffering are analyzed and categorized. They can participate in a specialized new diagnostic program which will be demonstrated in detail and is carried out by a medical specialist. Beyond further research programs this program will be continued as well as the research into cell membrane reactions under field influence. (orig.)

  19. Exploring subdomain variation in biomedical language

    Directory of Open Access Journals (Sweden)

    Séaghdha Diarmuid Ó

    2011-05-01

    Full Text Available Abstract Background Applications of Natural Language Processing (NLP technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. Results Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. Conclusions We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers.

  20. Enhancing Biomedical Text Summarization Using Semantic Relation Extraction

    OpenAIRE

    Yue Shang; Yanpeng Li; Hongfei Lin; Zhihao Yang

    2011-01-01

    Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) W...

  1. 5th International Conference on Biomedical Engineering in Vietnam

    CERN Document Server

    Phuong, Tran

    2015-01-01

    This volume presents the proceedings of the Fifth International Conference on the Development of Biomedical Engineering in Vietnam which was held from June 16-18, 2014 in Ho Chi Minh City. The volume reflects the progress of Biomedical Engineering and discusses problems and solutions. I aims identifying new challenges, and shaping future directions for research in biomedical engineering fields including medical instrumentation, bioinformatics, biomechanics, medical imaging, drug delivery therapy, regenerative medicine and entrepreneurship in medical devices.

  2. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it\\'s also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  3. Optimization and Data Analysis in Biomedical Informatics

    CERN Document Server

    Pardalos, Panos M; Xanthopoulos, Petros

    2012-01-01

    This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines

  4. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  5. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  6. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society. PMID:24117708

  7. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  8. Biomedical engineering entrepreneurship

    CERN Document Server

    Lee, Jen-Shih

    2014-01-01

    This book is written for undergraduate and graduate students in biomedical engineering wanting to learn how to pursue a career in building up their entrepreneur ventures. Practicing engineers wanting to apply their innovations for healthcare will also find this book useful. The 21st century is the Biotech Century where many nations are investing heavily in biotechnology. As a result, tremendous business opportunities exist for biomedical engineering graduates who are interested in becoming successful entrepreneurs. However, many challenges await these entrepreneurs intending to invent safe and

  9. On the crisis in biomedical education: is there an overproduction of biomedical PhDs?

    Science.gov (United States)

    Domer, J E; Garry, R F; Guth, P S; Walters, M R; Fisher, J W

    1996-08-01

    The United States is the world leader in biomedical science (BMS) education and research. This preeminence is reflected in superior medical education, the attraction of U.S. educational institutions to foreign visitors seeking advanced training, and a high rate of transfer of knowledge between basic biomedical research and the delivery of health care at the bedside. The foundation for this excellence and leadership has been the research carried out by MD and PhD biomedical scientists. It has been suggested that there is now an oversupply of BMS PhDs, and thus that BMS PhD programs should be downsized. Full examination of the issues involved, including a case study of doctoral graduates and postdoctoral fellows at Tulane Medical Center, leads the authors to conclude that a biomedical PhD "glut" does not exist at the present time, that downsizing training programs would have a serious, long-term negative impact on biomedical research, and that medical school administrators and faculty should resist attempts to reduce biomedical research and training at the local and national level. However, times have changed and training programs must evolve to adapt to the technologic changes occurring in the workplace. Alternatives, such as new alliances with industry, must be sought to compensate for decreased resources at federal and institutional levels; new and innovative curricula must be developed to prepare biomedical scientists for nonacademic, as well as academic, job opportunities in the twenty-first century; and medical center administrators and faculties must work together to increase the visibility of BMS and stress its critical relationship to the research base of the nation. PMID:9125964

  10. Biomedical applications in EELA.

    Science.gov (United States)

    Cardenas, Miguel; Hernández, Vicente; Mayo, Rafael; Blanquer, Ignacio; Perez-Griffo, Javier; Isea, Raul; Nuñez, Luis; Mora, Henry Ricardo; Fernández, Manuel

    2006-01-01

    The current demand for Grid Infrastructures to bring collabarating groups between Latina America and Europe has created the EELA proyect. This e-infrastructure is used by Biomedical groups in Latina America and Europe for the studies of ocnological analisis, neglected diseases, sequence alignments and computation plygonetics. PMID:16823158

  11. Biomedical applications of photochemistry

    OpenAIRE

    Chan, BP

    2010-01-01

    Photochemistry is the study of photochemical reactions between light and molecules. Recently, there have been increasing interests in using photochemical reactions in the fields of biomaterials and tissue engineering. This work revisits the components and mechanisms of photochemistry and reviews biomedical applications of photochemistry in various disciplines, including oncology, molecular biology, and biosurgery, with particular emphasis on tissue engineering. Finally, potential toxicities a...

  12. Developing biomedical devices design, innovation and protection

    CERN Document Server

    Andreoni, Giuseppe; Colombo, Barbara

    2013-01-01

    During the past two decades incredible progress has been achieved in the instruments and devices used in the biomedical field. This progress stems from continuous scientific research that has taken advantage of many findings and advances in technology made available by universities and industry. Innovation is the key word, and in this context legal protection and intellectual property rights (IPR) are of crucial importance. This book provides students and practitioners with the fundamentals for designing biomedical devices and explains basic design principles. Furthermore, as an aid to the dev

  13. Micro and Nano Manipulations for Biomedical Applications

    CERN Document Server

    Yih, Tachung C

    2007-01-01

    Taking bio-device research and development to "the next level," this book covers the latest advances in biomedical microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). The book presents new developments in the synthesis and use of metallic nanoparticles in bio-sensing and drug delivery, including quantum dots semiconductors nanocrystals.

  14. Higher Education Program in Biomedical Informatics

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    Buenos Aires: Hospital Italiano, 2008, s. 1-4. [IMIA Working Group on Health and Medical Informatics. Education Meeting. Buenos Aires (AR), 27.10.2008-28.10.2008] R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : education * biomedical informatics * e- Learning Subject RIV: IN - Informatics, Computer Science

  15. Design and analysis of biomedical studies

    DEFF Research Database (Denmark)

    Hansen, Merete Kjær

    been allocated this field. It is utterly important to utilize these ressources responsibly and efficiently by constantly striving to ensure high-quality biomedical studies. This involves the use of a sound statistical methodology regarding both the design and analysis of biomedical studies. The focus...... for the statistical power of studies with a hierarchical structure to guide biomedical researchers designing future studies of this type. Upon model fitting it is important to examine if the model assumptions are met to avoid that spurious conclusions are drawn. While the range of diagnostic methods is extensive...... for models assuming a normal response it is generally more limited for non-normal models. An R package providing diagnostic tools suitable for examining the validity of binomial regression models have been developed. The binom Tools package is publicly available at the CRAN repository....

  16. Term identification in the biomedical literature.

    Science.gov (United States)

    Krauthammer, Michael; Nenadic, Goran

    2004-12-01

    Sophisticated information technologies are needed for effective data acquisition and integration from a growing body of the biomedical literature. Successful term identification is key to getting access to the stored literature information, as it is the terms (and their relationships) that convey knowledge across scientific articles. Due to the complexities of a dynamically changing biomedical terminology, term identification has been recognized as the current bottleneck in text mining, and--as a consequence--has become an important research topic both in natural language processing and biomedical communities. This article overviews state-of-the-art approaches in term identification. The process of identifying terms is analysed through three steps: term recognition, term classification, and term mapping. For each step, main approaches and general trends, along with the major problems, are discussed. By assessing previous work in context of the overall term identification process, the review also tries to delineate needs for future work in the field. PMID:15542023

  17. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  18. Biomedical wellness challenges and opportunities

    Science.gov (United States)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  19. Biomedical information retrieval across languages.

    Science.gov (United States)

    Daumke, Philipp; Markü, Kornél; Poprat, Michael; Schulz, Stefan; Klar, Rüdiger

    2007-06-01

    This work presents a new dictionary-based approach to biomedical cross-language information retrieval (CLIR) that addresses many of the general and domain-specific challenges in current CLIR research. Our method is based on a multilingual lexicon that was generated partly manually and partly automatically, and currently covers six European languages. It contains morphologically meaningful word fragments, termed subwords. Using subwords instead of entire words significantly reduces the number of lexical entries necessary to sufficiently cover a specific language and domain. Mediation between queries and documents is based on these subwords as well as on lists of word-n-grams that are generated from large monolingual corpora and constitute possible translation units. The translations are then sent to a standard Internet search engine. This process makes our approach an effective tool for searching the biomedical content of the World Wide Web in different languages. We evaluate this approach using the OHSUMED corpus, a large medical document collection, within a cross-language retrieval setting. PMID:17541863

  20. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  1. Toxicology of Biomedical Polymers

    Directory of Open Access Journals (Sweden)

    P. V. Vedanarayanan

    1987-04-01

    Full Text Available This paper deals with the various types of polymers, used in the fabrication of medical devices, their diversity of applications and toxic hazards which may arise out of their application. The potential toxicity of monomers and the various additives used in the manufacture of biomedical polymers have been discussed along with hazards which may arise out of processing of devices such as sterilization. The importance of quality control and stringent toxicity evaluation methods have been emphasised since in our country, at present, there are no regulations covering the manufacturing and marketing of medical devices. Finally the question of the general and subtle long term systemic toxicity of biomedical polymers have been brought to attention with the suggestion that this question needs to be resolved permanently by appropriate studies.

  2. Toxicology of Biomedical Polymers

    OpenAIRE

    P. V. Vedanarayanan; A. C. Fernandez

    1987-01-01

    This paper deals with the various types of polymers, used in the fabrication of medical devices, their diversity of applications and toxic hazards which may arise out of their application. The potential toxicity of monomers and the various additives used in the manufacture of biomedical polymers have been discussed along with hazards which may arise out of processing of devices such as sterilization. The importance of quality control and stringent toxicity evaluation methods have been emphasi...

  3. Multilingual Biomedical Dictionary

    OpenAIRE

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical inform...

  4. 医用钛及钛合金表面微弧氧化膜层性能研究进展%Research Progress on the Performance of Surface Micro Arc Oxidation Film Layer of Biomedical Titanium and Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    裴崇; 徐涛; 杨钢; 方树铭; 周林

    2012-01-01

    介绍了微弧氧化技术特点,分析了影响钛及钛合金微弧氧化陶瓷膜层的主要特性,指出膜层的耐磨、耐腐蚀性及良好的生物活性是未来医用钛合金微弧氧化表面改性技术的研究重点,最后对微弧氧化技术在医用钛合金表面改性领域的发展进行了展望.%The technical feature of micro - arc oxidation technology is introduced in this paper, and the main characteristics which effect the micro - arc oxidation ceramic coating of titanium and titanium alloy is analyzed too; it points out that the research emphases of micro - arc oxidation surface modification of biomedical titanium in the future are the wear resistance, corrosion resistance and good bioac-tivity of coating. And at the end of the article, the future development of micro - arc oxidation in biomedical titanium alloy surface modifica-tion area is prospected.

  5. The panacea statistical toolbox of a biomedical peer reviewer.

    Science.gov (United States)

    Skaik, Younis

    2015-01-01

    The main role of a peer reviewer is to make judgments on the research articles by asking a number of questions to evaluate the quality of the research article. Statistics is a major part of any biomedical research article, and most reviewers gain their experiences in manuscript reviewing by undertaking it but not through an educational process. Therefore, reviewers of the biomedical journals normally do not have enough knowledge and skills to evaluate the validity of statistical methods used in biomedical research articles submitted for consideration. Hence, inappropriate statistical analysis in medical journals can lead to misleading conclusions and incorrect results. In this paper, the most common basic statistical guidelines are described that might be a road map to the biomedical reviewers. It is not meant for statisticians or medical editors who have special interest and expertise in statistical analysis. PMID:26430447

  6. Big Data:the great opportunities and challenges to microbiome and other biomedical research%大数据:微生物组学及其他生物医学领域的机遇与挑战

    Institute of Scientific and Technical Information of China (English)

    徐振江

    2015-01-01

    With the development of high-throughput technologies, biomedical data has been increasing exponentially in an explosive manner. This brings enormous opportunities and challenges to biomedical researchers on how to effectively utilize big data. Big data is different from traditional data in many ways, described as“3Vs”-volume, variety and velocity. From the perspective of biomedical research, here I introduced the characteristics of big data, such as its messiness, re-usage and openness. Focusing on microbiome research of meta-analysis, the author discussed the prospective principles in data collection, challenges of privacy protection in data management, and the scalable tools in data analysis with examples from real life.%随着高通量技术的发展,生物数据大爆发式地增长。如何有效地利用生物大数据成为现代生物学的机遇和挑战。大数据和传统数据相比,呈现出很多不同的特点,包括常被提到的3个v(volume, variety, velocity即数据量的巨大、数据类型的多样和数据采集和处理的快速)。本文针对生物医学研究,详细介绍了大数据的杂乱性、可重复利用性、开放性等几个特点。同时结合微生物组学在元分析方面的最新进展,并用实例来阐述了我们在大数据采集方面应该有前瞻性的考虑,提出了在数据管理上如何保护隐私的挑战,探讨了对大数据进行分析的工具和方法。

  7. Peptide nanostructures in biomedical technology.

    Science.gov (United States)

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  8. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  9. Biomedical Engineering at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Andersen, Ole Trier; Wilhjelm, Jens Erik;

    1998-01-01

    The paper gives a brief overview of the biomedical engineering research and education at the Technical University of Denmark. An account of the research activities since the 1950?s is given, and examples of major efforts within ultrasound, biomagnetism, and neuroimaging are described. The evolution...... of the teaching activities since the late 1960?s along with an account of the recent initiatives to make a biomedical engineering profile at the university is described....

  10. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  11. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  12. The Ontology for Biomedical Investigations

    OpenAIRE

    Anita Bandrowski; Ryan Brinkman; Mathias Brochhausen; Brush, Matthew H.; Bill Bug; Chibucos, Marcus C.; Kevin Clancy; Mélanie Courtot; Dirk Derom; Michel Dumontier; Liju Fan; Jennifer Fostel; Gilberto Fragoso; Frank Gibson; Alejandra Gonzalez-Beltran

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using i...

  13. Generating Explanations for Biomedical Queries

    OpenAIRE

    Erdem, Esra; Oztok, Umut

    2013-01-01

    We introduce novel mathematical models and algorithms to generate (shortest or k different) explanations for biomedical queries, using answer set programming. We implement these algorithms and integrate them in BIOQUERY-ASP. We illustrate the usefulness of these methods with some complex biomedical queries related to drug discovery, over the biomedical knowledge resources PHARMGKB, DRUGBANK, BIOGRID, CTD, SIDER, DISEASE ONTOLOGY and ORPHADATA. To appear in Theory and Practice of Logic Program...

  14. Biomedical Sensors and Instruments

    CERN Document Server

    Tagawa, Tatsuo

    2011-01-01

    The living body is a difficult object to measure: accurate measurements of physiological signals require sensors and instruments capable of high specificity and selectivity that do not interfere with the systems under study. As a result, detailed knowledge of sensor and instrument properties is required to be able to select the "best" sensor from one of the many designed to meet these challenges. From the underlying principles to practical applications, this updated edition of Biomedical Sensors and Instruments provides an easy-to-understand introduction to the various kinds of biome

  15. Principles of Biomedical Engineering

    CERN Document Server

    Madihally, Sundararajan V

    2010-01-01

    Describing the role of engineering in medicine today, this comprehensive volume covers a wide range of the most important topics in this burgeoning field. Supported with over 145 illustrations, the book discusses bioelectrical systems, mechanical analysis of biological tissues and organs, biomaterial selection, compartmental modeling, and biomedical instrumentation. Moreover, you find a thorough treatment of the concept of using living cells in various therapeutics and diagnostics.Structured as a complete text for students with some engineering background, the book also makes a valuable refere

  16. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  17. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  18. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  19. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  20. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1974-01-01

    Advances in Biomedical Engineering, Volume 4, is a collection of papers that deals with gas chromatography, mass spectroscopy and the analysis of minute samples, as well as the role of the government in regulating the production, usage, safety, and efficacy of medical devices. One paper reviews the use of mass spectrometry and computer technology in relation to gas-phase analytical methods based on gas chromatograph-mass spectrometer instruments and gas chromatograph-mass spectrometer-computer analytical systems. Many health practitioners, government and private health agencies, the legal prof

  1. For 481 biomedical open access journals, articles are not searchable in the Directory of Open Access Journals nor in conventional biomedical databases

    OpenAIRE

    Mads Svane Liljekvist; Kristoffer Andresen; Hans-Christian Pommergaard; Jacob Rosenberg

    2015-01-01

    Background. Open access (OA) journals allows access to research papers free of charge to the reader. Traditionally, biomedical researchers use databases like MEDLINE and EMBASE to discover new advances. However, biomedical OA journals might not fulfill such databases’ criteria, hindering dissemination. The Directory of Open Access Journals (DOAJ) is a database exclusively listing OA journals. The aim of this study was to investigate DOAJ’s coverage of biomedical OA journals compared with the ...

  2. Main Achievements 2003-2004 - Interdisciplinary Research - Applications of nuclear methods to biomedical physics, environmental biology, environmental physics, and medical physics - Magnetic resonance imaging and spectroscopy

    International Nuclear Information System (INIS)

    Biomedical studies have been carried out at the IFJ PAN using magnetic resonance imaging and spectroscopy to develop new methods of noninvasive diagnostics (e.g. spinal cord injuries using diffusion tensor imaging). It has been shown for the first time that in the human cervical spinal cord at high gradient factor b-values, up to 7000 s/mm2, diffusion is biexponential. The slow diffusion component could be useful in diagnosing White Matter fiber pathology. The first experiment of simultaneous functional magnetic resonance imaging fMRI in the rat spinal cord and brain has also been performed. Functional activity was evoked by electrical stimulation of the rat's forepaw. The time-course of the activated voxels from the brain and spinal cord were analysed and compared. High correlation (p≤0.001) of the detected activity to the applied stimulation was demonstrated. This experiment, carried out in collaboration with the Institute for Biodiagnostics in Clagary, should be extended into clinical applications in the human central nervous system

  3. Biomedical technology prosperity game{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Berman, M.; Boyack, K.W.; Wesenberg, D.L.

    1996-07-01

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defense Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology field.

  4. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  5. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  6. Services for annotation of biomedical text

    OpenAIRE

    Hakenberg, Jörg

    2008-01-01

    Motivation: Text mining in the biomedical domain in recent years has focused on the development of tools for recognizing named entities and extracting relations. Such research resulted from the need for such tools as basic components for more advanced solutions. Named entity recognition, entity mention normalization, and relationship extraction now have reached a stage where they perform comparably to human annotators (considering inter--annotator agreement, measured in many studies to be aro...

  7. Biomedical Informatics Doctoral Programme and Lifelong Education

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana; Dostálová, T.; Zvára Jr., Karel; Heroutová, Helena

    Amsterdam: IOS Press, 2010 - (Safran, C.; Reti, S.; Marin, S.). s. 1426-1426 ISBN 978-1-60750-587-7. [MEDINFO 2010. World Congress on Medical and Health Informatics /13./. 13.09.2010-16.09.2010, Cape Town] R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * education * e-learning * communication * information technologies Subject RIV: IN - Informatics, Computer Science

  8. Biomedical applications of graphene and graphene oxide.

    Science.gov (United States)

    Chung, Chul; Kim, Young-Kwan; Shin, Dolly; Ryoo, Soo-Ryoon; Hong, Byung Hee; Min, Dal-Hee

    2013-10-15

    Graphene has unique mechanical, electronic, and optical properties, which researchers have used to develop novel electronic materials including transparent conductors and ultrafast transistors. Recently, the understanding of various chemical properties of graphene has facilitated its application in high-performance devices that generate and store energy. Graphene is now expanding its territory beyond electronic and chemical applications toward biomedical areas such as precise biosensing through graphene-quenched fluorescence, graphene-enhanced cell differentiation and growth, and graphene-assisted laser desorption/ionization for mass spectrometry. In this Account, we review recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications. Because of its excellent aqueous processability, amphiphilicity, surface functionalizability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, the hydrophobicity and flexibility of large-area graphene synthesized by chemical vapor deposition (CVD) allow this material to play an important role in cell growth and differentiation. The lack of acceptable classification standards of graphene derivatives based on chemical and physical properties has hindered the biological application of graphene derivatives. The development of an efficient graphene-based biosensor requires stable biofunctionalization of graphene derivatives under physiological conditions with minimal loss of their unique properties. For the development graphene-based therapeutics, researchers will need to build on the standardization of graphene derivatives and study the biofunctionalization of graphene to clearly understand how cells respond to exposure to graphene derivatives. Although several

  9. Diversifying Biomedical Training: A Synergistic Intervention

    OpenAIRE

    Gibau, Gina Sanchez; Foertsch, Julie; Blum, Janice; Brutkiewicz, Randy; Queener, Sherry; Roman, Ann; Rhodes, Simon; Sturek, Michael; Wilkes, David; Broxmeyer, Hal

    2010-01-01

    For over three decades, the scientific community has expressed concern over the paucity of African American, Latino and Native American researchers in the biomedical training pipeline. Concern has been expressed regarding what is forecasted as a shortage of these underrepresented minority (URM) scientists given the demographic shifts occurring worldwide and particularly in the United States. Increased access to graduate education has made a positive contribution in addressing this disparity. ...

  10. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu

    2013-01-01

    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic

  11. Trends in modeling Biomedical Complex Systems

    OpenAIRE

    Remondini Daniel; Castellani Gastone; Romano Paolo; Milanesi Luciano; Liò Petro

    2009-01-01

    Abstract In this paper we provide an introduction to the techniques for multi-scale complex biological systems, from the single bio-molecule to the cell, combining theoretical modeling, experiments, informatics tools and technologies suitable for biological and biomedical research, which are becoming increasingly multidisciplinary, multidimensional and information-driven. The most important concepts on mathematical modeling methodologies and statistical inference, bioinformatics and standards...

  12. Multijet atmospheric plasma device for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Zablotskyy, Vitaliy A.; Churpita, Olexandr; Hubička, Zdeněk; Jastrabík, Lubomír; Dejneka, Alexandr

    2011-01-01

    Roč. 1, č. 2 (2011), s. 135-141. ISSN 1947-5764 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : atmospheric plasma * plasma sources * biomedical applications Subject RIV: BL - Plasma and Gas Discharge Physics

  13. Implantable biomedical microsystems design principles and applications

    CERN Document Server

    Bhunia, Swarup; Sawan, Mohamad

    2015-01-01

    Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each co

  14. Statistics and Biomedical Informatics in Forensic Sciences

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    Brno: Masaryk University, 2007 - (Horová, I.; Hřebíček, J.). s. 126-126 ISBN 978-80-210-4333-6. [TIES 2007. Annual Meeting of the International Environmental Society /18./. 16.08.2007-20.08.2007, Mikulov] R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : statistics * biomedical informatics * genetics * forensic science Subject RIV: IN - Informatics, Computer Science

  15. Zinc dependent nucleases with biomedical potential

    Czech Academy of Sciences Publication Activity Database

    Koval, Tomáš; Stránský, Jan; Lipovová, P.; Podzimek, T.; Matoušek, Jaroslav; Dušková, Jarmila; Skálová, Tereza; Hašek, Jindřich; Fejfarová, Karla; Kolenko, Petr; Dohnálek, Jan

    Prague: Institute of Macromolecular Chemistry AS CR, 2015. s. 9. [ Research Postdoctoral Colloquium. 14.05.2015, Prague] R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk LG14009 Institutional support: RVO:61389013 ; RVO:86652036 ; RVO:60077344 Keywords : biomedical applications * nuclease Subject RIV: CE - Biochemistry

  16. Commercialising biomedical technology.

    Science.gov (United States)

    Craig, D L

    1989-06-01

    Engineers and scientists working with biomedical technology are a highly inventive lot. However, it is disappointing to see how few of the products of that inventiveness ever see the light of day outside the hospitals or institutions in which they are developed. This is usually because the developers do not know how to go about commercialising their products. The two basic options in commercialising a new product are to license the product to an existing company, or to establish a new company to manufacture and market it. Whichever approach is taken, a "Business Plan" is an essential requirement. This is a selling document which is needed either to convince an existing company that it would be profitable for it to license the product, or to convince an investor/financier to fund the establishment of a new company to commercialise it. PMID:2764795

  17. MEMS biomedical implants

    Institute of Scientific and Technical Information of China (English)

    Tai Yuchong

    2012-01-01

    The field of micro-electro-mechanical systems (MEMS) has advanced tremendously for the last 20 years. Most commercially noticeably, the field has successfully advanced from pressure sensors to micro physical sensors, such as accelerometers and gyros, for handheld electronics application. In parallel, MEMS has also advanced into micro total analysis system(TAS) and/or lab-on-a-chip applications. This article would discuss a relatively new but promising future direction towards MEMS biomedical implants. Specifically, Parylene C has been explored to be used as a good MEMS implant material and will be discussed in detail. Demonstrated implant devices, such as retinal and spinal cord implants, are presented in this article.

  18. Biomedical applications of nisin.

    Science.gov (United States)

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications. PMID:26678028

  19. Genetically engineered livestock for biomedical models.

    Science.gov (United States)

    Rogers, Christopher S

    2016-06-01

    To commemorate Transgenic Animal Research Conference X, this review summarizes the recent progress in developing genetically engineered livestock species as biomedical models. The first of these conferences was held in 1997, which turned out to be a watershed year for the field, with two significant events occurring. One was the publication of the first transgenic livestock animal disease model, a pig with retinitis pigmentosa. Before that, the use of livestock species in biomedical research had been limited to wild-type animals or disease models that had been induced or were naturally occurring. The second event was the report of Dolly, a cloned sheep produced by somatic cell nuclear transfer. Cloning subsequently became an essential part of the process for most of the models developed in the last 18 years and is stilled used prominently today. This review is intended to highlight the biomedical modeling achievements that followed those key events, many of which were first reported at one of the previous nine Transgenic Animal Research Conferences. Also discussed are the practical challenges of utilizing livestock disease models now that the technical hurdles of model development have been largely overcome. PMID:26820410

  20. For 481 biomedical open access journals, articles are not searchable in the Directory of Open Access Journals nor in conventional biomedical databases

    DEFF Research Database (Denmark)

    Liljekvist, Mads Svane; Andresen, Kristoffer; Pommergaard, Hans-Christian;

    2015-01-01

    Background. Open access (OA) journals allows access to research papers free of charge to the reader. Traditionally, biomedical researchers use databases like MEDLINE and EMBASE to discover new advances. However, biomedical OA journals might not fulfill such databases' criteria, hindering...... dissemination. The Directory of Open Access Journals (DOAJ) is a database exclusively listing OA journals. The aim of this study was to investigate DOAJ's coverage of biomedical OA journals compared with the conventional biomedical databases. Methods. Information on all journals listed in four conventional...... biomedical databases (MEDLINE, PubMed Central, EMBASE and SCOPUS) and DOAJ were gathered. Journals were included if they were (1) actively publishing, (2) full OA, (3) prospectively indexed in one or more database, and (4) of biomedical subject. Impact factor and journal language were also collected. DOAJ...

  1. The Cancer Biomedical Informatics Grid (caBIG™) Security Infrastructure

    OpenAIRE

    Langella, Stephen; Oster, Scott; Hastings, Shannon; Siebenlist, Frank; Phillips, Joshua; Ervin, David; Permar, Justin; Kurc, Tahsin; Saltz, Joel

    2007-01-01

    Security is a high priority issue in medical domain, because many institutions performing biomedical research work with sensitive medical data regularly. This issue becomes more complicated, when it is desirable or needed to access and analyze data in a multi-institutional setting. In the NCI cancer Biomedical Informatics Grid (caBIG™) program, several security issues were raised that existing security technologies could not address. Considering caBIG is envisioned to span a large number of c...

  2. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  3. Use of statistical analysis in the biomedical informatics literature

    OpenAIRE

    Scotch, Matthew; Duggal, Mona; Brandt, Cynthia; Lin, Zhenqui; Shiffman, Richard

    2010-01-01

    Statistics is an essential aspect of biomedical informatics. To examine the use of statistics in informatics research, a literature review of recent articles in two high-impact factor biomedical informatics journals, the Journal of American Medical Informatics Association (JAMIA) and the International Journal of Medical Informatics was conducted. The use of statistical methods in each paper was examined. Articles of original investigations from 2000 to 2007 were reviewed. For each journal, th...

  4. Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research [v1; ref status: indexed, http://f1000r.es/p5

    Directory of Open Access Journals (Sweden)

    Sebastian Köhler

    2013-02-01

    Full Text Available Phenotype analyses, e.g. investigating metabolic processes, tissue formation, or organism behavior, are an important element of most biological and medical research activities. Biomedical researchers are making increased use of ontological standards and methods to capture the results of such analyses, with one focus being the comparison and analysis of phenotype information between species. We have generated a cross-species phenotype ontology for human, mouse and zebra fish that contains zebrafish phenotypes. We also provide up-to-date annotation data connecting human genes to phenotype classes from the generated ontology. We have included the data generation pipeline into our continuous integration system ensuring stable and up-to-date releases. This article describes the data generation process and is intended to help interested researchers access both the phenotype annotation data and the associated cross-species phenotype ontology. The resource described here can be used in sophisticated semantic similarity and gene set enrichment analyses for phenotype data across species. The stable releases of this resource can be obtained from http://purl.obolibrary.org/obo/hp/uberpheno/.

  5. How to Select a Journal to Submit and Publish Your Biomedical Paper?

    Directory of Open Access Journals (Sweden)

    Farhad Shokraneh

    2012-03-01

    Full Text Available Introduction: selection of journal for publication purpose is one of concerns of biomedical researchers. They apply various criteria to choose appropriate journal. Here, we have tried to collect main criteria biomedical researchers use to select a journal to submit their work. Methods: we collected these criteria through focus group conversations with researchers during our careers, feedbacks from participants of our scientific writing workshops and non-systematic reviewing of some related literature. Results: we have presented a summative and informative guidance in selection of biomedical journals for biomedical paper submission and publication. Conclusion: Categorized criteria as a mnemonic tool for authors may help the authors in journal selection process.

  6. The innovative use of a large-scale industry biomedical consortium to research the genetic basis of drug induced serious adverse events.

    Science.gov (United States)

    Holden, Arthur L

    2007-01-01

    The International Serious Adverse Event Consortium (SAEC) is a pharmaceutical industry and FDA led international (501 c3 non-profit) consortium, focused on identifying and validating DNA-variants useful in predicting the risk of drug induced, rare serious adverse events (SAEs). As such, it functions with the explicit purpose of enhancing the 'public good'. Its members are (i) organizations engaged principally in the business of discovering, developing and marketing pharmaceutical products, or (ii) a charitable, governmental, or other non-profit organization with an interest in researching the molecular basis of drug response.Drug-induced, rare SAEs present significant health issues for patients; and pose challenges for the safe use of approved drugs and the development of new drugs. Examples of drug-induced, rare SAEs include hepatotoxicity, QT prolongation, rhabdomyolosis, serious skin rashes (e.g. SJS), edema, acute renal failure, acute hypersensitivity, anemias/neutropenias, excessive weigh gain, retinopathy, vasculitis, among others. The rarity of such drug induced SAEs and the absence of effective government surveillance/research networks, makes it extremely difficult for any one company or research entity to accrue enough SAE cases and controls to conduct effective whole genome studies. Central to the notion of the SAEC is industry, government and health care providers can join forces to make use of a variety of sample and data resources in researching the genetic basis of these events.The purpose of the SAEC is threefold:•To carry out research directed toward the discovery of DNA-variants clinically useful in understanding and predicting the risk of drug induced serious adverse events and similar scientific research.•To ensure the widespread availability of the results of such research to the scientific research community and the public at large for no charge through publication and web-based methods; and•To educate the scientific research and medical

  7. To Share or Not to Share? A Survey of Biomedical Researchers in the U.S. Southwest, an Ethnically Diverse Region

    OpenAIRE

    Oushy, Mai H.; Palacios, Rebecca; Holden, Alan E. C.; Ramirez, Amelie G.; Gallion, Kipling J.; O’Connell, Mary A.

    2015-01-01

    Background Cancer health disparities research depends on access to biospecimens from diverse racial/ethnic populations. This multimethodological study, using mixed methods for quantitative and qualitative analysis of survey results, assessed barriers, concerns, and practices for sharing biospecimens/data among researchers working with biospecimens from minority populations in a 5 state region of the United States (Arizona, Colorado, New Mexico, Oklahoma, and Texas). The ultimate goals of this...

  8. Multifunctional Nanofibers towards Active Biomedical Therapeutics

    Directory of Open Access Journals (Sweden)

    Jaishri Sharma

    2015-02-01

    Full Text Available One-dimensional (1-D nanostructures have attracted enormous research interest due to their unique physicochemical properties and wide application potential. These 1-D nanofibers are being increasingly applied to biomedical fields owing to their high surface area-to-volume ratio, high porosity, and the ease of tuning their structures, functionalities, and properties. Many biomedical nanofiber reviews have focused on tissue engineering and drug delivery applications but have very rarely discussed their use as wound dressings. However, nanofibers have enormous potential as wound dressings and other clinical applications that could have wide impacts on the treatment of wounds. Herein, the authors review the main fabrication methods of nanofibers as well as requirements, strategies, and recent applications of nanofibers, and provide perspectives of the challenges and opportunities that face multifunctional nanofibers for active therapeutic applications.

  9. Uso de animales de experimentación en la investigación biomédica en Costa Rica Using Experimental Animal in Biomedical Research in Costa Rica

    Directory of Open Access Journals (Sweden)

    Jorge Granados-Zúñiga

    2010-07-01

    Full Text Available El progreso en la investigación médica y biológica ha dependido en gran medida del uso de animales experimentales Dada la importancia que históricamente han tenido los animales como reactivos biológicos en la investigación biomédica se consolidó la ciencia del animal de experimentación. Ésta persigue la obtención de animales biológicamente estandarizados mediante la selección colectiva de características anatómicas, fisiológicas, ecológicas y sanitarias.The progress in medical and biological research has relied heavily on the use of experimental animals. Given the importance animals have had historically as biological reagents, the science of experimental animals was created and is consolidated in biomedical research. It seeks to obtain biologically standardized animals by selecting their collective anatomical, physiological, ecological and health characteristics.

  10. Handbook on advanced design and manufacturing technologies for biomedical devices

    CERN Document Server

    2013-01-01

    The last decades have seen remarkable advances in computer-aided design, engineering and manufacturing technologies, multi-variable simulation tools, medical imaging, biomimetic design, rapid prototyping, micro and nanomanufacturing methods and information management resources, all of which provide new horizons for the Biomedical Engineering fields and the Medical Device Industry. Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices covers such topics in depth, with an applied perspective and providing several case studies that help to analyze and understand the key factors of the different stages linked to the development of a novel biomedical device, from the conceptual and design steps, to the prototyping and industrialization phases. Main research challenges and future potentials are also discussed, taking into account relevant social demands and a growing market already exceeding billions of dollars. In time, advanced biomedical devices will decisively change methods and resu...

  11. Selected Topics in MicroNano-robotics for Biomedical Applications

    CERN Document Server

    2013-01-01

    Selected Topics in Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials and cutting-edge research results in micro/nanorobotics for biomedical applications. The book presents new sensing technology on nanofibers, new power supply techniques including miniature fuel cells and energy harvesting devices, and manipulation techniques including AFM-based nano-robotic manipulation, robot-aided optical tweezers, and robot-assisted catheter surgery systems. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Each chapter covers a different topic of the highly interdisciplinary area. Bring together the selected topics into ...

  12. A historical perspective and prospects of biomedical research on parasitic diseases Uma perspectiva histórica e prospecções da pesquisa biomédica em doenças parasitárias

    Directory of Open Access Journals (Sweden)

    Augusto SIMÕES-BARBOSA

    2001-08-01

    Full Text Available We all hope that biotechnology will answer some social and economical unavoidable requirements of the modern life. It is necessary to improve agriculture production, food abundance and health quality in a sustainable development. It is indeed a hard task to keep the progress on taking into account the rational use of genetic resources and the conservation of biodiversity. In this context, a historical perspective and prospects of the biomedical research on parasitic diseases is described in a view of three generations of investigators. This work begins with a picture of the scientific progress on biomedical research and human health over the last centuries. This black-and-white picture is painted by dissecting current advancements of molecular biology and modern genetics, which are outlined at the meaning of prospecting achievements in health science for this new millenium.Espera-se que os grandes avanços da pesquisa de genomas alcancem saltos visíveis para a sobrevivência da humanidade dentro do contexto de sustentabilidade global. Vemos atualmente a necessidade imediata de incrementar a produção de alimentos e melhorar a qualidade de vida e saúde humana, mantendo a biodiversidade preservada. A biotecnologia é a utilização racional das ferramentas geradas pela biologia molecular e genética moderna que, dado ao grande avanço dessas áreas, poderá em breve responder essas novas questões. Este trabalho, escrito por três gerações de pesquisadores, inicia com uma perspectiva histórica da pesquisa biomédica em doenças parasitárias nos últimos séculos em nosso país. Em seguida, descrevemos os mais recentes avanços da biologia molecular e genética genômica. Ressaltamos a importância dessas novas conquistas dentro de uma prospecção da pesquisa biomédica deste século e seus possíveis impactos na saúde humana.

  13. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Alphus D. Wilson

    2011-01-01

    Full Text Available The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.

  14. Figure text extraction in biomedical literature.

    Directory of Open Access Journals (Sweden)

    Daehyun Kim

    Full Text Available BACKGROUND: Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. METHODOLOGY: We first evaluated an off-the-shelf Optical Character Recognition (OCR tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. RESULTS/CONCLUSIONS: The evaluation on 382 figures (9,643 figure texts in total randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36

  15. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  16. All India Seminar on Biomedical Engineering 2012

    CERN Document Server

    Bhatele, Mukta

    2013-01-01

    This book is a collection of articles presented by researchers and practitioners, including engineers, biologists, health professionals and informatics/computer scientists, interested in both theoretical advances and applications of information systems, artificial intelligence, signal processing, electronics and other engineering tools in areas related to biology and medicine in the All India Seminar on Biomedical Engineering 2012 (AISOBE 2012), organized by The Institution of Engineers (India), Jabalpur Local Centre, Jabalpur, India during November 3-4, 2012. The content of the book is useful to doctors, engineers, researchers and academicians as well as industry professionals.

  17. An Italian Biomedical Publications Database

    OpenAIRE

    De Robbio, Antonella; Mozzati, Paola; Lazzari, Luigina; Maguolo, Dario; Dolfino, Manuela; Gradito, Paola

    2002-01-01

    Periodical scientific literature is one of the most important information sources for the scientific community and particularly for biomedicine. As regards Italian publications today, a part from very few laudable exceptions, there is a lack of the instruments necessary for accessing the information that they contain. With over 700 Italian biomedical texts, only 25% are mentioned in the more important biomedical data banks, such as Medline, Embase, Pascal, CAB, with unfortunately a great deal...

  18. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  19. Modified chitosans for biomedical applications

    OpenAIRE

    Yalınca, Zülal

    2013-01-01

    ABSTRACT: The subject of this thesis is the exploration of the suitability of chitosan and some of its derivatives for some chosen biomedical applications. Chitosan-graft-poly (N-vinyl imidazole), Chitosan-tripolyphosphate and ascorbyl chitosan were synthesized and characterized for specific biomedical applications in line with their chemical functionalities. Chitosan-graft-poly (N-vinyl imidazole), Chi-graft-PNVI, was synthesized by two methods; via an N-protection route and without N-pr...

  20. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    CERN Document Server

    2002-01-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical a...