WorldWideScience

Sample records for biomedical research facilities

  1. Environmental practices for biomedical research facilities.

    OpenAIRE

    Medlin, E L; Grupenhoff, J T

    2000-01-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing ...

  2. Radwaste requirements at a biomedical research facility

    International Nuclear Information System (INIS)

    The low-level radioactive waste (LLRW) federal legislation that was passed during the 1980s was intended to provide an orderly system of LLRW disposal as the country's three waste sites proceeded toward excluding out-of-state generators. The system was based on a regional interstate compact system. As originally envisioned, several contiguous states were to form an association (compact) with one state receiving radwaste from the compact. Everyone is aware of the difficulties that followed as attempts were made to implement these laws and to meet the prescribed milestones to avoid financial penalties. Although the states (compacts) have labored for over 12 yr along this rocky road, no compact has developed and licensed a new disposal site prior to the January 1, 1993 deadline. A recent report by the Center for the Study of American Business at Washington University in St. Louis states that open-quotes The current regional interstate compact system for disposal of low-level radioactive waste is fatally flawed on both technical and practical political grounds.close quotes Thus, the system has broken down and the three original LLRW sites closed their gates (with the possible exception of Barnwell) as planned on January 1, 1993. It would appear that the fate of LLRW will be the same as that of high-level waste (HLW); it will be stored at the site of the generator until a solution to the problem is found. For the nonutility generator, storage is an entirely new problem. It must be appreciated that almost all nonutility generators are in the business of research or medical treatment and not in the business of storing LLRW. Thus, storage represents a new turn of events and a new aspect of doing business. It also means the diversion of limited resources to a problem that should not exist. Lastly, on-site LLRW storage for the nonutility generator will also require additional regulatory approval for the handling, storage, and ongoing monitoring of this waste

  3. Bevalac biomedical facility

    International Nuclear Information System (INIS)

    This paper describes the physical layout of the Bevalac Facility and the research programs carried out at the facility. Beam time on the Bevalac is divided between two disciplines: one-third for biomedical research and two-thirds for nuclear science studies. The remainder of the paper discusses the beam delivery system including dosimetry, beam sharing and beam scanning

  4. Biomedical neutron research at the Californium User Facility for neutron science

    International Nuclear Information System (INIS)

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252Cf sources. Three projects at the CUF that demonstrate the versatility of 252Cf for biological and biomedical neutron-based research are described: future establishment of a 252Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy

  5. Biomedical neutron research at the Californium User Facility for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.C. [Oak Ridge National Lab., TN (United States); Byrne, T.E. [Roane State Community College, Harriman, TN (United States); Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-04-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact {sup 252}Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with {sup 252}Cf sources. Three projects at the CUF that demonstrate the versatility of {sup 252}Cf for biological and biomedical neutron-based research are described: future establishment of a {sup 252}Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded {sup 252}Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy.

  6. Recurrent Aspergillus contamination in a biomedical research facility: a case study.

    Science.gov (United States)

    Cornelison, Christopher T; Stubblefield, Bryan; Gilbert, Eric; Crow, Sidney A

    2012-02-01

    Fungal contamination of biomedical processes and facilities can result in major revenue loss and product delay. A biomedical research facility (BRF) culturing human cell lines experienced recurring fungal contamination of clean room incubators over a 3-year period. In 2010, as part of the plan to mitigate contamination, 20 fungal specimens were isolated by air and swab samples at various locations within the BRF. Aspergillus niger and Aspergillus fumigatus were isolated from several clean-room incubators. A. niger and A. fumigatus were identified using sequence comparison of the 18S rRNA gene. To determine whether the contaminant strains isolated in 2010 were the same as or different from strains isolated between 2007 and 2009, a novel forensic approach to random amplified polymorphic DNA (RAPD) PCR was used. The phylogenetic relationship among isolates showed two main genotypic clusters, and indicated the continual presence of the same A. fumigatus strain in the clean room since 2007. Biofilms can serve as chronic sources of contamination; visual inspection of plugs within the incubators revealed fungal biofilms. Moreover, confocal microscopy imaging of flow cell-grown biofilms demonstrated that the strains isolated from the incubators formed dense biofilms relative to other environmental isolates from the BRF. Lastly, the efficacies of various disinfectants employed at the BRF were examined for their ability to prevent spore germination. Overall, the investigation found that the use of rubber plugs around thermometers in the tissue culture incubators provided a microenvironment where A. fumigatus could survive regular surface disinfection. A general lesson from this case study is that the presence of microenvironments harboring contaminants can undermine decontamination procedures and serve as a source of recurrent contamination. PMID:22143434

  7. Study of beam transport lines for a biomedical research facility at CERN based on LEIR

    CERN Document Server

    Abler, D; Garonna, A; Peach, K

    2014-01-01

    The Low Energy Ion Ring (LEIR) at CERN has been proposed to provide ion beams with magnetic rigidities up to 6.7 T.m for biomedical research, in parallel to its continued operation for LHC and SPS fixed target physics experiments. In the context of this project, two beamlines are proposed for transporting the extracted beam to future experimental end-stations: a vertical beamline for specific low-energy radiobiological research, and a horizontal beamline for radiobiology and medical physics experimentation. This study presents a first linear-optics design for the delivery of 1–5mm FWHM pencil beams and 5 cm 5 cm homogeneous broad beams to both endstations. High field uniformity is achieved by selection of the central part of a strongly defocused Gaussian beam, resulting in low beam utilisation.

  8. National Biomedical Tracer Facility. Project definition study

    International Nuclear Information System (INIS)

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H-, H+, and D+). The proposed NBTF facility includes an 80 MeV, 1 mA H- cyclotron that will produce proton-induced (neutron deficient) research isotopes

  9. National Biomedical Tracer Facility. Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  10. Biomimicry in biomedical research

    OpenAIRE

    Zhang, Ge

    2012-01-01

    Biomimicry (literally defined as the imitation of life or nature) has sparked a variety of human innovations and inspired countless cutting-edge designs. From spider silk-made artificial skin to lotus leaf-inspired self-cleaning materials, biomimicry endeavors to solve human problems. Biomimetic approaches have contributed significantly to advances biomedical research during recent years. Using polyacrylamide gels to mimic the elastic modulus of different biological tissues, Disher’s lab has ...

  11. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  12. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  13. National Space Biomedical Research Institute

    Science.gov (United States)

    2004-01-01

    This report outlines the National Space Biomedical Research Institute's (NSBRI) activities during FY 2004, the Institute's seventh year. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  14. National Biomedical Tracer Facility: Project definition study

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design

  15. National Biomedical Tracer Facility: Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  16. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research. PMID:24640781

  17. National Space Biomedical Research Institute

    Science.gov (United States)

    1999-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 1999, the second full year of existence of the NSBRI's research program, and is prepared in accordance with Cooperative Agreement NCC9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI). The report consists of progress reports on projects related to the effects of microgravity and space on physiology. The research is broken up in nine areas: (1) Bone loss, (2) Cardiovascular alterations, (3) human performance, (3) immunology, infection and hematology, (4) muscle alterations and atrophy,(5) Neurovestibular adaptation, radiation effects, (6) technology development, and (7) synergy projects.

  18. The Obligation to Participate in Biomedical Research

    OpenAIRE

    Schaefer, G. Owen; Emanuel, Ezekiel J; Wertheimer, Alan

    2009-01-01

    The prevailing view is that participation in biomedical research is above and beyond the call of duty. While some commentators have offered reasons against this, we propose a novel public goods argument for an obligation to participate in biomedical research. Biomedical knowledge is a public good, available to any individual even if that individual does not contribute to it. Participation in research is a critical way to support that important public good. Consequently, we all have a duty to ...

  19. Simbody: multibody dynamics for biomedical research

    OpenAIRE

    Sherman, Michael A.; Seth, Ajay; Delp, Scott L.

    2011-01-01

    Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an...

  20. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    Science.gov (United States)

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories. PMID:17999114

  1. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. PMID:26851671

  2. The growth of biomedical terahertz research

    International Nuclear Information System (INIS)

    Interest in biomedical terahertz research is growing rapidly and there are now several terahertz groups in Asia, Europe and the US investigating potential applications such as pharmaceutical quality control, protein characterization and cancer detection. This review article outlines the technological bottlenecks that have been overcome which have made biomedical terahertz research possible. Key research findings will be presented, and the limitations that remain and the research initiatives that strive to address them will also be discussed. (paper)

  3. The Light Ion Biomedical Research Accelerator (LIBRA)

    International Nuclear Information System (INIS)

    LIBRA is a concept to place a light-ion, charged-particle facility in a hospital environment, and to dedicate it to applications in biology and medicine. There are two aspects of the program envisaged for LIBRA: a basic research effort coupled with a program in clinical applications of accelerated charged particles. The operational environment to be provided for LIBRA is one in which both of these components can coexist and flourish, and one that will promote the transfer of technology and knowledge from one to the other. In order to further investigate the prospects for a Light Ion Biomedical Research Accelerator (LIBRA), discussions are underway with the Merritt Peralta Medical Center (MPMC) in Oakland, California, and the University of California at San Francisco (UCSF). In this paper, a brief discussion of the technical requirements for such a facility is given, together with an outline of the accelerator technology required. While still in a preliminary stage, it is possible nevertheless to develop an adequate working description of the type, size, performance and cost of the accelerator facilities required to meet the preliminary goals for LIBRA

  4. Project definition study for the National Biomedical Tracer Facility

    International Nuclear Information System (INIS)

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel's Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization

  5. Project definition study for the National Biomedical Tracer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Roozen, K.

    1995-02-15

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.

  6. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  7. High level radiation dosimetry in biomedical research

    International Nuclear Information System (INIS)

    The physical and biological dosimetries relating to cancer therapy with radiation were taken up at the first place in the late intercomparison on high LET radiation therapy in Japan-US cancer research cooperative study. The biological dosimetry, the large dose in biomedical research, the high dose rate in biomedical research and the practical dosimeters for pulsed neutrons or protons are outlined with the main development history and the characteristics which were obtained in the relating experiments. The clinical neutron facilities in the US and Japan involved in the intercomparison are presented. Concerning the experimental results of dosimeters, the relation between the R.B.E. compared with Chiba (Cyclotron in National Institute of Radiological Sciences) and the energy of deuterons or protons used for neutron production, the survival curves of three cultured cell lines derived from human cancers, after the irradiation of 250 keV X-ray, cyclotron neutrons of about 13 MeV and Van de Graaff neutrons of about 2 MeV, the hatchability of dry Artemia eggs at the several depths in an absorber stack irradiated by 60 MeV proton beam of 40, 120 and 200 krad, the peak skin reaction of mouse legs observed at various sets of average and instantaneous dose rates, and the peak skin reaction versus three instantaneous dose rates at fixed average dose rate of 7,300 rad/min are shown. These actual data were evaluated numerically and in relation to the physical meaning from the viewpoint of the fundamental aspect of cancer therapy, comparing the Japanese measured values to the US data. The discussion record on the high dose rate effect of low LET particles on biological substances and others is added. (Nakai, Y.)

  8. National Biomedical Tracer Facility (NBTF). Project definition study: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Lagunas-Solar, M.C.

    1995-02-15

    This report describes a five-year plan for the construction and commissioning of a reliable and versatile NBTF facility for the production of high-quality, high-yield radioisotopes for research, biomedical, and industrial applications. The report is organized in nine sections providing, in consecutive order, responses to the nine questions posed by the U.S. Department of Energy in its solicitation for the NBTF Project Definition Study. In order to preserve direct correspondence (e.g., Sec. 3 = 3rd item), this Introduction is numbered {open_quotes}0.{close_quotes} Accelerator and facility designs are covered in Section 1 (Accelerator Design) and Section 2 (Facility Design). Preliminary estimates of capital costs are detailed in Section 3 (Design and Construction Costs). Full licensing requirements, including federal, state, and local ordinances, are discussed in Section 4 (Permits). A plan for the management of hazardous materials to be generated by NBTF is presented in Section 5 (Waste Management). An evaluation of NBTF`s economic viability and its potential market impact is detailed in Section 6(Business Plan), and is complemented by the plans in Section 7 (Operating Plan) and Section 8 (Radioisotope Plan). Finally, a plan for NBTF`s research, education, and outreach programs is presented in Section 9 (Research and Education Programs).

  9. [Open access :an opportunity for biomedical research].

    OpenAIRE

    Duchange, Nathalie; Autard, Delphine; Pinhas, Nicole

    2008-01-01

    International audience Open access within the scientific community depends on the scientific context and the practices of the field. In the biomedical domain, the communication of research results is characterised by the importance of the peer reviewing process, the existence of a hierarchy among journals and the transfer of copyright to the editor. Biomedical publishing has become a lucrative market and the growth of electronic journals has not helped lower the costs. Indeed, it is diffic...

  10. Communication Patterns in a Biomedical Research Center

    Science.gov (United States)

    Gorry, G. Anthony; And Others

    1978-01-01

    Studies of the communication patterns among scientists in a biomedical research center should help in the assessment of the center's impact on research processes. Such a study at the National Heart and Blood Vessel Research and Demonstration Center (NRDC) at Baylor College of Medicine is reported. (LBH)

  11. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  12. Understanding Metabolomics in Biomedical Research.

    Science.gov (United States)

    Kim, Su Jung; Kim, Su Hee; Kim, Ji Hyun; Hwang, Shin; Yoo, Hyun Ju

    2016-03-01

    The term "omics" refers to any type of specific study that provides collective information on a biological system. Representative omics includes genomics, proteomics, and metabolomics, and new omics is constantly being added, such as lipidomics or glycomics. Each omics technique is crucial to the understanding of various biological systems and complements the information provided by the other approaches. The main strengths of metabolomics are that metabolites are closely related to the phenotypes of living organisms and provide information on biochemical activities by reflecting the substrates and products of cellular metabolism. The transcriptome does not always correlate with the proteome, and the translated proteome might not be functionally active. Therefore, their changes do not always result in phenotypic alterations. Unlike the genome or proteome, the metabolome is often called the molecular phenotype of living organisms and is easily translated into biological conditions and disease states. Here, we review the general strategies of mass spectrometry-based metabolomics. Targeted metabolome or lipidome analysis is discussed, as well as nontargeted approaches, with a brief explanation of the advantages and disadvantages of each platform. Biomedical applications that use mass spectrometry-based metabolomics are briefly introduced. PMID:26676338

  13. National Space Biomedical Research Institute Annual Report

    Science.gov (United States)

    2000-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2000. The NSBRI is responsible for the development of countermeasures against the deleterious effects of long-duration space flight and performs fundamental and applied space biomedical research directed towards this specific goal. Its mission is to lead a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan by focusing on the enabling of long-term human presence in, development of, and exploration of space. This is accomplished by: designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of mankind, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through NASA's Lyndon B. Johnson Space Center. Attachment:Appendices (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, and P.).

  14. Animals in biomedical space research

    Science.gov (United States)

    Phillips, R. W.

    1986-01-01

    Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalism function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertibrate development. Following these preliminary animal experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.

  15. The Need for Veterinarians in Biomedical Research

    OpenAIRE

    Rosol, Thomas J.; Moore, Rustin M.; Saville, William J. A.; Oglesbee, Michael J.; Rush, Laura J; Mathes, Lawrence E.; Lairmore, Michael D

    2009-01-01

    The number of veterinarians in the United States is inadequate to meet societal needs in biomedical research and public health. Areas of greatest need include translational medical research, veterinary pathology, laboratory-animal medicine, emerging infectious diseases, public health, academic medicine, and production-animal medicine. Veterinarians have unique skill sets that enable them to serve as leaders or members of interdisciplinary research teams involved in basic science and biomedica...

  16. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  17. Breeding monkeys for biomedical research

    Science.gov (United States)

    Bourne, G. H.; Golarzdebourne, M. N.; Keeling, M. E.

    1973-01-01

    Captive bred rhesus monkeys show much less pathology than wild born animals. The monkeys may be bred in cages or in an outdoor compound. Cage bred animals are not psychologically normal which makes then unsuited for some types of space related research. Compound breeding provides contact between mother and infant and an opportunity for the infants to play with their peers which are important requirements to help maintain their behavioral integrity. Offspring harvested after a year in the compound appear behaviorally normal and show little histopathology. Compound breeding is also an economical method for the rapid production of young animals. The colony can double its size about every two and a half years.

  18. [Biomimetic sensors in biomedical research].

    Science.gov (United States)

    Gayet, Landry; Lenormand, Jean-Luc

    2015-01-01

    The recent research on both the synthesis of membrane proteins by cell-free systems and the reconstruction of planar lipid membranes, has led to the development of a cross-technology to produce biosensors or filters. Numerous biomimetic membranes are currently being standardized and used by the industry, such as filters containing aquaporin for water desalination, or used in routine at the laboratory scale, for example the bacteriorhodopsin as a light sensor. In the medical area, several fields of application of these biomimetic membranes are under consideration today, particularly for the screening of therapeutic molecules and for the developing of new tools in diagnosis, patient monitoring and personalized medicine. PMID:26152170

  19. Biomedical research in a Digital Health Framework.

    Science.gov (United States)

    Cano, Isaac; Lluch-Ariet, Magí; Gomez-Cabrero, David; Maier, Dieter; Kalko, Susana; Cascante, Marta; Tegnér, Jesper; Miralles, Felip; Herrera, Diego; Roca, Josep

    2014-11-28

    This article describes a Digital Health Framework (DHF), benefitting from the lessons learnt during the three-year life span of the FP7 Synergy-COPD project. The DHF aims to embrace the emerging requirements--data and tools--of applying systems medicine into healthcare with a three-tier strategy articulating formal healthcare, informal care and biomedical research. Accordingly, it has been constructed based on three key building blocks, namely, novel integrated care services with the support of information and communication technologies, a personal health folder (PHF) and a biomedical research environment (DHF-research). Details on the functional requirements and necessary components of the DHF-research are extensively presented. Finally, the specifics of the building blocks strategy for deployment of the DHF, as well as the steps toward adoption are analyzed. The proposed architectural solutions and implementation steps constitute a pivotal strategy to foster and enable 4P medicine (Predictive, Preventive, Personalized and Participatory) in practice and should provide a head start to any community and institution currently considering to implement a biomedical research platform. PMID:25472554

  20. National Biomedical Tracer Facility planning and feasibility study

    International Nuclear Information System (INIS)

    Since its establishment in mid-1989, the DOE Office of Isotope Production and Distribution has examined the recommendations of the Los Alamos Report and the Health and Environmental Research Advisory Committee (HERAC) Report. The main recommendation from these deliberations is for the DOE to establish an accelerator dedicated to biomedical radioisotope production. Representatives of the nuclear medicine community, meeting at a DOE workshop in August 1988, evaluated present and future needs for accelerator-produced radioisotopes. Workshop participants concluded in the Los Alamos Report that approximately 90% of their radioisotope needs could be met by a machine that delivers a 70 million electronic volts (MeV), 500-microamp proton beam. The HERAC Report provides more quantification of radioisotope needs, and included isotopes that can be produced effectively only at higher energies. An accelerator facility with an upper energy limit of 100 MeV and beam current of 750 to 1,000 microamps, could produce all important accelerator- produced radioisotopes in current use, as well as those isotopes judged to have future potential value in medical research and clinical practice. We therefore recommend that the NBTF have a 100-MeV proton beam accelerator with an extracted beam current of 750 to 1,000 microamps

  1. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  2. Biomedical research in a Digital Health Framework

    OpenAIRE

    Cano, Isaac; Lluch-Ariet, Magí; Gomez-Cabrero, David; Maier, Dieter; Kalko, Susana; Cascante, Marta; Tegnér, Jesper; Miralles, Felip; Herrera, Diego; Roca, Josep; ,

    2014-01-01

    This article describes a Digital Health Framework (DHF), benefitting from the lessons learnt during the three-year life span of the FP7 Synergy-COPD project. The DHF aims to embrace the emerging requirements - data and tools - of applying systems medicine into healthcare with a three-tier strategy articulating formal healthcare, informal care and biomedical research. Accordingly, it has been constructed based on three key building blocks, namely, novel integrated care services with the suppor...

  3. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  4. Biomedical Research Institute, Biomedical Research Foundation of Northwest Louisiana, Shreveport, Louisiana

    International Nuclear Information System (INIS)

    Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0789, evaluating the environmental impacts of construction and operation of a Biomedical Research Institute (BRI) at the Louisiana State University (LSU) Medical Center, Shreveport, Louisiana. The purpose of the BRI is to accelerate the development of biomedical research in cardiovascular disease, molecular biology, and neurobiology. Based on the analyses in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  5. Fraud and deceit in biomedical research

    Directory of Open Access Journals (Sweden)

    Buitrago Juliana

    2004-05-01

    Full Text Available History: Scientists are supposed to be moved by lofty ideals and be taught to work restlessly in pursue of the truth, but sadly fraud in biomedical research can be traced through the entire history of science. Definition: Nowadays, typology of fraud is clearly defined. Principal types of misconduct are reviewed. Consequences: It is impossible to know to what extent the damage will remain. Fraud threats public confidence in the integrity of science and may change professional attitudes and health public policies leading to serious social consequences. Evaluation of the problem: Prevalence of research fraud is unknown but in almost every country where investigation has been largely developed, at least a corroborated case of mis-conduct has been known. Policies on the scientific process may eventually contribute to fraudulent behaviour. Situation in Colombia: Colombia lacks of comprehensive policies to deal with fraud in research. How to tackle this problem: Finally, some recommendations are given to prevent, detect and deal with fraud in biomedical research.

  6. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  7. Accelerator mass spectrometry in biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; Turteltaub, K.W.

    1993-10-20

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10{sup 9}) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10{sup 13--15} on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. {sup 14}C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. {sup 3} H, {sup 41}Ca and {sup 26}Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  8. Accelerator mass spectrometry in biomedical research

    International Nuclear Information System (INIS)

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:109) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 1013--15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. 14C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. 3 H, 41Ca and 26Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications

  9. A price index for biomedical research and development.

    OpenAIRE

    Holloway, T M; Reeb, J S

    1989-01-01

    Price changes of goods and services used in biomedical research and development have important effects on the costs of conducting research. We summarize the trends suggested by a recently constructed biomedical research and development price index, which measures the effects of price changes on the inputs to biomedical research from 1979 to 1986. The fixed-weighted index uses fiscal year 1984 National Institutes of Health expenditure patterns in developing the weights. The rate of increase sh...

  10. Applying environmental product design to biomedical products research.

    OpenAIRE

    Messelbeck, J; Sutherland, L

    2000-01-01

    The principal themes for the Biomedical Research and the Environment Conference Committee on Environmental Economics in Biomedical Research include the following: healthcare delivery companies and biomedical research organizations, both nonprofit and for-profit, need to improve their environmental performance; suppliers of healthcare products will be called upon to support this need; and improving the environmental profile of healthcare products begins in research and development (R&D). The c...

  11. Nanomaterials driven energy, environmental and biomedical research

    International Nuclear Information System (INIS)

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO2 nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH2 and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe2O4 have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)

  12. Commercializing biomedical research through securitization techniques.

    Science.gov (United States)

    Fernandez, Jose-Maria; Stein, Roger M; Lo, Andrew W

    2012-10-01

    Biomedical innovation has become riskier, more expensive and more difficult to finance with traditional sources such as private and public equity. Here we propose a financial structure in which a large number of biomedical programs at various stages of development are funded by a single entity to substantially reduce the portfolio's risk. The portfolio entity can finance its activities by issuing debt, a critical advantage because a much larger pool of capital is available for investment in debt versus equity. By employing financial engineering techniques such as securitization, it can raise even greater amounts of more-patient capital. In a simulation using historical data for new molecular entities in oncology from 1990 to 2011, we find that megafunds of $5–15 billion may yield average investment returns of 8.9–11.4% for equity holders and 5–8% for 'research-backed obligation' holders, which are lower than typical venture-capital hurdle rates but attractive to pension funds, insurance companies and other large institutional investors. PMID:23023199

  13. Nanomaterials driven energy, environmental and biomedical research

    Science.gov (United States)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F.

    2014-03-01

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO2 nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH2 and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe2O4 have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI).

  14. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  15. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... Hotel. A. Aging and Clinical Geriatrics........ November 28, 2012...... *VA Central Office....

  16. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  17. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  18. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  19. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditions The Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for...

  20. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  1. Whole Body Counters in Biomedical Research

    Directory of Open Access Journals (Sweden)

    S. C. Jain

    1994-01-01

    Full Text Available Whole body counter plays an important role in medical diagnosis and clinical research. It has been used for monitoring of radiation workers for the assessment of internal contamination or assessment of activity in persons exposed to radiation fallout. In a nuclear emergency like Chernobyl, neutron exposure to the radiation victims was assessed by measuring the induced activity of /sup 24/Na. Apart from its use in determining certain element composition in the body, it has got a number of clinical applications like absorption tests, and metabolic and kinetic studies. The work done at INMAS whole body counter facility is also discussed.

  2. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    CERN Document Server

    Abler, Daniel; Carli, Christian; Dosanjh, Manjit; Peach, Ken; Orecchia, Roberto

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN’s competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR an...

  3. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    International Nuclear Information System (INIS)

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. (author)

  4. Can patents deter innovation? The anticommons in biomedical research.

    Science.gov (United States)

    Heller, M A; Eisenberg, R S

    1998-05-01

    The "tragedy of the commons" metaphor helps explain why people overuse shared resources. However, the recent proliferation of intellectual property rights in biomedical research suggests a different tragedy, an "anticommons" in which people underuse scarce resources because too many owners can block each other. Privatization of biomedical research must be more carefully deployed to sustain both upstream research and downstream product development. Otherwise, more intellectual property rights may lead paradoxically to fewer useful products for improving human health. PMID:9563938

  5. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2001-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  6. Two-Photon Fluorescence Microscopy for Biomedical Research

    Science.gov (United States)

    Fischer, David; Zimmerli, Greg; Asipauskas, Marius

    2007-01-01

    This viewgraph presentation gives an overview of two-photon microscopy as it applies to biomedical research. The topics include: 1) Overview; 2) Background; 3) Principles of Operation; 4) Advantages Over Confocal; 5) Modes of Operation; and 6) Applications.

  7. 78 FR 52777 - Implementation of the Revised International Guiding Principles for Biomedical Research Involving...

    Science.gov (United States)

    2013-08-26

    ... Principles for Biomedical Research Involving Animals SUMMARY: The National Institutes of Health (NIH) is... International Guiding Principles for Biomedical Research Involving Animals (``Guiding Principles''). The NIH is... ) that commits the institution to follow the International Guiding Principles for Biomedical...

  8. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. PMID:26972838

  9. Artificial Sight Basic Research, Biomedical Engineering, and Clinical Advances

    CERN Document Server

    Humayun, Mark S; Chader, Gerald; Greenbaum, Elias

    2008-01-01

    Artificial sight is a frontier area of modern ophthalmology combining the multidisciplinary skills of surgical ophthalmology, biomedical engineering, biological physics, and psychophysical testing. Many scientific, engineering, and surgical challenges must be surmounted before widespread practical applications can be realized. The goal of Artificial Sight is to summarize the state-of-the-art research in this exciting area, and to describe some of the current approaches and initiatives that may help patients in a clinical setting. The Editors are active researchers in the fields of artificial sight, biomedical engineering and biological physics. They have received numerous professional awards and recognition for their work. The artificial sight team at the Doheny Eye Institute, led by Dr. Mark Humayun, is a world leader in this area of biomedical engineering and clinical research. Key Features Introduces and assesses the state of the art for a broad audience of biomedical engineers, biophysicists, and clinical...

  10. Purdue University National Biomedical Tracer Facility: Project definition phase. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.

    1995-02-15

    The proposed National Biomedical Tracer Facility (NBTF) will house a high-current accelerator dedicated to production of short-lived radionuclides for biomedical and scientific research. The NBTF will play a vital role in repairing and maintaining the United States` research infrastructure for generation of essential accelerator-based radioisotopes. If properly designed and managed, the NBTF should also achieve international recognition as a Center-of-Excellence for research on radioisotope production methods and for associated education and training. The current report documents the results of a DOE-funded NBTF Project Definition Phase study carried out to better define the technical feasibility and projected costs of establishing and operating the NBTF. This report provides an overview of recommended Facility Design and Specifications, including Accelerator Design, Building Design, and the associated Construction Cost Estimates and Schedule. It is recommended that the NBTF be established as an integrated, comprehensive facility for meeting the diverse production, research, and educational missions set forth in previous documents. Based on an analysis of the projected production demands that will be placed on the NBTF, it appears that a 70 MeV, 1 mA, negative ion cyclotron will offer a good balance between production capabilities and the costs of accelerator purchase and operation. A preliminary architectural plan is presented for a facility designed specifically to fulfill the functions of the NBTF in a cost-effective manner. This report also presents a detailed analysis of the Required Federal State, and Local Permits that may be needed to establish the NBTF, along with schedules and cost estimates for obtaining these permits. The Handling, Storage, and Disposal of Radioactive Waste will pose some significant challenges in the operation of the NBTF, but at this stage of planning the associated problems do not appear to be prohibitive.

  11. A community of practice: librarians in a biomedical research network.

    Science.gov (United States)

    De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara

    2014-01-01

    Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine. PMID:24528265

  12. Animal Experiments in Biomedical Research: A Historical Perspective

    Directory of Open Access Journals (Sweden)

    Nuno Henrique Franco

    2013-03-01

    Full Text Available The use of non-human animals in biomedical research has given important contributions to the medical progress achieved in our day, but it has also been a cause of heated public, scientific and philosophical discussion for hundreds of years. This review, with a mainly European outlook, addresses the history of animal use in biomedical research, some of its main protagonists and antagonists, and its effect on society from Antiquity to the present day, while providing a historical context with which to understand how we have arrived at the current paradigm regarding the ethical treatment of animals in research.

  13. International Space Station -- Human Research Facility (HRF)

    Science.gov (United States)

    2000-01-01

    Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)

  14. Social Media and Mentoring in Biomedical Research Faculty Development

    Science.gov (United States)

    Teruya, Stacey Alan; Bazargan-Hejazi, Shahrzad

    2014-01-01

    Purpose: To determine how effective and collegial mentoring in biomedical research faculty development may be implemented and facilitated through social media. Method: The authors reviewed the literature for objectives, concerns, and limitations of career development for junior research faculty. They tabularized these as developmental goals, and…

  15. The Research of Biomedical Intelligent Polymer Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; CHEN Yuan-wei; TANG Chang-wei; QIU Kai; LUO Juan; XU Cheng-yin; WAN Chang-xiu

    2004-01-01

    The properties of biomedical intelligent polymer materials can be changed obviously when there is a little physical or chemical change caused by external condition. They are in the forms of solids, solutions and the polymers on the surface of carrier, and include water solution of hydrophilic polymers, cross-linking hydrophilic polymers(i.e. hydrogels) and the polymers on the surface of carrier. The environmental stimulating factors are temperature, pH value, composition of solution, ionic intention, light intention, electric field, stress field and magnetic field etc.. The properties of intelligent polymer are those of phase, photics, mechanics, electric field, surface energy,reaction ratio, penetrating ratio and recognition etc..Stimulation-response of intelligent water-soluble polymerWater-soluble intelligent polymer can be separated out from solution under special external condition. It can be used as the switch of temperature or pH indicator. When water-soluble intelligent polymer is mixed with soluble-enzyme matter or cell suspension, the polymer can bring phase separation and react with soluble-enzyme matter or cell membrane through accepting some external stimulation. Other water-soluble intelligent polymer is that can make the main chemical group of some natural biomolecular recognition sequence section to arrange on skeleton of polymer at random. It is the same ratio as natural biomolecules.Stimulation-response of intelligent polymer of carrier surface Intelligent polymer can be fixed on the surface of solid polymer carrier through chemical grafting or physical adsorption. When the external conditions are changed, the thickness, humidity and electric field of the surface layer will be changed. Intelligent polymer can be preparated the permanence switch by precipitating into the hole of porous surface, and it can control on-off state of the hole. When protein or cell interacts with intelligent polymer surface to be placed in to open or close, they can be

  16. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following three panels of the Joint Biomedical Laboratory Research and Development and Clinical Science.... Clinical Research Program will meet on June 7-8, 2012, at *VA Central Office and not at Sheraton...

  17. 76 FR 24974 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-05-03

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following four panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... clinical science research. The panel meetings will be open to the public for approximately one hour at...

  18. 77 FR 20489 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-04-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services.... Neurobiology-A June 1, 2012..... Sheraton Suites--Old Town Alexandria. Clinical Application of June 1,...

  19. 77 FR 23810 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-04-20

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services.... Neurobiology-A June 1, 2012........ Sheraton Suites--Old Town Alexandria. Clinical Application of June 1,...

  20. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... location changes have been made for the following panel meetings of the of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit...

  1. Animal Experiments in Biomedical Research: A Historical Perspective

    OpenAIRE

    Nuno Henrique Franco

    2013-01-01

    Simple Summary This article reviews the use of non-human animals in biomedical research from a historical viewpoint, providing an insight into the most relevant social and moral issues on this topic across time, as well as to how the current paradigm for ethically and publically acceptable use of animals in biomedicine has been achieved. Abstract The use of non-human animals in biomedical research has given important contributions to the medical progress achieved in our day, but it has also b...

  2. Reasons behind the participation in biomedical research: a brief review

    OpenAIRE

    Sonia Mansoldo Dainesi; Moisés Goldbaum

    2014-01-01

    INTRODUCTION: Clinical research is essential for the advancement of Medicine, especially regarding the development of new drugs. Understanding the reasons behind patients' decision of participating in these studies is critical for the recruitment and retention in the research. OBJECTIVES: To examine the decision-making of participants in biomedical research, taking into account different settings and environments where clinical research is performed. Methods: A critical review of the lit...

  3. Developing expertise in bioinformatics for biomedical research in Africa

    OpenAIRE

    Karikari, Thomas K.; Emmanuel Quansah; Wael M.Y. Mohamed

    2015-01-01

    Research in bioinformatics has a central role in helping to advance biomedical research. However, its introduction to Africa has been met with some challenges (such as inadequate infrastructure, training opportunities, research funding, human resources, biorepositories and databases) that have contributed to the slow pace of development in this field across the continent. Fortunately, recent improvements in areas such as research funding, infrastructural support and capacity building are help...

  4. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... City Hotel. Clinical Application of Genetics....... December 5, 2013 *VA Central Office....

  5. Decommissioning Russian Research Facilities

    International Nuclear Information System (INIS)

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety of nuclear research facilities (RR), including research reactors, critical assemblies and sub-critical assemblies. Most of the Russian RR were built and put in operation more than 30 years ago. The problems of ageing equipment and strengthening of safety requirements in time, the lack of further experimental programmes and financial resources, have created a condition when some of the RR were forced to take decisions on their decommissioning. The result of these problems was reflected in reducing the number of RR from 113 in 1998 to 81 in the current year. At present, seven RR are already under decommissioning or pending it. Last year, the Ministry of Atomic Energy took the decision to finally shut down two remaining actual research reactors in the Physics and Power Engineering Institute in Obninsk: AM-1, the first reactor in the world built for peaceful purposes, graphite-type reactor, and the fast liquid metal reactor BR-10, and to start their preparation for decommissioning. It is not enough just to declare the decommissioning of a RR: it is also vital to find financial resources for that purpose. For this reason, due to lack of financing, the MR reactor at the Kurchatov Institute has been pending decommissioning since 1992 and still is. The other example of long-lasting decommissioning is TVR, a heavy water reactor at the Institute of Theoretical Physics in Moscow (ITEF). The reason is also poor financing. Another example discussed in the paper concerns on-site disposal of a RR located above the Arctic Pole Circle, owned by the Norilsk Mining Company. Furthermore, the experience of the plutonium reactor decommissioning at the Joint Institute of Nuclear Research is also discussed. As shown, the Russian Federation has had good experiences in the decommissioning of nuclear research facilities. (author)

  6. Improved reproducibility by assuring confidence in measurements in biomedical research.

    Science.gov (United States)

    Plant, Anne L; Locascio, Laurie E; May, Willie E; Gallagher, Patrick D

    2014-09-01

    ‘Irreproducibility’ is symptomatic of a broader challenge in measurement in biomedical research. From the US National Institute of Standards and Technology (NIST) perspective of rigorous metrology, reproducibility is only one aspect of establishing confidence in measurements. Appropriate controls, reference materials, statistics and informatics are required for a robust measurement process. Research is required to establish these tools for biological measurements, which will lead to greater confidence in research results. PMID:25166868

  7. Algal lectins as promising biomolecules for biomedical research.

    Science.gov (United States)

    Singh, Ram Sarup; Thakur, Shivani Rani; Bansal, Parveen

    2015-02-01

    Lectins are natural bioactive ubiquitous proteins or glycoproteins of non-immune response that bind reversibly to glycans of glycoproteins, glycolipids and polysaccharides possessing at least one non-catalytic domain causing agglutination. Some of them consist of several carbohydrate-binding domains which endow them with the properties of cell agglutination or precipitation of glycoconjugates. Lectins are rampant in nature from plants, animals and microorganisms. Among microorganisms, algae are the potent source of lectins with unique properties specifically from red algae. The demand of peculiar and neoteric biologically active substances has intensified the developments on isolation and biomedical applications of new algal lectins. Comprehensively, algal lectins are used in biomedical research for antiviral, antinociceptive, anti-inflammatory, anti-tumor activities, etc. and in pharmaceutics for the fabrication of cost-effective protein expression systems and nutraceutics. In this review, an attempt has been made to collate the information on various biomedical applications of algal lectins. PMID:23855360

  8. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  9. Biomedical research coverage in English-language Indian newspapers

    Directory of Open Access Journals (Sweden)

    Bharvi Dutt

    2012-01-01

    Full Text Available The present paper explores biomedical research coverage in the Indian English-language newspapers. Science and technology coverage in the Indian English-language newspapers revealed dominant representation of biomedical research. The research reported was mainly from foreign sources, mostly performed in US, UK and other developed countries of Europe. Plausibly, this was the major reason that areas of medical concerns in foreign countries such as Neuroscience, Oncology, Genetics and Cardiovascular research constituted more than one-third of the total space whereas neglected tropical diseases have almost been neglected in the coverage. This is despite the fact that tropical and other neglected diseases constitute the greatest health problem in India. The study discusses the significance of this research for policy planners, media, health information dissemination and those concerned about informed and science literate citizenry in the country.

  10. Enabling biomedical research with designer quantum dots

    NARCIS (Netherlands)

    Tomczak, N.; Janczewski, D.; Dorokhin, D.V.; Han, M-Y; Vancso, G.J.; Navarro, Melba; Planell, Josep A.

    2012-01-01

    Quantum Dots (QDs) are a new class of semiconductor nanoparticulate luminophores, which are actively researched for novel applications in biology and nanomedicine. In this review, the recent progress in the design and applications of QD labels for in vitro and in vivo imaging of cells is presented.

  11. Comparative Case Study of Two Biomedical Research Collaboratories

    OpenAIRE

    Schleyer, Titus KL; Teasley, Stephanie D; Bhatnagar, Rishi

    2005-01-01

    Background Working together efficiently and effectively presents a significant challenge in large-scale, complex, interdisciplinary research projects. Collaboratories are a nascent method to help meet this challenge. However, formal collaboratories in biomedical research centers are the exception rather than the rule. Objective The main purpose of this paper is to compare and describe two collaboratories that used off-the-shelf tools and relatively modest resources to support the scientific a...

  12. Introduction to Oxidative Stress in Biomedical and Biological Research

    OpenAIRE

    Michael Breitenbach; Peter Eckl

    2015-01-01

    Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field.

  13. A new cyclotron for biomedical research

    International Nuclear Information System (INIS)

    This paper presents the rationale for replacing the old AEG Compact Cyclotron (built in 1969/71) of the Institute for Radiology and Pathophysiology at the German Cancer Research Center by a 30 MeV H-/15 MeV D- cyclotron. A status report is followed by the scientific and technical reasoning as well as budgetary and organizational considerations. In the appendix we tried to explain the function of a cyclotron in a simple and comprehensive manner. (orig.)

  14. Reengineering Biomedical Translational Research with Engineering Ethics.

    Science.gov (United States)

    Sunderland, Mary E; Nayak, Rahul Uday

    2015-08-01

    It is widely accepted that translational research practitioners need to acquire special skills and knowledge that will enable them to anticipate, analyze, and manage a range of ethical issues. While there is a small but growing literature that addresses the ethics of translational research, there is a dearth of scholarship regarding how this might apply to engineers. In this paper we examine engineers as key translators and argue that they are well positioned to ask transformative ethical questions. Asking engineers to both broaden and deepen their consideration of ethics in their work, however, requires a shift in the way ethics is often portrayed and perceived in science and engineering communities. Rather than interpreting ethics as a roadblock to the success of translational research, we suggest that engineers should be encouraged to ask questions about the socio-ethical dimensions of their work. This requires expanding the conceptual framework of engineering beyond its traditional focus on "how" and "what" questions to also include "why" and "who" questions to facilitate the gathering of normative, socially-situated information. Empowering engineers to ask "why" and "who" questions should spur the development of technologies and practices that contribute to improving health outcomes. PMID:24928281

  15. What is the future of biomedical research?

    Science.gov (United States)

    Tebala, Giovanni Domenico

    2015-10-01

    Randomized controlled trials require hard work and financial commitment, whereas meta-analyses and systematic reviews can be relatively easy to perform and often get published in high impact journals. Many researchers might decide to devote themselves to the latter approach, resulting in a negative impact on clinical research. We have reviewed the number of indexed meta-analyses and systematic reviews on PubMed and compared it with the number of randomized controlled trials over the same period. Statistical analysis showed an exponential increase of synthetic studies with respect to randomized trials. The ratio between RCTs and synthetic studies is quickly decreasing. These results suggest that a growing number of researchers might prefer to commit themselves to synthetic studies more than be involved in more time consuming and funds demanding observational trials. If we are unable to invert this trend, in the future we will have a growing number of synthetic studies utilizing someone else's original data and fewer raw data to base our knowledge upon. PMID:26194725

  16. Biomedical text mining and its applications in cancer research.

    Science.gov (United States)

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research. PMID:23159498

  17. Race in Biological and Biomedical Research

    OpenAIRE

    Richard S Cooper

    2013-01-01

    The concept of race has had a significant influence on research in human biology since the early 19th century. But race was given its meaning and social impact in the political sphere and subsequently intervened in science as a foreign concept, not grounded in the dominant empiricism of modern biology. The uses of race in science were therefore often disruptive and controversial; at times, science had to be retrofitted to accommodate race, and science in turn was often used to explain and jus...

  18. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...

  19. From biomedical-engineering research to clinical application and industrialization

    Science.gov (United States)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  20. Adipoparacrinology: an Emerging Field in Biomedical Research

    Directory of Open Access Journals (Sweden)

    George N. Chaldakov

    2012-03-01

    Full Text Available White adipose tissue (WAT is a dynamic multicellular assembly composed of adipocytes and stromovascular cells, including fibroblasts, endothelial and immune cells, nerve fibers, and stem cells. In humans, WAT is a responsive and secretory (endocrine and paracrine tissue partitioned into two large depots (subcutaneous and visceral and many small depots associated with the heart, blood vessels, major lymph nodes, prostate gland, ovaries and mammary glands. This short review conceptualizes evidence for the paracrine activity of adipose tissue in founding a new research field, designated adipoparacrinology. Here we focus on (i epicardial and periadventitial adipose tissue in atherogenesis, (ii mammary gland-associated adipose tissue in breast cancer, and (iii periprostatic adipose tissue in prostate cancer. Other examples include: (i mesenteric adipose tissue in Crohn’s disease, (ii lymph node-associated (perinodal adipose tissue in Crohn’s disease and HIV-associated adipose redistribution syndrome, (iii infrapatellar fat pad (Hoffa’s fat pad in knee osteoarthritis, (iv orbital adipose tissue in thyroid-associated (Graves’ ophthalmopathy, and (v parasellar region-associated adipose tissue in brain disorders. The therapy aspect of adipoparacrinology is also discussed.

  1. The two revolutions in bio-medical research

    Directory of Open Access Journals (Sweden)

    Ajai R. Singh

    2005-03-01

    Full Text Available In the field of modern medical science, we can identify certain epochs. Some of these will be our concern here, for they offer important insights into the development of modern medicine and offer equally important predictors of where it is heading in the future. In fact they are so important that they qualify to be called nothing less than revolutions.Till the early twentieth century, medicine was an activity dependent on a small privileged elite. This changed by the mid-twentieth century into a vast publicly owned enterprise with enlightened governmental approach, support and funding. One example of this was in the 1940s, sixty five years ago, when Vannever Bush in the US, for example, persuaded the government there to divert resources allocated for the then war effort (World War II to fund basic research in academic institutions. Similarly, in India, what was earlier dependent on the benevolence of zamindars/philanthropists and some missionaries who set up charitable dispensaries/hospitals to serve certain sections of the population was supplemented, and then overtaken, by governmental funding after independence in 1947.This major governmental support to medical science was an important development that led to great advances in medical research and facilities all over. Such funding and consequent blossoming of medical science was nothing less than a revolution, which we can legitimately consider the first revolution in modern medicine.A second revolution was soon to follow four decades later. It was fuelled by a vast upsurge in medical research, training and therapy, with capital pouring in from private enterprise and philanthropy. This revolution is still on. It is aided by efforts like the Bayh-Dole Amendments of 1980 in the US, for example. This epoch making amendment conferred intellectual property rights to institutions and connected scientists even if they had developed their products/inventions with government funding. It was followed

  2. Medical and biomedical research productivity from Palestine, 2002 – 2011

    Directory of Open Access Journals (Sweden)

    Sweileh Waleed M

    2013-02-01

    Full Text Available Abstract Background Medical research productivity reflects the level of medical education and practice in a particular country. The objective of this study was to examine the quantity and quality of medical and biomedical research published from Palestine. Findings Comprehensive review of the literature indexed by Scopus was conducted. Data from Jan 01, 2002 till December 31, 2011 was searched for authors affiliated with Palestine or Palestinian authority. Results were refined to limit the search to medical and biomedical subjects. The quality of publication was assessed using Journal Citation Report. The total number of publications was 2207. A total of 770 publications were in the medical and biomedical subject areas. The annual rate of publication was 0.077 articles per gross domestic product/capita. The 770 publications have an h-index of 32. One hundred and thirty eight (18% articles were published in 46 journals that were not indexed in the web of knowledge. Twenty two (22/770; 2.9% articles were published in journals with an IF > 10. Conclusions The quantity and quality of research originating from Palestinian institutions is promising given the scarce resources of Palestine. However, more effort is needed to bridge the gap in medical research productivity and to promote better health in Palestine.

  3. Critical Contexts for Biomedical Research in a Native American Community: Health Care, History, and Community Survival

    Science.gov (United States)

    Sahota, Puneet Chawla

    2012-01-01

    Native Americans have been underrepresented in previous studies of biomedical research participants. This paper reports a qualitative interview study of Native Americans' perspectives on biomedical research. In-depth interviews were conducted with 53 members of a Southwest tribal community. Many interviewees viewed biomedical research studies as a…

  4. Mixed Methods in Biomedical and Health Services Research

    OpenAIRE

    Curry, Leslie A; Krumholz, Harlan M; O’Cathain, Alicia; Plano Clark, Vicki L.; Cherlin, Emily; Bradley, Elizabeth H.

    2013-01-01

    Mixed methods studies, in which qualitative and quantitative methods are combined in a single program of inquiry, can be valuable in biomedical and health services research, where the complementary strengths of each approach can yield greater insight into complex phenomena than either approach alone. Although interest in mixed methods is growing among science funders and investigators, written guidance on how to conduct and assess rigorous mixed methods studies is not readily accessible to th...

  5. The use of 'race' as a variable in biomedical research

    OpenAIRE

    Efstathiou, Sophia

    2009-01-01

    The use of 'ace' as a variable in biomedical research is facilitated by embedding ordinary concepts of race in particular scientific domains. The dissertation articulates a process for how this can happen. The process has two parts: 1. Finding and 2. Founding a concept in a scientific context. The results of this process are called "found science" by analogy to found art. Chapter 1 TOOLS draws distinctions between different race concepts following those of Michael Hardimon and Sally Haslanger...

  6. The Function Biomedical Informatics Research Network Data Repository

    OpenAIRE

    Keator, DB; van Erp, TGM; Turner, JA; Glover, GH; Mueller, BA; Liu, TT; Voyvodic, JT; Rasmussen, J.; Calhoun, VD; Lee, HJ.; Toga, AW; McEwen, S.; Ford, JM; Mathalon, DH; Diaz, M

    2016-01-01

    © 2015 Elsevier Inc. The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associa...

  7. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  8. Nano-biotechnology for biomedical and diagnostic research

    CERN Document Server

    Zahavy, Eran; Yitzhaki, Shmuel

    2011-01-01

    The title ""Nano Biotechnology for Biomedical and Diagnostics Research"" will address research aspects related to nanomaterial in imaging and biological research, nanomaterials as a biosensing tool, DNA nanotechnology, nanomaterials for drug delivery, medicinal and therapeutic application and cytotoxicity of nanomaterials. These topics will be covered by 16 different manuscripts. Amongst the authors that will contribute to the book are major scientific leaders such as S. Weiss - UCLA, I. Willner, and G. Golomb -- HUJI, S. Esener - UCSD, E.C. Simmel - Tech. Univ. Munchen, I. Medintz -- NRL, N.

  9. Architecture of a Biomedical Informatics Research Data Management Pipeline.

    Science.gov (United States)

    Bauer, Christian R; Umbach, Nadine; Baum, Benjamin; Buckow, Karoline; Franke, Thomas; Grütz, Romanus; Gusky, Linda; Nussbeck, Sara Yasemin; Quade, Matthias; Rey, Sabine; Rottmann, Thorsten; Rienhoff, Otto; Sax, Ulrich

    2016-01-01

    In University Medical Centers, heterogeneous data are generated that cannot always be clearly attributed to patient care or biomedical research. Each data set has to adhere to distinct intrinsic and operational quality standards. However, only if high-quality data, tools to work with the data, and most importantly guidelines and rules of how to work with the data are addressed adequately, an infrastructure can be sustainable. Here, we present the IT Research Architecture of the University Medical Center Göttingen and describe our ten years' experience and lessons learned with infrastructures in networked medical research. PMID:27577384

  10. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  11. From global bioethics to ethical governance of biomedical research collaborations

    DEFF Research Database (Denmark)

    Wahlberg, Ayo; Rehmann-Sutter, Christoph; Sleeboom-Faulkner, Margaret;

    2013-01-01

    arising from cross-continental research collaborations: (1) ambiguity as to which regulations are applicable; (2) lack of ethical review capacity not only among ethical review board members but also collaborating scientists; (3) already complex, researcher-research subject interaction is further......One of the features of advanced life sciences research in recent years has been its internationalisation, with countries such as China and South Korea considered ‘emerging biotech’ locations. As a result, crosscontinental collaborations are becoming common generating moves towards ethical and legal...... with the ethical challenges that inter-continental biomedical research collaborations generate. In particular we ask how national systems of ethical governance of life science research might cope with increasingly global research collaborations with a focus on Sino-European collaboration. We propose four ‘spheres...

  12. Eli Lilly and Company's bioethics framework for human biomedical research.

    Science.gov (United States)

    Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J

    2015-11-01

    Current ethics and good clinical practice guidelines address various aspects of pharmaceutical research and development, but do not comprehensively address the bioethical responsibilities of sponsors. To fill this void, in 2010 Eli Lilly and Company developed and implemented a Bioethics Framework for Human Biomedical Research to guide ethical decisions. (See our companion article that describes how the framework was developed and implemented and provides a critique of its usefulness and limitations.) This paper presents the actual framework that serves as a company resource for employee education and bioethics deliberations. The framework consists of four basic ethical principles and 13 essential elements for ethical human biomedical research and resides within the context of our company's mission, vision and values. For each component of the framework, we provide a high-level overview followed by a detailed description with cross-references to relevant well regarded guidance documents. The principles and guidance described should be familiar to those acquainted with research ethics. Therefore the novelty of the framework lies not in the foundational concepts presented as much as the attempt to specify and compile a sponsor's bioethical responsibilities to multiple stakeholders into one resource. When such a framework is employed, it can serve as a bioethical foundation to inform decisions and actions throughout clinical planning, trial design, study implementation and closeout, as well as to inform company positions on bioethical issues. The framework is, therefore, a useful tool for translating ethical aspirations into action - to help ensure pharmaceutical human biomedical research is conducted in a manner that aligns with consensus ethics principles, as well as a sponsor's core values. PMID:26325585

  13. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System

    OpenAIRE

    Myneni, Sahiti; Patel, Vimla L.

    2010-01-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers’ time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, ...

  14. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A December...

  15. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and ] Development Services Scientific Merit.... Clinical Research Program June 9, 2010 *VA Central Office. Oncology June 10-11, 2010....... L'Enfant...

  16. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit.... Clinical Research Program June 13, 2011 VA Central Office.* Gastroenterology June 13, 2011 L'Enfant...

  17. Analyser-based x-ray imaging for biomedical research

    International Nuclear Information System (INIS)

    Analyser-based imaging (ABI) is one of the several phase-contrast x-ray imaging techniques being pursued at synchrotron radiation facilities. With advancements in compact source technology, there is a possibility that ABI will become a clinical imaging modality. This paper presents the history of ABI as it has developed from its laboratory source to synchrotron imaging. The fundamental physics of phase-contrast imaging is presented both in a general sense and specifically for ABI. The technology is dependent on the use of perfect crystal monochromator optics. The theory of the x-ray optics is developed and presented in a way that will allow optimization of the imaging for specific biomedical systems. The advancement of analytical algorithms to produce separate images of the sample absorption, refraction angle map and small-angle x-ray scattering is detailed. Several detailed applications to biomedical imaging are presented to illustrate the broad range of systems and body sites studied preclinically to date: breast, cartilage and bone, soft tissue and organs. Ultimately, the application of ABI in clinical imaging will depend partly on the availability of compact sources with sufficient x-ray intensity comparable with that of the current synchrotron environment. (paper)

  18. Proposal for a new LEIR Slow Extraction Scheme dedicated to Biomedical Research

    CERN Document Server

    Garonna, A; Carli, C

    2014-01-01

    This report presents a proposal for a new slow extraction scheme for the Low Energy Ion Ring (LEIR) in the context of the feasibility study for a biomedical research facility at CERN. LEIR has to be maintained as a heavy ion accumulator ring for LHC and for fixed-target experiments with the SPS. In parallel to this on-going operation for physics experiments, an additional secondary use of LEIR for a biomedical research facility was proposed [Dosanjh2013, Holzscheiter2012, PHE2010]. This facility would complement the existing research beam-time available at other laboratories for studies related to ion beam therapy. The new slow extraction [Abler2013] is based on the third-integer resonance. The reference beam is composed of fully stripped carbon ions with extraction energies of 20-440 MeV/u, transverse physical emittances of 5-25 µm and momentum spreads of ±2-9•10-4. Two resonance driving mechanisms have been studied: the quadrupole-driven method and the RF-knockout technique. Both were made compatible...

  19. Biotechnology Facility: An ISS Microgravity Research Facility

    Science.gov (United States)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  20. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  1. A biobank management model applicable to biomedical research

    Directory of Open Access Journals (Sweden)

    Patenaude Johane

    2006-04-01

    Full Text Available Abstract Background The work of Research Ethics Boards (REBs, especially when involving genetics research and biobanks, has become more challenging with the growth of biotechnology and biomedical research. Some REBs have even rejected research projects where the use of a biobank with coded samples was an integral part of the study, the greatest fear being the lack of participant protection and uncontrolled use of biological samples or related genetic data. The risks of discrimination and stigmatization are a recurrent issue. In light of the increasing interest in biomedical research and the resulting benefits to the health of participants, it is imperative that practical solutions be found to the problems associated with the management of biobanks: namely, protecting the integrity of the research participants, as well as guaranteeing the security and confidentiality of the participant's information. Methods We aimed to devise a practical and efficient model for the management of biobanks in biomedical research where a medical archivist plays the pivotal role as a data-protection officer. The model had to reduce the burden placed on REBs responsible for the evaluation of genetics projects and, at the same time, maximize the protection of research participants. Results The proposed model includes the following: 1 a means of protecting the information in biobanks, 2 offers ways to provide follow-up information requested about the participants, 3 protects the participant's confidentiality and 4 adequately deals with the ethical issues at stake in biobanking. Conclusion Until a governmental governance body is established in Quebec to guarantee the protection of research participants and establish harmonized guidelines for the management of biobanks in medical research, it is definitely up to REBs to find solutions that the present lack of guidelines poses. The model presented in this article offers a practical solution on a day-to-day basis for REBs

  2. Legacy of Biomedical Research During the Space Shuttle Program

    Science.gov (United States)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  3. Biomedical Research Group, Health Division annual report 1954

    Energy Technology Data Exchange (ETDEWEB)

    Langham, W.H.; Storer, J.B.

    1955-12-31

    This report covers the activities of the Biomedical Research Group (H-4) of the Health Division during the period January 1 through December 31, 1954. Organizationally, Group H-4 is divided into five sections, namely, Biochemistry, Radiobiology, Radiopathology, Biophysics, and Organic Chemistry. The activities of the Group are summarized under the headings of the various sections. The general nature of each section`s program, publications, documents and reports originating from its members, and abstracts and summaries of the projects pursued during the year are presented.

  4. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    Science.gov (United States)

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an earlier…

  5. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... June 7, 2013 U.S. Access Board. Aging and Clinical Geriatrics........ June 10, 2013 VA Central...

  6. Navy Fuel Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research to understand the underlying chemistry that impacts the use, handling, and storage of current and future Navy mobility...

  7. Detonation Engine Research Facility (DERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility is configured to safely conduct experimental pressuregain combustion research. The DERF is capable of supporting up to 60,000 lbf thrust...

  8. Lipidomics as a Principal Tool for Advancing Biomedical Research

    Institute of Scientific and Technical Information of China (English)

    Sin Man Lam; Guanghou Shui

    2013-01-01

    Lipidomics,which targets at the construction of a comprehensive map of lipidome comprising the entire lipid pool within a cell or tissue,is currently emerging as an independent discipline at the interface of lipid biology,technology and medicine.The diversity and complexity of the biological lipidomes call for technical innovatin and improvement to meet the needs of various biomedical studies.The recent wave of expansion in the field of lipidomic research is mainly attributed to advances in analytical technologies,in particular,the development of new mass spectrometric and chromatographic tools for the characterization and quantification of the wide array of diverse lipid species in the cellular lipidome.Here,we review some of the key technical advances in lipidome analysis and put forth the applications of lipidomics in addressing the biological roles of lipids in numerous disease models including the metabolic syndrome,neurodegenerative diseases and infectious diseases,as well as the increasing urgency to construct the lipidome inventory for various mammalian/organism models useful for biomedical research.

  9. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). Fifteen different experiments were run during these 12 months, approximately the same as the previous two years. Brief summaries of each experiment are included. Accelerator usage is summarized and development activities are discussed. 7 refs., 4 tabs

  10. Wire gaseous coordinate detectors and their applications in biomedical research

    International Nuclear Information System (INIS)

    Wire gaseous coordinate detectors continue to be a basic tool in experimental high-energy physics and are being intensively introduced into related areas of science and technology, particularly biomedical research. The constant evolution of these detectors allows broad application of their new modificatons: multistep chambers, low-pressure detectors, time-projection chambers, and so on, so that detector systems are enriched with new possibilities. In this review we give the operating principles and fundamental parameters of these detectors and discuss some examples of how they are used in experimental physics. We also explore some of the features of the use of these detectors for research in molecular biology and medical diagnostics for examples of existing and projected setups

  11. Biomedical research and corporate interests: a question of academic freedom.

    Science.gov (United States)

    McHenry, Leemon

    2008-01-01

    The current situation in medicine has been described as a crisis of credibility, as the profit motive of industry has taken control of clinical trials and the dissemination of data. Pharmaceutical companies maintain a stranglehold over the content of medical journals in three ways: (1) by ghostwriting articles that bias the results of clinical trials, (2) by the sheer economic power they exert on journals due to the purchase of drug advertisements and journal reprints, and (3) by the threat of legal action against those researchers who seek to correct the misrepresentation of study results. This paper argues that Karl Popper's critical rationalism provides a corrective to the failure of academic freedom in biomedical research. PMID:22013356

  12. The ethical justification for the use of animals in biomedical research

    Directory of Open Access Journals (Sweden)

    Kostomitsopoulos N.G.

    2010-01-01

    Full Text Available Despite all the benefits, the use of animals in biomedical research is still a subject of debate with respect to its true value. The sensitivity of the community and the interest of scientists who work in the field of laboratory animal science and welfare have clearly demonstrated that the use of animals in biomedical research must be conducted under specific scientific, legal and ethical rules. The ethical justification of a research project starts from its initial designing phase until its completion and the review of the obtained results. Justification of the necessity of the project and the need to use animals in the interests of human or animal health, the importance of conducting a pilot study and a systematic review of previously published animal research on the topic, and the availability of the proper facilities, equipment and personnel are the main issues of concern in the ethical review of a research project. The ethical justification of the proposed project by the scientists themselves involves team-work, and should be a sustainable rather than a one-off procedure. This justification reflects the interest and the responsibility of scientists to reduce the number of animals, refine the procedures, and possibly replace animals in their research projects. The end-results of the ethical review process will be the creation of a trust relationship between scientists and society. .

  13. Window Observational Research Facility (WORF)

    Science.gov (United States)

    Pelfrey, Joseph; Sledd, Annette

    2007-01-01

    This viewgraph document concerns the Window Observational Research Facility (WORF) Rack, a unique facility designed for use with the US Lab Destiny Module window. WORF will provide valuable resources for Earth Science payloads along with serving the purpose of protecting the lab window. The facility can be used for remote sensing instrumentation test and validation in a shirt sleeve environment. WORF will also provide a training platform for crewmembers to do orbital observations of other planetary bodies. WORF payloads will be able to conduct terrestrial studies utilizing the data collected from utilizing WORF and the lab window.

  14. Research Training in the Biomedical, Behavioral, and Clinical Research Sciences

    Science.gov (United States)

    National Academies Press, 2011

    2011-01-01

    Comprehensive research and a highly-trained workforce are essential for the improvement of health and health care both nationally and internationally. During the past 40 years the National Research Services Award (NRSA) Program has played a large role in training the workforce responsible for dramatic advances in the understanding of various…

  15. Atomic force microscopy in biomedical research - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Pier Carlo Braga and Davide Ricci are old friends not only for those researchers familiar with Atomic force microscopy (AFM but also for those beginners (like the undersigned that already enthusiastically welcomed their 2004 edition (for the same Humana press printing types of Atomic force microscopy: Biomedical methods and applications, eventhough I never had used the AFM. That book was much intended to overview the possible AFM applications for a wide range of readers so that they can be in some way stimulated toward the AFM use. In fact, the great majority of scientists is afraid both of the technology behind AFM (that is naturally thought highly demanding in term of concepts not so familiar to biologists and physicians and of the financial costs: both these two factors are conceived unapproachable by the medium range granted scientist usually not educated in terms of biophysics and electronic background....

  16. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs

  17. Measuring how people view biomedical research: Reliability and validity analysis of the Research Attitudes Questionnaire

    OpenAIRE

    Rubright, Jonathan D.; Cary, Mark S.; Karlawish, Jason H.; Kim, Scott Y. H.

    2011-01-01

    With increasing numbers of studies on research ethics and a need to improve the recruitment of research subjects, the ability to measure attitudes toward biomedical research has become important. The Research Attitudes Questionnaire is a significant predictor of the public’s attitudes toward and willingness to participate in research, yet limited data are available on its psychometric properties. This study establishes the scale’s internal consistency and dimensionality using a large Internet...

  18. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-10-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings The Department of Veterans Affairs gives notice under the Public Law 92-463...

  19. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    Science.gov (United States)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  20. The Radiological Research Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

  1. Informed consent among nursing students participating in biomedical research.

    Science.gov (United States)

    Nambiar, Anupama; Christopher, D J; Mammen, Joy; David, Thambu; Kang, Gagandeep; David, Shirley

    2012-01-01

    For consent in biomedical research, it is essential that research participants understand the need for research, the study protocol, the risk and benefits of participation, the freedom to participate or decline and the right to leave the study at any time. A structured questionnaire was used to assess understanding and knowledge among nursing trainees participating in a cohort study investigating exposure and latent tuberculosis at a tertiary care hospital. Data were collected for 138 participants. While 97% were aware of their enrollment into a research protocol, only 78% could state that it was a study on tuberculosis. Approximately two-thirds were aware of plans for blood collection, but not all of them knew the timings or number of samples. The majority (59%) participants had consulted others before making the decision to participate, and only 73% felt that their participation was completely voluntary. Even among healthcare trainees, emphasis needs to be placed on testing both the knowledge and understanding of participants to ensure the principle and practice of truly informed consent. PMID:22864079

  2. Environmental Assessment: UCLA biomedical research CS-22 cyclotron replacement, University of California at Los Angeles

    International Nuclear Information System (INIS)

    DOE proposes to participate in the joint funding, along with the National Institutes of Health (NIH) and private donors, of a new biomedical cyclotron research instrument for UCLA. DOE proposes to provide funding in the amount of $500,000 to UCLA for removal and disposal of the existing 19 year old CS-22 cyclotron and refitting of the existing room, plus $900,000 (of the $1.5 million total cost) for installation of a new generation Cyclone 18/9 biomedical isotope compact cyclotron. The remaining $600,000 for the new instrument would be provided by NIH and private donors. The total cost for the entire project is $2,0000,000. Operation and use of the instrument would be entirely by UCLA. The Biomedical Cyclotron Facility is a line item included on UCLA's Broad Scope A License. The CS-22 cyclotron was turned over to UCLA's jurisdiction by DOE in 1989 when the Laboratory of Biomedical and Environmental Sciences General Contract with DOE was changed to a Cooperative Agreement, and ''Clause B'' involving safety responsibility was terminated. In support of this, a large closeout survey was performed, licensing actions were completed, and it was agreed that environmental, health and safety compliance would be UCLA's responsibility. Since the CS022 cyclotron was DOE property prior to the above changes, DOE proposes to provide this entire funding for its removal and disposal, and to provide partial funding for its replacement. This report describes the removal of the existing cyclotron, and the operation and installation of a new cyclotron as well as any associated environmental impacts

  3. Health Benefits of Animal Research: The Mouse in Biomedical Research.

    Science.gov (United States)

    Jonas, Albert M.

    1984-01-01

    Traces the history of using mice for medical research and discusses the benefits of using these animals for studies in bacteriology, virology, genetics (considering X-linked genetic homologies between mice and humans), molecular biology, immunology, hematology, immune response disorders, oncology, radiobiology, pharmacology, behavior genetics,…

  4. Research Facility Development at CAS

    Institute of Scientific and Technical Information of China (English)

    Tian Dongsheng; Miao Yougui; Zhang Hongsong

    2005-01-01

    @@ This article gives an introductory account on the development of research facilities at the CAS over the past six years since the initiation of the Knowledge Innovation Program in 1998 and during the period of the national 10th Five-year Plan in particular. In addition, it expounds the key points for the future work at the CAS in this regard.

  5. Biomedical and Behavioral Research Scientists: Their Training and Supply. Volume 1: Findings.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Office of Scientific and Engineering Personnel.

    This is the first of three volumes which presents the Committee on Biomedical and Behavioral Research Personnel's examination of the educational process that leads to doctoral degrees in biomedical and behavioral science (and to postdoctoral study in some cases) and the role of the National Research Service Awards (NRSA) training programs in it.…

  6. How Do Interaction Experiences Influence Doctoral Students' Academic Pursuits in Biomedical Research?

    Science.gov (United States)

    Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.; Tai, Robert H.

    2013-01-01

    This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based…

  7. The Biological Flight Research Facility

    Science.gov (United States)

    Johnson, Catherine C.

    1993-01-01

    NASA Ames Research Center (ARC) is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately thirty years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. Included in the facility are a service unit for providing clean chambers for the specimens and a glovebox for manipulating the plant and animal specimens and for performing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

  8. Derivation of porcine pluripotent stem cells for biomedical research.

    Science.gov (United States)

    Shiue, Yow-Ling; Yang, Jenn-Rong; Liao, Yu-Jing; Kuo, Ting-Yung; Liao, Chia-Hsin; Kang, Ching-Hsun; Tai, Chein; Anderson, Gary B; Chen, Lih-Ren

    2016-07-01

    Pluripotent stem cells including embryonic stem cells (ESCs), embryonic germ cells (EGCs), and induced pluripotent stem cells (iPSCs) are capable of self-renew and limitlessly proliferating in vitro with undifferentiated characteristics. They are able to differentiate in vitro, spontaneously or responding to suitable signals, into cells of all three primary germ layers. Consequently, these pluripotent stem cells will be valuable sources for cell replacement therapy in numerous disorders. However, the promise of human ESCs and EGCs is cramped by the ethical argument about destroying embryos and fetuses for cell line creation. Moreover, there are still carcinogenic risks existing toward the goal of clinical application for human ESCs, EGCs, and iPSCs. Therefore, a suitable animal model for stem cell research will benefit the further development of human stem cell technology. The pigs, on the basis of their similarity in anatomy, immunology, physiology, and biochemical properties, have been wide used as model animals in the study of various human diseases. The development of porcine pluripotent stem cell lines will hold the opportunity to provide an excellent material for human counterpart to the transplantation in biomedical research and further development of cell-based therapeutic strategy. PMID:27158128

  9. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    International Nuclear Information System (INIS)

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  10. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Tomasz W., E-mail: bmit@lightsource.ca [Canadian Light Source, Saskatoon, SK (Canada); Chapman, Dean [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Adams, Gregg [Western College of Veterinary Medicine, Saskatoon, SK (Canada); Renier, Michel [European Synchrotron Radiation Facility, Grenoble (France); Suortti, Pekka [Department of Physics, University of Helsinki (Finland); Thomlinson, William [Department of Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  11. Beamlines of the biomedical imaging and therapy facility at the Canadian light source - part 3

    Science.gov (United States)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1-4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6-9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20-100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to -7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT, described

  12. Proteomics and Mass Spectrometry Applications in Biomedical Research

    OpenAIRE

    Chow, M; Zheng, R; Silva-Sanchez, C.; Koh, J; Chen, S.; Diaz, C.

    2011-01-01

    Proteomics and mass spectrometry have provided unprecedented tools for fast, accurate, high throughput biomolecular separation and characterization, which are indispensable towards understanding the biological and medical systems. Studying at the protein level allows researchers to investigate how proteins, their dynamics and modifications affect cellular processes and how cellular processes and the environment affect proteins. The mission of our facility is to provide excellent service and t...

  13. Karma, reincarnation, and medicine: Hindu perspectives on biomedical research.

    Science.gov (United States)

    Hutchinson, Janis Faye; Sharp, Richard

    2008-12-01

    population. This study suggests that minority status does not automatically indicate unwillingness to participate in genetic or medical research. Indian Americans were not skeptical about the potential benefits of biomedical research in comparison to other ethnic minority communities in the United States. PMID:19479363

  14. The Impact of CRISPR/Cas9-Based Genomic Engineering on Biomedical Research and Medicine.

    Science.gov (United States)

    Go, D E; Stottmann, R W

    2016-01-01

    There has been prolonged and significant interest in manipulating the genome for a wide range of applications in biomedical research and medicine. An existing challenge in realizing this potential has been the inability to precisely edit specific DNA sequences. Past efforts to generate targeted double stranded DNA cleavage have fused DNA-targeting elements such as zinc fingers and DNA-binding proteins to endonucleases. However, these approaches are limited by both design complexity and inefficient, costineffective operation. The discovery of CRISPR/Cas9, a branch of the bacterial adaptive immune system, as a potential genomic editing tool holds the promise of facile targeted cleavage. Its novelty lies in its RNA-guided endonuclease activity, which enhances its efficiency, scalability, and ease of use. The only necessary components are a Cas9 endonuclease protein and an RNA molecule tailored to the gene of interest. This lowbarrier of adoption has facilitated a plethora of advances in just the past three years since its discovery. In this review, we will discuss the impact of CRISPR/Cas9 on biomedical research and its potential implications in medicine. PMID:26980700

  15. The Function Biomedical Informatics Research Network Data Repository.

    Science.gov (United States)

    Keator, David B; van Erp, Theo G M; Turner, Jessica A; Glover, Gary H; Mueller, Bryon A; Liu, Thomas T; Voyvodic, James T; Rasmussen, Jerod; Calhoun, Vince D; Lee, Hyo Jong; Toga, Arthur W; McEwen, Sarah; Ford, Judith M; Mathalon, Daniel H; Diaz, Michele; O'Leary, Daniel S; Jeremy Bockholt, H; Gadde, Syam; Preda, Adrian; Wible, Cynthia G; Stern, Hal S; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G

    2016-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. PMID:26364863

  16. Decommissioning of Russian research facilities

    International Nuclear Information System (INIS)

    When the most of our research facilities were built and put in operation more than 30 years ago there had been neither requirements no regulations concerning their future decommissioning (D and D). And due to that fact nobody thought of that in the initial designs of these facilities. The situation changed when in 1994 a top-level safety standard 'Safety Provision for Safety of Research Reactors' was issued by Gosatomnadzor of Russia with a special chapter 7, devoted to D and D issues. Unfortunately, it was just one page of requirements pertaining RR D and D in general terms and was not specific. Only in 2001 Gosatomnadzor of Russia developed and issued a more specific standard 'Rules for Safety Decommissioning of Nuclear Research Facilities'. From the total number of 85 Nuclear Research Facilities, including 34 research reactors, 36 critical assemblies and 15 subcritical assemblies, we have now 7 facilities under decommissioning. The situation is inevitably changing over the time. In the end of 2003 the decision was made to permanently shutdown two RR: AM, graphite type with channels, 15 MBt; BR-10, LMFR type, 10 MBt, and to start preparatory work for their future decommissioning, starting from 2005. It needs to be mentioned that from this list we have 6 reactors with which we face many difficulties in developing decommissioning technologies, namely: for TVR reactor: handling of heavy water and high radiation field in the core; for MR reactor: very complex reactor with many former radioactive spills, which is required a careful and expensive D and D work; AM: graphite utilization problem; BR-10: a problem of coolant poisoned with other heavy metals (like lead, bismuth); IBR-30: the fuel cannot be removed from the core prior the D and D project starts; RG-1M: location is above Arctic Circle, problem of transfer of irradiated parts of the reactor. The decision was made to bury then on the site thus creating a shallow-land radwaste storage facility. The established D

  17. Capsule review of the DOE research and development and field facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

  18. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L.

    2010-01-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers’ time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment. PMID:20543892

  19. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O' Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving

  20. Molecular image in biomedical research. Molecular imaging unit of the National Cancer Research Center; Imagen molecular an investigation biomedica. La Unidad de Imagen Molecular del Centro Nacional de Investigaciones Oncologicas

    Energy Technology Data Exchange (ETDEWEB)

    Perez Bruzon, J.; Mulero Anhiorte, F.

    2010-07-01

    This article has two basic objectives. firstly, it will review briefly the most important imaging techniques used in biomedical research indicting the most significant aspects related to their application in the preclinical stage. Secondly, it will present a practical application of these techniques in a pure biomedical research centre (not associated to a clinical facility). Practical aspects such as organisation, equipment, work norms, shielding of the Spanish National Cancer Research Centre (CNIO) Imaging Unit will be shown. This is a pioneering facility in the application of these techniques in research centres without any dependence or any direct relationship with other hospital Nuclear Medicine services. (Author) 7 refs.

  1. [Big Data: the great opportunities and challenges to microbiome and other biomedical research].

    Science.gov (United States)

    Xu, Zhenjiang

    2015-02-01

    With the development of high-throughput technologies, biomedical data has been increasing exponentially in an explosive manner. This brings enormous opportunities and challenges to biomedical researchers on how to effectively utilize big data. Big data is different from traditional data in many ways, described as 3Vs - volume, variety and velocity. From the perspective of biomedical research, here I introduced the characteristics of big data, such as its messiness, re-usage and openness. Focusing on microbiome research of meta-analysis, the author discussed the prospective principles in data collection, challenges of privacy protection in data management, and the scalable tools in data analysis with examples from real life. PMID:25736105

  2. DIVERSITY IN THE BIOMEDICAL RESEARCH WORKFORCE: DEVELOPING TALENT

    Science.gov (United States)

    McGee, Richard; Saran, Suman; Krulwich, Terry A.

    2012-01-01

    Much has been written about the need for and barriers to achievement of greater diversity in the biomedical workforce from the perspectives of gender, race and ethnicity; this is not a new topic. These discussions often center around a ‘pipeline metaphor’ which imagines students flowing through a series of experiences to eventually arrive at a science career. Here we argue that diversity will only be achieved if the primary focus is on: what is happening within the pipeline, not just counting individuals entering and leaving it; de-emphasizing achieving academic milestones by ‘typical’ ages; and adopting approaches that most effectively develop talent. Students may develop skills at different rates based on factors such as earlier access to educational resources, exposure to science (especially research experiences), and competing demands for time and attention during high school and college. Therefore, there is wide variety among students at any point along the pipeline. Taking this view requires letting go of imagining the pipeline as a sequence of age-dependent steps in favor of milestones of skill and talent development decoupled from age or educational stage. Emphasizing talent development opens up many new approaches for science training outside of traditional degree programs. This article provides examples of such approaches, including interventions at the post-baccalaureate and PhD levels, as well as a novel coaching model that incorporates well-established social science theories and complements traditional mentoring. These approaches could significantly impact diversity by developing scientific talent, especially among currently underrepresented minorities. PMID:22678863

  3. The ethical justification for the use of animals in biomedical research

    OpenAIRE

    Kostomitsopoulos N.G.; Đurašević S.F.

    2010-01-01

    Despite all the benefits, the use of animals in biomedical research is still a subject of debate with respect to its true value. The sensitivity of the community and the interest of scientists who work in the field of laboratory animal science and welfare have clearly demonstrated that the use of animals in biomedical research must be conducted under specific scientific, legal and ethical rules. The ethical justification of a research project starts from its initial designing phase until its ...

  4. Facile synthesis of SiO{sub 2} nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Scano, A., E-mail: alescano80@tiscali.it; Pilloni, M., E-mail: alescano80@tiscali.it; Cabras, V., E-mail: alescano80@tiscali.it; Ennas, G. [Università di Cagliari, Dipartimento di Scienze Chimiche e Geologiche and Research Unit of the National Consortium of Materials Science and Technology (INSTM), Cittadella Universitaria di Monserrato- 09042 Monserrato (Canada) (Italy); Vazquez-Vazquez, C. [Departamento de Química Física, Facultad de Química, Universidad de Santiago de Compostela, Santiago de Compostela, 15782 Galicia (Spain)

    2014-10-21

    Silica nanoparticles (SiO{sub 2} NPs) for biomedical applications have been prepared by using a facile modified Stöber-synthesis. Potassium borohydride (KBH{sub 4}) has been introduced in the synthesis procedure in order to control NP size. Several samples have been prepared varying tetraethylorthosilicate (TEOS) concentration, and using different process conditions (temperature, reaction time and atmosphere). In order to study the influence of the process conditions on the NP size, morphology and properties, several characterization techniques were used. Size and morphology of the as-prepared SiO{sub 2} NPs have been studied by using Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS) techniques. Structural characterization was carried out by X-ray powder diffraction. To investigate the SiO{sub 2} NP fluorescence emission properties the fluorescence spectroscopy was also used.

  5. Progress during the first year of operation of the Batho Biomedical Facility at TRIUMF

    International Nuclear Information System (INIS)

    The Batho Biomedical Facility is dedicated to an investigation of the efficacy of pion radiation for the treatment of malignant disease. During the period 1974-1976 it progressed from a completely 'paper' project to an operational beam with support systems, and many of the necessary physical characterizations of the beam were completed. Development of much of the equipment and procedures for the residual beam measurements were completed, particularly for dosimetric measurements of the beam. Studies of ways to control the beam characteristics in order to deliver specified dose distributions to tumour volumes were at an early stage. Initial in vitro biological measurements of cell survival as a function of depth were made. (LL)

  6. Use of dual isotope tracers in biomedical research

    NARCIS (Netherlands)

    Stellaard, F

    2005-01-01

    Biomedical stable isotope studies involve administration of tracer and measurement of isotope enrichment in blood, urine, feces or breath. The aim of the studies is to gather quantitative information about a specific metabolic function. However, the measured isotope enrichment may be affected by oth

  7. Bovine tuberculosis research: Immune mechanisms relevant to biomedical applications

    Science.gov (United States)

    Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual benefit approach, clearly demonstrating the relevance of veterinary studies for biomedical applications. Tuberculosis (TB), primarily due...

  8. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  9. Bridging the social and the biomedical: engaging the social and political sciences in HIV research

    OpenAIRE

    Kippax Susan C; Holt Martin; Friedman Samuel R

    2011-01-01

    Abstract This supplement to the Journal of the International AIDS Society focuses on the engagement of the social and political sciences within HIV research and, in particular, maintaining a productive relationship between social and biomedical perspectives on HIV. It responds to a number of concerns raised primarily by social scientists, but also recognized as important by biomedical and public health researchers. These concerns include how best to understand the impact of medical technologi...

  10. Biomedical research leaders: report on needs, opportunities, difficulties, education and training, and evaluation.

    OpenAIRE

    Wilson, S H; Merkle, S.; Moskowitz, J; Hurley, D; D. Brown; Bailey, B J; McClain, M; Misenhimer, M; Buckalew, J; Burks, T.

    2000-01-01

    The National Association of Physicians for the Environment (NAPE) has assumed a leadership role in protecting environmental health in recent years. The Committee of Biomedical Research Leaders was convened at the recent NAPE Leadership Conference: Biomedical Research and the Environment held on 1--2 November 1999, at the National Institutes of Health, Bethesda, Maryland. This report summarizes the discussion of the committee and its recommendations. The charge to the committee was to raise an...

  11. Cross-Cultural Communication Training for Students in Multidisciplinary Research Area of Biomedical Engineering

    OpenAIRE

    Shigehiro Hashimoto

    2014-01-01

    Biomedical Engineering makes multidisciplinary research area, which includes biology, medicine, engineering and others. Communication training is important for students, who have a potential to develop Biomedical Engineering. Communication is not easy in a multidisciplinary research area, because each area has its own background of thinking. Because each nation has its own background of culture, on the other hand, international communication is not easy, either. A cross-cultural student progr...

  12. From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce.

    Science.gov (United States)

    Valantine, Hannah A; Lund, P Kay; Gammie, Alison E

    2016-01-01

    The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges. Over the past few decades, the biomedical research workforce has benefited from NIH programs aimed at enhancing diversity. However, there is considerable room for improvement, particularly at the level of independent scientists and within scientific leadership. We provide a rationale and specific opportunities to develop and sustain a diverse biomedical research workforce through interventions that promote the successful transitions to different stages on the path toward completion of training and entry into the biomedical workforce. PMID:27587850

  13. The Biomedical Resource Ontology (BRO) to enable resource discovery in clinical and translational research.

    Science.gov (United States)

    Tenenbaum, Jessica D; Whetzel, Patricia L; Anderson, Kent; Borromeo, Charles D; Dinov, Ivo D; Gabriel, Davera; Kirschner, Beth; Mirel, Barbara; Morris, Tim; Noy, Natasha; Nyulas, Csongor; Rubenson, David; Saxman, Paul R; Singh, Harpreet; Whelan, Nancy; Wright, Zach; Athey, Brian D; Becich, Michael J; Ginsburg, Geoffrey S; Musen, Mark A; Smith, Kevin A; Tarantal, Alice F; Rubin, Daniel L; Lyster, Peter

    2011-02-01

    The biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development and use of the Biomedical Resource Ontology (BRO) to enable semantic annotation and discovery of biomedical resources. We also describe the Resource Discovery System (RDS) which is a federated, inter-institutional pilot project that uses the BRO to facilitate resource discovery on the Internet. Through the RDS framework and its associated Biositemaps infrastructure, the BRO facilitates semantic search and discovery of biomedical resources, breaking down barriers and streamlining scientific research that will improve human health. PMID:20955817

  14. e-Science platform for translational biomedical imaging research: running, statistics, and analysis

    Science.gov (United States)

    Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo

    2015-03-01

    In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.

  15. Setup of a Biomedical Facility to Study Physiologically Relevant Flow-Structure Interactions

    Science.gov (United States)

    Mehdi, Faraz; Sheng, Jian

    2013-11-01

    The design and implementation of a closed loop biomedical facility to study arterial flows is presented. The facility has a test section of 25 inches, and is capable of generating both steady and pulsatile flows via a centrifugal and a dual piston pump respectively. The Reynolds and Womersley numbers occurring in major blood vessels can be matched. The working fluid is a solution of NaI that allows refractive index matching with both rigid glass and compliant polymer models to facilitate tomographic PIV and holographic PIV. The combination of these two techniques allows us to study both large scale flow features as well as flows very close to the wall. The polymer models can be made with different modulus of elasticity and can be pre-stressed using a 5-axis stage. Radially asymmetric patches can also be pre-fabricated and incorporated in the tube during the manufacturing process to simulate plaque formation in arteries. These tubes are doped with tracer particles allowing for the measurement of wall deformation. Preliminary flow data over rigid and compliant walls is presented. One of the aims of this study is to characterize the changes in flow as the compliancy of blood vessels change due to age or disease, and explore the fluid interactions with an evolving surface boundary.

  16. Beamlines of the Biomedical Imaging and Therapy Facility at the Canadian Light Source - Part 2

    International Nuclear Information System (INIS)

    The BioMedical Imaging and Therapy (BMIT) facility provides a world class facility with unique synchrotron-specific imaging and therapy capabilities. This paper describes Insertion Device (ID) beamline 05ID-2 with the beam terminated in the first experimental hutch: POE-2. The experimental methods available in POE-2 include: Microbeam Radiation Therapy (MRT), Synchrotron Stereotactic Radiation Therapy (SSRT) and absorption imaging (projection and Computed Tomography (CT)). The source for the ID beamline is a multi-pole superconductive 4.3 T wiggler, which can generate ∼30 kW of radiative power and deliver dose as high as 3000 Gy/s required for MRT program. The optics in POE-1 hutch prepares either monochromatic or filtered white beam that is used in POE-2. The Double Crystal (DC), bent Laue monochromator will prepare a beam over 10 cm wide at sample point, while spanning an energy range appropriate for imaging studies of animals (20-100+ keV). The experimental hutch will have a flexible positioning system that can handle subjects up to 120 kg. Several different cameras will be available with resolutions ranging from 4 μm to 150 μm. The latest update on the status of 05B1-1 bending magnet (BM) beamline, described in Part 1 [1], is also included.

  17. Effects of an Educational Intervention on Female Biomedical Scientists' Research Self-Efficacy

    Science.gov (United States)

    Bakken, Lori L.; Byars-Winston, Angela; Gundermann, Dawn M.; Ward, Earlise C.; Slattery, Angela; King, Andrea; Scott, Denise; Taylor, Robert E.

    2010-01-01

    Women and people of color continue to be underrepresented among biomedical researchers to an alarming degree. Research interest and subsequent productivity have been shown to be affected by the research training environment through the mediating effects of research self-efficacy. This article presents the findings of a study to determine whether a…

  18. Acoustic separation and biomedical research: lessons from Indian regulation of compensation for research injury.

    Science.gov (United States)

    Larkin, Megan E

    2015-01-01

    In early 2013, the Indian government introduced new rules governing the conduct of clinical trials involving human participants. Among other provisions, the law requires that sponsors of research compensate participants who are injured during the course of their research participation. This article examines the effects of India's compensation law and the efforts that policymakers in India have made to tailor the law since its passage. I use the legal concept of acoustic separation as a framework to explain and justify the approach that India has taken in refining its regulation of research related injuries. I conclude that India's example may provide useful lessons for research sponsors and lawmakers in other regulatory states seeking to promote a well-regulated biomedical research industry. PMID:25846042

  19. Leveraging dialog systems research to assist biomedical researchers' interrogation of Big Clinical Data.

    Science.gov (United States)

    Hoxha, Julia; Weng, Chunhua

    2016-06-01

    The worldwide adoption of electronic health records (EHR) promises to accelerate clinical research, which lies at the heart of medical advances. However, the interrogation of such Big Data by clinical researchers can be laborious and error-prone, involving iterative and ineffective communication of data requests to data analysts. Research on this communication process is rare. There also exists no contemporary system that offers intelligent solutions to assist clinical researchers in their quest for clinical data. In this article, we first provide a detailed characterization of the challenges encountered in this communication space. Second, we identify promising synergies between fields studying human-to-human and human-machine communication that can shed light on biomedical data query mediation. We propose a mixed-initiative dialog-based approach to support autonomous clinical data access and recommend needed technology development and communication study for accelerating clinical research. PMID:27067901

  20. Disadvantages of publishing biomedical research articles in English for non-native speakers of English

    OpenAIRE

    Rezaeian, Mohsen

    2015-01-01

    OBJECTIVES: English has become the most frequently used language for scientific communication in the biomedical field. Therefore, scholars from all over the world try to publish their findings in English. This trend has a number of advantages, along with several disadvantages. METHODS: In the current article, the most important disadvantages of publishing biomedical research articles in English for non-native speakers of English are reviewed. RESULTS: The most important disadvantages of publi...

  1. Recruiting intergenerational African American males for biomedical research Studies: a major research challenge.

    Science.gov (United States)

    Byrd, Goldie S; Edwards, Christopher L; Kelkar, Vinaya A; Phillips, Ruth G; Byrd, Jennifer R; Pim-Pong, Dora Som; Starks, Takiyah D; Taylor, Ashleigh L; Mckinley, Raechel E; Li, Yi-Ju; Pericak-Vance, Margaret

    2011-06-01

    The health and well-being of all individuals, independent of race, ethnicity, or gender, is a significant public health concern. Despite many improvements in the status of minority health, African American males continue to have the highest age-adjusted mortality rate of any race-sex group in the United States. Such disparities are accounted for by deaths from a number of diseases such as diabetes, human immunodeficiency virus (HIV), cancer, and cardiovascular disease, as well as by many historical and present social and cultural constructs that present as obstacles to better health outcomes. Distrust of the medical community, inadequate education, low socioeconomic status, social deprivation, and underutilized primary health care services all contribute to disproportionate health and health care outcomes among African Americans compared to their Caucasian counterparts. Results of clinical research on diseases that disproportionately affect African American males are often limited in their reliability due to common sampling errors existing in the majority of biomedical research studies and clinical trials. There are many reasons for underrepresentation of African American males in clinical trials, including their common recollection and interpretation of relevant historical of biomedical events where minorities were abused or exposed to racial discrimination or racist provocation. In addition, African American males continue to be less educated and more disenfranchised from the majority in society than Caucasian males and females and their African American female counterparts. As such, understanding their perceptions, even in early developmental years, about health and obstacles to involvement in research is important. In an effort to understand perspectives about their level of participation, motivation for participation, impact of education, and engagement in research, this study was designed to explore factors that impact their willingness to participate. Our

  2. Research report: learning styles of biomedical engineering students.

    Science.gov (United States)

    Dee, Kay C; Nauman, Eric A; Livesay, Glen A; Rice, Janet

    2002-09-01

    Examining students' learning styles can yield information useful to the design of learning activities, courses, and curricula. A variety of measures have been used to characterize learning styles, but the literature contains little information specific to biomedical engineering (BMEN) students. We, therefore, utilized Felder's Index of Learning Styles to investigate the learning style preferences of BMEN students at Tulane University. Tulane BMEN students preferred to receive information visually (preferred by 88% of the student sample) rather than verbally, focus on sensory information (55%) instead of intuitive information, process information actively (66%) instead of reflectively, and understand information globally (59%) rather than sequentially. These preferences varied between cohorts (freshman, sophomore, etc.) and a significantly higher percentage of female students preferred active and sensing learning styles. Compared to other engineering student populations, our sample of Tulane BMEN students contained the highest percentage of students preferring the global learning style. Whether this is a general trend for all BMEN students or a trait specific to Tulane engineers requires further investigation. Regardless, this study confirms the existence of a range of learning styles within biomedical engineering students, and provides motivation for instructors to consider how well their teaching style engages multiple learning styles. PMID:12449770

  3. Arab nations lagging behind other Middle Eastern countries in biomedical research: a comparative study

    Directory of Open Access Journals (Sweden)

    Bakoush Omran

    2009-04-01

    Full Text Available Abstract Background Analysis of biomedical research and publications in a country or group of countries is used to monitor research progress and trends. This study aims to assess the performance of biomedical research in the Arab world during 2001–2005 and to compare it with other Middle Eastern non-Arab countries. Methods PubMed and Science Citation Index Expanded (SCI-expanded were searched systematically for the original biomedical research publications and their citation frequencies of 16 Arab nations and three non-Arab Middle Eastern countries (Iran, Israel and Turkey, all of which are classified as middle or high income countries. Results The 16 Arab countries together have 5775 and 14,374 original research articles listed by PubMed and SCI-expanded, respectively, significantly less (p Conclusion The Arab world is producing fewer biomedical publications of lower quality than other Middle Eastern countries. Studies are needed to clarify the causes and to propose strategies to improve the biomedical research status in Arab countries.

  4. Beamlines of the biomedical imaging and therapy facility at the Canadian light source-Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Tomasz W. [Canadian Light Source, Saskatoon, SK (Canada)], E-mail: tomasz.wysokinski@lightsource.ca; Chapman, Dean [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Adams, Gregg [Western College of Veterinary Medicine, Saskatoon, SK (Canada); Renier, Michel [European Synchrotron Radiation Facility, Grenoble (France); Suortti, Pekka [Department of Physical Sciences, University of Helsinki (Finland); Thomlinson, William [Canadian Light Source, Saskatoon, SK (Canada)

    2007-11-11

    The BioMedical Imaging and Therapy (BMIT) Facility will provide synchrotron-specific imaging and therapy capabilities. This paper describes one of the BMIT beamlines: the bend magnet (BM) beamline 05B1-1. It plays a complementary role to the insertion device (ID) beamline 051D-2 and allows either monochromatic or filtered white beam to be used in the experimental hutch. The monochromatic spectral range will span 8-40 keV, and the beam is more than 200 mm wide in the experimental hutch for imaging studies of small and medium-size animals (up to sheep size). The experimental hutch will have a positioning system that will allow imaging (computed tomography and planar imaging) as well as radiation therapy applications with both filtered white and monochromatic X-ray beams and will handle subjects up to 120 kg. Several different focal plane detectors (cameras) will be available with resolutions ranging from 10 to 150 {mu}m.

  5. Research Traceability using Provenance Services for Biomedical Analysis

    CERN Document Server

    Anjum, Ashiq; Branson, Andrew; Habib, Irfan; McClatchey, Richard; Solomonides, Tony

    2012-01-01

    We outline the approach being developed in the neuGRID project to use provenance management techniques for the purposes of capturing and preserving the provenance data that emerges in the specification and execution of workflows in biomedical analyses. In the neuGRID project a provenance service has been designed and implemented that is intended to capture, store, retrieve and reconstruct the workflow information needed to facilitate users in conducting user analyses. We describe the architecture of the neuGRID provenance service and discuss how the CRISTAL system from CERN is being adapted to address the requirements of the project and then consider how a generalised approach for provenance management could emerge for more generic application to the (Health)Grid community.

  6. Facilities for animal research in space

    Science.gov (United States)

    Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

    1991-01-01

    The animal facilities used aboard or designed for various spacecraft research missions are described. Consideration is given to the configurations used in Cosmos-1514 (1983) and Cosmos-1887 (1987) missions; the reusable Biosatellite capsule flown three times by NASA between 1966 and 1969; the NASA's Lifesat spacecraft that is being currently designed; the Animal Enclosure Module flown on Shuttle missions in 1983 and 1984; the Research Animal Holding Facility developed for Shuttle-Spacelab missions; the Rhesus Research Facility developed for a Spacelab mission; and the Japanese Animal Holding Facility for the Space Station Freedom. Special attention is given to the designs of NASA's animal facilities developed for Space Station Freedom and the details of various subsystems of these facilities. The main characteristics of the rodent and the primate habitats provided by these various facilities are discussed.

  7. Medical and biomedical research productivity from the Kingdom of Saudi Arabia (2008-2012

    Directory of Open Access Journals (Sweden)

    Rabia Latif

    2015-01-01

    Full Text Available Background: Biomedical publications from a country mirror the standard of Medical Education and practice in that country. It is important that the performance of the health profession is occasionally documented. Aims: This study aimed to analyze the quantity and quality of biomedical publications from the Kingdom of Saudi Arabia (KSA in international journals indexed in PubMed between 2008 and 2012. Materials and Methods: PubMed was searched for publications associated with KSA from 2008 to 2012. The search was limited to medical and biomedical subjects. Results were saved in a text file and later checked carefully to exclude false positive errors. The quality of the publication was assessed using Journal Citation Report 2012. Results: Biomedical research production in KSA in those 5 years showed a clear linear progression. Riyadh was the main hub of medical and biomedical research activity. Most of the publications (40.9% originated from King Saud University (KSU. About half of the articles were published in journals with an Impact Factor (IF of < 1, one-fourth in journals with no IF, and the remaining one-fourth in journals with a high IF (≥1. Conclusion: This study revealed that research activity in KSA is increasing. However, there is an increasing trend of publishing in local journals with a low IF. More effort is required to promote medical research in Saudi Arabia.

  8. Radiation protection in medical and biomedical research; Proteccion radiologica en la investigacion medica y biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Fuente Puch, A.E. de la, E-mail: andres@orasen.co.cuES [Centro Nacional de Seguridad Nuclear, La Habana (Cuba)

    2013-11-01

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation.

  9. Biomedical Informatics Research and Education at the EuroMISE Center

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2006-01-01

    Roč. 45, Suppl. (2006), s. 166-173. ISSN 0026-1270 Grant ostatní: Evropské sociální fondy CZ04307/42011/0013 Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * research * education * healthcare * information society Subject RIV: BJ - Thermodynamics Impact factor: 1.684, year: 2006

  10. Effects of government spending on research workforce development: evidence from biomedical postdoctoral researchers.

    Directory of Open Access Journals (Sweden)

    Hyungjo Hur

    Full Text Available We examine effects of government spending on postdoctoral researchers' (postdocs productivity in biomedical sciences, the largest population of postdocs in the US. We analyze changes in the productivity of postdocs before and after the US government's 1997 decision to increase NIH funding. In the first round of analysis, we find that more government spending has resulted in longer postdoc careers. We see no significant changes in researchers' productivity in terms of publication and conference presentations. However, when the population is segmented by citizenship, we find that the effects are heterogeneous; US citizens stay longer in postdoc positions with no change in publications and, in contrast, international permanent residents (green card holders produce more conference papers and publications without significant changes in postdoc duration. Possible explanations and policy implications of the analysis are discussed.

  11. Reproducible Research Practices and Transparency across the Biomedical Literature

    Science.gov (United States)

    Khoury, Muin J.; Schully, Sheri D.; Ioannidis, John P. A.

    2016-01-01

    There is a growing movement to encourage reproducibility and transparency practices in the scientific community, including public access to raw data and protocols, the conduct of replication studies, systematic integration of evidence in systematic reviews, and the documentation of funding and potential conflicts of interest. In this survey, we assessed the current status of reproducibility and transparency addressing these indicators in a random sample of 441 biomedical journal articles published in 2000–2014. Only one study provided a full protocol and none made all raw data directly available. Replication studies were rare (n = 4), and only 16 studies had their data included in a subsequent systematic review or meta-analysis. The majority of studies did not mention anything about funding or conflicts of interest. The percentage of articles with no statement of conflict decreased substantially between 2000 and 2014 (94.4% in 2000 to 34.6% in 2014); the percentage of articles reporting statements of conflicts (0% in 2000, 15.4% in 2014) or no conflicts (5.6% in 2000, 50.0% in 2014) increased. Articles published in journals in the clinical medicine category versus other fields were almost twice as likely to not include any information on funding and to have private funding. This study provides baseline data to compare future progress in improving these indicators in the scientific literature. PMID:26726926

  12. Nanocellulose in Polymer Composites and Biomedical: Research and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan [ORNL; Tekinalp, Halil L [ORNL; Peter, William H [ORNL; Eberle, Cliff [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL

    2014-01-01

    Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thus been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.

  13. Boundary-Work in the Health Research Field: Biomedical and Clinician Scientists' Perceptions of Social Science Research

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D.

    2009-01-01

    Funding agencies in Canada are attempting to break down the organizational boundaries between disciplines to promote interdisciplinary research and foster the integration of the social sciences into the health research field. This paper explores the extent to which biomedical and clinician scientists' perceptions of social science research operate…

  14. [Metrology research on biomedical engineering publications from China in recent years].

    Science.gov (United States)

    Yu, Lu; Su, Juan; Wang, Ying; Sha, Xianzheng

    2014-12-01

    The present paper is to evaluate the scientific research level and development trends of biomedical engineering in China using metrology analysis on Chinese biomedical engineering scientific literatures. Pubmed is used to search the biomedical engineering publications in recent 5 years which are indexed by Science Citation Index, and the number and cited times of these publications and the impact factor of the journals are analyzed. The results show that comparing with the world, although the number of the publication in China has increased in recent 5 years, there is still much room for improvement. Among Chinese mainland, Hongkong and Taiwan, Chinese mainland maintains the obvious advantage in this subject, but Hongkong has the highest average cited number. Shanghai and Beijing have better research ability than other areas in Chinese mainland. PMID:25868256

  15. Selection Mechanisms Underlying High Impact Biomedical Research - A Qualitative Analysis and Causal Model

    OpenAIRE

    Zelko, Hilary; Zammar, Guilherme Roberto; Bonilauri Ferreira, Ana Paula; Phadtare, Amruta; Shah, Jatin; Pietrobon, Ricardo

    2010-01-01

    Background Although scientific innovation has been a long-standing topic of interest for historians, philosophers and cognitive scientists, few studies in biomedical research have examined from researchers' perspectives how high impact publications are developed and why they are consistently produced by a small group of researchers. Our objective was therefore to interview a group of researchers with a track record of high impact publications to explore what mechanism they believe contribute ...

  16. Access to major overseas research facilities

    International Nuclear Information System (INIS)

    This paper will describe four schemes which have been established to permit Australian researchers access to some of the most advanced overseas research facilities. These include, access to Major Research Facilities Program, the Australian National Beamline Facility at the Photon Factory, the Australian Synchrotron Research Program and the ISIS Agreement. The details of each of these programs is discussed and the statistics on the scientific output provided. All programs are managed on behalf of the Department of Industry, Science and Tourism by the Australian Nuclear Science and Technology Organisation. One hundred and thirteen senior scientists plus forty, one postgraduate, students were supported through these schemes during the 1996-1997 financial year

  17. Meson facility. Powerful new research tool

    International Nuclear Information System (INIS)

    A meson facility is being built at the Institute of Nuclear Research, USSR Academy of Sciences, in Troitsk, where the Scientific Center, USSR Academy of Sciences is located. The facility will include a linear accelerator for protons and negative hydrogen ions with 600 MeV energy and 0.5-1 mA beam current. Some fundamental studies that can be studied at a meson facility are described in the areas of elementary particles, neutron physics, solid state physics, and applied research. The characteristics of the linear accelerator are given and the meson facility's experimental complex is described

  18. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    Science.gov (United States)

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123

  19. MYRRHA: A multipurpose nuclear research facility

    OpenAIRE

    Baeten P.; Schyns M.; Fernandez Rafaël; De Bruyn Didier; Van den Eynde Gert

    2014-01-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research fac...

  20. The Sanford Underground Research Facility at Homestake

    OpenAIRE

    Heise, Jaret

    2015-01-01

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the M...

  1. Biomedical engineering. A means to add new dimension to medicine and research.

    Science.gov (United States)

    Doerr, D F

    1992-08-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described. PMID:1402774

  2. Biomedical engineering - A means to add new dimension to medicine and research

    Science.gov (United States)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  3. Publication planning: promoting an ethics of transparency and integrity in biomedical research.

    Science.gov (United States)

    DeTora, L; Foster, C; Skobe, C; Yarker, Y E; Crawley, F P

    2015-09-01

    Biomedical research should include plans to communicate complete and accurate results to the scientific community and the public in a timely manner. All too often, however, such planning is lacking until after data have been generated. We developed a collaborative professional statement following review of the indexed biomedical literature and relevant professional society guidelines. Planning for publications before, during and after biomedical research studies are conducted promotes the timely dissemination of accurate and comprehensive results. Effective publication planning accounts for the work of all contributors, encourages full transparency and contributes to overall scientific integrity. Although the most obvious contribution of publication planning is to result dissemination, the best planning may also help improve the overall quality of research study design and the overall integrity of study conduct by keeping the final audience in the forefront of the investigators' attention. Publication planning can help biomedical researchers achieve and maintain high standards of transparency and integrity. Table 1 below highlights briefly some of the aspects to be included in a publication plan. PMID:26311328

  4. Strategies for Disseminating Information on Biomedical Research on Autism to Hispanic Parents

    Science.gov (United States)

    Lajonchere, Clara M.; Wheeler, Barbara Y.; Valente, Thomas W.; Kreutzer, Cary; Munson, Aron; Narayanan, Shrikanth; Kazemzadeh, Abe; Cruz, Roxana; Martinez, Irene; Schrager, Sheree M.; Schweitzer, Lisa; Chklovski, Tara; Hwang, Darryl

    2016-01-01

    Low income Hispanic families experience multiple barriers to accessing evidence-based information on Autism Spectrum Disorders (ASD). This study utilized a mixed-strategy intervention to create access to information in published bio-medical research articles on ASD by distilling the content into parent-friendly English- and Spanish-language ASD…

  5. Patterns of biomedical science production in a sub-Saharan research center

    OpenAIRE

    Agnandji Selidji T; Tsassa Valerie; Conzelmann Cornelia; Köhler Carsten; Ehni Hans-Jörg

    2012-01-01

    Abstract Background Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing ...

  6. Chimpanzees in AIDS research: A biomedical and bioethical perspective.

    NARCIS (Netherlands)

    R. van den Akker (Ruud); M. Balls; J.W. Eichberg; J. Goodall; J.L. Heeney (Jonathan); A.D.M.E. Osterhaus (Albert); A.M. Prince; I. Spruit

    1993-01-01

    textabstractThe present article represents a consensus view of the appropriate utilization of chimpanzees in AIDS research arrived at as a result of a meeting of a group of scientists involved in AIDS research with chimpanzees and bioethicists. The paper considers which types of studies are scientif

  7. Integrating Heterogeneous Biomedical Data for Cancer Research: the CARPEM infrastructure.

    Science.gov (United States)

    Rance, Bastien; Canuel, Vincent; Countouris, Hector; Laurent-Puig, Pierre; Burgun, Anita

    2016-01-01

    Cancer research involves numerous disciplines. The multiplicity of data sources and their heterogeneous nature render the integration and the exploration of the data more and more complex. Translational research platforms are a promising way to assist scientists in these tasks. In this article, we identify a set of scientific and technical principles needed to build a translational research platform compatible with ethical requirements, data protection and data-integration problems. We describe the solution adopted by the CARPEM cancer research program to design and deploy a platform able to integrate retrospective, prospective, and day-to-day care data. We designed a three-layer architecture composed of a data collection layer, a data integration layer and a data access layer. We leverage a set of open-source resources including i2b2 and tranSMART. PMID:27437039

  8. Integrating Heterogeneous Biomedical Data for Cancer Research: the CARPEM infrastructure

    Science.gov (United States)

    Canuel, Vincent; Countouris, Hector; Laurent-Puig, Pierre; Burgun, Anita

    2016-01-01

    Summary Cancer research involves numerous disciplines. The multiplicity of data sources and their heterogeneous nature render the integration and the exploration of the data more and more complex. Translational research platforms are a promising way to assist scientists in these tasks. In this article, we identify a set of scientific and technical principles needed to build a translational research platform compatible with ethical requirements, data protection and data-integration problems. We describe the solution adopted by the CARPEM cancer research program to design and deploy a platform able to integrate retrospective, prospective, and day-to-day care data. We designed a three-layer architecture composed of a data collection layer, a data integration layer and a data access layer. We leverage a set of open-source resources including i2b2 and tranSMART. PMID:27437039

  9. Measuring the Outcome of Biomedical Research: A Systematic Literature Review

    OpenAIRE

    Thonon, Frédérique; Boulkedid, Rym; Delory, Tristan; Rousseau, Sophie; Saghatchian, Mahasti; van Harten, Wim; O’Neill, Claire; Alberti, Corinne

    2015-01-01

    Background There is an increasing need to evaluate the production and impact of medical research produced by institutions. Many indicators exist, yet we do not have enough information about their relevance. The objective of this systematic review was (1) to identify all the indicators that could be used to measure the output and outcome of medical research carried out in institutions and (2) enlist their methodology, use, positive and negative points. Methodology We have searched 3 databases ...

  10. Development, implementation and critique of a bioethics framework for pharmaceutical sponsors of human biomedical research.

    Science.gov (United States)

    Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J

    2015-11-01

    Pharmaceutical human biomedical research is a multi-dimensional endeavor that requires collaboration among many parties, including those who sponsor, conduct, participate in, or stand to benefit from the research. Human subjects' protections have been promulgated to ensure that the benefits of such research are accomplished with respect for and minimal risk to individual research participants, and with an overall sense of fairness. Although these protections are foundational to clinical research, most ethics guidance primarily highlights the responsibilities of investigators and ethics review boards. Currently, there is no published resource that comprehensively addresses bioethical responsibilities of industry sponsors; including their responsibilities to parties who are not research participants, but are, nevertheless key stakeholders in the endeavor. To fill this void, in 2010 Eli Lilly and Company instituted a Bioethics Framework for Human Biomedical Research. This paper describes how the framework was developed and implemented and provides a critique based on four years of experience. A companion article provides the actual document used by Eli Lilly and Company to guide ethical decisions regarding all phases of human clinical trials. While many of the concepts presented in this framework are not novel, compiling them in a manner that articulates the ethical responsibilities of a sponsor is novel. By utilizing this type of bioethics framework, we have been able to develop bioethics positions on various topics, provide research ethics consultations, and integrate bioethics into the daily operations of our human biomedical research. We hope that by sharing these companion papers we will stimulate discussion within and outside the biopharmaceutical industry for the benefit of the multiple parties involved in pharmaceutical human biomedical research. PMID:26325424

  11. Increasing disparities between resource inputs and outcomes, as measured by certain health deliverables, in biomedical research.

    Science.gov (United States)

    Bowen, Anthony; Casadevall, Arturo

    2015-09-01

    Society makes substantial investments in biomedical research, searching for ways to better human health. The product of this research is principally information published in scientific journals. Continued investment in science relies on society's confidence in the accuracy, honesty, and utility of research results. A recent focus on productivity has dominated the competitive evaluation of scientists, creating incentives to maximize publication numbers, citation counts, and publications in high-impact journals. Some studies have also suggested a decreasing quality in the published literature. The efficiency of society's investments in biomedical research, in terms of improved health outcomes, has not been studied. We show that biomedical research outcomes over the last five decades, as estimated by both life expectancy and New Molecular Entities approved by the Food and Drug Administration, have remained relatively constant despite rising resource inputs and scientific knowledge. Research investments by the National Institutes of Health over this time correlate with publication and author numbers but not with the numerical development of novel therapeutics. We consider several possibilities for the growing input-outcome disparity including the prior elimination of easier research questions, increasing specialization, overreliance on reductionism, a disproportionate emphasis on scientific outputs, and other negative pressures on the scientific enterprise. Monitoring the efficiency of research investments in producing positive societal outcomes may be a useful mechanism for weighing the efficacy of reforms to the scientific enterprise. Understanding the causes of the increasing input-outcome disparity in biomedical research may improve society's confidence in science and provide support for growing future research investments. PMID:26283360

  12. Zero Gravity Research Facility (Zero-G)

    Data.gov (United States)

    Federal Laboratory Consortium — The Zero Gravity Research Facility (Zero-G) provides a near weightless or microgravity environment for a duration of 5.18 seconds. This is accomplished by allowing...

  13. Guidelines for euthanasia of laboratory animals used in biomedical research

    Directory of Open Access Journals (Sweden)

    Adina Baias,

    2012-06-01

    Full Text Available Laboratory animals are used in several fields of science research, especially in biology, medicine and veterinary medicine. The majority of laboratory animals used in research are experimental models that replace the human body in study regarding pharmacological or biological safety products, studies conducted for a betterunderstanding of oncologic processes, toxicology, genetic studies or even new surgical techniques. Experimental protocols include a stage in which animals are euthanized in order to remove organs and tissues,or for no unnecessary pain and suffering of animals (humane endpoints or to mark the end of research. The result of euthanasia techniques is a rapid loss of consciousness followed by cardiac arrest, respiratory arrest and disruption of brain activity. Nowadays, the accepted euthanasia techniques can use chemicals (inhalant agents like: carbon dioxide, nitrogen or argon, overdoses of injectable anesthetics or physical methods (decapitation, cervical spine dislocation, stunning, gunshot, pitching.

  14. Flood Fighting Products Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A wave research basin at the ERDC Coastal and Hydraulics Laboratory has been modified specifically for testing of temporary, barrier-type, flood fighting products....

  15. New Program Aims $300-Million at Young Biomedical Researchers

    Science.gov (United States)

    Goodall, Hurley

    2008-01-01

    Medical scientists just starting at universities have been, more and more often, left empty-handed when the federal government awards grants. To offset this, the Howard Hughes Medical Institute, a nonprofit organization dedicated to medical research, announced a new program that will award $300-million to as many as 70 young scientists. The Early…

  16. Biomedical Informatics Research for Individualized Life - Long Shared Healthcare

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana; Hanzlíček, Petr; Nagy, Miroslav; Přečková, Petra; Zvára, K.; Seidl, L.; Bureš, V.; Šubrt, D.; Dostálová, T.; Seydlová, M.

    2009-01-01

    Roč. 29, č. 2 (2009), s. 31-41. ISSN 0208-5216 R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : electronic health record * semantic interoperability * dentistry * cardiology Subject RIV: IN - Informatics, Computer Science

  17. Adverse reproduction outcomes among employees working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Wennborg, H.; Bonde, Jens Peter; Stenbeck, M.;

    2002-01-01

    Objectives The aim of the study was to investigate reproductive outcomes such as birthweight, preterm births, and postterm births among women working in research laboratories while pregnant. Methods Female university personnel were identified from a source cohort of Swedish laboratory employees...

  18. The application of electron paramagnetic resonance in biomedical research

    International Nuclear Information System (INIS)

    Electron paramagnetic resonance technique has been found more than half a century, for free radicals detection application, it has been applied to various research studies, and promotes the development of the biomedicine. This article summarized the various free radicals measurement by the electron paramagnetic resonance in biology tissue, and the application of the spin labeling and electron paramagnetic resonance imaging technology in biomedicine. (authors)

  19. The Biomedical Resource Ontology (BRO) to Enable Resource Discovery in Clinical and Translational Research

    OpenAIRE

    Tenenbaum, Jessica D; Whetzel, Patricia L.; Anderson, Kent; Borromeo, Charles D; Ivo D. Dinov; Gabriel, Davera; Kirschner, Beth; Mirel, Barbara; Morris, Tim; Noy, Natasha; NYULAS, CSONGOR; Rubenson, David; Saxman, Paul R.; Singh, Harpreet; Whelan, Nancy

    2010-01-01

    The biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development...

  20. Analytical techniques and quality control in biomedical trace element research

    DEFF Research Database (Denmark)

    Heydorn, K.

    1994-01-01

    The small number of analytical results in trace element research calls for special methods of quality control. It is shown that when the analytical methods are in statistical control, only small numbers of duplicate or replicate results are needed to ascertain the absence of systematic errors....../kg. Measurement compatibility is obtained by control of traceability to certified reference materials, (C) 1994 Wiley-Liss, Inc....

  1. Microarrays—Current and Future Applications in Biomedical Research

    OpenAIRE

    Ulrich Certa

    2011-01-01

    Microarrays covers research where microarrays are applied to address complex biological questions. This new open access journal publishes articles where novel applications or state-of-the art technology developments in the field are reported. In addition, novel methods or data analysis algorithms are under the scope of Microarrays. This journal will serve as a platform for fast and efficient sharing of data within this large user community. As one of the first microarray users in Europe back ...

  2. Karma, reincarnation, and medicine: Hindu perspectives on biomedical research

    OpenAIRE

    Hutchinson, Janis Faye; Sharp, Richard

    2008-01-01

    Prior to the completion of the Human Genome Project, bioethicists and other academics debated the impact of this new genetic information on medicine, health care, group identification, and peoples’ lives. A major issue is the potential for unintended and intended adverse consequences to groups and individuals. When conducting research in, for instance, American Indian and Alaskan native (AI/AN) populations, political, cultural, religious and historical issues must be considered. Among African...

  3. PS1-59: Collecting Biomedical Specimens in Health Research

    OpenAIRE

    Ulrich, Kevin

    2012-01-01

    Survey research organizations are increasingly being tasked with obtaining consent and, in some cases, collecting biological specimens from potential respondents. In order to obtain high response rates in these types of studies, it is crucial that survey methodologists investigate best practices to improve response in the collection of these types of data. Under what circumstances are participants willing to consent to these procedures? What methods can be utilized to best facilitate the coll...

  4. Image-based Informatics for Preclinical Biomedical Research

    Energy Technology Data Exchange (ETDEWEB)

    Tobin Jr, Kenneth William [ORNL; Aykac, Deniz [ORNL; Muthusamy Govindasamy, Vijaya Priya [ORNL; Karnowski, Thomas Paul [ORNL; Price, Jeffery R [ORNL; Wall, Jonathan [ORNL; Gregor, Jens [ORNL; Gleason, Shaun Scott [ORNL

    2006-01-01

    In 2006, the New England Journal of Medicine selected medical imaging as one of the eleven most important innovations of the past 1,000 years, primarily due to its ability to allow physicians and researchers to visualize the very nature of disease. As a result of the broad-based adoption of micro imaging technologies, preclinical researchers today are generating terabytes of image data from both anatomic and functional imaging modes. In this paper we describe our early research to apply content-based image retrieval to index and manage large image libraries generated in the study of amyloid disease in mice. Amyloidosis is associated with diseases such as Alzheimer's, type 2 diabetes, chronic inflammation and myeloma. In particular, we will focus on results to date in the area of small animal organ segmentation and description for CT, SPECT, and PET modes and present a small set of preliminary retrieval results for a specific disease state in kidney CT crosssections.

  5. Cross-Cultural Communication Training for Students in Multidisciplinary Research Area of Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2014-08-01

    Full Text Available Biomedical Engineering makes multidisciplinary research area, which includes biology, medicine, engineering and others. Communication training is important for students, who have a potential to develop Biomedical Engineering. Communication is not easy in a multidisciplinary research area, because each area has its own background of thinking. Because each nation has its own background of culture, on the other hand, international communication is not easy, either. A cross-cultural student program has been designed for communication training in the multidisciplinary research area. Students from a variety of backgrounds of research area and culture have joined in the program: mechanical engineering, material science, environmental engineering, science of nursing, dentist, pharmacy, electronics, and so on. The program works well for communication training in the multidisciplinary research area of biomedical engineering. Foreign language and digital data give students chance to study several things: how to make communication precisely, how to quote previous data. The experience in the program helps students not only understand new idea in the laboratory visit, but also make a presentation in the international research conference. The program relates to author's several experiences: the student internship abroad, the cross-cultural student camp, multi PhD theses, various affiliations, and the creation of the interdisciplinary department.

  6. Assessing CANDU requirements for irradiation - Research facilities

    International Nuclear Information System (INIS)

    The Canadian nuclear program needs ongoing access to irradiation-research facilities to support the safe operation of existing CANDU reactors and the evolutionary development of CANDU components and design features. The irradiation-research program must facilitate the testing of unique CANDU technology such as the fuel bundle, on-power refueling, the pressure tube, and the heavy-water coolant and moderator. Since 1957, NRU has operated as Canada's principal irradiation facility; however, it has become clear that NRU needs costly refurbishing if its lifetime is to be significantly extended. Accordingly, AECL has reviewed the requirements for CANDU irradiation research and is presently assessing alternatives for providing the necessary future access to irradiation-research facilities. Various options are under consideration, including renting space in existing research reactors, performing irradiations in CANDU power reactors, and building a new indigenous materials testing reactor specifically to meet essential program requirements

  7. [Biomedical research: the debate on the reduction and emergence concepts].

    Science.gov (United States)

    Boury, D; Deschamps, C; Dante Menozzi, F; Raze, D; Vandenbunder, B; de Bouvet, A; Dei-Cas, E

    2005-01-01

    The theoretical bases of medical knowledge exert a strong influence on both clinical practice and representations of living and health. In this perspective, reduction and emergence notions play a major role. Microreduction is the predominant analytical strategy used today in biology, as it is usually considered that essential life mechanisms can be reduced to molecular processes. Likewise, macroreduction proposes that parts can be defined in terms of their belonging to wholes, as it is usually assumed, for instance, in genetic epidemiology. With regard to emergence, this notion, which focuses on properties of a whole that cannot be deduced from properties of its parts, is consistent with both nature of living and evolution theory. The apparent success of reduction like analytical modality has generated in scientific community and public opinion an ideological reductionism, which corresponds, ontologically, to both physicalism (things can be entirely understood in terms of their parts), and atomism (things go their own way, independently of other things). Genetic reductionism has generated new cosmological representations of living, where past, present and future of living beings could potentially be deduced from fallacious, simple views of genome sequences. These views may lead to quantitative or qualitative definitions of standard patterns and hierarchies. In practical terms, research activity should integrate limits, strains as well as reductionism advantages. Biologists should also consider risks associated with an ideological, unrestricted reductionism, applied to any existence aspect, a notion with questionable legitimacy and with potential ethical, philosophical, and political involvements that go beyond the simple selection of a research strategy. PMID:16330375

  8. User Facilities of the Office of Basic Energy Sciences: A National Resource for Scientific Research

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-01

    The BES user facilities provide open access to specialized instrumentation and expertise that enable scientific users from universities, national laboratories, and industry to carry out experiments and develop theories that could not be done at their home institutions. These forefront research facilities require resource commitments well beyond the scope of any non-government institution and open up otherwise inaccessible facets of Nature to scientific inquiry. For approved, peer-reviewed projects, instrument time is available without charge to researchers who intend to publish their results in the open literature. These large-scale user facilities have made significant contributions to various scientific fields, including chemistry, physics, geology, materials science, environmental science, biology, and biomedical science. Over 16,000 scientists and engineers.pdf file (27KB) conduct experiments at BES user facilities annually. Thousands of other researchers collaborate with these users and analyze the data measured at the facilities to publish new scientific findings in peer-reviewed journals.

  9. Use of Radioactive Beams for Bio-Medical Research

    CERN Multimedia

    Miederer, M; Allen, B

    2002-01-01

    %title\\\\ \\\\With this Proposal we wish to replace the two previous proposals P42 and P48 (corresponding to the ISOLDE Experiments IS330 and IS331, respectively, including the Addendum 1 dated 04.05.94). Based on experimental results obtained during the last four year's research in the framework of the two proposals and considering modern trends in radiopharmaceutical developments we propose as a first main direction to study systematically relationships between physico-chemical parameters, the concentration and specific activity of tracer molecules and the corresponding biological response. This kind of studies requires highest achievable quality and a universality of radio-tracers, available at ISOLDE. Special attention in this concern is paid to bio-specific tracers (receptor-binding ligands, bio-conjugates etc.) aiming to search for new and more efficient radiopharmaceuticals for radionuclide therapy. The second direction is to support clinical radionuclide therapy by a quantitative follow up of the radionu...

  10. National Space Biomedical Research Institute (NSBRI) JSC Summer Projects

    Science.gov (United States)

    Dowdy, Forrest Ryan

    2014-01-01

    This project optimized the calorie content in a breakfast meal replacement bar for the Advanced Food Technology group. Use of multivariable optimization yielded the highest weight savings possible while simultaneously matching NASA Human Standards nutritional guidelines. The scope of this research included the study of shelf-life indicators such as water activity, moisture content, and texture analysis. Key metrics indicate higher protein content, higher caloric density, and greater mass savings as a result of the reformulation process. The optimization performed for this study demonstrated wide application to other food bars in the Advanced Food Technology portfolio. Recommendations for future work include shelf life studies on bar hardening and overall acceptability data over increased time frames and temperature fluctuation scenarios.

  11. Biomedical scientists' perceptions of ethical and social implications: is there a role for research ethics consultation?

    Directory of Open Access Journals (Sweden)

    Jennifer B McCormick

    Full Text Available BACKGROUND: Research ethics consultation programs are being established with a goal of addressing the ethical, societal, and policy considerations associated with biomedical research. A number of these programs are modelled after clinical ethics consultation services that began to be institutionalized in the 1980s. Our objective was to determine biomedical science researchers' perceived need for and utility of research ethics consultation, through examination of their perceptions of whether they and their institutions faced ethical, social or policy issues (outside those mandated by regulation and examination of willingness to seek advice in addressing these issues. We conducted telephone interviews and focus groups in 2006 with researchers from Stanford University and a mailed survey in December 2006 to 7 research universities in the U.S. FINDINGS: A total of 16 researchers were interviewed (75% response rate, 29 participated in focus groups, and 856 responded to the survey (50% response rate. Approximately half of researchers surveyed (51% reported that they would find a research ethics consultation service at their institution moderately, very or extremely useful, while over a third (36% reported that such a service would be useful to them personally. Respondents conducting human subjects research were more likely to find such a service very to extremely useful to them personally than respondents not conducting human subjects research (20% vs 10%; chi(2 p<0.001. CONCLUSION: Our findings indicate that biomedical researchers do encounter and anticipate encountering ethical and societal questions and concerns and a substantial proportion, especially clinical researchers, would likely use a consultation service if they were aware of it. These findings provide data to inform the development of such consultation programs in general.

  12. IPPE critical facilities and their research programs

    International Nuclear Information System (INIS)

    The 40th anniversary of BFS zero power fast critical facilities family took place in 2001. An extensive neutron physics research program for justification of fast sodium-cooled reactors core physics has been carried out on them. Advanced reactors core physics research is fulfilled today to solve both traditional and non-traditional tasks of nuclear power industry

  13. E-beam facility for collaborative research

    International Nuclear Information System (INIS)

    An indigenously developed Microtron facility at Mangalore University is being used for variety of research activities in interdisciplinary areas of science and technology. The unique facility with 8 MeV electrons, intense Bremsstrahlung photons and neutrons of moderate flux facilitates a number of co-ordinated R and D programs in collaboration with universities and national laboratories. A bird's eye view of all these activities along with a few sample results is presented in this paper. (author)

  14. The role of electromagnetic separators in the production of radiotracers for bio-medical research and nuclear medical application

    Science.gov (United States)

    Beyer, Gerd J.; Ruth, Thomas J.

    2003-05-01

    With the growing complexity of positron emission tomography/single photon emission computed tomography imaging and the new developments in systemic radionuclide therapy there is a growing need for radioisotope preparations with higher radiochemical and radionuclidic purity that has not been achievable before. Especially important for the new applications is the specific activity of the radiotracer. Conventional methods in medical isotope production have reached their technical limitations. The role of isotope separators is discussed with examples of typical production and characterization experiments conducted at the ISOLDE and TRIUMF facilities. These preliminary experiments indicate that isotope separators have a definite role to play in the future for the production of radioisotopes for biomedical research and medical application.

  15. The role of electromagnetic separators in the production of radiotracers for bio-medical research and nuclear medical application

    CERN Document Server

    Beyer, Gerd-Jürgen

    2003-01-01

    With the growing complexity of positron emission tomography/single photon emission computed tomography imaging and the new developments in systemic radionuclide therapy there is a growing need for radioisotope preparations with higher radiochemical and radionuclidic purity that has not been achievable before. Especially important for the new applications is the specific activity of the radiotracer. Conventional methods in medical isotope production have reached their technical limitations. The role of isotope separators is discussed with examples of typical production and characterization experiments conducted at the ISOLDE and TRIUMF facilities. These preliminary experiments indicate that isotope separators have a definite role to play in the future for the production of radioisotopes for biomedical research and medical application.

  16. Strategies for Disseminating Information on Biomedical Research on Autism to Hispanic Parents.

    Science.gov (United States)

    Lajonchere, Clara M; Wheeler, Barbara Y; Valente, Thomas W; Kreutzer, Cary; Munson, Aron; Narayanan, Shrikanth; Kazemzadeh, Abe; Cruz, Roxana; Martinez, Irene; Schrager, Sheree M; Schweitzer, Lisa; Chklovski, Tara; Hwang, Darryl

    2016-03-01

    Low income Hispanic families experience multiple barriers to accessing evidence-based information on Autism Spectrum Disorders (ASD). This study utilized a mixed-strategy intervention to create access to information in published bio-medical research articles on ASD by distilling the content into parent-friendly English- and Spanish-language ASD Science Briefs and presenting them to participants using two socially-oriented dissemination methods. There was a main effect for short-term knowledge gains associated with the Science Briefs but no effect for the dissemination method. After 5 months, participants reported utilizing the information learned and 90 % wanted to read more Science Briefs. These preliminary findings highlight the potential benefits of distilling biomedical research articles on ASD into parent-friendly educational products for currently underserved Hispanic parents. PMID:26563948

  17. EuroMISE Center: Research and Education in Biomedical and Healthcare Informatics

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana; Svačina, Š.; Rauch, J.; Haase, J.; Grünfeldová, H.

    Amsterdam: IOS Press, 2012 - (Blobel, B.; Engelbrecht, R.; Ahifrin, M.), s. 53-56. (Studies in Health Technology and Informatics. 174). ISBN 978-1-61499-051-2. [STC 2012. EFMI Special Topic Conference. Moscow (RU), 18.04.2012-20.04.2012] Institutional support: RVO:67985807 Keywords : biomedical informatics * e-Health * edication * research Subject RIV: IN - Informatics, Computer Science http://www.booksonline.iospress.nl/Content/View.aspx?piid=30305

  18. A Microcosm of the Biomedical Research Experience for Upper-level Undergraduates

    OpenAIRE

    Hurd, Daryl D.

    2008-01-01

    The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John F...

  19. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Progress is reported on biomedical studies using cyclotron-produced 18F, 15O, 11C, 13N, 52Fe, 38K, 206Bi, 73Se, 53Co, and 43K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; 38K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments

  20. The Sanford Underground Research Facility at Homestake

    CERN Document Server

    Heise, J

    2014-01-01

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  1. The Facility for Antiproton and Ion Research

    Science.gov (United States)

    Langanke, K.

    2015-11-01

    In the coming years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and path-breaking research in hadronic, nuclear and atomic physics as well as applied sciences. This manuscript will discuss some of these research opportunities, with a focus on nuclear physics related to supernova dynamics and nucleosynthesis.

  2. A new paradigm for improved co-ordination and efficacy of European biomedical research: taking diabetes as a model

    OpenAIRE

    Halban, Philippe A.; Boulton, A. J. M.; Smith, U

    2013-01-01

    Today, European biomedical and health-related research is insufficiently well funded and is fragmented, with no common vision, less-than-optimal sharing of resources, and inadequate support and training in clinical research. Improvements to the competitiveness of European biomedical research will depend on the creation of new infrastructures that must be dynamic and free of bureaucracy, involve all stakeholders and facilitate faster delivery of new discoveries from bench to bedside. Taking di...

  3. A Critical Look at Biomedical Journals’ Policies on Animal Research by Use of a Novel Tool: The EXEMPLAR Scale

    OpenAIRE

    Ana Raquel Martins; Nuno Henrique Franco

    2015-01-01

    Simple Summary Biomedical journals have the responsibility to promote humane research. To gauge and evaluate journal policies on animal research, the EXEMPLAR—For “Excellence in Mandatory Policies on Animal Research”—scale is presented and applied to evaluate a sample of 170 biomedical journals, providing an overview of the current landscape of editorial policies on the ethical treatment of animals. Abstract Animal research is not only regulated by legislation but also by self-regulatory mech...

  4. Participation in biomedical research is an imperfect moral duty: a response to John Harris

    OpenAIRE

    Shapshay, Sandra; Pimple, Kenneth D

    2007-01-01

    In his paper “Scientific research is a moral duty”, John Harris argues that individuals have a moral duty to participate in biomedical research by volunteering as research subjects. He supports his claim with reference to what he calls the principle of beneficence as embodied in the “rule of rescue” (the moral obligation to prevent serious harm), and the principle of fairness embodied in the prohibition on “free riding” (we are obliged to share the sacrifices that make possible social practic...

  5. International Careers of Researchers in Biomedical Sciences: A Comparison of the US and the UK.

    OpenAIRE

    Lawson, Cornelia; Geuna, Aldo; Ana Fernández-Zubieta; Toselli, Manuel; Kataishi, Rodrigo

    2015-01-01

    This chapter analyses the mobility of academic biomedical researchers in the US and the UK. Both countries are at the forefront of research in biomedicine, and able to attract promising researchers from other countries as well as fostering mobility between the US and the UK. Using a database of 292 UK based academics and 327 US based academics covering the period 1956 to 2012, the descriptive analysis shows a high level of international mobility at education level (BA, PhD and Postdoc) with s...

  6. The ICMJE and URM: Providing Independent Advice for the Conduct of Biomedical Research and Publication

    Directory of Open Access Journals (Sweden)

    Martin B. Van der Weyden

    2007-01-01

    Full Text Available The International Committee of Medical Journal Editors (ICMJE is a working group of editors of selected medical journals that meets annually. Founded in Vancouver, Canada, in 1978, it currently consists of 11 member journals and a representative of the US National Library of Medicine. The major purpose of the Committee is to address and provide guidance for the conduct and publishing of biomedical research and the ethical tenets underpinning these activities. This advice is detailed in the Committee's Uniform Requirements for Manuscripts Submitted to Biomedical Journals: Writing and Editing for Biomedical Publication (URM. Recently, the ICMJE has adopted an interventionist role to ensure transparency of conflict of interest revelations in the conduct and publication of industry supported research. It also pursues a policy for the lodgement with trial registries of specified details of Phase III clinical trials. Failure to comply would jeopardise publication of trial outcomes in ICMJE member journals. This policy has resulted in the coming on stream of trial registries, international agreement on trial minimal datasets and compliance with trial registration requirements.

  7. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  8. Research activities by INS cyclotron facility

    International Nuclear Information System (INIS)

    Research activities made by the cyclotron facility and the related apparatuses at Institute for Nuclear Study (INS), University of Tokyo, have been reviewed in terms of the associated scientific publications. This publication list, which is to be read as a continuation of INS-Rep.-608 (October, 1986), includes experimental works on low-energy nuclear physics, accelerator technology, instrumental developments, radiation physics and other applications in interdisciplinary fields. The publications are classified into the following four categories. (A) : Internal reports published in INS. (B) : Publications in international scientific journals on experimental research works done by the cyclotron facility and the related apparatuses at INS. Those made by outside users are also included. (C) : Publications in international scientific journals on experimental low-energy nuclear physics, which have been done by the staff of INS Nuclear Physics Division using facilities outside INS. (D) : Contributions to international conferences. (author)

  9. The Sanford Underground Research Facility at Homestake

    International Nuclear Information System (INIS)

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability

  10. CLOUD: an atmospheric research facility at CERN

    OpenAIRE

    The Cloud Collaboration

    2001-01-01

    This report is the second of two addenda to the CLOUD proposal at CERN (physics/0104048), which aims to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. The document places CLOUD in the framework of a CERN facility for atmospheric research, and provides further details on the particle beam requirements.

  11. The Sanford Underground Research Facility at Homestake

    Science.gov (United States)

    Heise, J.

    2015-08-01

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  12. Information Technology and the Human Research Facility

    Science.gov (United States)

    Klee, Margaret

    2002-01-01

    This slide presentation reviews how information technology supports the Human Research Facility (HRF) and specifically the uses that contractor has for the information. There is information about the contractor, the HRF, some of the experiments that were performed using the HRF on board the Shuttle, overviews of the data architecture, and software both commercial and specially developed software for the specific experiments.

  13. CLOUD an atmospheric research facility at CERN

    CERN Document Server

    Fastrup, B; Lillestøl, Egil; Bosteels, Michel; Gonidec, A; Kirkby, Jasper; Mele, S; Minginette, P; Nicquevert, Bertrand; Schinzel, D; Seidl, W; Grundsøe, P; Marsh, N D; Polny, J; Svensmark, H; Viisanen, Y; Kurvinen, K L; Orava, Risto; Hameri, K; Kulmala, M; Laakso, I; O'Dowd, C D; Afrosimov, V; Basalaev, A; Panov, M; Laaksonen, B D; Joutsensaari, J; Ermakov, V; Makhmutov, V S; Maksumov, O; Pokrevsky, P; Stozhkov, Yu I; Svirzhevsky, N S; Carslaw, K; Yin, Y; Trautmann, T; Arnold, F; Wohlfrom, K H; Hagen, D; Schmitt, J; Whitefield, P; Aplin, K L; Harrison, R G; Bingham, R; Close, Francis Edwin; Gibbins, C; Irving, A; Kellett, B; Lockwood, M; Mäkelä, J M; Petersen, D; Szymanski, W W; Wagner, P E; Vrtala, A; CERN. Geneva. SPS-PS Experiments Committee

    2001-01-01

    This report is the second of two addenda to the CLOUD proposal at CERN (physics/0104048), which aims to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. The document places CLOUD in the framework of a CERN facility for atmospheric research, and provides further details on the particle beam requirements.

  14. Holifield Heavy Ion Research Facility: Users handbook

    International Nuclear Information System (INIS)

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given

  15. Evolution of the use of ionizing radiation in biomedical research; Evolucion del uso de las radiaciones ionizantes en investigacion biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Macias, M. T.

    2011-07-01

    This article presents the evolution, as a change of process, with the use of radioactivity in biomedical research, showing the consume of radioisotopes during the las 20 years indicating the evidences of these changes. The radioisotopic techniques applied at the present are described, and the future use of the radioisotopes in biomedical research is proposed, emphasizing the importance that the Molecular Imaging Techniques will have in this scientific area. (Author) 56 refs.

  16. The Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Development of the Holifield facility has continued with resulting improvements in the number of ion species provided, ion energy for tandem-only operations, and utilization efficiency. The Holifield Heavy Ion Research Facility (HHIRF) is located at the Oak Ridge National Laboratory and operated as a national user facility for research in heavy ion science. The facility operates two accelerators: an NEC pelletron tandem accelerator designed to operate at terminal potentials up to 25 MV and the Oak Ridge Isochronous Cyclotron (ORIC) which has been modified to serve as an energy booster for beams from the tandem accelerator. The principal experimental devices of the facility include a broad range spectrograph (ME/q2 = 225) equipped with a vertical drift chamber detector system, a 4π spin spectrometer equipped with 72 NaI detectors (Ge detectors and BGO compton-suppression units can be used in place of the NaI detectors), a time-of-flight spectrometer, a 1.6-m scattering chamber, a heavy-ion/light-ion detector (HILI) which will be used for studying inverse reactions, a split-pole spectrograph, and a velocity filter. In this report, we will discuss our recent development activities, operational experience, and future development plans

  17. 9 CFR 2.37 - Federal research facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Federal research facilities. 2.37 Section 2.37 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities § 2.37 Federal research facilities. Each Federal research facility shall establish...

  18. Patterns of biomedical science production in a sub-Saharan research center

    Directory of Open Access Journals (Sweden)

    Agnandji Selidji T

    2012-03-01

    Full Text Available Abstract Background Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing in sub-Saharan Africa. This study aims to describe the patterns of clinical research activities at a sub-Saharan biomedical research center. Methods In-depth interviews were conducted with a core group of researchers at the Medical Research Unit of the Albert Schweitzer Hospital from June 2009 to February 2010 in Lambaréné, Gabon. Scientific activities running at the MRU as well as the implementation of ethical and regulatory standards were covered by the interview sessions. Results The framework of clinical research includes transnational studies and research initiated locally. In transnational collaborations, a sub-Saharan research institution may be limited to producing confirmatory and late-stage data with little impact on economic and social innovation. However, ethical and regulatory guidelines are being implemented taking into consideration the local contexts. Similarly, the scientific content of studies designed by researchers at the MRU, if local needs are taken into account, may potentially contribute to a scientific production with long-term value on social and economic innovation in sub-Saharan Africa. Conclusion Further research questions and methods in social sciences should comprehensively address the construction of scientific content with the social, economic and cultural contexts surrounding research activities.

  19. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  20. Managing the future: the Special Virus Leukemia Program and the acceleration of biomedical research.

    Science.gov (United States)

    Scheffler, Robin Wolfe

    2014-12-01

    After the end of the Second World War, cancer virus research experienced a remarkable revival, culminating in the creation in 1964 of the United States National Cancer Institute's Special Virus Leukemia Program (SVLP), an ambitious program of directed biomedical research to accelerate the development of a leukemia vaccine. Studies of cancer viruses soon became the second most highly funded area of research at the Institute, and by far the most generously funded area of biological research. Remarkably, this vast infrastructure for cancer vaccine production came into being before a human leukemia virus was shown to exist. The origins of the SVLP were rooted in as much as shifts in American society as laboratory science. The revival of cancer virus studies was a function of the success advocates and administrators achieved in associating cancer viruses with campaigns against childhood diseases such as polio and leukemia. To address the urgency borne of this new association, the SVLP's architects sought to lessen the power of peer review in favor of centralized Cold War management methods, fashioning viruses as "administrative objects" in order to accelerate the tempo of biomedical research and discovery. PMID:25459347

  1. Animal research facility for Space Station Freedom

    Science.gov (United States)

    Bonting, Sjoerd L.

    1992-01-01

    An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.

  2. Contrasting the ethical perspectives of biospecimen research among individuals with familial risk for hereditary cancer and biomedical researchers: implications for researcher training.

    Science.gov (United States)

    Quinn, Gwendolyn P; Koskan, Alexis; Sehovic, Ivana; Pal, Tuya; Meade, Cathy; Gwede, Clement K

    2014-07-01

    While ethical concerns about participating in biospecimen research have been previously identified, few studies have reported the concerns among individuals with familial risk for hereditary cancer (IFRs). At the same time, biomedical researchers often lack training in discussing such concerns to potential donors. This study explores IFRs' and biomedical researchers' perceptions of ethical concerns about participating in biobanking research. In separate focus groups, IFRs and biomedical researchers participated in 90-min telephone focus groups. Focus group questions centered on knowledge about laws that protect the confidentiality of biospecimen donors, understanding of informed consent and study procedures, and preferences for being recontacted about potential incidental discovery and also study results. A total of 40 IFRs and 32 biomedical researchers participated in the focus groups. Results demonstrated discrepancies between the perceptions of IFRs and researchers. IFRs' concerns centered on health information protection; potential discrimination by insurers and employers; and preferences for being recontacted upon discovery of gene mutations or to communicate study results. Researchers perceived that participants understood laws protecting donors' privacy and (detailed study information outlined in the informed consent process), study outcomes were used to create a training tool kit to increase researchers' understanding of IFRs' concerns about biobanking. PMID:24786355

  3. Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory.

    Science.gov (United States)

    Barton, Carrie L; Johnson, Eric W; Tanguay, Robert L

    2016-07-01

    The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility. PMID:26981844

  4. Collaborative mining and interpretation of large-scale data for biomedical research insights.

    Directory of Open Access Journals (Sweden)

    Georgia Tsiliki

    Full Text Available Biomedical research becomes increasingly interdisciplinary and collaborative in nature. Researchers need to efficiently and effectively collaborate and make decisions by meaningfully assembling, mining and analyzing available large-scale volumes of complex multi-faceted data residing in different sources. In line with related research directives revealing that, in spite of the recent advances in data mining and computational analysis, humans can easily detect patterns which computer algorithms may have difficulty in finding, this paper reports on the practical use of an innovative web-based collaboration support platform in a biomedical research context. Arguing that dealing with data-intensive and cognitively complex settings is not a technical problem alone, the proposed platform adopts a hybrid approach that builds on the synergy between machine and human intelligence to facilitate the underlying sense-making and decision making processes. User experience shows that the platform enables more informed and quicker decisions, by displaying the aggregated information according to their needs, while also exploiting the associated human intelligence.

  5. MYRRHA: A multipurpose nuclear research facility

    Science.gov (United States)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  6. Critically engaging: integrating the social and the biomedical in international microbicides research.

    Science.gov (United States)

    Montgomery, Catherine M; Pool, Robert

    2011-01-01

    Randomized controlled trials and critical social theory are known not to be happy bedfellows. Such trials are embedded in a positivist view of the world, seeking definitive answers to testable questions; critical social theory questions the methods by which we deem the world knowable and may consider experiments in the biomedical sciences as social artifacts. Yet both of these epistemologically and methodologically divergent fields offer potentially important advances in HIV research. In this paper, we describe collaboration between social and biomedical researchers on a large, publicly funded programme to develop vaginal microbicides for HIV prevention. In terms of critical engagement, having integrated and qualitative social science components in the protocol meant potentially nesting alternative epistemologies at the heart of the randomized controlled trial. The social science research highlighted the fallibility and fragility of trial data by demonstrating inconsistencies in key behavioural measurements. It also foregrounded the disjuncture between biomedical conceptions of microbicides and the meanings and uses of the study gel in the context of users' everyday lives. These findings were communicated to the clinical and epidemiological members of the team on an ongoing basis via a feedback loop, through which new issues of concern could also be debated and, in theory, data collection adjusted to the changing needs of the programme. Although critical findings were taken on board by the trialists, a hierarchy of evidence nonetheless remained that limited the utility of some social science findings. This was in spite of mutual respect between clinical epidemiologists and social scientists, equal representation in management and coordination bodies, and equity in funding for the different disciplines. We discuss the positive role that social science integrated into an HIV prevention trial can play, but nonetheless highlight tensions that remain where a hierarchy

  7. Critically engaging: integrating the social and the biomedical in international microbicides research

    Directory of Open Access Journals (Sweden)

    Montgomery Catherine M

    2011-09-01

    Full Text Available Abstract Randomized controlled trials and critical social theory are known not to be happy bedfellows. Such trials are embedded in a positivist view of the world, seeking definitive answers to testable questions; critical social theory questions the methods by which we deem the world knowable and may consider experiments in the biomedical sciences as social artifacts. Yet both of these epistemologically and methodologically divergent fields offer potentially important advances in HIV research. In this paper, we describe collaboration between social and biomedical researchers on a large, publicly funded programme to develop vaginal microbicides for HIV prevention. In terms of critical engagement, having integrated and qualitative social science components in the protocol meant potentially nesting alternative epistemologies at the heart of the randomized controlled trial. The social science research highlighted the fallibility and fragility of trial data by demonstrating inconsistencies in key behavioural measurements. It also foregrounded the disjuncture between biomedical conceptions of microbicides and the meanings and uses of the study gel in the context of users’ everyday lives. These findings were communicated to the clinical and epidemiological members of the team on an ongoing basis via a feedback loop, through which new issues of concern could also be debated and, in theory, data collection adjusted to the changing needs of the programme. Although critical findings were taken on board by the trialists, a hierarchy of evidence nonetheless remained that limited the utility of some social science findings. This was in spite of mutual respect between clinical epidemiologists and social scientists, equal representation in management and coordination bodies, and equity in funding for the different disciplines. We discuss the positive role that social science integrated into an HIV prevention trial can play, but nonetheless highlight tensions

  8. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-09-30

    Progress is reported on biomedical studies using cyclotron-produced /sup 18/F, /sup 15/O, /sup 11/C, /sup 13/N, /sup 52/Fe, /sup 38/K, /sup 206/Bi, /sup 73/Se, /sup 53/Co, and /sup 43/K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; /sup 38/K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments. (HLW)

  9. Critical evaluation of the use of dogs in biomedical research and testing in Europe

    OpenAIRE

    Hasiwa, Nina; Bailey, Jarrod; Clausing, Peter; Daneshian, Mardas; Eileraas, Marianne; Farkas, Sándor; Gyertyán, István; Hubrecht, Robert; Kobel, Werner; Krummenacher, Goran; Leist, Marcel; Lohi, Hannes; Miklósi, Ádám; Ohl, Frauke; Olejniczak, Klaus

    2011-01-01

    Dogs are sometimes referred to as “man’s best friend” and with the increase in urbanization and lifestyle changes, dogs are seen by their owners as family members. Society expresses specific concerns about the experimental use of dogs, as they are sometimes perceived to have a special status for humans. This may appear somewhat conflicting with the idea that the intrinsic value of all animals is the same, and that also several other animal species are used in biomedical research and toxicolog...

  10. Requirements for data integration platforms in biomedical research networks: a reference model

    Directory of Open Access Journals (Sweden)

    Matthias Ganzinger

    2015-02-01

    Full Text Available Biomedical research networks need to integrate research data among their members and with external partners. To support such data sharing activities, an adequate information technology infrastructure is necessary. To facilitate the establishment of such an infrastructure, we developed a reference model for the requirements. The reference model consists of five reference goals and 15 reference requirements. Using the Unified Modeling Language, the goals and requirements are set into relation to each other. In addition, all goals and requirements are described textually in tables. This reference model can be used by research networks as a basis for a resource efficient acquisition of their project specific requirements. Furthermore, a concrete instance of the reference model is described for a research network on liver cancer. The reference model is transferred into a requirements model of the specific network. Based on this concrete requirements model, a service-oriented information technology architecture is derived and also described in this paper.

  11. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  12. The Sanford Underground Research Facility at Homestake

    CERN Document Server

    Heise, Jaret

    2015-01-01

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-sea...

  13. Credibility Assessment of Deterministic Computational Models and Simulations for Space Biomedical Research and Operations

    Science.gov (United States)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Myers, Jerry

    2015-01-01

    Human missions beyond low earth orbit to destinations, such as to Mars and asteroids will expose astronauts to novel operational conditions that may pose health risks that are currently not well understood and perhaps unanticipated. In addition, there are limited clinical and research data to inform development and implementation of health risk countermeasures for these missions. Consequently, NASA's Digital Astronaut Project (DAP) is working to develop and implement computational models and simulations (M&S) to help predict and assess spaceflight health and performance risks, and enhance countermeasure development. In order to effectively accomplish these goals, the DAP evaluates its models and simulations via a rigorous verification, validation and credibility assessment process to ensure that the computational tools are sufficiently reliable to both inform research intended to mitigate potential risk as well as guide countermeasure development. In doing so, DAP works closely with end-users, such as space life science researchers, to establish appropriate M&S credibility thresholds. We will present and demonstrate the process the DAP uses to vet computational M&S for space biomedical analysis using real M&S examples. We will also provide recommendations on how the larger space biomedical community can employ these concepts to enhance the credibility of their M&S codes.

  14. Big Data Application in Biomedical Research and Health Care: A Literature Review.

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812

  15. Big Data Application in Biomedical Research and Health Care: A Literature Review

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812

  16. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  17. MYRRHA: A multipurpose nuclear research facility

    Directory of Open Access Journals (Sweden)

    Baeten P.

    2014-01-01

    As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  18. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. We emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities. 13 refs., 15 figs., 3 tabs

  19. MaPSeq, A Service-Oriented Architecture for Genomics Research within an Academic Biomedical Research Institution

    Directory of Open Access Journals (Sweden)

    Jason Reilly

    2015-07-01

    Full Text Available Genomics research presents technical, computational, and analytical challenges that are well recognized. Less recognized are the complex sociological, psychological, cultural, and political challenges that arise when genomics research takes place within a large, decentralized academic institution. In this paper, we describe a Service-Oriented Architecture (SOA—MaPSeq—that was conceptualized and designed to meet the diverse and evolving computational workflow needs of genomics researchers at our large, hospital-affiliated, academic research institution. We present the institutional challenges that motivated the design of MaPSeq before describing the architecture and functionality of MaPSeq. We then discuss SOA solutions and conclude that approaches such as MaPSeq enable efficient and effective computational workflow execution for genomics research and for any type of academic biomedical research that requires complex, computationally-intense workflows.

  20. Advances in porcine genomics and proteomics - a toolbox for developing the pig as a model organism for molecular biomedical research

    DEFF Research Database (Denmark)

    Bendixen, Emøke; Danielsen, Marianne; Larsen, Knud;

    2010-01-01

    genetics. Pigs, although not easily kept for laboratory research, are, however, readily available for biomedical research through the large scale industrial production of pigs produced for human consumption. Recent research has facilitated the biological experimentation with pigs, and helped develop the...... pig into a novel model organism for biomedical research. This toolbox includes the near completion of the pig genome, catalogues of genes and genetic variation in pigs, extensive characterization of pig proteomes and transcriptomes, as well as the development of transgenic disease models. The aim of...... this review is to highlight the current progress of these ongoing areas of research, which are mandatory for successful development of biomedical pig models that are in demand for understanding human biology in health and disease....

  1. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications.

    Science.gov (United States)

    Geissner, Andreas; Seeberger, Peter H

    2016-06-12

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings. PMID:27306309

  2. Strom Thurmond Biomedical Research Center at the Medical Univesity for South Carolina Charleston, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the proposed construction and operation of the Strom Thurmond Biomedical Research Center (Center) at the Medical University of South Carolina (MUSC), Charleston, SC. The DOE is evaluating a grant proposal to authorize the MUSC to construct, equip and operate the lower two floors of the proposed nine-story Center as an expansion of on-going clinical research and out-patient diagnostic activities of the Cardiology Division of the existing Gazes Cardiac Research Institute. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the NEPA. Therefore, the preparation of an Environmental Impact Statement is not required.

  3. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications

    Science.gov (United States)

    Geissner, Andreas; Seeberger, Peter H.

    2016-06-01

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

  4. A new paradigm for improved co-ordination and efficacy of European biomedical research: taking diabetes as a model.

    Science.gov (United States)

    Halban, P A; Boulton, A J M; Smith, U

    2013-03-01

    Today, European biomedical and health-related research is insufficiently well funded and is fragmented, with no common vision, less-than-optimal sharing of resources, and inadequate support and training in clinical research. Improvements to the competitiveness of European biomedical research will depend on the creation of new infrastructures that must be dynamic and free of bureaucracy, involve all stakeholders and facilitate faster delivery of new discoveries from bench to bedside. Taking diabetes research as the model, a new paradigm for European biomedical research is presented, which offers improved co-ordination and common resources that will benefit both academic and industrial clinical research. This includes the creation of a European Council for Health Research, first proposed by the Alliance for Biomedical Research in Europe, which will bring together and consult with all health stakeholders to develop strategic and multidisciplinary research programmes addressing the full innovation cycle. A European Platform for Clinical Research in Diabetes is proposed by the Alliance for European Diabetes Research (EURADIA) in response to the special challenges and opportunities presented by research across the European region, with the need for common standards and shared expertise and data. PMID:23238786

  5. Underground characterisation and research facility ONKALO

    International Nuclear Information System (INIS)

    Posiva's repository for geological disposal of the spent fuel from Finnish nuclear reactors will be constructed at Olkiluoto. The selection of Olkiluoto was made based on site selection research programme conducted between 1987-2001. The next step is to carry out complementary investigations of the site and apply for the construction license for the disposal facility. The license application will be submitted in 2012. To collect detailed information of the geological environment at planned disposal depth an underground characterisation and research facility will be built at the site. This facility, named as ONKALO, will comprise a spiral access tunnel and two vertical shafts. The excavation of ONKALO is in progress and planned depth (400 m) will be reached in 2009. During the course of the excavation Posiva will conduct site characterisation activities to assess the structure and other properties of the site geology. The aim is that construction will not compromise the favourable conditions of the planned disposal depth or introduce harmful effects in the surrounding bedrock which could jeopardize the long-term safety of the geological disposal. (author)

  6. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    International Nuclear Information System (INIS)

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed

  7. Current practice of public involvement activities in biomedical research and innovation: a systematic qualitative review.

    Directory of Open Access Journals (Sweden)

    Jonas Lander

    Full Text Available BACKGROUND: A recent report from the British Nuffield Council on Bioethics associated 'emerging biotechnologies' with a threefold challenge: 1 uncertainty about outcomes, 2 diverse public views on the values and implications attached to biotechnologies and 3 the possibility of creating radical changes regarding societal relations and practices. To address these challenges, leading international institutions stress the need for public involvement activities (PIAs. The objective of this study was to assess the state of PIA reports in the field of biomedical research. METHODS: PIA reports were identified via a systematic literature search. Thematic text analysis was employed for data extraction. RESULTS: After filtering, 35 public consultation and 11 public participation studies were included in this review. Analysis and synthesis of all 46 PIA studies resulted in 6 distinguishable PIA objectives and 37 corresponding PIA methods. Reports of outcome translation and PIA evaluation were found in 9 and 10 studies respectively (20% and 22%. The paper presents qualitative details. DISCUSSION: The state of PIAs on biomedical research and innovation is characterized by a broad range of methods and awkward variation in the wording of objectives. Better comparability of PIAs might improve the translation of PIA findings into further policy development. PIA-specific reporting guidelines would help in this regard. The modest level of translation efforts is another pointer to the "deliberation to policy gap". The results of this review could inform the design of new PIAs and future efforts to improve PIA comparability and outcome translation.

  8. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    Energy Technology Data Exchange (ETDEWEB)

    Wolfram, J.H.; Radtke, M.; Wey, J.E.; Rogers, R.D. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Rau, E.H. [National Inst. of Health, Bethesda, MD (United States). Div. of Safety

    1997-10-01

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed.

  9. Assessing the impact of biomedical research in academic institutions of disparate sizes

    Directory of Open Access Journals (Sweden)

    Hatzakis Angelos

    2009-05-01

    Full Text Available Abstract Background The evaluation of academic research performance is nowadays a priority issue. Bibliometric indicators such as the number of publications, total citation counts and h-index are an indispensable tool in this task but their inherent association with the size of the research output may result in rewarding high production when evaluating institutions of disparate sizes. The aim of this study is to propose an indicator that may facilitate the comparison of institutions of disparate sizes. Methods The Modified Impact Index (MII was defined as the ratio of the observed h-index (h of an institution over the h-index anticipated for that institution on average, given the number of publications (N it produces i.e. (α and β denote the intercept and the slope, respectively, of the line describing the dependence of the h-index on the number of publications in log10 scale. MII values higher than 1 indicate that an institution performs better than the average, in terms of its h-index. Data on scientific papers published during 2002–2006 and within 36 medical fields for 219 Academic Medical Institutions from 16 European countries were used to estimate α and β and to calculate the MII of their total and field-specific production. Results From our biomedical research data, the slope β governing the dependence of h-index on the number of publications in biomedical research was found to be similar to that estimated in other disciplines (≈0.4. The MII was positively associated with the average number of citations/publication (r = 0.653, p Conclusion The MII should complement the use of h-index when comparing the research output of institutions of disparate sizes. It has a conceptual interpretation and, with the data provided here, can be computed for the total research output as well as for field-specific publication sets of institutions in biomedicine.

  10. The Multianvil Press Research Facility at GSECARS

    Science.gov (United States)

    Wang, Y.; Uchida, T.; Rivers, M. L.; Sutton, S. R.; Weidner, D. J.; Durham, W. B.

    2002-12-01

    The multianvil press high pressure synchrotron research facility at the GSECARS beamlines consists of two large-volume presses (LVP): a 2.5 MN (250 ton) system at the bending magnet beamline (13-BM-D) and a 10 MN system at the insertion device beamline (13-ID-D). Both systems are now fully operational, with steadily increasing annual usage from ~70 days in 1998 to ~120 days in 2001. Here we present a system overview with brief scientific highlights illustrating the breadth of research and achievements made using this facility. Construction and operation of the facility are supported by the NSF Geosciences Instrumentation and Facilities Program. A DIA-type cubic-anvil apparatus and a split-cylinder apparatus (T-Cup) with 10 mm WC cubes are used to generate pressures and temperatures up to 24 GPa and 2400 K, on millimeter-sized samples, at 13-BM-D. In 13-ID-D, a large T-Cup apparatus with 25 mm anvils is used to reach pressure and temperature conditions of 25 GPa and 2500K simultaneously. Both high-pressure apparatus are mounted in die-sets, which can be easily transported in and out of the hydraulic press. Therefore all pressure generating apparatus can be used at any beamline, depending on research needs. A new deformation DIA (DDIA) was commissioned in August, 2002. This apparatus is capable of generating 30% strain on a 1 mm sample at pressures to ~15 GPa, allowing quantitative triaxial deformation experiments. Close to 400 runs have been carried out at our facility in a wide range of research areas: (1) P-V-T equation of state measurements on important mantle minerals, Fe alloys, and pressure standards, (2) in situ determination of phase relations of silicates, Fe alloys, and semiconductors using X-ray diffraction, (3) falling sphere measurements using radiography to determine viscosity of the silicate and metallic melts, (4) ultrasonic velocity measurements on mantle minerals, especially non-quenchable high pressure phases (e.g., high-pressure clinoenstatite

  11. Facility modernization Annular Core Research Reactor

    International Nuclear Information System (INIS)

    The Annular Core Research Reactor (ACRR) has undergone numerous modifications since its conception in response to program needs. The original reactor fuel, which was special U-ZrH TRIGA fuel designed primarily for pulsing, has been replaced with a higher pulsing capacity BeO fuel. Other advanced operating modes which use this increased capability, in addition to the pulse and steady state, have been incorporated to tailor power histories and fluences to the experiments. Various experimental facilities have been developed that range from a radiography facility to a 50 cm diameter External Fuel Ring Cavity (FREC) using 180 of the original ZrH fuel elements. Currently a digital reactor console is being produced with GA, which will give enhanced monitoring capabilities of the reactor parameters while leaving the safety-related shutdown functions with analog technology. (author)

  12. Decommissioning of nuclear research facilities at KAERI

    International Nuclear Information System (INIS)

    At the Korea Atomic Energy Research Institute (KAERI), two research reactors (KRR-1 and KRR-2) and one uranium conversion plant (UCP) are being decommissioned. The main reason of the decommissioning was the diminishing utilities; the start of a new research reactor, HANARO, and the higher conversion cost than that of international market for the UCP. Another reason of the decommissioning was prevention from spreading radioactive materials due to the deterioration of the facilities. Two separate projects have already been started and are carried out as planned. The KAERI selected several strategies, considering the small scale of the projects, the internal standards in KAERI, and the future prospects of the decommissioning projects in Korea. In this paper, the current status of the decommissioning including the waste management and the technology development will be explained

  13. Europlanet Research Infrastructure: Planetary Sample Analysis Facilities

    Science.gov (United States)

    Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the third TNA: Planetary Sample Analysis Facilities. The modular infrastructure represents a major commitment of analytical instrumentation by three institutes and together forms a state-of-the-art analytical facility of unprecedented breadth. These centres perform research in the fields of geochemistry and cosmochemistry, studying fluids and rocks in order to better understand the keys cof the universe. Europlanet Research Infrastructure Facilities: Ion Probe facilities at CRPG and OU The Cameca 1270 Ion microprobe is a CNRS-INSU national facility. About a third of the useful analytical time of the ion probe (about 3 months each year) is allocated to the national community. French scientists have to submit their projects to a national committee for selection. The selected projects are allocated time in the following 6 months twice a year. About 15 to 20 projects are run each year. There are only two such instruments in Europe, with cosmochemistry only performed at CRPG. Different analyses can be performed on a routine basis, such as U-Pb dating on Zircon, Monazite or Pechblende, Li, B, C, O, Si isotopic ratios determination on different matrix, 26Al, 60Fe extinct radioactivity ages, light and trace elements contents . The NanoSIMS 50L - producing element or isotope maps with a spatial resolution down to ≈50nm. This is one of the cornerstone facilities of UKCAN, with 75% of available instrument time funded and

  14. Cell line cross-contamination in biomedical research: a call to prevent unawareness

    Institute of Scientific and Technical Information of China (English)

    Armando ROJAS; Ueana GONZALEZ; Hector FIGUEROA

    2008-01-01

    During the 1950s, cross-contamination of cell lines emerged as a problem with serious consequences on the quality of biomedical research. Unfortunately, this situation has worsened over years. In this context, some actions should be ur-gently undertaken to avoid the generation of misleading data due to the increas-ingly and sometimes neglected use of cross-contaminated cell lines. Unaware-ness about this problem may then turn many scientists into victims or even perpe-trators of this unwanted situation. Collaborative actions involving researchers, cell banks, journals, and funding agencies are needed to save the scientific repu-tation as well as many public or private resources that are used to produce mis-leading data.

  15. [The legal question of the obtention of human stem cells for biomedical research. Legislation policy considerations].

    Science.gov (United States)

    Romeo Casabona, Carlos María

    2006-01-01

    The future Law on Biomedical Research, whose draft bill has been approved by the Council of Ministers and that will soon begin its parliamentary process of approval, will regulate, among other matters, the research with embryos. Likewise, it will make a pronouncement on the so-called therapeutic cloning. This report makes a detailed analysis of different matters that must be borne in mind by the legislator in order to face the process of evaluation and approval of said Law in relation with the aforementioned matters. It makes a special analysis of the legal texts of an international nature to which Spain is unavoidably subjected to, in such a way that the legislative text that will finally be approved is not contrary to the dispositions that are within such. PMID:17124973

  16. ARM Climate Research Facility Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  17. Resolving complex research data management issues in biomedical laboratories: Qualitative study of an industry-academia collaboration.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L; Bova, G Steven; Wang, Jian; Ackerman, Christopher F; Berlinicke, Cynthia A; Chen, Steve H; Lindvall, Mikael; Zack, Donald J

    2016-04-01

    This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to (1) characterize specific problems faced by biomedical researchers with traditional information management practices, (2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to (3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. PMID:26652980

  18. Glass Furnace Combustion and Melting Research Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Connors, John J. (PPG Industries, Inc., Pittsburgh, PA); McConnell, John F. (JFM Consulting, Inc., Pittsburgh, PA); Henry, Vincent I. (Henry Technology Solutions, LLC, Ann Arbor, MI); MacDonald, Blake A.; Gallagher, Robert J.; Field, William B. (Lilja Corp., Livermore, CA); Walsh, Peter M.; Simmons, Michael C. (Lilja Corp., Livermore, CA); Adams, Michael E. (Lilja Corp., Rochester, NY); Leadbetter, James M. (A.C. Leadbetter and Son, Inc., Toledo, OH); Tomasewski, Jack W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Operacz, Walter J. (A.C. Leadbetter and Son, Inc., Toledo, OH); Houf, William G.; Davis, James W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Marvin, Bart G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Gunner, Bruce E. (A.C. Leadbetter and Son, Inc., Toledo, OH); Farrell, Rick G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Bivins, David P. (PPG Industries, Inc., Pittsburgh, PA); Curtis, Warren (PPG Industries, Inc., Pittsburgh, PA); Harris, James E. (PPG Industries, Inc., Pittsburgh, PA)

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  19. SINP MSU accelerator facility and applied research

    International Nuclear Information System (INIS)

    Full text: SINP accelerator facility includes 120 cm cyclotron, electrostatic generator with the upper voltage 3.0 MeV, electrostatic generator with the upper voltage 2.5 MeV, Cocroft -Walton generator with the upper voltage 500 keV, 150 keV accelerator for solid microparticles. A new generation of electron beam accelerators has been developed during the last decade. The SINP accelerator facility will be shortly described in the report. A wide range of basic research in nuclear and atomic physics, physics of ion-beam interactions with condensed matter is currently carried out. SINP activity in the applied research is concentrated in the following areas of materials science: - Materials diagnostics with the Rutherford backscattering techniques (RBS) and channeling of ions (RBS/C). A large number of surface ad-layers and multilayer systems for advanced micro- and nano-electronic technology have been investigated. A selected series of examples will be illustrated. - Concentration depth profiles of hydrogen by the elastic recoils detection techniques (ERD). Primarily, the hydrogen depth profiles in perspective materials for thermonuclear reactors have been investigated. - Lattice site locations of hydrogen by a combination of ERD and channeling techniques. This is a new technique which was successfully applied for investigation of hydrogen and hydrogen-defect complexes in silicon for the smart-cut technology. - Light element diagnostics by RBS and nuclear backscattering techniques (NBS). The technique is illustrated by applications for nitrogen concentration profiling in steels. Nitrogen take-up and release, nitrides precipitate formation will be illustrated. - New medium energy ion scattering (MEIS) facility and applications. Ultra-high vacuum and superior energy resolution electrostatic toroidal analyzer is designed to be applied for characterization of composition and structure of several upper atomic layers of materials

  20. NSTX: Facility/Research Highlights and Near Term Facility Plans

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono

    2008-11-19

    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  1. [The application progresses of the two dimensional electrophoresis in biomedical research].

    Science.gov (United States)

    Wang, Yuebin; Tang, Hong

    2011-12-01

    Research about proteomics is of great significance. Two-dimensional electrophoresis (2-DE) is a core technology of proteomics research, which is used for analysis of the protein extracted from cell, tissue and other sam-nology of proteomics research, which is used for analysis of the protein extracted from cell, tissue and other samples. In recent years, 2-DE combined with mass spectrum (MS) technology is widely used to identify differentialples. In recent years, 2-DE combined with mass spectrum (MS) technology is widely used to identify differential protein, to screen tumor markers, to detect drug targets and so on. Proteomics research has become key technology,protein, to screen tumor markers, to detect drug targets and so on. Proteomics research has become key technology, with its high throughput, high resolution and repeatability, and is widely used in various fields, particularly in bio-with its high throughput, high resolution and repeatability, and is widely used in various fields, particularly in biomedical research. We provided here a short review about the application development of 2-DE, especially its contribution on biological medicine. PMID:22295720

  2. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  3. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately

  4. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    Science.gov (United States)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey

  5. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  6. Recent advances in three-dimensional multicellular spheroid culture for biomedical research.

    Science.gov (United States)

    Lin, Ruei-Zeng; Lin, Ruei-Zhen; Chang, Hwan-You

    2008-10-01

    Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques. PMID:18566957

  7. Biomedical research funding: when the game gets tough, winners start to play.

    Science.gov (United States)

    Ascoli, Giorgio A

    2007-09-01

    Extramural funding provides major support for biomedical research in academia, and National Institutes of Health (NIH) grants often constitute direct evaluation criteria for promotions and tenure. Therefore, NIH budget trends influence long-term scientific strategies and career decisions, as well as the progress of science itself. Our analysis of the last 37 years of NIH awards, however, reveals that the success rate of grant applications submitted for funding is negatively related to the total yearly amount of (inflation-adjusted) NIH extramural expenditure. Instead, as might be expected, the ratio between available funding and the number of submission directly predicts the probability of winning support in any given year. We purport that the considerable success rate variability can be parsimoniously explained by a proportional but delayed reaction of the number of applications to budget fluctuations. As a counterintuitive consequence, grant proposals conceived during lean periods might stand the best chance of success. PMID:17688241

  8. Design, implementation, and evaluation of principles of writing biomedical research paper course

    Directory of Open Access Journals (Sweden)

    ALI AKBAR NEKOOEIAN

    2013-10-01

    Full Text Available Introduction: Graduate (PhD students in medical sciences, who will form future faculties and investigators in Iran’s Universities of Medical Sciences, are not trained on scientific writing during their training. The present study describes the design, implementation, and evaluation of Principles of Writing Biomedical Research Paper course. Methods: The course, prepared based on an extensive search of the literature and books on writing biomedical research papers, was offered as an elective course to PhD students at Shiraz University of Medical Sciences in the second semester of 2011-2012 academic year. The structure and function of various sections of a paper and publication ethics were discussed in lecture and practical sessions over a period of 12 weeks. The course was then evaluated using a self-designed questionnaire. Results: The majority of students gave the highest score (20 to the content and implementation of all sessions of the course. Moreover, most of them believed that the allotted time to the course was not enough, and suggested that it should be increased to 32 hours (equal to two credits. Also, almost all the participants believed that overall the materials lectured were comprehensive, the practical sessions were important in learning the lectured materials, and the course was useful in advancing their abilities and skills to write papers. Conclusion: The evaluation of the present course showed that it was able to increase the participants’ knowledge of the structure of scientific papers, and enhanced their abilities and skills to write papers. The evaluation was used as a basis to modify the course.

  9. Bias in the reporting of sex and age in biomedical research on mouse models.

    Science.gov (United States)

    Flórez-Vargas, Oscar; Brass, Andy; Karystianis, George; Bramhall, Michael; Stevens, Robert; Cruickshank, Sheena; Nenadic, Goran

    2016-01-01

    In animal-based biomedical research, both the sex and the age of the animals studied affect disease phenotypes by modifying their susceptibility, presentation and response to treatment. The accurate reporting of experimental methods and materials, including the sex and age of animals, is essential so that other researchers can build on the results of such studies. Here we use text mining to study 15,311 research papers in which mice were the focus of the study. We find that the percentage of papers reporting the sex and age of mice has increased over the past two decades: however, only about 50% of the papers published in 2014 reported these two variables. We also compared the quality of reporting in six preclinical research areas and found evidence for different levels of sex-bias in these areas: the strongest male-bias was observed in cardiovascular disease models and the strongest female-bias was found in infectious disease models. These results demonstrate the ability of text mining to contribute to the ongoing debate about the reproducibility of research, and confirm the need to continue efforts to improve the reporting of experimental methods and materials. PMID:26939790

  10. In Vivo Radiobioassay and Research Facility

    International Nuclear Information System (INIS)

    Bioassay monitoring for intakes of radioactive material is an essential part of the internal dosimetry program for radiation workers at the Department of Energy's (DOE) Hanford Site. This monitoring program includes direct measurements of radionuclides in the body by detecting photons that exit the body and analyses of radionuclides in excreta samples. The specialized equipment and instrumentation required to make the direct measurements of these materials in the body are located at the In Vivo Radiobioassay and Research Facility (IVRRF). The IVRRF was originally built in 1960 and was designed expressly for the in vivo measurement of radioactive material in Hanford workers. Most routine in vivo measurements are performed annually and special measurements are performed as needed. The primary source terms at the Hanford Site include fission and activation products (primarily 137Cs and 90Sr), uranium, uranium progeny, and transuranic radionuclides. The facility currently houses five shielded counting systems, men's and women's change rooms and an instrument maintenance and repair shop. Four systems include high purity germanium detectors and one system utilizes large sodium iodide detectors. These systems are used to perform an average of 7,000 measurements annually. This includes approximately 5000 whole body measurements analyzed for fission and activation products and 2000 lung measurements analyzed for americium, uranium, and plutonium. Various other types of measurements are performed periodically to estimate activity in wounds, the thyroid, the liver, and the skeleton. The staff maintains the capability to detect and quantify activity in essentially any tissue or organ. The in vivo monitoring program that utilizes the facility is accredited by the Department of Energy Laboratory Accreditation Program for direct radiobioassay.

  11. Challenges facing academic research in commercializing event-detector implantable devices for an in-vivo biomedical subcutaneous device for biomedical analysis

    Science.gov (United States)

    Juanola-Feliu, E.; Colomer-Farrarons, J.; Miribel-Català, P.; Samitier, J.; Valls-Pasola, J.

    2011-05-01

    It is widely recognized that the welfare of the most advanced economies is at risk, and that the only way to tackle this situation is by controlling the knowledge economies and dealing with. To achieve this ambitious goal, we need to improve the performance of each dimension in the "knowledge triangle": education, research and innovation. Indeed, recent findings point to the importance of strategies of adding-value and marketing during R+D processes so as to bridge the gap between the laboratory and the market and so ensure the successful commercialization of new technology-based products. Moreover, in a global economy in which conventional manufacturing is dominated by developing economies, the future of industry in the most advanced economies must rely on its ability to innovate in those high-tech activities that can offer a differential added-value, rather than on improving existing technologies and products. It seems quite clear, therefore, that the combination of health (medicine) and nanotechnology in a new biomedical device is very capable of meeting these requisites. This work propose a generic CMOS Front-End Self-Powered In-Vivo Implantable Biomedical Device, based on a threeelectrode amperometric biosensor approach, capable of detecting threshold values for targeted concentrations of pathogens, ions, oxygen concentration, etc. Given the speed with which diabetes can spread, as diabetes is the fastest growing disease in the world, the nano-enabled implantable device for in-vivo biomedical analysis needs to be introduced into the global diabetes care devices market. In the case of glucose monitoring, the detection of a threshold decrease in the glucose level it is mandatory to avoid critic situations like the hypoglycemia. Although the case study reported in this paper is complex because it involves multiple organizations and sources of data, it contributes to extend experience to the best practices and models on nanotechnology applications and

  12. Large power supply facilities for fusion research

    International Nuclear Information System (INIS)

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  13. Biomedical optical imaging

    CERN Document Server

    Fujimoto, James G

    2009-01-01

    Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this tech

  14. How Large-Scale Research Facilities Connect to Global Research

    DEFF Research Database (Denmark)

    Lauto, Giancarlo; Valentin, Finn

    2013-01-01

    institutional settings. Policies mandating LSRFs should consider that research prioritized on the basis of technological relevance limits the international reach of collaborations. Additionally, the propensity for international collaboration is lower for resident scientists than for those affiliated......Policies for large-scale research facilities (LSRFs) often highlight their spillovers to industrial innovation and their contribution to the external connectivity of the regional innovation system hosting them. Arguably, the particular institutional features of LSRFs are conducive for collaborative...... research. However, based on data on publications produced in 2006–2009 at the Neutron Science Directorate of Oak Ridge National Laboratory in Tennessee (United States), we find that internationalization of its collaborative research is restrained by coordination costs similar to those characterizing other...

  15. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  16. Facile syntheses of pyrimidine acyclic nucleoside phosphonates and their potential evaluation for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Pomeisl, Karel; Holý, Antonín; Votruba, Ivan; Nencka, Radim; Pohl, Radek

    Praha : Institute of Organic Chemistry and Biochemistry ASCR, 2008 - (Hocek, M.), s. 201-205 ISBN 978-80-86241-29-6. - (Collection Symposium Series. 10). [Symposium on Chemistry of Nucleic Acid Components /14./. Český Krumlov (CZ), 08.06.2008-13.06.2008] R&D Projects: GA MŠk 1M0508; GA AV ČR 1QS400550501 Institutional research plan: CEZ:AV0Z40550506 Keywords : acyclic nucleoside phosphonates * thymidine phosphorylase * dUTPpase Subject RIV: CC - Organic Chemistry

  17. Identifying the ‘Vulnerables’ in Biomedical Research: the vox populis from the Tuskegee Legacy Project

    Science.gov (United States)

    Wiley, John

    2011-01-01

    Objectives This report presents, for the first time, findings on the vox populis as to who constitutes the ‘vulnerables in biomedical research’. Methods The 3-City Tuskegee Legacy Project (TLP) study used the TLP Questionnaire as administered via RDD telephone interviews to 1,162 adult Blacks, non-Hispanic Whites, and two Puerto Rican (PR) Hispanic groups: Mainland U.S. and San Juan (SJ) in 3 cities. The classification schema was based upon respondents’ answers to an open-ended question asking which groups of people were the most vulnerable when participating in biomedical research. Results Subjects provided 749 valid open-ended responses which were grouped into 29 direct response categories, leading to a 4 tier classification schema for vulnerability traits. Tier 1, the summary tier, had five vulnerability categories: 1) Race/ethnicity; 2) Age; 3) SES; 4) Health; and, 5) Gender. Blacks and Mainland U.S. PR Hispanics most frequently identified Race/Ethnicity as a vulnerability trait (42.1% of Blacks and 42.6% of Mainland U.S. PR Hispanics vs. 15.4% of Whites and 16.7% of San Juan R Hispanics) (p<.007), while Whites and SJ PR Hispanics most frequently identified Age (48.3% and 29.2%) as a vulnerability trait. Conclusions The response patterns on ‘who was vulnerable’ were similar for the two minority groups (Blacks and Mainland U.S. PR Hispanics), and notably different from the response patterns of the two majority groups (Whites and SJPR Hispanics). Further, the vox populis definition of vulnerables differed from the current official definitions as used by the U.S. federal government. PMID:21972462

  18. The Canadian neutron facility for materials research (CNF)

    International Nuclear Information System (INIS)

    Canada has plans to set up a Canadian Neutron Facility (CNF) of 40 MWt capacity for materials research and nuclear fuel development. The CNF will be a part of the international network with other large neutron facilities in France, the United Kingdom and the USA. Canada may consider offering this facility for international research under the IAEA auspices. (author)

  19. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  20. Analysis and Implementation of an Electronic Laboratory Notebook in a Biomedical Research Institute

    Science.gov (United States)

    Dujardin, Gwendal; Cabrera-Andrade, Alejandro; Paz-y-Miño, César; Indacochea, Alberto; Inglés-Ferrándiz, Marta; Nadimpalli, Hima Priyanka; Collu, Nicola; Dublanche, Yann; De Mingo, Ismael; Camargo, David

    2016-01-01

    Electronic laboratory notebooks (ELNs) will probably replace paper laboratory notebooks (PLNs) in academic research due to their advantages in data recording, sharing and security. Despite several reports describing technical characteristics of ELNs and their advantages over PLNs, no study has directly tested ELN performance among researchers. In addition, the usage of tablet-based devices or wearable technology as ELN complements has never been explored in the field. To implement an ELN in our biomedical research institute, here we first present a technical comparison of six ELNs using 42 parameters. Based on this, we chose two ELNs, which were tested by 28 scientists for a 3-month period and by 80 students via hands-on practical exercises. Second, we provide two survey-based studies aimed to compare these two ELNs (PerkinElmer Elements and Microsoft OneNote) and to analyze the use of tablet-based devices. We finally explore the advantages of using wearable technology as ELNs tools. Among the ELNs tested, we found that OneNote presents almost all parameters evaluated (39/42) and both surveyed groups preferred OneNote as an ELN solution. In addition, 80% of the surveyed scientists reported that tablet-based devices improved the use of ELNs in different respects. We also describe the advantages of using OneNote application for Apple Watch as an ELN wearable complement. This work defines essential features of ELNs that could be used to improve ELN implementation and software development. PMID:27479083

  1. A microcosm of the biomedical research experience for upper-level undergraduates.

    Science.gov (United States)

    Hurd, Daryl D

    2008-01-01

    The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John Fisher College, features two independent projects that take advantage of the biology of the nematode Caenorhabditis elegans, a premier yet simple model organism. First, students perform a miniature epigenetic screen for novel phenotypes using RNA interference. The results of this screen combined with literature research direct students toward a singe gene that they attempt to subclone in the second project. The biology of the chosen gene/protein also becomes an individualized focal point with respect to the content of the laboratory. Progress toward course goals is evaluated using written, oral, and group-produced assignments, including a concept map. Pre- and postassessment indicates a significant increase in the understanding of broad concepts in cell biological research. PMID:18519612

  2. Integrating Clinical Medicine into Biomedical Graduate Education to Promote Translational Research: Strategies from Two New PhD Programs

    OpenAIRE

    Smith, Carolyn L; Jarrett, Marcia; Bierer, S. Beth

    2013-01-01

    For several decades, a barrier has existed between research and clinical medicine, making it difficult for aspiring scientists to gain exposure to human pathophysiology and access to clinical/translational research mentors during their graduate training. In 2005, the Howard Hughes Medical Institute announced the Med Into Grad initiative to support graduate programs that integrate clinical knowledge into PhD biomedical training, with the goal of preparing a new cadre of translational researche...

  3. Current severe accident research facilities and projects

    International Nuclear Information System (INIS)

    The Working Group on the Analysis and Management of Accidents (GAMA) is mainly composed of technical specialists in the areas of coolant system thermal-hydraulics, in-vessel protection, containment protection, and fission product retention. Its general functions include the exchange of information on national and international activities in these areas, the exchange of detailed technical information, and the discussion of progress achieved in respect of specific technical issues. Severe accident management is one of the important tasks of the group. This document is an update of the 'Current Severe Accident Research Facilities and Projects' list. Facilities and projects are sorted according to the following criteria: In-Vessel Phenomena: Core Degradation and Melt Progression, Molten Core Debris Interaction with the Reactor Pressure Vessel Lower Head and Mechanical Behaviour of Reactor Pressure Vessel Lower Head; In-Vessel and Ex-Vessel Molten Fuel/Coolant Interactions; Ex-Vessel Phenomena: Molten Core Debris/Concrete Interactions, Molten Core/Ceramic Interaction, Melt Release (including DCH), Melt Spreading and Catching Devices Studies, Melt Coolability, Corium Melt properties; Hydrogen Transport and Combustion: Mixing and Distribution, Deflagration, Deflagration-to-Detonation Transition, Passive Recombiner Performance; Mechanical Behaviour of Reactor Pressure Vessel Lower Head; Containment Structural Integrity: Containment Failure Experiment and Analysis, Material Properties and Structural Behaviour, Containment Thermal-Hydraulics, Containment Cooling, Cable Penetration Integrity; Fission Products and Aerosols: Effects of Specific Elements on Iodine Volatility, Release of Low-Volatility Fission Products/Late In-Vessel Fission Product Release, Reactor Materials Release, Aerosol and Iodine Behaviour in Reactor Coolant System and Containment, Retention, Resuspension and Revaporization in Primary Circuit, Aerosol Nucleation and Transport, Source Term, Containment

  4. Technical aspects of exposure to magnetic fields of extremely low frequencies (ELF in biomedical research

    Directory of Open Access Journals (Sweden)

    Paweł Bieńkowski

    2015-06-01

    Full Text Available Background: Experiments on the electromagnetic field influence on organisms are an important part of biophysical studies. It is an interdisciplinary research spanning biology and medicine with the engineering in generation and measurement of electromagnetic fields. The aim of the study consists in the analysis of parameters estimations and measurements of extremely low frequency magnetic field (ELF MF as well as exposure systems parameters in biomedical research. Material and Methods: Experiments were performed on 2 most popular low magnetic field exposure systems: the solenoid and Helmholtz coils. A theoretical analysis and a measurement verification of the magnetic field distribution inside the systems were carried out to evaluate the homogeneity of the magnetic field. Additional factors, vibrations and temperature changes, affecting the assessment of the biological effects of magnetic field exposure were also examined. Results: Based on the study results, a comparative analysis of solenoids and Helmholtz coils as the magnetic field exposure systems was presented. Proposals for the description of magnetic field exposure were also formulated. Conclusions: The authors emphasize the importance of a conscious choice of exposure conditions and their explicit description. These are fundamental requirements for both the reproduction of experimental conditions and the verification of results. Med. Pr. 2015;66(2:185–197

  5. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  6. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  7. The Cobalt-60 Research Facility at Seibersdorf

    International Nuclear Information System (INIS)

    The irradiation facility which is now under construction at Seibersdorf was designed especially for research on the International Fruit Juice Programme. The plant consists of two irradiation chambers, with a capacity of 30 kCi and 10 kCi, respectively. The first is proposed to irradiate quantities of fruit juice for feeding tests and for investigations in source technology. The other was especially designed for research purposes in microbiology and chemistry and has an optimal versatility in source configuration and position according to the experiment conditions. The biological shield, ordinary concrete with a density of about 2.4 ton/m3, gives an outside dose- rate of 0.2 mR/h maximum; The rest position of both sources is a lead cylinder let.into the shielding concrete. Twelve stainless-steel tubes (six tubes for the small chamber), in which the cobalt rods are fitted, pass in a spheric gangway into the irradiation chamber. The 60Co rods of the 30 kCi facility, each with an outside length of 300 mm, consist of two linked parts. They may be arranged individually or in any combination within five seconds by an air pressure system. Different tubes with the respective curvature allow practically every arrangement of source geometry. The chamber, measuring 3 x 3 X 3 m inside, may be closed by a concrete door; a binocular periscope enables the scientist to observe the experiment during irradiation. The other facility, measuring 3.5 x 3 x 3 m inside, can be entered through a labyrinth and has a source activity of 10 kCi. Six rods,- with an outside length of 250 mm, may be moved individually by Teleflex cable. They can be stopped in any position desired, measured from the entrance into the chamber. For observing experiments, a monocular periscope system is installed. The room is controlled at a temperature of between -18°C and +35°C, with an accuracy of ±1°C. Several tubes, up to a diameter of 300 mm, pass the concrete shield to enable the installation of cables and

  8. Research in artificial intelligence for nuclear facilities

    International Nuclear Information System (INIS)

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, artificial intelligence can increase efficiency and effectiveness in a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) and in research facility experiments. Recent work at the University of Tennessee has demonstrated the feasibility of using neural networks to identify six different transients introduced into the simulation of a steam generator of a nuclear power plant. This work is now being extended to utilize data from a nuclear power plant training simulator. In one configuration, the inputs to the neural network are a subset of the quantities that are typical of those available from the safety parameter display system. The outputs of the network represent the various states of the plant (e.g., normal operation, coolant leakage, inadequate core flow, excessive peak fuel temperature, etc.). Training of the neural network is performed by introducing various faults or conditions to be diagnosed into the simulator. The goal of this work is to demonstrate a neural network diagnostic system that could provide advice to the operators in accordance with the emergency operating procedures

  9. Biomedical cyclotron facility

    International Nuclear Information System (INIS)

    During the fifth year of operation the mechanical performance of the cyclotron and accessory equipment was excellent. Major items put into operation were a small computer system interfaced with Ge-Li gamma spectrometer and a pneumatic-tube system for fast delivery of short-lived radionuclides. A table is presented listing the radionuclides produced

  10. New Research Approach to Rebuild Sport Facilities

    Directory of Open Access Journals (Sweden)

    Gaetano Raiola

    2011-01-01

    Full Text Available Problem statement: The game court of team sport, part of Sport Centre of Arturo Collana, was closed after structural accident in 2006 and the local administration is now designing the rebuilding of it. For this reason, it has already allocated economical resource to study a partial reconstruction of it to reutilize actual structure. The problem is how can satisfy the customers according to suggesting the old and new solutions. Approach: The aim is to recognize expected demand about the real choice of customers with the proposal for a various architectural aspects. A survey was carries out by using statistical model to correlate a demand of multi game sport relating to various hypotheses, already designed with a different solution. A sample of 100 customers that have submitted questionnaire with the specific parameters about the architecture and engine was taken to apply the qualitative research method to the market research. Results and Conclusion: The result of this study concludes that it is not possible to the partially construct but it is useful the plenty reconstruction of game court. The local organization of Coni (Italian National Olympic Committee designed a new project according to a specific parameter that follows the same characteristic of old game court without searching the other engineer and architectural solutions. Thus the question is a mix of engine and architectural aspects, economical and functional elements of it. The data showed association between demand of multisport and new architectonical hypothesis and the association between demand of single sport and old architectural structure. The percentage of multi sport demand is higher than single sport and this orientation has to follow to design a new sport facilities.

  11. Real-time Data Fusion Platforms: The Need of Multi-dimensional Data-driven Research in Biomedical Informatics.

    Science.gov (United States)

    Raje, Satyajeet; Kite, Bobbie; Ramanathan, Jay; Payne, Philip

    2015-01-01

    Systems designed to expedite data preprocessing tasks such as data discovery, interpretation, and integration that are required before data analysis drastically impact the pace of biomedical informatics research. Current commercial interactive and real-time data integration tools are designed for large-scale business analytics requirements. In this paper we identify the need for end-to-end data fusion platforms from the researcher's perspective, supporting ad-hoc data interpretation and integration. PMID:26262406

  12. Customizable Electronic Laboratory Online (CELO): A Web-based Data Management System Builder for Biomedical Research Laboratories

    OpenAIRE

    Fong, Christine; Brinkley, James F.

    2006-01-01

    A common challenge among today’s biomedical research labs is managing growing amounts of research data. In order to reduce the time and resource costs of building data management tools, we designed the Customizable Electronic Laboratory Online (CELO) system. CELO automatically creates a generic database and web interface for laboratories that submit a simple web registration form. Laboratories can then use a collection of predefined XML templates to assist with the design of a database schema...

  13. Lessons Learned from Development of De-identification System for Biomedical Research in a Korean Tertiary Hospital

    OpenAIRE

    Shin, Soo-Yong; Lyu, Yongman; Shin, Yongdon; Choi, Hyo Joung; Park, Jihyun; Kim, Woo-Sung; Lee, Jae Ho

    2013-01-01

    Objectives The Korean government has enacted two laws, namely, the Personal Information Protection Act and the Bioethics and Safety Act to prevent the unauthorized use of medical information. To protect patients' privacy by complying with governmental regulations and improve the convenience of research, Asan Medical Center has been developing a de-identification system for biomedical research. Methods We reviewed Korean regulations to define the scope of the de-identification methods and well...

  14. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  15. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    Science.gov (United States)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  16. Underground facility plan for Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    The basic and most important conditions in forming plans for designing and constructing an underground research facility are ensuring the safety of the facility construction and securing an environment conductive to research. The site presently designated for construction an underground research facility is in a sedimentary soft rock (mudstone) of Neogene period, found to contain methane gas. Evaluating measures to deal with the geological characteristics, including assessment of the stability of support and handling of methane gas, is important in guaranteeing the safety of construction and operation of the research facility once completed. (author)

  17. Research at a European Planetary Simulation Facility

    Science.gov (United States)

    Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob

    2016-04-01

    A unique environmental simulation facility will be presented which is capable of re-creating extreme terrestrial or other planetary environments. It is supported by EU activities including a volcanology network VERTIGO and a planetology network Europlanet 2020 RI. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and industrial community. Details of this laboratory facility will be presented and some of the most recent activities will be summarized. For information on access to this facility please contact the author.

  18. MEDES clinical research facility as a tool to prepare ISSA space flights

    Science.gov (United States)

    Maillet, A.; Traon, A. Pavy-Le

    This new multi-disciplinary medical experimentation center provides the ideal scientific, medical and technical environment required for research programs and to prepare international space station Alpha (ISSA) missions, where space and healthcare industries can share their expertise. Different models are available to simulate space flight effects (bed-rest, confinement,…). This is of particular interest for research in Human psychology, physiology, physiopathology and ergonomics, validation of biomedical materials and procedures, testing of drugs, and other healthcare related products. This clinical research facility (CRF) provides valuable services in various fields of Human research requiring healthy volunteers. CRF is widely accessible to national and international, scientific, medical and industrial organisations. Furthermore, users have at their disposal the multi-disciplinary skills of MEDES staff and all MEDES partners on a single site.

  19. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    OpenAIRE

    Mitsuo Niinomi

    2003-01-01

    Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys f...

  20. Laboratory maintenance, breeding, rearing, and biomedical research potential of the Yucatan octopus (Octopus maya).

    Science.gov (United States)

    Van Heukelem, W F

    1977-10-01

    Eggs of the Yucatan octopus, Octopus maya, were collected at Campeche, Mexico, transported to Hawaii, and incubated in glass funnels. Benthic juveniles hatched from the large (17-mm) eggs and were reared on a variety of live and frozen foods. As many as 200 animals were reared for the first month in a 20-liter aquarium. No disease or parasite problems were encountered and nearly all well-fed juveniles survived to sexual maturity. The species was reared through four generations in the laboratory. Animals weighed 0.1 g at hatching and within 8.5 months attained an average weight of 3231 g. Mating was promiscuous and sperm were stored in the oviducts until spawning. Spawning occurred at 8-9 months of age. Up to 5,000 eggs were laid by large females and nearly 100% of fertilized eggs developed to hatching. Females brooded eggs during the 45-day period of development but artificial was as successful as natural incubation by the mother. Pos-reproductive senescent decline of both males and females was rapid and average life span was 300 days from hatching. Areas of biomedical research in which O maya could be a useful model were suggested and included neurobiology, comparative psychology, ontogeny of behavior, immunology, endocrinology, and studies of aging. PMID:592733

  1. Nuclear magnetic resonance (NMR) spectroscopy and its application to biomedical research

    International Nuclear Information System (INIS)

    The principles of nuclear magnetic resonance (NMR) spectroscopy were explained and its application to biomedical research discussed. With 31P-NMR, it is feasible to conduct a continuous, non-invasive measurement of the contents of myocardial high-energy phosphate compounds and the intracellular pH (determined by monitoring the pH dependent shift of the inorganic phosphate peak relative to that of creatine phosphate), and to correlate them with the mechanical function. The determination of the free magnesium concentration is also possible on a similar principle to that for pH determination (the shift of MgATP peaks relative to ATP is utilized in this case). It is estimated to be 0.3 mM and was found not to be changed during ischemia. Several examples of studies including our own conducted to delineate the ischemic derangements of the myocardial energy metabolism and the effects of various interventions thereupon were illustrated. Finally a brief mention was made of the saturation transfer technique. This is the only method with which one can study the kinetics of the enzyme reactions under in vivo conditions. The application of the method for analysis of the creatine kinase reaction and the ATP synthesis was demonstrated. (author) 49 refs

  2. High pressure FT-IR spectroscopy for biomedical and cancer research

    Science.gov (United States)

    Wong, Patrick T. T.

    1994-07-01

    By resolving technical and methodological problems, we are now able to obtain extremely high quality infrared spectra of animal and human tissues and cells as a function of pressure. This allows us to analyze the spectra in great details in terms of structural and dynamic properties at the molecular level in a wide range of biological and biomedical problems. For instance, in our cancer research we found that many structural modifications of cellular molecules in the malignant transformation are common to all the cancers that we have studied to data. Recently, large scale evaluation of the use of high-pressure FT-IR spectroscopy for the prescreening of cancer as well as preinvasive lesions of the cervix has been initiated in our laboratory. In order to optimize the specificity of the FT-IR technology for cervical screening, we have systematically studied and analyzed the high-pressure infrared spectra of individual abnormal lessons of the cervix. The results of one of these studies, differentiation between malignancy and inflammation in the human uterine cervix are given in this paper.

  3. Performing Drug Safety Research During Pregnancy and Lactation: Biomedical HIV Prevention Research as a Template.

    Science.gov (United States)

    Beigi, Richard H; Noguchi, Lisa; Brown, Gina; Piper, Jeanna; Watts, D Heather

    2016-07-01

    Evidence-based guidance regarding use of nearly all pharmaceuticals by pregnant and lactating women is limited. Models for performing research may assist in filling these knowledge gaps. Internationally, reproductive age women are at high risk of human immunodeficiency virus (HIV) acquisition. Susceptibility to HIV infection may be increased during pregnancy, and risk of maternal-child transmission is increased with incident HIV infection during pregnancy and lactation. A multidisciplinary meeting of experts was convened at the United States National Institutes of Health to consider paradigms for drug research in pregnancy and lactation applicable to HIV prevention. This report summarizes the meeting proceedings and describes a framework for research on candidate HIV prevention agent use during pregnancy and lactation that may also have broader applications to other pharmaceutical products. PMID:23808668

  4. Using multicriteria decision analysis to support research priority setting in biomedical translational research projects.

    Science.gov (United States)

    de Graaf, Gimon; Postmus, Douwe; Buskens, Erik

    2015-01-01

    Translational research is conducted to achieve a predefined set of economic or societal goals. As a result, investment decisions on where available resources have the highest potential in achieving these goals have to be made. In this paper, we first describe how multicriteria decision analysis can assist in defining the decision context and in ensuring that all relevant aspects of the decision problem are incorporated in the decision making process. We then present the results of a case study to support priority setting in a translational research consortium aimed at reducing the burden of disease of type 2 diabetes. During problem structuring, we identified four research alternatives (primary, secondary, tertiary microvascular, and tertiary macrovascular prevention) and a set of six decision criteria. Scoring of these alternatives against the criteria was done using a combination of expert judgement and previously published data. Lastly, decision analysis was performed using stochastic multicriteria acceptability analysis, which allows for the combined use of numerical and ordinal data. We found that the development of novel techniques applied in secondary prevention would be a poor investment of research funds. The ranking of the remaining alternatives was however strongly dependent on the decision maker's preferences for certain criteria. PMID:26495288

  5. Large sample NAA facility at GRR-1 research reactor: Design and applications

    International Nuclear Information System (INIS)

    Full text: A Large Sample Neutron Activation Analysis (LSNAA) facility is under development at GRR-1 research reactor, NCSR 'Demokritos'. The LSNAA facility design incorporates sample irradiation in the reactor's graphite thermal neutron column and subsequent measurement of the activity induced at a gamma spectroscopy system with gamma ray transmission measurement options included. Monte Carlo neutron and photon transport code MCNP-4C was used to model the facility. Appropriate correction factors accounting for neutron field perturbation during sample irradiation, high purity germanium detector efficiency for the volume source and gamma ray self-absorption within the sample itself were derived. The results of the computations were experimentally verified by activation foil measurements for a set of known materials and a range of sample sizes extending up to 10 litters. Moreover, the special issue of large sample analysis of non-homogeneous samples is examined and the limits of the technique are discussed. The LSNAA facility will be used to perform multi-element, non-destructive, contamination free analysis of large volume samples with high sensitivity and excellent sampling. End-users of the facility include archaeological, environmental, biomedical research laboratories and the industry. Preliminary results of large sample analysis are presented and the accuracy of the technique is validated against conventional instrumental neutron activation analysis of the same materials. (author)

  6. Climate Change, Human Health, and Biomedical Research: Analysis of the National Institutes of Health Research Portfolio

    OpenAIRE

    Jessup, Christine M.; Balbus, John M.; Christian, Carole; Haque, Ehsanul; Howe, Sally E.; Newton, Sheila A.; Reid, Britt C.; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P.

    2013-01-01

    Background: According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. Objectives: In this commentary we p...

  7. [The role of animal testing advisory committees in biomedical research in Germany].

    Science.gov (United States)

    Sauer, Ursula G

    2006-01-01

    In accordance with the German Animal Welfare Act, animal experiments in fundamental biomedical research may only be performed after licensing by the responsible authority. This license may only be granted if the experiments are considered indispensable and if the distress of the animals seems ethically acceptable in relation to the purpose of the study. Since 1987 advisory committees have been established to support the authorities in the evaluation of these provisions. Animal welfare organisations had expected case-by-case evaluations of the in-dispensability of research proposals and of the distress of the animals and the scientific benefit of the experiments to take place in these committees, so that such projects that would not meet the criteria of ethical acceptability could be prevented. However, already the lack of parity in the advisory committees alone, in which as a rule four scientists counterpart two representatives from animal welfare organisations, often-times prevents a balanced discussion of these provisions from taking place. Additionally, due to the freedom of science granted in the German Constitution without reservations, until 2002 also the licensing authorities were merely permitted to perform a formal examination of the applications. In the mean time, by including animal welfare as a national objective in the Constitution, the preconditions were made to enable an examination of the contents. From the point of view of animal welfare it therefore is to be requested that now also the advisory committees are ascribed more importance in the course of the licensing procedure and to establish the legal framework for this, if necessary by a revision of the Animal Welfare Act. PMID:16477346

  8. Metering management at the plutonium research and development facilities

    International Nuclear Information System (INIS)

    Nuclear fuel research laboratory of the Oarai Research Laboratory of the Japan Atomic Energy Research Institute is an R and D facility to treat with plutonium and processes various and versatile type samples in chemical and physical form for use of various experimental researches even though on much small amount. Furthermore, wasted and plutonium samples are often transported to other KMP and MBA such as radioactive waste management facility, nuclear reactor facility and so forth. As this facility is a place to treat plutonium important on the safeguards, it is a facility necessary for detection and allowance actions and for detail managements on the metering management data to report to government and IAEA in each small amount sample and different configuration. In this paper, metering management of internationally regulated matters and metering management system using a work station newly produced in such small scale facility were introduced. (G.K.)

  9. A Perspective on Promoting Diversity in the Biomedical Research Workforce: The National Heart, Lung, and Blood Institute's PRIDE Program.

    Science.gov (United States)

    Boyington, Josephine E A; Maihle, Nita J; Rice, Treva K; Gonzalez, Juan E; Hess, Caryl A; Makala, Levi H; Jeffe, Donna B; Ogedegbe, Gbenga; Rao, Dabeeru C; Dávila-Román, Victor G; Pace, Betty S; Jean-Louis, Girardin; Boutjdir, Mohamed

    2016-01-01

    Aspiring junior investigators from groups underrepresented in the biomedical sciences face various challenges as they pursue research independence. However, the biomedical research enterprise needs their participation to effectively address critical research issues such as health disparities and health inequities. In this article, we share a research education and mentoring initiative that seeks to address this challenge: Programs to Increase Diversity among Individuals Engaged in Health Related Research (PRIDE), funded by the National Heart, Lung, and Blood Institute (NHLBI). This longitudinal research-education and mentoring program occurs through summer institute programs located at US-based academic institutions. Recruited participants are exposed to didactic and lab-based research-skill enhancement experiences, with year-round mentoring over the course of two years. Mentor-mentee matching is based on shared research interests to promote congruence and to enhance skill acquisition. Program descriptions and sample narratives of participants' perceptions of PRIDE's impact on their career progress are showcased. Additionally, we highlight the overall program design and structure of four of seven funded summer institutes that focus on cardiovascular disease, related conditions, and health disparities. Mentees' testimonials about the value of the PRIDE mentoring approach in facilitating career development are also noted. Meeting the clinical and research needs of an increasingly diverse US population is an issue of national concern. The PRIDE initiative, which focuses on increasing research preparedness and professional development of groups underrepresented in the biomedical research workforce, with an emphasis on mentoring as the critical approach, provides a robust model that is impacting the careers of future investigators. PMID:27440978

  10. Northwestern University Facility for Clean Catalytic Process Research

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin Jay [Northwestern University

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  11. National facility for neutron beam research in India

    International Nuclear Information System (INIS)

    A national facility for neutron beam research is operated at the research reactor Dhruva in BARC. It includes single-crystal and powder diffractometers, a polarization analysis spectrometer, inelastic and quasi-elastic scattering spectrometers in the reactor hall, and smallangle scattering instruments and a polarized neutron reflectometer in the neutron-guide laboratory. The National facility is utilized in collaboration with various universities and other institutions. The talk will present our facilities and discuss examples of recent work.

  12. Office of Chief Scientist, Integrated Research Facility (OCSIRF)

    Data.gov (United States)

    Federal Laboratory Consortium — Introduction The Integrated Research Facility (IRF) is part of the Office of the Chief Scientist (OCS) for the Division of Clinical Research in the NIAID Office of...

  13. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research Part 1: Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1995-04-01

    Research in the biomedical sciences at PNL is described. Activities reported include: inhaled plutonium in dogs; national radiobiology archives; statistical analysis of data from animal studies; genotoxicity of inhaled energy effluents; molecular events during tumor initiation; biochemistry of free radical induced DNA damage; radon hazards in homes; mechanisms of radon injury; genetics of radon induced lung cancer; and in vivo/in vitro radon induced cellular damage.

  14. Public views on the donation and use of human biological samples in biomedical research: a mixed methods study

    OpenAIRE

    Lewis, C.; Clotworthy, M.; Hilton, S; MaGee, C.; Robertson, M. J.; Stubbins, L.J.; Corfield, J.

    2013-01-01

    Objective A mixed methods study exploring the UK general public's willingness to donate human biosamples (HBSs) for biomedical research. Setting Cross-sectional focus groups followed by an online survey. Participants Twelve focus groups (81 participants) selectively sampled to reflect a range of demographic groups; 1110 survey responders recruited through a stratified sampling method with quotas set on sex, age, geographical location, socioeconomic group and ethnicity. Main outcom...

  15. Biomedical research involving patients with disorders of consciousness: ethical and legal dimensions

    Directory of Open Access Journals (Sweden)

    Michele Farisco

    2014-09-01

    Full Text Available The directive 2001/20/UE and the research involving patients with docs. Research involving patients with disorders of consciousness (DOCs deserves special ethical and legal attention because of its Janus-faced nature. On the one hand, it raises concerns about the risk to expose the involved subjects to disproportionate risks not respecting their individual dignity, particularly their right to be cared for; on the other hand, research is an essential tool in order to improve the clinical condition of patients with DOCs. The present paper concerns the ethical and legal dimensions of biomedical research involving patients with disorders of consciousness. In particular, it focuses on informed consent to experimental treatments, which is a challenging issue both from an ethical and legal point of view. The first part reads the Directive 2001/20/EU in the light of the experimentation of patients with DOCs, and suggests a revision in order to better assess the issue of informed consent. The particular case of informed consent for observational studies of non-communicative patients. The second part presents an informed consent form for studies through video-recording of patients unable to communicate their own consent. This form has been elaborated by the bioethics unit of the project "Review of the nosography of vegetative states: application of methods of behavioral analysis to individuals in coma or vegetative state" developed at the Italian National Institute of Health. Relevance of the suggested form. The paper describes the conceptual framework of the form for informed consent to studies through video-recoding, which is a relevant example of what issues should be included in an informed consent for any type of studies through video-recording of patients unable to express their own consent. The article has been sent on November the 7th 2013, before the adoption of the Regulation (EU no. 536/2014 (and consequent abrogation of the Directive 2001

  16. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Wehrl, Hans F.; Judenhofer, Martin S.; Wiehr, Stefan; Pichler, Bernd J. [University of Tuebingen, Department of Radiology, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Tuebingen (Germany)

    2009-03-15

    Combined PET/MRI allows for multi-parametric imaging and reveals one or more functional processes simultaneously along with high-resolution morphology. Especially in small-animal research, where high soft tissue contrast is required, and the scan time as well as radiation dose are critical factors, the combination of PET and MRI would be beneficial compared with PET/CT. In the mid-1990's, several research groups used different approaches to integrate PET detectors into high-field MRI. First, systems were based on optical fibres guiding the scintillation light to the PMT's, which reside outside the fringe magnetic field. Recent advances in gamma ray detector technology, which were initiated mainly by the advent of avalanche photodiodes (APD's) as well as the routine availability of fast scintillation materials like lutetium oxyorthosilicate (LSO), paved the way towards the development of fully magnetic-field-insensitive high-performance PET detectors. Current animal PET/MR technologies are reviewed and pitfalls when engineering a full integration of a PET and a high-field MRI are discussed. Compact PET detectors can be integrated in small-bore, high-field MRI tomographs. Detailed performance evaluations have shown that the mutual interference between the two imaging systems could be minimized. The performance of all major MR applications, ranging from T1- or T2-weighted imaging up to echo-planar imaging (EPI) for functional MRI (fMRI) or magnetic resonance spectroscopy (MRS), could be maintained, even when the PET insert was built into the MRI and acquiring PET data simultaneously. Similarly, the PET system performance was not influenced by the static magnetic field or applied MRI sequences. Initial biomedical research applications range from the combination of functional information from PET with the anatomical information from the MRI to multi-functional imaging combining metabolic PET and MRI data. Compared to other multi-modality approaches PET

  17. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  18. DOE research and development and field facilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This report describes the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Operations Centers, and other government-owned, contractor-operated facilities which are located in all regions of the United States. It gives brief descriptions of resources, activities, and capabilities of each field facility (sections III through V). These represent a cumulative capital investment of $12 billion and involve a work force of approximately 12,000 government (field) employees and approximately 100,000 contractor employees.

  19. Size and characteristics of the biomedical research workforce associated with U.S. National Institutes of Health extramural grants.

    Science.gov (United States)

    Pool, Lindsay R; Wagner, Robin M; Scott, Lindsey L; RoyChowdhury, Deepshikha; Berhane, Rediet; Wu, Charles; Pearson, Katrina; Sutton, Jennifer A; Schaffer, Walter T

    2016-03-01

    The U.S. National Institutes of Health (NIH) annually invests approximately $22 billion in biomedical research through its extramural grant programs. Since fiscal year (FY) 2010, all persons involved in research during the previous project year have been required to be listed on the annual grant progress report. These new data have enabled the production of the first-ever census of the NIH-funded extramural research workforce. Data were extracted from All Personnel Reports submitted for NIH grants funded in FY 2009, including position title, months of effort, academic degrees obtained, and personal identifiers. Data were de-duplicated to determine a unique person count. Person-years of effort (PYE) on NIH grants were computed. In FY 2009, NIH funded 50,885 grant projects, which created 313,049 full- and part-time positions spanning all job functions involved in biomedical research. These positions were staffed by 247,457 people at 2,604 institutions. These persons devoted 121,465 PYE to NIH grant-supported research. Research project grants each supported 6 full- or part-time positions, on average. Over 20% of positions were occupied by postdoctoral researchers and graduate and undergraduate students. These baseline data were used to project workforce estimates for FYs 2010-2014 and will serve as a foundation for future research.-Pool, L. R., Wagner, R. M., Scott, L. L., RoyChowdhury, D., Berhane, R., Wu, C., Pearson, K., Sutton, J. A., Schaffer, W. T. Size and characteristics of the biomedical research workforce associated with U.S. National Institutes of Health extramural grants. PMID:26625903

  20. International Space Station as Analog of Interplanetary Transit Vehicle For Biomedical Research

    Science.gov (United States)

    Charles, John B.

    2012-01-01

    Astronaut missions lasting up to six months aboard the International Space Station (ISS) have much in common with interplanetary flights, especially the outbound, Earth-to-Mars transit portion of a Mars mission. Utilization of ISS and other appropriate platforms to prepare for crewed expeditions to planetary destinations including Mars has been the work of NASA's Human Research Program (HRP) since 2005. HRP is charged specifically to understand and reduced the risks to astronaut health and performance in space exploration missions: everything HRP does and has done is directly related to that responsibility. Two major categories of human research have capitalized on ISS capabilities. The first category centers on the biomedical aspects of long-duration exposure to spaceflight factors, including prolonged weightlessness, radiation exposure, isolation and confinement, and actual risk to life and limb. These studies contribute to astronaut safety, health and efficiency on any long-duration missions, whether in low Earth orbit (LEO) or beyond. Qualitatively, weightlessness is weightlessness, whether in LEO or en route to Mars. The HRP sponsors investigations into losses in muscle and bone integrity, cardiovascular function, sensory-motor capability, immune capacity and psychosocial health, and development and demonstration of appropriate treatments and preventative measures. The second category includes studies that are focused on planetary expeditions beyond LEO. For these, ISS offers a high fidelity analog to investigate the combined effects of spaceflight factors (described above) plus the isolation and autonomy associated with simulated increasing distance from Earth. Investigations address crew cohesion, performance and workload, and mission control performance. The behavioral health and performance and space human factors aspects of planetary missions dominate this category. Work has already begun on a new investigation in this category which will examine the

  1. Experimental geothermal research facilities study (Phase 0). Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The study comprises Phase 0 of a project for Experimental Geothermal Research Facilities. The study focuses on identification of a representative liquid-dominated geothermal reservoir of moderate temperature and salinity, preliminary engineering design of an appropriate energy conversion system, identification of critical technology, and planning for implementation of experimental facilities. The objectives included development of liaison with the industrial sector, to ensure responsiveness to their views in facility requirements and planning, and incorporation of environmental and socioeconomic factors. This Phase 0 report covers problem definition and systems requirements. Facilities will incorporate capability for research in component, system, and materials technology and a nominal 10 MWe experimental, binary cycle, power generating plant.

  2. Biomass Gasification Research Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    also addressed safety concerns associated with thermochemical process operation that constrain the location and configuration of potential gas analysis equipment. Initial analyzer costs, reliability, accuracy, and operating and maintenance costs were also considered prior to the assembly of suitable analyzers for this work. Initial tests at GTI’s Flex-Fuel Test Facility (FFTF) in late 2004 and early 2005 successfully demonstrated the transport and subsequent analysis of a single depressurized, heat-traced syngas stream to a single analyzer (an Industrial Machine and Control Corporation (IMACC) Fourier-transform infrared spectrometer (FT-IR)) provided by GTI. In March 2005, our sampling approach was significantly expanded when this project participated in the U.S. DOE’s Novel Gas Cleaning (NGC) project. Syngas sample streams from three process locations were transported to a distribution manifold for selectable analysis by the IMACC FT-IR, a Stanford Research Systems QMS300 Mass Spectrometer (SRS MS) obtained under this Cooperative Agreement, and a Varian micro gas chromatograph with thermal conductivity detector (μGC) provided by GTI. A syngas stream from a fourth process location was transported to an Agilent Model 5890 Series II gas chromatograph for highly sensitive gas analyses. The on-line analyses made possible by this sampling system verified the syngas cleaning achieved by the NGC process. In June 2005, GTI collaborated with Weyerhaeuser to characterize the ChemrecTM black liquor gasifier at Weyerhaeuser’s New Bern, North Carolina pulp mill. Over a ten-day period, a broad range of process operating conditions were characterized with the IMACC FT-IR, the SRS MS, the Varian μGC, and an integrated Gas Chromatograph, Mass Selective Detector, Flame Ionization Detector and Sulfur Chemiluminescence Detector (GC/MSD/FID/SCD) system acquired under this Cooperative Agreement from Wasson-ECE. In this field application, a single sample stream was extracted from

  3. A comparison of image communication protocols in e-science platform for biomedical imaging research and applications

    Science.gov (United States)

    Wang, Tusheng; Yang, Yuanyuan; Hu, Haibo; Zhang, Jianguo

    2012-02-01

    In designing of e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals, it needs to find out the best communication protocol to transmit various kinds of biomedical images acquired from Shanghai Synchrotron Radiation Source (SSRS), micro-PET, Micro-CT which includes both types of DICOM and non-DICOM images. In this presentation, we presented several image communication scenarios required in e-Science platform and several possible image communication protocols, and then tested and evaluated the performance of these image communication protocols in e-Science data flows to find out which protocol is the best candidate to be used in e-Science platform for the purpose for security, communication performance, easy implementation and management.

  4. Japanese research and development on metallic biomedical, dental, and healthcare materials

    Science.gov (United States)

    Niinomi, Mitsuo; Hanawa, Takao; Narushima, Takayuki

    2005-04-01

    There is considerable demand for metallic materials for use in medical and dental devices. Metals and alloys are widely used as biomedical materials and are indispensable in the medical field. In dentistry, metal is used for restorations, orthodontic wires, and dental implants. This article describes R&D on metallic biomaterials primarily conducted by the members of the Japan Institute of Metals.

  5. Clustering cliques for graph-based summarization of the biomedical research literature

    DEFF Research Database (Denmark)

    Zhang, Han; Fiszman, Marcelo; Shin, Dongwook;

    2013-01-01

    Background: Graph-based notions are increasingly used in biomedical data mining and knowledge discovery tasks. In this paper, we present a clique-clustering method to automatically summarize graphs of semantic predications produced from PubMed citations (titles and abstracts).Results: SemRep is u...

  6. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  7. Laser Propulsion Research Facilities at DLR Stuttgart

    OpenAIRE

    Karg, Stephanie; Fedotov, Vitalij; Sehnert, Torben; Eckel, Hans-Albert

    2014-01-01

    Irradiation of materials with sufficiently high laser fluence induces an ablation process at the surface yielding a plasma jet of ablated material and laser-induced force acting on the material due to the recoil of the jet. The paper gives an overview of DLR’s experimental facilities for investigation of the potential of laser ablation induced thrust for future microthrusters and space debris removal. A thrust balance based on a modular torsional pendulum concept and suitable calibration f...

  8. The challenges of implementing pathogen control strategies for fishes used in biomedical research

    Science.gov (United States)

    Lawrence, C.; Ennis, D.G.; Harper, C.; Kent, M.L.; Murray, K.; Sanders, G.E.

    2012-01-01

    Over the past several decades, a number of fish species, including the zebrafish, medaka, and platyfish/swordtail, have become important models for human health and disease. Despite the increasing prevalence of these and other fish species in research, methods for health maintenance and the management of diseases in laboratory populations of these animals are underdeveloped. There is a growing realization that this trend must change, especially as the use of these species expands beyond developmental biology and more towards experimental applications where the presence of underlying disease may affect the physiology animals used in experiments and potentially compromise research results. Therefore, there is a critical need to develop, improve, and implement strategies for managing health and disease in aquatic research facilities. The purpose of this review is to report the proceedings of a workshop entitled "Animal Health and Disease Management in Research Animals" that was recently held at the 5th Aquatic Animal Models for Human Disease in September 2010 at Corvallis, Oregon to discuss the challenges involved with moving the field forward on this front. ?? 2011 Elsevier Inc. All rights reserved.

  9. Facilities Management research in the Nordic Countries

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    This article provides a brief overview of the short history of FM research in Denmark, Norway, Sweden and Finland, and presents current research topics and trends in these countries. It is based on information originally collected as part of the planning for the Danish research programme that led...

  10. Man-Vehicle Systems Research Facility - Design and operating characteristics

    Science.gov (United States)

    Shiner, Robert J.; Sullivan, Barry T.

    1992-01-01

    This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.

  11. Research enrichment: evaluation of structured research in the curriculum for dental medicine students as part of the vertical and horizontal integration of biomedical training and discovery

    OpenAIRE

    Stewart Tanis; O'Malley Susan; Kingsley Karl; Howard Katherine M

    2008-01-01

    Abstract Background Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their s...

  12. Is there a trade-off between academic research and faculty entrepreneurship? : evidence from U.S. NIH supported biomedical researchers

    OpenAIRE

    Czarnitzki, Dirk; Toole, Andrew A.

    2009-01-01

    Is there a trade-off of scholarly research productivity when faculty members found or join for-profit firms? This paper offers an empirical examination of this question for a subpopulation of biomedical academic scientists who received research funding from the U.S. National Institutes of Health (NIH). In this study, we are able to distinguish between permanent versus temporary employment transitions by entrepreneurial faculty members and examine how their journal article publication rates ch...

  13. Overview of some biomedical research projects in tropical medicine conducted at the Instituto Venezolano de Investigaciones Cientificas

    Directory of Open Access Journals (Sweden)

    Romano Egidio

    2000-01-01

    Full Text Available The Instituto Venezolano de Investigaciones Cientificas (IVIC is a government-funded multidisciplinary academic institution dedicated to research, development and technology in many areas of knowledge. Biomedical projects and publications comprise about 40% of the total at IVIC. In this article, we present an overview of some selected research and development projects conducted at IVIC which we believe contain new and important aspects related to malaria, ancylostomiasis, dengue fever, leishmaniasis and tuberculosis. Other projects considered of interest in the general area of tropical medicine are briefly described. This article was prepared as a small contribution to honor and commemorate the centenary of the Instituto Oswaldo Cruz.

  14. The Role of Scientific Communication Skills in Trainees’ Intention to Pursue Biomedical Research Careers: A Social Cognitive Analysis

    Science.gov (United States)

    Cameron, Carrie; Lee, Hwa Young; Anderson, Cheryl; Byars-Winston, Angela; Baldwin, Constance D.; Chang, Shine

    2015-01-01

    Scientific communication (SciComm) skills are indispensable for success in biomedical research, but many trainees may not have fully considered the necessity of regular writing and speaking for research career progression. Our purpose was to investigate the relationship between SciComm skill acquisition and research trainees’ intentions to remain in research careers. We used social cognitive career theory (SCCT) to test a model of the relationship of SciComm skills to SciComm-related cognitive variables in explaining career intentions. A sample of 510 graduate students and postdoctoral fellows at major academic health science centers in the Texas Medical Center, Houston, Texas, were surveyed online. Results suggested that interest in performing SciComm tasks, SciComm outcome expectations (SCOEs), and SciComm productivity predicted intention to remain in a research career, while SciComm self-efficacy did not directly predict career intention. SCOEs also predicted interest in performing SciComm tasks. As in other SCCT studies, SciComm self-efficacy predicted SCOEs. We conclude that social cognitive factors of SciComm skill acquisition and SciComm productivity significantly predict biomedical trainees’ intentions to pursue research careers whether within or outside academia. While further studies are needed, these findings may lead to evidence-based interventions to help trainees remain in their chosen career paths. PMID:26628562

  15. The Role of Scientific Communication Skills in Trainees' Intention to Pursue Biomedical Research Careers: A Social Cognitive Analysis.

    Science.gov (United States)

    Cameron, Carrie; Lee, Hwa Young; Anderson, Cheryl; Byars-Winston, Angela; Baldwin, Constance D; Chang, Shine

    2015-01-01

    Scientific communication (SciComm) skills are indispensable for success in biomedical research, but many trainees may not have fully considered the necessity of regular writing and speaking for research career progression. Our purpose was to investigate the relationship between SciComm skill acquisition and research trainees' intentions to remain in research careers. We used social cognitive career theory (SCCT) to test a model of the relationship of SciComm skills to SciComm-related cognitive variables in explaining career intentions. A sample of 510 graduate students and postdoctoral fellows at major academic health science centers in the Texas Medical Center, Houston, Texas, were surveyed online. Results suggested that interest in performing SciComm tasks, SciComm outcome expectations (SCOEs), and SciComm productivity predicted intention to remain in a research career, while SciComm self-efficacy did not directly predict career intention. SCOEs also predicted interest in performing SciComm tasks. As in other SCCT studies, SciComm self-efficacy predicted SCOEs. We conclude that social cognitive factors of SciComm skill acquisition and SciComm productivity significantly predict biomedical trainees' intentions to pursue research careers whether within or outside academia. While further studies are needed, these findings may lead to evidence-based interventions to help trainees remain in their chosen career paths. PMID:26628562

  16. Profiles of facilities used for HTR research and testing

    International Nuclear Information System (INIS)

    This report contains a current description of facilities supporting HTR research and development submitted by countries participating in the IWGFR. It has the purpose of providing an overview of the facilities available for use and of the types of experiments that can be conducted therein

  17. Computer facilities at the Research Centre Seibersdorf

    International Nuclear Information System (INIS)

    The computer facilities available at the Mathematics Division of the Institute are outlined including their development since 1966. The major areas of use of the computers by the science divisions and in administration are described as well as the tasks performed for industry. Two examples of the computer applications are considered in some detail: 1) A system developed for control and data acquisition in asbestos-cement plate production; 2) A model treatment of safety calculations for the steam generating systems of light-water reactors. (S.R.)

  18. Epidemiology and Reporting Characteristics of Systematic Reviews of Biomedical Research: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Matthew J Page

    2016-05-01

    Full Text Available Systematic reviews (SRs can help decision makers interpret the deluge of published biomedical literature. However, a SR may be of limited use if the methods used to conduct the SR are flawed, and reporting of the SR is incomplete. To our knowledge, since 2004 there has been no cross-sectional study of the prevalence, focus, and completeness of reporting of SRs across different specialties. Therefore, the aim of our study was to investigate the epidemiological and reporting characteristics of a more recent cross-section of SRs.We searched MEDLINE to identify potentially eligible SRs indexed during the month of February 2014. Citations were screened using prespecified eligibility criteria. Epidemiological and reporting characteristics of a random sample of 300 SRs were extracted by one reviewer, with a 10% sample extracted in duplicate. We compared characteristics of Cochrane versus non-Cochrane reviews, and the 2014 sample of SRs versus a 2004 sample of SRs. We identified 682 SRs, suggesting that more than 8,000 SRs are being indexed in MEDLINE annually, corresponding to a 3-fold increase over the last decade. The majority of SRs addressed a therapeutic question and were conducted by authors based in China, the UK, or the US; they included a median of 15 studies involving 2,072 participants. Meta-analysis was performed in 63% of SRs, mostly using standard pairwise methods. Study risk of bias/quality assessment was performed in 70% of SRs but was rarely incorporated into the analysis (16%. Few SRs (7% searched sources of unpublished data, and the risk of publication bias was considered in less than half of SRs. Reporting quality was highly variable; at least a third of SRs did not report use of a SR protocol, eligibility criteria relating to publication status, years of coverage of the search, a full Boolean search logic for at least one database, methods for data extraction, methods for study risk of bias assessment, a primary outcome, an

  19. National facility for neutron beam research

    Indian Academy of Sciences (India)

    K R Rao

    2004-07-01

    In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview of current scenario of NBR world-wide and future of Indian activities.

  20. Research Facilities for Solar Astronomy at ARIES

    Indian Academy of Sciences (India)

    P. Pant

    2006-06-01

    The solar observational facilities at ARIES (erstwhile U.P. State Observatory, UPSO), Nainital, began in the sixties with the acquisition of two moderate sized (25 cm, f/66 off-axis Skew Cassegrain and 15 cm, f/15 refractor) telescopes. Both these systems receive sunlight through a 45 cm and 25 cm coelostat respectively. The backend instruments to these systems comprised of a single pass grating spectrograph for spectroscopic study of the Sun and a Bernhard–Halle filter, coupled with a Robot recorder camera for solar patrolling in respectively. With the advancement in solar observing techniques with high temporal and spatial resolution in and other wavelengths, it became inevitable to acquire sophisticated instrumentation for data acquisition. In view of that, the above facilities were upgraded, owing to which the conventional photographic techniques were replaced by the CCD camera systems attached with two 15 cm, f/15 Coude refractor telescopes. These CCD systems include the Peltier cooled CCD camera and photometrics PXL high speed modular CCD camera which provide high temporal and spatial resolution of ∼ 25 ms and ∼ 1.3 arcsec respectively.

  1. A facility for using cluster research to study environmental problems

    International Nuclear Information System (INIS)

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report

  2. Organizational culture, safety culture, and safety performance at research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, William S.

    2000-07-30

    Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

  3. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  4. Small Multi-Purpose Research Facility (SMiRF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Multi-Purpose Research Facility (SMiRF) evaluates the performance of the thermal protection systems required to provide long-term storage (up to 10 years)...

  5. CAS spearheads R&D program for research facilities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China's capacity for indigenous S&T innovation is believed to have been hampered by its lack of home- grown research facilities. To address the problem, a pilot program for the research and development of major S&T facilities has been launched at CAS. The kick-off meeting was held on 28 March in the CAS Technical Institute of Physics and Chemistry in Beijing.

  6. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1988-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology.

  7. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1989-06-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1988. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals.

  8. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    International Nuclear Information System (INIS)

    This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology

  9. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  10. Public Facilities Management and Action Research for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    analysed in the light of a change process in a Danish Municipal Department of Public Property. Three years of Action Research has given a unique insight in the reality in a Municipal Department of Public Property, and as to how a facilitated change process can lead to a more holistic and sustainable......Current work is the main product of a PhD study with the initial working title ‘Sustainable Facilities Management’ at Centre for Facilities Management – Realdania Research, DTU Management 1. December 2008 – 30. November 2011. Here the notion of Public Sustainable Facilities Management (FM) is...

  11. An examination of how women and underrepresented racial/ethnic minorities experience barriers in biomedical research and medical programs

    Science.gov (United States)

    Chakraverty, Devasmita

    Women in medicine and biomedical research often face challenges to their retention, promotion, and advancement to leadership positions (McPhillips et al., 2007); they take longer to advance their careers, tend to serve at less research-intensive institutions and have shorter tenures compared to their male colleagues (White, McDade, Yamagata, & Morahan, 2012). Additionally, Blacks and Hispanics are the two largest minority groups that are vastly underrepresented in medicine and biomedical research in the United States (AAMC, 2012; NSF, 2011). The purpose of this study is to examine specific barriers reported by students and post-degree professionals in the field through the following questions: 1. How do women who are either currently enrolled or graduated from biomedical research or medical programs define and make meaning of gender-roles as academic barriers? 2. How do underrepresented groups in medical schools and biomedical research institutions define and make meaning of the academic barriers they face and the challenges these barriers pose to their success as individuals in the program? These questions were qualitatively analyzed using 146 interviews from Project TrEMUR applying grounded theory. Reported gender-role barriers were explained using the "Condition-Process-Outcome" theoretical framework. About one-third of the females (across all three programs; majority White or Black between 25-35 years of age) reported gender-role barriers, mostly due to poor mentoring, time constraints, set expectations and institutional barriers. Certain barriers act as conditions, causing gender-role issues, and gender-role issues influence certain barriers that act as outcomes. Strategies to overcome barriers included interventions mostly at the institutional level (mentor support, proper specialty selection, selecting academia over medicine). Barrier analysis for the two largest URM groups indicated that, while Blacks most frequently reported racism, gender barriers

  12. Biomass Gasification Research Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

    2007-09-30

    While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature

  13. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  14. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  15. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  16. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann;

    2000-01-01

    facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees.......The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...

  17. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  18. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  19. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  20. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  1. ARM Climate Research Facility Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

  2. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 1, Biomedical sciences

    International Nuclear Information System (INIS)

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1986. The research develops the knowledge and scientific principles necessary to identify, understand and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect the PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological methods for assessing health risks among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include effects of radiation and of energy-related chemicals. The last section is related to medical applications of nuclear technology

  3. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1987-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1986. The research develops the knowledge and scientific principles necessary to identify, understand and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect the PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological methods for assessing health risks among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include effects of radiation and of energy-related chemicals. The last section is related to medical applications of nuclear technology.

  4. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    The originative CO2 pellet blasting equipment was developed by improving additional components such as feed screw, idle roller and air-lock feeder to clear up the problems of freezing and discontinuity of blasting and by adopting pneumatically operated vacuum suction head and vacuum cup to prevent recontamination by collecting contaminant particulates simultaneously with the decontamination. The optimum decontamination process was established according to the kind of materials such as metal, concrete and plastic and the type of contaminants such as particulate, fixed chemical compound and oil. An excellent decontamination performances were verified by means of the lab-scale hot test with radioactive specimen and the technology demonstration in IMEF hot cell. The PFC dry decontamination equipment applicable to the surface contaminated with high radioactive particulate was developed. This equipment consists of the unit processes such as spray, collection, filtration and dry distillation designed originatively applicable to inside of dry hot cell. Through the demonstration of PFC spray decontamination process in IMEF hot cell, we secured on-site applicability and the decontamination efficiency more than 90 %. We investigated the characteristics of dismantled metal waste melting and the radionuclide(Co, Cs, U) distribution into ingot and slag by melting decontamination experiments using electric arc melter. We obtained the decontamination factors greater than 100 for Cs and of 10∼100 for uranium. The pilot scale(200 kg/batch) demonstration for melting decontamination was carried out successfully using high temperature melting facility at KAERI. The volume reduction factor of 1/7 and the economical feasibility of the melting decontamination were verified.

  5. search.bioPreprint: a discovery tool for cutting edge, preprint biomedical research articles [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Carrie L. Iwema

    2016-07-01

    Full Text Available The time it takes for a completed manuscript to be published traditionally can be extremely lengthy. Article publication delay, which occurs in part due to constraints associated with peer review, can prevent the timely dissemination of critical and actionable data associated with new information on rare diseases or developing health concerns such as Zika virus. Preprint servers are open access online repositories housing preprint research articles that enable authors (1 to make their research immediately and freely available and (2 to receive commentary and peer review prior to journal submission. There is a growing movement of preprint advocates aiming to change the current journal publication and peer review system, proposing that preprints catalyze biomedical discovery, support career advancement, and improve scientific communication. While the number of articles submitted to and hosted by preprint servers are gradually increasing, there has been no simple way to identify biomedical research published in a preprint format, as they are not typically indexed and are only discoverable by directly searching the specific preprint server websites. To address this issue, we created a search engine that quickly compiles preprints from disparate host repositories and provides a one-stop search solution. Additionally, we developed a web application that bolsters the discovery of preprints by enabling each and every word or phrase appearing on any web site to be integrated with articles from preprint servers. This tool, search.bioPreprint, is publicly available at http://www.hsls.pitt.edu/resources/preprint.

  6. Implementation of the Three Rs in biomedical research - has the turn of the century turned the tide?

    Science.gov (United States)

    Obora, Shoko; Kurosawa, Tsutomu

    2009-04-01

    There has been increasing pressure from the public against animal experimentation for testing and research purposes. The Three Rs (replacement, reduction, and refinement) principle is thought to be a key foundation concept in optimising the welfare of animals used in experiments. This retrospective study attempts to investigate the transition of the Three Rs in biomedical research through a review of articles published in Nature Medicine. We categorised all of the articles published in Nature Medicine from 1998 to 2003, on the basis of the pain and distress of the animals used in the experiments featured in the analysed article. We found there were no large fluctuations in the distribution of these categories over this time period. We also examined each article for the presence of a statement relating to the humane use of laboratory animals, and found that the number of articles which included such a statement dramatically increased in 2002. Over the years studied, there was a decreasing trend in the total number of animal types used for the experiments in the articles. Our results suggest that: a) more encouragement by journal editors might improve the attitude of scientists in terms of animal welfare; and b) the progress of replacement appears to be a more long-term effort in the field of biomedical research. PMID:19453216

  7. Research Animal Holding Facility Prevents Space Lab Contamination

    Science.gov (United States)

    Savage, P. D., Jr.; Jahns, G. C.; Dalton, B. P.; Hogan, R. P.; Wray, A. E.

    1991-01-01

    Healthy environment for both rodents and human researchers maintained. Research animal holding facility (RAHF) and rodent cage prevent solid particles (feces, food bits, hair), micro-organisms, ammonia, and odors from escaping into outside environment during spaceflight. Rodent cage contains compartments for two animals. Provides each drinking-water dispenser, feeding alcove, and activity-monitoring port. Feeding and waste trays removable.

  8. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science). PMID:25592607

  9. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1986-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology.

  10. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology

  11. The Reactor and Cold Neutron Research Facility at NIST

    International Nuclear Information System (INIS)

    The NIST Reactor (NBSR) and Cold Neutron Research Facility (CNRF) are located at the Gaithersburg, MD site, and have been in operation since 1969 and 1991, respectively. A total of 26 thermal neutron facilities and 11 cold neutron stations are operating for studies in condensed matter physics and chemistry, materials science, chemical analysis, nondestructive evaluation, neutron standards, fundamental neutron physics, and irradiations. Thermal and cold neutron instruments which have become operational since the 2d IGORR Conference will be described. Major facility upgrades to be implemented in early 1994 will be outlined. (author)

  12. Remote operations in a Fusion Engineering Research Facility (FERF)

    International Nuclear Information System (INIS)

    The proposed Fusion Engineering Research Facility (FERF) has been designed for the test and evaluation of materials that will be exposed to the hostile radiation environment created by fusion reactors. Because the FERF itself must create a very hostile radiation environment, extensive remote handling procedures will be required as part of its routine operations as well as for both scheduled and unscheduled maintenance. This report analyzes the remote-handling implications of a vertical- rather than horizontal-orientation of the FERF magnet, describes the specific remote-handling facilities of the proposed FERF installation and compares the FERF remote-handling system with several other existing and proposed facilities. (U.S.)

  13. Harmonising and linking biomedical and clinical data across disparate data archives to enable integrative cross-biobank research.

    Science.gov (United States)

    Spjuth, Ola; Krestyaninova, Maria; Hastings, Janna; Shen, Huei-Yi; Heikkinen, Jani; Waldenberger, Melanie; Langhammer, Arnulf; Ladenvall, Claes; Esko, Tõnu; Persson, Mats-Åke; Heggland, Jon; Dietrich, Joern; Ose, Sandra; Gieger, Christian; Ried, Janina S; Peters, Annette; Fortier, Isabel; de Geus, Eco J C; Klovins, Janis; Zaharenko, Linda; Willemsen, Gonneke; Hottenga, Jouke-Jan; Litton, Jan-Eric; Karvanen, Juha; Boomsma, Dorret I; Groop, Leif; Rung, Johan; Palmgren, Juni; Pedersen, Nancy L; McCarthy, Mark I; van Duijn, Cornelia M; Hveem, Kristian; Metspalu, Andres; Ripatti, Samuli; Prokopenko, Inga; Harris, Jennifer R

    2016-04-01

    A wealth of biospecimen samples are stored in modern globally distributed biobanks. Biomedical researchers worldwide need to be able to combine the available resources to improve the power of large-scale studies. A prerequisite for this effort is to be able to search and access phenotypic, clinical and other information about samples that are currently stored at biobanks in an integrated manner. However, privacy issues together with heterogeneous information systems and the lack of agreed-upon vocabularies have made specimen searching across multiple biobanks extremely challenging. We describe three case studies where we have linked samples and sample descriptions in order to facilitate global searching of available samples for research. The use cases include the ENGAGE (European Network for Genetic and Genomic Epidemiology) consortium comprising at least 39 cohorts, the SUMMIT (surrogate markers for micro- and macro-vascular hard endpoints for innovative diabetes tools) consortium and a pilot for data integration between a Swedish clinical health registry and a biobank. We used the Sample avAILability (SAIL) method for data linking: first, created harmonised variables and then annotated and made searchable information on the number of specimens available in individual biobanks for various phenotypic categories. By operating on this categorised availability data we sidestep many obstacles related to privacy that arise when handling real values and show that harmonised and annotated records about data availability across disparate biomedical archives provide a key methodological advance in pre-analysis exchange of information between biobanks, that is, during the project planning phase. PMID:26306643

  14. Facilities for Research and Development of Medical Radioisotopes

    International Nuclear Information System (INIS)

    This study is carried out by KAERI(Korea Atomic Energy Research Institute) to construct the basic facilities for development and production of medical radioisotope. For the characteristics of radiopharmaceuticals, the facilities should be complied with the radiation shield and GMP(Good Manufacturing Practice) guideline. The KAERI, which has carried out the research and development of the radiopharmaceuticals, made a design of these facilities and built them in the HANARO Center and opened the technique and facilities to the public to give a foundation for research and development of the radiopharmaceuticals. In the facilities, radiation shielding utilities and GMP instruments were set up and their operating manuals were documented. Every utilities and instruments were performed the test to confirm their efficiency and the approval for use of the facilities will be achieved from MOST(Ministry of Science and Technology). It is expected to be applied in development of therapeutic radioisotope such as Re-188 generator and Ho-166, as well as Tc-99m generator and Sr-89 chloride for medical use. And it also looks forward to the contribution to the related industry through the development of product in high demand and value

  15. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  16. Space facilities: Meeting future needs for research, development, and operations

    Science.gov (United States)

    1994-01-01

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  17. Mentoring Strategies and Outcomes of Two Federally Funded Cancer Research Training Programs for Underrepresented Students in the Biomedical Sciences.

    Science.gov (United States)

    Ford, Marvella E; Abraham, Latecia M; Harrison, Anita L; Jefferson, Melanie S; Hazelton, Tonya R; Varner, Heidi; Cannady, Kimberly; Frichtel, Carla S; Bagasra, Omar; Davis, Leroy; Rivers, David E; Slaughter, Sabra C; Salley, Judith D

    2016-06-01

    The US is experiencing a severe shortage of underrepresented biomedical researchers. The purpose of this paper is to present two case examples of cancer research mentoring programs for underrepresented biomedical sciences students. The first case example is a National Institutes of Health/National Cancer Institute (NIH/NCI) P20 grant titled "South Carolina Cancer Disparities Research Center (SC CaDRe)" Training Program, contributing to an increase in the number of underrepresented students applying to graduate school by employing a triple-level mentoring strategy. Since 2011, three undergraduate and four graduate students have participated in the P20 SC CaDRe program. One graduate student published a peer-reviewed scientific paper. Two graduate students (50 %) have completed their master's degrees, and the other two graduate students will receive their degrees in spring 2015. Two undergraduate students (67 %) are enrolled in graduate or professional school (grad./prof. school), and the other graduate student is completing her final year of college. The second case example is a prostate cancer-focused Department of Defense grant titled "The SC Collaborative Undergraduate HBCU Student Summer Training Program," providing 24 students training since 2009. Additionally, 47 students made scientific presentations, and two students have published peer-reviewed scientific papers. All 24 students took a GRE test preparation course; 15 (63 %) have applied to graduate school, and 11 of them (73 %) are enrolled in grad./prof. school. Thirteen remaining students (54 %) are applying to grad./prof. school. Leveraged funding provided research-training opportunities to an additional 201 National Conference on Health Disparities Student Forum participants and to 937 Ernest E. Just Research Symposium participants at the Medical University of South Carolina. PMID:25869579

  18. Research Reactor Benchmarking Database: Facility Specification and Experimental Data

    International Nuclear Information System (INIS)

    This web publication contains the facility specifications, experiment descriptions, and corresponding experimental data for nine different research reactors covering a wide range of research reactor types, power levels and experimental configurations. Each data set was prepared in order to serve as a stand-alone resource of well documented experimental data, which can subsequently be used in benchmarking and validation of the neutronic and thermal-hydraulic computational methods and tools employed for improved utilization, operation and safety analysis of research reactors

  19. In-pile experimental facility needs for LMFR safety research

    International Nuclear Information System (INIS)

    Although the achievement of the safety research during the past years has been significant, there still exists a strong need for future research, especially when there is prospect for future LMFR commercialization. In this paper, our current views are described on future research needs especially with a new in-pile experimental facility. The basic ideas and progress are outlined of a preliminary feasibility study. (author)

  20. Optical coherence tomography—current technology and applications in clinical and biomedical research

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Sander, Birgit; Mogensen, Mette;

    2011-01-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such...... as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of...... developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application....

  1. Optical coherence tomography-current technology and applications in clinical and biomedical research

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Sander, Birgit; Mogensen, Mette;

    2011-01-01

    as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of...... retinal diseases, and OCT is becoming an important instrument for clinical cardiology. New applications are emerging in various medical fields, such as early-stage cancer detection, surgical guidance, and the early diagnosis of musculoskeletal diseases. OCT has also proven its value as a tool for...... developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application....

  2. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery.

    Science.gov (United States)

    Dumontier, Michel; Baker, Christopher Jo; Baran, Joachim; Callahan, Alison; Chepelev, Leonid; Cruz-Toledo, José; Del Rio, Nicholas R; Duck, Geraint; Furlong, Laura I; Keath, Nichealla; Klassen, Dana; McCusker, James P; Queralt-Rosinach, Núria; Samwald, Matthias; Villanueva-Rosales, Natalia; Wilkinson, Mark D; Hoehndorf, Robert

    2014-01-01

    The Semanticscience Integrated Ontology (SIO) is an ontology to facilitate biomedical knowledge discovery. SIO features a simple upper level comprised of essential types and relations for the rich description of arbitrary (real, hypothesized, virtual, fictional) objects, processes and their attributes. SIO specifies simple design patterns to describe and associate qualities, capabilities, functions, quantities, and informational entities including textual, geometrical, and mathematical entities, and provides specific extensions in the domains of chemistry, biology, biochemistry, and bioinformatics. SIO provides an ontological foundation for the Bio2RDF linked data for the life sciences project and is used for semantic integration and discovery for SADI-based semantic web services. SIO is freely available to all users under a creative commons by attribution license. See website for further information: http://sio.semanticscience.org. PMID:24602174

  3. FT-IR and FT-NIR Raman spectroscopy in biomedical research

    Science.gov (United States)

    Naumann, D.

    1998-06-01

    FT-IR and FT-NIR Raman spectra of intact microbial, plant animal or human cells, tissues, and body fluids are highly specific, fingerprint-like signatures which can be used to discriminate between diverse microbial species and strains, characterize growth-dependent phenomena and cell-drug interactions, and differentiate between various disease states. The spectral information potentially useful for biomedical characterizations may be distributed over the entire infrared region of the electromagnetic spectrum, i.e. over the near-, mid-, and far-infrared. It is therefore a key problem how the characteristic vibrational spectroscopic information can be systematically extracted from the infrared spectra of complex biological samples. In this report these questions are addressed by applying factor and cluster analysis treating the classification problem of microbial infrared spectra as a model task. Particularly interesting applications arise by means of a light microscope coupled to the FT-IR spectrometer. FT-IR spectra of single microcolonies of less than 40 μm in diameter can be obtained from colony replica applying a stamping technique that transfers the different, spatially separated microcolonies from the culture plate to a special IR-sample holder. Using a computer controlled x,y-stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro-organisms can be integrated in one single apparatus. Since high quality, essentially fluorescence free Raman spectra may now be obtained in relatively short time intervals on previously intractable biological specimens, FT-IR and NIR-FT-Raman spectroscopy can be used in tandem to characterize biological samples. This approach seems to open up new horizons for biomedical characterizations of complex biological systems.

  4. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  5. The 1 MV multi-element AMS system for biomedical applications at the Netherlands Organization for Applied Scientific Research (TNO)

    International Nuclear Information System (INIS)

    The Netherlands Organization for Applied Scientific Research (TNO) has installed a compact 1 MV multi-element AMS system manufactured by High Voltage Engineering Europa B.V., The Netherlands. TNO performs clinical research programs for pharmaceutical and innovative foods industry to obtain early pharmacokinetic data and to provide anti-osteoporotic efficacy data of new treatments. The AMS system will analyze carbon, iodine and calcium samples for this purpose. The first measurements on blank samples indicate background levels in the low 10−12 for calcium and iodine, making the system well suited for these biomedical applications. Carbon blanks have been measured at low 10−16. For unattended, around-the-clock analysis, the system features the 200 sample version of the SO110 hybrid ion source and user friendly control software.

  6. Recent Activities at the ORNL Multicharged Ion Research Facility (MIRF)

    International Nuclear Information System (INIS)

    Recent activities at the ORNL Multicharged Ion Research Facility (MIRF) are summarized. A brief summary of the MIRF high voltage (HV) platform and floating beam line upgrade is provided. An expansion of our research program to the use of molecular ion beams in heavy-particle and electron collisions, as well as in ion-surface interactions is described, and a brief description is provided of the most recently added Ion Cooling and Characterization End-station (ICCE) trap. With the expansion to include molecular ion beams, the acronym MIRF for the facility, however, remains unchanged: M can now refer to either Multicharged or Molecular.

  7. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  8. Management and Development of the RT Research Facilities and Infrastructures

    International Nuclear Information System (INIS)

    The purpose of this project are to operate the core facilities of the research for the Radiation Technology in stable and to assist the research activities efficiently in the industry, academic, and research laboratory. By developing the infrastructure of the national radio technology industry, we can activate the researching area of the RT and the related industry, and obtain the primary and original technology. The key point in the study of the RT and the assistance of the industry, academic, and research laboratory for the RT area smoothly, is managing the various of unique radiation facilities in our country. The gamma Phytotron and Gene Bank are essential in the agribiology because these facilities are used to preserve and utilize the genes and to provide an experimental field for the environment and biotechnology. The Radiation Fusion Technology research supporting facilities are the core support facilities, and are used to develop the high-tech fusion areas. In addition, the most advanced analytical instruments, whose costs are very high, should be managed in stable and be utilized in supporting works, and the experimental animal supporting laboratory and Gamma Cell have to be maintained in high level and managed in stable also. The ARTI have been developed the 30MeV cyclotron during 2005∼2006, aimed to produce radioisotopes and to research the beam applications as a result of the project, 'Establishment of the Infrastructure for the Atomic Energy Research Expansion', collaborated with the Korea Institute of Radiological and Medical Sciences. In addition, the ARTI is in the progress of establishing cyclotron integrated complex as a core research facility, using a proton beam to produce radioisotopes and to support a various research areas. The measurement and evaluation of the irradiation dose, and irradiation supporting technology of the Good Irradiation Practice(GIP) are essential in various researching areas. One thing to remember is that the publicity

  9. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  10. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  11. Edwin Buzz Aldrin At Lunar Landing Research Facility

    Science.gov (United States)

    1969-01-01

    Nearly 25 years ago, on July 20,1969, Edwin Buzz Aldrin, shown here with NASA Langley Research Centers Lunar Excursion Module (LEM) Simulator, became one of the first humans to walk on the moon after practicing with the simulator in May of 1969. Training with the simulator, part of Langleys Lunar Research Facility, allowed the Apollo astronauts to study and safely overcome problems that could have occurred during the final 150-foot descent to the surface of the moon. NASA needed such a facility in order to explore and develop techniques for landing the LEM on the moons surface, where the gravity is only one-sixth as strong as on Earth, as well as to determine the limits of human piloting capabilities in the new surroundings. This unique facility, completed in 1965 and now a National Historic Landmark, effectively canceled all but one-sixth of Earths gravitational force by using an overhead cable system.

  12. Development of the new Canadian Irradiation-Research Facility

    International Nuclear Information System (INIS)

    To replace the aging NRU reactor, AECL has developed the concept for a dual-purpose national Irradiation Research Facility (IRF) that tests fuel and materials for CANDU (Canada Deuterium Uranium) reactors and performs materials research using extracted neutron beams. The IRF includes a MAPLE reactor in a containment building, experimental facilities and support facilities. The reactor concept was developed to provide a realistic environment for irradiating up to nine natural- or enriched-uranium CANDU bundles at powers up to 1 MWp to generate fast-neutron fluxes up to 1.4x1018 n m-2 s-1 in materials-damage and corrosion specimens, and to match the thermal-neutron fluxes available in NRU for a set of eight thermal beam tubes plus two cold sources equipped with neutron guides. (author)

  13. Decommissioning of small medical, industrial and research facilities

    International Nuclear Information System (INIS)

    Most of the technical literature on decommissioning addresses the regulatory, organizational, technical and other aspects for large facilities such as nuclear power plants, reprocessing plants and relatively large prototype, research and test reactors. There are, however, a much larger number of licensed users of radioactive material in the fields of medicine, research and industry. Most of these nuclear facilities are smaller in size and complexity and may present a lower radiological risk during their decommissioning. Such facilities are located at research establishments, biological and medical laboratories, universities, medical centres, and industrial and manufacturing premises. They are often operated by users who have not been trained or are unfamiliar with the decommissioning, waste management and associated safety aspects of these types of facility at the end of their operating lives. Also, for many small users of radioactive material such as radiation sources, nuclear applications are a small part of the overall business or process and, although the operating safety requirements may be adhered to, concern or responsibility may not go much beyond this. There is concern that even the minimum requirements of decommissioning may be disregarded, resulting in avoidable delays, risks and safety implications (e.g. a loss of radioactive material and a loss of all records). Incidents have occurred in which persons have been injured or put at risk. It is recognized that the strategies and specific requirements for small facilities may be much less onerous than for large ones such as nuclear power plants or fuel processing facilities, but many of the same principles apply. There has been considerable attention given to nuclear facilities and many IAEA publications are complementary to this report. This report, however, attempts to give specific guidance for small facilities. 'Small' in this report does not necessarily mean small in size but generally modest in terms

  14. Advanced Biomedical Computing Center (ABCC) | DSITP

    Science.gov (United States)

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  15. Rain Garden Research at EPA's Urban Watershed Research Facility

    Science.gov (United States)

    I have been invited to give a presentation at the 2009 National Erosion Conference in Hartford, CT, on October 27-28, 2009. My presentation discusses the research on sizing of rain gardens that is being conducted using the large, parking lot rain gardens on-site. I discuss the ...

  16. The D4Science research-oriented social networking facilities

    OpenAIRE

    Assante, Massimiliano; Candela, Leonardo; Castelli, Donatella; Pagano, Pasquale (ISTI-CNR)

    2014-01-01

    Modern science calls for innovative practices to facilitate research collaborations spanning institutions, disciplines, and countries. Paradigms such as cloud computing and social computing represent a new opportunity for individuals with scant resources, to participate in science. The D4Science.org Hybrid Data Infrastructure combines these two paradigms with Virtual Research Environments in order to offer a large array of collaboration-oriented facilities as-a-Service.

  17. GroFi: Large-scale fiber placement research facility

    OpenAIRE

    Krombholz, Christian; Kruse, Felix; Wiedemann, Martin

    2016-01-01

    GroFi is a large research facility operated by the German Aerospace Center’s Center for Lightweight-Production-Technology in Stade. A combination of different layup technologies namely (dry) fiber placement and tape laying, allows the development and validation of new production technologies and processes for large-scale composite components. Due to the use of coordinated and simultaneously working layup units a high flexibility of the research platform is achieved. This allows the investiga...

  18. ARM Climate Research Facility Monthly Instrument Report July 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-08-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  19. ARM Climate Research Facility Instrumentation Status and Information February 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-03-25

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  20. ARM Climate Research Facility Instrumentation Status and Information January 2010

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-02-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  1. ARM Climate Research Facility Monthly Instrument Report May 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-06-21

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  2. ARM Climate Research Facility Instrumentation Status and Information March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-04-19

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  3. ARM Climate Research Facility Instrumentation Status and Information April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-05-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  4. ARM Climate Research Facility Monthly Instrument Report June 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-07-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ARM Climate Research Facility Instrumentation Status and Information December 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-12-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. ARM Climate Research Facility Monthly Instrument Report September 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-10-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. ARM Climate Research Facility Monthly Instrument Report August 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-09-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  8. An exercise in leadership training for veterinary students aiming for careers in biomedical research.

    Science.gov (United States)

    Fraser, David R; McGregor, Douglas D

    2002-01-01

    A group discussion on the theme of "leadership" has been a central event in the annual Cornell Leadership Program for Veterinary Students since 1990. However, these discussions were often unfocused and did not readily demonstrate the leadership skills of distinguished guests who were invited to participate. Since 1998, a new format for this session has been developed in which students and guests are assigned individual roles in a scenario that is unfolded by a moderator over two to three hours. This role-playing exercise ensures that every student is obliged to participate and has an opportunity to practice such leadership skills as critical thinking, verbal communication, and decision making under pressure and with inadequate information. The distinguished guests, in their assigned roles, are able to interact freely with the student fellows and thus demonstrate their expertise as experienced leaders. This challenging experience has become an enjoyable part of the 10-week Leadership Program and one that shows the importance of leadership skills for those who aspire to careers in the biomedical sciences. PMID:12378434

  9. National Bureau of Standards Cold Neutron Research Facility

    International Nuclear Information System (INIS)

    In 1984 a National Academy of Sciences committee was set up to review the need for major facilities in the area of materials and condensed matter science. The report specifically mentioned the National Bureau of Standards Reactor (NBSR) as one of the places that should develop a cold neutron research facility (CNRF). NBS was able to obtain funding from congress to develop the NBS CNRF. The facility will cost approximately $25,000,000, including the guide hall, ten major instruments, and eight guide tubes. The cost does not include the cold source itself, which was funded separately. The cold source configuration is shown. This project has been funded to provide a national center for neutron research. Some fraction (one-third to two-thirds) of all the new facilities will be made available to outside users at no charge. The facilities will be staffed adequately to provide needed assistance to outside users to assure that they can perform their experiments effectively and efficiently. The prioritization of outside proposals will be performed by an independent review committee that will base their recommendations on the scientific merit of each proposal

  10. Novel neutron sources at the Radiological Research Accelerator Facility

    Science.gov (United States)

    Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

    2012-03-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  11. Large-scale User Facility Imaging and Scattering Techniques to Facilitate Basic Medical Research

    International Nuclear Information System (INIS)

    proposals submitted through the user programs operated by each facility. Imaging human and animal tissue occurs but is not routine in most places, and strict procedures must be followed to do so. However research communities are burgeoning in a number of biomedical areas, and protein crystallography research is well rooted in the X-ray and neutron scattering communities. Novel here is the forward looking work on neutron imaging with potential medical and biomedical applications. Thus the national laboratories provide a research environment with capabilities and a culture conducive to exploring new methods and techniques suitable for exploring new frontiers in medical and biomedical imaging.

  12. A Study of the Information Literacy of Biomedical Graduate Students: Based on the Thesis Topic Discovery Process in Molecular Biology Research

    Directory of Open Access Journals (Sweden)

    Jhao-Yen Huang

    2014-06-01

    Full Text Available The biomedical information environment is in a state of constant and rapid change due to the increase in research data and rapid technological advances. In Taiwan, few research has investigated the information literacy of biomedical graduate students. This exploratory study examined the information literacy abilities and training of biomedical graduate students in Taiwan. Semi-structured interviews based on the Association of College and Research Libraries Information Literacy Competency Standards for Science and Engineering/Technology were conducted with 20 molecular biological graduate students. The interview inquired about their information-seeking channels and information literacy education. The findings show that the biomedical graduate students developed a workable thesis topic with their advisors. Through various information-seeking channels and retrieval strategies, they obtained and critically evaluated information to address different information needs for their thesis research. Through seminars, annual conferences and papers, the interviewees were informed of current developments in their field. Subsequently, through written or oral communications, they were able to integrate and exchange the information. Most interviewees cared about the social, economic, legal, and ethical issues surrounding the use of information. College courses and labs were the main information literacy education environment for them to learn about research skills and knowledge. The study concludes four areas to address for the information literacy of biomedical graduate students, i.e., using professional information, using the current information, efficiency in assessing the domain information, and utilization of diverse information channels. Currently, the interviewees showed rather low usage of library resources, which is a concern for biomedical educators and libraries. [Article content in Chinese

  13. Data federation in the Biomedical Informatics Research Network: tools for semantic annotation and query of distributed multiscale brain data.

    Science.gov (United States)

    Bug, William; Astahkov, Vadim; Boline, Jyl; Fennema-Notestine, Christine; Grethe, Jeffrey S; Gupta, Amarnath; Kennedy, David N; Rubin, Daniel L; Sanders, Brian; Turner, Jessica A; Martone, Maryann E

    2008-01-01

    The broadly defined mission of the Biomedical Informatics Research Network (BIRN, www.nbirn.net) is to better understand the causes human disease and the specific ways in which animal models inform that understanding. To construct the community-wide infrastructure for gathering, organizing and managing this knowledge, BIRN is developing a federated architecture for linking multiple databases across sites contributing data and knowledge. Navigating across these distributed data sources requires a shared semantic scheme and supporting software framework to actively link the disparate repositories. At the core of this knowledge organization is BIRNLex, a formally-represented ontology facilitating data exchange. Source curators enable database interoperability by mapping their schema and data to BIRNLex semantic classes thereby providing a means to cast BIRNLex-based queries against specific data sources in the federation. We will illustrate use of the source registration, term mapping, and query tools. PMID:18999211

  14. Primates in biomedical research and their maintenance in captivity. I primati nella ricerca biomedica ed il loro allevamento in cattivita

    Energy Technology Data Exchange (ETDEWEB)

    Monaco, V.

    1983-01-01

    This conference is intended to provide to biologists, phychologists, zoologists etc., some criteria on use of non-human primates in biomedical research and to assess their value in procedures and tests of products by a pharmaceutical industry (i.e., poliomyelitis vaccine). After a review of scientific achievements during last decades and of the possibility of development of use of primates for medical experimentation, a numerical estimation of the subjects employed in different countries and of the basic needs as indicated by OMS and EEC is reported. In an attempt to promote a programme for production of primates in Italy, this communication describes the project of primates breeding by using areas near electro-nuclear power stations. 5 refs.

  15. Science gateways for biomedical big data analysis

    NARCIS (Netherlands)

    S. Shahand

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists fr

  16. Detailed description of an SSAC at the facility level for research laboratory facilities

    International Nuclear Information System (INIS)

    The purpose of this document is to provide a detailed description of a system for the accounting for and control of nuclear material in a research laboratory facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following SSAC elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  17. The Advanced Neutron Source Facility: A new user facility for neutron research

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) is a new reactor-based research facility being planned by Oak Ridge National Laboratory (ORNL) to meet the need for an intense steady state source of neutrons and for associated research space and equipment. The ANS will be open for use by scientists from universities, industry, and other federal laboratories. The ANS will be built around a new research reactor of unprecedented flux; that is, it will produce the most intense continuous beams of neutrons in the world. The goal is to reach a thermal neutron flux for beam experiments of 5 /times/ 1019 to 10 /times/ 1019 neutrons/(m2/center dot/s/sup /minus/1/). By combining the higher source flux with improved experimental facilities, the ANS will surpass current US high flux reactors---the High Flux Isotope Reactor (HFIR) at ORNL and the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory---by a factor of 10 to 20. The safety analysis of the ANS facility will include a complete probabilistic risk assessment (PRA), which will provide a systematic assessment of dependencies among systems at the malfunctions. For the current generation of nuclear power plants that have recently undergone the licensing review process, PRA has been used an an analysis tool after completion of the plant designs. For the ANS Project, the PRA effort has already begun, before the facility conceptual design. This allows safety insights from the PRA to be incorporated into the evolving plant design. 4 refs., 6 figs

  18. Langley's two-dimensional research facilities: Capabilities and plans

    Science.gov (United States)

    Ray, E. J.

    1979-01-01

    The current capabilities and the forthcoming plans for Langley's two-dimensional research facilities are described. The characteristics of the Langley facilities are discussed in terms of Reynolds number, Mach number, and angle-of-attack capabilities. Comments are made with regard to the approaches which have been investigated to alleviate typical problem areas such as wall boundary effects. Because of the need for increased Reynolds number capability at high subsonic speeds, a considerable portion of the paper deals with a description of the 20 by 60 cm two-dimensional test section of the Langley 0.3 meter transonic cryogenic tunnel which is currently in the calibration and shakedown phase.

  19. Moessbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nano technological research

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakha, M.I., E-mail: oshtrakh@mail.utnet.ru [Faculty of Physical Techniques and Devices for Quality Control, Ural Federal University, Ekaterinburg (Russian Federation); Semionkina, V.A. [Faculty of Experimental Physics, Ural Federal University, Ekaterinburg (Russian Federation)

    2011-07-01

    created. Characteristics of this system demonstrated a high stability, precision and accuracy in the measurement of Moessbauer spectra in 4096 channels. In spite of substantial increase in the measurement time, spectra measured with a high velocity resolution permitted to obtain Moessbauer hyperfine parameters with systematic errors at least 8 times less than in the case of spectra measurement in 512 channels as well as to fit complicated Moessbauer spectra with better quality. Various applications of Moessbauer spectroscopy with a high velocity resolution demonstrated new possibilities of technique. Biomedical applications. New results were obtained in the study of human liver ferritin, its pharmaceutically important models as well as liver and spleen tissues from normal and leukemia chicken; in comparative study of various human and animals' normal oxyhemoglobins and oxyhemoglobins from patients; in the study of iron containing pharmaceutical products. Cosmochemical applications. In the study of various meteorites new results were obtained in analysis of Fe-Ni alloys with variations in Ni concentration, in the study of silicate phases and Fe-Ni phosphides with crystallographically non-equivalent sites for Fe. Nanotechnological applications. New results were obtained in the study of cupric ferrite nanoparticles with tin oxide adding as well as in the study of ferric oxide nanoparticles developed for magnetic fluids for biomedical purposes. (author)

  20. The reactor and cold neutron research facility at NIST

    International Nuclear Information System (INIS)

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D2O/H2O ice cold source. (author)

  1. Complex plasma research on ISS past, present, and future facilities

    Science.gov (United States)

    Seurig, R.; Morfill, G.; Fortov, V.; Hofmann, P.

    2007-11-01

    The research in dusty plasma, also known as complex plasma, under prolonged microgravity condition took its first steps in 1998 onboard the Russian Space Station MIR: cosmonauts Vladimir Solovyov and Pavel Vinogradov conducted the first experiments to obtain plasma-dust crystals in the 'Plazmennyi Kristall 1'(PK-1) device using the sun as a 'natural' ionization source. This experiment was followed afterwards by the PK-2 already utilizing its own DC plasma generator. A major step came only three years later with the PKE-Nefedov facility (formerly called PKE-3). Launched in February 2001 and operated in over 13 missions for five consecutive years in the Russian Segment of the International Space Station ISS, this bilateral German-Russian research facility has already shown some surprising, new behavior of radio-frequency induced complex plasmas. An advanced model of PKE-Nefedov, the PK-3 Plus experiment apparatus, is getting readied to be launched to ISS on Progress Cargo spacecraft 20P. Additional developments are in progress to continue this exciting growing research field with: (a) PK-4 utilizing high voltage DC controlled plasma, and (b) IMPACT Laboratory, the European Space Agency's next generation premier research laboratory for plasma and dust physics on the ISS. The paper will provide background information of each of the complex plasma research facilities.

  2. EUFAR – European Facility for Airborne Research: Easy and Open Access to the Airborne Research Facilities and Expert Knowledge

    OpenAIRE

    Holzwarth, Stefanie; Reusen, Ils; Brown, Philip R. A.; Gerard, Elisabeth

    2015-01-01

    The European Facility for Airborne Research, EUFAR, is an Integrating Activity of the 7th Framework Programme (FP7) of the European Commission with funding covering the period 2014-2018. The current EUFAR follows three previous contracts under FP5, FP6 and FP7, and currently represents a consortium of 24 European institutions and organisations involved in airborne research. 18 small and medium size aircraft equipped with a multitude of different sensor systems are available to the European sc...

  3. Hardware development process for Human Research facility applications

    Science.gov (United States)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. .

  4. Development of a Pilot Data Management Infrastructure for Biomedical Researchers at University of Manchester – Approach, Findings, Challenges and Outlook of the MaDAM Project

    Directory of Open Access Journals (Sweden)

    Meik Poschen

    2012-12-01

    Full Text Available Management and curation of digital data has been becoming ever more important in a higher education and research environment characterised by large and complex data, demand for more interdisciplinary and collaborative work, extended funder requirements and use of e-infrastructures to facilitate new research methods and paradigms. This paper presents the approach, technical infrastructure, findings, challenges and outlook (including future development within the successor project, MiSS of the ‘MaDAM: Pilot data management infrastructure for biomedical researchers at University of Manchester’ project funded under the infrastructure strand of the JISC Managing Research Data (JISCMRD programme. MaDAM developed a pilot research data management solution at the University of Manchester based on biomedical researchers’ requirements, which includes technical and governance components with the flexibility to meet future needs across multiple research groups and disciplines.

  5. The Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) database and analysis pipeline for arterial spin labeling MRI data.

    Science.gov (United States)

    Shin, David D; Ozyurt, I Burak; Liu, Thomas T

    2013-01-01

    Arterial spin labeling (ASL) is a magnetic resonance imaging technique that provides a non-invasive and quantitative measure of cerebral blood flow (CBF). After more than a decade of active research, ASL is now emerging as a robust and reliable CBF measurement technique with increased availability and ease of use. There is a growing number of research and clinical sites using ASL for neuroscience research and clinical care. In this paper, we present an online CBF Database and Analysis Pipeline, collectively called the Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) that allows researchers to upload and share ASL and clinical data. In addition to serving the role as a central data repository, the CBFBIRN provides a streamlined data processing infrastructure for CBF quantification and group analysis, which has the potential to accelerate the discovery of new scientific and clinical knowledge. All capabilities and features built into the CBFBIRN are accessed online using a web browser through a secure login. In this work, we begin with a general description of the CBFBIRN system data model and its architecture, then devote the remainder of the paper to the CBFBIRN capabilities. The latter part of our work is divided into two processing modules: (1) Data Upload and CBF Quantification Module; (2) Group Analysis Module that supports three types of analysis commonly used in neuroscience research. To date, the CBFBIRN hosts CBF maps and associated clinical data from more than 1,300 individual subjects. The data have been contributed by more than 20 different research studies, investigating the effect of various conditions on CBF including Alzheimer's, schizophrenia, bipolar disorder, depression, traumatic brain injury, HIV, caffeine usage, and methamphetamine abuse. Several example results, generated by the CBFBIRN processing modules, are presented. We conclude with the lessons learned during implementation and deployment of the CBFBIRN and our

  6. Biomedical research with cyclotron-produced radionuclides. Progress report, August 1, 1982-February 28, 1983

    International Nuclear Information System (INIS)

    Progress in the following research areas is reported: (1) exploratory clinical metabolic studies; (2) compound synthesis labeling and associated biological studies; and (3) data analysis, modeling and instrumentation

  7. Biases in grant proposal success rates, funding rates and award sizes affect the geographical distribution of funding for biomedical research.

    Science.gov (United States)

    Wahls, Wayne P

    2016-01-01

    The ability of the United States to most efficiently make breakthroughs on the biology, diagnosis and treatment of human diseases requires that physicians and scientists in each state have equal access to federal research grants and grant dollars. However, despite legislative and administrative efforts to ensure equal access, the majority of funding for biomedical research is concentrated in a minority of states. To gain insight into the causes of such disparity, funding metrics were examined for all NIH research project grants (RPGs) from 2004 to 2013. State-by-state differences in per application success rates, per investigator funding rates, and average award size each contributed significantly to vast disparities (greater than 100-fold range) in per capita RPG funding to individual states. To the extent tested, there was no significant association overall between scientific productivity and per capita funding, suggesting that the unbalanced allocation of funding is unrelated to the quality of scientists in each state. These findings reveal key sources of bias in, and new insight into the accuracy of, the funding process. They also support evidence-based recommendations for how the NIH could better utilize the scientific talent and capacity that is present throughout the United States. PMID:27077009

  8. A test matrix sequencer for research test facility automation

    Science.gov (United States)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  9. Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities.

    Science.gov (United States)

    Collymore, Chereen; Crim, Marcus J; Lieggi, Christine

    2016-07-01

    The presence of subclinical infection or clinical disease in laboratory zebrafish may have a significant impact on research results, animal health and welfare, and transfer of animals between institutions. As use of zebrafish as a model of disease increases, a harmonized method for monitoring and reporting the health status of animals will facilitate the transfer of animals, allow institutions to exclude diseases that may negatively impact their research programs, and improve animal health and welfare. All zebrafish facilities should implement a health monitoring program. In this study, we review important aspects of a health monitoring program, including choice of agents, samples for testing, available testing methodologies, housing and husbandry, cost, test subjects, and a harmonized method for reporting results. Facilities may use these recommendations to implement their own health monitoring program. PMID:26991393

  10. Biomedical Research and the Animal Rights Movement: A Contrast in Values.

    Science.gov (United States)

    Morrison, Adrian R.

    1993-01-01

    This article explains how animals are used in research in an effort to counteract animal rights literature. Reveals how medical professionals and others trained in scholarship have misquoted the scientific literature to bolster their claims against the utility of animal research. (PR)

  11. Demand for Interdisciplinary Laboratories for Physiology Research by Undergraduate Students in Biosciences and Biomedical Engineering

    Science.gov (United States)

    Clase, Kari L.; Hein, Patrick W.; Pelaez, Nancy J.

    2008-01-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary…

  12. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  13. New methods of researching healthcare facility users: the nursing workspace

    OpenAIRE

    Karen Keddy

    2012-01-01

    This study is entitled Embodied Professionalism: The relationship between the physicalnature of nursing work and nursing space. The analysis is based in a critical examination of existing approaches, assumptions, and attitudes in the research literature about who, what, and how to study the person-environment relationship in healthcare facilities. New methods of studying how nurses experience their work, their workplace and the objects in their workspace are needed in order to address importa...

  14. ARM Climate Research Facility Quarterly Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Chitra

    2014-01-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  15. Basic Design of the Cold Neutron Research Facility in HANARO

    International Nuclear Information System (INIS)

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments

  16. Sustainability in facilities management: an overview of current research

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Sarasoja, Anna-Liisa; Ramskov Galamba, Kirsten

    2016-01-01

    emerging sub-discipline of sustainable facilities management (SFM) on research, an overview of current studies is needed. The purpose of this literature review is to provide exactly this overview. Design/methodology/approach: This article identifies and examines current research studies on SFM through a...... indicated that the current research varies in focus, methodology and application of theory, and it was concluded that the current research primary addresses environmental sustainability, whereas the current research which takes an integrated strategic approach to SFM is limited. The article includes lists...... comprehensive and systematic literature review. The literature review included screening of 85 identified scientific journals and almost 20,000 articles from the period of 2007-2012. Of the articles reviewed, 151 were identified as key articles and categorised according to topic. Findings: The literature review...

  17. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  18. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  19. GroFi: Large-scale fiber placement research facility

    OpenAIRE

    Krombholz, Christian; Kruse, Felix; Wiedemann, Martin

    2016-01-01

    GroFi is a large research facility operated by the German Aerospace Center’s Center for Lightweight-Production-Technology in Stade. A combination of dierent layup technologies namely (dry) ber placement and tape laying, allows the development and validation of new production technologiesand processes for large-scale composite components. Due to the use of coordinated and simultaneously working layup units a high exibility of the research platform is achieved. This allows the investigation of ...

  20. Progress in developing the concept for the irradiation research facility

    International Nuclear Information System (INIS)

    At the 16th annual Canadian Nuclear Society conference, AECL presented the case for replacing the NRU reactor with an Irradiation Research Facility (IRF) to test CANDU fuels and materials and to perform advanced materials research using neutrons. AECL developed a cost estimate of $500 million for the reference IRF concept, and estimated that it would require 87 months to complete. AECL has initiated a pre-project program to develop the IRF concept and to minimize uncertainties related to feasibility and licensability, and to examine options for reducing the overall project cost before project implementation begins. (author) 10 refs., 2 figs

  1. Progress in developing the concept for the irradiation research facility

    International Nuclear Information System (INIS)

    At the 16th annual Canadian Nuclear Society conference, AECL presented the case for replacing the NRU reactor with an Irradiation Research Facility (IRF) to test CANDU fuels and materials and to perform advanced materials research using neutrons. AECL developed a cost estimate of $500 million for the reference IRF concept, and estimated that it would require 87 months to complete. AECL has initiated a pre-project program to develop the IRF concept to minimize uncertainties related to feasibility and licensability, and to examine options for reducing the overall project cost before project implementation begins. (author)

  2. Dhruva reactor -- a high flux facility for neutron beam research

    International Nuclear Information System (INIS)

    Dhruva reactor, the highest flux thermal neutron source in India has been operating at full power of 100 MW over the past two years. Several advanced facilities like the cold source, guides, etc. are being installed for neutron beam research in condensed matter. A large number and variety of neutron spectrometers are operational. This paper deals with the basic advantages that one can derive from neutron scattering investigations and gives a brief description of the instruments that are developed and commissioned at Dhruva for neutron beam research. (author). 3 figs

  3. The neutron radiography facility at Tehran Research Reactor (TRR)

    International Nuclear Information System (INIS)

    Full text: Non-destructive testing in many fields of industry including detection of explosives, at the airports, testing for micro-cracks on airplane wings and turbine blades cracks is badly needed. Thermal neutron beam is one of preferable method to detect the micro-cracks, reveals the internal structure of components and explosives. The purpose of this paper is to present the neutron radiography facility at Tehran Research Reactor (TRR), Science and Technology Research Institute, and in particular to emphasize the industrial applications in wood industry, automobile engine inspection, minerals composition identification, turbine blade cracks detection. (author)

  4. Cold neutron irradiation facility for the Brazilian research reactors

    International Nuclear Information System (INIS)

    Neutron irradiation in research reactors and accelerators can be realized at appropriated neutron guides or beam holes shared around a cold neutron source (CNS) with neutron of variable intensity and energy. An irradiation facility for multiple applications including an intense CNS was calculated for the three Brazilian research reactors and can be utilized as a first concept for the new research reactor to be designed, the Brazilian multiple purpose research reactor (RMB). A study about coolant and moderators properties, and simulations with neutron physics and thermal codes, may be important for the definition of the type of the CNS to be utilized. Some earlier results of MCNP simulations and a discussion about the different factors involved in the definition of its installation in the Brazilian research reactors are here presented. One suggests an international cooperation for the design development of this system and posterior construction of a prototype in the Argonauta reactor at the Instituto de Engenharia Nuclear (IEN-CNEN/RJ). It is also being considered the inclusion of other devices as a neutron fiber to guide the neutron beams away of the gamma radiation and fast neutron background. The cold neutron facility increases the intensity of cold neutrons, without the need of additional fuel burn up. (author)

  5. Status of CHESS facility and research programs: 2010

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Ernest, E-mail: ef11@cornell.edu [Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853 (United States); Bilderback, Donald H.; Gruner, Sol M. [Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853 (United States)

    2011-09-01

    CHESS is a hard X-ray synchrotron radiation national facility located at Cornell University and funded by the National Science Foundation. It is open to all scientists by peer-reviewed proposal and serves 500-1000 visitors each year. The CHESS scientific and technical staff develops forefront research tools and X-ray instrumentation and methods and supports 12 experimental stations delivering high intensity X-ray beams produced at 5.3 GeV and 250 mA. The facility consists of a mix of dedicated and flexible experimental stations that are easily configured for general X-ray diffraction (wide- and small-angle), spectroscopy, imaging applications, etc. Dedicated stations support high-pressure powder X-ray diffraction, pulsed-laser deposition for layer-by-layer growth of surfaces, and three dedicated stations for protein crystallography. Specialized resource groups at the laboratory include: an X-ray detector group; MacCHESS, an NIH-supported research resource for protein crystallography; the G-line division, which primarily organizes graduate students and Cornell faculty members around three X-ray stations; a high-pressure diamond-anvil cell support laboratory; and a monocapillary drawing facility for making microbeam X-ray optics. Research is also ongoing to upgrade CHESS to a first-ever 5 GeV, 100 mA Energy Recovery Linac (ERL) hard X-ray source. This source will provide ultra-high spectral-brightness and <100 fs short-pulse capability at levels well in advance of those possible with existing storage rings. It will produce diffraction-limited X-rays beams of up to 10 keV energy and be capable of providing 1 nm round beams. Prototyping for this facility is under way now to demonstrate critical DC photoelectron injector and superconducting linac technologies needed for the full-scale ERL.

  6. Status of CHESS facility and research programs: 2010

    International Nuclear Information System (INIS)

    CHESS is a hard X-ray synchrotron radiation national facility located at Cornell University and funded by the National Science Foundation. It is open to all scientists by peer-reviewed proposal and serves 500-1000 visitors each year. The CHESS scientific and technical staff develops forefront research tools and X-ray instrumentation and methods and supports 12 experimental stations delivering high intensity X-ray beams produced at 5.3 GeV and 250 mA. The facility consists of a mix of dedicated and flexible experimental stations that are easily configured for general X-ray diffraction (wide- and small-angle), spectroscopy, imaging applications, etc. Dedicated stations support high-pressure powder X-ray diffraction, pulsed-laser deposition for layer-by-layer growth of surfaces, and three dedicated stations for protein crystallography. Specialized resource groups at the laboratory include: an X-ray detector group; MacCHESS, an NIH-supported research resource for protein crystallography; the G-line division, which primarily organizes graduate students and Cornell faculty members around three X-ray stations; a high-pressure diamond-anvil cell support laboratory; and a monocapillary drawing facility for making microbeam X-ray optics. Research is also ongoing to upgrade CHESS to a first-ever 5 GeV, 100 mA Energy Recovery Linac (ERL) hard X-ray source. This source will provide ultra-high spectral-brightness and <100 fs short-pulse capability at levels well in advance of those possible with existing storage rings. It will produce diffraction-limited X-rays beams of up to 10 keV energy and be capable of providing 1 nm round beams. Prototyping for this facility is under way now to demonstrate critical DC photoelectron injector and superconducting linac technologies needed for the full-scale ERL.

  7. Research enrichment: evaluation of structured research in the curriculum for dental medicine students as part of the vertical and horizontal integration of biomedical training and discovery

    Directory of Open Access Journals (Sweden)

    Stewart Tanis

    2008-02-01

    Full Text Available Abstract Background Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their students. Methods A series of structured seminars, incorporating faculty research, was designed for first-year dental students at the University of Nevada, Las Vegas, School of Dental Medicine to reinforce and support the concepts and skills taught in concurrent courses. A structured research enrichment period was also created to facilitate student engagement in active research using faculty and student curricular release time. Course evaluations and surveys were administered to gauge student perceptions of the curricular integration of research, the impact of these seminars on recruitment to the research program, and overall levels of student satisfaction with research enrichment. Results The analysis of course surveys revealed that students perceived the research-containing seminars effectively illustrated concepts, were logically sequenced, and were well-integrated into their curriculum. In addition, analysis of surveys revealed that the Integration Seminar courses motivated students to engage in research enrichment. Finally, this analysis provided evidence that students were very satisfied with their overall learning experience during research enrichment. Conclusion Curricular integration is one method of improving the teaching and learning of complicated and inter-related concepts, providing an opportunity to incorporate research training and objectives into traditionally separate didactic courses. Despite the benefits of curricular integration, finding

  8. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  9. Research reactor and fuel development facility decommissioning experience and technology

    International Nuclear Information System (INIS)

    This paper discusses the technology and experience gained in research reactor and fuels development facility decommissioning programs carried out by Babcock and Wilcox (B and W) at one of its NRC-licensed sites in Lynchburg, VA. The projects included two buildings that housed plutonium/uranium fuels development laboratories, four low-power critical experiment facilities, and two (megawatt-level) research reactors. This paper concentrates on the experiences with the plutonium/uranium fuels development laboratories and critical experiment facilities. These were comprehensive projects that included: developing the decommissioning and quality assurance plans; interfacing with the U.S. Nuclear Regulatory Commission, performing the actual decontamination/dismantling work; performing decontamination and final radiological surveys; and volume reducing, packaging, certifying, classifying, and shipping the radioactive waste for disposal. This broad experience has involved handling radioactive contamination from the following sources: low- and high-enriched U-235 fuel; depleted uranium; mixed oxide fuel (Pu/UO); thorium fuel; U Al alloy fuel; and fission activation products (beta-gamma). Areas of application to future projects are highlighted in this paper

  10. Understanding the relative valuation of research impact: a best–worst scaling experiment of the general public and biomedical and health researchers

    Science.gov (United States)

    Pollitt, Alexandra; Potoglou, Dimitris; Patil, Sunil; Burge, Peter; Guthrie, Susan; King, Suzanne; Wooding, Steven; Grant, Jonathan

    2016-01-01

    Objectives (1) To test the use of best–worst scaling (BWS) experiments in valuing different types of biomedical and health research impact, and (2) to explore how different types of research impact are valued by different stakeholder groups. Design Survey-based BWS experiment and discrete choice modelling. Setting The UK. Participants Current and recent UK Medical Research Council grant holders and a representative sample of the general public recruited from an online panel. Results In relation to the study's 2 objectives: (1) we demonstrate the application of BWS methodology in the quantitative assessment and valuation of research impact. (2) The general public and researchers provided similar valuations for research impacts such as improved life expectancy, job creation and reduced health costs, but there was less agreement between the groups on other impacts, including commercial capacity development, training and dissemination. Conclusions This is the second time that a discrete choice experiment has been used to assess how the general public and researchers value different types of research impact, and the first time that BWS has been used to elicit these choices. While the 2 groups value different research impacts in different ways, we note that where they agree, this is generally about matters that are seemingly more important and associated with wider social benefit, rather than impacts occurring within the research system. These findings are a first step in exploring how the beneficiaries and producers of research value different kinds of impact, an important consideration given the growing emphasis on funding and assessing research on the basis of (potential) impact. Future research should refine and replicate both the current study and that of Miller et al in other countries and disciplines. PMID:27540096

  11. The Minipig as an Animal Model in Biomedical Stem Cell Research

    Czech Academy of Sciences Publication Activity Database

    Vodička, Petr; Hlučilová, Jana; Klíma, Jiří; Procházka, Radek; Ourednik, J.; Motlík, Jan

    Totowa, New Jersey : Humana Press, 2008 - (Conn, P.), s. 241-248 ISBN 978-1-58829-933-8. - (Medicine) R&D Projects: GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z50450515 Keywords : Animal model * Minipig * Neural stem cell Subject RIV: FH - Neurology

  12. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base

  13. Working with Concepts: The Role of Community in International Collaborative Biomedical Research.

    Science.gov (United States)

    Marsh, V M; Kamuya, D K; Parker, M J; Molyneux, C S

    2011-04-01

    The importance of communities in strengthening the ethics of international collaborative research is increasingly highlighted, but there has been much debate about the meaning of the term 'community' and its specific normative contribution. We argue that 'community' is a contingent concept that plays an important normative role in research through the existence of morally significant interplay between notions of community and individuality. We draw on experience of community engagement in rural Kenya to illustrate two aspects of this interplay: (i) that taking individual informed consent seriously involves understanding and addressing the influence of communities in which individuals' lives are embedded; (ii) that individual participation can generate risks and benefits for communities as part of the wider implications of research. We further argue that the contingent nature of a community means that defining boundaries is generally a normative process itself, with ethical implications. Community engagement supports the enactment of normative roles; building mutual understanding and trust between researchers and community members have been important goals in Kilifi, requiring a broad range of approaches. Ethical dilemmas are continuously generated as part of these engagement activities, including the risks of perverse outcomes related to existing social relations in communities and conditions of 'half knowing' intrinsic to processes of developing new understandings. PMID:21416064

  14. Locating tissue collections in tissue economies--deriving value from biomedical research

    DEFF Research Database (Denmark)

    Tupasela, Aaro Mikael

    2006-01-01

    This paper examines diverging notions of value in the use of tissue sample collections and other information resources using a case study of hereditary colorectal cancer research in Finland. Recent science and technology policies that emphasize the production of commercial value derived from tiss...

  15. Cost calculations for decommissioning and dismantling of nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I. (Studsvik Nuclear AB (Sweden)); Backe, S. (Institute for Energy Technology (Norway)); Cato, A.; Lindskog, S. (Swedish Nuclear Power Inspectorate (Sweden)); Efraimsson, H. (Swedish Radiation Protection Authority (Sweden)); Iversen, Klaus (Danish Decommissioning (Denmark)); Salmenhaara, S. (VTT Technical Research Centre of Finland (Finland)); Sjoeblom, R. (Tekedo AB, (Sweden))

    2008-07-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  16. Cost calculations for decommissioning and dismantling of nuclear research facilities

    International Nuclear Information System (INIS)

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  17. A national survey of policies on disclosure of conflicts of interest in biomedical research

    Science.gov (United States)

    McCrary, S. V.; Anderson, C. B.; Jakovljevic, J.; Khan, T.; McCullough, L. B.; Wray, N. P.; Brody, B. A.

    2000-01-01

    BACKGROUND: Conflicts of interest pose a threat to the integrity of scientific research. The current regulations of the U.S. Public Health Service and the National Science Foundation require that medical schools and other research institutions report the existence of conflicts of interest to the funding agency but allow the institutions to manage conflicts internally. The regulations do not specify how to do so. METHODS: We surveyed all medical schools (127) and other research institutions (170) that received more than $5 million in total grants annually from the National Institutes of Health or the National Science Foundation; 48 journals in basic science and clinical medicine; and 17 federal agencies in order to analyze their policies on conflicts of interest. RESULTS: Of the 297 institutions, 250 (84 percent) responded by March 2000, as did 47 of the 48 journals and 16 of the 17 federal agencies. Fifteen of the 250 institutions (6 percent)--5 medical schools and 10 other research institutions--reported that they had no policy on conflicts of interest. Among the institutions that had policies, there was marked variation in the definition and management of conflicts. Ninety-one percent had policies that adhered to the federal threshold for disclosure ($10,000 in annual income or equity in a relevant company or 5 percent ownership), and 9 percent had policies that exceeded the federal guidelines. Only 8 percent had policies requiring disclosure to funding agencies, only 7 percent had such policies regarding journals, and only 1 percent had policies requiring the disclosure of information to the relevant institutional review boards or to research subjects. Twenty journals (43 percent) reported that they had policies requiring disclosure of conflicts of interest. Only four federal agencies had policies that explicitly addressed conflicts of interest in extramural research, and all but one of the agencies relied primarily on institutional discretion. CONCLUSIONS

  18. First Materials Science Research Facility Rack Capabilities and Design Features

    Science.gov (United States)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  19. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

  20. Internship using nuclear facilities in Oarai Research and Development Center

    International Nuclear Information System (INIS)

    Nuclear energy is important from a viewpoint of economy and energy security in Japan. However, the lack of nuclear engineers and scientists in future is concerned after the severe accident of TEPCO's Fukushima Daiichi Nuclear Power Station has occurred. Institute of National Colleges of Technology planned to carry out training programs for human resource development of nuclear energy field including on-site training in nuclear facilities. Oarai Research and Development Center in Japan Atomic Energy Agency cooperatively carried out an internship for nuclear disaster prevention and safety utilizing the nuclear facilities such as the JMTR. Thirty two students joined in total in the internship from FY 2011 to FY 2013. In this paper, contents and results of the internship are reported. (author)