WorldWideScience

Sample records for biomedical radiography

  1. An inventory of biomedical imaging physics elements-of-competence for diagnostic radiography education in Europe

    International Nuclear Information System (INIS)

    Purpose: To develop an inventory of biomedical physics elements-of-competence for diagnostic radiography education in Europe. Method: Research articles in the English literature and UK documentation pertinent to radiography education, competences and role development were subjected to a rigorous analysis of content from a functional and competence analysis perspective. Translations of radiography curricula from across Europe and relevant EU legislation were likewise analysed to ensure a pan-European perspective. Broad Subject Specific Competences for diagnostic radiography that included major biomedical physics components were singled out. These competences were in turn carefully deconstructed into specific elements-of-competence and those elements falling within the biomedical physics learning domain inventorised. A pilot version of the inventory was evaluated by participants during a meeting of the Higher Education Network for Radiography in Europe (HENRE), held in Marsascala, Malta, in November 2004. The inventory was further refined taking into consideration suggestions by HENRE members and scientific, professional and educational developments. Findings: The evaluation of the pilot inventory was very positive and indicated that the overall structure of the inventory was sensible, easily understood and acceptable - hence a good foundation for further development. Conclusions: Use of the inventory by radiography programme leaders and biomedical physics educators would guarantee that all necessary physics elements-of-competence underpinning the safe, effective and economical use of imaging devices are included within radiography curricula. It will also ensure the relevancy of physics content within radiography education. The inventory is designed to be a pragmatic tool for curriculum development across the entire range of radiography education up to doctorate level and irrespective of whether curriculum delivery is discipline-based or integrated, presentation

  2. Neutron Radiography

    OpenAIRE

    Reddy, A. R.; Rao, M. V. N.

    2012-01-01

    The field of neutron radiography with special reference to isotopic neutron radiography has been reviewed. Different components viz., sources, collimators, imaging systems are described. Various designs of neutron radiography facilities, their relative merits and demerits , the appropriateness of each design depending on the object to be radiographed, and economics of each technique are also dealt. The applications of neutron radiography are also briefly presented.

  3. Neutron Radiography

    Directory of Open Access Journals (Sweden)

    A. R. Reddy

    1982-07-01

    Full Text Available The field of neutron radiography with special reference to isotopic neutron radiography has been reviewed. Different components viz., sources, collimators, imaging systems are described. Various designs of neutron radiography facilities, their relative merits and demerits , the appropriateness of each design depending on the object to be radiographed, and economics of each technique are also dealt. The applications of neutron radiography are also briefly presented.

  4. Industrial radiography

    International Nuclear Information System (INIS)

    Industrial radiography is a non-destructive testing (NDT) method which allows components to be examined for flaws without interfering with their usefulness. It is one of a number of inspection methods which are commonly used in industry to control the quality of manufactured products and to monitor their performance in service. Because of its involvement in organizing training courses in all the common NDT methods in regional projects in Asia and the Pacific and Latin America and the Caribbean and in many country programmes, the Agency is aware of the importance of standardizing as far as possible the syllabi and training course notes used by the many experts who are involved in presenting the training courses. IAEA-TECDOC-628 ''Training Guidelines in Non-destructive Testing'' presents syllabi which were developed by an Agency executed UNDP project in Latin America and the Caribbean taking into account the developmental work done by the International Committee for Non-destructive Testing. Experience gained from using the radiography syllabi from TECDOC-628 at national and regional radiography training courses in the Agency executed UNDP project in Asia and the Pacific (RAS/86/073) showed that some guidance needed to be given to radiography experts engaged in teaching at these courses on the material which should be covered. The IAEA/UNDP Asia and Pacific Project National NDT Coordinators therefore undertook to prepare Radiography Training Course Notes which could be used by experts to prepare lectures for Level 1,2 and 3 radiography personnel. The notes have been expanded to cover most topics in a more complete manner than that possible at a Level 1, 2 or 3 training course and can now be used as source material for NDT personnel interested in expanding their knowledge of radiography. Refs, figs and tabs

  5. Neutron radiography

    International Nuclear Information System (INIS)

    This introduction is addressed to an audience active in diverse forms of neutron source applications but not directly familiar with neutron radiography. Neutron radiography is, of course, similar to, and complementary to, radiography using x-rays. However, neutrons, being sensitive to the nuclear properties of materials, provide information fundamentally different from x-rays. For example, neutrons can penetrate many dense metals such as uranium, lead, bismuth or steel, and can reveal details of internal hydrogenous components: explosives, lubricants and gaskets. For nuclear fuel inspection neutron radiography offers the ability to penetrate dense uranium-238 and contrast the isotopes U-235 or Pu-239 and also offers the ability to discriminate against unwanted interference from gamma radiation. In addition to advantages in industrial applications, there are special situations in fields such as medical diagnostics, dentistry, agriculture and forensic science. Comprehensive accounts of applications in the field can be found in the proceedings of the world conferences on neutron radiography: USA (1981), FRANCE (1986). A third conference in this series is scheduled for May 1989 in Japan

  6. Digital radiography.

    Science.gov (United States)

    Mattoon, J S

    2006-01-01

    Digital radiography has been used in human medical imaging since the 1980s with recent and rapid acceptance into the veterinary profession. Using advanced image capture and computer technology, radiographic images are viewed on a computer monitor. This is advantageous because radiographic images can be adjusted using dedicated computer software to maximize diagnostic image quality. Digital images can be accessed at computer workstations throughout the hospital, instantly retrieved from computer archives, and transmitted via the internet for consultation or case referral. Digital radiographic data can also be incorporated into a hospital information system, making record keeping an entirely paperless process. Digital image acquisition is faster when compared to conventional screen-film radiography, improving workflow and patient throughput. Digital radiography greatly reduces the need for 'retake' radiographs because of wide latitude in exposure factors. Also eliminated are costs associated with radiographic film and x-ray film development. Computed radiography, charged coupled devices, and flat panel detectors are types of digital radiography systems currently available. PMID:16971994

  7. Industrial radiography

    International Nuclear Information System (INIS)

    This publication is meant to be a manual for industrial radiography. As such the manual concentrates on the practical aspects, presenting existing radiographic system and techniques of operation to satisfy specified quality requirements. The manual also reviews the safety aspect of performing radiographic work. (author) systems

  8. Neutron radiography

    International Nuclear Information System (INIS)

    The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H2O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.

  9. Muon Radiography

    CERN Document Server

    Morris, Christopher

    2005-01-01

    The interaction of muons with matter is dominated by the Coulomb interaction. The Coulomb interaction can be factored into the interaction with electrons which results in continuous energy loss and eventual stopping of the charged particle with very small changes in the direction while the interaction with the atomic nuclei results in relatively larger angle changes with only small changes in the energy. Each if these interactions provides a radiographic signal which can be used to study the internal structure of objects. These radiographies will be contrasted with each other, and some data obtained with cosmic ray muons will be presented.*

  10. neutron radiography

    International Nuclear Information System (INIS)

    Neutron radiography (or radiology) is a diverse filed that uses neutrons of various energies, subthermal, thermal, epithermal or fast in either steady state or pulsed mode to examine objects for industrial, medical, or other purposes, both microscopic and macroscopic. The applications include engineering design, biological studies, nondestructive inspection and materials evaluation. In the past decade, over 100 different centers in some 30 countries have published reports of pioneering activities using reactors, accelerators and isotopic neutron sources. While film transparency and electronic video are most common imaging methods for static or in motion objects respectively, there are other important data gathering techniques, including track etch, digital gauging and computed tomography. A survey of the world-wide progress shows the field to be gaining steadily in its diversity, its sophistication and its importance. (author)

  11. Industrial radiographies

    CERN Multimedia

    2005-01-01

    The Radiation Protection group wishes to remind CERN staff responsible for contractors performing X-ray inspections on the CERN sites that the firms must apply the legislation in force in their country of origin, in particular with regard to the prevention of risks relating to ionizing radiation. Industrial radiography firms called on to work on the CERN sites must also comply with the rules laid down in CERN's Radiation Safety Manual and be registered in the relevant CERN database. Since CERN is responsible for safety on its own site, a number of additional rules have been laid down for this kind of work, as set out in Radiation Protection Procedure PRP30 https://edms.cern.ch/file/346848/LAST_RELEASED/PRP30.pdf The CERN Staff Member responsible for the contract shall register the company and issue notification that an X-ray inspection is to be performed via the web interface at the following address: http://cern.ch/rp-radio

  12. International Neutron Radiography Newsletter

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing...

  13. Digital chest radiography

    DEFF Research Database (Denmark)

    Debess, Jeanne Elisabeth; Vejle-Sørensen, Jens Kristian; Thomsen, Henrik;

    2015-01-01

    of clinical supervisors. Optimal collimation is determined by European and Regional Danish guidelines. The areal between current and optimal collimation is calculated. The experimental research is performed in September - October 2014 Siemens Axiom Aristos digital radiography system DR using 150 kV, 1,25 -3......Purpose: Quality improvement of basic radiography focusing on collimation and dose reduction in digital chest radiography Methods and Materials:A retrospective study of digital chest radiography is performed to evaluate the primary x-ray tube collimation of the PA and lateral radiographs. Data from...

  14. Radiography - A conceptual approach

    International Nuclear Information System (INIS)

    Aim: The purpose of this article is to describe interdisciplinary comparison of the attributes of the concept of radiography in health sciences, physics and technology on the grounds of concept analysis. Background: The concept of radiography is widely used in health sciences, physics and technology. However, the content of the concept may vary. In order to clarify the concept of radiography, the concept must be systematically examined and defined in linguistic form. Method: The concept of radiography was analysed by using the evolutionary method of concept analysis. The data were collected through discretionary sampling and consisted of literature and Internet pages. Qualitative content analysis was employed for analysing the data. Findings: As a result of concept analysis, the concept of radiography in health sciences was determined as expertise of radiographers in the use of radiation, which is dual, dynamic, social and situation-related in nature, and typically based on versatile synthesis. Regarding the attributes identified, the concept of radiography has both similarities and differences between health sciences, physics and technology. Conclusions: The concept of radiography was found to be more abstract, wider, more complex and more radiographer-centred in health sciences than in other disciplines. The content of the concept of radiography seems to vary according to the discipline

  15. Digital chest radiography

    DEFF Research Database (Denmark)

    Debess, Jeanne Elisabeth; Johnsen, Karen Kirstine; Thomsen, Henrik

    2015-01-01

    Background: Chest radiography is one of the most common examinations in radiology departments. In 2013 approximately 80,000 chest x-rays were performed on women in the fertile age. Even low dose for the examinationCorrect collimation Purpose: Quality improvement of basic radiography focusing...... on collimation and dose reduction in digital chest radiography Methods and Materials A retrospective study of digital chest radiography is performed to evaluate the primary x-ray tube collimation of the PA and lateral radiographs. Data from one hundred fifty self-reliant female patients between 15 and 55 years...... of age are included in the study. The clinical research is performed between September and November 2014 where 3rd year Radiography students collect data on four Danish x-ray departments using identical procedures under guidance of clinical supervisors. Optimal collimation is determined by European...

  16. Neutron radiography, techniques and applications

    International Nuclear Information System (INIS)

    After describing the principles of the ''in pool'' and ''dry'' installations, techniques used in neutron radiography are reviewed. Use of converter foils with silver halide films for the direct and transfer methods is described. Advantages of the use of nitrocellulose film for radiographying radioactive objects are discussed. Dynamic imaging is shortly reviewed. Standardization in the field of neutron radiography (ASTM and Euratom Neutron Radiography Working Group) is described. The paper reviews main fields of use of neutron radiography. Possibilities of use of neutron radiography at research reactors in various scientific, industrial and other fields are mentioned. Examples are given of application of neutron radiography in industry and the nuclear field. (author)

  17. International Neutron Radiography Newsletter

    OpenAIRE

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing (BJNDT) has agreed to publish the INRNL in i t s column "NDT Bookcase". The Revue Practique de Control Industriel has also agreed to publish the French version of the INRNL. Up t i l l now 12 issues of...

  18. Radiography at CERN

    CERN Multimedia

    HSE Unit

    2014-01-01

    What is industrial radiography? It is a non-destructive method with a wide variety of applications, such as inspecting the quality of a weld. It uses high-energy radioactive sources or an X-ray generator.   Is this inspection technique used at CERN? Yes, it is widely used at CERN by the EN-MME Group, which outsources the work to one or more companies, depending on the workload. Is it possible to carry out radiography anywhere at CERN? Yes, it is possible to carry out radiography in any building/accelerator/experiment area at CERN (including in areas which are not normally subject to radiological hazards). When is radiography carried out? It normally takes place outside of working hours (7 p.m. to 6 a.m.). How will I know if radiography is taking place in my building? If this activity is planned in a CERN building, notices will be affixed to all of its main entrance doors at least 24 hours in advance. What are the risks? There is a risk of exposure to very high levels of radiation, dep...

  19. Broadening the radiography spectrum

    International Nuclear Information System (INIS)

    The text discuses the mammography in breast screening and evaluation of breast cancer; Small parts ultrasounds at plaza imaging solutions; role of a Radiographer in mammography-new perspective; Medical imaging education in africa; Caring for the paediatric patient as to broaden radiotherapy spectrum; Problems and challenges in care for children undergoing radiotherapy; Paediatric radiotherapy, management and side effects; The principles of pattern recognition of skeletal structures; the place of distance learning education in broadening the radiography spectrum; the curriculum and budgeting image; sonographer's guide; Computed radiography- X-Ray with vision; digital Radiography in Kenya today; Particle Therapy at Ithemba Labs; The role of lung perfusion and ventilation study in the evaluation of the pulmonary embolism and lastly, an overview of Head and neck treatment at Kenyatta National hospital radiotherapy

  20. Real-time radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  1. Real-time radiography

    International Nuclear Information System (INIS)

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components

  2. Are radiography lecturers, leaders?

    International Nuclear Information System (INIS)

    This review article aims to explore the concept of radiography lecturers acting as leaders to their student followers. Through a brief review of the literature, a definition of leadership is suggested and some leadership theories explored. The path-goal theory, leader–member exchange theory and the contemporary theory of transformational leadership are examined more closely. Links between lecturer-leader behaviour and student motivation and learning are tentatively suggested with transformational leadership appearing to offer the optimal leadership style for lecturers to adopt. The paucity of literature relating directly to radiography is acknowledged and areas for further research are suggested. The article concludes with some of the author's practical ideas for incorporating transformational leadership styles and behaviours into radiography education today

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  6. Neutron induced electron radiography

    International Nuclear Information System (INIS)

    In the present paper a new radiography technique, the 'Neutron Induced Electron Radiography' - NIER, to inspect low thickness samples on the order of micra, has been developed. This technique makes use of low energy electrons as penetrating radiation generated from metallic gadolinium screens when irradiated by thermal neutrons. The conditions to obtain the best image for the conventional X-ray film Kodak-AA were determined by using a digital system to quantify the darkening level of the film. The irradiations have been performed at a radiography equipment installed at the beam-hole no. 8 of the 5 MW IEA-R1 nuclear research reactor of IPEN-CNEN/SP. The irradiation time to obtain the best radiography was 100 seconds and for such condition the technique was able to discern 1 μm in 24 μm of aluminum at a resolution of 32 μm. By visual comparison the images obtained by the NIER shown a higher quality when compared with the ones from other usual techniques the make use of electrons a penetrating radiation and films for image registration. Furthermore the use of the digital system has provided a smaller time for data acquisition and data analysis as well as an improvement in the image visualization. (author)

  7. Manual on industrial radiography

    International Nuclear Information System (INIS)

    This manual is intended as a source of educational material to personnel seeking certification as industrial radiographers, and as a guide and reference text for educational organizations that are providng courses in industrial radiography. It covers the basic principles of x-ray and gamma radiation, radiation safety, films and film processing, welding, casting and forging, aircraft structures and components, radiographic techniques, and records

  8. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  9. Artifacts in digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Whan [Dept. of Radiological Technology, Shin Gu University, Sungnam (Korea, Republic of); Kim, Jung Min [Dept. of Radiological Technology, Korea University, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, Beakseok Culture University, Cheonan (Korea, Republic of)

    2015-12-15

    Digital Radiography is a big part of diagnostic radiology. Because uncorrected digital radiography image supported false effect of Patient’s health care. We must be manage the correct digital radiography image. Thus, the artifact images can have effect to make a wrong diagnosis. We report types of occurrence by analyzing the artifacts that occurs in digital radiography system. We had collected the artifacts occurred in digital radiography system of general hospital from 2007 to 2014. The collected data had analyzed and then had categorize as the occurred causes. The artifacts could be categorized by hardware artifacts, software artifacts, operating errors, system artifacts, and others. Hardware artifact from a Ghost artifact that is caused by lag effect occurred most frequently. The others cases are the artifacts caused by RF noise and foreign body in equipments. Software artifacts are many different types of reasons. The uncorrected processing artifacts and the image processing error artifacts occurred most frequently. Exposure data recognize (EDR) error artifacts, the processing error of commissural line, and etc., the software artifacts were caused by various reasons. Operating artifacts were caused when the user did not have the full understanding of the digital medical image system. System artifacts had appeared the error due to DICOM header information and the compression algorithm. The obvious artifacts should be re-examined, and it could result in increasing the exposure dose of the patient. The unclear artifact leads to a wrong diagnosis and added examination. The ability to correctly determine artifact are required. We have to reduce the artifact occurrences by understanding its characteristic and providing sustainable education as well as the maintenance of the equipments.

  10. Radiography – How do students understand the concept of radiography?

    International Nuclear Information System (INIS)

    Background: Radiography as a concept has mainly been associated with the functional role of the radiographer. The concept has been studied from a theoretical point of view. However, there is a lack of a theoretical foundation and research on the actual substance of the term radiography used in education. It is therefore important to undertake an investigation in order to determine how students after three years education understand the subject of radiography. Aim: The aim of this study was to analyse how students in the Swedish radiographers' degree program understand the concept of radiography. Method: A concept analysis was made according to the hybrid model, which combines theoretical, fieldwork and analytical phases. A summative content analysis was used to identify the number and content of statements. The empirical data were collected from questionnaires answered by radiography students at four universities in Sweden. Findings: All radiography students' exemplified radiography with statements related to the practical level although some of them also identified radiography at an abstract level, as a subject within a discipline. The attribute ‘An interdisciplinary area of knowledge’ emerged, which is an attribute on the abstract level. The practical level was described by four attributes: Mastering Medical Imaging’, ‘To accomplish images for diagnosis and interventions’, ‘Creating a caring environment’ and ‘Enabling fruitful encounters’. Conclusion: The hybrid model used was a versatile model of concept development. The results of this study have increased the understanding of what characterizes the concept of radiography in a Swedish context. - Highlights: • This concept analysis of radiography was undertaken according to a hybrid model. • In radiography humanistic aspects are emphasized, a shift from the technological perspective. • The attributes demonstrate the essence and interdisciplinary nature of radiography. • This

  11. Quantitative film radiography

    International Nuclear Information System (INIS)

    We have developed a system of quantitative radiography in order to produce quantitative images displaying homogeneity of parts. The materials that we characterize are synthetic composites and may contain important subtle density variations not discernible by examining a raw film x-radiograph. In order to quantitatively interpret film radiographs, it is necessary to digitize, interpret, and display the images. Our integrated system of quantitative radiography displays accurate, high-resolution pseudo-color images in units of density. We characterize approximately 10,000 parts per year in hundreds of different configurations and compositions with this system. This report discusses: the method; film processor monitoring and control; verifying film and processor performance; and correction of scatter effects

  12. Radiography with Polarised Neutrons

    OpenAIRE

    Schulz, Michael

    2010-01-01

    The combination of neutron radiography with one dimensional polarisation analysis developed in this thesis allows the spatially resolved determination of the magnetic properties of weakly ferromagnetic substances. This method can yield valuable information on the nature of the underlying phase transition. The requirements for all components of the experimental setup and their influence on the maximum spatial resolution are discussed extensively in this work. Radiographic as well as tomographi...

  13. Digital radiography in space.

    Science.gov (United States)

    Hart, Rob; Campbell, Mark R

    2002-06-01

    With the permanent habitation of the International Space Station, the planning of longer duration exploration missions, and the possibility of space tourism, it is likely that digital radiography will be needed in the future to support medical care in space. Ultrasound is currently the medical imaging modality of choice for spaceflight. Digital radiography in space is limited because of prohibitive launch costs (in the region of $20,000/kg) that severely restrict the volume, weight, and power requirements of medical care hardware. Technological increases in radiography, a predicted ten-fold decrease in future launch costs, and an increasing clinical need for definitive medical care in space will drive efforts to expand the ability to provide medical care in space including diagnostic imaging. Normal physiological responses to microgravity, in conjunction with the high-risk environment of spaceflight, increase the risk of injury and could imply an extended recovery period for common injuries. The advantages of gravity on Earth, such as the stabilization of patients undergoing radiography and the drainage of fluids, which provide radiographic contrast, are unavailable in space. This creates significant difficulties in patient immobilization and radiographic positioning. Gravity-dependent radiological signs, such as lipohemarthrosis in knee and shoulder trauma, air or fluid levels in pneumoperitoneum, pleural effusion, or bowel obstruction, and the apical pleural edge in pneumothorax become unavailable. Impaired healing processes such as delayed callus formation following fracture will have implications on imaging, and recovery time lines are unknown. The confined nature of spacecraft and the economic impossibility of launching lead-based personal protective equipment present significant challenges to crew radiation safety. A modified, free-floating radiographic C-arm device equipped with a digital detector and utilizing teleradiology support is proposed as a

  14. Proton radiography in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, L., E-mail: luca.volpe@mib.infn.it [Universita degli Studi di Milano-Bicocca, Piazza della scienza 3, Milano 20126 (Italy); Batani, D.; Morace, A. [Universita degli Studi di Milano-Bicocca, Piazza della scienza 3, Milano 20126 (Italy); Nicolai, Ph.; Regan, C. [CELIA, Universite de Bordeaux, CNRS, CEA, F33405 (France); Ravasio, A. [LULI, UMR 7605, CNRS, CEA, Universite Paris VI, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2011-10-11

    Generation of high intensity and well collimated multi-energetic proton beams from laser-matter interaction extends the possibility to use protons as a diagnostic tool to image imploding target in Inertial Confinement Fusion (ICF) experiments. Due to the very large mass densities reached during implosion, protons traveling through the target undergo a very large number of collisions. Therefore the analysis of experimentally obtained proton images requires care and accurate numerical simulations using both hydrodynamic and Monte Carlo codes. The impact of multiple scattering needs to be carefully considered by taking into account the exact stopping power for dense matter and for the underdense plasma corona. In our paper, density, temperature and ionization degree profiles of the imploding target are obtained by 2D hydrodynamic simulations performed using CHIC code. Proton radiography images are simulated using the Monte Carlo code (MCNPX; adapted to correctly describe multiple scattering and plasma stopping power) in order to reconstruct the complete hydrodynamic history of the imploding target. Finally we develop a simple analytical model to study the performance of proton radiography as a function of initial experimental parameters, and identify two different regimes for proton radiography in ICF.

  15. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  16. Euratom Neutron Radiography Working Group

    OpenAIRE

    Domanus, Joseph Czeslaw

    1986-01-01

    In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Buratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made ...

  17. Quality assurance in digital radiography

    International Nuclear Information System (INIS)

    At present, there is no standard way of evaluating performance characteristics of digital radiography systems. Continuous measurements of performance parameters are necessary in order to obtain images of high quality. Parameters of quality assurance in digital radiography, which can be evaluated with simple, quick methods, are spatial resolution, low-contrast detectability, dynamic range and exposure dose. Spatial resolution was determined by a lead bar pattern, whereas the other parameters were measured by commercially available phantoms. Performance measurements of 10 digital subtraction angiography (DSA) units and one digital radiography system for unsubtracted digital radiography were assessed. From these results, recommendations for performance parameter levels will be discussed. (author)

  18. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  19. Pediatric musculoskeletal computed radiography

    International Nuclear Information System (INIS)

    Background. In conventional radiography, a film-screen system serves as the X-ray detector and the film also functions as an archival and display medium. Unlike film-screen radiography, these functions are uncoupled in computed radiography (CR). CR uses conventional radiographic equipment to expose an image on a storage phosphor plate instead of a film-screen combination. Objective. To review the basic concepts of CR and to provide a background for discussion of specific musculoskeletal applications of CR in children. Materials and methods. Various aspects of musculoskeletal CR in children are presented based on our 4 years' experience and a review of the literature. Results. A greater amount of scatter capture occurs with storage phosphor CR than with a film-screen system in the 70- to 120-kVp range. This is attributed to a lower K-absorption edge of barium in the barium fluorohalide (BaFBr) compound used in the imaging plate. A significant reduction of scatter to primary radiation, improvement in bony trabecular sharpness, and improvement in line pair resolution can be achieved in pediatric musculoskeletal imaging using an air gap without an increase in the skin entrance dose as compared to the non-grid table top technique. With CR, in addition to proper radiographic exposure technique, one needs to preprogram and select the optimal processing technique for each anatomic region, projection and age group of the child. Conclusion. The main advantages of CR in pediatric musculoskeletal imaging consist of a reduction in radiation dose for many applications, improved contrast resolution, near elimination of repeat radiographs related to exposure errors, and digital processing capabilities for image enhancement, storage, retrieval, display and transmission. The current limitations of CR include the moderately high start-up cost, the long learning curve to produce optimal films, and the reduced spatial resolution. (orig.). With 8 figs., 2 tabs

  20. Radiography with polarised neutrons

    International Nuclear Information System (INIS)

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd1-xNix and Ni3Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd1-xNix and Ni3Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni3Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature TC on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with different ordering temperatures. This procedure was

  1. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  2. Resonance neutron radiography

    International Nuclear Information System (INIS)

    The production of images by the use of neutrons having energies in the resonance region is described. Two-dimensional position-sensitive neutron detectors are used to produce transmission images using neutron time-of-flight techniques at the National Bureau of Standards' electron linac facility. Two types of detectors are described. The first is a crossed-wire proportional counter using 3He as the neutron-sensitive component. The second type utilizes a multichannel plate electron multiplier and a resistive anode readout. A lithium glass scintillator is the neutron-sensitive component in the latter detector. Resonance neutron radiography, using these detectors, has the capability of producing images with isotopic and chemical element discrimination in a complex matrix with a resolution of 1 mm or better. (Auth.)

  3. A Portable Electron Radiography System

    CERN Document Server

    Merrill, Frank E; Harmon, Frank; Hunt, Alan W; King, B J; Morris, Christopher

    2005-01-01

    The technique of charged particle radiography has been developed and proven with 800 MeV protons at LANSCE and 24 GeV protons at the AGS. Recent work at Los Alamos National Laboratory in collaboration with the Idaho Accelerator Center has extended this diagnostic technique to electron radiography through the development of an inexpensive and portable electron radiography system. This system has been designed to use 30 MeV electrons to radiograph thin static and dynamic systems. The system consists of a compact 30 MeV pulsed electron linear accelerator coupled to a quadrupole lens magnifier constructed from permanent magnet quadrupoles. The design features and operational characteristics of this radiography system are presented as well as the radiographic performance parameters.

  4. Euratom neutron radiography working group

    International Nuclear Information System (INIS)

    In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Euratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made and draw plans for the future. Besides, ad-hoc sub-groups on different topics within the field of neutron radiography are constituted. This paper reviews the activities and achievements of the NRWG and its sub-groups. (author)

  5. Euratom Neutron Radiography Working Group

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made and draw plans for the future. Besides, ad-hoc sub-groups or. different topics within the field of neutron......In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Buratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear...... radiography are constituted. This paper reviews the activities and achievements of the NRWG and its sub-groups....

  6. Angular signal radiography.

    Science.gov (United States)

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  7. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  8. Use of fluorescent screens for isotope radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, S. K.

    1979-01-01

    Radiographic examination can be performed on items beyond the limitation of conventional isotope radiography without a great loss of resolution. With proper film and screen selection and scatter radiation control, fluorescent screens can be a valuable additional tool for radiography.

  9. Accelerator system for neutron radiography

    International Nuclear Information System (INIS)

    The field of x-ray radiography is well established for doing non-destructive evaluation of a vast array of components, assemblies, and objects. While x-rays excel in many radiography applications, their effectiveness diminishes rapidly if the objects of interest are surrounded by thick, high-density materials that strongly attenuate photons. Due to the differences in interaction mechanisms, neutron radiography is highly effective in imaging details inside such objects. To obtain a high intensity neutron source suitable for neutron imaging a 9-MeV linear accelerator is being evaluated for putting a deuteron beam into a high-pressure deuterium gas cell. As a windowless aperture is needed to transport the beam into the gas cell, a low-emittance is needed to minimize losses along the high-energy beam transport (HEBT) and the end station. A description of the HEBT, the transport optics into the gas cell, and the requirements for the linac will be presented

  10. Neutron-induced alpha radiography

    International Nuclear Information System (INIS)

    A new radiography technique to inspect thin samples was developed. Low energy alpha particles, generated by a boron based screen under thermal neutron irradiation, are used as penetrating radiation. The solid state nuclear track detector CR-39 has been used to register the image. The interaction of the α - particles with the CR-39 gives rise to damages which under an adequate chemical etching became tracks the basic units forming the image. A digital system was developed for data acquisition and data analysis as well as for image processing. The irradiation and etching conditions to obtain the best radiography are 1,3 hours and 25 minutes at 70 deg C respectively. For such conditions samples having 10 μm in thickness can be inspected with a spatial resolution of 32 μm. The use of the digital system has reduced the time spent for data acquisition and data analysis and has improved the radiography image visualization. Furthermore, by using the digital system, it was possible to study several new parameters regarding the tracks which are very important to understand and study the image formation theory in solid state nuclear track detectors, the one used in this thesis. Some radiography images are also shown which demonstrate the potential of the proposed radiography technique. When compared with the other radiography techniques already in use to inspect thin samples, the present one developed in the present paper allows a smaller time to obtain the image, it is not necessary to handle liquid radioactive substances, the detector is insensitive to β, γ, X-ray and visible light. (author)

  11. Educational aspects of industrial radiography

    International Nuclear Information System (INIS)

    The state of art of training and education in non-destructive testing in India, with special reference to industrial radiography is reviewed. Basic requirement of industry and potential of radioisotopes in industrial inspection are also described. Need for an organised training programme in industrial isotope radiography to exploit potentials for benefit of industry concurrent with the safety is stressed. A comprehensive training programme tailored to meet the needs of Indian industry is outlined. Benefits obtained from the course to the industry since the beginning of the training programme are briefly reviewed. (auth.)

  12. Radiation protection in dental radiography

    International Nuclear Information System (INIS)

    In considering the special provisions required in dental radiography, investigations were conducted in Iran. Radiation dose levels in dental radiography were found to be high. Patient exposure from intraoral radiographic examination was calculated, using 50kV X-ray. Thermoluminescent dosimeters were fastened to the nasion, eyes, lip, philtrum, thyroid, gonads and to the right and left of the supra-orbital, infra-orbital temporomandibular joints of live patients. The highest exposure value was for the lower lip. Recommendations concerning educational training and protection of staff and patients were included

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Images related to X-ray (Radiography) - Bone About this Site RadiologyInfo.org is produced by: Please note ... you can search the ACR-accredited facilities database . This website does not provide cost information. The costs ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ...

  15. Industrial Radiography: Principle and Practical

    International Nuclear Information System (INIS)

    The successful and effectiveness of radiography method as a tool to increase quality level and safety of the engineering system and processing plants depend with the level of radiographer knowledge as service provider and also as supervisor. This book was published as effort several local experts to give their knowledge, theory and practical related to radiography technique to the involved public directly or indirectly. This book started with basic physic knowledge that becomes a root to radiography technology. Then, followed by discussion on tools and device that used in radiography work including x-ray machine, gamma projector, film, dark room, and others. Each aspect of radiograph quality also mentioned here to guide the reader on how to produce good radiograph that filled the specification wanted. The good radiograph does not mean anything if it failed to be interpreted correctly. Because of that, this book also explain how to choose good radiograph that qualified to be interpreted and after that how interpretation and evaluation process of object quality inspected was implemented based on image digestion that showed in radiograph. Several code and standard that usually applied in this country also will be referred as well for this work.

  16. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  17. Material examination by neutron radiography

    International Nuclear Information System (INIS)

    Neutron radiography as a non-destructive testing technique has played a prominent role in the development of fuel for research and power reactors; studying of dimensional changes due to irradiation; inspection of corrosion in airframe structures and propeller blades; detection of light components and materials in explosive an investigation of diffusion of water into building materials etc. The development of neutron radiography facility by extracting a beam of thermal neutrons through a radial beam port around the Pakistan Research Reactor-1 is described. Graphite block of 30 cm thickness and bismuth block of 25 cm thickness have been used to boost-up thermal neutrons flux level and filter out high energy gamma radiation from the beam respectively. Thermal neutron flux level of the order of 1.06x10/sup 6/ n.cm/sup -2/. s/sup -1/ and a neutron to gamma ratio of the order of 10/sup 5/ n.cm/sup -2/.mR/sup -1/ have been measured at the object position which make the facility useful for investigation of material characteristics an properties applying direct neutron radiography method. The facility has been subjected to modifications and changes in order to enhance thermal neutron flux level and reduce the exposure time for better image quality at the object position. The use of beam purity and sensitivity indicators for determining the beam constituents and resolution of the technique is discussed. Visibility of holes under the lead and acrylic step wedges categorize the facility for direct applications. Neutron cross-sections for different metallic as well as composite materials have been determined by applying neutron radiographic technique. The use of neutron radiography as a complimentary technique to ensure the quality of nuclear fuel in addition to other applications like detection of light components in explosives and pyrotechnic devices is investigated. Detection of corrosion in aluminum joints, deformation in aeronautical components and honeycomb structures is

  18. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  19. Industrial Radiography Safety in Australia

    International Nuclear Information System (INIS)

    The first applications of the imaging capability of X-rays were non-medical. Roentgen produced images of his shotgun, a compass and a set of weights in a closed box to show his colleagues. Prior to 1912, X-rays were used little outside the realms of medicine and dentistry because the X-ray tubes failed under the higher voltages required for industrial purposes. However, that changed in 1913 when high vacuum X-ray tubes designed by Coolidge became available. In 1922, industrial radiography took another step forward with the advent of the 200,000-volt X-ray tube that allowed radiographs of thick steel parts to be produced in a reasonable amount of time. In 1931 the American Society of Mechanical Engineers (ASME) permitted approval of fusion welded pressure vessels by x-ray, which promoted an acceptance and use of the method. That application continues. Radium became the initial gamma ray source for industrial radiography. The material allowed radiography of castings up to 30cm thick. During World War II, industrial radiography grew significantly as part of the US Navy's shipbuilding-program, and in 1946 gamma ray sources such as cobalt 60 and iridium 192 became available. These new sources gained rapid popularity because they emitted more intense radiation than radium and were less expensive. Present state: the majority of industrial radiography techniques have changed little since their inception. An image is captured, processed and analysed for evidence of fault or defect. Today however, the images are of higher quality and greater sensitivity, through the use of better quality films, smaller radiation sources and automated processing. Developments in electronics and computers now allow technicians to create a digital image, enhance it, transmit it or store it indefinitely. The most noticeable change in industrial radiography equipment from the technician's view would be the reduction in weight of the equipment for a given kV output. Never the less it remains

  20. Industrial radiography X and Gamma

    International Nuclear Information System (INIS)

    This publication gives a practical orientation on industrial radiography. The first chapters deal with basic facts that are useful for professional work in this field. It comprises topics such as generation of X-rays, equipment being used, radiographic films, sensibility, and the penetrameters used. This publication also describes the most used radiographic techniques and the processing of the radiographic film. It contains practical recommendations on how to obtain a good radiographic inspection. It states the reasons for defects in the radiographies. Two annexes are attached which include tables for the selection of penetrameters according to the ASME and DIN codes as well as the time needed for development and fixing according to the temperature

  1. System for uncollimated digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Han; Hall, James M.; McCarrick, James F.; Tang, Vincent

    2015-08-11

    The inversion algorithm based on the maximum entropy method (MEM) removes unwanted effects in high energy imaging resulting from an uncollimated source interacting with a finitely thick scintillator. The algorithm takes as input the image from the thick scintillator (TS) and the radiography setup geometry. The algorithm then outputs a restored image which appears as if taken with an infinitesimally thin scintillator (ITS). Inversion is accomplished by numerically generating a probabilistic model relating the ITS image to the TS image and then inverting this model on the TS image through MEM. This reconstruction technique can reduce the exposure time or the required source intensity without undesirable object blurring on the image by allowing the use of both thicker scintillators with higher efficiencies and closer source-to-detector distances to maximize incident radiation flux. The technique is applicable in radiographic applications including fast neutron, high-energy gamma and x-ray radiography using thick scintillators.

  2. Radiological security for industrial radiography

    International Nuclear Information System (INIS)

    This report comprises the basic notions of nucleonics, simple calculations for point sources, X-rays, calculations for coatings, standards for radiation protection and industrial radiography instruments. The preceding sums up with the biological effects of ionizing radiation. This is a guide for people who wish to pass examinations, to get the license for radiological safety, for operators on gamma-graphic sources, which work in the country. It is a requirement for work with this kind of radioactive sources

  3. Radiation safety for site radiography

    International Nuclear Information System (INIS)

    This guidance is an update of the 1975 Code of Practice for Site Radiography and is for the use of employers and their radiographers who carry out site work. The subject is discussed under the following headings: Administrative organization, Personnel requirements, Equipment (x-ray and gamma-ray equipment, security, pipeline crawler equipment and safety equipment) Work methods and monitoring, Carriage of sources, Contingency plans, Legal considerations. (U.K.)

  4. Digital radiography vs conventional radiography - a comparison along with its image quality and benefits

    International Nuclear Information System (INIS)

    In digital radiography, information is represented in the form of discrete units, i.e., numbers, and involve the use of computers, whereas in conventional radiography, information is represented in analog or continuous form rather than in discrete fashion

  5. Digital and analogue industrial radiography, application fields

    International Nuclear Information System (INIS)

    Full text: Reusable phosphor screens for computer radiography (CR), amorphous selenium screens for direct radiography (DR), film digitalisation (FD) constitute imaging methods accepted by industry and are used for non-destructive radiographic testing (RT). Economic pressures are involving and affecting digital RT technology. Standards and codes for film radiography and radioscopy qualification do no longer cover the wide range of digital RT applications. It will be our task to optimise the performance of digital RT characterisation and to create appropriate examination methods to use all these new and existent technologies. In the meantime, an increasing automation and control of manual methods of analogue radiography can as well be expected. (author)

  6. Neutron radiography at the HFR Petten

    International Nuclear Information System (INIS)

    This report contains the five papers on neutron radiography activities at the Petten High Flux Reactor (HFR) presented at the Third World Conference on Neutron Radiography which was held in May 1989 in Osaka, Japan. In addition, a survey on neutron radiography in Europe for industry and research as presented at the SITEF NDT symposium 1989 on European Advances in Non-Destructive Testing, held in Toulouse/France in October 1989 is included. The papers compiled here are concerned with: the neutron radiography services available in Petten; the experience with and applications of neutron radiography at Petten; image evaluation and analysis techniques at Petten; the practical utilization of nitrocellulose film in neutron radiography in Europe; an introduction into the basic principles of neutron radiography; an overview of the neutron radiography facilities in Europe for industry and research; and a survey of typical applications of neutron radiography in industry, research and sciences. It is the intention of this compilation to provide a comprehensive overview of the present Petten activities and European facilities in this young and promising field of non-destructive testing of materials and components from the nuclear and the non-nuclear industries and research organizations, and from the sciences

  7. Biomedical optical imaging

    CERN Document Server

    Fujimoto, James G

    2009-01-01

    Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this tech

  8. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John

    2011-01-01

    Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering e

  9. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  10. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  11. Multiple imaging radiography at LNLS

    Energy Technology Data Exchange (ETDEWEB)

    Hoennicke, M.G. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba (Brazil)], E-mail: marcelohonnicke@yahoo.com.br; Cusatis, C. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba(Brazil); Antunes, A. [Departamento de Fisica Aplicada, Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo (Brazil); Safatle, A.M.V.; Barros, P.S.M. [Laboratorio de Oftalmologia Experimental e Comparativa, Departamento de Cirurgia, Faculdade de Medicina Veterinaria, Universidade de Sao Paulo, 05508-900 Sao Paulo (Brazil); Morelhao, S.L. [Departamento de Fisica Aplicada, Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo (Brazil)

    2008-01-11

    An analyzer-based X-ray phase-contrast imaging (ABI) setup has been mounted at the Brazilian Synchrotron Light Laboratory (LNLS) for multiple imaging radiography (MIR) purposes. The algorithm employed for treating the MIR data collected at LNLS is described, and its reliability in extracting the distinct types of contrast that can be obtained with MIR is demonstrated by analyzing a test sample (thin polyamide wire). As a practical application, the possibility of studying ophthalmic tissues, corneal sequestra in this case, via MIR is investigated.

  12. Lesion detectability in digital radiography

    Science.gov (United States)

    Gagne, Robert M.; Boswell, Jonathan S.; Myers, Kyle J.; Peter, Guillaume

    2001-06-01

    The usefulness of Fourier-based measures of imaging performance has come into question for the evaluation of digital imaging systems. Figures of merit such as detective quantum efficiency are relevant for linear, shift-invariant systems with stationary noise. However, no digital imaging system is shift invariant, and realistic images do not satisfy the stationarity condition. Our methods for task- based evaluation of imaging systems, based on lesion detectability, do not require such assumptions. We have computed the performance of Hotelling and nonprewhitening matched-filter observers for the task of lesion detection in digital radiography.

  13. Computational radiology in skeletal radiography

    Energy Technology Data Exchange (ETDEWEB)

    Peloschek, Ph.; Nemec, S. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Widhalm, P. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Pattern Recognition and Image Processing Group, Department of Computer Aided Automation, Vienna University of Technology, Wiedner Hauptstrasse 8-10/020, A-1040 Vienna (Austria); Donner, R. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Pattern Recognition and Image Processing Group, Department of Computer Aided Automation, Vienna University of Technology, Wiedner Hauptstrasse 8-10/020, A-1040 Vienna (Austria); Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, A-8010 Graz (Austria); Birngruber, E. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Thodberg, H.H. [Visiana Aps, Sollerodvej 57C, DK-2840 Holte (Denmark); Kainberger, F. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Langs, G. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)], E-mail: georg.langs@meduniwien.ac.at

    2009-11-15

    Recent years have brought rapid developments in computational image analysis in musculo-skeletal radiology. Meanwhile the algorithms have reached a maturity that makes initial clinical use feasible. Applications range from joint space measurement to erosion quantification, and from fracture detection to the assessment of alignment angles. Current results of computational image analysis in radiography are very promising, but some fundamental issues remain to be clarified, among which the definition of the optimal trade off between automatization and operator-dependency, the integration of these tools into clinical work flow and last not least the proof of incremental clinical benefit of these methods.

  14. Computational radiology in skeletal radiography

    International Nuclear Information System (INIS)

    Recent years have brought rapid developments in computational image analysis in musculo-skeletal radiology. Meanwhile the algorithms have reached a maturity that makes initial clinical use feasible. Applications range from joint space measurement to erosion quantification, and from fracture detection to the assessment of alignment angles. Current results of computational image analysis in radiography are very promising, but some fundamental issues remain to be clarified, among which the definition of the optimal trade off between automatization and operator-dependency, the integration of these tools into clinical work flow and last not least the proof of incremental clinical benefit of these methods.

  15. Better imaging: the advantages of digital radiography

    NARCIS (Netherlands)

    P.F. van der Stelt

    2008-01-01

    Background. Digital radiography has been available in dentistry for more than 25 years, but it has not replaced conventional film-based radiography completely. This could be because of the costs involved in replacing conventional radiographic equipment with a digital imaging system, or because imple

  16. Biomedical applications engineering tasks

    Science.gov (United States)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  17. Digital chest radiography: collimation and dose reduction

    DEFF Research Database (Denmark)

    Debess, Jeanne; Johnsen, Karen Kirstine; Vejle-Sørensen, Jens Kristian;

    Purpose: Quality improvement of basic radiography focusing on collimation and dose reduction in digital chest radiography Methods and Materials:A retrospective study of digital chest radiography is performed to evaluate the primary x-ray tube collimation of the PA and lateral radiographs. Data from...... one hundred fifty self-reliant female patients between 15 and 55 years of age are included in the study. The clinical research is performed between September and November 2014 where 3rd year Radiography students collect data on four Danish x-ray departments using identical procedures under guidance...... of clinical supervisors. Optimal collimation is determined by European and Regional Danish guidelines. The areal between current and optimal collimation is calculated. The experimental research is performed in September - October 2014 Siemens Axiom Aristos digital radiography system DR using 150 kV, 1,25 -3...

  18. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  19. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D; Bronzino, Joseph D

    2006-01-01

    Over the last century,medicine has come out of the "black bag" and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiology to informatics and signal processing. Reflecting the enormous growth and change in biomedical engineering during the infancy of the 21st century, The Biomedical Engineering Handbook enters its third edition as a set of three carefully focused and

  20. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  1. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  2. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  3. Corrosion Surveillance In Pipe By Computed Radiography

    International Nuclear Information System (INIS)

    Computed Radiography (CR) is a technique of digital industrial radiology which is developed to replace conventional radiography. With a CR system, the detection of the outer and inner wall surface of the pipe is done usually by edge detection and filter algorithms of the profile line at the position under investigation. Applying in industries, radiographic examination shall be performed in accordance with a written procedure. This paper summarizes collected knowledge and experimental results to establish a procedure for radiography applications in monitoring corrosion in small bore pipes. (author)

  4. Charter of good practices in industrial radiography

    International Nuclear Information System (INIS)

    This document describes good practices in the field of industrial radiography. After having presented the main prevention and radiation protection principles, the actors inside and outside of the company, and actors intervening during an operation subcontracting in industrial radiography, this report analyzes the activity: prerequisites for work preparation, prevention coordination, work preparation, transportation, work achievement, return on experience. It addresses personnel training and information, and the dosimetric and medical monitoring of technicians in industrial radiography. Some aspects are addressed in appendix: principles (justification, optimization, and limitation), regulations, intervention form, exposure form, and so on

  5. Sensors for biomedical applications

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.

  6. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  7. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  8. Sharing big biomedical data

    OpenAIRE

    Toga, Arthur W.; Dinov, Ivo D.

    2015-01-01

    Background The promise of Big Biomedical Data may be offset by the enormous challenges in handling, analyzing, and sharing it. In this paper, we provide a framework for developing practical and reasonable data sharing policies that incorporate the sociological, financial, technical and scientific requirements of a sustainable Big Data dependent scientific community. Findings Many biomedical and healthcare studies may be significantly impacted by using large, heterogeneous and incongruent data...

  9. Statistical Uncertainty in Quantitative Neutron Radiography

    OpenAIRE

    Piegsa, Florian M.; Kaestner, Anders P.

    2016-01-01

    We demonstrate a novel procedure to calibrate neutron detection systems commonly used in standard neutron radiography. This calibration allows determining the uncertainties due to Poisson-like neutron counting statistics for each individual pixel of a radiographic image. The obtained statistical errors are necessary in order to perform correct quantitative analysis. This fast and convenient method is applied to real data measured at the cold neutron radiography facility ICON at the Paul Scher...

  10. Imaging beamline for high energy proton radiography

    Institute of Scientific and Technical Information of China (English)

    WEI Tao; YANG Guo-Jun; LONG Ji-Dong; WANG Shao-Heng; HE Xiao-Zhong

    2012-01-01

    Proton radiography is a new tool for advanced hydrotesting.This article will discuss the basic concept of proton radiography first,especially the magnetic lens system.Then a scenario of 50 GeV imaging beamline will be described in every particular,including the matching section,Zumbro lens system and imaging system.The simulation result shows that the scenario of imaging beamline performs well,and the influence of secondary particles can be neglected.

  11. Detective quantum efficiency for neutron radiography detectors

    International Nuclear Information System (INIS)

    Imaging performances of neutron radiography detectors, which consist of neutron-optical photon converter, image optics subsystem and CCD cameral were analyzed elaborately. Firstly, the variation of detective efficiency with the thickness of scintillator and the difference on quantum gain of two typical coupling methods between converter and CCD were discussed. Secondly, modulation transfer function and detective quantum efficiency with different lens coupling methods were described. Lastly, noise equivalent number of quanta was introduced to compare radiography detectors in theory. (authors)

  12. The neutron radiography programme at KAERI

    International Nuclear Information System (INIS)

    The first KAERI neutron radiography facility, which was installed at the research reactor KRR-2(2MW) in early 1980's to utilize for the inspection of the nuclear and non-nuclear objects, was closed at the end of 1995. As a continued programme, a new neutron radiography facility has been installed at HANARO with various upgrades. In this article, its design features, performance characteristics and utilization programme are outlined.

  13. Muon radiography for exploration of Mars geology

    OpenAIRE

    Kedar, S.; H. K. M. Tanaka; C. J. Naudet; Jones, C. E.; J. P. Plaut; F. H. Webb

    2012-01-01

    Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays) to image the interior of large scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size...

  14. Muon radiography for exploration of Mars geology

    OpenAIRE

    Kedar, S.; H. K. M. Tanaka; C. J. Naudet; Jones, C. E.; J. P. Plaut; F. H. Webb

    2013-01-01

    Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays) to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size...

  15. Simulation of proton radiography terminal at IMP

    CERN Document Server

    Yan, Yan; Huang, Zhi-Wu; Wang, Jie; Yao, Ze-En; Wang, Jun-Run; Wei, Zheng; Yang, Jian-Cheng; Yuan, You-Jin

    2015-01-01

    Proton radiography is used for advanced hydrotesting as a new type radiography technology due to its powerful penetration capability and high detection efficiency. A new proton radiography terminal will be developed to radiograph static samples at Institute of Modern Physics of Chinese Academy of Science (IMP-CAS). The proton beam with the maximum energy of 2.6 GeV will be produced by Heavy Ion Research Facility in Lanzhou-Cooling Storage Ring (HIRFL-CSR). The proton radiography terminal consists of the matching magnetic lens and the Zumbro lens system. In this paper, the design scheme and all optic parameters of this beam terminal for 2.6GeV proton energy are presented by simulating the beam optics using WINAGILE code. My-BOC code is used to test the particle tracking of proton radiography beam line. Geant4 code and G4beamline code are used for simulating the proton radiography system. The results show that the transmission efficiency of proton without target is 100%, and the effect of secondary particles ca...

  16. Specialism in radiography - a contemporary history of diagnostic radiography

    International Nuclear Information System (INIS)

    Aim and method: Specialism is relative comparing the unusual to a norm. Origins of radiographers' perceptions of what is a specialism are identified. Semi-structured interviews were conducted with 21 practitioners and 10 leading voices whose combined practice span 1932-2001. Findings: Findings show that the exclusive nature of practice is influential on what is perceived as a specialism. Radiographers held career aspirations that included greater recognition, clinical involvement, autonomy and challenging work. Career aspirations were clinical rather than managerial and extended across modality boundaries. A key barrier to career progression was inequality of opportunity as local medical career requirements were dominant. Characteristics of specialism of diagnostic radiography are identified. Factors influencing the formation of specialism are also identified. Summary: Specialisation was dominant but not necessarily constructive to career progression or additional autonomy. Specialism relates to new areas of practice and is facilitated by service need, clear practice boundaries, visionary management, medical support, role development leading to increased autonomy and additional training and education.

  17. Proceedings of the international conference on medical physics and biomedical engineering (MPBE '94). Vol. 2

    International Nuclear Information System (INIS)

    This is the second of two volumes of the proceedings of the International Conference on Medical Physics and Biomedical Engineering, held in Nicosia, Cyprus, between 3-7 May, 1994. It contains 50 papers. Eleven of these fall within the scope of INIS and are dealing with natural radioactivity, dose equivalents, nuclear medicine, quality control, positron emission tomography, computerized tomography, scintiscanning, medical examinations, x-ray radiography, radiotherapy, neural networks

  18. Vertebral Fracture Assessment in Supine Position : Comparison by Using Conventional Semiquantitative Radiography and Visual Radiography

    NARCIS (Netherlands)

    Hospers, Ilone C.; van der Laan, Johan G.; Zeebregts, Clark J.; Nieboer, Patrick; Wolffenbuttel, Bruce H. R.; Dierckx, Rudi A.; Kreeftenberg, Herman G.; Jager, Pieter L.; Slart, Riemer H. J. A.

    2009-01-01

    Purpose: To retrospectively evaluate the accuracy of vertebral fracture assessment (VFA) performed with the patient in the supine position and conventional semiquantitative radiography of the spine by using conventional visual radiography of the spine as the reference standard. Materials and Methods

  19. Mobile real time radiography system

    International Nuclear Information System (INIS)

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights ∼38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility

  20. Modified Bootstrap Sensitometry In Radiography

    Science.gov (United States)

    Bednarek, Daniel R.; Rudin, Stephen

    1981-04-01

    A new modified bootstrap approach to sensitometry is presented which provides H and D curves that show almost exact agreement with those obtained using conventional methods. Two bootstrap techniques are described; both involve a combination of inverse-square and stepped-wedge modulation of the radiation field and provide intensity-scale sensitometric curves as appropriate for medical radiography. H and D curves obtained with these modified techniques are compared with those obtained for screen-film combinations using inverse-square sensitometry as well as with those obtained for direct x-ray film using time-scale sensitometry. The stepped wedge of the Wisconsin X-Ray Test Cassette was used in the bootstrap approach since it provides sufficient exposure latitude to encompass the useful density range of medical x-ray film. This approach makes radiographic sensitometry quick and convenient, allowing accurate characteristic curves to be obtained for any screen-film cassette using standard diagnostic x-ray equipment.

  1. Proton radiography for clinical applications

    International Nuclear Information System (INIS)

    Proton imaging is not yet applied as a clinical routine, although its advantages have been demonstrated. In the context of quality assurance in proton therapy, proton images can be used to verify the correct positioning of the patient and to control the range of protons. Proton computed tomography (pCT) is a 3D imaging method appropriate for planning and verification of proton radiation treatments, because it allows evaluating the distributions of proton stopping power within the tissues and can be directly utilized when the patient is in the actual treatment position. The aim of the PRoton IMAging experiment, supported by INFN, and the PRIN 2006 project, supported by MIUR, is to realize a proton computed radiography (pCR) prototype for reconstruction of proton images from a single projection in order to validate the technique with pre-clinical studies and, eventually, to conceive the configuration of a complete pCT system. A preliminary experiment performed at the 250 MeV proton synchrotron of Loma Linda University Medical Center (LLUMC) allowed acquisition of experimental data before the completion of PRIMA project's prototype. In this paper, the results of the LLUMC experiment are reported and the reconstruction of proton images of two phantoms is discussed.

  2. Mobile real time radiography system

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Taggart, D.; Betts, S. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  3. Proton radiography for clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Talamonti, C., E-mail: cinzia.talamonti@unifi.i [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Reggioli, V. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); Bruzzi, M. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Bucciolini, M. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Civinini, C. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Marrazzo, L. [Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Menichelli, D. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Finland) (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Pallotta, S. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Randazzo, N. [INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Sipala, V. [INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Dipartimento di Fisica, Universita degli Studi di Catania, via S. Sofia 64, I-95123 Catania (Italy)

    2010-01-11

    Proton imaging is not yet applied as a clinical routine, although its advantages have been demonstrated. In the context of quality assurance in proton therapy, proton images can be used to verify the correct positioning of the patient and to control the range of protons. Proton computed tomography (pCT) is a 3D imaging method appropriate for planning and verification of proton radiation treatments, because it allows evaluating the distributions of proton stopping power within the tissues and can be directly utilized when the patient is in the actual treatment position. The aim of the PRoton IMAging experiment, supported by INFN, and the PRIN 2006 project, supported by MIUR, is to realize a proton computed radiography (pCR) prototype for reconstruction of proton images from a single projection in order to validate the technique with pre-clinical studies and, eventually, to conceive the configuration of a complete pCT system. A preliminary experiment performed at the 250 MeV proton synchrotron of Loma Linda University Medical Center (LLUMC) allowed acquisition of experimental data before the completion of PRIMA project's prototype. In this paper, the results of the LLUMC experiment are reported and the reconstruction of proton images of two phantoms is discussed.

  4. Interprofessional working in diagnostic radiography

    International Nuclear Information System (INIS)

    This paper considers interprofessional working within one diagnostic imaging department. The literature is still divided about the long-term impact of interprofessional learning in pre-registration health and social care education, and its impact on the quality of care provided. When reading the literature about interprofessional working the main topics considered by other authors are team working, communication between professionals, stereotyping and tribalism. The results presented are from an ethnographic study in one department with participant observation and semi-structured interviews. The three main aspects discussed in this paper are; tribalism and culture within the diagnostic radiography profession, communication between different professional groups, and a lack of understanding of the roles of other professional groups. It was evident from the results of this study that tribalism and culture, and a lack of understanding were significant barriers to interprofessional working. It was felt by the authors that pre-registration and post-registration interprofessional education could be significant in changing the culture of the NHS in the future as more professionals learn from and about one another

  5. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  6. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  7. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  8. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society.

  9. Radiation protection and safety in industrial radiography

    International Nuclear Information System (INIS)

    The use of ionizing radiation, particularly in medicine and industry, is growing throughout the world, with further expansion likely as technical developments result from research. One of the longest established applications of ionizing radiation is industrial radiography, which uses both X radiation and gamma radiation to investigate the integrity of equipment and structures. Industrial radiography is widespread in almost all Member States. It is indispensable to the quality assurance required in modern engineering practice and features in the work of multinational companies and small businesses alike. Industrial radiography is extremely versatile. The equipment required is relatively inexpensive and simple to operate. It may be highly portable and capable of being operated by a single worker in a wide range of different conditions, such as at remote construction sites, offshore locations and cross-country pipelines as well as in complex fabrication facilities. The associated hazards demand that safe working practices be developed in order to minimize the potential exposure of radiographers and other persons who may be in the vicinity of the work. The use of shielded enclosures (fixed facilities), with effective safety devices, significantly reduces any radiation exposures arising from the work. This Safety Report summarizes good and current state of the art practices in industrial radiography and provides technical advice on radiation protection and safety. It contains information for Regulatory Authorities, operating organizations, workers, equipment manufacturers and client organizations, with the intention of explaining their responsibilities and means to enhance radiation protection and safety in industrial radiography

  10. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  11. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2012-10-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  12. Clinical application of computed radiography

    International Nuclear Information System (INIS)

    Observer performance tests were performed to compare the diagnostic accuracy of digitized storage phosphors and conventional radiography in the detection of microcalcification in the breast and pulmonary nodules. Clustered microcalcifications (0.125-0.177 mm, 0.210-0.250 mm) were randomly superimposed on a human breast specimen. Two types of screen-film systems (Toshiba MM6/Fuji MINC, Kodak MinR/Kodak MinR) and CR images either with unsharp mask or with no image processing (unprocess) were used as imaging systems. Nine readers assessed the capability of screen-films, and unsharp-masked and unprocessed mammograms to detect microcalcifications. Observer performance data were evaluated by receiver operating characteristics (ROC) analysis. Both the area under ROC curve and the true positive localization fraction were used as performance indexes. Two screen-film images provided a higher detectability of microcalcifications than CR images. In the detectability of microcalcifications, unsharp-masked images were superior to unprocessed images, with no statistically significant difference. CR images showed higher false positive fraction than screen-film systems. To assess the detectability of pulmonary nodules, 15 radiologists compared the diagnostic accuracy of screen-film system and CR images, including unprocessed, unsharp-masked, reversed and paired images, in 18 normal volunteers and 18 patients with pulmonary nodules. Overall diagnostic accuracy of CR images, except for reversed images, were comparable to the screen-film system. In case of definite, large nodules, unprocessed, unsharp-masked, and paired images were superior to the screen-film and reversed images. Screen-film and unprocessed images were helpful in cases of tiny nodules without definite contrast. The detectability of pulmonary nodules may be affected by image processing conditions, radiologist' experiences, and characteristics of nodules themselves. (N.K.) 59 refs

  13. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  14. Biomedical applications of photochemistry

    OpenAIRE

    Chan, BP

    2010-01-01

    Photochemistry is the study of photochemical reactions between light and molecules. Recently, there have been increasing interests in using photochemical reactions in the fields of biomaterials and tissue engineering. This work revisits the components and mechanisms of photochemistry and reviews biomedical applications of photochemistry in various disciplines, including oncology, molecular biology, and biosurgery, with particular emphasis on tissue engineering. Finally, potential toxicities a...

  15. Anatomy for Biomedical Engineers

    Science.gov (United States)

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  16. Implantable CMOS Biomedical Devices

    Directory of Open Access Journals (Sweden)

    Toshihiko Noda

    2009-11-01

    Full Text Available The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented.

  17. Bevalac biomedical facility

    International Nuclear Information System (INIS)

    This paper describes the physical layout of the Bevalac Facility and the research programs carried out at the facility. Beam time on the Bevalac is divided between two disciplines: one-third for biomedical research and two-thirds for nuclear science studies. The remainder of the paper discusses the beam delivery system including dosimetry, beam sharing and beam scanning

  18. Biomedical applications in EELA.

    Science.gov (United States)

    Cardenas, Miguel; Hernández, Vicente; Mayo, Rafael; Blanquer, Ignacio; Perez-Griffo, Javier; Isea, Raul; Nuñez, Luis; Mora, Henry Ricardo; Fernández, Manuel

    2006-01-01

    The current demand for Grid Infrastructures to bring collabarating groups between Latina America and Europe has created the EELA proyect. This e-infrastructure is used by Biomedical groups in Latina America and Europe for the studies of ocnological analisis, neglected diseases, sequence alignments and computation plygonetics. PMID:16823158

  19. Thyroid dose distribution in dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bristow, R.G.; Wood, R.E.; Clark, G.M. (Ontario Cancer Institute, Toronto (Canada))

    1989-10-01

    The anatomic position and proven radiosensitivity of the thyroid gland make it an organ of concern in dental radiography. A calibrated thermoluminescent dosimetry system was used to investigate the absorbed dose (microGy) to the thyroid gland resultant from a minimum irradiated volume, intraoral full-mouth radiography technique with the use of rectangular collimation with a lead-backed image receptor, and conventional panoramic radiography performed with front and rear lead aprons. Use of the minimum irradiated volume technique resulted in a significantly decreased absorbed dose over the entire thyroid region ranging from 100% to 350% (p less than 0.05). Because this intraoral technique results in radiographs with greater image quality and also exposes the thyroid gland to less radiation than the panoramic, this technique may be an alternative to the panoramic procedure.

  20. Layout optimization for flash radiography with scatter

    International Nuclear Information System (INIS)

    The paper investigates the layout optimization for flash radiography with scatter using CCD to improve the imaging quality. The best layout is gained with the best factor of merit. The best magnification of the radiography system is 2 with the experimentally measured blur and Gaussian style assumption. The distance from the object to back windows is 50 cm. The best system length is related to the noise, and more noise leads to shorter system. The range of the best length is 3 to 5 m. The test has verified the above results. (authors)

  1. Proton Radiography: Its uses and Resolution Scaling

    Energy Technology Data Exchange (ETDEWEB)

    Mariam, Fesseha G. [Los Alamos National Laboratory

    2012-08-09

    Los Alamos National Laboratory has used high energy protons as a probe in flash radiography for over a decade. In this time the proton radiography project has used 800 MeV protons, provided by the LANSCE accelerator facility at LANL, to diagnose over five-hundred dynamic experiments in support of stockpile stewardship programs as well as basic materials science. Through this effort significant experience has been gained in using charged particles as direct radiographic probes to diagnose transient systems. The results of this experience will be discussed through the presentation of data from experiments recently performed at the LANL pRad.

  2. Statistical Uncertainty in Quantitative Neutron Radiography

    CERN Document Server

    Piegsa, Florian M

    2016-01-01

    We demonstrate a novel procedure to calibrate neutron detection systems commonly used in standard neutron radiography. This calibration allows determining the uncertainties due to Poisson-like neutron counting statistics for each individual pixel of a radiographic image. The obtained statistical errors are necessary in order to perform correct quantitative analysis. This fast and convenient method is applied to real data measured at the cold neutron radiography facility ICON at the Paul Scherrer Institute. Moreover, from the results the effective neutron flux at the beam line is determined.

  3. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  4. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  5. Toxicology of Biomedical Polymers

    Directory of Open Access Journals (Sweden)

    P. V. Vedanarayanan

    1987-04-01

    Full Text Available This paper deals with the various types of polymers, used in the fabrication of medical devices, their diversity of applications and toxic hazards which may arise out of their application. The potential toxicity of monomers and the various additives used in the manufacture of biomedical polymers have been discussed along with hazards which may arise out of processing of devices such as sterilization. The importance of quality control and stringent toxicity evaluation methods have been emphasised since in our country, at present, there are no regulations covering the manufacturing and marketing of medical devices. Finally the question of the general and subtle long term systemic toxicity of biomedical polymers have been brought to attention with the suggestion that this question needs to be resolved permanently by appropriate studies.

  6. Multilingual Biomedical Dictionary

    OpenAIRE

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical inform...

  7. Multilingual biomedical dictionary.

    Science.gov (United States)

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical information from a domain-specific, multilingual corpus.

  8. Toxicology of Biomedical Polymers

    OpenAIRE

    P. V. Vedanarayanan; A. C. Fernandez

    1987-01-01

    This paper deals with the various types of polymers, used in the fabrication of medical devices, their diversity of applications and toxic hazards which may arise out of their application. The potential toxicity of monomers and the various additives used in the manufacture of biomedical polymers have been discussed along with hazards which may arise out of processing of devices such as sterilization. The importance of quality control and stringent toxicity evaluation methods have been emphasi...

  9. Radiography Following Perinatal Death: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Oe.E. [Great Ormond Street Hospital for Children NHS Trust, London (United Kingdom). Radiology Dept.

    2006-02-15

    Radiography of the perinatally dead infant provides detailed information about the skeleton and is valuable as an adjunct to autopsy. This article reviews the potential benefits and discusses the pitfalls in assessment of growth stage. Reference charts for individual bone lengths and secondary ossification centers are presented.

  10. Conditions for radiation protection in industrial radiography

    CERN Document Server

    1999-01-01

    The leaflet specifies radiation protection requirements for industrial radiography in Norway. The regulations are directed towards companies using or distributing sealed radioactive sources, x-ray equipment or accelerators in non-destructive material testing (NDT). Technical requirements to the equipment, as well as administrative requirements for use, licensing, qualifications, handling of accidents etc. are given. (Author)

  11. Establishing rigour in qualitative radiography research

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, F.J. [School of Healthcare Professions, University of Salford, Salford M6 6PU (United Kingdom)], E-mail: f.j.murphy@salford.ac.uk; Yielder, J. [Medical Imaging, School of Health Sciences, Unitec, Auckland (New Zealand)

    2010-02-15

    The vast majority of radiography research is subject to critique and evaluation from peers in order to justify the method and the outcome of the study. Within the quantitative domain, which the majority of medical imaging publications tend to fall into, there are prescribed methods for establishing scientific rigour and quality in order to critique a study. However, researchers within the qualitative paradigm, which is a developing area of radiography research, are often unclear about the most appropriate methods to measure the rigour (standards and quality) of a research study. This article considers the issues related to rigour, reliability and validity within qualitative research. The concepts of reliability and validity are briefly discussed within traditional positivism and then the attempts to use these terms as a measure of quality within qualitative research are explored. Alternative methods for research rigour in interpretive research (meanings and emotions) are suggested in order to compliment the existing radiography framework that exists for qualitative studies. The authors propose the use of an established model that is adapted to reflect the iterative process of qualitative research. Although a mechanistic approach to establishing rigour is rejected by many qualitative researchers, it is argued that a guide for novice researchers within a developing research base such as radiography is appropriate in order to establish the credibility and trustworthiness of a qualitative study.

  12. INDUSTRIAL RADIOGRAPHY COURSE, INSTRUCTORS' GUIDE. VOLUME 2.

    Science.gov (United States)

    Texas A and M Univ., College Station. Engineering Extension Service.

    INFORMATION RELATIVE TO THE LESSON PLANS IN "INDUSTRIAL RADIOGRAPHY COURSE, INSTRUCTOR'S GUIDE, VOLUME I" (VT 003 565) IS PRESENTED ON 52 INFORMATION SHEETS INCLUDING THE SUBJECTS SHIELDING EQUATIONS AND LOGARITHMS, METAL PROPERTIES, FIELD TRIP INSTRUCTIONS FOR STUDENTS, WELDING SYMBOLS AND SIZES, SAMPLE REPORT FORMS, AND TYPICAL SHIPPING…

  13. Performances of some mobile neutron radiography systems

    International Nuclear Information System (INIS)

    Present paper describes shortly three different mobile neutron radiography systems in term of characteristic, performances, flexibility, and their main applications for non destructive testing of materials, devices and structures. Examples of applications in different fields, with particular attention to aeronautics (early corrosion detection, turbine blades quality control inspection) and pyrotechnic devices / specific parts inspection, are presented.(author)

  14. Safety Testing of Industrial Radiography Devices

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission contracted the Savannah River Technology Center to verify the relevancy of the 10 CFR Part 34 requirements for the normal use of portable gamma radiography systems and to propose recommendations for changes or modifications to the requirements

  15. Radiography of oral cavity disorders [dentistry, stomatology

    International Nuclear Information System (INIS)

    Radiographic examination in odonto-stomatology can he made easier by using intra-oral dental films and a dental X-ray machine. Parallel and bissecting angle techniques allow X-ray pictures to be taken with intra-and extra-oral films. Radiography provides information for diagnosis but it also allows the evaluation of dental treatments

  16. Infection control practices for dental radiography.

    Science.gov (United States)

    Palenik, Charles John

    2004-06-01

    Infection control for dental radiography employs the same materials, processes, and techniques used in the operatory, yet unless proper procedures are established and followed, there is a definite potential for cross-contamination to clinical area surfaces and DHCP. In general, the aseptic practices used are relatively simple and inexpensive, yet they require complete application in every situation. PMID:15218669

  17. Radiography - A new field among health sciences in Finland

    International Nuclear Information System (INIS)

    In order to secure high quality X-ray services and efficient operation of clinical radiography, a study programme in radiography science was implemented at the University of Oulu in 1999. The need for a specific field of science has emerged as a result of social changes, such as the aging population, and the fast development of technology that has caused significant changes in the radiological working environment and clinical radiography. A need for a new, research-based informational foundation of clinical radiography is the basis for the programme. As service producers, radiographers need vast knowledge as well as specific expertise. The research object of radiography science is clinical radiography. If it was studied from the viewpoint of other sciences, the key professional skills of a radiographer would remain unexplored. Implementing an own field of science has enabled the development of radiography from its own bases. Basic research in the field is represented, for example, by the concept analysis of radiography in health sciences. Radiography science should produce research results for both clinical radiography and the instruction of radiography. So far, research results have dealt with the professional decision-making of a radiographer, the influences of computer technology on a radiographer's work and measuring the radiation exposure of a population

  18. Radiography and bone scintigraphy in multiple myeloma: a comparative analysis

    International Nuclear Information System (INIS)

    The sensitivity of radionuclide imaging for detecting skeletal lesions was compared with that of radiography by evaluating 573 different anatomical sites in 41 patients with multiple myeloma. Radiography revealed a significantly greater number of myeloma-related bone lesions than did radionuclide imaging. Of the 179 myeloma-related bone lesions detected when both techniques were applied, 163 were seen by radiography and 82 by radionuclide imaging. Ninety-seven lesions were detected by radiography alone and 16 lesions seen by scintiscanning only, yielding a sensitivity of 91% for the former and of 46% for the latter technique. Radionuclide imaging proved superior to radiography only occasionally in the rib cage, and rarely in other anatomical sites. These findings suggest that radiography is the method of first choice in obtaining a skeletal survey in patients with multiple myeloma. In cases with continued pain, unexplained by standard radiography, the skeletal survey should be supplemented by tomography and radionuclide imaging. (author)

  19. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  20. The Ontology for Biomedical Investigations

    OpenAIRE

    Anita Bandrowski; Ryan Brinkman; Mathias Brochhausen; Brush, Matthew H.; Bill Bug; Chibucos, Marcus C.; Kevin Clancy; Mélanie Courtot; Dirk Derom; Michel Dumontier; Liju Fan; Jennifer Fostel; Gilberto Fragoso; Frank Gibson; Alejandra Gonzalez-Beltran

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using i...

  1. Generating Explanations for Biomedical Queries

    OpenAIRE

    Erdem, Esra; Oztok, Umut

    2013-01-01

    We introduce novel mathematical models and algorithms to generate (shortest or k different) explanations for biomedical queries, using answer set programming. We implement these algorithms and integrate them in BIOQUERY-ASP. We illustrate the usefulness of these methods with some complex biomedical queries related to drug discovery, over the biomedical knowledge resources PHARMGKB, DRUGBANK, BIOGRID, CTD, SIDER, DISEASE ONTOLOGY and ORPHADATA. To appear in Theory and Practice of Logic Program...

  2. BIMS: Biomedical Information Management System

    OpenAIRE

    Mora, Oscar; Bisbal, Jesús

    2013-01-01

    In this paper, we present BIMS (Biomedical Information Management System). BIMS is a software architecture designed to provide a flexible computational framework to manage the information needs of a wide range of biomedical research projects. The main goal is to facilitate the clinicians' job in data entry, and researcher's tasks in data management, in high data quality biomedical research projects. The BIMS architecture has been designed following the two-level modeling paradigm, a promising...

  3. Principles of Biomedical Engineering

    CERN Document Server

    Madihally, Sundararajan V

    2010-01-01

    Describing the role of engineering in medicine today, this comprehensive volume covers a wide range of the most important topics in this burgeoning field. Supported with over 145 illustrations, the book discusses bioelectrical systems, mechanical analysis of biological tissues and organs, biomaterial selection, compartmental modeling, and biomedical instrumentation. Moreover, you find a thorough treatment of the concept of using living cells in various therapeutics and diagnostics.Structured as a complete text for students with some engineering background, the book also makes a valuable refere

  4. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  5. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1974-01-01

    Advances in Biomedical Engineering, Volume 4, is a collection of papers that deals with gas chromatography, mass spectroscopy and the analysis of minute samples, as well as the role of the government in regulating the production, usage, safety, and efficacy of medical devices. One paper reviews the use of mass spectrometry and computer technology in relation to gas-phase analytical methods based on gas chromatograph-mass spectrometer instruments and gas chromatograph-mass spectrometer-computer analytical systems. Many health practitioners, government and private health agencies, the legal prof

  6. Biomedical Sensors and Instruments

    CERN Document Server

    Tagawa, Tatsuo

    2011-01-01

    The living body is a difficult object to measure: accurate measurements of physiological signals require sensors and instruments capable of high specificity and selectivity that do not interfere with the systems under study. As a result, detailed knowledge of sensor and instrument properties is required to be able to select the "best" sensor from one of the many designed to meet these challenges. From the underlying principles to practical applications, this updated edition of Biomedical Sensors and Instruments provides an easy-to-understand introduction to the various kinds of biome

  7. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  8. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  9. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  10. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  11. Biomedical applications of nisin.

    Science.gov (United States)

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications.

  12. Real-Time Neutron Radiography at CARR

    Institute of Scientific and Technical Information of China (English)

    HE; Lin-feng; HAN; Song-bai; WANG; Hong-li; WU; Mei-mei; WEI; Guo-hai; WANG; Yu

    2012-01-01

    <正>A real-time detector system for neutron radiography based on CMOS camera has been designed for the thermal neutron imaging facility under construction at China Advanced Research Reactor (CARR). This system is equipped with a new scientific CMOS camera with 5.5 million pixels and speed up to 100 fps at full frame. The readout noise is less than 2.4 electron per pixel. It is capable of providing

  13. Neutron radiography in the plasma focus

    International Nuclear Information System (INIS)

    Starting with some theoretical considerations, the paper describes the experimental basis for neutron radiography in the plasma focus. With an appropriate combination of scintillator and image converter, average optical density can already be reached at neutron density of about 5 x 104 n/cm2. Contrast studies near the plasma focus with the aid of neutrons have thus become possible for the first time. (author)

  14. Hybrid pixel detector development for medical radiography

    International Nuclear Information System (INIS)

    A 7-year project has been initiated to develop hybrid pixel detectors for medical radiography. Crystalline semiconductor will be bonded to a pixellated readout chip where individual integrated circuits process each event, transferring the position, energy and timing information to the data acquisition controller. Chips will be tiled to produce a large area detector, capable of energy dispersive photon counting at moderate spatial resolution. Preliminary results from studies examining the design features and operation of the device are presented

  15. Installation NR-31R for neutron radiography

    International Nuclear Information System (INIS)

    NR-31R installation, intended for neutron radiography of extended radioactive items using horizontal neutron beam from the nuclear reactor of WWER-type, is described. The installation is located directly in the reactor hall. It comprises the following main units: collimator, radiographic chamber, two containers (upper and bottom), neutron beam trap, distance and local control pannels. Obtaining neutron images of the controlled items is possible at NR-31R installation both by the method of direct exposure, and by the transfer method

  16. Beam characterization at the Neutron Radiography Reactor

    International Nuclear Information System (INIS)

    Highlights: • The project characterized the beam at the Neutron Radiography Reactor. • Experiments indicate that the neutron energy spectrum model may not be accurate. • The facility is a category I radiography facility. • The beam divergence and effective collimation ratio are 0.3 ± 0.1° and >125. • The predicted total neutron flux at the image plane is 5.54 × 106 n/cm2 s. -- Abstract: The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 ± 0.1°, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model of the radiography beamline over-samples the thermal region of the neutron energy spectrum

  17. Calculation methods for neutron radiography spatial resolution

    International Nuclear Information System (INIS)

    Spatial resolution is an important parameter for neutron radiography facility. In this paper, different methods to define the spatial resolution,such as point spread function (PSF), line spread function (LSF), edge spread function (ESF) and modulation transfer function (MTF), are analyzed and compared. MTF turns out to be the best, as it is derived from the linear system theory in a given frequency domain, and gives the maximum amount of useful information on system signal modulation. (authors)

  18. Panoramic radiography and its diagnostic application

    International Nuclear Information System (INIS)

    Panoramic radiography is a term that is applied to the radiographic techniques which record is the dental arches and related structures on one or two extraoral films. It consists of two methods, one using the intraoral anode, and the other employing tomography. Because of an increase in practical application, about 10 kinds of panoramic dental X-ray units were commercially available in U.S.A.

  19. Novel embossed radiography system utilizing energy subtraction

    Science.gov (United States)

    Osawa, Akihiro; Sato, Eiichi; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Abderyim, Purkhet; Tanaka, Etsuro; Izumisawa, Mitsuru; Ogawa, Akira; Sato, Shigehiro

    2008-08-01

    Digital subtraction is useful for carrying out embossed radiography by shifting an x-ray source, and energy subtraction is an important technique for imaging target region by deleting unnecessary region in vivo. X-ray generator had a 100-μm-focus tube, energy subtraction was performed at tube voltages of 40 and 60 kV, and a 3.0-mm-thick aluminum filter was used to absorb low-photon-energy bremsstrahlung x-rays. Embossed radiography was achieved with cohesion imaging using a flat panel detector (FPD) with pixel sizes of 48×48 μm, and the shifting distance of the x-ray source in horizontal direction and the distance between the x-ray source and the FPD face were 5.0 mm and 1.0 m, respectively. At a tube voltage of 60 kV and a tube current of 0.50 mA, x-ray intensities without filtering and with filtering were 307 and 28.4 μGy/s, respectively, at 1.0 m from the source. In embossed radiography of non-living animals, the spatial resolution measured using a lead test chart was approximately 70 μm, and we observed embossed images of fine bones, soft tissues, and coronary arteries of approximately 100 μm.

  20. Gamma radiography applied to aircraft maintenance

    International Nuclear Information System (INIS)

    Gamma-radiography as used in aircraft maintenance was introduced in the 1960's and is almost entirely focussed on the jet engine. It is used to identify cracking, corrosion, distortion, distress, assembly, alignment and wear. The general arrangement of an axial flow engine will permit the placement of a radiographic source in the central shaft. The radiations emitted may be directed at an appropriate angle to the part examined to produce a radiographic image. The techniques presented here are used to monitor the condition of specific rotating and non-rotating components in the gas flow path of high by-pass jet engines. Conventional gamma radiography equipment is used. The source is almost always Iridium-192, of between 800-3000 GBq. It has effective energies of 400-600 kV and a half-life of about 75 days. Exposure control and positioning apparatus is the same as for other industrial radiography with rigid guide tubes to locate the source centrally within the engine. The use of this inspection technique is realised as lower maintenance expenses than would otherwise be possible for the equivalent level of reliability. 19 refs., 12 figs

  1. Assessment of cold neutron radiography capability

    International Nuclear Information System (INIS)

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors goals were to demonstrate and assess cold neutron radiography techniques at the Los Alamos Neutron Science Center (LANSCE), Manual Lujan Neutron Scattering Center (Lujan Center), and to investigate potential applications of the capability. The authors have obtained images using film and an amorphous silicon detector. In addition, a new technique they have developed allows neutron radiographs to be made using only a narrow range of neutron energies. Employing this approach and the Bragg cut-off phenomena in certain materials, they have demonstrated material discrimination in radiography. They also demonstrated the imaging of cracks in a sample of a fire-set case that was supplied by Sandia National Laboratory, and they investigated whether the capability could be used to determine the extent of coking in jet engine nozzles. The LANSCE neutron radiography capability appears to have applications in the DOE stockpile maintenance and science-based stockpile stewardship (SBSS) programs, and in industry

  2. Digital radiography: description and user's guide

    International Nuclear Information System (INIS)

    The presented document arises from the work of the group 'Digital Radiography and sensors' of COFREND. It is a collective work of synthesis aimed to analyze the quality parameters of digital images influencing the answer and the diagnosis brought to a given industrial problem. Five families of digital sensors have been studied: 1. Image Intensifier coupled with CCD devices - 2. scintillators coupled with a CCD device- 3. Flat Panels with indirect conversion - 4. Flat Panels with direct electric conversion - 5. Photostimulable Storage Phosphor Screens). In particular, concerning a complete imaging chain, it deals with the notions of magnification, blur (unsharpness) (geometrical, kinetic or internal to the very sensor), noises, scattered radiation, spatial resolution, which is different from the one of analog detectors such as films, Contrast to Noise Ratio (CNR), sensitivity using IQIs, dynamic range, detection quantum efficiency, persistence and temporal resolution. This document is not a standard; it must be understood as a user's guide, and it approaches some essentials corrections to bring to a sensor in order to optimize his efficiency without losing information during the pre-processing phase in the radiographic acquisition. It also introduces some image processing tools commonly used. It can be used as a source document to the future elaboration of a standardisation document. It augurs not at all of the choice of a digital sensor with regard to the traditional radiographic film, but gives bases of reflection to a radio user for a sensible transfer from the classic radiography to the digital radiography. (authors)

  3. Proton radiography for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, L.; Batani, D. [University of Milano-Bicocca (Italy); Baton, S.; Perez, F.; Koenig, M. [LULI Ecole Polytechnique-CNRS-UPMC, Palaiseau Cedex (France); Nicolai, Ph.; Vauzour, B.; Santos, J. J. [CELIA, University de Bordeaux (France)

    2011-11-15

    Generation of high-intensity and well collimated multi-energetic proton beams from laser-matter interaction extend the possibility for using protons as a diagnostic to image imploding targets in inertial confinement fusion experiments in the framework of the experimental road map of the Hiper project (the European High Power laser Energy Research facility Project). Due to the very large mass densities reached during implosion processes, protons traveling through the target undergo a very large number of collisions which deviate the protons from their original trajectories reducing the proton radiography resolution below our expectations. Here we present a simple analytical model to study the performance of proton radiography as a function of the main experimental parameters, such as the proton beam energies and targets areal density. This approach leads to define two different criteria for proton radiography resolution (called the 'strong' and the 'weak' conditions) describing different experimental conditions. Finally, numerical simulations using both hydrodynamic and Monte Carlo codes are presented to validate the analytical predictions.

  4. Bacteriological research for the contamination of equipment in chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Gu; Song, Woon Heung; Kweon, Dae Cheol [Shinhan University, Uijeongbu (Korea, Republic of)

    2015-12-15

    The purpose is to determine the degree of contamination of the equipment for infection control in chest radiography of the radiology department. We confirmed by chemical and bacterial identification of bacteria of the equipment and established a preventive maintenance plan. Chest X-ray radiography contact area on the instrument patients shoulder, hand, chin, chest lateral radiography patient contact areas with a 70% isopropyl alcohol cotton swab were compared to identify the bacteria before and after sterilization on the patient contact area in the chest radiography equipment of the department. The gram positive Staphylococcus was isolated from side shoots handle before disinfection in the chest radiography equipment. For the final identification of antibiotic tested that it was determined by performing the nobobiocin to the sensitive Staphylococcus epidermidis. Chest radiography equipment before disinfecting the handle side of Staphylococcus epidermidis bacteria were detected using a disinfectant should be to prevent hospital infections.

  5. Radiological protection procedures for industrial applications of computed radiography

    International Nuclear Information System (INIS)

    Due to its very particular characteristics, industrial radiography is responsible for roughly half of the relevant accidents in nuclear industry, in developed as well as in developing countries, according to the International Atomic Energy Agency (IAEA). Thus, safety and radiological protection in industrial gamma radiography have been receiving especial treatment by regulatory authorities of most Member States. The main objective of the present work was to evaluate, from the radioprotection point of view, the main advantages of computed radiography (CR) for filmless industrial radiography. In order to accomplish this, both techniques, i.e. conventional and filmless computed radiography were evaluated and compared through practical studies. After the studies performed at the present work it was concluded that computed radiography significantly reduces the inherent doses, reflecting in smaller restricted areas and costs, with consequent improvement in radiological protection and safety. (author)

  6. Radiation exposure of premature infants by biomedical radiography of the thorax

    International Nuclear Information System (INIS)

    Thoracic X-ray pictures of premature infants must chiefly be carried out under conditions of neonatal intensive care. For it are very often only single-pulse generators available. Radiation exposure dependends chiefly on the type of generator and comparison between single-pulse generators and 6-pulse generators was performed. CaF2 thermoluminescent dosimetry revealed that the entrance close of the useful field is considerably higher in single-pulse generators than in the 6-pulse generators. The indication for X-ray pictures of the premature infant thorax under bed-side conditions with single-pulse generators must be very precise. (author)

  7. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  8. First experimental research of low energy proton radiography

    CERN Document Server

    Wei, Tao; Long, Jidong; He, Xiaozhong; Li, Yiding; Zhang, Xiaoding; Ma, Chaofan; Zhao, Liangchao; Shi, Jinshui

    2013-01-01

    Proton radiography is a new scatheless diagnostic tool, and which provides a potential development direction for advanced hydrotesting. Recently a low energy proton radiography system has been developed at CAEP. This system has been designed to use 11MeV proton beam to radiograph thin static objects. This system consists of a proton cyclotron coupled to an imaging beamline. The design features and commissioning results of this radiography system are presented.

  9. Radiation safety in industrial radiography in the Philippines

    International Nuclear Information System (INIS)

    The article presents the application of radiography in almost all sectors of the industry from construction stage of plants, in oil and gas, petrochemical and power industry which are the biggest users of radiography. Industrial radiography is being conducted using a set of operational procedures developed by the level 3 radiographer and approved by the Radiological Health and Safety Officer (RHSO) to ensure safe and successful completion of the activity

  10. Visualization of frosting phenomena by using neutron radiography

    International Nuclear Information System (INIS)

    This study focuses on the frost formation on the fin-tube heat exchanger using neutron radiography. The visualization of the frost formation was estimated by the attenuation of the neutron beam through the water. The visualization image of the neutron radiography shows clearly the frost formation phenomena on the fin-tube heat exchanger. The rapid frost formation was observed at the fin and tube edges. Local mass transfer coefficient can be calculated from the differential images of the neutron radiography. (author)

  11. Digital radiography and advanced imaging techniques in dentistry

    OpenAIRE

    Burcu Keles Evlice; Haluk Oztunc

    2013-01-01

    Since the discovery of x-rays in 1895, film has been the primary medium for capturing, displaying and storing radiographic images. Digital or filmless radiography is slowly being adopted by the dental profession. Digital radiography offers a number of capabilities compared with conventional radiography, such as postprocessing, electronic archiving, concurrent access to images, and improved data distribution. Computer based applications which are used for quantitative measurements and evaluati...

  12. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  13. Fast neutron radiography using photoluminescent imaging plates

    International Nuclear Information System (INIS)

    Fast neutron radiography (FNR) and resonance neutron radiography (RNR) are complementary to the conventional radiography with high energy gamma-rays or brems-strahlung radiation used for the inspection of thick metal objects. In both non-destructive methods, the contrast sensitivity and the penetration power can be improved by using higher energy neutrons. At present direct techniques based either n Solid State Nuclear Track detectors (SSNTDs) or scintillating screens and transfer techniques using activation threshold detectors and radiographic films are applied for the detection of fast neutron images. Rather low detection sensitivity of film and SSNTD based fast neutron imaging methods and also rather poor inherent image contrast of SSNTD pose a problem for FNR in the fast neutron energy region 1-15 MeV interesting for NDT. For more efficient detection of fast neutron images the use of novel highly sensitive photoluminescent imaging plates (IP) in combination with threshold at the KFKI research reactor. The conventional IP produced by FUJI Photo Film Co. for the detection of beta and X-ray radiation were used. The threshold activation detectors were the reactions 115In(n, n') 115mIn, 64Zn(n,p) 64Cu, 56Fe(n, p)56Mn, 24Mg(n, p)24Na and 27Al(n, α)24Na. These threshold reactions cover the fast neutron energy region between 0,7 MeV and 12 MeV. Pure, commercially available metals 0,1 mm to 0,25 mm thick made of In, Zn, Fe, Mg and Al were used as converter screens. The very high sensitivity of IP, the linearity of their response over 5 decades of exposure dose and the high dynamic digitalisation latitude enabled fast neutron radiography of image quality comparable to the quality of thermal NR. In our experimental conditions (φn∼ 108 n/cm2s, RCd ∼ 2) the neutron exposure and IP exposure periods were still practical and comparable to the half life of the corresponding reaction products (half an hour to several hours). Even with the 27Al(n.α)24Na reaction having a

  14. MEMS biomedical implants

    Institute of Scientific and Technical Information of China (English)

    Tai Yuchong

    2012-01-01

    The field of micro-electro-mechanical systems (MEMS) has advanced tremendously for the last 20 years. Most commercially noticeably, the field has successfully advanced from pressure sensors to micro physical sensors, such as accelerometers and gyros, for handheld electronics application. In parallel, MEMS has also advanced into micro total analysis system(TAS) and/or lab-on-a-chip applications. This article would discuss a relatively new but promising future direction towards MEMS biomedical implants. Specifically, Parylene C has been explored to be used as a good MEMS implant material and will be discussed in detail. Demonstrated implant devices, such as retinal and spinal cord implants, are presented in this article.

  15. Checklists in biomedical publications

    Directory of Open Access Journals (Sweden)

    Pardal-Refoyo JL

    2013-12-01

    Full Text Available Introduction and objectives: the authors, reviewers, editors and readers must have specific tools that help them in the process of drafting, review, or reading the articles. Objective: to offer a summary of the major checklists for different types of biomedical research articles. Material and method: review literature and resources of the EQUATOR Network and adaptations in Spanish published by Medicina Clínica and Evidencias en Pediatría journals. Results: are the checklists elaborated by various working groups. (CONSORT and TREND, experimental studies for observational studies (STROBE, accuracy (STARD diagnostic studies, systematic reviews and meta-analyses (PRISMA and for studies to improve the quality (SQUIRE. Conclusions: the use of checklists help to improve the quality of articles and help to authors, reviewers, to the editor and readers in the development and understanding of the content.

  16. Heavy-ion radiography applied to charged particle radiotherapy

    International Nuclear Information System (INIS)

    The objectives of the heavy-ion radiography research program applied to the clinical cancer research program of charged particle radiotherapy have a twofold purpose: (1) to explore the manner in which heavy-ion radiography and CT reconstruction can provide improved tumor localization, treatment planning, and beam delivery for radiotherapy with accelerated heavy charged particles; and (2) to explore the usefulness of heavy-ion radiography in detecting, localizing, and sizing soft tissue cancers in the human body. The techniques and procedures developed for heavy-ion radiography should prove successful in support of charged particle radiotherapy

  17. Biomedical applications of nisin.

    Science.gov (United States)

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications. PMID:26678028

  18. X-ray phase radiography and tomography with grating interferometry and the reverse projection technique

    International Nuclear Information System (INIS)

    X-ray grating interferometry provides substantially increased contrast over conventional absorption-based imaging methods, and therefore new and complementary information. Compared with other phase-contrast imaging techniques, x-ray grating interferometry can overcome some of the problems that have impaired the applications of x-ray phase-contrast radiography and phase tomography. Recently, special attention has been paid to the development of quantitative phase retrieval methods, which is mandatory to perform x-ray phase tomography, to achieve material identification, to differentiate distinct tissues, etc. Typically, the phase-stepping approach has been utilized for phase retrieval in grating interferometry. This method requires a grating scanning and acquisition of multiple radiographic projections, and therefore is disadvantageous in terms of imaging speed and radiation damage. Here we present an innovative, highly sensitive approach, dubbed ‘reverse projection’ (RP), for quantitative phase retrieval. Compared with the phase-stepping approach, the present RP method abandons grating scanning completely, and thus is advantageous due to its much higher efficiency and the reduced radiation dose, without the degradation of reconstruction quality. This review presents a detailed explanation of the principle of the RP method. Both radiography and phase tomography experiments are performed to validate the RP method. We believe that this new technique will find widespread applications in biomedical imaging and in vivo studies. (paper)

  19. Evaluation of occupational exposure in intraoral radiography

    International Nuclear Information System (INIS)

    The intraoral radiography is widely performed in the dental office due to low cost and agility. The doses in intraoral radiology are considered low, however it is known that doses below the threshold for deterministic radiation has the potential to induce stochastic effects. An intraoral radiography has a risk of inducing fatal cancer or serious in order of 1:10,000,000. Besides the patient, the dentist may also be being exposed to radiation during the work with the radiographics practices. The bibliographies demonstrates the lack of information on radiation protection of dentists, however, the occupational dose reduction was observed in radiology over the past 14 years. This work aims to evaluate the effective dose of radiation to which workers can be exposed dentists in dental offices to perform intraoral radiographs. In this context, a study was be conducted between June 2013 and May 2014 with 44 professionals in Curitiba city. For each dentist was given a personal dosimeter to be used for 30 days. During this period, the number of radiographies and the length of the cable triggers of the X-ray equipment was registered and, the dosimeter´s dose was read. It was observed that the cables triggers meet regulatory standards and allow dentists to get the mean minimum distance of two meters from the radiation source in 93% of cases. Through analysis of the doses, it was concluded that occupational exposures of these workers are within the recommended threshold by regulatory 453/1998 of the Ministry of Health from Brazil. (author)

  20. Technique for chest radiography for pneumoconiosis

    International Nuclear Information System (INIS)

    Routine radiographic chest examinations have been performed using a variety of techniques. Although chest radiography is one of the most commonly performed radiographic examinations, it is often difficult to obtain consistently good quality roentgenograms. This publication provides a simple guide and relatively easy solution to the many problems that radiologic technologists might encounter. The language is purposely relatively simple and care has been taken to avoid difficult mathematical and physical explanations. The intent is to provide an easily referrable text for those who may encounter difficulties in producing acceptable chest radiographs

  1. Digital Radiography Qualification of Tube Welding

    Science.gov (United States)

    Carl, Chad

    2012-01-01

    The Orion Project will be directing Lockheed Martin to perform orbital arc welding on commodities metallic tubing as part of the Multi Purpose Crew Vehicle assembly and integration process in the Operations and Checkout High bay at Kennedy Space Center. The current method of nondestructive evaluation is utilizing traditional film based x-rays. Due to the high number of welds that are necessary to join the commodities tubing (approx 470), a more efficient and expeditious method of nondestructive evaluation is desired. Digital radiography will be qualified as part of a broader NNWG project scope.

  2. Digital radiography in the aerospace industry

    Science.gov (United States)

    Buchanan, R. A.; Bueno, C.; Barry, R. C.; Barker, M. D.

    An account is given of the bases of digital radiography (DR), with a view to the identification of NDE systems with the greatest usefulness to the aerospace industry and the nature of the advanced image processing and reconstruction techniques that have been devised thus far. The spatial resolution of any DR system is fundamentally limited by the number of pixels in the digital image and the system field-of-view. Attention is given to the problems of image geometric unsharpness and radiation quantum noise limits, as well as to the potential role of advanced DR in future NDT of aerospace components.

  3. Advances in neutron radiography at UJV

    International Nuclear Information System (INIS)

    A brief description is given of the development of neutron radiography and of planned development of neutron sources, imaging methods, evaluation methods and instrumentation. Experimental equipment and the application fields are described. The method is used in the metrology of fuel elements, for the study of the penetration of aggressive substances into building materials, for the diagnosis of bone tumors between surgeries, in archaeology, in crack detection of glued joints of honeycombed structures and in imaging the crystalline structure of castings of nickel-based superalloys. (J.P.)

  4. Computed radiography imaging plates and associated methods of manufacture

    Science.gov (United States)

    Henry, Nathaniel F.; Moses, Alex K.

    2015-08-18

    Computed radiography imaging plates incorporating an intensifying material that is coupled to or intermixed with the phosphor layer, allowing electrons and/or low energy x-rays to impart their energy on the phosphor layer, while decreasing internal scattering and increasing resolution. The radiation needed to perform radiography can also be reduced as a result.

  5. Proceeding of 6th short conference on neutron radiography

    International Nuclear Information System (INIS)

    The 6th short conference on neutron radiography was held on August 30 and 31, 1983, at the Research Reactor Institute, Kyoto niversity, as a part of the joint research program of the Institute. During the period since the first meeting in November, 1970, steady development was made in both research and practical use of neutron radiography in Japan owing to the persistent effort of the persons concerned. In the conference, 70 persons participated, and 21 papers were presented. The problems treated were the apparatuses of neutron television, neutron radiography and neutron photography, the various application of neutron radiography, the standard of neutron radiography and others. The high value of neutron radiography and the increasing demand to use this technique were shown in this meeting. Considering the recent rapid development of new technology, it is expected that neutron radiography will find the wide varieties of application in the near future. The proceedings of the conference are published by collecting the gists of papers, hoping to enhance joint effort and the exchange of information to develop neutron radiography. (Kako, I.)

  6. Diagnostics of coated fuel particles by neutron and synchrotron radiography

    International Nuclear Information System (INIS)

    The nondestructive monitoring of coated fuel particles has been performed using contact neutron radiography and refraction radiography based on synchrotron radiation. It is shown that these methods supplement each other and have a high potential for determining the sizes, densities, and isotopic composition of the particle components.

  7. Preliminary Study of Indirect Neutron Radiography Method at CARR

    Institute of Scientific and Technical Information of China (English)

    WEI; Guo-hai; HAN; Song-bai; WANG; Hong-li; HE; Lin-feng; WANG; Yu; WU; Mei-mei; LIU; Yun-tao; CHEN; Dong-feng

    2013-01-01

    The Indirect Neutron Radiography is a powerful technique for non-destructively measuring specimens with radioactivity in the nuclear industrial field.China Advanced Research Reactor(CARR)is an excellent platform for Indirect Neutron Radiography and the experimental conditions based on CARR,mainly the first and the second exposure time,have been calculated and analyzed by the Monte Carlo

  8. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  9. New Directions for Biomedical Engineering

    Science.gov (United States)

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  10. The value of panoramic radiography in assessing maxillary sinus inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hae; Jung, Yun Hoa; Nah, Kyung Soo [Department of Oral and Maxillofacial Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2008-12-15

    To evaluate the value of panoramic radiography in diagnosing maxillary sinus inflammation. A total of 214 maxillary sinuses from 114 panoramic radiographs were assessed in this study. Two independent experienced oral radiologists evaluated the images in random order for sinus inflammation. Using Cone beam CT images as the gold standard, the sensitivity and specificity of panoramic radiography were calculated, and inter- and intraobserver agreement for panoramic interpretation were obtained. The mean sensitivity and specificity of panoramic radiography were 81.0% and 85.6%, respectively. The weighted kappas for inter- and intraobserver agreement of panoramic radiography were 0.56 and 0.60, respectively. Panoramic radiography is a reasonably accurate method for diagnosing maxillary sinus inflammation and can be used for screening. However, additional examinations should be considered in patients with potentially significant pathology.

  11. Phase-contrast radiography with a polychromatic neutron beam

    International Nuclear Information System (INIS)

    The phase-contrast imaging is based not only on the absorption contrast like in the conventional radiography but also on the contributions of the phase shifts induced by the propagation of a coherent radiation through the investigated sample. The strong phase changes on the borders between two media can be observed as sharp intensity variations on the radiography image. So the phase-contrast method is an edge-enhancement method which allows to visualize very fine structures where the conventional radiography provides unsatisfactory results. For the aims of the phase-contrast imaging a radiation with a high spatial but not necessarily chromatic coherence is required. In this way phase-contrast radiography experiments with a polychromatic thermal neutron beam possessing a high spatial transversal coherence can be performed. The reported results show that the developed phase-contrast neutron radiography can be used as a standard non-destructive investigation method

  12. The value of panoramic radiography in assessing maxillary sinus inflammation

    International Nuclear Information System (INIS)

    To evaluate the value of panoramic radiography in diagnosing maxillary sinus inflammation. A total of 214 maxillary sinuses from 114 panoramic radiographs were assessed in this study. Two independent experienced oral radiologists evaluated the images in random order for sinus inflammation. Using Cone beam CT images as the gold standard, the sensitivity and specificity of panoramic radiography were calculated, and inter- and intraobserver agreement for panoramic interpretation were obtained. The mean sensitivity and specificity of panoramic radiography were 81.0% and 85.6%, respectively. The weighted kappas for inter- and intraobserver agreement of panoramic radiography were 0.56 and 0.60, respectively. Panoramic radiography is a reasonably accurate method for diagnosing maxillary sinus inflammation and can be used for screening. However, additional examinations should be considered in patients with potentially significant pathology.

  13. Ensuring Safety in Transition to Digital Radiography in Practice

    International Nuclear Information System (INIS)

    Many countries are currently transitioning from screen-film radiography to digital radiography. Most principles for dose reduction in screen-film radiography, including justification, are relevant to digital systems. However, digital systems have the potential to significantly increase patient dose, possibly due to lack of awareness among imaging personnel. Examination parameters, such as tube voltage, tube current and filtration, have been adopted from screen-film technology without further adjustments. The imaging parameters must be optimized according to the best performance of a particular system. Current safety issues with clinical digital radiography are discussed; these are technology factors, such as automatic exposure factors and exposure index; and human factors, such as inappropriate exposure, no collimation and overexposure. Digital techniques increasingly offer options for dose reduction. Therefore, implementation of dose indicators and dose monitoring is mandatory for digital radiography in practice. Finally, the advantages and challenges of radiographer performed fluoroscopy will also be discussed. (author)

  14. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    International Nuclear Information System (INIS)

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging

  15. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  16. Modified chitosans for biomedical applications

    OpenAIRE

    Yalınca, Zülal

    2013-01-01

    ABSTRACT: The subject of this thesis is the exploration of the suitability of chitosan and some of its derivatives for some chosen biomedical applications. Chitosan-graft-poly (N-vinyl imidazole), Chitosan-tripolyphosphate and ascorbyl chitosan were synthesized and characterized for specific biomedical applications in line with their chemical functionalities. Chitosan-graft-poly (N-vinyl imidazole), Chi-graft-PNVI, was synthesized by two methods; via an N-protection route and without N-pr...

  17. Biomedical engineer: an international job.

    Science.gov (United States)

    Crolet, Jean-Marie

    2007-01-01

    Biomedical engineer is an international job for several reasons and it means that the knowledge of at least one foreign language is a necessity. A geographical and structural analysis of the biomedical sector concludes to the teaching of a second foreign language. But in spite of the presence of adequate means, it is not possible for us for the moment to set up such a teaching. This paper presents the solution we have chosen in the framework of Erasmus exchanges.

  18. BIMS: Biomedical Information Management System

    OpenAIRE

    Mora Pérez, Oscar

    2009-01-01

    This final year project presents the design principles and prototype implementation of BIMS (Biomedical Information Management System), a flexible software system which provides an infrastructure to manage all information required by biomedical research projects.The BIMS project was initiated with the motivation to solve several limitations in medical data acquisition of some research projects, in which Universitat Pompeu Fabra takes part. These limitations,based on the lack of control mechan...

  19. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  20. A system for fast neutron radiography

    International Nuclear Information System (INIS)

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this system, objects as small as a coin and as large as a 19 liter container have been radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3 x 10[sup 10] neutrons/second with an average energy of 14. 5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available light-tight cassettes. The cassettes have been modified to include a thin sheet of plastic to produce protons from the neutron beam through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9 x 10[sup 7] n/cm[sup 2] to 3.8 x 10[sup 8] n/cm[sup 2] depending on the type of screen and film. The optimum source-to-film distance was found to be 150 cm. At this distance, the geometric unsharpness was determined to be approximately 2.2-2.3 mm and the smallest hole that could be resolved in a 1.25 cm thick sample had a diameter of 0.079 cm

  1. Imaging characteristics in rotational panoramic radiography

    International Nuclear Information System (INIS)

    This study is concerned with imaging quality in rotational panoramic radiography. This imaging technique records an image of a curved layer within the object radiographed. The shape of this layer normally corresponds with the average form of the dental arch. In the centre of the layer a plane can be found which is depicted with a minimum of unsharpness. Unsharpness increases and the horizontal magnification changes as distance increases from that central plane. The image quality of the layer has been analyzed with the use of mathematical models to estimate the performance of the radiographic diagnostic system. Despite the application of these increasingly sophisticated models the question remains: will the results of the calculations based on these models adequately predict the diagnostic effectiveness of this type of imaging system? In this study a comparison is made between the theoretically determined quality of the system and the diagnostic quality using the observer as a measuring instrument. Experiments were carried out to measure the total unsharpness occurring in rotational panoramic radiography. 116 refs.; 114 figs.; 54 tabs

  2. Mature students' perspectives of studying radiography

    International Nuclear Information System (INIS)

    The study set out to explore the experiences of all final year mature students on a diagnostic radiography course, in one United Kingdom University. The aims were to identify any difficulties they may have had and to make recommendations to improve mature students' learning experiences with the hope of lowering attrition rates in this group. A qualitative study involving one-to-one audio recorded interviews was utilised. Analysis of the transcripts of interviews suggested that the group believed that their maturity and previous experiences helped them in the clinical environment and put them in a good position, when asked, to counsel younger students. However for some of the mature students these experiential skills did not extend fully into seeking appropriate support for themselves. The mature students were found to be highly motivated but there was a conflict between balancing clinical and academic aspects of studying as well as balancing studying with home life. The group was found to be unprepared for the volume of academic work and its detrimental effect on family life as they sacrificed other aspects of their lives in order to complete the course. It is recommended that forewarning and forearming prospective mature students be considered by radiography education providers. Setting up and utilising an on-line forum providing a 24/7 peer support environment would aid in coping with academic, clinical or personal problems

  3. Neutron radiography working group test programme

    International Nuclear Information System (INIS)

    Scope and results of the Euratom Neutron Radiography Working Group Test Program are described. Seven NR centers from six European Community countries have performed this investigation using eleven NR facilities. Four test items were neutron radiographed using 30 different film/converter combinations. From film density measurements neutron beam components were determined. Radiographic sensitivity was assessed from visual examinations of the radiographs. About 25,000 dimensional measurements were made and were used for the assessment of accuracies of dimensional measurements from neutron radiographs. The report gives a description of the test items used for the Test Program, the film density and dimensional measurements, and concentrates on the assessment of the measuring results. The usefulness of the beam purity and sensitivity indicators was assessed with the conclusion that they are not suitable for neutron radiography of nuclear reactor fuel. Ample information is included in the report about measuring accuracies which can be reached in dimensional measurements of fuel pins. After a general comparison of measuring accuracies is discussed. Results from different NR facilities are treated separately as are the different kinds of dimensions of the fuel pins. Finally human and instrument factors are discussed. After presenting final conclusions (which take into account the above-mentioned factors) results of other investigations about dimensional measurements are shortly reviewed

  4. Nuclear track radiography of 'hot' aerosol particles

    CERN Document Server

    Boulyga, S F; Kievets, M K; Lomonosova, E M; Zhuk, I V; Yaroshevich, O I; Perelygin, V P; Petrova, R I; Brandt, R; Vater, P

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the alpha-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (gamma,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 9 Pu and sup 2 sup 4 sup 1 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 sup - sup 6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical imag...

  5. Clinical Applications of Reverse Panoramic Radiography

    Directory of Open Access Journals (Sweden)

    Sujatha S Reddy

    2011-09-01

    Full Text Available The essence of oral and maxil-lofacial radiology is not only to be an important tool in the diagnostic assessment of dental patients but also to equip the clinician with the ability to interpret images of certain maxillocraniofacial structures of importance to dental, medical and surgical practices. Although combinations of several conven-tional x-ray projections can be adequate in a number of clinical situations, radiographic assessment of certain craniofacial structures some-times needs to be facilitated by other imaging modalities. A not-so-recent development called reverse panoramic radiography may be a useful adjuvant to such a situation, at least in the near future. It is essentially a technique where the patient is placed backwards in the panoramic machine in a reverse position in such a way that x-ray beam is directed through the patient’s face and the exit beam then passes through the patient’s head on the opposite side where it is captured on the receptor. The following manuscript is an attempt to throw light on this technique and the impact it may have on dental, medical and surgical practices. The advantages and disadvantages of reverse panoramic radiography and it’s comparison to conventional panoramic radiographs and other skull views are also dis-cussed.

  6. Development of flat panel digital radiography system

    International Nuclear Information System (INIS)

    We developed the Digital Radiography System CXDI-11 which digitizes the X-ray image in high quality by using a self-developed flat panel detector. The CXDI-11 has a large image area of 43 cm x 43 cm (17'' x 17''), and it can display the image on the pre-view monitor after only 3 seconds of exposure. In this report, we present the principle and the physical characteristics of the CXDI-11. The X-ray detector installed in the CXDI-11 is a combination of a rare-earth scintillator and an amorphous silicon flat panel detector (LANMIT). The X-ray is converted to the visible fluorescent light at the scintillator and the light is detected by the LANMIT. The image-processed data is transferred to the DICOM3.0 conformed devices such as the diagnosis work station, the archiver and the laser imager through the network. We also show some measurement results of the dynamic range, the pre-sampling Modulation Transfer Function and the tube voltage dependent sensitivity. The CXDI-11 is superior in real time operation and image quality, thus it is the digital radiography system of the next generation. (author)

  7. High Brightness Neutron Source for Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  8. RPCs in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Belli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); De Vecchi, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Giroletti, E. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Guida, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Musitelli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Nardo, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Necchi, M.M. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Pagano, D. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Ratti, S.P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Sani, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vicini, A. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vitulo, P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Viviani, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy)

    2006-08-15

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 {mu}m and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi{sub 2}O{sub 3} and Tl{sub 2}O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C{sub 2}H{sub 2}F{sub 4} 92.5%, SF{sub 6} 2.5%, C{sub 4}H{sub 10} 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  9. RPCs in biomedical applications

    Science.gov (United States)

    Belli, G.; De Vecchi, C.; Giroletti, E.; Guida, R.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Sani, G.; Vicini, A.; Vitulo, P.; Viviani, C.

    2006-08-01

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 μm and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi 2O 3 and Tl 2O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C 2H 2F 4 92.5%, SF 6 2.5%, C 4H 10 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  10. Control dose in chest radiography after the installation of the computed radiography

    International Nuclear Information System (INIS)

    The aim of this work is to verify patient does after the installation of the computed radiography. Entrance surface doses were obtained from a measurement of the output of the x-ray tube and exposure factor used at posteroanterior (PA) and lateral (LAT) chest in 50 adult patients before and after the installation. The obtained average values were 0.28±0.10mGy in the PA view and 0.8±0.5 mGy in the LAT view with the conventional screen-film system 0.27±0.06 mGy in PA view and 0.69±0.18 mGy in LAT view with the digital radiography system. The results do not exceed the diagnostic reference levels (DRLs) and are constant after the change of system. (Author)

  11. Comparison of conventional radiography and MDCT in suspected scaphoid fractures

    Institute of Scientific and Technical Information of China (English)

    Cyrus; Behzadi; Murat; Karul; Frank; Oliver; Henes; Azien; Laqmani; Philipp; Catala-Lehnen; Wolfgang; Lehmann; Hans-Dieter; Nagel; Gerhard; Adam; Marc; Regier

    2015-01-01

    AIM: To determine the diagnostic accuracy and radiation dose of conventional radiography and multidetector computed tomography(MDCT) in suspected scaphoid fractures.METHODS: One hundred twenty-four consecutive patients were enrolled in our study who had suffered from a wrist trauma and showed typical clinical symptoms suspicious of an acute scaphoid fracture. All patients had initially undergone conventional radiography. Subsequent MDCT was performed within 10 d because of persisting clinical symptoms. Using the MDCT data as the reference standard, a fourfold table was used to classify the test results. The effective dose and impaired energy were assessed in order to compare the radiation burden of the two techniques. The Wilcoxon test was performed to compare the two diagnostic modalities.RESULTS: Conventional radiography showed 34 acute fractures of the scaphoid in 124 patients(42.2%). Subsequent MDCT revealed a total of 42 scaphoid fractures. The sensitivity of conventional radiography for scaphoid fracture detection was 42.8% and its specificity was 80% resulting in an overall accuracy of 59.6%. Conventional radiography was significantly inferior to MDCT(P < 0.01) concerning scaphoidfracture detection. The mean effective dose of MDCT was 0.1 m Sv compared to 0.002 m Sv of conventional radiography.CONCLUSION: Conventional radiography is insufficient for accurate scaphoid fracture detection. Regarding the almost negligible effective dose, MDCT should serve as the first imaging modality in wrist trauma.

  12. A review of digital radiography technology for valve inspection

    International Nuclear Information System (INIS)

    There are thousands of valves in a nuclear power plant (NPP) used for control, safety and checks in various plant systems, so there is a well-identified need for fast and reliable inspection and diagnostics of valves. Digital radiography can provide considerable improvements to the inspection and testing procedures for valves in comparison to classical film radiography. These improvements can lead to significant financial advantages by providing real-time inspection results, significantly reduced inspection and decision-making time, and reduced operational cost. Digital image processing, including digital image enhancement, digital archiving, and digital communication of the images and the results, is also a considerable advantage over classical film radiography technology. Another advantage of digital radiography technology is the improved safety and the reduced environmental impact due to reduced exposure/test times, use of smaller exclusion zones, elimination of chemical processing, and absence of disposable materials. This paper reviews the existing technology and evaluates the potential of digital radiography for inspection and diagnostics of valves. Station needs and requirements are assessed, and the safety, environmental and economical constraints of digital radiography techniques estimated. The advantages and disadvantages of different digital radiography equipment are compared, and their limitations and characteristics studied. (author)

  13. The biomedical discourse relation bank

    Directory of Open Access Journals (Sweden)

    Joshi Aravind

    2011-05-01

    Full Text Available Abstract Background Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource. Results We have developed the Biomedical Discourse Relation Bank (BioDRB, in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB, which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89. These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28, mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57. Conclusion Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more

  14. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  15. Spintronic platforms for biomedical applications.

    Science.gov (United States)

    Freitas, P P; Cardoso, F A; Martins, V C; Martins, S A M; Loureiro, J; Amaral, J; Chaves, R C; Cardoso, S; Fonseca, L P; Sebastião, A M; Pannetier-Lecoeur, M; Fermon, C

    2012-02-01

    Since the fundamental discovery of the giant magnetoresistance many spintronic devices have been developed and implemented in our daily life (e.g. information storage and automotive industry). Lately, advances in the sensors technology (higher sensitivity, smaller size) have potentiated other applications, namely in the biological area, leading to the emergence of novel biomedical platforms. In particular the investigation of spintronics and its application to the development of magnetoresistive (MR) biomolecular and biomedical platforms are giving rise to a new class of biomedical diagnostic devices, suitable for bench top bioassays as well as point-of-care and point-of-use devices. Herein, integrated spintronic biochip platforms for diagnostic and cytometric applications, hybrid systems incorporating magnetoresistive sensors applied to neuroelectronic studies and biomedical imaging, namely magneto-encephalography and magneto-cardiography, are reviewed. Also lab-on-a-chip MR-based platforms to perform biological studies at the single molecule level are discussed. Overall the potential and main characteristics of such MR-based biomedical devices, comparing to the existing technologies while giving particular examples of targeted applications, are addressed. PMID:22146898

  16. Fundamental of neutron radiography and the present of neutron radiography in Japan

    International Nuclear Information System (INIS)

    Neutron radiography refers to the application of transmitted neutrons to analysis. In general, thermal neutron is used for neutron radiography. Thermal neutron is easily absorbed by light atoms, including hydrogen, boron and lithium, while it is not easily absorbed by such heavy atoms as tungsten, lead and uranium, permitting detection of impurities in heavy metals. Other neutrons than thermal neutron can also be applied. Cold neutron is produced from fast neutron using a moderator to reduce its energy down to below that of thermal neutron. Cold neutron is usefull for analysis of thick material. Epithermal neutron can induce resonance characteristic of each substance. With a relatively small reaction area, fast neutron permits observation of thick samples. Being electrically neutral, neutrons are difficult to detect by direct means. Thus a substance that releases charged particles is put in the path of neutrons for indirect measurement. X-ray film combined with converter screen for conversion of neutrons to charge particles is placed behind the sample. Photographing is carried out by a procedure similar to X-ray photography. Major institues and laboratories in Japan provided with neutron radiography facilities are listed. (Nogami, K.)

  17. Pet fish radiography: technique and case history reports

    International Nuclear Information System (INIS)

    Radiography can be used to aid in the diagnosis and treatment of pet fish diseases. Handling, restraint and radiographic technique for the radiographic examination of pet fish is described. Quality diagnostic images can be obtained with standard radiographic equipment and radiographic techniques. Fishes with undifferentiated sarcoma, swim bladder herniation and scoliosis are three clinical examples that are described where radiography was used in the management of the patient. Conventional radiography appears to be best for evaluating skeletal and swim bladder diseases. Alternate imaging techniques such as computed tomography and magnetic resonance imaging may enhance the evaluation of coelomic soft tissue structures

  18. Digital radiography simulation for industrial applications with MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edmilson M. de; Correa, Samanda C.A.; Silva, Ademir X. da; Lopes, Ricardo T.; Oliveira, Davi F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)], E-mail: emonteiro@con.ufrj.br

    2007-07-01

    The energy dependent response of a BaFBr Image Plate detector was modeled and introduced in MCNPX radiography tally input. To convert MCNPX radiography tally output in 16 bits digital images, a post processing program called PROGRAMA IMAGEM is presented. Simulate images of a steel tube containing corrosion alveoli and grinded defects were compared with experimental images. The radiography technique used in all tests was double wall single image, DWSI, using an Iridium source ({sup 192}Ir) touching the adjacent wall. Visual and perfilometric analysis showed that the methodology used for sensible material simulation and data post-processing makes simulate digital images comparable to experimental images. (author)

  19. Is digital better in dental radiography?

    International Nuclear Information System (INIS)

    In Slovenia, dental radiography was the first field in which projection x-ray imaging using digital detectors was done. At present around 30% of intraoral dental x-ray units use digital detectors. Annual test results were analysed to compare digital systems with film-based ones. The survey results show significantly lower doses of exposure in digital systems. In our opinion digital systems are especially suitable for practitioners who perform a low number of x-ray examinations (e.g. private dentists), because of problems that may arise due to developing a limited number of films. The problem with digital systems could be the ease of deleting an image and performing another examination, the extent of which was not investigated. (authors)

  20. 3-ns flash X-radiography

    International Nuclear Information System (INIS)

    In intense particle beam interaction with targets, flash X-radiography (FXR) has become the standard technique used to observe the target dynamic response to particle irradiation. Most of the development was motivated by the particle-beam inertial-confinement fusion program. The FXR technique is required to observe the hydrodynamic behavior of the critical regions of interest: the interfaces between the target ablator and the pusher, and between the pusher and the fuel. In making these measurements, the instruments developed must overcome an intense X-ray and EMP background associated with the production of particle beams. In the FXR systems described, microchannel plates (MCP) are used extensively as X-ray converters, gated shutters, and intensifiers to provide signal detection, background discrimination, and signal amplification. The MCP's play an important role in the development of these systems. (Auth.)

  1. Oral history in radiography: Listening to pioneers

    International Nuclear Information System (INIS)

    We explore the professional value of the collection and analysis of oral histories in the history of radiography. Drawing on oral histories collected from radiographers, we analyse accounts of experiences to identify common themes, some of which are of current significance, whilst others have faded from existence. 15 oral histories were collected from radiographers whose combined practice spans the years 1930-1973. The sample consists of 6 male and 9 female radiographers. Themes identified in the oral histories include radiographers as invisible pioneers who worked in professionally unclaimed territory and their dangerous working environment. The oral histories reveal the working world of the radiographer as having encompassed a practice ethos where challenges became an accepted part of work. We gain insight into less observable aspects of the radiographer's role, the difficulties they faced, how they invented techniques and equipment, and how they managed their practice including protecting the public from ionising radiation sources.

  2. Oral history in radiography: Listening to pioneers

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, Christine [International Development Facilitator, Robert Winston Building, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S10 2BP (United Kingdom)], E-mail: c.m.ferris@shu.ac.uk; Winslow, Michelle [University of Sheffield, Oral History Society, Academic Unit of Supportive Care, Sykes House, Little Common Lane, Sheffield S11 9NE (United Kingdom)], E-mail: m.winslow@sheffield.ac.uk

    2009-12-15

    We explore the professional value of the collection and analysis of oral histories in the history of radiography. Drawing on oral histories collected from radiographers, we analyse accounts of experiences to identify common themes, some of which are of current significance, whilst others have faded from existence. 15 oral histories were collected from radiographers whose combined practice spans the years 1930-1973. The sample consists of 6 male and 9 female radiographers. Themes identified in the oral histories include radiographers as invisible pioneers who worked in professionally unclaimed territory and their dangerous working environment. The oral histories reveal the working world of the radiographer as having encompassed a practice ethos where challenges became an accepted part of work. We gain insight into less observable aspects of the radiographer's role, the difficulties they faced, how they invented techniques and equipment, and how they managed their practice including protecting the public from ionising radiation sources.

  3. Measuring microfocus focal spots using digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Fry, David A [Los Alamos National Laboratory

    2009-01-01

    Measurement of microfocus spot size can be important for several reasons: (1) Quality assurance during manufacture of microfocus tubes; (2) Tracking performance and stability of microfocus tubes; (3) Determining magnification (especially important for digital radiography where the native spatial resolution of the digital system is not adequate for the application); (4) Knowledge of unsharpness from the focal spot alone. The European Standard EN 12543-5 is based on a simple geometrical method of calculating focal spot size from unsharpness of high magnification film radiographs. When determining microfocus focal spot dimensions using unsharpness measurements both signal-to-noise (SNR) and magnification can be important. There is a maximum accuracy that is a function of SNR and therefore an optimal magnification. Greater than optimal magnification can be used but it will not increase accuracy.

  4. Digital radiography exposure indices: A review

    International Nuclear Information System (INIS)

    Digital radiography (DR) technologies have the advantage of a wide dynamic range compared to their film-screen predecessors, however, this poses a potential for increased patient exposure if left unchecked. Manufacturers have developed the exposure index (EI) to counter this, which provides radiographers with feedback on the exposure reaching the detector. As these EIs were manufacturer-specific, a wide variety of EIs existed. To offset this, the international standardised EI has been developed by the International Electrotechnical Commission (IEC) and the American Association of Physicists in Medicine (AAPM). The purpose of this article is to explore the current literature relating to EIs, beginning with the historical development of the EI, the development of the standardised EI and an exploration of common themes and studies as evidenced in the research literature. It is anticipated that this review will provide radiographers with a useful guide to understanding EIs, their application in clinical practice, limitations and suggestions for further research

  5. KSTAR Application for Fast Neutron Radiography

    International Nuclear Information System (INIS)

    Korea Superconducting Tokamak Advanced Research (KSTAR) is a magnetic fusion device being built at the National Fusion Research Institute in Daejon, Korea. After the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 sec. In addition to long-pulse operation, the operational boundary of the H-mode discharge is extended over MHD no-wall limit. The basic design of the setup, based on the typical configuration, was decided for the first step of the experiments. Several type of scintillator is being ready to be examined for the best performance. The first setup will be applied in KSTAR 2015 campaign, and it can characterize the neutron radiation from KSTAR. Based on the data, the optimum design of the setup for fast radiography can be derived

  6. Femoral anteversion measured by ultrasonography and radiography

    International Nuclear Information System (INIS)

    Radiographic and real-time ultrasound measurements of femoral anteversion were compared in an anatomic study of 20 dried adult femurs. The real anteversion (AV) angle was determined by biplanar radiography. In four ultrasound measurements, the linear transducer was kept either horizontal or tilted. The measuring lines were either the anterior tangent of the femoral head-greater trochanter or the anterior tangent of the femoral neck. With the tilted transducer, the correlation between the head-trochanter AV angle and the real AV angle was high (r=0.9452), and slightly less when the anterior neck AV angle was used (r=0.9142). The clinical relevance is that the tilted transducer technique with the head-trochanter tangent is recommended for AV screening in patients with clinical signs of increased femoral anteversion. In adults 8.50 has to be subtracted in order to obtain an approximation of the real AV angle. (orig.)

  7. Reduction of population dose in intraoral radiography

    International Nuclear Information System (INIS)

    First, the relationship between tumor induction especially in thyroid gland and salivary gland as exposure injuries and dental x-ray examination on human group was mentioned. Presumption of population exposure dose at time of examination was discussed from standpoint of genetically significant dose, per caput mean bone marrow dose, leukemia significant dose, and collective dose in thyroid gland. As the result, improvement of space distribution of a dose in intraoral radiography was discussed from standpoints of quality of x-ray and the size of irradiation field, and the distance from a focus to skin in considereation of reduction of exposure dose, and it was further considered by using x-ray film with high sensitivity of nonscreen type film and introducing screen. (Kanao, N.)

  8. Resistive plate chambers for tomography and radiography

    Directory of Open Access Journals (Sweden)

    C. Thomay

    2012-08-01

    Full Text Available Resistive Plate Chambers (RPCs are widely used in high energy physics for both tracking and triggering purposes, due to their excellent time resolution, rate capability, and good spatial resolution. RPCs can be produced cost-effectively on large scales, are of rugged build, and have excellent detection efficiency for charged particles. Our group has successfully built a Muon Scattering Tomography (MST prototype, using 12 RPCs to obtain tracking information of muons going through a target volume of ~ 50 cm × 50 cm × 70 cm, reconstructing both the incoming and outgoing muon tracks. The required spatial granularity is achieved by using 330 readout strips per RPC with 1.5 mm pitch. The RPCs have shown an efficiency above 99% and an estimated intrinsic resolution below 1.1 mm. Due to these qualities, RPCs provide excellent candidates for usage in volcano radiography.

  9. Machine learning applied to proton radiography

    CERN Document Server

    Chen, Nicholas Fang Yew; Ceurvorst, Luke; Ratan, Naren; Sadler, James; Levy, Matthew; Trines, Raoul; Bingham, Robert; Norreys, Peter

    2016-01-01

    Proton radiography is a technique extensively used to resolve magnetic field structures in high energy density plasmas, revealing a whole variety of interesting phenomena such as magnetic reconnection and collisionless shocks found in astrophysical systems. Existing methods of analyzing proton radiographs give mostly qualitative results or specific quantitative parameters such as magnetic field strength, and recent work showed that the line-integrated transverse magnetic field can be reconstructed in specific regimes where many simplifying assumptions were needed. Using artificial neural networks, we suggest a novel 3-D reconstruction method that works for a more general case. A proof of concept is presented here, with mean reconstruction errors of less than 5 percent even after introducing noise. We demonstrate that over the long term, this approach is more computationally efficient compared to other techniques. We also highlight the need for proton tomography because (i) certain field structures cannot be r...

  10. Muscle parameters estimation based on biplanar radiography.

    Science.gov (United States)

    Dubois, G; Rouch, P; Bonneau, D; Gennisson, J L; Skalli, W

    2016-11-01

    The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography. PMID:27082150

  11. Radiography and tomography with polarized neutrons

    International Nuclear Information System (INIS)

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm3 in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons. - Highlights: • Radiography and tomography with polarized neutrons yield new results concerning the suppressed Meissner effect and magnetic flux trapping. • Suppressed Meissner effect was observed in pure lead samples and niobium. • Trapped magnetic fields in cylindrical Pb samples are squeezed around the rod axis. • The shape and the amount of trapped fields could be determined and quantified

  12. Image rejects in general direct digital radiography

    International Nuclear Information System (INIS)

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality

  13. Pathophysiologic mechanisms of biomedical nanomaterials.

    Science.gov (United States)

    Wang, Liming; Chen, Chunying

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell-cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future.

  14. The Enhanced Workflow and Efficiency of the Wireless Local Area Network (WLAN)-Based Direct Digital Radiography (DDR) Portable Radiography.

    Science.gov (United States)

    Ngan, Tsz-Lung; Wong, Edward Ting-Hei; Ng, Kris Lap-Shun; Jeor, Patrick Kwok-Shing; Lo, Gladys Goh

    2015-06-01

    With the implementation of the PACS in the hospital, there is an increasing demand from the clinicians for immediate access and display of radiological images. Recently, our hospital has installed the first wireless local area network (WLAN)-based direct digital radiography (DDR) portable radiography system. The DDR portable radiography system allows wireless retrieval of modality worklist and wireless transmission of portable X-ray image on the console to the Picture Archiving and Communication System (PACS), via WLAN connection of wireless fidelity (Wi-Fi). The aim of this study was to analyze the workflow and performance between the WLAN-based DDR portable radiography system and the old practice using conventional portable X-ray machine with computed radiography (CR) system. A total of 190 portable chest X-ray examinations were evaluated and timed, using the conventional portable X-ray machine with CR from March to April of 2012 and using the new DDR portable radiography system on December of 2012 (n = 97 for old system and n = 93 for DDR portable system). The time interval of image becoming available to the PACS using the WLAN-based DDR portable radiography system was significantly shorter than that of the old practice using the conventional portable X-ray machine with CR (6.8 ± 2.6 min for DDR portable system; 23 ± 10.2 min for old system; p < 0.0001), with the efficiency improved by 70 %. The implementation of the WLAN-based DDR portable radiography system can enhance the workflow of portable radiography by reduction of procedural steps.

  15. Implantable biomedical devices on bioresorbable substrates

    Science.gov (United States)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  16. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  17. Flexible sensors for biomedical technology.

    Science.gov (United States)

    Vilela, Diana; Romeo, Agostino; Sánchez, Samuel

    2016-02-01

    Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes. PMID:26675174

  18. Flexible sensors for biomedical technology.

    Science.gov (United States)

    Vilela, Diana; Romeo, Agostino; Sánchez, Samuel

    2016-02-01

    Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes.

  19. How to create a degree course in radiography: a recipe

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, S. E-mail: Pratt@cf.ac.uk; Adams, C. E-mail: AdamsC1@cf.ac.uk

    2003-11-01

    This article explains how an undergraduate programme is devised and validated. Since 1993, all courses in radiography have been of graduate level with radiography education being based in higher educational institutions. Before a new degree is implemented a review of the existing programme is undertaken. The proposed degree philosophy and learning outcomes need to be determined before the content; its mode of delivery and assessment are developed. Input from stakeholders (such as clinical colleagues) is necessary as well as adherence to policies and strategies for radiography education. Throughout the development process compliance with policy, both national and local, is critical. All radiography programmes have to be validated/accredited by representatives from national organisations--such as The Society and College of Radiographers (SCoR). These representatives scrutinise the proposed degree course documentation; often they may also inspect the clinical and university facilities in which the education and training will take place.

  20. NECTAR: Radiography and tomography station using fission neutrons

    OpenAIRE

    Bücherl, Thomas; Söllradl, Stefan

    2015-01-01

    NECTAR, operated by the Technische Universität München, is a versatile facility for the non-destructive inspection of various objects by means of fission neutron radiography and tomography, respectively.

  1. Establishment of Guidance Levels in General Radiography and Mammography

    International Nuclear Information System (INIS)

    Coordinated project report IAEA ARCAL LXXV-RLA/9/048 Pilot Exercise for Developing and Setting Levels Reference in General Radiography and Mammography as a Tool for Optimizing Radiation Protection and Reduce Patient Exposure in Latin America

  2. How to create a degree course in radiography: a recipe

    International Nuclear Information System (INIS)

    This article explains how an undergraduate programme is devised and validated. Since 1993, all courses in radiography have been of graduate level with radiography education being based in higher educational institutions. Before a new degree is implemented a review of the existing programme is undertaken. The proposed degree philosophy and learning outcomes need to be determined before the content; its mode of delivery and assessment are developed. Input from stakeholders (such as clinical colleagues) is necessary as well as adherence to policies and strategies for radiography education. Throughout the development process compliance with policy, both national and local, is critical. All radiography programmes have to be validated/accredited by representatives from national organisations--such as The Society and College of Radiographers (SCoR). These representatives scrutinise the proposed degree course documentation; often they may also inspect the clinical and university facilities in which the education and training will take place

  3. The zinc sulphide scintillator for fast neutron radiography

    International Nuclear Information System (INIS)

    In this work, a mathematical model was established to estimate luminescence of the neutron radiography scintillator made of ZnS and polypropylene. Scintillators in different thicknesses and compositions were prepared for a radiography experiment using 14 MeV neutrons. The results showed that the optimum parameters of the scintillator were 3-mm in thickness and 1 : 1 to 2 : 1 of weight ratio of ZnS and polypropylene. (authors)

  4. Validity of compton radiography in soft tissue imaging

    International Nuclear Information System (INIS)

    The Compton radiography was shown to be capable of delineating subcutaneous and hepatic inflammations as well as normal muscles and fatty tissues with positive tomoimages. This is an noteworthy feature in contrast to the ordinary x-ray radiography. Computer assistance would probably cultivate its various clinical applicability. Radiological diagnosis of soft tissue morbidities can possibly be assisted to an appreciable degree by this technique. (author)

  5. Science gateways for biomedical big data analysis

    NARCIS (Netherlands)

    S. Shahand

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists fr

  6. Lateral radiography of the knee with single-leg standing

    International Nuclear Information System (INIS)

    The purpose of this investigation was to accomplish reproducible radiography of single-leg standing lateral radiography of the knee by adjusting lateral rotation using a ruler to measure foot position. After preliminary assessment of three-dimensional CT of the knees of normal volunteers, the best adjustment of external rotation was estimated. A ruler was made for use in adjusting the angle of knee rotation by measuring foot rotation. Based on the foot rotation measured by this ruler, the positioning of radiography was adjusted to correct rotation. Rotation was estimated by the distance between the posterior edges of the lateral and medial femoral condyles. Fifteen-degree and 17.5-degree rotations were used for correction. Correction of rotation was 17 degrees on average. This helped not only to correct external rotation in the initial radiography but also to correct rotation for repeat radiography. Our method is quantitative and highly reproducible, and it increases the success rate of lateral knee radiography. (author)

  7. Chest X ray effective doses estimation in computed radiography

    International Nuclear Information System (INIS)

    Conventional chest radiography is technically difficult because of wide in tissue attenuations in the chest and limitations of screen-film systems. Computed radiography (CR) offers a different approach utilizing a photostimulable phosphor. photostimulable phosphors overcome some image quality limitations of chest imaging. The objective of this study was to estimate the effective dose in computed radiography at three hospitals in Khartoum. This study has been conducted in radiography departments in three centres Advanced Diagnostic Center, Nilain Diagnostic Center, Modern Diagnostic Center. The entrance surface dose (ESD) measurement was conducted for quality control of x-ray machines and survey of operators experimental techniques. The ESDs were measured by UNFORS dosimeter and mathematical equations to estimate patient doses during chest X rays. A total of 120 patients were examined in three centres, among them 62 were males and 58 were females. The overall mean and range of patient dosed was 0.073±0.037 (0.014-0.16) mGy per procedure while the effective dose was 3.4±01.7 (0.6-7.0) mSv per procedure. This study compared radiation doses to patients radiographic examinations of chest using computed radiology. The radiation dose was measured in three centres in Khartoum- Sudan. The results of the measured effective dose showed that the dose in chest radiography was lower in computed radiography compared to previous studies.(Author)

  8. Comparison of diagnostic accuracy of root perforation, external resorption and fractures using cone-beam computed tomography, panoramic radiography and conventional & digital periapical radiography

    Directory of Open Access Journals (Sweden)

    Wilton Mitsunari Takeshita

    2015-01-01

    Conclusions: CBCT showed the best results in the diagnosis of ERR and VRF. The diagnosis of ERR was the least accurate, panoramic radiography being not appropriate for its diagnosis. CBCT and conventional periapical radiography obtained similar results for the evaluation of RP. So for, RP indicate the conventional periapical radiography because CBCT has a higher radiation dose.

  9. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  10. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  11. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  12. Mathematical modeling in biomedical imaging

    CERN Document Server

    2009-01-01

    This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

  13. Mathematical modeling in biomedical imaging

    CERN Document Server

    2012-01-01

    This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools.  It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.

  14. Biomedical applications of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bormann, D.

    2012-01-01

    This chapter deals with the emerging field of biomedical applications for magnesium-based materials, envisioning degradable implants that dissolve in the human body after having cured a particular medical condition. After outlining the background of this interest, some major aspects concerning degra

  15. Environmental/Biomedical Terminology Index

    International Nuclear Information System (INIS)

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index

  16. Advanced Biomedical Computing Center (ABCC) | DSITP

    Science.gov (United States)

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  17. Biomedical ethics and the biomedical engineer: a review.

    Science.gov (United States)

    Saha, S; Saha, P S

    1997-01-01

    Biomedical engineering is responsible for many of the dramatic advances in modern medicine. This has resulted in improved medical care and better quality of life for patients. However, biomedical technology has also contributed to new ethical dilemmas and has challenged some of our moral values. Bioengineers often lack adequate training in facing these moral and ethical problems. These include conflicts of interest, allocation of scarce resources, research misconduct, animal experimentation, and clinical trials for new medical devices. This paper is a compilation of our previous published papers on these topics, and it summarizes many complex ethical issues that a bioengineer may face during his or her research career or professional practice. The need for ethics training in the education of a bioengineering student is emphasized. We also advocate the adoption of a code of ethics for bioengineers.

  18. The forgotten cousins : dental and chiropractic radiography

    International Nuclear Information System (INIS)

    Radiation protection surveillance methods should be appropriate to the particular use of x-rays employed. Dentists use small fixed position radiation fields with low output machines, making frequent routine visits unnecessary. There are also large numbers of them. On the other hand chiropractors use large fields and potentially high doses as well as a wide variety of projections and filters, which makes routine visits necessary. These differences have not unsurprisingly led to the National Radiation Laboratory adopting quite different approaches to monitoring these domains. In dental radiography past surveys have shown that the x-ray units themselves to be very robust and stable. A simple postal test was developed for dentists. A small number of visits are also made to dental x-ray facilities per year. Because of the greater possible level of hazard involved routine visits are made to chiropractic establishments. Chiropractic radiation protection surveys have now been extended to include calculating patient doses. The wide variety of projections and the extensive use of beam shaping filters and diaphragms means that we had to develop a program (called Chirodos) to allow for these filters in calculating the chiropractic patient doses. Data collected during the radiation protection surveys includes technique factors, filter materials, positions, and shielding. A national database of chiropractic doses has led us to establish reference doses for chiropractic x-ray exams. (author)

  19. Beam Characterization at the Neutron Radiography Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  20. Positioning of the wrist for scaphoid radiography

    Energy Technology Data Exchange (ETDEWEB)

    Toth, Ferenc [Department of Traumatology and Hand Surgery, Medical School of Pecs University, PF.: 99, Akac utca 1, H-7601 Pecs (Hungary)], E-mail: tothf2@yahoo.com; Sebestyen, Andor [Baranya County Health Insurance Fund, Nagy Lajos kiraly utja 3, 7623 Pecs (Hungary); Balint, Lehel [Department of Orthopaedic Surgery, Medical School of Pecs University, Ifjusag u. 13, 7643 Pecs (Hungary); Mester, Sandor [Szent Gyorgy County Hospital, Seregelyesi u. 3, 8000 Szekesfehervar (Hungary); Szabo, Gyorgy [Department of Orthopaedic Surgery, Medical School of Pecs University, Ifjusag u. 13, 7643 Pecs (Hungary); Nyarady, Jozsef [Department of Traumatology and Hand Surgery, Medical School of Pecs University, PF.: 99, Akac utca 1, H-7601 Pecs (Hungary); Weninger, Csaba [Department of Radiology, Medical School of Pecs University, Ifjusag u. 13, 7643 Pecs (Hungary); Angyal, Miklos [Department of Forensic Medicine, Medical School of Pecs University, Ifjusag u. 13, 7643 Pecs (Hungary); Lovasz, Gyorgy [Department of Orthopaedic Surgery, Medical School of Pecs University, Ifjusag u. 13, 7643 Pecs (Hungary)

    2007-10-15

    Purpose: The purpose of this cadaver study was to determine the ideal position of the wrist for scaphoid radiography. Materials and methods: Four cadaver wrists were rotated around their longitudinal axis in 15 deg. increments and exposures were taken. Seven postero-anterior images were taken as well. Thus, 18 images of each wrist were available for assessment. Views were determined in which the main anatomic regions of the scaphoid were visualized undistorted. The size and localization of the overlap of other carpal bones were also evaluated. Finally, views with the best visualization of anatomic landmarks were selected. The results of these three investigations were compared to literature data. Results: We consider the following four images the most valuable in the diagnostic imaging of scaphoid bone: (1) Postero-anterior view in ulnar deviation of wrist and fist position of the hand; (2) oblique view in 60 deg. of pronation; (3) oblique view in 60 deg. of supination; (4) lateral view. Conclusion: We concluded that our four views are sufficient for proper radiographic evaluation of the scaphoid.

  1. Optical compensation device for chest film radiography

    Science.gov (United States)

    Gould, Robert G.; Hasegawa, Bruce H.; DeForest, Sherman E.; Schmidt, Gregory W.; Hier, Richard G.

    1990-07-01

    Although chest radiography is the most commonly performed radiographic examination and one of the most valuable and cost-effective studies in medicine it suffers from relatively high error rates in both missing pathology and false positive interpretations. Detectability of lung nodules and other structures in underpenetrated regions of the chest film can be improved by both exposure and optical compensation but current compensation systems require major capital cost or a significant change in normal clinical practice. A new optical compensation system called the " Intelligent X-Ray Illuminator" (IXI) automatically and virtually instantaneously generates a patient-specific optical unsharp mask that is projected directly on a radiograph. When a radiograph is placed on the IXI which looks much like a conventional viewbox it acquires a low-resolution electronic image of this film from which the film transmission is derived. The transmission information is inverted and blurred in an image processor to form an unsharp mask which is fed into a spatial light modulator (SLM) placed between a light source and the radiograph. The SLM tailors the viewbox luminance by decreasing illumination to underexposed (i. e. transmissive) areas of the radiograph presenting the observer with an optically unsharp-masked image. The IXI uses the original radiograph and will allow it to be viewed on demand with conventional (uniform illumination. Potentially the IXI could introduce the known beneficial aspects of optical unsharp masking into radiology at low capital

  2. Portable Digital Radiography and Computed Tomography Manual

    Energy Technology Data Exchange (ETDEWEB)

    2007-11-01

    This user manual describes the function and use of the portable digital radiography and computed tomography (DRCT) scanner. The manual gives a general overview of x-ray imaging systems along with a description of the DRCT system. An inventory of the all the system components, organized by shipping container, is also included. In addition, detailed, step-by-step procedures are provided for all of the exercises necessary for a novice user to successfully collect digital radiographs and tomographic images of an object, including instructions on system assembly and detector calibration and system alignment. There is also a short section covering the limited system care and maintenance needs. Descriptions of the included software packages, the DRCT Digital Imager used for system operation, and the DRCT Image Processing Interface used for image viewing and tomographic data reconstruction are given in the appendixes. The appendixes also include a cheat sheet for more experienced users, a listing of known system problems and how to mitigate them, and an inventory check-off sheet suitable for copying and including with the machine for shipment purposes.

  3. Neutron radiography and its image resolutions

    International Nuclear Information System (INIS)

    Neutron radiography (NR) is widely applied especially for non-destructive inspection of industrial products. An outline of NR technique is given in this report with few examples of industrial applications. The quality of a NR image depends on many factors. The values of L, D, and L/D are main factors to define a geometrical unsharpness of NR images. A device for accurate measurements of those parameters is proposed and fabricated. Degree of confidence is estimated for measurements of those parameters in detail. Values of L, D, and L/D are measured for our NR facilities with different geometrical conditions by use of the device and the values are compared to the designed values. The quality of the NR image also depends on an inherent unsharpness of its imaging device. The inherent unsharpness is measured as an edge spread function (ESF) and a modulation transfer function (MTF) is derived from the ESF with a technique of the discrete fast Fourier transform (DFFT). Results are compared to theoretically calculated MTF. (author)

  4. A dose monitoring system for dental radiography

    Science.gov (United States)

    Lee, Chena; Kim, Jo-Eun; Symkhampha, Khanthaly; Lee, Woo-Jin; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Yeom, Heon-Young

    2016-01-01

    Purpose The current study investigates the feasibility of a platform for a nationwide dose monitoring system for dental radiography. The essential elements for an unerring system are also assessed. Materials and Methods An intraoral radiographic machine with 14 X-ray generators and five sensors, 45 panoramic radiographic machines, and 23 cone-beam computed tomography (CBCT) models used in Korean dental clinics were surveyed to investigate the type of dose report. A main server for storing the dose data from each radiographic machine was prepared. The dose report transfer pathways from the radiographic machine to the main sever were constructed. An effective dose calculation method was created based on the machine specifications and the exposure parameters of three intraoral radiographic machines, five panoramic radiographic machines, and four CBCTs. A viewing system was developed for both dentists and patients to view the calculated effective dose. Each procedure and the main server were integrated into one system. Results The dose data from each type of radiographic machine was successfully transferred to the main server and converted into an effective dose. The effective dose stored in the main server is automatically connected to a viewing program for dentist and patient access. Conclusion A patient radiation dose monitoring system is feasible for dental clinics. Future research in cooperation with clinicians, industry, and radiologists is needed to ensure format convertibility for an efficient dose monitoring system to monitor unexpected radiation dose. PMID:27358817

  5. Computer radiography-X-ray with vision

    International Nuclear Information System (INIS)

    Computer radiography describes an entire process of creating a digital image including acquiring, processing, presenting and managing the image data. the cassettes are special in that they use an imaging plate instead of films. the imaging plate is coated with storage phosphors which captures x-ray as they pass through the patient. the imaging plate is read with a bar code reader and the imaging plate number recorded in the computer. The cassette is then loaded in the reader unit where it is read using infra-red light which excites the particles on the plate which in turn illuminates and picked by photo-sensors which converts the signal into digital pulses. the pulses then run through a board which converts it into an image which is then displayed on the control console. The plate then runs through the erasure section where it is exposed to yellow light, which erases the plate. The IP is then put back in the cassette and locked and can be reused for the next episode

  6. Musculoskeletal magnetic resonance imaging: importance of radiography

    Energy Technology Data Exchange (ETDEWEB)

    Taljanovic, Mihra S.; Hunter, Tim B.; Fitzpatrick, Kimberly A. [Department of Radiology, The University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, AZ 85724, Tucson (United States); Krupinski, Elizabeth A. [Department of Radiology, University of Arizona, 1609 N. Warren, Building 211, AZ 85724, Tucson (United States); Pope, Thomas L. [Department of Radiology, Medical University of South Carolina, 169 Ashley Avenue, P.O. Box 250322, SC 29425, Charleston (United States)

    2003-07-01

    To determine the usefulness of radiography for interpretation of musculoskeletal (MSK) magnetic resonance imaging (MRI) studies. In a 1-year period, 1,030 MSK MRI studies were performed in 1,002 patients in our institution. For each study, the interpreting radiologist completed a questionnaire regarding the availability and utility of radiographs, radiological reports and clinical information for the interpretation of the MRI study. Radiographs were essential, very important or added information in 61-75% of all MSK MRI cases. Radiographs were judged as essential for reading of MRI studies more often for trauma, infection/inflammation and tumors than for degenerative and miscellaneous/normal diagnoses ({chi}{sup 2}=60.95, df=16, P<0.0001). The clinical information was rated as ''essential'' or ''useful'' significantly more often than not ({chi}{sup 2}=93.07, df=16, P<0.0001). The clinical and MRI diagnoses were the same or partially concordant significantly more often for tumors than for trauma, infection/inflammation and degenerative conditions, while in the miscellaneous/normal group they were different in 64% of cases. When the diagnoses were different, there were more instances in which radiographs were not available. Radiographs are an important, and sometimes essential, initial complementary study for reading of MSK MRI examinations. It is highly recommended that radiographs are available when MSK MRI studies are interpreted. (orig.)

  7. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  8. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  9. Radiation dose reduction in direct digital panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Gavala, Sophia; Donta, Catherine [Department of Oral Diagnosis and Oral Radiology, School of Dentistry, University of Athens, 2 Thivon Street Goudi, 115 27 Athens (Greece); Tsiklakis, Kostas [Department of Oral Diagnosis and Oral Radiology, School of Dentistry, University of Athens, 2 Thivon Street Goudi, 115 27 Athens (Greece)], E-mail: ktsiklak@dent.uoa.gr; Boziari, Argyro; Kamenopoulou, Vasiliki [Greek Atomic Energy Commission (Greece); Stamatakis, Harry C. [Department of Oral Diagnosis and Oral Radiology, School of Dentistry, University of Athens, 2 Thivon Street Goudi, 115 27 Athens (Greece)

    2009-07-15

    Objectives: (a) To measure the absorbed radiation doses at 16 anatomical sites of a Rando phantom and (b) to calculate the effective doses including and excluding the salivary gland doses in panoramic radiography using a conventional and a digital panoramic device. Study design: Thermoluminescent dosimeters (TLD-100) were placed at 16 sites in a Rando phantom, using a conventional, Planmeca Promax and a digital, Planmeca PM2002CC Proline 2000 (Planmeca Oy, 00880 Helsinki, Finland) panoramic device for panoramic radiography. During conventional radiography the selected exposure settings were 66 kVp, 6 mA and 16 s, while during digital radiography two combinations were selected 60 kVp, 4 mA, 18 s and 66 kVp, 8 mA, 18 s with and without image processing function. The dosimeters were annealed in a PTW-TLDO Harshaw oven. TLD energy response was studied using RQN beam narrow series at GAEC's Secondary Standard Calibration Laboratory. The reader used was a Harshaw, 4500. Effective dose was estimated according to ICRP{sub 60} report (E{sub ICRP60}). An additional estimation of the effective dose was accomplished including the doses of the salivary glands (E{sub SAL}). A Wilcoxon signed ranks test was used for statistical analysis. Results: The effective dose, according to ICRP report (E{sub ICRP60}) in conventional panoramic radiography was 17 {mu}Sv and E{sub SAL} was 26 {mu}Sv. The respective values in digital panoramic radiography were E{sub ICRP60} = 23 {mu}Sv and E{sub SAL} = 38 {mu}Sv; while using the lowest possible radiographic settings E{sub ICRP60} was 8 {mu}Sv and E{sub SAL} was 12 {mu}Sv. Conclusions: The effective dose reduction in digital panoramic radiography can be achieved, if the lowest possible radiographic settings are used.

  10. A method to optimize the processing algorithm of a computed radiography system for chest radiography.

    Science.gov (United States)

    Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R

    2007-09-01

    A test methodology using an anthropomorphic-equivalent chest phantom is described for the optimization of the Agfa computed radiography "MUSICA" processing algorithm for chest radiography. The contrast-to-noise ratio (CNR) in the lung, heart and diaphragm regions of the phantom, and the "system modulation transfer function" (sMTF) in the lung region, were measured using test tools embedded in the phantom. Using these parameters the MUSICA processing algorithm was optimized with respect to low-contrast detectability and spatial resolution. Two optimum "MUSICA parameter sets" were derived respectively for maximizing the CNR and sMTF in each region of the phantom. Further work is required to find the relative importance of low-contrast detectability and spatial resolution in chest images, from which the definitive optimum MUSICA parameter set can then be derived. Prior to this further work, a compromised optimum MUSICA parameter set was applied to a range of clinical images. A group of experienced image evaluators scored these images alongside images produced from the same radiographs using the MUSICA parameter set in clinical use at the time. The compromised optimum MUSICA parameter set was shown to produce measurably better images. PMID:17709364

  11. A method to optimize the processing algorithm of a computed radiography system for chest radiography.

    Science.gov (United States)

    Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R

    2007-09-01

    A test methodology using an anthropomorphic-equivalent chest phantom is described for the optimization of the Agfa computed radiography "MUSICA" processing algorithm for chest radiography. The contrast-to-noise ratio (CNR) in the lung, heart and diaphragm regions of the phantom, and the "system modulation transfer function" (sMTF) in the lung region, were measured using test tools embedded in the phantom. Using these parameters the MUSICA processing algorithm was optimized with respect to low-contrast detectability and spatial resolution. Two optimum "MUSICA parameter sets" were derived respectively for maximizing the CNR and sMTF in each region of the phantom. Further work is required to find the relative importance of low-contrast detectability and spatial resolution in chest images, from which the definitive optimum MUSICA parameter set can then be derived. Prior to this further work, a compromised optimum MUSICA parameter set was applied to a range of clinical images. A group of experienced image evaluators scored these images alongside images produced from the same radiographs using the MUSICA parameter set in clinical use at the time. The compromised optimum MUSICA parameter set was shown to produce measurably better images.

  12. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research. PMID:24640781

  13. Terahertz biomedical science and technology

    CERN Document Server

    Son, Joo-Hiuk

    2014-01-01

    Introduction to Biomedical Studies Using Terahertz WavesJoo-Hiuk SonSection I Terahertz TechnologyTerahertz Sources and DetectorsHyunyong Choi and Joo-Hiuk SonTabletop High-Power Terahertz Pulse Generation TechniquesYun-Shik LeeTerahertz Imaging and Tomography TechniquesHyunyong Choi and Joo-Hiuk SonCompact Solid-State Electronic Terahertz Devices and CircuitsJae-Sung Rieh, Daekeun Yoon, and Jongwon Yun<

  14. New biomedical applications of radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.C.

    1990-12-01

    The potential of accelerator mass spectrometry (AMS) and radiocarbon in biomedical applications is being investigated by Lawrence Livermore National Laboratory (LLNL). A measurement of the dose-response curve for DNA damage caused by a carcinogen in mouse liver cells was an initial experiment. This demonstrated the sensitivity and utility of AMS for detecting radiocarbon tags and led to numerous follow-on experiments. The initial experiment and follow-on experiments are discussed in this report. 12 refs., 4 figs. (SM)

  15. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  16. The Ontology for Biomedical Investigations

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H.; Chibucos, Marcus C.; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A.; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L.; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A.; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H.; Schober, Daniel; Smith, Barry; Soldatova, Larisa N.; Stoeckert, Christian J.; Taylor, Chris F.; Torniai, Carlo; Turner, Jessica A.; Vita, Randi; Whetzel, Patricia L.; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  17. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  18. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  19. The Ontology for Biomedical Investigations.

    Directory of Open Access Journals (Sweden)

    Anita Bandrowski

    Full Text Available The Ontology for Biomedical Investigations (OBI is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI and Phenotype Attribute and Trait Ontology (PATO without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT. The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org providing details on the people, policies, and issues being

  20. Contemporary practice education: Exploring student perceptions of an industrial radiography placement for final year diagnostic radiography students

    International Nuclear Information System (INIS)

    Introduction: There is a paucity of evidence in diagnostic radiography evaluating a career path into industrial imaging despite several higher education institutes stating this route as a career option on graduation. The link between a career in industrial radiography and diagnostic routes is unknown although there are anecdotal examples of individuals transferring between the two. Successfully obtaining a first post job following graduation in diagnostic radiography can be challenging in the current financial climate. A partnership was formed with an energy sector company that offered non-destructive testing/non-destructive evaluation (NDT/NDE) employing industrial radiographic technicians. Method: As an initial pilot, 5 (n = 5) final year diagnostic radiography students visited an industrial radiography site and underwent theoretical and practical training. Following this placement they engaged in a focus group and the student perceptions/responses were explored and recorded. Results: Common themes were identified and categorised via a thematic analysis. These were; radiation safety, physics and technology, widening access, graduate attributes/transferable skill sets and working conditions. Conclusion: Student discussion focussed around the benefits of working conditions in healthcare, the value of technology, safety and physics education in alternative placements and the transferability of skills into other/industrial sectors (e.g. NDT/NDE). Contemporary practice placements are a useful pedagogical approach to develop complex conceptual theoretical constructs, such as radiation physics. An in depth evaluation between the two industries skill sets is postulated. Additionally, this could offer alternative/emerging roles to interested diagnostic radiographers potentially meeting the skill shortage in industrial radiography. - Highlights: • Research in this area is novel. No evidence could be found to evaluate the links. • Students had theoretical

  1. Pediatric digital radiography summit overview: state of confusion

    International Nuclear Information System (INIS)

    On Feb. 4, 2010, the Alliance for Radiation Safety in Pediatric Radiology held a Pediatric Digital Radiography Summit. The goal was for radiologists, radiologic technologists, medical physicists, and vendor representatives, including engineers, medical physicists and education specialists, to discuss the challenges to achieving the ALARA (as low as reasonably achievable) principle in pediatric digital radiography and to lay the groundwork for overcoming these obstacles. This article focuses on the state of confusion that exists for radiologists and radiologic technologists who use digital radiography equipment. Radiologists might have a difficult time accepting lower dose (noisy images), and radiologic technologists might respond by increasing patient exposures, which results in excessive patient doses. For reporting exposures, vendors have a history of using proprietary terms that confuse users. In addition, technical parameters cannot be easily exported for quality assurance, and there is no national standard for digital radiography. Presentations in this minisymposium focus on suggestions for the cooperative development of new technical standards, education and training to improve the quality of digital radiography in pediatric patients and promote radiation protection for children. (orig.)

  2. Syndesmotic Malreduction after Ankle ORIF; Is Radiography Sufficient?

    Directory of Open Access Journals (Sweden)

    Alireza Manafi Rasi

    2013-12-01

    Full Text Available Background: Ankle fractures, especially those resulting from external rotation mechanisms are associated with injury to the distal tibiofibular syndesmosis. Some authors have recommended performing CT scanning after open ankle surgery to evaluate the reduction of syndesmosis. In this current study, we aimed to investigate the sensitivity of plain radiography in diagnosing syndesmosis malreduction after open reduction and internal fixation (ORIF in patients with ankle fractures.   Methods: Thirty patients with ankle fractures participated in this prospective study. ORIFs were performed with respect to all of the technical guidelines shown in orthopedic literature for exact syndesmosis reduction, such as fibular length and proper settings. In the operating room, plain radiography was performed in anteroposterior, mortise and lateral views to assess whether syndesmosis was malreduced. If malreduction was detected, the patient was revised. As the gold standard, patients underwent postoperative bilateral CT scanning to investigate the syndesmosis reduction which was then compared to the healthy side. Finally, the sensitivity of plain radiography in the diagnosis of syndesmosis malreduction was determined by comparing this method to CT scanning. Results: In both of the methods we did not find any patient with syndesmosis malreduction. Hence, the sensitivity of plain radiography was determined 100%. Conclusion: Based on our findings, there is no need to perform CT scanning to evaluate syndesmosis reduction after ankle ORIF in patients with ankle fractures. Plain radiography is sufficient and has satisfactory sensitivity in these patients.

  3. Syndesmotic Malreduction after Ankle ORIF; Is Radiography Sufficient?

    Directory of Open Access Journals (Sweden)

    Alireza Manafi Rasi

    2013-12-01

    Full Text Available   Background: Ankle fractures, especially those resulting from external rotation mechanisms are associated with injury to the distal tibiofibular syndesmosis. Some authors have recommended performing CT scanning after open ankle surgery to evaluate the reduction of syndesmosis. In this current study, we aimed to investigate the sensitivity of plain radiography in diagnosing syndesmosis malreduction after open reduction and internal fixation (ORIF in patients with ankle fractures.   Methods: Thirty patients with ankle fractures participated in this prospective study. ORIFs were performed with respect to all of the technical guidelines shown in orthopedic literature for exact syndesmosis reduction, such as fibular length and proper settings. In the operating room, plain radiography was performed in anteroposterior, mortise and lateral views to assess whether syndesmosis was malreduced. If malreduction was detected, the patient was revised. As the gold standard, patients underwent postoperative bilateral CT scanning to investigate the syndesmosis reduction which was then compared to the healthy side. Finally, the sensitivity of plain radiography in the diagnosis of syndesmosis malreduction was determined by comparing this method to CT scanning. Results: In both of the methods we did not find any patient with syndesmosis malreduction. Hence, the sensitivity of plain radiography was determined 100%. Conclusion: Based on our findings, there is no need to perform CT scanning to evaluate syndesmosis reduction after ankle ORIF in patients with ankle fractures. Plain radiography is sufficient and has satisfactory sensitivity in these patients.

  4. Pediatric digital radiography summit overview: state of confusion

    Energy Technology Data Exchange (ETDEWEB)

    Don, Steven [Washington University School of Medicine, St. Louis Children' s Hospital, Mallinckrodt Institute of Radiology, St. Louis, MO (United States)

    2011-05-15

    On Feb. 4, 2010, the Alliance for Radiation Safety in Pediatric Radiology held a Pediatric Digital Radiography Summit. The goal was for radiologists, radiologic technologists, medical physicists, and vendor representatives, including engineers, medical physicists and education specialists, to discuss the challenges to achieving the ALARA (as low as reasonably achievable) principle in pediatric digital radiography and to lay the groundwork for overcoming these obstacles. This article focuses on the state of confusion that exists for radiologists and radiologic technologists who use digital radiography equipment. Radiologists might have a difficult time accepting lower dose (noisy images), and radiologic technologists might respond by increasing patient exposures, which results in excessive patient doses. For reporting exposures, vendors have a history of using proprietary terms that confuse users. In addition, technical parameters cannot be easily exported for quality assurance, and there is no national standard for digital radiography. Presentations in this minisymposium focus on suggestions for the cooperative development of new technical standards, education and training to improve the quality of digital radiography in pediatric patients and promote radiation protection for children. (orig.)

  5. Computed Radiography Exposure Indices in Mammography

    Directory of Open Access Journals (Sweden)

    Liebner Koen

    2008-08-01

    Full Text Available Studies indicate that computed radiography (CR can lead to increased radiation dose to patients. It is therefore important to relate the exposure indicators provided by CR manufacturers to the radiation dose delivered so as to assess the radiation dose delivered to patients directly from the exposure indicators. The aim of this study was to investigate the performance of an Agfa CR system in order to characterize the dose indicators provided by the system. The imaging plate response was characterized in terms of entrance exposure to the plate and the digital signal indicators generated by the system (SAL - Scanning Average Level and lgM - Logarithmic median for different beam qualities. Several exposures were performed on a mammography unit and the digital signal, expressed as SAL and lgM for each image was correlated with the entrance exposure on a standard ACR phantom. From this, the relationship between the Agfa dose indices (SAL and lgM and the average glandular dose (AGD in mammography was established. An equation was derived to calculate the AGD delivered to the patient as a function of the exposure indicator, lgM, and the kV. The results indicated that the measured AGD at 28kV for a standard breast thickness during routine calibration with the ACR phantom was 1.58mGy (lgM = 1.99, which is within 1.5% of the value calculated using the derived equation for a standard Perspex thickness of 4.2cm using the AEC (1.56mGy. The standard error in using this equation was calculated to be 8.3%.

  6. Occupational exposure in Greek industrial radiography laboratories (1996-2003)

    International Nuclear Information System (INIS)

    More than 40 industrial radiography laboratories are operating in Greece using X-ray or gamma-ray sources and more than 250 workers occupationally exposed to ionising radiation in these facilities are monitored on a regular basis. This study presents the evolution of individual doses received by radiographers during the past years. The mean annual dose (MAD) of all workers as well as of exposed workers is estimated, and correlated to the types of laboratories and practices applied. The MAD of the exposed workers in industrial radiography is compared with the doses of workers in other specialties and with the doses of radiographers in other countries. Furthermore, the study attempts to propose dose constraints for the practices in industrial radiography, according to the BSS European directive and the relevant Greek radiation protection legislation. The proposed value was defined as the dose below which the annual doses of 75% of the exposed radiographers are expected to be included. (authors)

  7. Experimental Study on Neutron Radiography Device Based on Reactor

    Institute of Scientific and Technical Information of China (English)

    LU; Jin; PENG; Dan; HAO; Qian; YU; Bo-xiang; LI; Yi-guo

    2012-01-01

    <正>Neutron radiography is a non-destructive testing developing fast recently, which requires stable and proper neutron source with low γ background. Neutrons from In-hospital Neutron Irradiator (IHNI) could meet this requirement. Based on the neutron beams of IHNI, a collimator is designed and built for neutron radiography. The experiment results show that in the case of IHNI working at normal rated power, the neutron flux at the end of the collimator is 1.43×106 cm-2·s-1; The max collimation ratio (L/D) is 58; the γ dose rate is 6.3×106 mSv/s. In a word, the collimator could be used for neutron radiography.

  8. Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    Directory of Open Access Journals (Sweden)

    J. G. Fantidis

    2011-01-01

    Full Text Available Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find defects in the wind turbine blade and reduce the cost of inspection. A transportable neutron radiography system, incorporating an Sb–Be source, has been simulated using the MCNPX code. The simulated system has a wide range of radiography parameters.

  9. Proton Radiography as an electromagnetic field and density perturbation diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Patel, P; Town, R; Edwards, M; Phillips, T; Lerner, S; Price, D; Hicks, D; Key, M; Hatchett, S; Wilks, S; King, J; Snavely, R; Freeman, R; Boehlly, T; Koenig, M; Martinolli, E; Lepape, S; Benuzzi-Mounaix, A; Audebert, P; Gauthier, J; Borghesi, M; Romagnani, L; Toncian, T; Pretzler, G; Willi, O

    2004-04-15

    Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with MeV protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter . PACS numbers: 52.50.Jm, 52.40.Nk, 52.40.Mj, 52.70.Kz

  10. Time-Resolved Radiography using Chirp-Pulse Proton Beams

    Institute of Scientific and Technical Information of China (English)

    TENG Jian; ZHAO Zong-Qing; ZHU Bin; HONG Wei; CAO Lei-Feng; ZHOU Wei-Min; SHAN Lian-Qiang; GU Yu-Qiu

    2011-01-01

    Protons accelerated by the target normal sheath acceleration(TNSA)mechanism have a wide energy spectrum and are called chirp-pulse protons. The numerical simulation of chirp-pulse proton radiography in an implosion process with single shot is carried out using the Monte Carlo method.Two different methods are proposed.The first method, proton framing radiography ,uses a stack of radiochromic film layers as the detector. Each layer deposits protons with energy corresponding to the Bragg peak, which can record the transient state of the implosion process. The second method, proton streak radiography, uses an external magnetic field to deflect protons. Different energies correspond to different times. By using a slit before the magnetic field, one-dimensional spatial resolution and temporal resolution can be obtained. This method is more suitable for the diagnosis of the implosion process.

  11. NEUTRON RADIOGRAPHY (NRAD) REACTOR 64-ELEMENT CORE UPGRADE

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA (registered) (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The interim critical configuration developed during the core upgrade, which contains only 62 fuel elements, has been evaluated as an acceptable benchmark experiment. The final 64-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (approximately +/-1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  12. Study of pipe thickness loss using a neutron radiography method

    International Nuclear Information System (INIS)

    The purpose of this preliminary work is to study for thickness changes in objects using neutron radiography. In doing the project, the technique for the radiography was studied. The experiment was done at NUR-2 facility at TRIGA research reactor in Malaysian Nuclear Agency, Malaysia. Test samples of varying materials were used in this project. The samples were radiographed using direct technique. Radiographic images were recorded using Nitrocellulose film. The films obtained were digitized to processed and analyzed. Digital processing is done on the images using software Isee!. The images were processed to produce better image for analysis. The thickness changes in the image were measured to be compared with real thickness of the objects. From the data collected, percentages difference between measured and real thickness are below than 2%. This is considerably very low variation from original values. Therefore, verifying the neutron radiography technique used in this project

  13. Improved track-etch neutron radiography using CR-39

    International Nuclear Information System (INIS)

    Currently most state-of-the-art setups for neutron radiography use scintillator screens and CCD cameras for imaging. However, in some situations it is not possible to use a CCD and alternatives must be considered. One such alternative is the well-established technique of track-etch neutron radiography, which has as main disadvantages requiring a long time for image recording and generating images with a relatively low contrast. In this work we address these negative issues and report significant improvements to recording and digitizing images using an improved setup consisting of an enriched 10B converter, a CR-39 solid state nuclear track detector and a flatbed scanner. The improved setup enables a significant reduction of the fluence required to obtain a neutron radiography image using this technique. Comparisons are made with imaging using two CCD models in the same beam line, so that the results can be extrapolated for other facilities

  14. Studies of solid propellant combustion with pulsed radiography

    Science.gov (United States)

    Godai, T.; Tanemura, T.; Fujiwara, T.; Shimizu, M.

    1987-01-01

    Pulsed radiography was applied to observe solid propellant surface regression during rocket motor operation. Using a 150 KV flash X-ray system manufactured by the Field Emission Corporation and two kinds of film suppliers, images of the propellant surface of a 5 cm diameter end burning rocket motor were recorded on film. The repetition frame rate of 8 pulses per second and the pulse train length of 10 pulses are limited by the capability of the power supply and the heat build up within the X-ray tube, respectively. The experiment demonstrated the effectiveness of pulsed radiography for observing solid propellant surface regression. Measuring the position of burning surface images on film with a microdensitometer, quasi-instantaneous burning rate as a function of pressure and the variation of characteristic velocity with pressure and gas stay time were obtained. Other research items to which pulsed radiography can be applied are also suggested.

  15. Deterministic simulation of thermal neutron radiography and tomography

    Science.gov (United States)

    Pal Chowdhury, Rajarshi; Liu, Xin

    2016-05-01

    In recent years, thermal neutron radiography and tomography have gained much attention as one of the nondestructive testing methods. However, the application of thermal neutron radiography and tomography is hindered by their technical complexity, radiation shielding, and time-consuming data collection processes. Monte Carlo simulations have been developed in the past to improve the neutron imaging facility's ability. In this paper, a new deterministic simulation approach has been proposed and demonstrated to simulate neutron radiographs numerically using a ray tracing algorithm. This approach has made the simulation of neutron radiographs much faster than by previously used stochastic methods (i.e., Monte Carlo methods). The major problem with neutron radiography and tomography simulation is finding a suitable scatter model. In this paper, an analytic scatter model has been proposed that is validated by a Monte Carlo simulation.

  16. Application of Neutron Radiography to Flow Visualization in Supercritical Water

    Science.gov (United States)

    Takenaka, N.; Sugimoto, K.; Takami, S.; Sugioka, K.; Tsukada, T.; Adschiri, T.; Saito, Y.

    Supercritical water is used in various chemical reaction processes including hydrothermal synthesis of metal oxide nano-particles, oxidation, chemical conversion of biomass and plastics. Density of the super critical water is much less than that of the sub-critical water. By using neutron radiography, Peterson et al. have studied salt precipitation processes in supercritical water and the flow pattern in a reverse-flow vessel for salt precipitation, and Balasko et al. have revealed the behaviour of supercritical water in a container. The nano-particles were made by mixing the super critical flow and the sub critical water solution. In the present study, neutron radiography was applied to the flow visualization of the super and sub critical water mixture in a T-junction made of stainless steel pipes for high pressure and temperature conditions to investigate their mixing process. Still images by a CCD camera were obtained by using the neutron radiography system at B4 port in KUR.

  17. Evaluation of radiography careers information on the Internet

    International Nuclear Information System (INIS)

    The purpose of this paper was to investigate whether information about radiography careers that was placed on the Internet was accessible, accurate, understandable, comprehensive, abundant and attractive to a sample of school children. Additionally this paper investigated whether the sample of school children had access to the Internet and whether they knew how to use it. A self-administered questionnaire was used to assess views on the radiography information, Internet access and knowledge of how to use the Internet. Questionnaire data were then analysed and the Websites were ranked. Thirty-three Websites were evaluated; these gave varying qualities of information with questionnaire scores ranging from 188 to 76. This investigation showed that there are many Websites available about radiography as a career. The site that performed most successfully overall in this evaluation was the NHS Careers Website. This site was ranked highest for the design section but the University of Salford's Website performed top for content

  18. A methodology for radiological accidents analysis in industrial gamma radiography

    International Nuclear Information System (INIS)

    A critical review of 34 published severe radiological accidents in industrial gamma radiography, that happened in 15 countries, from 1960 to 1988, was performed. The most frequent causes, consequences and dose estimation methods were analysed, aiming to stablish better procedures of radiation safety and accidents analysis. The objective of this work is to elaborate a radiological accidents analysis methodology in industrial gamma radiography. The suggested methodology will enable professionals to determine the true causes of the event and to estimate the dose with a good certainty. The technical analytical tree, recommended by International Atomic Energy Agency to perform radiation protection and nuclear safety programs, was adopted in the elaboration of the suggested methodology. The viability of the use of the Electron Gamma Shower 4 Computer Code System to calculate the absorbed dose in radiological accidents in industrial gamma radiography, mainly at sup(192)Ir radioactive source handling situations was also studied. (author)

  19. Costs and benefits of skull radiography for head injury

    International Nuclear Information System (INIS)

    Over a period of 10 weeks, nine accident-and-emergency units in England, Wales, and Scotland took part in an investigation into the use of skull radiography in the management of patients with head injury. The yield of potentially important radiological findings in 4829 patients with uncomplicated head injury was 2 basal, 1 frontal, and 64 vault fractures. In 4 of these patients intracranial haematomas developed, of which 3 would have been suspected clinically and the patients admitted for observation even if skull radiography had not been available. At best, skull radiography could have contributed to the detection of only 1 of the 4 intracranial haematomas. The incidence of unsuspected intracranial haematoma with skull fracture among patients with uncomplicated head injury currently radiographed in the United Kingdom is therefore 1 in 4800. The radiological cost of identifying this 1 patient in our series was Pound43,200. (author)

  20. The applicability of imaging plates in fast neutron radiography

    International Nuclear Information System (INIS)

    Fast neutron radiography (FNR) is an attractive non-destructive inspection technique in terms of the excellent penetration characteristics of fast neutrons in matter. FNR can be the only approach for non-destructive inspection of industrial products which are too thick or too dense for thermal neutron radiography. The imaging plate detector, a two dimensional detector for ionizing radiations, can be over 100 times more sensitive than conventional radiography films. At Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, an FNR system based on D-T accelerator neutron source has been established, with a spatial resolution of 1 mm. In this paper, we report its detector structure and the laboratorial test results. (authors)

  1. NEW INSTRUMENTS AND MEASUREMENT METHODS: Medical ion radiography

    Science.gov (United States)

    Shafranova, M. G.; Shafranov, M. D.

    1980-06-01

    The aim of this review is to acquaint the reader with the principles and methods of ion radiography—a method of studying the inner structure of an object by using heavy charged particles. Along with the refinement of the traditional x-ray method of diagnostics and the development of a number of new methods, such as positron tomography and nuclear magnetic resonance, and in spite of the great advances attained in x-radiography in recent years, a persistent search continues for new, refined methods. First of all, efforts are directed toward seeking effective methods of early diagnosis of tumor lesions with less danger than in x-radiography. Studies have been conducted in a number of countries in the past decade on the possibility of applying heavy charged particles of relatively high energies for these purposes. Ion radiography enables one to obtain a higher contrast image than x-radiography at lower doses of irradiation, and to differentiate soft tissues and to detect in them anomalies of small dimensions. It opens up the possibility of obtaining new diagnostic information. Theoretical studies in the field of ion radiography and experiments on animals, on human tissues, and in a number of cases, on patients, have shown the promise offered by using ions for diagnosing not only tumors, but also a number of other serious lesions. This new field of study has incorporated the experience of particle and nuclear physics and widely employs its variety of investigational methods. This article also treats problems involving the application of accelerators for ion radiography and specifications for the beam parameters and for the particle detectors. This review gives an account of the advances in this new field of studies and the prospects for its development and the difficulties on the pathway of introducing it into practice.

  2. Correction parameters in conventional dental radiography for dental implant

    Directory of Open Access Journals (Sweden)

    Barunawaty Yunus

    2009-12-01

    Full Text Available Background: Radiographic imaging as a supportive diagnostic tool is the essential component in treatment planning for dental implant. It help dentist to access target area of implant due to recommendation of many inventions in making radiographic imaging previously. Along with the progress of science and technology, the increasing demand of easier and simpler treatment method, a modern radiographic diagnostic for dental implant is needed. In fact, Makassar, especially in Faculty of Dentistry Hasanuddin University, has only a conventional dental radiography. Researcher wants to optimize the equipment that is used to obtain parameters of the jaw that has been corrected to get accurate dental implant. Purpose: This study aimed to see the difference of radiographic imaging of dental implant size which is going to be placed in patient before and after correction. Method: The type of research is analytical observational with cross sectional design. Sampling method is non random sampling. The amount of samples is 30 people, male and female, aged 20–50 years old. The correction value is evaluated from the parameter result of width, height, and thick of the jaw that were corrected with a metal ball by using conventional dental radiography to see the accuracy. Data is analyzed using SPSS 14 for Windows program with T-test analysis. Result: The result that is obtained by T-Test analysis results with significant value which p<0.05 in the width and height of panoramic radiography technique, the width and height of periapical radiography technique, and the thick of occlusal radiography technique before and after correction. Conclusion: It can be concluded that there is a significant difference before and after the results of panoramic, periapical, and occlusal radiography is corrected.

  3. Radiation Exposure in the NICU: Computed Radiography versus Digital Detector Radiography.

    Science.gov (United States)

    Oberle, Renee

    2015-01-01

    Medical radiation exposure to pediatric patients has gained national attention in the last few years. New guidelines encourage technologists, managers, radiologists, and equipment manufacturers to tailor imaging to smaller sized patients. With the advent of computed radiography, patient radiation doses have doubled. This literature review addresses how cumulative doses received by highly radiosensitive infants in neonatal intensive care units correspond to similar doses received by infants that later developed radiation induced cancers. While technologist expertise is important for dose management with any receptor technology, converting to digital flat panel detectors can reduce dose to these areas by > 50%, and minimize risks for radiation induced cancers that often do not present until several decades after exposure. PMID:26710555

  4. Finger printing of medieval investment cast idols by radiography

    International Nuclear Information System (INIS)

    Among the various methods, radiography is an important technique that can be used to fingerprint an idol. This is because, these idols are cast structures, and radiography is the most reliable technique for the detection of internal features like casting defects. This paper presents the radiographic methodology adopted and the results of the studies to characterise radiographically three medieval cast idols belonging to different periods 9th, 13th, and 16th century obtained from the government museum Madras. (author). 2 refs., 1 fig., 2 tabs

  5. Proton radiography, nuclear cross sections and multiple Coulomb scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sjue, Sky K. [Los Alamos National Laboratory

    2015-11-04

    The principles behind proton radiography including multiple Coulomb scattering are discussed for a purely imaginary square well nucleus in the eikonal approximation. It is found that a very crude model can reproduce the angular dependence of the cross sections measured at 24 GeV/c. The largest differences are ~3% for the 4.56 mrad data, and ~4% for the 6.68 mrad data. The prospect of understanding how to model deterministically high-energy proton radiography over a very large range of energies is promising, but it should be tested more thoroughly.

  6. Neutron radiography and tomography facility at IBR-2 reactor

    Science.gov (United States)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Belushkin, A. V.; Bokuchava, G. D.; Savenko, B. N.

    2016-05-01

    An experimental station for investigations using neutron radiography and tomography was developed at the upgraded high-flux pulsed IBR-2 reactor. The 20 × 20 cm neutron beam is formed by the system of collimators with the characteristic parameter L/D varying from 200 to 2000. The detector system is based on a 6LiF/ZnS scintillation screen; images are recorded using a high-sensitivity video camera based on the high-resolution CCD matrix. The results of the first neutron radiography and tomography experiments at the developed facility are presented.

  7. A radiological health study of industrial gamma radiography in Canada

    International Nuclear Information System (INIS)

    As an occupational group, industrial radiographers receive radiation doses second only to reactor workers. This report is a result of a study carried out to research the causes for this relatively high dose and determine if and how it can be improved. The data presented herein were obtained from questionnaires and field visits to organizations involved in gamma radiography and from the Canadian National Dose Registry. Some applications of radiography such as pipeline work give rise to higher than average doses. When all safety measures are conscientiously aplied, the doses are reasonalbe. However, ignorance, carelessness and indifference account for much unnecessary exposure to radiation. (Auth)

  8. Fast Neutron Radiography at an RFQ Accelerator System

    Science.gov (United States)

    Daniels, G. C.; Franklyn, C. B.; Dangendorf, V.; Buffler, A.; Bromberger, B.

    This work introduces the Necsa Radio Frequency Quadrupole (RFQ) accelerator facility and its work concerning fast neutron radiography (FNR). Necsa operates a 4-5 MeV, up to 50 mA deuteron RFQ. The previous deuterium gas target station has been modified to enable producing a white neutron beam employing a solid B4C target. Furthermore, the high energy beam transport (HEBT) section is under adjustment to achieve a longer flight-path and a better focus. This work presents an overview of the facility, the modifications made, and introduces past and ongoing neutron radiography investigations.

  9. Vibration Analysis of Digital Radiography System for Large Container Inspection

    Institute of Scientific and Technical Information of China (English)

    黄松岭; 李路明; 周立业; 向新程; 安继刚

    2003-01-01

    The cantilever vibration characteristics of a digital radiography system were analyzed to predict the effect of vibration on the performance of a mobile container inspection system. The static deformation,vibration mode and natural frequency of the cantilever of the digital radiography system were calculated with the ALGOR Finite Element System to verify the strength and rigidity of the cantilever. The maximum amplitude of the cantilever vibration occurs as it starts accelerating. The predictions show good agreement with test results, indicating that the finite element model of the cantilever structure accurately models the mechanical characteristics.

  10. Technical and clinical breast cancer screening performance indicators for computed radiography versus direct digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bosmans, Hilde; Lemmens, Kim; Zanca, Federica; Ongeval, Chantal van; Steen, Andre van [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Hauwere, An de; Thierens, Hubert [Ghent University, QCC, Ghent (Belgium); Herck, Koen van; Bleyen, Luc; Mortier, Griet [Ghent University, Centrum voor Preventie en Vroegtijdige Opsporing van Kanker, Department of Public Health, Ghent (Belgium); Martens, Patrick [Vroegtijdige Opsporing Borstklierkanker West-Vlaanderen vzw, Bruges (Belgium); Putte, Gretel vande; Kellen, Eliane; Limbergen, Erik van [Leuven University Center of Cancer Screening, Leuven (Belgium)

    2013-10-15

    To compare technical and clinical screening performance parameters between computed radiography (CR) and direct digital radiography (DR) systems. The number of women screened with CR was 73,008 and with DR 116,945. Technical and patient dose survey data of 25 CR and 37 DR systems were available. Technical performance was expressed by threshold thickness values at the mean glandular dose (MGD) level of routine practice. Clinical indicators included recall rate (RR), cancer detection rate (CDR), percentage of ductal carcinoma in situ (DCIS), percentage of cancers with T-scores smaller than 1 cm and positive predictive value (PPV). Contrast threshold values for the 0.1-mm gold disk were 1.44 {mu}m (SD 0.13 {mu}m) for CR and 1.20 {mu}m (SD 0.13 {mu}m for DR). MGD was 2.16 mGy (SD 0.36 mGy) and 1.35 mGy (SD 0.32 mGy) for CR and DR respectively. We obtained for CR, respectively DR, the following results: RR in the first round of 5.48 % versus 5.61 %; RR in subsequent rounds of 2.52 % versus 2.65 %; CDR of 0.52 % versus 0.53 %; DCIS of 0.08 % versus 0.11 %; a rate of cancers with T-scores smaller than 1 cm of 0.11 % versus 0.11 %; PPV of 18.45 % versus 18.64 %; none of them was significantly different. Our screening indicators are reassuring for the use of CR and DR, with CR operating at 60 % higher MGD. (orig.)

  11. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  12. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery.

  13. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. PMID:27179985

  14. Measuring microfocal spots using digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Fry, David A [Los Alamos National Laboratory; Ewert, Uwe [BAM

    2009-01-01

    Measurement of microfocus spot size can be important for several reasons: (1) Quality assurance during manufacture of microfocus tubes; (2) Tracking performance and stability of microfocus tubes; (3) Determining magnification is especially important for digital radiography where the native spatial resolution of the digital system is not adequate for the application; and (4) Knowledge of unsharpness from the focal spot alone. The European Standard EN 12543-5 is based on a simple geometrical method of calculating focal spot size from unsharpness of high magnification film radiographs. The following equations are used for the focal spot size measurement: By similar triangles the following equations are presupposed: f/a = U/b and M = (a+b)/a. These equations can be combined to yield the well known expression: U = f(M - 1). Solving for f, f = U/(M-1). Therefore, the focal spot size, f, can be calculated by measuring the radiographic unsharpness and magnification of a known object. This is the basis for these tests. The European standard actually uses one-half of the unsharpness (which are then added together) from both sides of the object to avoid additional unsharpness contributions due to edge transmission unsharpness of the round test object (the outside of the object is measured). So the equation becomes f = (1/2 U{sub 1} + 1/2 U{sub 2})/(M-1). In practice 1/2 U is measured from the 50% to the 90% signal points on the transition profile from ''black'' to ''white,'' (positive image) or attenuated to unattenuated portion of the image. The 50% to 90% points are chosen as a best fit to an assumed Gaussian radiation distribution from the focal spot and to avoid edge transmission effects. 1/2 U{sub 1} + 1/2 U{sub 2} corresponds about to the full width at half height of a Gaussian focal spot. A highly absorbing material (Tungsten, Tungsten Alloy, or Platinum) is used for the object. Either wires or a sphere are used as the object to

  15. Special Topics in Radiography. Chapter 10

    International Nuclear Information System (INIS)

    Up to this point, this handbook has described the use of X rays to form 2-D medical images of the 3-D patient. This process of reducing patient information by one dimension results in an image of superimposed tissues where important information might be obscured. Chapter 11 begins a section of the book involving the creation of cross-sectional medical images through computed tomography (CT), ultrasound and magnetic resonance imaging (MRI). This Chapter describes a number of special X ray imaging modalities and their associated techniques, and forms a transition between projection and cross-sectional imaging. The first of these special topics is dental radiography, which is characterized by a diversity of technology and innovation. The common intraoral radiograph of a single tooth has seen little fundamental change since the time of Roentgen and is, today, along with the simple chest radiograph, the most commonly performed radiographic examination. By contrast, the challenge to create an image of all the teeth simultaneously has placed dentistry at the cutting edge of technology, through the development of panographic techniques and, most recently, with the application of cone beam CT (CBCT). Moreover, the small size of the tooth and the consequent reduced need for X ray generation power promotes equipment mobility. The effect of the need for equipment mobility also forms a special topic that is examined in this chapter. Quantification of the composition of the body is another special X ray imaging technique. Dual energy X ray absorptiometry (DXA) is primarily used to derive the mass of one material in the presence of another, through knowledge of their unique X ray attenuation at different energies. DXA’s primary commercial application has been to measure body mineral density as an assessment of fracture risk and to diagnose osteoporosis; thus, the X ray energies used are optimized for bone density assessment. Currently, there are estimated to be over 50 000

  16. Simbody: multibody dynamics for biomedical research

    OpenAIRE

    Sherman, Michael A.; Seth, Ajay; Delp, Scott L.

    2011-01-01

    Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an...

  17. A Review of Biomedical Composite Materials

    Institute of Scientific and Technical Information of China (English)

    吴珊珊

    2013-01-01

    This article addresses the review of the biomedical composite materials.It introduces the operational definition,the classification of biomedical composite materials,and its constituents within itself.In this thesis,the last part presents the application of this kind of material.By writing this paper,I hope that people will get a comprehensive knowledge of the biomedical composite material and make further and deeper research in this material by which way to animate the material science industry.

  18. The Obligation to Participate in Biomedical Research

    OpenAIRE

    Schaefer, G. Owen; Emanuel, Ezekiel J; Wertheimer, Alan

    2009-01-01

    The prevailing view is that participation in biomedical research is above and beyond the call of duty. While some commentators have offered reasons against this, we propose a novel public goods argument for an obligation to participate in biomedical research. Biomedical knowledge is a public good, available to any individual even if that individual does not contribute to it. Participation in research is a critical way to support that important public good. Consequently, we all have a duty to ...

  19. Novel Hyperbranched Polyurethane Brushes for Biomedical Applications

    Institute of Scientific and Technical Information of China (English)

    Ton; Loontjens; Bart; Plum

    2007-01-01

    1 Results The objective was to make hyperbranched (HB) polyurethane brushes with reactive end groups, to coat biomedical devices and to enable the introduction of various functionalities that are needed to fulfill biomedical tasks.Biomedical materials should fulfill at least three requirements: (1) good mechanical properties, (2) good biocompatibility and (3) provided with functionalities to perform the required tasks. Since polyurethanes are able to fulfill the first 2 requirements we focused in this w...

  20. Searching Biomedical Text: Towards Maximum Relevant Results

    OpenAIRE

    Galde, Ola; Sevaldsen, John Harald

    2006-01-01

    The amount of biomedical information available to users today is large and increasing. The ability to precisely retrieve desired information is vital in order to utilize available knowledge. In this work we investigated how to improve the relevance of biomedical search results. Using the Lucene Java API we applied a series of information retrieval techniques to search in biomedical data. The techniques ranged from basic stemming and stop-word removal to more advanced methods like user relevan...

  1. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  2. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  3. An introduction to biomedical instrumentation

    CERN Document Server

    Dewhurst, D J

    1976-01-01

    An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handli

  4. National Space Biomedical Research Institute

    Science.gov (United States)

    1999-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 1999, the second full year of existence of the NSBRI's research program, and is prepared in accordance with Cooperative Agreement NCC9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI). The report consists of progress reports on projects related to the effects of microgravity and space on physiology. The research is broken up in nine areas: (1) Bone loss, (2) Cardiovascular alterations, (3) human performance, (3) immunology, infection and hematology, (4) muscle alterations and atrophy,(5) Neurovestibular adaptation, radiation effects, (6) technology development, and (7) synergy projects.

  5. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou

    2011-08-01

    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  6. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  7. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  8. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  9. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various materials. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  10. Superhydrophobic materials for biomedical applications.

    Science.gov (United States)

    Falde, Eric J; Yohe, Stefan T; Colson, Yolonda L; Grinstaff, Mark W

    2016-10-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air layer at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors' future perspectives on the utility of superhydrophobic biomaterials for medical applications. PMID:27449946

  11. Biomedical applications of control engineering

    CERN Document Server

    Hacısalihzade, Selim S

    2013-01-01

    Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engin­eering and biomedical engineering students as well as for medical prac­ti­tioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice.   The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like ·         Different models for the human operator, ·         Dosage and timing optimization in oral drug administration, ·         Measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, ·         Measure­ment and control of blood glucose le­vels both naturally and by means of external controllers in diabetes, and ·         Control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers....

  12. Detection of urinary stones at reduced radiation exposure: a phantom study comparing computed radiography and a low-dose digital radiography linear slit scanning system

    Science.gov (United States)

    Szucs-Farkas, Zsolt; Chakraborty, D. P.; Thoeny, Harriet C.; Loupatatzis, Christos; Vock, Peter; Harald, Bonel

    2010-01-01

    Objective In this experimental study we assessed the diagnostic performance of linear slit scanning radiography (LSSR) compared to conventional computed radiography (CR) in the detection of urinary calculi in an anthropomorphic phantom imitating patients weighing approximately 58 to 88 kg. Conclusion Compared to computed radiography, LSSR is superior in the detection of urinary stones and may be used for pretreatment localization and follow-up at a lower patient exposure. PMID:19457787

  13. Assessment of panoramic radiography as a national oral examination tool: review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2011-03-15

    The purpose of this review is to evaluate the possibility of panoramic radiography as a national oral examination tool. This report was carried out by review of the literatures. Panoramic radiography has sufficient diagnostic accuracy in dental caries, periodontal diseases, and other lesions. Also, the effective dose of panoramic radiography is lower than traditional full-mouth periapical radiography. Panoramic radiography will improve the efficacy of dental examination in national oral examination. However, more studies are required to evaluate the benefit, financial cost, and operation time and also to make selection criteria and quality management program.

  14. Common positioning errors in panoramic radiography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Randon, Rafael Henrique Nunes [Stomathology and Oral Diagnostic Program, School of Dentistry of Sao Paulo, University of Sao Paulo, Sao Paulo (Brazil); Pereira, Yamba Carla Lara [Biology Dental Buco Graduate Program, School of Dentistry of Piracicaba, University of Campinas, Piracicaba (Brazil); Nascimento, Glauce Crivelaro do [Psychobiology Graduate Program, School of Philosophy, Science and Literature of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto (Brazil)

    2014-03-15

    Professionals performing radiographic examinations are responsible for maintaining optimal image quality for accurate diagnoses. These professionals must competently execute techniques such as film manipulation and processing to minimize patient exposure to radiation. Improper performance by the professional and/or patient may result in a radiographic image of unsatisfactory quality that can also lead to a misdiagnosis and the development of an inadequate treatment plan. Currently, the most commonly performed extraoral examination is panoramic radiography. The invention of panoramic radiography has resulted in improvements in image quality with decreased exposure to radiation and at a low cost. However, this technique requires careful, accurate positioning of the patient's teeth and surrounding maxillofacial bone structure within the focal trough. Therefore, we reviewed the literature for the most common types of positioning errors in panoramic radiography to suggest the correct techniques. We would also discuss how to determine if the most common positioning errors occurred in panoramic radiography, such as in the positioning of the patient's head, tongue, chin, or body.

  15. Effect of comfort pads and incubator design on neonatal radiography

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xia; Baad, Michael; Reiser, Ingrid; Feinstein, Kate A.; Lu, Zhengfeng [University of Chicago Medicine, Department of Radiology, Chicago, IL (United States)

    2016-01-15

    There has been increasing interest in patient dose reduction in neonatal intensive care units. Removing comfort pads for radiography has been identified as a potential means to decrease patient dose. To assess the effect of comfort pads and support trays on detector entrance exposure (DEE) and image quality for neonatal radiography, and its implication for patient dose. Comfort pads and support trays from three incubator and warmer systems were examined. The attenuation of the primary beam by these structures was measured using a narrow beam geometry. Their effect on DEE and image quality was then assessed using typical neonatal chest radiography techniques with three configurations: (1) both the comfort pad and support included in the beam, (2) only the support tray included and (3) both the comfort pad and support tray removed. Comfort pads and support trays were found to attenuate the primary beam by 6-15%. Eliminating these structures from the X-ray beam's path was found to increase the detector entrance exposure by 28-36% and increase contrast-to-noise ratio by more than 21%, suggesting room for patient dose reduction when the same image quality is maintained. Comfort pads and tray support devices can have a considerable effect on DEE and image quality, with large variations among different incubator designs. Positioning the image detector directly underneath neonatal patients for radiography is a potential means for patient dose reduction. However, such benefit should be weighed against the risks of moving the patient. (orig.)

  16. Radiographer interpretation of trauma radiographs: Issues for radiography education providers

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Maryann [Division of Radiography, School of Health Studies, University of Bradford, Trinity road, Bradford, West Yorkshire BD5 0BB (United Kingdom)], E-mail: m.l.hardy1@bradford.ac.uk; Snaith, Beverly [Mid Yorkshire Hospitals NHS Trust, Radiology Department, Pinderfields General Hospital, Aberford Road, Wakefield WF1 4DG (United Kingdom)

    2009-05-15

    Background: The role of radiographers with respect to image interpretation within clinical practice is well recognised. It is the expectation of the professional, regulatory and academic bodies that upon qualification, radiographers will possess image interpretation skills. Additionally, The College of Radiographers has asserted that its aspiration is for all radiographers to be able to provide an immediate written interpretation on skeletal trauma radiographs by 2010. This paper explores the readiness of radiography education programmes in the UK to deliver this expectation. Method: A postal questionnaire was distributed to 25 Higher Education Institutions in the UK (including Northern Ireland) that provided pre-registration radiography education as identified from the Society and College of Radiographers register. Information was sought relating to the type of image interpretation education delivered at pre- and post-registration levels; the anatomical range of image interpretation education; and education delivery styles. Results: A total of 19 responses (n = 19/25; 76.0%) were received. Image interpretation education was included as part of all radiographer pre-registration programmes and offered at post-registration level at 12 academic centres (n = 12/19; 63.2%). The anatomical areas and educational delivery methods varied across institutions. Conclusion: Radiography education providers have embraced the need for image interpretation education within both pre- and post-registration radiography programmes. As a result, UK education programmes are able to meet the 2010 College of Radiographers aspiration.

  17. General radiation hygiene and safety aspects in dental radiography

    International Nuclear Information System (INIS)

    A presentation of all essential aspects concerning practical radiation hygiene in dental radiography is given. The report reflects the established opinion and practice of the National Institute of Radiation Hygiene evolved through many years of experience in this field. The principal target group includes all dental staff members in Norway

  18. Neutron radiography for maintenance inspection of military and civilian aircraft

    International Nuclear Information System (INIS)

    As part of a program to develop new and advanced nondestructive inspection techniques, a series of projects has been conducted to develop and evaluate neutron radiography as a nondestructive inspection tool. A major portion of this effort has been directed toward the application of neutron radiography as a maintenance inspection tool for military and civilian aircraft. The availability of 252Cf as a neutron source has enabled the use of neutron-radiography systems in normal maintenance environments for the inspection of flight-line aircraft with a minimum of interference. Neutron radiography has been demonstrated to be a powerful nondestructive inspection tool for a variety of applications involving the detection of organic or non-metallic compounds. Its ability to detect surface and subsurface corrosion in aircraft structure is unmatched by any other inspection technique. This capability of detecting corrosion without component disassembly is particularly significant when corrosion is hidden behind thick metallic structural members. The neutron radiographic technique has been applied successfully to detect corrosion in wing tanks, rear stabilators, aft spar, starboard and port wing, rudder, fuselage skin, and nose landing gears of a variety of fixed-wind aircraft, as well as rotary blades and rotary tail flaps of heliocopters

  19. Point Scattered Function (PScF) for fast neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Mohamed H. [Nuclear and Radiation Engineering Department, Alexandria University, Alexandria 21544 (Egypt)], E-mail: mhmheg@yahoo.com

    2009-08-01

    Fast neutron radiography opened up a new range of possibilities to image extremely dense objects. The removal of the scattering effect is one of the most challenging problems in neutron imaging. Neutron scattering in fast neutron radiography did not receive much attention compared with X-ray and thermal neutron radiography. The purpose of this work is to investigate the behavior of the Point Scattered Function (PScF) as applied in fast neutron radiography. The PScF was calculated using MCNP as a spatial distribution of scattered neutrons over the detector surface for one emitting source element. Armament and explosives materials, namely, Rifle steel, brass, aluminum and trinitrotoluene (TNT) were simulated. Effect of various sample thickness and sample-to-detector distance were considered. Simulated sample geometries included a slab with varying thickness, a sphere with varying radii, and a cylinder with varying base radii. Different neutron sources, namely, Cf-252, DT as well as DD neutron sources were considered. Neutron beams with zero degree divergence angle; and beams with varying angles related to the normal to the source plane were simulated. Curve fitting of the obtained PScF, in the form of Gaussian function, were given to be used in future work using image restoration codes. Analytical representation of the height as well as the Full Width at Half Maximum (FWHM) of the obtained Gaussian functions eliminates the need to calculate the PScF for sample parameters that were not investigated in this study.

  20. Neutron induced electron radiography; Radiografia com eletrons induzida por neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marcos Leandro Garcia

    2008-07-01

    In the present paper a new radiography technique, the 'Neutron Induced Electron Radiography' - NIER, to inspect low thickness samples on the order of micra, has been developed. This technique makes use of low energy electrons as penetrating radiation generated from metallic gadolinium screens when irradiated by thermal neutrons. The conditions to obtain the best image for the conventional X-ray film Kodak-AA were determined by using a digital system to quantify the darkening level of the film. The irradiations have been performed at a radiography equipment installed at the beam-hole no. 8 of the 5 MW IEA-R1 nuclear research reactor of IPEN-CNEN/SP. The irradiation time to obtain the best radiography was 100 seconds and for such condition the technique was able to discern 1 {mu}m in 24 {mu}m of aluminum at a resolution of 32 {mu}m. By visual comparison the images obtained by the NIER shown a higher quality when compared with the ones from other usual techniques the make use of electrons a penetrating radiation and films for image registration. Furthermore the use of the digital system has provided a smaller time for data acquisition and data analysis as well as an improvement in the image visualization. (author)

  1. Radiography Capabilities for Matter-Radiation Interactions in Extremes

    International Nuclear Information System (INIS)

    The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electron and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.

  2. Qualitative methods in radiography research: a proposed framework

    International Nuclear Information System (INIS)

    Introduction: While radiography is currently developing a research base, which is important in terms of professional development and informing practice and policy issues in the field, the amount of research published by radiographers remains limited. However, a range of qualitative methods offer further opportunities for radiography research. Purpose: This paper briefly introduces a number of key qualitative methods (qualitative interviews, focus groups, observational methods, diary methods and document/text analysis) and sketches one possible framework for future qualitative work in radiography research. The framework focuses upon three areas for study: intra-professional issues; inter-professional issues; and clinical practice, patient and health delivery issues. While the paper outlines broad areas for future focus rather than providing a detailed protocol for how individual pieces of research should be conducted, a few research questions have been chosen and examples of possible qualitative methods required to answer such questions are outlined for each area. Conclusion: Given the challenges and opportunities currently facing the development of a research base within radiography, the outline of key qualitative methods and broad areas suitable for their application is offered as a useful tool for those within the profession looking to embark upon or enhance their research career

  3. Radiography Capabilities for Matter-Radiation Interactions in Extremes

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garnett, Robert William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chapman, Catherine A. B [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salazar, Harry Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Otoole, Joseph Alfred [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barber, Ronald L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gomez, Tony Simon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-28

    The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electron and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.

  4. Diagnostic reference levels in intraoral dental radiography in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung; Han, Won Jeong; Choi, Jin Woo [Dept. of Oral and Maxillofacial Radiology, Dankook University College of Dentistry, Cheonan (Korea, Republic of); Jung, Yun Hoa [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Pusan National University, Yangsan (Korea, Republic of); Yoon, Suk Ja; Lee, Jae Seo [Dept. of Oral and Maxillofacial Radiology, School of Dentistry, Chonnam National University, Gwangju (Korea, Republic of)

    2012-09-15

    The objectives of this study were to survey the radiographic exposure parameters, to measure the patient doses for intraoral dental radiography nationwide, and thus to establish the diagnostic reference levels (DRLs) in intraoral dental X-ray examination in Korea. One hundred two intraoral dental radiographic machines from all regions of South Korea were selected for this study. Radiographic exposure parameters, size of hospital, type of image receptor system, installation duration of machine, and type of dental X-ray machine were documented. Patient entrance doses (PED) and dose-area products (DAP) were measured three times at the end of the exit cone of the X-ray unit with a DAP meter (DIAMENTOR M4-KDK, PTW, Freiburg, Germany) for adult mandibular molar intraoral dental radiography, and corrections were made for room temperature and pressure. Measured PED and DAP were averaged and compared according to the size of hospital, type of image receptor system, installation duration, and type of dental X-ray machine. The mean exposure parameters were 62.6 kVp, 7.9 mA, and 0.5 second for adult mandibular molar intraoral dental radiography. The mean patient dose was 2.11 mGy (PED) and 59.4 mGycm2 (DAP) and the third quartile one 3.07 mGy (PED) and 87.4 mGycm{sup 2} (DAP). Doses at university dental hospitals were lower than those at dental clinics (p<0.05). Doses of digital radiography (DR) type were lower than those of film-based type (p<0.05). We recommend 3.1 mGy (PED), 87.4 mGycm{sup 2} (DAP) as the DRLs in adult mandibular molar intraoral dental radiography in Korea.

  5. Biomedical engineering research at DOE national labs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    Biomedical Engineering is the application of principles of physics, chemistry, nd engineering to problems of human health. The National Laboratories of the U.S. Department of Energy have been leaders in this scientific field since 1947. This inventory of their biomedical engineering projects was compiled in January 1999.

  6. Magnetic Resonance Imaging in Biomedical Engineering

    Science.gov (United States)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  7. Cross language information retrieval for biomedical literature

    NARCIS (Netherlands)

    Schuemie, M.; Trieschnigg, D.; Kraaij, W.

    2007-01-01

    This workshop report discusses the collaborative work of UT, EMC and TNO on the TREC Genomics Track 2007. The biomedical information retrieval task is approached using cross language methods, in which biomedical concept detection is combined with effective IR based on unigram language models. Furthe

  8. A new educational program on biomedical engineering

    NARCIS (Netherlands)

    Alste, van J.A.

    2000-01-01

    At the University of Twente together with the Free University of Amsterdam a new educational program on Biomedical Engineering will be developed. The academic program with a five-year duration will start in September 2001. After a general, broad education in Biomedical Engineering in the first three

  9. Biomedical Journals and the World Wide Web.

    Science.gov (United States)

    Schoonbaert, Dirk

    1998-01-01

    Discusses the publication of biomedical journals on the Internet. Highlights include pros and cons of electronic publishing; the Global Health Network at the University of Pittsburgh; the availability of biomedical journals on the World Wide Web; current applications, including access to journal contents tables and electronic delivery of full-text…

  10. New features in cold neutron radiography and tomography Part II: applied energy-selective neutron radiography and tomography

    International Nuclear Information System (INIS)

    The neutron attenuation coefficient drops for many solid materials quite drastically at a defined cold neutron energy known as a Bragg-cut-off in the cross-section diagrams. In many cases, the drop in attenuation for the corresponding elements is significant and this behavior can be exploited to change the material contrast in radiography and tomography images by modifying the spectrum of the applied neutron beam. The energy-dependent experiments were performed at the Prompt Gamma-ray Activation beam line where the irradiation position is at the end of a curved neutron guide, which delivers cold neutrons from the spallation source SINQ (PSI, Switzerland). This beam position gave the opportunity to perform radiography and tomography at low neutron energies. An effective monochromatization of the primary neutron beam was obtained by using a neutron velocity selector. The intensity of the modified beam was still reasonable for radiography images at different neutron energies and the experiments were performed in relatively short measuring times. A variety of samples were studied to illustrate possible applications of energy-selective radiography and tomography. This new neutron imaging technique provided encouraging results and projects of developing permanent facilities for such investigations at PSI and FRM II are under study

  11. An evaluative conservative case for biomedical enhancement.

    Science.gov (United States)

    Danaher, John

    2016-09-01

    It is widely believed that a conservative moral outlook is opposed to biomedical forms of human enhancement. In this paper, I argue that this widespread belief is incorrect. Using Cohen's evaluative conservatism as my starting point, I argue that there are strong conservative reasons to prioritise the development of biomedical enhancements. In particular, I suggest that biomedical enhancement may be essential if we are to maintain our current evaluative equilibrium (ie, the set of values that undergird and permeate our current political, economic and personal lives) against the threats to that equilibrium posed by external, non-biomedical forms of enhancement. I defend this view against modest conservatives who insist that biomedical enhancements pose a greater risk to our current evaluative equilibrium, and against those who see no principled distinction between the forms of human enhancement. PMID:27354246

  12. An evaluative conservative case for biomedical enhancement.

    Science.gov (United States)

    Danaher, John

    2016-09-01

    It is widely believed that a conservative moral outlook is opposed to biomedical forms of human enhancement. In this paper, I argue that this widespread belief is incorrect. Using Cohen's evaluative conservatism as my starting point, I argue that there are strong conservative reasons to prioritise the development of biomedical enhancements. In particular, I suggest that biomedical enhancement may be essential if we are to maintain our current evaluative equilibrium (ie, the set of values that undergird and permeate our current political, economic and personal lives) against the threats to that equilibrium posed by external, non-biomedical forms of enhancement. I defend this view against modest conservatives who insist that biomedical enhancements pose a greater risk to our current evaluative equilibrium, and against those who see no principled distinction between the forms of human enhancement.

  13. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  14. Cell mechanics in biomedical cavitation

    Science.gov (United States)

    Wang, Qianxi; Manmi, Kawa; Liu, Kuo-Kang

    2015-01-01

    Studies on the deformation behaviours of cellular entities, such as coated microbubbles and liposomes subject to a cavitation flow, become increasingly important for the advancement of ultrasonic imaging and drug delivery. Numerical simulations for bubble dynamics of ultrasound contrast agents based on the boundary integral method are presented in this work. The effects of the encapsulating shell are estimated by adapting Hoff's model used for thin-shell contrast agents. The viscosity effects are estimated by including the normal viscous stress in the boundary condition. In parallel, mechanical models of cell membranes and liposomes as well as state-of-the-art techniques for quantitative measurement of viscoelasticity for a single cell or coated microbubbles are reviewed. The future developments regarding modelling and measurement of the material properties of the cellular entities for cutting-edge biomedical applications are also discussed. PMID:26442142

  15. Biomedical Perspective of Electrochemical Nanobiosensor

    Institute of Scientific and Technical Information of China (English)

    Priti Singh; Shailendra Kumar Pandey; Jyoti Singh; Sameer Srivastava; Sadhana Sachan; Sunil Kumar Singh

    2016-01-01

    Electrochemical biosensor holds great promise in the biomedical area due to its enhanced specificity, sensi-tivity, label-free nature and cost effectiveness for rapid point-of-care detection of diseases at bedside. In this review, we are focusing on the working principle of electrochemical biosensor and how it can be employed in detecting biomarkers of fatal diseases like cancer, AIDS, hepatitis and cardiovascular diseases. Recent advances in the development of implantable biosensors and exploration of nanomaterials in fabrication of electrodes with increasing the sensitivity of biosensor for quick and easy detection of biomolecules have been elucidated in detail. Electrochemical-based detection of heavy metal ions which cause harmful effect on human health has been discussed. Key challenges associated with the electrochemical sensor and its future perspectives are also addressed.

  16. Biomedical Applications of Simulated Environments .

    Directory of Open Access Journals (Sweden)

    W. Selvamurthy

    1993-07-01

    Full Text Available Environmental physiology assumes great significance in our national context of the diverse climatic conditions prevailing in different regions. Troops have to operate in diverse environmental conditions guarding the frontiers. Hence, the research in this area has been focused on the usage of field studies in the natural environments or simulated environments in the laboratory. Besides, the application of the simulation chambers in the research on the physiological effects of diverse environments, these studies may have applications in the control and management of certain clinical disorders. Some simulation chambers and specilised set-ups have been designed and developed at the Defence Institute of Physiology and Allied Sciences to carry out simulation studies. This paper describes these developments and the potentials of these biomedical applications of simulated environments.

  17. Tritium AMS for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.L.; Velsko, C.; Turteltaub, K.W.

    1993-08-01

    We are developing {sup 3}H-AMS to measure {sup 3}H activity of mg-sized biological samples. LLNL has already successfully applied {sup 14}C AMS to a variety of problems in the area of biomedical research. Development of {sup 3}H AMS would greatly complement these studies. The ability to perform {sup 3}H AMS measurements at sensitivities equivalent to those obtained for {sup 14}C will allow us to perform experiments using compounds that are not readily available in {sup 14}C-tagged form. A {sup 3}H capability would also allow us to perform unique double-labeling experiments in which we learn the fate, distribution, and metabolism of separate fractions of biological compounds.

  18. Biomedical wellness challenges and opportunities

    Science.gov (United States)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  19. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  20. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  1. Peptide nanostructures in biomedical technology.

    Science.gov (United States)

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  2. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  3. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  4. Segmental lumbar spine instability at flexion-extension radiography can be predicted by conventional radiography

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, M.T.; Manninen, H.I.; Lindgren, K.-A.J.; Sihvonen, T.A.; Airaksinen, O.; Soimakallio, S

    2002-07-01

    AIM: To identify plain radiographic findings that predict segmental lumbar spine instability as shown by functional flexion-extension radiography. MATERIALS AND METHODS: Plain radiographs and flexion-extension radiographs of 215 patients with clinically suspected lumbar spine instability were analysed. Instability was classified into anterior or posterior sliding instability. The registered plain radiographic findings were traction spur, spondylarthrosis, arthrosis of facet joints, disc degeneration, retrolisthesis, degenerative spondylolisthesis, spondylolytic spondylolisthesis and vacuum phenomena. Factors reaching statistical significance in univariate analyses (P < 0.05) were included in stepwise multiple logistic regression analysis. RESULTS: Degenerative spondylolisthesis (P = 0.004 at L3-4 level and P = 0.017 at L4-5 level in univariate analysis and odds ratio 16.92 at L4-5 level in multiple logistic regression analyses) and spondylolytic spondylolisthesis (P = 0.003 at L5-S1 level in univariate analyses) were the strongest independent determinants of anterior sliding instability. Retrolisthesis (odds ratio 10.97), traction spur (odds ratio 4.45) and spondylarthrosis (odds ratio 3.20) at L3-4 level were statistically significant determinants of posterior sliding instability in multivariate analysis. CONCLUSION: Sliding instability is strongly associated with various plain radiographic findings. In mechanical back pain, functional flexion-extension radiographs should be limited to situations when symptoms are not explained by findings of plain radiographs and/or when they are likely to alter therapy. Pitkaenen, M.T. et al. (2002)

  5. Brucellar spondylitis: evaluation by NMR imaging, CT and biomedical radiography - a case report; Espondilite por brucelose - relato de um caso

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Juliana C. de; Marins, Jose Luiz C.; Pereira, Rubens Marcondes [Centro Radiologico, Campinas, SP (Brazil)

    1999-03-01

    A 50-year-old white woman presented with a 4-month history of low pain with lower extremity irradiation. Image studies showed inflammatory changes of the vertebral bodies and invertebral disk at L3-L4 level. Considering she had no previous spinal surgery, negative tests for tuberculosis and a positive history of exposure to brucellosis, further studies were done, and the serologic tests were positive for brucellar antibodies. Follow-up studies within the first two months demonstrated the progressive spinal changes in brucellar spondylitis. (author)

  6. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  7. Recent developments in intelligent biomedical polymers

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique ’intelligent’ characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.

  8. Enhancing biomedical design with design thinking.

    Science.gov (United States)

    Kemnitzer, Ronald; Dorsa, Ed

    2009-01-01

    The development of biomedical equipment is justifiably focused on making products that "work." However, this approach leaves many of the people affected by these designs (operators, patients, etc.) with little or no representation when it comes to the design of these products. Industrial design is a "user focused" profession which takes into account the needs of diverse groups when making design decisions. The authors propose that biomedical equipment design can be enhanced, made more user and patient "friendly" by adopting the industrial design approach to researching, analyzing, and ultimately designing biomedical products.

  9. Veterans administration biomedical engineer training program.

    Science.gov (United States)

    Bradley, D E

    1981-01-01

    The Veterans administration's Department of Medical and Surgery includes in its Graduate Engineer Training Program a special program for Biomedical Engineers. The program is intended for recent graduates in biomedical engineering and provides for the VA a means of recruiting and training biomedical engineers for employment in its medical centers nationwide. This paper discusses the structure and objectives of the program, the opportunities that exist for the trainee within the program and the results of the program since its inception in 1973, and provides an outlook on the future of the program.

  10. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations.

  11. Comparing the performance of biomedical clustering methods

    DEFF Research Database (Denmark)

    Wiwie, Christian; Baumbach, Jan; Röttger, Richard

    2015-01-01

    Identifying groups of similar objects is a popular first step in biomedical data analysis, but it is error-prone and impossible to perform manually. Many computational methods have been developed to tackle this problem. Here we assessed 13 well-known methods using 24 data sets ranging from gene......-ranging comparison we were able to develop a short guideline for biomedical clustering tasks. ClustEval allows biomedical researchers to pick the appropriate tool for their data type and allows method developers to compare their tool to the state of the art....

  12. Recent developments in intelligent biomedical polymers

    Institute of Scientific and Technical Information of China (English)

    XIAO ChunSheng; TIAN HuaYu; ZHUANG XiuLi; CHEN XueSi; JING XiaBin

    2009-01-01

    Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique 'intelligent' characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.

  13. Shape-Memory Polymers for Biomedical Applications

    Science.gov (United States)

    Yakacki, Christopher M.; Gall, Ken

    Shape-memory polymers (SMPs) are a class of mechanically functional "smart" materials that have generated substantial interest for biomedical applications. SMPs offer the ability to promote minimally invasive surgery, provide structural support, exert stabilizing forces, elute therapeutic agents, and biodegrade. This review focuses on several areas of biomedicine including vascular, orthopedic, and neuronal applications with respect to the progress and potential for SMPs to improve the standard of treatment in these areas. Fundamental studies on proposed biomedical SMP systems are discussed with regards to biodegradability, tailorability, sterilization, and biocompatibility. Lastly, a proposed research and development pathway for SMP-based biomedical devices is proposed based on trends in the recent literature.

  14. Evaluation of different imaging chains in clinical chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, H.; Terho, E.O.; Wiljasalo, M.; Wiljasalo, S.; Soimakallio, S. (Kuopio Central Hospital (Finland))

    1984-11-01

    Six imaging techniques in clinical chest radiography have been evaluated: four film-screen combinations in the conventional grid technique and two combinations in the air gap technique. Five parameters characterising the quality of a chest radiograph were evaluated by three radiologists and one chest physician by using a nominal grading scale from -2 to +2 compared with the standard technique. The quality parameters judged were: the visibility of peripheral lung vessels, lung parenchyme, the pulmonary hilum, and lung structure behind the heart shadow, as well as the visibility of miscellaneous findings of clinical interest. The air gap technique was shown to be superior to the ordinary grid technique. The diagnostic quality of chest radiography does not necessarily deteriorate with the screen speed. However, statistically significant differences were noticed, even between techniques which had equal speed and physical resolution.

  15. Digital radiography of the chest in pediatric patients

    International Nuclear Information System (INIS)

    The hopes placed in digital radiography have been fulfilled only partly in pediatric radiology. Specifically, the option of gaining reduced radiation exposure in combination with a similar or even improved image quality was hard to realize. The only portable digital system available for a long time were storage phosphors which were disadvantaged by an extremely limited dose-quantum-efficiency (DQE) in comparison to digital flat panel detectors. New developments and the introduction of the dual-reading system led to image qualities comparable to film-screen-systems with high resolution and achievable without dose increase, sometimes even with dose reduction. A study using an animal model suggests that these systems can even be used in preterm infants with very low birth weights. A new portable flat panel detector by Canon may improve digital chest radiography in pediatric patients. (orig.)

  16. Application of imaging plate neutron detector to neutron radiography

    CERN Document Server

    Fujine, S; Kamata, M; Etoh, M

    1999-01-01

    As an imaging plate neutron detector (IP-ND) has been available for thermal neutron radiography (TNR) which has high resolution, high sensitivity and wide range, some basic characteristics of the IP-ND system were measured at the E-2 facility of the KUR. After basic performances of the IP were studied, images with high quality were obtained at a neutron fluence of 2 to 7x10 sup 8 n cm sup - sup 2. It was found that the IP-ND system with Gd sub 2 O sub 3 as a neutron converter material has a higher sensitivity to gamma-ray than that of a conventional film method. As a successful example, clear radiographs of the flat view for the fuel side plates with boron burnable poison were obtained. An application of the IP-ND system to neutron radiography (NR) is presented in this paper.

  17. Application of imaging plate neutron detector to neutron radiography

    International Nuclear Information System (INIS)

    As an imaging plate neutron detector (IP-ND) has been available for thermal neutron radiography (TNR) which has high resolution, high sensitivity and wide range, some basic characteristics of the IP-ND system were measured at the E-2 facility of the KUR. After basic performances of the IP were studied, images with high quality were obtained at a neutron fluence of 2 to 7x108 n cm-2. It was found that the IP-ND system with Gd2O3 as a neutron converter material has a higher sensitivity to γ-ray than that of a conventional film method. As a successful example, clear radiographs of the flat view for the fuel side plates with boron burnable poison were obtained. An application of the IP-ND system to neutron radiography (NR) is presented in this paper

  18. The MU-RAY detector for muon radiography of volcanoes

    International Nuclear Information System (INIS)

    The MU-RAY detector has been designed to perform muon radiography of volcanoes. The possible use on the field introduces several constraints. First the electric power consumption must be reduced to the minimum, so that the detector can be solar-powered. Moreover it must be robust and transportable, for what concerns the front-end electronics and data acquisition. A 1 m2 prototype has been constructed and is taking data at Mt. Vesuvius. The detector consists of modules of 32 scintillator bars with wave length shifting fibers and silicon photomultiplier read-out. A dedicated front-end electronics has been developed, based on the SPIROC ASIC. An introduction to muon radiography principles, the MU-RAY detector description and results obtained in laboratory will be presented

  19. Developing the profession of radiography: Making use of oral history

    International Nuclear Information System (INIS)

    This paper is based on ongoing research into the profession of radiography using the oral history method. Knowledge of radiographic practice as a profession has in the past been based on what is written or learnt from other professions both within and beyond the field of health care. The profession has experienced substantial technological and sociological changes both in training and in practice over the past few decades and these look set to continue into the immediate future. Evidence-based practice is invoked as a quality measure on all health professions, and part of the body of knowledge which forms the evidence base of practice development involves an understanding of how the profession has responded to change and what this might mean for the further changes it is likely to meet. This paper explores the potential role of oral history research as a tool for the development of knowledge about the practice of radiography

  20. Optimisation of resolution in accelerator-based fast neutron radiography

    CERN Document Server

    Rahmanian, H; Watterson, J I W

    2002-01-01

    In fast neutron radiography, imaging geometry, neutron scattering, the fast neutron scintillator and the position-sensitive detector all influence feature contrast, resolution and the signal-to-noise ratio in the image. The effect of imaging geometry can be explored by using a ray-tracing method. This requires following the path of neutrons through the imaging field, which includes the sample of interest. A relationship between imaging geometry and feature detectability can be developed. Monte Carlo methods can be used to explore the effect of neutron scattering on the results obtained with the ray-tracing technique. Fast neutrons are detected indirectly via neutron-nucleon scattering reactions. Using hydrogen-rich scintillators and relying on the recoil protons to ionise the scintillator material is the most sensitive technique available. The efficiency, geometry and composition of these scintillators influence the detectability of features in fast neutron radiography. These scintillator properties have a di...

  1. Simulation study of Fast Neutron Radiography using GEANT4

    International Nuclear Information System (INIS)

    Fast neutron radiography (FNR) is an important non-destructive technique for the imaging of thick bulk material. We are designing a FNR system using a laboratory based 14 MeV D-T neutron generator. Simulation studies have been carried using Monte Carlo based GEANT4 code to understand the response of the FNR system for various objects. Different samples ranging from low Z, metallic and high Z materials were simulated for their radiographic images. The quality of constructed neutron radiography images in terms of relative contrast ratio and the contrast to noise ratio were investigated for their dependence on various parameters such as thickness, voids inside high/low Z material and also for low Z material hidden behind high Z material. We report here the potential and limitations of FNR for imaging different materials and a few configurations and also the possible areas where FNR can be implemented

  2. Simulation study of Fast Neutron Radiography using GEANT4

    Science.gov (United States)

    Bishnoi, S.; Thomas, R. G.; Sarkar, P. S.; Datar, V. M.; Sinha, A.

    2015-02-01

    Fast neutron radiography (FNR) is an important non-destructive technique for the imaging of thick bulk material. We are designing a FNR system using a laboratory based 14 MeV D-T neutron generator [1]. Simulation studies have been carried using Monte Carlo based GEANT4 code to understand the response of the FNR system for various objects. Different samples ranging from low Z, metallic and high Z materials were simulated for their radiographic images. The quality of constructed neutron radiography images in terms of relative contrast ratio and the contrast to noise ratio were investigated for their dependence on various parameters such as thickness, voids inside high/low Z material and also for low Z material hidden behind high Z material. We report here the potential and limitations of FNR for imaging different materials and a few configurations and also the possible areas where FNR can be implemented.

  3. Developing the profession of radiography: Making use of oral history

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Sola [School of Radiography, Faculty of Nursing, Midwifery and Health Studies, University of Wales, Bangor, Archimedes Centre, Technology Park, Wrexham LL13 7YP (United Kingdom)]. E-mail: rdsa01@bangor.ac.uk; Iphofen, Ron [Faculty of Nursing, Midwifery and Health Studies, University of Wales, Bangor, Archimedes Centre, Technology Park, Wrexham LL13 7YP (United Kingdom)

    2005-11-01

    This paper is based on ongoing research into the profession of radiography using the oral history method. Knowledge of radiographic practice as a profession has in the past been based on what is written or learnt from other professions both within and beyond the field of health care. The profession has experienced substantial technological and sociological changes both in training and in practice over the past few decades and these look set to continue into the immediate future. Evidence-based practice is invoked as a quality measure on all health professions, and part of the body of knowledge which forms the evidence base of practice development involves an understanding of how the profession has responded to change and what this might mean for the further changes it is likely to meet. This paper explores the potential role of oral history research as a tool for the development of knowledge about the practice of radiography.

  4. Computer-aided diagnosis in chest radiography: Beyond nodules

    Energy Technology Data Exchange (ETDEWEB)

    Ginneken, Bram van [University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)], E-mail: bram@isi.uu.nl; Hogeweg, Laurens; Prokop, Mathias [University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2009-11-15

    Chest radiographs are the most common exam in radiology. They are essential for the management of various diseases associated with high mortality and morbidity and display a wide range of findings, many of them subtle. In this survey we identify a number of areas beyond pulmonary nodules that could benefit from computer-aided detection and diagnosis (CAD) in chest radiography. These include interstitial infiltrates, catheter tip detection, size measurements, detection of pneumothorax and detection and quantification of emphysema. Recent work in these areas is surveyed, but we conclude that the amount of research devoted to these topics is modest. Reasons for the slow pace of CAD development in chest radiography beyond nodules are discussed.

  5. Proton radiography of cylindrical laser-driven implosions

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, L; Jafer, R [Universita di Milano-Bicocca (Italy); Vauzour, B; Nicolai, Ph; Santos, J J; Dorchies, F; Fourment, C; Hulin, S; Regan, C [CELIA, Universite de Bordeaux, CNRS, CEA, F33405 (France); Perez, F; Baton, S [LULI, Ecole Polytechnique-CNRS-UPMC, 91128 Palaiseau Cedex (France); Lancaster, K; Galimberti, M; Heathcote, R; Tolley, M; Spindloe, Ch [RAL, STFC (United Kingdom); Nazarov, W [St. Andrews University (United Kingdom); Koester, P; Labate, L; Gizzi, L A [INO-CNR, Pisa (Italy)

    2011-03-15

    We report on the results of a recent experiment at the Rutherford Appleton Laboratory investigating fast electron propagation in cylindrically compressed targets; a subject of interest for fast ignition. This experiment was performed within the framework of the road map of HiPER (the European High Power laser Energy Research facility Project). Protons accelerated by a ps-laser pulse are used to radiograph a 220 {mu}m diameter, imploded with {approx}200 J of laser light (1 ns {lambda} = 0.53 {mu}m) in four symmetrically incident beams. Results are also compared with those from hard x-ray radiography. Detailed comparison with 2D radiation hydrodyamics simulations is performed with the aid of a Monte Carlo code adapted to describe plasma effects. Finally, a simple analytical model is developed to estimate the performance of proton radiography for given implosion conditions. (brief communication)

  6. The MU-RAY detector for muon radiography of volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Anastasio, A. [INFN-Napoli (Italy); Ambrosino, F. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Basta, D. [INFN-Napoli (Italy); Bonechi, L. [Università degli Studi di Firenze, Firenze (Italy); INFN-Firenze (Italy); Brianzi, M. [Università degli Studi di Firenze, Firenze (Italy); Bross, A. [Fermilab (United States); Callier, S. [LAL, Orsay (France); Caputo, A. [INGV Osservatorio Vesuviano, Napoli (Italy); Ciaranfi, R. [INFN-Firenze (Italy); Cimmino, L. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); D' Alessandro, R. [Università degli Studi di Firenze, Firenze (Italy); INFN-Firenze (Italy); D' Auria, L. [INGV Osservatorio Vesuviano, Napoli (Italy); La Taille, C. de [LAL, Orsay (France); Energico, S. [CNR- SPIN, Napoli (Italy); INFN-Napoli (Italy); Garufi, F. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Giudicepietro, F. [INGV Osservatorio Vesuviano, Napoli (Italy); Lauria, A. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Macedonio, G.; Martini, M. [INGV Osservatorio Vesuviano, Napoli (Italy); Masone, V. [Università Federico II, Napoli (Italy); and others

    2013-12-21

    The MU-RAY detector has been designed to perform muon radiography of volcanoes. The possible use on the field introduces several constraints. First the electric power consumption must be reduced to the minimum, so that the detector can be solar-powered. Moreover it must be robust and transportable, for what concerns the front-end electronics and data acquisition. A 1 m{sup 2} prototype has been constructed and is taking data at Mt. Vesuvius. The detector consists of modules of 32 scintillator bars with wave length shifting fibers and silicon photomultiplier read-out. A dedicated front-end electronics has been developed, based on the SPIROC ASIC. An introduction to muon radiography principles, the MU-RAY detector description and results obtained in laboratory will be presented.

  7. Dose in conventional radiography; Dosis en radiografia convencional

    Energy Technology Data Exchange (ETDEWEB)

    Acuna D, E.; Padilla R, Z. P.; Escareno J, E.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98000 Zacatecas (Mexico)

    2011-10-15

    It has been pointed out that medical exposures are the most significant sources of exposure to ionizing radiation for the general population. Inside the medical exposures the most important is the X-ray use for diagnosis, which is by far the largest contribution to the average dose received by the population. From all studies performed in radiology the chest radiography is the most abundant. In an X-ray machine, voltage and current are combined to obtain a good image and a reduce dose, however due to the workload in a radiology service individual dose is not monitored. In order to evaluate the dose due to chest radiography in this work a plate phantom was built according to the ISO recommendations using methylmethacrylate walls and water. The phantom was used in the Imaging department of the Zacatecas General Hospital as a radiology patient asking for a chest study; using thermoluminescent dosimeters, TLD 100 the kerma at the surface entrance was determined. (Author)

  8. Dedicated phantom materials for spectral radiography and CT

    Science.gov (United States)

    Shikhaliev, Polad M.

    2012-03-01

    As x-ray imaging technology moves from conventional radiography and computed tomography (CT) to spectral radiography and CT, dedicated phantom materials are needed for spectral imaging. The spectral phantom materials should accurately represent the energy-dependent mass-attenuation coefficients of different types of tissues. Although tissue-equivalent phantom materials were previously developed for CT and radiation therapy applications, these materials are suboptimal for spectral radiography and CT; they are not compatible with contrast agents, do not represent many of the tissue types and do not provide accurate values of attenuation characteristics of tissue. This work provides theoretical framework and a practical method for developing tissue-equivalent spectral phantom materials with a required set of parameters. The samples of the tissue-equivalent spectral phantom materials were developed, tested and characterized. The spectral phantom materials were mixed with iodine, gold and calcium contrast agents and evaluated. The materials were characterized by CT imaging and x-ray transmission experiments. The fabricated materials had nearly identical densities, mass attenuation coefficients, effective atomic numbers and electron densities as compared to corresponding tissue materials presented in the ICRU-44 report. The experimental results have shown good volume uniformity and inter-sample uniformity (repeatability of sample fabrication) of the fabricated materials. The spectral phantom materials were fabricated under laboratory conditions from readily available and inexpensive components. It was concluded that the presented theoretical framework and fabrication method of dedicated spectral phantom materials could be useful for researchers and developers working in the new area of spectral radiography and CT. Independently, the results could also be useful for other applications, such as radiation therapy.

  9. Computer-aided recognition of emphysema on digital chest radiography.

    OpenAIRE

    Miniati, Massimo; Coppini, Giuseppe; Monti, Simonetta; Bottai, Matteo; Paterni, Marco; Ferdeghini, Ezio Maria

    2011-01-01

    Background Computed tomography (CT) is the benchmark for diagnosis emphysema, but is costly and imparts a substantial radiation burden to the patient. Objective To develop a computer-aided procedure that allows recognition of emphysema on digital chest radiography by using simple descriptors of the lung shape. The procedure was tested against CT. Methods Patients (N=225), who had undergone postero-anterior and lateral digital chest radiographs and CT for diagnostic purposes, were studied and ...

  10. EVALUATION OF TOTAL AND PARTIAL EDENTULOUS JAWS USING PANORAMIC RADIOGRAPHY

    OpenAIRE

    Peker, İlkay; Toraman Alkurt, Meryem; Yıldırım Biçer, Zeynep

    2015-01-01

    Aim: Panoramic radiography is a diagnostic modality for providing a view of the entire maxillofacial region and used as an initial screening tool to examine partially and completely edentulous jaws in pretreatment assessment. Material-method: This study included digital panoramic images of 321 partially and totally edentulous patients. The images were evaluated for positive radiographic findings including presence of retained radiolucencies, radiopacities, proximity of the mental fragments

  11. Limiting the use of routine radiography for acute ankle injuries.

    OpenAIRE

    Cockshott, W P; Jenkin, J. K.; Pui, M.

    1983-01-01

    In the diagnosis of ankle injuries routine radiography is often productive. An international survey of the average number of radiographs made of injured ankles suggested that two projections are adequate to detect fractures. This was confirmed in a prospective study of 242 patients coming to a hospital emergency department with recent ankle injuries. All the fractures could be identified on an anteroposterior or a lateral projection, although some were more obvious on an oblique view. As well...

  12. Pediatric digital radiography education for radiologic technologists: current state

    International Nuclear Information System (INIS)

    Digital radiography (DR) is one of several new products that have changed our work processes from hard copy to digital formats. The transition from analog screen-film radiography to DR requires thorough user education because of differences in image production, processing, storage and evaluation between the forms of radiography. Without adequate education, radiologic technologists could unknowingly expose children to higher radiation doses than necessary for adequate radiograph quality. To evaluate knowledge about image quality and dose management in pediatric DR among radiologic technologists in the U.S. This communication describes a survey of 493 radiologic technologists who are members of the American Society of Radiologic Technologists (ASRT) and who evaluated the current state of radiological technologist education in image quality and dose management in pediatric DR. The survey included 23 survey questions regarding image acquisition issues, quality assurance, radiation exposure and education in DR of infants and children. Radiologic technologists express many needs in areas of training and education in pediatric DR. Suggested improvements include better tools for immediate feedback about image quality and exposure, more information about appropriate technique settings for pediatric patients, more user-friendly vendor manuals and educational materials, more reliable measures of radiation exposure to patients, and more regular and frequent follow-up by equipment vendors. There is a clear and widespread need for comprehensive and practical education in digital image technology for radiologic technologists, especially those engaged in pediatric radiography. The creation of better educational materials and training programs, and the continuation of educational opportunities will require a broad commitment from equipment manufacturers and vendors, educational institutions, pediatric radiology specialty organizations, and individual imaging specialists. (orig.)

  13. Dosimetry in dental radiology. Dentascan spiral CT versus panoramic radiography

    International Nuclear Information System (INIS)

    The study compares the doses absorbed by the dentomaxillary area in spiral CT and panoramic examinations. The dose measurements demonstrate that patients receive smaller doses with panoramic radiography than with spiral CT with Dentascan. After following for some variations from instrumental differences, they are in substantial agreement with literature data. Further investigations are needed considering the radiobiological risk related to the growing spread of Dentascan examinations

  14. Impeller Metrology for Pipeline Compressors Using Computed Radiography

    International Nuclear Information System (INIS)

    A new, quantitative method is described to measure features in pipeline impellers using computed radiography (CR). This capability, with an accuracy approaching 5 mils, is required to optimize the impeller design for high efficiency. The large area coverage, simplicity, and high spatial resolution of CR are ideal for this application. A novel phantom and image processing algorithm chain was used to demonstrate measurement repeatability of 99.9% (1 mil) using CR

  15. Development of imaging techniques for fast neutron radiography in Japan

    International Nuclear Information System (INIS)

    Neutron radiography with fast neutron beams (FNR) has been studied at the fast neutron source reactor 'YAYOI' of the University of Tokyo since 1986. Imaging techniques for FNR have been developed for CR-39 track-etch detector, electronic imaging system (television method), direct film method, imaging plate and also fast and thermal neutron concurrent imaging method. The review of FNR imaging techniques and some applications are reported in this paper

  16. Fast Neutron Resonance Radiography in a Pulsed Neutron Beam

    OpenAIRE

    Dangendorf, V.; Laczko, G; Kersten, C.; Jagutzki, O.; Spillmann, U

    2003-01-01

    The feasibility of performing fast neutron resonance radiography at the PTB accelerator facility is studied. A neutron beam of a broad spectral distribution is produced by a pulsed 13 MeV deuterium beam hitting a thick Be target. The potential of 3 different neutron imaging detectors with time-of flight capability are investigated. The applied methods comprise wire chambers with hydrogenous converter layers and a fast plastic scintillator with different optical readout schemes. We present the...

  17. Absorbed radiation by various tissues during simulated endodontic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Torabinejad, M.; Danforth, R.; Andrews, K.; Chan, C.

    1989-06-01

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures.

  18. Development of imaging techniques for fast neutron radiography in Japan

    CERN Document Server

    Fujine, S; Yoshii, K; Kamata, M; Tamaki, M; Ohkubo, K; Ikeda, Y; Kobayashi, H

    1999-01-01

    Neutron radiography with fast neutron beams (FNR) has been studied at the fast neutron source reactor 'YAYOI' of the University of Tokyo since 1986. Imaging techniques for FNR have been developed for CR-39 track-etch detector, electronic imaging system (television method), direct film method, imaging plate and also fast and thermal neutron concurrent imaging method. The review of FNR imaging techniques and some applications are reported in this paper.

  19. Neutron Radiography Analysis of a Transient Liquid Phase Joint

    OpenAIRE

    Ballhausen, H.; Abele, H.; Eccleston, R. S.; Gaehler, R.; Smith, A. J.; A. Steuwer; Van Overberghe, A.

    2006-01-01

    Neutron radiography in many cases is the only non-destructive technique available for the analysis of a wide range of samples from metallurgy, materials engineering and materials testing. In this paper the potential of the technique is illustrated for a transient liquid phase (TLP) joint. TLP bonding produces interface free and stress free joints. The quality and properties of the joint depend on the diffusion of an interlayer into the base material. A TLP joint is visualised and the diffusio...

  20. Neutron radiography of heated high-performance mortar

    OpenAIRE

    Weber B; Wyrzykowski M.; Griffa M.; Carl S.; Lehmann E.; Lura P.

    2013-01-01

    Neutron radiography was applied to investigate the water distribution in mortar samples heated from one side to 600 °C. In mortar, aggregates and anhydrous cement are almost transparent to neutrons, while hydration products and water-filled capillary pores bear the largest attenuation. The evolution of the moisture profile shows a sharp dehydration front and accumulation of water due to condensation of water vapor behind this front.

  1. Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    OpenAIRE

    Bandekas, D. V.; Potolias, C.; J. G. Fantidis

    2011-01-01

    Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find ...

  2. Neutron radiography of heated high-performance mortar

    Directory of Open Access Journals (Sweden)

    Weber B.

    2013-09-01

    Full Text Available Neutron radiography was applied to investigate the water distribution in mortar samples heated from one side to 600 °C. In mortar, aggregates and anhydrous cement are almost transparent to neutrons, while hydration products and water-filled capillary pores bear the largest attenuation. The evolution of the moisture profile shows a sharp dehydration front and accumulation of water due to condensation of water vapor behind this front.

  3. Preliminary study on indirect neutron radiography method at CARR

    International Nuclear Information System (INIS)

    China Advanced Research Reactor (CARR) is an excellent platform for indirect neutron radiography (INR). The experimental conditions of the INR at CARR were calculated and analyzed by the Monte Carlo method, based on which the first and the second exposure time was calculated. The INR experiment was carried out with the sample of dummy fuel rods at one of the CARR's thermal neutron beam channel, and the methods of processing and analyzing the neutron images were also studied. (authors)

  4. Application of X-ray radiography to archaeology

    International Nuclear Information System (INIS)

    X-ray imaging techniques including radiography and scanning tomography are now often applied to archaeological and historical objects. In this report results of three imaging techniques are showed: radiography, X-ray scanning tomography and emissiography. X-ray radiography was applied to examine the technique used for a bronze object. The object was one of the national treasure from Horyuji-temple, Dragon-head Pitcher. The examination proved that the pitcher body was separated into three pieces and that the bronze was fairly homogeneous from 3 to 4 mm. The Pitcher was supposed to be made in Japan at the middle of the seventh century. A small gilt bronze statuette was investigated by an industrial X-ray scanner. The statuette about 30 cm high is supposed to be made in the seventh or eighth century. The head of the statuette was scanned by X-rays of 350kV. The computed tomograms revealed an inlaid metal and scraped hollow. It is supposed that the statuette was cast twice. The first casting might have failed causing the hollow and the missing part of the head. The hollow was scraped before the following casting so that the newly cast part would be tightly joined to the body. A piece of metal was inlaid to the missing part. A silver inlaid sword was excavated at a historic site called Etafunayama Kofun in Kumamoto in 1873. Seventy-five letters were discovered on the back of the sword, and they were regarded as important reference in studying Japanese history around the fifth century. However, the letters became illegible because of severe surface corrosion. So emissiography or electron radiography was used. All letters and even the details could be read. (author)

  5. Quantitative microfocal radiography accurately detects joint changes in rheumatoid arthritis.

    OpenAIRE

    Buckland-Wright, J C; Carmichael, I.; Walker, S R

    1986-01-01

    Microfocal radiography, producing x5 magnified images of the wrist and hands with a high spacial resolution (25 microns) in the film, permitted direct measurement of erosion area and joint space width in patients with rheumatoid arthritis. The magnitude of errors relating to direct measurement, repositioning the wrist and hand on successive x ray visits, repeated identification of erosions and their area calculation were assessed. The coefficients of variation for length and area measurements...

  6. Turnover Rate Simulation Using GEM Detector on Neutron Radiography

    Institute of Scientific and Technical Information of China (English)

    SHAN; Chao; LI; Xiao-mei; HU; Shou-yang; ZHOU; Jing; JIAN; Si-yu; BAI; Xin-zhan; YE; Li; ZHOU; Shu-hua

    2012-01-01

    <正>With the advantages of high counting rate, high resolution ratio and high compatibility, GEM (Gas Electron Multiplier) detector has becoming the hot topic in the field of gas detector. Using GEM on neutron radiography, we need a suitable neutron converter. By the action on the converter and ingoing neutron, the outgoing particles could be an alpha or proton, which are charged particles. The charged

  7. Real-time radiography at the NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T., E-mail: thomas.buecherl@radiochemie.de [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Lierse von Gostomski, Ch. [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM), Walther-Meissner-Str. 3, 85748 Garching (Germany)

    2011-09-21

    A feasibility study has shown that real-time radiography using fission neutrons is possible at the NECTAR facility, when using an improved detection system for fast variations (Buecherl et al., 2009 ). Continuing this study, real-time measurements of slowly varying processes like the water uptake in medium sized trunks (diameter about 12 cm) and of slow periodic processes (e.g. a slowly rotating iron disk) are investigated successfully using the existing detection system.

  8. Dosimetric evaluation in panoramic and tele-radiography procedures

    International Nuclear Information System (INIS)

    The present work had as an objective to evaluate the skin surface entrance dose in panoramic and tele radiography procedures in three clinics in Recife - Pernambuco - Brazil, and to contribute with data for the determination of reference levels for super cited extra oral procedures, for this purpose, operational conditions in 3 clinics were evaluated in Recife, aiming to evaluate the existence and integrity of the radioprotection equipment, manner and conditions of image processing; and radiographic equipment parameters such as the dimension of the irradiation filed, the total filtration, the exposure time and the potential applied to the X ray tube. For an estimation of the skin entrance dose of the patient, the phantom Randon Alderson and thermoluminescence dosemeters were used. From these values and the conversion factors determined by the Monte Carlo technique, with the phantom MAX it was possible to estimate the dose absorbed in the organ due to the tele radiography procedures. Regarding panoramic radiography the study showed that the more elevated doses occurred in the parotid gland region which is near rotational venters. In the case of tele radiography the highest dose value occurred in the regions corresponding to the temporal lobe of the brain, followed by linfonodes, ears and parotid glands. The doses absorbed in the eyes and the thyroid gland were, 0.037 mGy and 0.002 mGy in Clinic A and 0.062 mGy and 0.003 mGy in Clinic C, respectively. Regarding equipment test, inadequacy was found in the beam collimation in Clinic A and in the reproducibility of the X ray exposure in Clinic C. The total filtration in both clinics was inadequate.(author)

  9. Absorbed radiation by various tissues during simulated endodontic radiography

    International Nuclear Information System (INIS)

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures

  10. Flash-x-radiography for fuel motion studies

    International Nuclear Information System (INIS)

    The paper is primarily intended to be a status report on recent activities in the Flash X-ray Radiography/Cinematography area. Studies in the area of source definition as well as associated experimental limitations are discussed. The implications of machine current upon precision uncertainty in measurements of changes in areal density are presented. The radiographic techniques presently being evaluated are discussed. Performance estimates representative of this type of diagnostic tool are presented. Comparison with other results is made

  11. A note on digital dental radiography in forensic odontology

    OpenAIRE

    Sher-Lin Chiam

    2014-01-01

    Digital dental radiography, intraoral and extraoral, is becoming more popular in dental practice. It offers convenience, such as lower exposure to radiation, ease of storing of images, and elimination of chemical processing. However, it also has disadvantages and drawbacks. One of these is the potential for confusion of the orientation of the image. This paper outlines one example of this, namely, the lateral inversion of the image. This source of confusion is partly inherent in the older mod...

  12. Pediatric digital radiography education for radiologic technologists: current state

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Gregory; Culbertson, John; Carbonneau, Kira [American Society of Radiologic Technologists, Albuquerque, NM (United States); John, Susan D. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States); Children' s Memorial Hermann Hospital, Department of Pediatric Radiology, Houston, TX (United States); Goske, Marilyn J.; Smith, Susan N. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Charkot, Ellen [The Hospital for Sick Children, Diagnostic Imaging and Vascular Access, Toronto (Canada); Herrmann, Tracy [University of Cincinnati, Raymond Walters College, Department of Allied Health, Blue Ash, OH (United States)

    2011-05-15

    Digital radiography (DR) is one of several new products that have changed our work processes from hard copy to digital formats. The transition from analog screen-film radiography to DR requires thorough user education because of differences in image production, processing, storage and evaluation between the forms of radiography. Without adequate education, radiologic technologists could unknowingly expose children to higher radiation doses than necessary for adequate radiograph quality. To evaluate knowledge about image quality and dose management in pediatric DR among radiologic technologists in the U.S. This communication describes a survey of 493 radiologic technologists who are members of the American Society of Radiologic Technologists (ASRT) and who evaluated the current state of radiological technologist education in image quality and dose management in pediatric DR. The survey included 23 survey questions regarding image acquisition issues, quality assurance, radiation exposure and education in DR of infants and children. Radiologic technologists express many needs in areas of training and education in pediatric DR. Suggested improvements include better tools for immediate feedback about image quality and exposure, more information about appropriate technique settings for pediatric patients, more user-friendly vendor manuals and educational materials, more reliable measures of radiation exposure to patients, and more regular and frequent follow-up by equipment vendors. There is a clear and widespread need for comprehensive and practical education in digital image technology for radiologic technologists, especially those engaged in pediatric radiography. The creation of better educational materials and training programs, and the continuation of educational opportunities will require a broad commitment from equipment manufacturers and vendors, educational institutions, pediatric radiology specialty organizations, and individual imaging specialists. (orig.)

  13. Review and Prospect of Cobalt-60 Digital Radiography Inspection Technology

    OpenAIRE

    AN Ji-gang

    2015-01-01

    This article is a review and prospect of the research, development and industrialization of Cobalt-60 digital radiography inspection technology based on the national requirements in the recent 20 years, which is leaded by Institute of Nuclear and New Energy Technology (INET) of TsinghuaUniversity. The research purpose, innovative approach and main academic achievements of this technology were described systematically. The industrial equipment varieties, performance, running condition and appl...

  14. Chest Radiography Findings in Primary Pulmonary Tuberculosis in Children

    OpenAIRE

    Milković, Đurđica; Richter, Darko; Zoričić-Letoja, Ivka; Raos, Miljenko; Koncul, Ivan

    2005-01-01

    Plain chest radiography plays a major role in the diagnosis and follow-up of pulmonary tuberculosis in childhood. The aim of our study was to investigate the distribution of characteristic chest radiographic findings at diagnosis in children with pulmonary tuberculosis. The age of the patients and the type and localization of radiographic changes at admission were retrospectively analyzed. We reviewed chest radiographs in 204 children admitted from January 1, 1991 until June 30, 1994 for newl...

  15. Diagnostic reference levels in intraoral dental radiography in Korea

    OpenAIRE

    Kim, Eun-Kyung; Han, Won-Jeong; Choi, Jin-Woo; Jung, Yun-Hoa; Yoon, Suk-Ja; Lee, Jae-Seo

    2012-01-01

    Purpose The objectives of this study were to survey the radiographic exposure parameters, to measure the patient doses for intraoral dental radiography nationwide, and thus to establish the diagnostic reference levels (DRLs) in intraoral dental X-ray examination in Korea. Materials and Methods One hundred two intraoral dental radiographic machines from all regions of South Korea were selected for this study. Radiographic exposure parameters, size of hospital, type of image receptor system, in...

  16. Advantages and limits of 14-MeV neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Brzosko, J.S. (Istituto Avogadro di Tecnologia, S.R.L., Ravenna (Italy) Stevens Inst. of Tech., Hoboken, NJ (United States)); Robouch, B.V. (Ass. EURATOM-ENEA, Centro Ricerche Energie, Frascati (Italy)); Ingrosso, L. (Avogadro Energy Systems Inc., New York (United States)); Bortolotti, A. (Ferrara Univ. (Italy)); Nardi, V. (Stevens Inst. of Tech., Hoboken, NJ (United States) Ferrara Univ. (Italy))

    1992-10-01

    The paper evaluates the potentials of fast-neutron radiography (FNR) for the inspection of bulky, solid objects. Data for both a fast (E[sub n] = 14.7 MeV) and a slow (E[sub n] = 0.1 eV) neutron source are compared. The reproduction of images consists of Monte Carlo simulations of (a) the neutron random walk in a slab (iron, SiC ceramic, and polyethelene (CH[sub 2])[sub n] plastic) with a void, (b) the process of neutron recording in a detector, and (c) a print-out of images. For a general analysis, 3D-MCSC-RWR software operates without simplification of either the FNR design or the nuclear data files. The results first show the feasibility of the use of 14-MeV neutron radiography, then the superiority of FNR over slow-neutron radiography in-the-field when the thickness of the full slab is over 1 cm and requires a resolution better than 0.1 mm. Examples of some numerically simulated images as well as FNR scaling functions are shown. A review of the available fast-neutron sources reveals that only plasma-focus machines would simultaneously meet all FNR requirements: Y[sub n] [>=] 10[sup 13] n/pulse, small-source dimensions and mobility.

  17. Advantages and limits of 14-MeV neutron radiography

    International Nuclear Information System (INIS)

    The paper evaluates the potentials of fast-neutron radiography (FNR) for the inspection of bulky, solid objects. Data for both a fast (En = 14.7 MeV) and a slow (En = 0.1 eV) neutron source are compared. The reproduction of images consists of Monte Carlo simulations of (a) the neutron random walk in a slab (iron, SiC ceramic, and polyethelene (CH2)n plastic) with a void, (b) the process of neutron recording in a detector, and (c) a print-out of images. For a general analysis, 3D-MCSC-RWR software operates without simplification of either the FNR design or the nuclear data files. The results first show the feasibility of the use of 14-MeV neutron radiography, then the superiority of FNR over slow-neutron radiography in-the-field when the thickness of the full slab is over 1 cm and requires a resolution better than 0.1 mm. Examples of some numerically simulated images as well as FNR scaling functions are shown. A review of the available fast-neutron sources reveals that only plasma-focus machines would simultaneously meet all FNR requirements: Yn ≥ 1013 n/pulse, small-source dimensions and mobility

  18. Assessment of Nugget Size of Spot Weld using Neutron Radiography

    Directory of Open Access Journals (Sweden)

    Triyono

    2011-08-01

    Full Text Available Resistance spot welding (RSW has been widely used for many years in the fabrication of car body structures, mainly due to the cost and time considerations. The weld quality as well as the nugget size is an issue in various manufacturing and processes due to the strong link between the weld quality and safety. It has led to the development of various destructive and non-destructive tests for spot welding such as peel testing, ultrasonic inspections, digital shearography, and infrared thermography. However, such methods cannot show spot weld nugget visually and the results are very operator’s skill dependent. The present work proposes a method to visualize the nugget size of spot welds using neutron radiography. Water, oil and various concentrations of gadolinium oxide-alcohol mixture were evaluated as a contrast media to obtain the best quality of radiography. Results show that mixture of 5 g gadolinium oxide (Gd2O3 in 25 ml alcohol produces the best contrast. It provides the possibility to visualize the shape and size of the nugget spot weld. Furthermore, it can discriminate between nugget and corona bond. The result of neutron radiography evaluation shows reasonable agreement with that of destructive test.

  19. Digital radiography and advanced imaging techniques in dentistry

    Directory of Open Access Journals (Sweden)

    Burcu Keles Evlice

    2013-04-01

    Full Text Available Since the discovery of x-rays in 1895, film has been the primary medium for capturing, displaying and storing radiographic images. Digital or filmless radiography is slowly being adopted by the dental profession. Digital radiography offers a number of capabilities compared with conventional radiography, such as postprocessing, electronic archiving, concurrent access to images, and improved data distribution. Computer based applications which are used for quantitative measurements and evaluations on digital images for better user interpretation. New diagnostic imaging processes are improved connected with the technological progress of computer systems. Since the first clinical use of computed tomography (CT scans in 1972, technological development has been rapid. Dental volumetric tomography (DVT, uniquely used for dentomaxillofacial imaging came to the market owing to recent rapid developments in digital radiology technology and is becoming more popular in dental applications. Low radiation dose cone beam computed tomography (CBCT units that are commercially available at a lower cost than CT units, has performed valuable diagnostic information for dentists. [Archives Medical Review Journal 2013; 22(2.000: 230-238

  20. Visualization of moisture in concrete based on neutron radiography

    International Nuclear Information System (INIS)

    As for the quantitative evaluation of moisture in cured concrete, there are several methods such as weighing method, sensor-using technique, and methods using various kinds of radiations. Although each method can attain general purposes, it is often impossible to express microscopic phenomena. The neutron radiography explained in this paper is a nondestructive measurement method for obtaining the transmission image of an object, by utilizing a difference in the attenuation characteristic caused by the interaction of neutrons with nuclei, and thus it can visualize the moisture behavior in concrete. The portion that contains a large amount of bound water in cured concrete is dark with low transmittance, and the portion with relatively high aggregates is bright. As for the effects of cracking of concrete on degradation phenomena, the analyzed image based on neutron radiography can be utilized because the image shows how moisture can be supplied under the change of moisture conditions. The neutron radiography that can be utilized in Japan's territory is nuclear reactors, but the reactors are currently not running. As alternative means, there are the use of radioisotopes, J-PARC as an accelerator, and RANS as a small neutron radiation source under development by RIKEN. (A.O.)

  1. Calculation and analysis of the neutron radiography spatial resolution

    International Nuclear Information System (INIS)

    Background: Spatial resolution is the key parameter for neutron radiography facility. A model of the integrated system resolution is important when designing or using a system to ensure that the realistic resolution goals can be established and achieved. Purpose: For this resolution modeling analysis we focused on the effects of the geometry effects of L/D, the optical diffusion response of the scintillator and the sampling at the sensor (CCD or CMOS camera) and a formula was derived indicating their functional relationship. Methods: This resolution modeling analysis has been down by theoretic calculations. Then this integrated system resolution model was used as an empirical methodology to verify and optimize the performance of the detection system for real-time neutron radiography at China Advance Research Reactor. Results: The special resolutions at very collimation conditions have been calculation by using this method. And three of important parameters of this resolution model have been discussed to optimize the system performance. Conclusion: These resolution analysis concepts and methods will benefit both the design and the characterization of radiography systems. (authors)

  2. Z-petawatt driven ion beam radiography development.

    Energy Technology Data Exchange (ETDEWEB)

    Schollmeier, Marius; Geissel, Matthias; Rambo, Patrick K.; Schwarz, Jens; Sefkow, Adam B.

    2013-09-01

    Laser-driven proton radiography provides electromagnetic field mapping with high spatiotemporal resolution, and has been applied to many laser-driven High Energy Density Physics (HEDP) experiments. Our report addresses key questions about the feasibility of ion radiography at the Z-Accelerator (%E2%80%9CZ%E2%80%9D), concerning laser configuration, hardware, and radiation background. Charged particle tracking revealed that radiography at Z requires GeV scale protons, which is out of reach for existing and near-future laser systems. However, it might be possible to perform proton deflectometry to detect magnetic flux compression in the fringe field region of a magnetized liner inertial fusion experiment. Experiments with the Z-Petawatt laser to enhance proton yield and energy showed an unexpected scaling with target thickness. Full-scale, 3D radiation-hydrodynamics simulations, coupled to fully explicit and kinetic 2D particle-in-cell simulations running for over 10 ps, explain the scaling by a complex interplay of laser prepulse, preplasma, and ps-scale temporal rising edge of the laser.

  3. A New Neutron Radiography / Tomography / Imaging Station DINGO at OPAL

    Science.gov (United States)

    Garbe, U.; Randall, T.; Hughes, C.; Davidson, G.; Pangelis, S.; Kennedy, S. J.

    A new neutron radiography / tomography / imaging instrument DINGO was built to support the area of neutron imaging research (neutron radiography/tomography) at ANSTO. The instrument is designed for an international user community and for routine quality control for defense, industrial, cultural heritage and archaeology applications. In the industrial field it provides a useful tool for studying cracking and defects in steel or other metals. The instrument construction was completed at the end of June 2013 and it is currently in the hot commissioning stage. The usable neutron flux is mainly determined by the neutron source, but it depends on the instrument position and the resolution. The instrument position for DINGO is the thermal neutron beam port HB-2 in the reactor hall. The measured flux (using gold foil) for an L/D of approximately 500 at HB-2 is 5.3*107 [n/cm2s], which is in a similar range to other facilities. A special feature of DINGO is the in-pile collimator position in front of the main shutter at HB-2. The collimator offers two pinholes with a possible L/D of 500 and 1000. A secondary collimator separates the two beams by blocking one and positions another aperture for the other beam. The whole instrument operates in two different positions, one for high resolution and one for high speed. In the current configuration DINGO measured first radiography and tomography data sets on friendly user test samples.

  4. Management of pediatric radiation dose using Agfa computed radiography

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzing, R. [Agfa Corp., Greenville, SC (United States)

    2004-10-01

    Radiation dose to patients and its management have become important considerations in modern radiographic imaging procedures, but they acquire particular significance in the imaging of children. Because of their longer life expectancy, children exposed to radiation are thought to have a significantly increased risk of radiation-related late sequelae compared to adults first exposed to radiation later in life. Therefore, current clinical thinking dictates that dose in pediatric radiography be minimized, while simultaneously ensuring sufficient diagnostic information in the image, and reducing the need for repeat exposures. Dose management obviously starts with characterization and control of the exposure technique. However, it extends farther through the imaging chain to the acquisition system, and even to the image processing techniques used to optimize acquired images for display. Further, other factors, such as quality control procedures and the ability to handle special pediatric procedures, like scoliosis exams, also come into play. The need for dose management in modern radiography systems has spawned a variety of different solutions, some of which are similar across different manufacturers, and some of which are unique. This paper covers the techniques used in Agfa Computed Radiography (CR) systems to manage dose in a pediatric environment. (orig.)

  5. Social media: The next frontier for professional development in radiography

    International Nuclear Information System (INIS)

    Background: Radiographers are required to undertake professional development in order to maintain registration. Professional development activities can be passive and isolate the practitioner. Social media is an interactive, collaborative, instant form of communication, which potentially addresses these concerns. Objectives: To establish whether the inherent challenges of social media use reduce its feasibility as a platform for professional development in radiography. Methods: A systematic review was undertaken using the PRISMA Guidelines. Academic databases were searched using pre-defined search terms, limits and inclusion criteria. Results: Zero reviewable papers were identified in the field of radiography globally. The search was expanded to “healthcare” and 810 papers were identified. After inclusion criteria and limits were applied, 12 papers were reviewed. Conclusions: Professional development using social media includes higher education, collaboration and networking. Managed with consideration to the inherent risks, social media provides a new means of inclusive professional development. - Highlights: • Professional development in radiography can draw on the benefits of social media. • Benefits of the social media platform are education, collaboration and networking. • Social media can reduce geographic and professional isolation. • Practitioners can share case studies and contribute professional opinions

  6. Thoracic radiography and oxidative stress indices in heartworm affected dogs

    Directory of Open Access Journals (Sweden)

    P. K. Rath

    2014-09-01

    Full Text Available Aim: The aim was to study the pathomorphological changes through thoracic radiography and status of oxidative stress parameters in heartworm affected dogs in Odisha. Materials and Methods: A total of 16 dogs with clinically established diagnosis of dirofilariasis by wet blood smear and modified Knott’s test and equal numbers of dogs as control were included in this study. The present study was conducted in heartworm affected dogs to see the pathomorphological changes through thoracic radiography. Similarly, the evaluation was undertaken for observing any alterations in oxidative stress status in affected as well as non-affected, but healthy control dogs by adopting standard procedure. Results: Thoracic radiography revealed cardiac enlargement, round heart appearance suggestive of right ventricular hypertrophy, tortuous pulmonary artery and darkening of lungs. Alterations in oxidative stress indices showed a significant rise of lipid peroxidase activity, non-significant rise of superoxide dismutase and a significant although reverse trend for catalase levels in affected dogs in comparison to Dirofilaria negative control but apparently healthy dogs. Conclusions: Radiographic changes, as well as alterations in oxidative stress parameters, may not be diagnostic for heartworm infection, but useful for detecting heartworm disease, assessing severity and evaluating cardiopulmonary parenchyma changes and gives a fair idea about the degree of severity of the disease. It aids as contributing factors in disease pathogenesis.

  7. Marginal Assessment of Crowns by the Aid of Parallel Radiography

    Directory of Open Access Journals (Sweden)

    Farnaz Fattahi

    2015-03-01

    Full Text Available Introduction: Marginal adaptation is the most critical item in long-term prognosis of single crowns. This study aimed to assess the marginal quality as well asthe discrepancies in marginal integrity of some PFM single crowns of posterior teeth by employing parallel radiography in Shiraz Dental School, Shiraz, Iran. Methods: In this descriptive study, parallel radiographies were taken from 200 fabricated PFM single crowns of posterior teeth after cementation and before discharging the patient. To calculate the magnification of the images, a metallic sphere with the thickness of 4 mm was placed in the direction of the crown margin on the occlusal surface. Thereafter, the horizontal and vertical space between the crown margins, the margin of preparations and also the vertical space between the crown margin and the bone crest were measured by using digital radiological software. Results: Analysis of data by descriptive statistics revealed that 75.5% and 60% of the cases had more than the acceptable space (50µm in the vertical (130±20µm and horizontal (90±15µm dimensions, respectively. Moreover, 85% of patients were found to have either horizontal or vertical gap. In 77% of cases, the margins of crowns invaded the biologic width in the mesial and 70% in distal surfaces. Conclusion: Parallel radiography can be expedient in the stage of framework try-in to yield some important information that cannot be obtained by routine clinical evaluations and may improve the treatment prognosis

  8. Centrifugal microfluidics for biomedical applications.

    Science.gov (United States)

    Gorkin, Robert; Park, Jiwoon; Siegrist, Jonathan; Amasia, Mary; Lee, Beom Seok; Park, Jong-Myeon; Kim, Jintae; Kim, Hanshin; Madou, Marc; Cho, Yoon-Kyoung

    2010-07-21

    The centrifugal microfluidic platform has been a focus of academic and industrial research efforts for almost 40 years. Primarily targeting biomedical applications, a range of assays have been adapted on the system; however, the platform has found limited commercial success as a research or clinical tool. Nonetheless, new developments in centrifugal microfluidic technologies have the potential to establish wide-spread utilization of the platform. This paper presents an in-depth review of the centrifugal microfluidic platform, while highlighting recent progress in the field and outlining the potential for future applications. An overview of centrifugal microfluidic technologies is presented, including descriptions of advantages of the platform as a microfluidic handling system and the principles behind centrifugal fluidic manipulation. The paper also discusses a history of significant centrifugal microfluidic platform developments with an explanation of the evolution of the platform as it pertains to academia and industry. Lastly, we review the few centrifugal microfluidic-based sample-to-answer analysis systems shown to date and examine the challenges to be tackled before the centrifugal platform can be more broadly accepted as a new diagnostic platform. In particular, fully integrated, easy to operate, inexpensive and accurate microfluidic tools in the area of in vitro nucleic acid diagnostics are discussed.

  9. Biomedical waste in Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, S.

    2000-07-01

    In its broadest sense, medical waste applies to solid or liquid waste generated in the diagnosis, treatment of immunization of human beings or animals in research, in the production or testing of biological material. Of all the wastes produced by hospitals, the World Health Organization estimated that 10 per cent of it is infectious and 5 per cent consists of hazardous chemicals such as methylchloride and formaldehyde. Of course, one of the major concerns is the transmission of human immunodeficiency virus (HIV) and hepatitis B or C viruses. If the medical waste is not properly managed, a high degree of pollution and public health risks exists, particularly if the medical waste is mixed with municipal solid waste and dumped in uncontrolled areas. In New Delhi, the daily medical waste generated is 60 metric tons. In 1989, the Bureau of Indian Standards, New Delhi published guidelines for the management of Solid Wastes-Hospitals. Some rules governing the classification of biomedical waste were published in 1997-98 by the Ministry of Environment and Forests. Recommendations by the author included the segregation of hospital wastes, the set up of common medical waste treatment facilities as well as the training of Municipality workers in the safe handling of medical wastes. 7 refs., 3 tabs.

  10. Holographic lithography for biomedical applications

    Science.gov (United States)

    Stankevicius, E.; Balciunas, E.; Malinauskas, M.; Raciukaitis, G.; Baltriukiene, D.; Bukelskiene, V.

    2012-06-01

    Fabrication of scaffolds for cell growth with appropriate mechanical characteristics is top-most important for successful creation of tissue. Due to ability of fast fabrication of periodic structures with a different period, the holographic lithography technique is a suitable tool for scaffolds fabrication. The scaffolds fabricated by holographic lithography can be used in various biomedical investigations such as the cellular adhesion, proliferation and viability. These investigations allow selection of the suitable material and geometry of scaffolds which can be used in creation of tissue. Scaffolds fabricated from di-acrylated poly(ethylene glycol) (PEG-DA-258) over a large area by holographic lithography technique are presented in this paper. The PEG-DA scaffolds fabricated by holographic lithography showed good cytocompatibility for rabbit myogenic stem cells. It was observed that adult rabbit muscle-derived myogenic stem cells grew onto PEG-DA scaffolds. They were attached to the pillars and formed cell-cell interactions. It demonstrates that the fabricated structures have potential to be an interconnection channel network for cell-to-cell interactions, flow transport of nutrients and metabolic waste as well as vascular capillary ingrowth. These results are encouraging for further development of holographic lithography by improving its efficiency for microstructuring three-dimensional scaffolds out of biodegradable hydrogels

  11. Zirconium: biomedical and nephrological applications.

    Science.gov (United States)

    Lee, David B N; Roberts, Martin; Bluchel, Christian G; Odell, Ross A

    2010-01-01

    Recent years have witnessed a rapid increase in the use of zirconium (Zr)-containing compounds in artificial internal organs. Examples include dental implants and other restorative practices, total knee and hip replacement, and middle-ear ossicular chain reconstruction. In nephrological practice, Zr-containing sorbents have been used in hemofiltration, hemodialysis, peritoneal dialysis, and in the design and construction of wearable artificial kidneys. Zr compounds continue to be widely and extensively used in deodorant and antiperspirant preparations. In the public health arena, Zr compounds have been studied or used in controlling phosphorus pollution and in the reclamation of poison and bacteria-contaminated water. Experimental and clinical studies support the general consensus that Zr compounds are biocompatible and exhibit low toxicity. Reports on possible Zr-associated adverse reactions are rare and, in general, have not rigorously established a cause-and-effect relationship. Although publications on the use of Zr compounds have continued to increase in recent years, reports on Zr toxicity have virtually disappeared from the medical literature. Nevertheless, familiarity with, and continued vigilant monitoring of, the use of these compounds are warranted. This article provides an updated review on the biomedical use of Zr compounds.

  12. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  13. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  14. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  15. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  16. Computer vision for biomedical image applications. Proceedings

    International Nuclear Information System (INIS)

    This book constitutes the refereed proceedings of the First International Workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, CVBIA 2005, held in Beijing, China, in October 2005 within the scope of ICCV 20. (orig.)

  17. Towards Nanoscale Biomedical Devices in Medicine

    DEFF Research Database (Denmark)

    Parracino, A.; Gajula, G.P.; di Gennaro, A.K.;

    2011-01-01

    Medical interest in nanotechnology originates from a belief that nanoscale therapeutic devices can be constructed and directed towards its target inside the human body. Such nanodevices can be engineered by coupling superparamagnetic nanoparticle to biomedically active proteins. We hereby report...

  18. Demonstration of neutron radiography and computed tomography at the University of Texas thermal neutron imaging facility

    International Nuclear Information System (INIS)

    A thermal neutron imaging facility for real-time neutron radiography and computed tomography has recently been developed and built at the University of Texas TRIGA reactor. Herein the authors present preliminary results of radiography and tomography test experiments. These preliminary results showed that the beam is of high quality and is suitable for radiography and tomography applications. A more detailed description of the facility is given elsewhere

  19. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    OpenAIRE

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-01-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical vol...

  20. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    OpenAIRE

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-01-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity m...

  1. Analyzing the effect of geometric factors on designing neutron radiography system.

    Science.gov (United States)

    Amini, Moharam; Fadaei, Amir Hosein; Gharib, Morteza

    2015-11-01

    Neutron radiography is one of the main applications of research reactors. It is a powerful tool to conduct nondestructive testing of materials. The parameters that affect the quality of a radiographic image must be considered during the design of a neutron radiography system. Hence, this study aims to investigate the effect of geometric factors on the quality of the neutron radiography system. The results show that the performance of the mentioned system can be increased by regulating the geometric factors. PMID:26343340

  2. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  3. [Open access :an opportunity for biomedical research].

    OpenAIRE

    Duchange, Nathalie; Autard, Delphine; Pinhas, Nicole

    2008-01-01

    International audience Open access within the scientific community depends on the scientific context and the practices of the field. In the biomedical domain, the communication of research results is characterised by the importance of the peer reviewing process, the existence of a hierarchy among journals and the transfer of copyright to the editor. Biomedical publishing has become a lucrative market and the growth of electronic journals has not helped lower the costs. Indeed, it is diffic...

  4. Biomedical photonics handbook therapeutics and advanced biophotonics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents recent fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers,

  5. The growth of biomedical terahertz research

    International Nuclear Information System (INIS)

    Interest in biomedical terahertz research is growing rapidly and there are now several terahertz groups in Asia, Europe and the US investigating potential applications such as pharmaceutical quality control, protein characterization and cancer detection. This review article outlines the technological bottlenecks that have been overcome which have made biomedical terahertz research possible. Key research findings will be presented, and the limitations that remain and the research initiatives that strive to address them will also be discussed. (paper)

  6. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    OpenAIRE

    Wei Wang(College of William and Mary); Yuhe Zhu; Susan Liao; Jiajia Li

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matr...

  7. Science gateways for biomedical big data analysis

    OpenAIRE

    Kampen, van, PJW; Olabarriaga, S.D.; Shahand, S.

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists from different organizations. Data-driven or e-Science methods are defined as a combination of Information Technology (IT) and science that enables scientists to tackle the data deluge challenges. Th...

  8. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  9. Biomedical image understanding methods and applications

    CERN Document Server

    Lim, Joo-Hwee; Xiong, Wei

    2015-01-01

    A comprehensive guide to understanding and interpreting digital images in medical and functional applications Biomedical Image Understanding focuses on image understanding and semantic interpretation, with clear introductions to related concepts, in-depth theoretical analysis, and detailed descriptions of important biomedical applications. It covers image processing, image filtering, enhancement, de-noising, restoration, and reconstruction; image segmentation and feature extraction; registration; clustering, pattern classification, and data fusion. With contributions from ex

  10. Neutron Capture Radiography: Neutron Capture Radiography:a technique for isotopic labelling and analytical imaging with a few stable isotopes

    OpenAIRE

    Michel Thellier; Camille Ripoll

    2006-01-01

    NCR (neutron capture radiography) may be used successfully for the imaging of one of the stable isotopes of a few chemical elements (especially 6Li and 10B, possibly also 14N, 17O, and others) and for labelling experiments using these stable isotopes. Other physical techniques compete with NCR. However, NCR can remain extremely useful in a certain number of cases, because it is usually more easily done and is less expensive than the other techniques.

  11. Neutron Capture Radiography: Neutron Capture Radiography:a technique for isotopic labelling and analytical imaging with a few stable isotopes

    Directory of Open Access Journals (Sweden)

    Michel Thellier

    2006-01-01

    Full Text Available NCR (neutron capture radiography may be used successfully for the imaging of one of the stable isotopes of a few chemical elements (especially 6Li and 10B, possibly also 14N, 17O, and others and for labelling experiments using these stable isotopes. Other physical techniques compete with NCR. However, NCR can remain extremely useful in a certain number of cases, because it is usually more easily done and is less expensive than the other techniques.

  12. Digital radiography in the evaluation of oesophageal motility disorders

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Yehia A

    2000-07-01

    AIMS: To develop a simple technique for examination of the oesophagus by digital radiography and to assess its role in the evaluation of motility disorders of the oesophagus. MATERIALS AND METHODS: Forty-nine patients and 44 control subjects underwent manometry and digital examination of the oesophagus. The digital study consisted of two parts: firstly examination of the pharynx and cervical oesophagus using 15 ml of fluid barium in anterio-posterior (AP) and lateral views, with image acquisition of four frames/s for 2 s. Secondly, examination of the thoracic oesophagus and oesophagogastric junction using 25 ml of barium in two prone oblique and one supine AP series, with image acquisition of one frame/s for 20 s. Oesophageal transit time (OTT) was measured in each case. Abnormal or non-peristaltic contractions were described regarding their morphology, time of visualization and length. The presence or absence of hiatal hernia, reflux or any associated organic lesions was noted. RESULTS: Digital radiography diagnosed 14 cases of achalasia and 28 cases of non-specific oesophageal motility disorder (NOMD). Normal OTT was 11.95 {+-} 1.304 s. The OTT was prolonged (16 s or more) in all patients except five; four of these were cases of NOMD. Abnormal contractions were classified into circular and longitudinal types. The circular non-obliterating type was commoner. Achalasia was diagnosed in all cases, as failure of relaxation of the inferior oesophageal sphincter was always present and easily depicted by digital radiography. Abnormal contractions in the body of the oesophagus were elicited in 57% of cases of achalasia. The sensitivity of digital radiography in detecting oesophageal motility disorders was 85.7% based on the presence of abnormal contractions and 91.6% by eliciting a prolonged OTT. CONCLUSIONS: Examination of the oesophagus by digital radiography is simple, non-invasive, reproducible, rapid and without discomfort to patients. It allows the diagnosis of

  13. Writing intelligible English prose for biomedical journals.

    Science.gov (United States)

    Ludbrook, John

    2007-01-01

    1. I present a combination of semi-objective and subjective evidence that the quality of English prose in biomedical scientific writing is deteriorating. 2. I consider seven possible strategies for reversing this apparent trend. These refer to a greater emphasis on good writing by students in schools and by university students, consulting books on science writing, one-on-one mentoring, using 'scientific' measures to reveal lexical poverty, making use of freelance science editors and encouraging the editors of biomedical journals to pay more attention to the problem. 3. I conclude that a fruitful, long-term, strategy would be to encourage more biomedical scientists to embark on a career in science editing. This strategy requires a complementary initiative on the part of biomedical research institutions and universities to employ qualified science editors. 4. An immediately realisable strategy is to encourage postgraduate students in the biomedical sciences to undertake the service courses provided by many universities on writing English prose in general and scientific prose in particular. This strategy would require that heads of departments and supervisors urge their postgraduate students to attend such courses. 5. Two major publishers of biomedical journals, Blackwell Publications and Elsevier Science, now provide lists of commercial editing services on their web sites. I strongly recommend that authors intending to submit manuscripts to their journals (including Blackwell's Clinical and Experimental Pharmacology and Physiology) make use of these services. This recommendation applies especially to those for whom English is a second language.

  14. Exploring subdomain variation in biomedical language

    Directory of Open Access Journals (Sweden)

    Séaghdha Diarmuid Ó

    2011-05-01

    Full Text Available Abstract Background Applications of Natural Language Processing (NLP technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. Results Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. Conclusions We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers.

  15. A Review of Biomedical Centrifugal Microfluidic Platforms

    Directory of Open Access Journals (Sweden)

    Minghui Tang

    2016-02-01

    Full Text Available Centrifugal microfluidic or lab-on-a-disc platforms have many advantages over other microfluidic systems. These advantages include a minimal amount of instrumentation, the efficient removal of any disturbing bubbles or residual volumes, and inherently available density-based sample transportation and separation. Centrifugal microfluidic devices applied to biomedical analysis and point-of-care diagnostics have been extensively promoted recently. This paper presents an up-to-date overview of these devices. The development of biomedical centrifugal microfluidic platforms essentially covers two categories: (i unit operations that perform specific functionalities, and (ii systems that aim to address certain biomedical applications. With the aim to provide a comprehensive representation of current development in this field, this review summarizes progress in both categories. The advanced unit operations implemented for biological processing include mixing, valving, switching, metering and sequential loading. Depending on the type of sample to be used in the system, biomedical applications are classified into four groups: nucleic acid analysis, blood analysis, immunoassays, and other biomedical applications. Our overview of advanced unit operations also includes the basic concepts and mechanisms involved in centrifugal microfluidics, while on the other hand an outline on reported applications clarifies how an assembly of unit operations enables efficient implementation of various types of complex assays. Lastly, challenges and potential for future development of biomedical centrifugal microfluidic devices are discussed.

  16. Comparison of storage phosphor computed radiography with conventional film-screen radiography in the recognition of pneumoconiosis

    Energy Technology Data Exchange (ETDEWEB)

    Laney, A.S.; Petsonk, E.L.; Wolfe, A.L.; Attfield, M.D. [National Institute of Occupational Safety & Health, Morgantown, WV (USA)

    2010-07-15

    Traditional film-screen radiography (FSR) has been useful in the recognition and evaluation of interstitial lung diseases, but is becoming increasingly obsolete. To evaluate the applicability of storage phosphor digital computed radiography (CR) images in the recognition of small lung opacities, we compared image quality and the profusion of small opacities between FSR and CR radiographs. We screened 1,388 working coal miners during the course of the study with FSR and CR images obtained on the same day from all participants. Each traditional chest film was independently interpreted by two of eight experienced readers using the International Labour Office (ILO) classification of radiographs of pneumoconiosis, as were CR images displayed on medical-grade computer monitors. The prevalence of small opacities (ILO category 1/0 or greater) did not differ between the two imaging modalities (5.2% for FSR and 4.8% for soft copy CR; p. 0.50). Inter-reader agreement was also similar between FSR and CR. Significant differences between image modalities were observed in the shape of small opacities, and in the proportion of miners demonstrating high opacity profusion (category 2/1 and above). Our results indicate that, with appropriate attention to image acquisition and soft copy display, CR digital radiography can be equivalent to FSR in the identification of small interstitial lung opacities.

  17. Diagnostic value of pelvic radiography in the initial trauma series in blunt trauma

    Energy Technology Data Exchange (ETDEWEB)

    Their, Micael E.A.; Bensch, Frank V.; Koskinen, Seppo K. [Toeoeloe Trauma Center, Department of Radiology, Helsinki University Central Hospital, Helsinki (Finland); Handolin, Lauri [Toeoeloe Trauma Center, Department of Orthopaedics and Traumatology, Helsinki (Finland); Kiuru, Martti J. [Toeoeloe Trauma Center, Department of Radiology, Helsinki University Central Hospital, Helsinki (Finland); Research Institut of Military Medicine, Helsinki (Finland)

    2005-08-01

    The purpose of the study was to evaluate the diagnostic value of pelvic radiography in the initial trauma series when compared to multidetector CT (MDCT) findings in serious blunt trauma. Inclusion criteria were blunt trauma and pelvic radiography in the initial trauma series, followed by a whole-body MDCT. A total of 1386 patients (874 male, 512 female, age 16-91 years, mean 41 years) met the inclusion criteria. Imaging studies were evaluated retrospectively by anatomical region and classified, when possible, using the Tile classification. Based on MDCT, a total of 629 injuries occurred in 226 (16%) of these 1386 patients. Radiography depicted 405 fractures in these 226 patients, giving an overall sensitivity of 55%. In 24 patients (11%) radiography was false-negatively normal. The sensitivity of radiography was mainly good in the anteroinferior parts of the pelvis, fair in the acetabulum and ileum, and poor in the posterior ring. By MDCT 141 (62%) patients were classified using the Tile classification and by radiography 133 patients (59%) were classified. MDCT and radiography showed the same type of pelvic injury in 72 patients (59%) and the subtype in 17 patients (14%). In 48 patients (40%) the pelvis was shown to be stable by radiography but unstable by MDCT. In conclusion, the sensitivity of pelvic radiography is low, and it is not reliable for determining if the pelvic injury is stable or not. (orig.)

  18. Evaluation of diagnostic ability of CCD digital radiography in the detection of incipient dental caries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wan; Lee, Byung Do [Wonkwang University College of Medicine, Iksan (Korea, Republic of)

    2003-03-15

    The purpose of this experiment was to evaluate the diagnostic ability of a CCD-based digital system (CDX-2000HQ) in the detection of incipient dental caries. 93 extracted human teeth with sound proximal surfaces and interproximal artificial cavities were radiographed using 4 imaging methods. Automatically processed No.2 Insight film (Eastman Kodak Co., U.S.A.) was used for conventional radiography, scanned images of conventional radiograms for indirect digital radiography were used. For the direct digital radiography, the CDX-2000HQ CCD system (Biomedisys Co. Korea) was used. The subtraction images were made from two direct digital images by Sunny program in the CDX-2000HQ system. Two radiologists and three endodontists examined the presence of lesions using a five-point confidence scale and compared the diagnostic ability by ROC (Receiver Operating Characteristic) analysis and one way ANOVA test. The mean ROC areas of conventional radiography, indirect digital radiography, direct digital radiography, and digital subtraction radiography were 0.9093, 0.9102, 0.9184, and 0.9056, respectively. The diagnostic ability of direct digital radiography was better than the other imaging modalities, but there were no statistical differences among these imaging modalities (p>0.05). These results indicate that new CCD-based digital systems (CDX-2000HQ) have the potential to serve as an alternative to conventional radiography in the detection of incipient dental caries.

  19. Methodology for digital radiography simulation using the Monte Carlo code MCNPX for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil)], E-mail: emonteiro@con.ufrj.br; Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Silva, A.X. [PEN/COPPE-DNC/PoliCT, Universidade Federal do Rio de Janeiro, Centro de Tecnologia Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Laboratorio de Instrumentacao Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Oliveira, D.F. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil)

    2008-05-15

    This work presents a methodology for digital radiography simulation for industrial applications using the MCNPX radiography tally. In order to perform the simulation, the energy-dependent response of a BaFBr imaging plate detector was modeled and introduced in the MCNPX radiography tally input. In addition, a post-processing program was used to convert the MCNPX radiography tally output into 16-bit digital images. Simulated and experimental images of a steel pipe containing corrosion alveoli and stress corrosion cracking were compared, and the results showed good agreement between both images.

  20. Value of postmortem thoracic CT over radiography in imaging of pediatric rib fractures

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Terence S.; Babyn, Paul S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Reyes, Jeanette A.; Chiasson, David A. [The Hospital for Sick Children, Department of Paediatric Laboratory Medicine, Toronto (Canada); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada); Berdon, Walter E. [Columbia Presbyterian Medical Center, Babies Hospital, Department of Radiology, New York, NY (United States)

    2011-06-15

    Studies have reported that thoracic CT may provide greater sensitivity compared with radiography in detection of pediatric rib fractures and fracture healing. The additional sensitivity afforded by thoracic CT may have medicolegal implications where abuse is suspected. To determine the additional value of postmortem thoracic CT compared with radiography in detecting pediatric rib fractures, and fracture healing, using autopsy findings as a gold standard. We retrospectively reviewed 56 coroner's cases with postmortem radiography and CT thoracic survey. All studies underwent primary interpretation by one or two radiologists. The study radiologist independently reviewed all images from 13 patients with positive findings on radiography, CT or autopsy. Sensitivity and specificity between observers and imaging modalities were compared. Primary interpretation: Fractures were recognized on radiography in 5/12 patients who had fractures found at autopsy, and on CT in 8/12 patients. In total, 29% (24/83) of fractures were reported on radiography, and 51% (52/101) of fractures were reported on CT. Study radiologist: Fractures were recognized on radiography in 7/12 patients who had fractures found at autopsy, and on CT in 11/12 patients. In total, 46% (38/83) of fractures were reported on radiography, and 85% (86/101) of fractures were reported on CT. Postmortem thoracic CT provides greater sensitivity than radiography in detecting pediatric rib fractures, most notably in anterior and posterior fractures. However, the degree of improvement in sensitivity provided by CT might depend on observer experience. (orig.)

  1. Manpower development for the biomedical industry space.

    Science.gov (United States)

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  2. Neutron radiography applications in I.T.U. TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Neutron radiography is an important radiographic technique which is supplied different and advanced information according to the X or gamma ray radiography. However, it has a trouble for supplying the convenient neutron sources. Tangential beam tube of Istanbul Technical University (ITU) TRIGA Mark-II Training and Research Reactor has been arranged for using neutron radiography. The neutron radiography set defined as detailed for the application of the technique. Two different techniques for neutron radiography are defined as namely, transfer method and direct method. For the transfer method dysprosium and indium screens are used in the study. But, dysprosium generally was preferred in many studies in the point of view nuclear safety. Gadolinium was used for direct method. Two techniques are compared and explained the preferring of the transfer technique. Firstly, reference composition is prepared for seeing the differences between neutron and X-ray or gamma radiography. In addition of it, some radiograph samples are given neutron and X-ray radiography which shows the different image characters. Lastly, some examples are given from archaeometric studies. One of them the brass plates of Great Mosque door in Cizre. After the neutron radiography application, organic dye traces are noticed. Other study is on a sword that belong to Urartu period at the first millennium B.C. It is seen that some wooden part on it. Some different artefacts are examined with neutron radiography from the Ikiztepe excavation site, then some animal post parts are recognized on them. One of them is sword and sheath which are corroded together. After the neutron radiography application, it can be noticed that there are a cloth between the sword and its sheath. By using neutron radiography, many interesting and detailed results are observed in ITU TRIGA Mark-II Training and Research Reactor. Some of them shouldn't be recognised by using any other technique

  3. Spectroscopic neutron radiography for a cargo scanning system

    Science.gov (United States)

    Rahon, Jill; Danagoulian, Areg; MacDonald, Thomas D.; Hartwig, Zachary S.; Lanza, Richard C.

    2016-06-01

    Detection of cross-border smuggling of illicit materials and contraband is a challenge that requires rapid, low-dose, and efficient radiographic technology. The work we describe here is derived from a technique which uses monoenergetic gamma rays from low energy nuclear reactions, such as 11B(d,nγ)12C, to perform radiographic analysis of shipping containers. Transmission ratios of multiple monoenergetic gamma lines resulting from several gamma producing nuclear reactions can be employed to detect materials of high atomic number (Z), the details of which will be described in a separate paper. Inherent in this particular nuclear reaction is the production of fast neutrons which could enable neutron radiography and further characterization of the effective-Z of the cargo, especially within the range of lower Z. Previous research efforts focused on the use of total neutron counts in combination with X-ray radiography to characterize the hydrogenous content of the cargo. We present a technique of performing transmitted neutron spectral analysis to reconstruct the effective Z and potentially the density of the cargo. This is made possible by the large differences in the energy dependence of neutron scattering cross-sections between hydrogenous materials and those of higher Z. These dependencies result in harder transmission spectra for hydrogenous cargoes than those of non-hydrogenous cargoes. Such observed differences can then be used to classify the cargo based on its hydrogenous content. The studies presented in this paper demonstrate that such techniques are feasible and can provide a contribution to cargo security, especially when used in concert with gamma radiography.

  4. Characterization of non-tuberculosis mycobacteria by neutron radiography.

    Science.gov (United States)

    da Silva, Jaqueline M; Crispim, Verginia Reis; da Silva, Marlei Gomes; Furtado, Vanessa Rodrigues; Duarte, Rafael Da Silva

    2013-07-01

    The genus Mycobacterium shares many characteristics with Corynebacterium and Actinomyces genera, among which the genomic guanine plus cytosine content and the production of long branched-chain fatty acids, known as mycolic acids are enhanced. Growth rate and optimal temperature of mycobacteria are variable. The genus comprises more than 140 known species; however Mycobacterium fortuitum, a fast growing nontuberculous mycobacterium, is clinically significant, because it has been associated to several lesions following surgery procedures such as liposuction, silicone breast and pacemaker implants, exposure to prosthetic materials besides sporadic lesions in the skin, soft tissues and rarely lungs. The objective of the present study is to reduce the time necessary for M. fortuitum characterization based on its morphology and the use of the neutron radiography technique substituting the classical biochemical assays. We also aim to confirm the utility of dendrimers as boron carriers. The samples were sterilized through conventional protocols using 10% formaldehyde. In the incubation process, two solutions with different molar ratios (10:1 and 20:1) of sodium borate and PAMAM G4 dendrimer and also pure sodium borate were used. After doping and sterilization procedures, the samples were deposited on CR-39 sheets, irradiated with a 4.6×10(5) n/cm(2)s thermal neutron flux for 30 min, from the J-9 irradiation channel of the Argonauta IEN/CNEN reactor. The images registered in the CR-39 were visualized in a Nikon E400 optical transmission microscope and captured by a Nikon Coolpix 995 digital camera. Developing the nuclear tracks registered in the CR-39 allowed a 1000× enlargement of mycobacterium images, facilitating their characterization, the use of more sophisticated equipment not being necessary. The use of neutron radiography technique reduced the time necessary for characterization. Doping with PAMAM dendrimer improved the visualization of NTM in neutron radiography

  5. Diagnostic value of full-mouth radiography in dogs

    International Nuclear Information System (INIS)

    Objective-To determine the diagnostic value of full-mouth radiography in dogs.Sample Population-Prospective series of 226 dogs referred for dental treatment without previous full-mouth radiographic views being available. Procedure-In a prospective nested case-control analysis of multiple outcomes in a hospital cohort of dogs presented for dental treatment, full-mouth radiographic views were obtained prior to oral examination and charting. After treatment, clinical and radiographic findings were compared, with reference to presenting problems, main clinical findings, additional information obtained from the radiographs, and unexpected radiographic findings. The importance of the radiographic findings in therapeutic decision-making was assessed. Results-The main clinical findings were radiographically confirmed in all dogs. Selected presenting problems and main clinical findings yielded significantly increased odds ratios for a variety of other conditions, either expected or unexpected. Radiographs of teeth without clinical lesions yielded incidental or clinically important findings in 41.7 and 27.8% of dogs, respectively, and were considered of no clinical value in 30.5%. Radiographs of teeth with clinical lesions merely confirmed the findings in 24.3% of dogs, yielded additional or clinically essential information in 50.0 and 22.6%, respectively, and were considered of no value in 3.1%. Older dogs derived more benefit from full-mouth radiography than did younger dogs. Incidental findings were more common in larger dogs. Clinical Relevance-Diagnostic yield of full-mouth radiography in new canine patients referred for dental treatment is high, and the routine use of such radiographs is justifiable

  6. Acute paediatric ankle trauma: MRI versus plain radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lohman, M. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Radiological Dept., Helsinki University Central Hospital (Finland); Kivisaari, A.; Kivisaari, L. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Kallio, P.; Puntila, J. [Dept. of Paediatric Surgery, Hospital for Children and Adolescents, Helsinki Univ. Central Hospital, Helsinki (Finland); Vehmas, T. [Finnish Institute of Occupational Health, Helsinki (Finland)

    2001-09-01

    Objective: To evaluate the diagnosis of acute physeal ankle fractures on plain radiographs using MRI as the gold standard. Methods: Sixty consecutive children, 29 with a clinical diagnosis of lateral ligament injury and 31 with physeal ankle fractures, were examined using both radiographs and MRI in the acute period. The imaging data were reviewed by three ''masked'' radiologists. The fracture diagnosis and Slater-Harris classification of radiographs were compared with findings on MRI. Results: Plain radiography produced five of 28 (18%) false negative and 12 of 92 (13%) false positive fracture diagnoses compared with MRI. Six of the 12 false positive fractures were due to a misclassification of lateral ligament disruption as SH1 fractures. Altogether a difference was found in 21% of cases in either the diagnosis or the classification of the fractures according to Salter- Harris. All bone bruises in the distal tibia and fibula and 64% of bone bruises in the talus were seen in association with lateral ligament injuries. Talar bone bruises in association with fractures occurred on the same side as the malleolar fracture; talar bone bruises in association with lateral ligament disruption were seen in different locations. The errors identified on radiographs by MRI did not affect the management of the injury. Conclusions: The incidence of false negative ankle fractures in plain radiographs was small and no complex ankle fractures were missed on radiographs. The total extent of complex fractures was, however, not always obvious on radiographs. In an unselected series of relatively mild ankle injuries, we were unable to show a single case where the treatment or prognosis based on plain radiography should have been significantly altered after having done a routine MRI examination. Plain radiography is still the diagnostic cornerstone of paediatric ankle injuries. (orig.)

  7. Acute paediatric ankle trauma: MRI versus plain radiography

    International Nuclear Information System (INIS)

    Objective: To evaluate the diagnosis of acute physeal ankle fractures on plain radiographs using MRI as the gold standard. Methods: Sixty consecutive children, 29 with a clinical diagnosis of lateral ligament injury and 31 with physeal ankle fractures, were examined using both radiographs and MRI in the acute period. The imaging data were reviewed by three ''masked'' radiologists. The fracture diagnosis and Slater-Harris classification of radiographs were compared with findings on MRI. Results: Plain radiography produced five of 28 (18%) false negative and 12 of 92 (13%) false positive fracture diagnoses compared with MRI. Six of the 12 false positive fractures were due to a misclassification of lateral ligament disruption as SH1 fractures. Altogether a difference was found in 21% of cases in either the diagnosis or the classification of the fractures according to Salter- Harris. All bone bruises in the distal tibia and fibula and 64% of bone bruises in the talus were seen in association with lateral ligament injuries. Talar bone bruises in association with fractures occurred on the same side as the malleolar fracture; talar bone bruises in association with lateral ligament disruption were seen in different locations. The errors identified on radiographs by MRI did not affect the management of the injury. Conclusions: The incidence of false negative ankle fractures in plain radiographs was small and no complex ankle fractures were missed on radiographs. The total extent of complex fractures was, however, not always obvious on radiographs. In an unselected series of relatively mild ankle injuries, we were unable to show a single case where the treatment or prognosis based on plain radiography should have been significantly altered after having done a routine MRI examination. Plain radiography is still the diagnostic cornerstone of paediatric ankle injuries. (orig.)

  8. Average Soil Water Retention Curves Measured by Neutron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  9. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  10. Biomedical engineering education--status and perspectives.

    Science.gov (United States)

    Magjarevic, Ratko; Zequera Diaz, Martha L

    2014-01-01

    Biomedical Engineering programs are present at a large number of universities all over the world with an increasing trend. New generations of biomedical engineers have to face the challenges of health care systems round the world which need a large number of professionals not only to support the present technology in the health care system but to develop new devices and services. Health care stakeholders would like to have innovative solutions directed towards solving problems of the world growing incidence of chronic disease and ageing population. These new solutions have to meet the requirements for continuous monitoring, support or care outside clinical settlements. Presence of these needs can be tracked through data from the Labor Organization in the U.S. showing that biomedical engineering jobs have the largest growth at the engineering labor market with expected 72% growth rate in the period from 2008-2018. In European Union the number of patents (i.e. innovation) is the highest in the category of biomedical technology. Biomedical engineering curricula have to adopt to the new needs and for expectations of the future. In this paper we want to give an overview of engineering professions in related to engineering in medicine and biology and the current status of BME education in some regions, as a base for further discussions.

  11. [Biomedical research in Revista de Biologia Tropical].

    Science.gov (United States)

    Gutiérrez, José María

    2002-01-01

    The contributions published in Revista de Biología Tropical in the area of Biomedical Sciences are reviewed in terms of number of contributions and scope of research subjects. Biomedical Sciences, particularly Parasitology and Microbiology, constituted the predominant subject in the Revista during the first decade, reflecting the intense research environment at the School of Microbiology of the University of Costa Rica and at Hospital San Juan de Dios. The relative weight of Biomedicine in the following decades diminished, due to the outstanding increment in publications in Biological Sciences; however, the absolute number of contributions in Biomedical Sciences remained constant throughout the last decades, with around 80 contributions per decade. In spite of the predominance of Parasitology as the main biomedical subject, the last decades have witnessed the emergence of new areas of interest in the Revista, such as Pharmacology of natural products, Toxinology, especially related to snake venoms, and Human Genetics. This retrospective analysis evidences that Biomedical Sciences, particularly those related to Tropical Medicine, were a fundamental component during the first years of Revista de Biología Tropical, and have maintained a significant presence in the scientific output of this journal, the most relevant scientific publication in biological sciences in Central America.

  12. Integrating systems biology models and biomedical ontologies

    Directory of Open Access Journals (Sweden)

    de Bono Bernard

    2011-08-01

    Full Text Available Abstract Background Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. Results We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. Conclusions We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  13. Industry careers for the biomedical engineer.

    Science.gov (United States)

    Munzner, Robert F

    2004-01-01

    This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.

  14. Upgrading of neutron radiography/tomography facility at research reactor

    International Nuclear Information System (INIS)

    A state-of-the-art neutron tomography imaging system was set up at the neutron radiography beam tube at the Egypt Second Research Reactor (ETRR-2) and was successfully commissioned in 2013. This study presents a set of tomographic experiments that demonstrate a high quality tomographic image formation. A computer technique for data processing and 3D image reconstruction was used to see inside a copy module of an ancient clay article provided by the International Atomic Energy Agency (IAEA). The technique was also able to uncover tomographic imaging details of a mummified fish and provided a high resolution tomographic image of a defective fire valve. (orig.)

  15. High efficiency gaseous tracking detector for cosmic muon radiography

    CERN Document Server

    Varga, Dezső; Hamar, Gergő; Oláh, László

    2016-01-01

    A tracking detector system has been constructed with an innovative approach to the classical multi-wire proportional chamber concept, using contemporary technologies. The detectors, covering an area of 0.58 square meters each, are optimized for the application of muon radiography. The main features are high (>99.5%) and uniform detection efficiency, 9 mm FWHM position resolution, filling gas consumption below 2 liters per hour for the non toxic, non flammable argon and carbon dioxide mixture. These parameters, along with the simplicity of the construction and the tolerance for mechanical effects, make the detectors to be a viable option for a large area muography observation system.

  16. A novel type epithermal neutron radiography detecting and imaging system

    CERN Document Server

    Balasko, M; Svab, E; Eoerdoegh, I

    1999-01-01

    The transfer technique is widely used for epithermal neutron radiography (ENR) for making images upon the object to be investigated. We propose to use instead of the photosensitive film a gamma sensitive scintillation screen (NaCe single crystal), that is monitored by a computer controlled low light level TV camera. The exposure time has been reduced to a duration of only a short fraction of that needed for the conventional transfer process. The presented ENR images consist of electronic signals that are handled by an advanced image processing and analyzing program, the Iman 1.4 version, using a task oriented video grabber.

  17. Combined photon-neutron radiography for nondestructive analysis of materials

    International Nuclear Information System (INIS)

    Combined photon-neutron radiography was investigated as a nondestructive method to determine the shape and material composition of complex objects. A system consisting of photon and neutron sources in a cone beam configuration and a 2D detector array was modeled using the MCNP5 code. Photon-to-neutron transmission ratios were determined for a car engine using 0.1, 0.5, 2.5 MeV neutrons and 0.2, 0.5, 1 MeV photons. Focusing on inherent difference between neutron and photon interactions with matter, it was possible to classify materials within the scanned object. (author)

  18. Fast Neutron Resonance Radiography in a Pulsed Neutron Beam

    CERN Document Server

    Dangendorf, V; Kersten, C; Jagutzki, O; Spillmann, U

    2003-01-01

    The feasibility of performing fast neutron resonance radiography at the PTB accelerator facility is studied. A neutron beam of a broad spectral distribution is produced by a pulsed 13 MeV deuterium beam hitting a thick Be target. The potential of 3 different neutron imaging detectors with time-of flight capability are investigated. The applied methods comprise wire chambers with hydrogenous converter layers and a fast plastic scintillator with different optical readout schemes. We present the neutron facility, the imaging methods employed and results obtained. in beam experiments where samples of carbon rods with various length and diameter were imaged to study resolution and sensitivity of the method.

  19. Characterization of non-tuberculosis mycobacteria by neutron radiography

    International Nuclear Information System (INIS)

    The genus Mycobacterium shares many characteristics with Corynebacterium and Actinomyces genera, among which the genomic guanine plus cytosine content and the production of long branched-chain fatty acids, known as mycolic acids are enhanced. Growth rate and optimal temperature of mycobacteria are variable. The genus comprises more than 140 known species; however Mycobacterium fortuitum, a fast growing nontuberculous mycobacterium, is clinically significant, because it has been associated to several lesions following surgery procedures such as liposuction, silicone breast and pacemaker implants, exposure to prosthetic materials besides sporadic lesions in the skin, soft tissues and rarely lungs. The objective of the present study is to reduce the time necessary for M. fortuitum characterization based on its morphology and the use of the neutron radiography technique substituting the classical biochemical assays. We also aim to confirm the utility of dendrimers as boron carriers. The samples were sterilized through conventional protocols using 10% formaldehyde. In the incubation process, two solutions with different molar ratios (10:1 and 20:1) of sodium borate and PAMAM G4 dendrimer and also pure sodium borate were used. After doping and sterilization procedures, the samples were deposited on CR-39 sheets, irradiated with a 4.6×105 n/cm2 s thermal neutron flux for 30 min, from the J-9 irradiation channel of the Argonauta IEN/CNEN reactor. The images registered in the CR-39 were visualized in a Nikon E400 optical transmission microscope and captured by a Nikon Coolpix 995 digital camera. Developing the nuclear tracks registered in the CR-39 allowed a 1000× enlargement of mycobacterium images, facilitating their characterization, the use of more sophisticated equipment not being necessary. The use of neutron radiography technique reduced the time necessary for characterization. Doping with PAMAM dendrimer improved the visualization of NTM in neutron radiography

  20. Novel detectors for fast-neutron resonance radiography

    Science.gov (United States)

    Vartsky, D.; Mor, I.; Goldberg, M. B.; Bar, D.; Feldman, G.; Dangendorf, V.; Tittelmeier, K.; Weierganz, M.; Bromberger, B.; Breskin, A.

    2010-11-01

    We describe the concept and properties of a time-resolved integrative optical neutron (TRION) detector, a novel high spatial resolution neutron imaging system in the energy range of 1-10 MeV, for fast-neutron resonance radiography (FNRR), with multiple-energy TOF-spectrometry capability. Two generations of TRION detectors have already demonstrated their suitability for detecting small quantities of thin-sheet explosives. TRION holds promise for fully automatic detection and identification of standard and improvised explosives concealed in luggage and cargo, by determining the density distribution of light elements such as C, N and O.

  1. Upgrading of neutron radiography/tomography facility at research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Bar, Waleed; Mongy, Tarek [Atomic Energy Authority, Cairo (Egypt). ETRR-2; Kardjilov, Nikolay [Helmholtz Zentrum Berlin (HZB) for Materials and Energy, Berlin (Germany)

    2014-03-15

    A state-of-the-art neutron tomography imaging system was set up at the neutron radiography beam tube at the Egypt Second Research Reactor (ETRR-2) and was successfully commissioned in 2013. This study presents a set of tomographic experiments that demonstrate a high quality tomographic image formation. A computer technique for data processing and 3D image reconstruction was used to see inside a copy module of an ancient clay article provided by the International Atomic Energy Agency (IAEA). The technique was also able to uncover tomographic imaging details of a mummified fish and provided a high resolution tomographic image of a defective fire valve. (orig.)

  2. Implementation of a PACS for radiography training and clinical service in a university setting through a multinational effort

    Science.gov (United States)

    Tang, Fuk-hay; Law, Yuen Y.; Zhang, Jianguo; Liu, Hai L.; Chang, Tony; Matsuda, Koyo; Cao, Fei

    2001-08-01

    The Hong Kong Polytechnic University has a Radiography Division under the Development of Optometry and Radiography. The Division trains both diagnostic and therapeutic radiographers with 60 students/year and offers a B.Sc. degree. In addition the Division together with the University Health Service operates a radiography clinic with radiology consultation from radiologists from other hospitals and clinics. This paper describers the implementation of a PACS in the Division for radiography training, and for clinical service.

  3. Safety aspects in the use of 9 MV industrial linac for open field radiography

    International Nuclear Information System (INIS)

    Electron Accelerators are used for industrial radiography in various industries. Usually fixed accelerators in a well-shielded enclosure are used for radiography. However, in some special cases it is desired to have portable accelerators to carry out the radiography work at site. In many military applications the heavy objects are checked at the site, for which portable accelerators are preferred. X-ray intensity emanating from an industrial accelerator is very high. Proper safety precaution needs to be adopted by the radiation workers as well as other non-radiation workers involved in the open field radiography work and other supporting activities. A case of 9 MV linear accelerators to be used for open field radiography is being discussed here. Portable shielding thickness, which is to be given in the primary and secondary direction is evaluated numerically and suggested in the paper. As the portable radiography enclosure is open top and has limited wall height, more air volume above the enclosure is likely to get irradiated. Although the wall shielding is adequate, there is possibility of high radiation level around the radiography enclosure due to sky-shine radiation. Sky-shine radiation level is evaluated numerically and is presented in this paper. For the protection of the radiation and non-radiation workers about 100 m cordoning off is recommended. Operators sit inside a cabin of the transport car located outside the cordoning area. Various safety precautions and interlock facility to be adopted for safe radiography work practices are described in this paper. (author)

  4. Radiography and bone scintigraphy in bone marrow transplant multiple myeloma patients

    International Nuclear Information System (INIS)

    Purpose: To compare conventional radiography and bone scintigraphy in relation to clinical outcome in bone marrow transplant multiple myeloma patients. Material and Methods: A total of 70 radiographies and 70 bone scintigraphies were compared in 35 patients. Results: The skull, the extremities, the iliac and public bones were better assessed with radiography. For new vertebral lesions and for lesions in the ribs and sternum, bone scintigraphy proved superior. For the sacrum, the methods were equal. When bone scintigraphy was used as a complement to radiography, 4% more pathological sites were found. No patient had both a normal radiography and a pathological bone scintigraphy, but 5 patients had both a normal bone scintigraphy and a pathological radiography. The results of the radiological examinations did not always correlate with the clinician's grading of the patient's disease. The radiological examinations had no prognostic value for the 7 patients examined on several occasions. Conclusion: The ability of conventional radiography and bone scintigraphy to disclose myeloma lesions varies, depending on location and size of the lesions. Radiography should remain the primary examination modality also for bone marrow transplant multiple myeloma patients. Bone scintigraphy can severe as a complement for investigating unexplained pain, e.g. caused by lesions in vertebrae or ribs. (orig.)

  5. Radiation dose distribution monitoring at neutron radiography facility area, Nuclear Energy Unit, Malaysia

    International Nuclear Information System (INIS)

    One experiment was carried out to get the distribution of radiation doses at the neutron radiography facilities, Nuclear Energy Unit, Malaysia. The analysis was done to evaluate the safety level of the area. The analysis was used in neutron radiography work

  6. Dental radiography ten years ago and now: overview of results of postal TLD audit

    International Nuclear Information System (INIS)

    Since 2002, regular postal audit in dental radiography organized by NRPI Prague belongs to basic radiography QA/QC tools in the Czech Republic. The measured parameters are incident air kerma, field size, and exposure reproducibility. The overall quality of the dental radiograph is also assessed. Ten-year summary of the audit results is presented here. (authors)

  7. 75 FR 57080 - In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order...

    Science.gov (United States)

    2010-09-17

    ... which authorizes the possession, use, and operation of the Aerotest Radiography and Research Reactor... COMMISSION In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order... Regulations (10 CFR) Section 50.21(c) for research and development purposes. Aerotest is a wholly...

  8. 75 FR 39985 - In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order...

    Science.gov (United States)

    2010-07-13

    ..., use and operation of the Aerotest Radiography and Research Reactor (ARRR) located in San Ramon... the Federal Register on May 14, 2010; 75 FR 27368. No hearing requests or written comments were... COMMISSION In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor);...

  9. The review of the application of neutron radiography to thermal hydraulic research

    CERN Document Server

    Mishima, K; Saitô, Y; Nakamura, H; Matsubayashi, M

    1999-01-01

    This paper is concerned with the establishment of thermal neutron radiography as a high accuracy measurement method. This paper reviews the present status on the development of high-frame-rate neutron radiography with a steady thermal neutron beam and its application to multiphase flow research performed at the Research Reactor Institute of Kyoto University in collaboration with the Japan Atomic Energy Research Institute.

  10. Dual Use Corrosion Inhibitor and Penetrant for Anomaly Detection in Neutron/X Radiography

    Science.gov (United States)

    Hall, Phillip B. (Inventor); Novak, Howard L. (Inventor)

    2004-01-01

    A dual purpose corrosion inhibitor and penetrant composition sensitive to radiography interrogation is provided. The corrosion inhibitor mitigates or eliminates corrosion on the surface of a substrate upon which the corrosion inhibitor is applied. In addition, the corrosion inhibitor provides for the attenuation of a signal used during radiography interrogation thereby providing for detection of anomalies on the surface of the substrate.

  11. Impact of chest radiography for children with lower respiratory tract infection: a propensity score approach.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Ecochard-Dugelay

    Full Text Available BACKGROUND: Management of acute respiratory tract infection varies substantially despite this being a condition frequently encountered in pediatric emergency departments. Previous studies have suggested that the use of antibiotics was higher when chest radiography was performed. However none of these analyses had considered the inherent indication bias of observational studies. OBJECTIVE: The aim of this work was to assess the relationship between performing chest radiography and prescribing antibiotics using a propensity score analysis to address the indication bias due to non-random radiography assignment. METHODS: We conducted a prospective study of 697 children younger than 2 years of age who presented during the winter months of 2006-2007 for suspicion of respiratory tract infection at the Pediatric Emergency Department of an urban general hospital in France (Paris suburb. We first determined the individual propensity score (probability of having a chest radiography according to baseline characteristics. Then we assessed the relation between radiography and antibiotic prescription using two methods: adjustment and matching on the propensity score. RESULTS: We found that performing a chest radiography lead to more frequent antibiotic prescription that may be expressed as OR = 2.3, CI [1.3-4.1], or as an increased use of antibiotics of 18.6% [0.08-0.29] in the group undergoing chest radiography. CONCLUSION: Chest radiography has a significant impact on the management of infants admitted for suspicion of respiratory tract infection in a pediatric emergency department and may lead to unnecessary administration of antibiotics.

  12. The IS Services Agency of Wittenheim sets the pace in numerical radiography; L'agence IS Services de Wittenheim a la pointe de la radiographie numerique

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-03-15

    Small by its size with only 5 workers, the IS Services Agency of Wittenheim (Alsace) is however ultra specialized in nondestructive testing, and particularly with the new technology of the numerical radiography. (O.M.)

  13. 15th International Conference on Biomedical Engineering

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organisations working i...

  14. NASA Biomedical Informatics Capabilities and Needs

    Science.gov (United States)

    Johnson-Throop, Kathy A.

    2009-01-01

    To improve on-orbit clinical capabilities by developing and providing operational support for intelligent, robust, reliable, and secure, enterprise-wide and comprehensive health care and biomedical informatics systems with increasing levels of autonomy, for use on Earth, low Earth orbit & exploration class missions. Biomedical Informatics is an emerging discipline that has been defined as the study, invention, and implementation of structures and algorithms to improve communication, understanding and management of medical information. The end objective of biomedical informatics is the coalescing of data, knowledge, and the tools necessary to apply that data and knowledge in the decision-making process, at the time and place that a decision needs to be made.

  15. Design and analysis of biomedical studies

    DEFF Research Database (Denmark)

    Hansen, Merete Kjær

    been allocated this field. It is utterly important to utilize these ressources responsibly and efficiently by constantly striving to ensure high-quality biomedical studies. This involves the use of a sound statistical methodology regarding both the design and analysis of biomedical studies. The focus...... for the statistical power of studies with a hierarchical structure to guide biomedical researchers designing future studies of this type. Upon model fitting it is important to examine if the model assumptions are met to avoid that spurious conclusions are drawn. While the range of diagnostic methods is extensive...... for models assuming a normal response it is generally more limited for non-normal models. An R package providing diagnostic tools suitable for examining the validity of binomial regression models have been developed. The binom Tools package is publicly available at the CRAN repository....

  16. Revisited the mathematical derivation wall thickness measurement of pipe for radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, A.R.; Amir, S.M.M. [Non Destructive Testing(NDT) Group, Industrial Technology Div., Malaysian Nuclear Agency, Selangor (Malaysia)

    2007-07-01

    Wall thickness measurement of pipe is very important of the structural integrity of the industrial plant. However, the radiography method has an advantage because the ability of penetrating the insulated pipe. This will have economic benefit for industry. Moreover, the era of digital radiography has more advantages because the speed of radiographic work, less exposure time and no chemical used for film development. Either the conventional radiography or digital radiology, the wall thickness measurement is using the tangential radiography technique (TRT). In case, of a large diameter, pipe (more than inches) the determination maximum penetration wall thickness must be taken into the consideration. This paper is revisited the mathematical derivation of the determination of wall thickness measurement based on tangential radiography technique (TRT). The mathematical approach used in this derivation is the Pythagoras theorem and geometrical principles. In order to derive the maximum penetration wall thickness a similar approach is used. (authors)

  17. Resolution 12/2004 Guideline for implementation of safety regulations in the practice of industrial radiography

    International Nuclear Information System (INIS)

    1. This guide is intended to clarify, in relation to its application in practice Industrial Radiography, the provisions of: a) Joint Resolution CITMA-MINSAP, of December 15, 2002, Regulation: Basic Radiation Safety Standards, hereinafter Regulation NBS; b) Resolution No. 25/98 of CITMA Regulation. Authorization Practices Associated with the use of ionizing radiation , hereinafter Resolution 25/98; c) Resolution 121/2000 CITMA Regulation: For the Safe Transport of Radioactive materials , hereinafter Resolution 121/2000; and in d) Joint Resolution CITMA-MINSAP, Regulation: Selection, Training and Authorization of personnel performing Employment Practices Associated Radiation Ionizing . 2. For the purposes of applying this Guide considers the practice of Industrial Radiography includes the following techniques: a) Industrial Radiography with use of gamma radiation sources; b) crawler radiography equipment; and c) Industrial Radiography with X-rays

  18. In situ studies of mass transport in liquid alloys by means of neutron radiography.

    Science.gov (United States)

    Kargl, F; Engelhardt, M; Yang, F; Weis, H; Schmakat, P; Schillinger, B; Griesche, A; Meyer, A

    2011-06-29

    When in situ techniques became available in recent years this led to a breakthrough in accurately determining diffusion coefficients for liquid alloys. Here we discuss how neutron radiography can be used to measure chemical diffusion in a ternary AlCuAg alloy. Neutron radiography hereby gives complementary information to x-ray radiography used for measuring chemical diffusion and to quasielastic neutron scattering used mainly for determining self-diffusion. A novel Al(2)O(3) based furnace that enables one to study diffusion processes by means of neutron radiography is discussed. A chemical diffusion coefficient of Ag against Al around the eutectic composition Al(68.6)Cu(13.8)Ag(17.6) at.% was obtained. It is demonstrated that the in situ technique of neutron radiography is a powerful means to study mass transport properties in situ in binary and ternary alloys that show poor x-ray contrast. PMID:21654050

  19. BIG: a Grid Portal for Biomedical Data and Images

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-06-01

    Full Text Available Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc., advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid, a Web-based Grid portal for management of biomedical information (data and images in a distributed environment. BIG is an interactive environment that deals with complex user's requests, regarding the acquisition of biomedical data, the "processing" and "delivering" of biomedical images, using the power and security of Computational Grids.

  20. Advanced Probability Theory for Biomedical Engineers

    CERN Document Server

    Enderle, John

    2006-01-01

    This is the third in a series of short books on probability theory and random processes for biomedical engineers. This book focuses on standard probability distributions commonly encountered in biomedical engineering. The exponential, Poisson and Gaussian distributions are introduced, as well as important approximations to the Bernoulli PMF and Gaussian CDF. Many important properties of jointly Gaussian random variables are presented. The primary subjects of the final chapter are methods for determining the probability distribution of a function of a random variable. We first evaluate the prob