WorldWideScience

Sample records for biomedical prevention science

  1. Preparing for the unexpected: the pivotal role of social and behavioral sciences in trials of biomedical HIV prevention interventions.

    Science.gov (United States)

    Koblin, Beryl A; Andrasik, Michele; Austin, Judy

    2013-07-01

    A range of efficacies have been reported for biomedical HIV prevention interventions, including antiretroviral treatment, male circumcision, preexposure prophylaxis, microbicides, and preventive vaccines. This range of efficacies probably results from the influence of multiple inputs and processes during trials, including the strength and target of the intervention, host factors, target population characteristics, level of HIV exposure, and intervention dose. Expertise in social and behavioral sciences, in conjunction with basic science, clinical research, epidemiology, biostatistics, and community, is needed to understand the influence of these inputs and processes on intervention efficacy, improve trial design and implementation, and enable interpretation of trial results. In particular, social and behavioral sciences provide the means for investigating and identifying populations suitable for recruitment into and retention in trials and for developing and improving measures of HIV exposure and intervention dose, all within the larger sociocultural context. Integration of social and behavioral sciences early in idea generation and study design is imperative for the successful conduct of biomedical trials and for ensuring optimal data collection approaches necessary for the interpretation of findings, particularly in cases of unexpected results.

  2. Holography In Biomedical Sciences

    Science.gov (United States)

    von Bally, G.

    1988-01-01

    Today not only physicists and engineers but also biological and medical scientists are exploring the potentials of holographic methods in their special field of work. Most of the underlying physical principles such as coherence, interference, diffraction and polarization as well as general features of holography e.g. storage and retrieval of amplitude and phase of a wavefront, 3-d-imaging, large field of depth, redundant storage of information, spatial filtering, high-resolving, non-contactive, 3-d form and motion analysis are explained in detail in other contributions to this book. Therefore, this article is confined to the applications of holography in biomedical sciences. Because of the great number of contributions and the variety of applications [1,2,3,4,5,6,7,8] in this review the investigations can only be mentioned briefly and the survey has to be confined to some examples. As in all fields of optics and laser metrology, a review of biomedical applications of holography would be incomplete if military developments and their utilization are not mentioned. As will be demonstrated by selected examples the increasing interlacing of science with the military does not stop at domains that traditionally are regarded as exclusively oriented to human welfare like biomedical research [9]. This fact is actually characterized and stressed by the expression "Star Wars Medicine", which becomes increasingly common as popular description for laser applications (including holography) in medicine [10]. Thus, the consequence - even in such highly specialized fields like biomedical applications of holography - have to be discussed.

  3. Terahertz biomedical science and technology

    CERN Document Server

    Son, Joo-Hiuk

    2014-01-01

    Introduction to Biomedical Studies Using Terahertz WavesJoo-Hiuk SonSection I Terahertz TechnologyTerahertz Sources and DetectorsHyunyong Choi and Joo-Hiuk SonTabletop High-Power Terahertz Pulse Generation TechniquesYun-Shik LeeTerahertz Imaging and Tomography TechniquesHyunyong Choi and Joo-Hiuk SonCompact Solid-State Electronic Terahertz Devices and CircuitsJae-Sung Rieh, Daekeun Yoon, and Jongwon Yun<

  4. Application of infrared to biomedical sciences

    CERN Document Server

    Etehadtavakol, Mahnaz

    2017-01-01

    The book covers the latest updates in the application of infrared to biomedical sciences, a non-invasive, contactless, safe and easy approach imaging of skin and tissue temperatures. Its diagnostic procedure allows practitioners to identify the locations of abnormal chemical and blood vessel activity such as angiogenesis in body tissue. Its non-invasive approach works by applying the technology of the infrared camera and state-of-the-art software, where high-resolution digital infrared imaging technology benefits highly from enhanced image production, standardized image interpretation protocols, computerized comparison and storage, and sophisticated image enhancement and analysis. The book contains contributions from global prominent scientists in the area of infrared applications in biomedical studies. The target audience includes academics, practitioners, clinicians and students working in the area of infrared imaging in biomedicine.

  5. Dielectrophoresis for Biomedical Sciences Applications: A Review

    Directory of Open Access Journals (Sweden)

    Nurhaslina Abd Rahman

    2017-02-01

    Full Text Available Dielectrophoresis (DEP is a label-free, accurate, fast, low-cost diagnostic technique that uses the principles of polarization and the motion of bioparticles in applied electric fields. This technique has been proven to be beneficial in various fields, including environmental research, polymer research, biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the major research areas that could potentially benefit from DEP technology for diverse applications. Nevertheless, many medical science research investigations have yet to benefit from the possibilities offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges, future directions and potential applications of research investigations in the medical sciences utilizing DEP technique. This review will also act as a guide and reference for medical researchers and scientists to explore and utilize the DEP technique in their research fields.

  6. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  7. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    1987-05-13

    1880Ü JPRS-UBB-87-OlO 13 MAY 1987 USSR Report LIFE SCIENCES BIOMEDICAL AND BEHAVIORAL SCIENCES DISTRIBUTION STATEMENT I App*w#d lot pubfe...Preirradiation Status and Site of Irradiation (N.P. Didenko, V.M. Perelmuter, et al.; BIOFIZIKA, No 5, Sep-Oct 86) 41 Effects of Nonionizing Microwave ...20026 radiometer (GDR) as a scaling unit. Regression equations were calculated for the controlr and experimental groups were calculated based on

  8. Biomedical and Environmental Sciences INFORMATION FOR AUTHORS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Biomedical and Environmental Sciences, an international journal with emphasis on scientific findings in China, publishes articles dealing with biologic and toxic effects of environmental pollutants on man and other forms of life. The effects may be measured with pharmacological, biochemical, pathological, and immunological techniques. The journal also publishes reports dealing with the entry, transport, and fate of natural and anthropogenic chemicals in the biosphere, and their impact on human health and well-being.Papers describing biochemical, pharmacological, pathological, toxicological and immunological studies of pharmaceuticals (biotechnological products) are also welcome.

  9. What should biomedical sciences education in dental schools achieve?

    Science.gov (United States)

    Lantz, M S; Chaves, J F

    1997-05-01

    Education for the first professional degree in dentistry is intended to produce graduates capable of offering a wide range of high quality dental services to the general public. More than that, it is expected that graduates will be firmly grounded in the scientific basis for their professional practices and be equipped to evaluate critically and integrate selectively new scientific findings that emerge during their professional lifetimes. In addition, they are expected to be able to work effectively with diverse patient populations and to conduct their practices with a high level of sensitivity to the ethical and psychosocial dimensions of patient care. Indiana University School of Dentistry has undergone a process of curriculum reform that has yielded a new first professional degree program. Its hallmarks are large, multidisciplinary courses (seven courses in the first two years) that are taught using a variety of strategies including problem-based learning in small groups as well as lectures. The biomedical sciences curriculum is concept-based. Students will demonstrate their understanding of science concepts and methods by applying them to the solution of research and health care problems. Biomedical sciences will be taught at a level that will provide a comprehensive understanding of the functioning of the human body in health and disease, allow students to assimilate the coming revolution in molecular medicine, and selectively use new diagnostics, preventives, and therapeutics that evolve as molecular biological technologies yield solutions to current medical and dental problems. Using the biomedical sciences curriculum as a vehicle, we will also achieve the goal of training dentists as critical thinkers, problem solvers, lifelong learners, and ethical practitioners, skillful in peer and self-evaluation, and cognizant of the psychosocial as well as biomedical perspective of health and disease.

  10. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  11. 75 FR 70270 - Submission for OMB Review; Comment Request; Pretesting of NIAID's Biomedical HIV Prevention...

    Science.gov (United States)

    2010-11-17

    ... NIAID's Biomedical HIV Prevention Research Communication Messages SUMMARY: In compliance with the... Collection: Title: Pretesting of NIAID's Biomedical HIV Prevention Research Communication Messages. Type of... biomedical HIV prevention research. The primary objectives of the pretests are to (1) Assess...

  12. 76 FR 6484 - Submission for OMB Review; Comment Request; Pretesting of NIAID's Biomedical HIV Prevention...

    Science.gov (United States)

    2011-02-04

    ... NIAID's Biomedical HIV Prevention Research Communication Messages SUMMARY: Under the provisions of...: Title: Pretesting of NIAID's Biomedical HIV Prevention Research Communication Messages. Type of... biomedical HIV prevention research. The primary objectives of the pretests are to (1) assess...

  13. Advancing community stakeholder engagement in biomedical HIV prevention trials: principles, practices and evidence.

    Science.gov (United States)

    Newman, Peter A; Rubincam, Clara

    2014-12-01

    Community stakeholder engagement is foundational to fair and ethically conducted biomedical HIV prevention trials. Concerns regarding the ethical engagement of community stakeholders in HIV vaccine trials and early terminations of several international pre-exposure prophylaxis trials have fueled the development of international guidelines, such as UNAIDS' good participatory practice (GPP). GPP aims to ensure that stakeholders are effectively involved in all phases of biomedical HIV prevention trials. We provide an overview of the six guiding principles in the GPP and critically examine them in relation to existing social and behavioral science research. In particular, we highlight the challenges involved in operationalizing these principles on the ground in various global contexts, with a focus on low-income country settings. Increasing integration of social science in biomedical HIV prevention trials will provide evidence to advance a science of community stakeholder engagement to support ethical and effective practices informed by local realities and sociocultural differences.

  14. Modeling and control in the biomedical sciences

    CERN Document Server

    Banks, H T

    1975-01-01

    These notes are based on (i) a series of lectures that I gave at the 14th Biennial Seminar of the Canadian Mathematical Congress held at the University of Western Ontario August 12-24, 1973 and (li) some of my lectures in a modeling course that I have cotaught in the Division of Bio-Medical Sciences at Brown during the past several years. An earlier version of these notes appeared in the Center for Dynamical Systems Lectures Notes series (CDS LN 73-1, November 1973). I have in this revised and extended version of those earlier notes incorporated a number of changes based both on classroom experience and on my research efforts with several colleagues during the intervening period. The narrow viewpoint of the present notes (use of optimization and control theory in biomedical problems) reflects more the scope of the CMC lectures given in August, 1973 than the scope of my own interests. Indeed, my real interests have included the modeling process itself as well as the contributions made by investiga­ tors who e...

  15. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  16. Biomedical Applications of NASA Science and Technology

    Science.gov (United States)

    Brown, James N., Jr.

    1968-01-01

    During the period 15 September 1968 to 14 December 1968, the NASA supported Biomedical Application Team at the Research Triangle Institute has identified 6 new problems, performed significant activities on 15 of the active problems identified previously, performed 5 computer searches of the NASA aerospace literature, and maintained one current awareness search. As a partial result of these activities, one technology transfer was accomplished. As a part of continuing problem review, 13 problems were classified inactive. Activities during the quarter involved all phases of team activity with respect to biomedical problems. As has been observed in preceding years, it has been exceedingly difficult to arrange meetings with medical investigators during the fourth quarter of the calendar year. This is a result of a combination of factors. Teaching requirements, submission of grant applications and holidays are the most significant factors involved. As a result, the numbers of new problems identified and of transfers and potential transfers are relatively low during this quarter. Most of our activities have thus been directed toward obtaining information related to problems already identified. Consequently, during the next quarter we will follow up on these activities with the expectation that transfers will be accomplished on a number of them. In addition, the normal availability of researchers to the team is expected to be restored during this quarter, permitting an increase in new problem identification activities as well as follow-up with other researchers on old problems. Another activity scheduled for the next quarter is consultation with several interested biomedical equipment manufacturers to explore means of effective interaction between the Biomedical Application Team and these companies.

  17. Epistemic fault lines in biomedical and social approaches to HIV prevention

    Directory of Open Access Journals (Sweden)

    Adam Barry D

    2011-09-01

    Full Text Available Abstract This paper raises the question of how knowledge creation is organized in the area of HIV prevention and how this concatenation of expertise, resources, at-risk people and viruses shapes the knowledge used to impede the epidemic. It also seeks to trouble the discourses of biomedical pre-eminence in the field of HIV prevention by examining the claim for treatment as prevention, looking at evidence constructed through the biomedical frame and through the lens of the sociology of science. These questions lie within a larger socio-historical context of lagging worldwide attention and funding to prevention in the HIV area and, in particular, neglect of populations at greatest risk. Much contemporary HIV prevention research relies on a population science divided over an epistemic fault line from the communities and individuals who must make sense of the intrusion of a life-threatening disease into their pursuit of pleasure and intimacy. There are, nevertheless, lessons to be learned from prevention success stories among sex workers, injection drug users, and gay and bisexual men. The success stories point to a need for a robust social science agenda that examines: the ways that people are socially organized and networked; the popular strategies and folk wisdoms developed in the face of HIV risk; socio-historical movement of sexual and drug cultures; the dynamics of popular mobilization to advance health; the institutional sources of HIV discourses; and popular understandings of HIV technologies and messages.

  18. Publications in biomedical and environmental sciences programs, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences.

  19. Evaluation of Biomedical Science Students Use and Perceptions of Podcasting

    Science.gov (United States)

    Smith, Katie; Morris, Neil P.

    2014-01-01

    The use of podcasting in higher education has escalated in recent years. The aim of this case study was to analyse undergraduate student use and perceptions of lecture audio recordings in the School of Biomedical Sciences at the University of Leeds. Students completed an online survey over a two-week period based on their use of lecture audio…

  20. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  1. Theory and experiment in biomedical science

    Science.gov (United States)

    Allen, Roland

    2012-10-01

    A physicist might regard a person as a collection of electrons and quarks, and a biologist might regard her as an assemblage of biochemical molecules. But according to some speakers at a recent Welch conference [1] biology is a branch of physics. Then biomedical research is a branch of applied physics. Even if one adopts a more modest perspective, it is still true that physics can contribute strongly to biomedical research. An example on the experimental side is the recent studies of G protein-coupled receptors (targeted by more than 50 percent of therapeutic drugs) using synchrotron radiation and nuclear magnetic resonance. On the theory side, one might classify models as microscopic (e.g., simulations of molecules, ions, or electrons), mesoscopic (e.g., simulations of pathways within a cell), or macroscopic (e.g., calculations of processes involving the whole body). We have recently introduced a new macroscopic method for estimating the biochemical response to pharmaceuticals, surgeries, or other medical interventions, and applied it in a simple model of the response to bariatric surgeries [2]. An amazing effect is that the most widely used bariatric surgery (Roux-en-Y-gastric bypass) usually leads to remission of type 2 diabetes in days, long before there is any significant weight loss (with further beneficial effects in the subsequent months and years). Our results confirm that this effect can be largely explained by the enhanced post-meal excretion of glucagon-like peptide 1 (GLP-1), an incretin that increases insulin secretion from the pancreas, but also suggest that other mechanisms are likely to be involved, possibly including an additional insulin-independent pathway for glucose transport into cells. [4pt] [1] Physical Biology, from Atoms to Medicine, edited by Ahmed H. Zewail (Imperial College Press, London, 2008).[0pt] [2] Roland E. Allen, Tyler D. Hughes, Jia Lerd Ng, Roberto D. Ortiz, Michel Abou Ghantous, Othmane Bouhali, Abdelilah Arredouani

  2. Biomedical science postdocs: an end to the era of expansion.

    Science.gov (United States)

    Garrison, Howard H; Justement, Louis B; Gerbi, Susan A

    2016-01-01

    After >3 decades of steady growth, the number of biological and medical science postdoctorates at doctoral degree-granting institutions recently began to decline. From 2010 through 2013, the most recent survey years, the postdoctoral population decreased from 40,970 to 38,719, a loss of 5.5%. This decline represents a notable departure from the previous long-standing increases in the number of postdoctorates in the biomedical workforce. The rate of contraction appears to be accelerating in the most recent survey years, and this has important implications for the biomedical workforce.

  3. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  4. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    Science.gov (United States)

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an earlier…

  5. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  6. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  7. Structural biology computing: Lessons for the biomedical research sciences.

    Science.gov (United States)

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields.

  8. Life and Biomedical Sciences and Applications Advisory Subcommittee Meeting

    Science.gov (United States)

    1996-01-01

    The proceedings of the August 1995 meeting of the Life and Biomedical Sciences and Applications Advisory Subcommittee (LBSAAS) are summarized. The following topics were addressed by the Subcommittee members: the activities and status of the LBSA Division; program activities of the Office of Life and Microgravity Sciences and Applications (OLMSA); the medical Countermeasures Program; and the Fettman Report on animal research activities at ARC. Also presented were a history and overview of the activities of the Space Station Utilization Advisory Committee and the Advanced Life Support Program (ALSP). The meeting agenda and a list of the Subcommittee members and meeting attendees are included as appendices.

  9. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the... location changes have been made for the following panel meetings of the of the Joint Biomedical...

  10. Data science, learning, and applications to biomedical and health sciences.

    Science.gov (United States)

    Adam, Nabil R; Wieder, Robert; Ghosh, Debopriya

    2017-01-01

    The last decade has seen an unprecedented increase in the volume and variety of electronic data related to research and development, health records, and patient self-tracking, collectively referred to as Big Data. Properly harnessed, Big Data can provide insights and drive discovery that will accelerate biomedical advances, improve patient outcomes, and reduce costs. However, the considerable potential of Big Data remains unrealized owing to obstacles including a limited ability to standardize and consolidate data and challenges in sharing data, among a variety of sources, providers, and facilities. Here, we discuss some of these challenges and potential solutions, as well as initiatives that are already underway to take advantage of Big Data.

  11. Publications in biomedical and environmental sciences programs, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.

  12. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    academician, Ukrainian SSSR Academy of Sciences, Physicochemical Institute, Ukrainian SSR Academy of Sciences, Odessa [Abstract] Polyacrylamide gel (PAAG...the canned chicken and beef products. For example, it has been demonstrated that one of the common additives in pediatric products, starch ... starch products may react with proteins leading to the formation of polycondensation products and eliminating 20-50% of the free amino acids in the

  13. Life sciences biomedical research planning for Space Station

    Science.gov (United States)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  14. Graduate Experience in Science Education: The Development of a Science Education Course for Biomedical Science Graduate Students

    Science.gov (United States)

    Markowitz, Dina G.; DuPre, Michael J.

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with…

  15. Keynote Lecture: The Problems and Challenges in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Bruce Albert

    2015-08-01

    Full Text Available Distressed by the perverse incentives that have generated the current hyper-competitive biomedical research environment in the United States, four of us published an open-access article in April 2014 entitled: Rescuing US biomedical research from its systemic flaws (Alberts, B., Kirschner, Marc W., Tilghman, Shirley, and  Varmus, H.; Proc. Natl. Acad. Sci. USA 111, 5773-5777 (2014. As announced in our follow-up piece, Opinion: Addressing systemic problems in the biomedical research enterprise (Proc. Natl. Acad. Sci. USA 112, 1912-1913 (2015, we have formed a 16-member steering committee to oversee a new website that is designed to collect suggestions for actions that can ameliorate the identified problems, as well as to highlight promising changes that are either underway or proposed (see http://rescuingbiomedicalresearch.org.  Despite widespread agreement concerning the problems, any substantial change in the system is bound to be controversial. Experiments are therefore needed. In my talk, I will outline some possible ideas for overcoming the inertia that prevents moving forward.We are encouraging both national and international contributions to this effort, since the problems that we have described are by no means unique to the United States.

  16. Publications in biomedical and environmental sciences programs, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division.

  17. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    2007-11-02

    Poliomyelitis and Viral Encephalitides, USSR Academy of Medical Sciences, Moscow [Abstract] A study was made of the influence of tahyna virus on the...Suppression of Muscle Macrophage Function in Experimental Tahyna Virus Infection (V. V. Vargin, B. F. Semenov; VOPROSY VIRUSOLOGII, No 2, Mar-Apr 83) 14...Tick-Borne Encephalitis Virus Genome DNA-Copies Into Cellular DNA (I. D. Drynov, et al.; VOPROSY VIRUSOLOGII, No 2, Mar-Apr 83) 32 "Strict

  18. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    Studies) p 116 MARKYAVICHYUS, V. Yu., Institute of Botany , LiSSR Academy of Sciences, Nilnius [Abstract] Three species of mold of the genus Septoria...Jul-Sep 83 (manuscript received 19 Nov 82) pp 15-17 ZVYAGIN, V. N., Scientific Research Institute of Forensic Medicine (director- A. P. Gromov...received 2 Nov 82) pp 29-31 BOYKOVA, N. V., ZARAF’YANTS, G. N., KRAVTSOVA, G. B. and PETRACHKOVA, T. V., Chair of Forensic Medicine, Toxic Chemicals

  19. Cognitive and learning sciences in biomedical and health instructional design: A review with lessons for biomedical informatics education.

    Science.gov (United States)

    Patel, Vimla L; Yoskowitz, Nicole A; Arocha, Jose F; Shortliffe, Edward H

    2009-02-01

    Theoretical and methodological advances in the cognitive and learning sciences can greatly inform curriculum and instruction in biomedicine and also educational programs in biomedical informatics. It does so by addressing issues such as the processes related to comprehension of medical information, clinical problem-solving and decision-making, and the role of technology. This paper reviews these theories and methods from the cognitive and learning sciences and their role in addressing current and future needs in designing curricula, largely using illustrative examples drawn from medical education. The lessons of this past work are also applicable, however, to biomedical and health professional curricula in general, and to biomedical informatics training, in particular. We summarize empirical studies conducted over two decades on the role of memory, knowledge organization and reasoning as well as studies of problem-solving and decision-making in medical areas that inform curricular design. The results of this research contribute to the design of more informed curricula based on empirical findings about how people learn and think, and more specifically, how expertise is developed. Similarly, the study of practice can also help to shape theories of human performance, technology-based learning, and scientific and professional collaboration that extend beyond the domain of medicine. Just as biomedical science has revolutionized health care practice, research in the cognitive and learning sciences provides a scientific foundation for education in biomedicine, the health professions, and biomedical informatics.

  20. Context-Aware Adaptive Hybrid Semantic Relatedness in Biomedical Science

    Science.gov (United States)

    Emadzadeh, Ehsan

    Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1--6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.

  1. Art and science of authorship for biomedical research publication

    Directory of Open Access Journals (Sweden)

    S S Harsoor

    2016-01-01

    Full Text Available Completion of research is logically followed by process of submission of the outcomes for publication. The objective of this article is to sensitise the young potential authors to improve their skill of writing so that the acceptance rate of publication is improved without significant comments and efforts of the editors of the journal. The article is based on the available literature combined with the experience of the author himself as reviewer and editor of biomedical journals. The treatment patterns of clinicians are moving towards evidence-based medical practice. Hence, a clinically relevant research question based on the contemporary knowledge gap is studied using appropriate research methodology. The writers are informed about the criteria to be fulfilled to claim authorship. Finally, emphasis is laid on the essentials of good medical writing necessary for publication. The writing for submission to biomedical journal is both an art and science in itself. A scientifically well-conducted study along with a sound knowledge of the mechanics of writing will enable the novices to achieve better acceptance rate for publication.

  2. Art and science of authorship for biomedical research publication.

    Science.gov (United States)

    Harsoor, S S

    2016-09-01

    Completion of research is logically followed by process of submission of the outcomes for publication. The objective of this article is to sensitise the young potential authors to improve their skill of writing so that the acceptance rate of publication is improved without significant comments and efforts of the editors of the journal. The article is based on the available literature combined with the experience of the author himself as reviewer and editor of biomedical journals. The treatment patterns of clinicians are moving towards evidence-based medical practice. Hence, a clinically relevant research question based on the contemporary knowledge gap is studied using appropriate research methodology. The writers are informed about the criteria to be fulfilled to claim authorship. Finally, emphasis is laid on the essentials of good medical writing necessary for publication. The writing for submission to biomedical journal is both an art and science in itself. A scientifically well-conducted study along with a sound knowledge of the mechanics of writing will enable the novices to achieve better acceptance rate for publication.

  3. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following three panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... review by the Board involve a wide range of medical specialties within the general areas of...

  4. 1st International Conference on Computational and Experimental Biomedical Sciences

    CERN Document Server

    Jorge, RM

    2015-01-01

    This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...

  5. Big biomedical data as the key resource for discovery science.

    Science.gov (United States)

    Toga, Arthur W; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W; Price, Nathan D; Glusman, Gustavo; Heavner, Benjamin D; Dinov, Ivo D; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-11-01

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an "-ome to home" approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center's computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson's and Alzheimer's.

  6. What is the benefit of the biomedical and behavioral interventions in preventing HIV transmission?

    OpenAIRE

    Ricardo Kuchenbecker

    2015-01-01

    ABSTRACTIntroduction:Scientific evidence supports the sinergy between biomedical and behavioral interventions aimed at preventing the transmission of HIV as a strategy to eradicate AIDS.Objective:To characterize comparatively the benefits from biomedical and behavioral interventions to prevent HIV transmission.Methods:Narrative review. We performed a comparative analysis of the benefits of studied interventions by means of estimating the number needed to treat (NNT). Evaluated interventions: ...

  7. Combination HIV prevention interventions: the potential of integrated behavioral and biomedical approaches.

    Science.gov (United States)

    Brown, Jennifer L; Sales, Jessica M; DiClemente, Ralph J

    2014-12-01

    Combination HIV prevention interventions that integrate efficacious behavioral and biomedical strategies offer the potential to reduce new HIV infections. We overview the efficacy data for three biomedical HIV prevention approaches, namely microbicides, pre-exposure prophylaxis (PrEP), and HIV vaccination; review factors associated with differential acceptability and uptake of these methods; and suggest strategies to optimize the effectiveness and dissemination of combination HIV prevention approaches. A narrative review was conducted highlighting key efficacy data for microbicides, PrEP, and an HIV vaccination and summarizing acceptability data for each of the three biomedical HIV prevention approaches. Recommendations for the integration and dissemination of combined behavioral and biomedical HIV prevention approaches are provided. To date, microbicides and an HIV vaccination have demonstrated limited efficacy for the prevention of HIV. However, PrEP has demonstrated efficacy in reducing HIV incident infections. A diverse array of factors influences both hypothetical willingness and actual usage of each biomedical prevention method. Strategies to effectively integrate and evaluate combination HIV prevention interventions are urgently needed.

  8. Keynote Lecture: The Problems and Challenges in Biomedical Sciences

    OpenAIRE

    Bruce Albert

    2015-01-01

    Distressed by the perverse incentives that have generated the current hyper-competitive biomedical research environment in the United States, four of us published an open-access article in April 2014 entitled: Rescuing US biomedical research from its systemic flaws (Alberts, B., Kirschner, Marc W., Tilghman, Shirley, and  Varmus, H.; Proc. Natl. Acad. Sci. USA 111, 5773-5777 (2014)). As announced in our follow-up piece, Opinion: Addressing systemic problems in the biomedical research enterpri...

  9. The rolling evolution of biomedical science as an essential tool in modern clinical practice.

    Science.gov (United States)

    Blann, Andrew

    2016-01-01

    The British Journal of Biomedical Science is committed to publishing high-quality original research that represents a clear advance in the practice of biomedical science, and reviews that summarise recent advances in the field of biomedical science. The overall aim of the Journal is to provide a platform for the dissemination of new and innovative information on the diagnosis and management of disease that is valuable to the practicing laboratory scientist. The Editorial that follows describes the Journal and provides a perspective of its aims and objectives.

  10. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review.

    Science.gov (United States)

    Yadav, Preeti; Yadav, Harsh; Shah, Veena Gowri; Shah, Gaurav; Dhaka, Gaurav

    2015-09-01

    Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.

  11. The Recognition of Biomedical Engineering Within the International Council for Science

    Science.gov (United States)

    2001-10-25

    Forty years separate the emergence of Biomedical Engineering in a meeting in Paris at UNESCO in 1959 from its recognition together with Medical...Physics in 1999 by the International Council for Science. The main problems of definition and of identity of Biomedical Engineering as a scientific

  12. Mining biomedical images towards valuable information retrieval in biomedical and life sciences.

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries.

  13. British Journal of Biomedical Science in 2015: what have we learned?

    Science.gov (United States)

    Blann, Andrew; Nation, Brian

    2016-01-01

    In 2015, the British Journal of Biomedical Science published 47 reports on topics relating to the various disciplines within biomedical science. Of these, the majority were in infection science (15 in microbiology and two in virology) and blood science (seven in biochemistry, four in haematology, three in immunology and one in transplantation), with a smaller number in cellular sciences (four reports) and with one review across disciplines. The present report will summarise key aspects of these publications that are of greatest relevance to laboratory scientists.

  14. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  15. New frontiers in biomedical science and engineering during 2014-2015.

    Science.gov (United States)

    Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep

    2015-01-01

    The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.

  16. From Bench to Bedside: A Communal Utility Value Intervention to Enhance Students' Biomedical Science Motivation

    Science.gov (United States)

    Brown, Elizabeth R.; Smith, Jessi L.; Thoman, Dustin B.; Allen, Jill M.; Muragishi, Gregg

    2015-01-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student's perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective, we identified and tested 2…

  17. What is the benefit of the biomedical and behavioral interventions in preventing HIV transmission?

    Directory of Open Access Journals (Sweden)

    Ricardo Kuchenbecker

    2015-09-01

    Full Text Available ABSTRACTIntroduction:Scientific evidence supports the sinergy between biomedical and behavioral interventions aimed at preventing the transmission of HIV as a strategy to eradicate AIDS.Objective:To characterize comparatively the benefits from biomedical and behavioral interventions to prevent HIV transmission.Methods:Narrative review. We performed a comparative analysis of the benefits of studied interventions by means of estimating the number needed to treat (NNT. Evaluated interventions: counseling activities for behavior change to prevent exposure to HIV; antiretroviral pre-exposure prophylaxis (PrEP and antiretroviral post-exposure prophylasis (PEP for HIV and treatment of serodiscordant couples as a strategy for prevention of HIV transmission (TasP.Results:counseling interventions and TasP have smaller NNTs, equal to, respectively, 11 (95%CI 9 - 18 at 12 months and 34 (95%CI 23 - 54 in 42 months comparatively to PrEP interventions, that resulted in 41 (95%CI 28 - 67 individuals receiving antiretrovirals in order to prevent one case of HIV infection at 36 months for men and serodiscordant couples. PEP interventions are associated with protective effects estimated at 81%. Lack of trials evaluating PEP prevents estimate of NNT.Conclusion:The estimate of the NNT can be a helpful parameter in the comparison between the effectiveness of different behavioral and biomedical HIV prevention strategies. Studies evaluating the benefit and safety of combined behavioral and biomedical interventions are needed, especially considering the attributable fraction of each component. Integration of behavioral and biomedical interventions is required to achieve complete suppression of the virus, and thus reducing viral replication, infectivity and the number of cases.

  18. Biomedical scientist training officers' evaluation of integrated (co-terminus) Applied Biomedical Science BSc programmes: a multicentre study.

    Science.gov (United States)

    Pitt, S J; Cunningham, J M

    2011-01-01

    The introduction of the Institute of Biomedical Science (IBMS) portfolio for pre-registration training in 2003 allowed universities to develop integrated (co-terminus) biomedical science BSc programmes. Students undertake structured placements within clinical pathology laboratories as part of their degree. The clinical training and professional development of students is undertaken by training officers (TOs), who are experienced Health Professions Council (HPC)-registered biomedical scientists and usually also members of the IBMS. This study aims to evaluate TOs' perceptions of these integrated degrees as a means of delivering pre-registration training for biomedical scientists. A questionnaire to collect quantitative data and be completed anonymously was sent to TOs, via staff at participating universities. Items considered TOs' perceptions in four categories: how well students fitted into the laboratory team, their professional and scientific development, the impact of delivering integrated degrees on service delivery, and the commitment to training students. Surveys took place in 2007, 2008 and 2009 and involved TOs taking students from 10, 14 and 17 universities each year, respectively. The response rates to the survey were 60% in 2007, 34% in 2008 and 12% in 2009. Participants were representative in terms of age, gender and pathology discipline and had a broad range of experience with students. The overall mean score for TOs perceptions was 3.38 in 2007 which increased significantly to 3.99 in 2009 (Kruskall Wallis test chi2 = 21.13, P<0.01). Mean scores in three of the four categories were positive in 2007, although the impact on service delivery was perceived negatively. In all areas, means were significantly greater in 2009. The results indicate that TOs view the integrated degrees favourably and are happy with the scientific and professional development of students. Although designing training sessions suitable for undergraduates took extra work initially

  19. The Role Biomedical Science Laboratories Can Play in Improving Science Knowledge and Promoting First-Year Nursing Academic Success

    Science.gov (United States)

    Arneson, Pam

    2011-01-01

    The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an…

  20. The Faculty Costs to Educate a Biomedical Sciences Graduate Student

    Science.gov (United States)

    Smolka, Adam J.; Halushka, Perry V.; Garrett-Mayer, Elizabeth

    2015-01-01

    Academic medical centers nationwide face numerous fiscal challenges resulting from implementation of restructured healthcare delivery models, contracting state support for higher education, and increased competition for federal and other sources of biomedical research funding. In pursuing greater accountability and transparency in its fiscal…

  1. Race and Genetics: Controversies in Biomedical, Behavioral, and Forensic Sciences

    Science.gov (United States)

    Ossorio, Pilar; Duster, Troy

    2005-01-01

    Among biomedical scientists, there is a great deal of controversy over the nature of race, the relevance of racial categories for research, and the proper methods of using racial variables. This article argues that researchers and scholars should avoid a binary-type argument, in which the question is whether to use race always or never.…

  2. Contribution of Electrochemistry to the Biomedical and Pharmaceutical Analytical Sciences.

    Science.gov (United States)

    Kauffmann, Jean-Michel; Patris, Stephanie; Vandeput, Marie; Sarakbi, Ahmad; Sakira, Abdul Karim

    2016-01-01

    All analytical techniques have experienced major progress since the last ten years and electroanalysis is also involved in this trend. The unique characteristics of phenomena occurring at the electrode-solution interface along with the variety of electrochemical methods currently available allow for a broad spectrum of applications. Potentiometric, conductometric, voltammetric and amperometric methods are briefly reviewed with a critical view in terms of performance of the developed instrumentation with special emphasis on pharmaceutical and biomedical applications.

  3. Biomedical technical transfer. Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    Lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative unit for evaluating heart patients. This technology is based on NASA research, using vacuum chambers to stress the cardiovascular system during space flight. Additional laboratory tests of an intracranial pressure transducer, have been conducted. Three new biomedical problems to which NASA technology is applicable are also identified. These are: a communication device for the speech impaired, the NASA development liquid-cooled garment, and miniature force transducers for heart research.

  4. Polymers in life sciences: Pharmaceutical and biomedical applications

    Science.gov (United States)

    Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo; Lamberti, Gaetano; Cascone, Sara; Titomanlio, Giuseppe

    2015-12-01

    This paper deals with the work done by prof. Titomanlio and his group in the fields of pharmaceutical and biomedical applications of polymers. In particular, the main topics covered are: i) controlled drug release from pharmaceuticals based on hydrogel for oral delivery of drugs; ii) production and characterization of micro and nanoparticles based on stimuli-responsive polymers; iii) use of polymers for coronary stent gel-paving; iv) design and realization of novel methods (in-vitro and in-silico) to test polymer-based pharmaceuticals.

  5. Establishment of an index system for evaluating outstanding biomedical scientists for science foundation of Shanghai

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-jing; CHEN Xin; REN Xu-feng

    2007-01-01

    Objective:To establish a scientific, objective and applicable index system for evaluating outstanding biomedical scientists for science foundation of Shanghai. Methods: According to the principal indices that have been used in the developed countries for evaluating their talented personnel and the reality of our country, an index system was set up to evaluate the outstanding biomedical scientists for Shanghai science foundation. The following parameters were used to simplify the indices: correlation coefficient,multiple correlation coefficient, partial correlation coefficient, creditability, and discriminatory power.And analytic hierarchy process was used to determine the weights of each index. Results and Conclusions:The established index system is scientific and applicable; it is helpful for cultivating and evaluating outstanding biomedical scientists.

  6. A New Voice in Science : Patient participation in decision-making on biomedical research

    NARCIS (Netherlands)

    Caron-Flinterman, J.F.

    2005-01-01

    End-users are increasingly involved in decision-making concerning science and technology. This dissertation focuses on a specific kind of end-user participation: patient participation in decision-making on bio-medical research. Since patients can be considered relevant experts and stakeholders with

  7. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  8. Impact of the USMLE Step 1 on Teaching and Learning of the Basic Biomedical Sciences.

    Science.gov (United States)

    Swanson, David B.; And Others

    1992-01-01

    Discussion of the newly modified United States Medical Licensing Examination Step 1 reviews the test, phase-in plans, and potential impact on basic biomedical sciences education. It is recommended that medical schools not use the test as the sole criterion for promotion to the third year and carefully review other examination-related requirements…

  9. Drug design and discovery: translational biomedical science varies among countries.

    Science.gov (United States)

    Weaver, Ian N; Weaver, Donald F

    2013-10-01

    Drug design and discovery is an innovation process that translates the outcomes of fundamental biomedical research into therapeutics that are ultimately made available to people with medical disorders in many countries throughout the world. To identify which nations succeed, exceed, or fail at the drug design/discovery endeavor--more specifically, which countries, within the context of their national size and wealth, are "pulling their weight" when it comes to developing medications targeting the myriad of diseases that afflict humankind--we compiled and analyzed a comprehensive survey of all new drugs (small molecular entities and biologics) approved annually throughout the world over the 20-year period from 1991 to 2010. Based upon this analysis, we have devised prediction algorithms to ascertain which countries are successful (or not) in contributing to the worldwide need for effective new therapeutics.

  10. Biomedical technology transfer: Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.

  11. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  12. Inclusion of policies on ethical standards in animal experiments in biomedical science journals.

    Science.gov (United States)

    Rands, Sean A

    2011-11-01

    Most published biomedical research involving animal models is evaluated carefully to ensure that appropriate ethical standards are met. In the current study, 500 journals randomly selected from MedLine were assessed for whether they presented animal research. Of the 138 journals that did, the instructions to authors of 85 (61.6%) included a requirement for author assurance of adherence to ethical standards during experiments involving animals. In comparison to a wider range of biologic journals, biomedical science journals were more likely to have some sort of ethical policy concerning the reporting and presentation of animal experiments.

  13. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  14. Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.

    Science.gov (United States)

    Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi

    2016-04-01

    This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.

  15. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Siddhartha Shrivastava

    2009-01-01

    Full Text Available Recent research on biosystems at the nanoscale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, neuromorphic engineering, and developing a sustainable environment. Nanobiosystems research is a priority in many countries and its relevance within nanotechnology is expected to increase in the future. The realisation that the nanoscale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nanomedical research. The present review explores the significance of nanoscience and latest nanotechnologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas.

  16. The placebo puzzle: examining the discordant space between biomedical science and illness/healing.

    Science.gov (United States)

    Pohlman, Shawn; Cibulka, Nancy J; Palmer, Janice L; Lorenz, Rebecca A; SmithBattle, Lee

    2013-03-01

    The placebo response presents an enigma to biomedical science: how can 'inert' or 'sham' procedures reduce symptoms and produce physiological changes that are comparable to prescribed treatments? In this study, we examine this puzzle by explicating the discordant space between the prevailing biomedical paradigm, which focuses on a technical understanding of diagnosis and treatment, and a broader understanding of illness and healing as relational and embodied. Although biomedical achievements are impressive, the knowledge resulting from this paradigm is limited by its ontological and epistemological assumptions. When the body and world are objectified, illness meanings, therapeutic relationships, and healing practices are dismissed or distorted. In spite of a robust critique of the tenets of biomedicine for guiding practice, the biomedical paradigm retains a tenacious hold on evidence-based medicine and nursing, downplaying our clinical understanding of the sentient body, patients' life-worlds, and illness and healing. In reality, skilled nurses rely on multiple forms of knowledge in providing high-quality care to particular patients. Clinically wise nurses integrate their experience and knowledge of patients' priorities, fears, and illness trajectories along with biomedical findings to make astute judgments and promote health and healing.

  17. A new paradigm for graduate research and training in the biomedical sciences and engineering.

    Science.gov (United States)

    Humphrey, J D; Coté, G L; Walton, J R; Meininger, G A; Laine, G A

    2005-06-01

    98Emphasis on the individual investigator has fostered discovery for centuries, yet it is now recognized that the complexity of problems in the biomedical sciences and engineering requires collaborative efforts from individuals having diverse training and expertise. Various approaches can facilitate interdisciplinary interactions, but we submit that there is a critical need for a new educational paradigm for the way that we train biomedical engineers, life scientists, and mathematicians. We cannot continue to train graduate students in isolation within single disciplines, nor can we ask any one individual to learn all the essentials of biology, engineering, and mathematics. We must transform how students are trained and incorporate how real-world research and development are done-in diverse, interdisciplinary teams. Our fundamental vision is to create an innovative paradigm for graduate research and training that yields a new generation of biomedical engineers, life scientists, and mathematicians that is more diverse and that embraces and actively pursues a truly interdisciplinary, team-based approach to research based on a known benefit and mutual respect. In this paper, we describe our attempt to accomplish this via focused training in biomechanics, biomedical optics, mathematics, mechanobiology, and physiology. The overall approach is applicable, however, to most areas of biomedical research.

  18. Truth in basic biomedical science will set future mankind free.

    Science.gov (United States)

    Ling, Gilbert N

    2011-01-01

    It is self-evident that continued wellbeing and prosperity of our species in time to come depends upon a steady supply of major scientific and technologic innovations. However, major scientific and technical innovations are rare. As a rule, they grow only in the exceptionally fertile minds of men and women, who have fully mastered the underlying basic sciences. To waken their interest in science at an early critical age and to nurture and enhance that interest afterward, good textbooks at all level of education that accurately portray the relevant up-to-date knowledge are vital. As of now, the field of science that offers by far the greatest promise for the future of humanity is the science of life at the most basic cell and below-cell level. Unfortunately, it is precisely this crucial part of the (standardized) biological textbooks for all high schools and colleges in the US and abroad that have become, so to speak, fossilized. As a result, generation after generation of (educated) young men and women have been and are still being force-fed as established scientific truth an obsolete membrane (pump) theory, which has been categorically disproved half a century ago (see Endnote 1.) To reveal this Trojan horse of a theory for what it really is demands the concerted efforts of many courageous individuals especially young biology teachers who take themselves and their career seriously. But even the most courageous and the most resourceful won't find the task easy. To begin with, they would find it hard to access the critical scientific knowledge, with which to convert the skeptic and to rally the friendly. For the wealth of mutually supportive evidence against the membrane (pump) theory are often hidden in inaccessible publications and/or in languages other than English. To overcome this seemingly trivial but in fact formidable obstacle and to reveal the beauty and coherence of the existing but untaught truth, I put together in this small package a collection of the

  19. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  20. Tutorials for large classes of Common Foundation Program biomedical science students: successes and challenges.

    Science.gov (United States)

    al-Modhefer, Abdul-Kadhum J A; Roe, Sean M

    2010-05-01

    The aim of this paper is to investigate the problems encountered conducting biomedical science tutorials for nursing students in large classes with a typical student: staff ratio of 45:1. The study is based on level 1 Common Foundation Program students from the School of Nursing and Midwifery, Queen's University Belfast at the conclusion of two phases of biomedical sciences education which include a course of 12 interactive tutorials. Survey and interview methodologies were employed to investigate difficulties encountered by students in these large tutorial classes, to ascertain what characterises a good tutor and to explore student attitudes to interactive learning. The barriers to effective teaching and learning in tutorials are discussed and subsequently, a set of guidelines is proposed to enhance learning in them. These include being aware of the ability of the student group, having a compassionate questioning style, tailoring the teaching environment to fit the aims of the class and experimenting with different tutorial formats.

  1. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  2. Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2012-01-01

    Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.

  3. Resident's morning report: an opportunity to reinforce principles of biomedical science in a clinical context.

    Science.gov (United States)

    Brass, Eric P

    2013-01-01

    The principles of biochemistry are core to understanding cellular and tissue function, as well as the pathophysiology of disease. However, the clinical utility of biochemical principles is often obscure to clinical trainees. Resident's Morning Report is a common teaching conference in which residents present clinical cases of interest to a faculty member for discussion. This venue provides an opportunity to illustrate how basic biomedical principles facilitate an understanding of the clinical presentation, the relevant pathophysiology, and the rationale for diagnostic and therapeutic strategies. A discussion of biochemical principles can easily be incorporated into these case discussions, with the potential to reinforce these concepts and to illustrate their application to clinical decision making. This approach maintains the effort to teach basic biomedical sciences in the context of clinical application across the educational continuum.

  4. Clinical and basic science teachers' opinions about the required depth of biomedical knowledge for medical students.

    Science.gov (United States)

    Koens, Franciska; Custers, Eugène J F M; ten Cate, Olle T J

    2006-05-01

    The aim of the present study was to investigate whether basic scientists and physicians agree on the required depth of biomedical knowledge of medical students at graduation. A selection of basic science and clinical teachers rated the relevance of biomedical topics for students at graduation, illustrated by 80 example items. The items were derived from ten organ systems and designed at four levels: clinical, organ, cellular and molecular. Respondents were asked to identify for each item to what extent recently graduated medical students should have knowledge about it. In addition, they were asked to indicate whether the content of the item should be included in the medical curriculum. Analysis showed that basic scientists and physicians do not diverge at the clinical level. At the organ, cellular and molecular levels however, basic scientists judge that medical students should have more active knowledge. As expected, basic scientists also indicate that more deep level content should be included. Explanations for this phenomenon will be discussed.

  5. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  6. Measuring revolutionary biomedical science 1992-2006 using Nobel prizes, Lasker (clinical medicine) awards and Gairdner awards (NLG metric).

    Science.gov (United States)

    Charlton, Bruce G

    2007-01-01

    The Nobel prize for medicine or physiology, the Lasker award for clinical medicine, and the Gairdner international award are given to individuals for their role in developing theories, technologies and discoveries which have changed the direction of biomedical science. These distinctions have been used to develop an NLG metric to measure research performance and trends in 'revolutionary' biomedical science with the aim of identifying the premier revolutionary science research institutions and nations from 1992-2006. I have previously argued that the number of Nobel laureates in the biomedical field should be expanded to about nine per year and the NLG metric attempts to predict the possible results of such an expansion. One hundred and nineteen NLG prizes and awards were made during the past fifteen years (about eight per year) when overlapping awards had been removed. Eighty-five were won by the USA, revealing a massive domination in revolutionary biomedical science by this nation; the UK was second with sixteen awards; Canada had five, Australia four and Germany three. The USA had twelve elite centres of revolutionary biomedical science, with University of Washington at Seattle and MIT in first position with six awards and prizes each; Rockefeller University and Caltech were jointly second placed with five. Surprisingly, Harvard University--which many people rank as the premier world research centre--failed to reach the threshold of three prizes and awards, and was not included in the elite list. The University of Oxford, UK, was the only institution outside of the USA which featured as a significant centre of revolutionary biomedical science. Long-term success at the highest level of revolutionary biomedical science (and probably other sciences) probably requires a sufficiently large number of individually-successful large institutions in open competition with one another--as in the USA. If this model cannot be replicated within smaller nations, then it implies

  7. Leading change: curriculum reform in graduate education in the biomedical sciences.

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences.

  8. Teaching authorship and publication practices in the biomedical and life sciences.

    Science.gov (United States)

    Macrina, Francis L

    2011-06-01

    Examination of a limited number of publisher's Instructions for Authors, guidelines from two scientific societies, and the widely accepted policy document of the International Committee of Medical Journal Editors (ICMJE) provided useful information on authorship practices. Three of five journals examined (Nature, Science, and the Proceedings of the National Academy of Sciences) publish papers across a variety of disciplines. One is broadly focused on topics in medical research (New England Journal of Medicine) and one publishes research reports in a single discipline (Journal of Bacteriology). Similar elements of publication policy and accepted practices were found across the policies of these journals articulated in their Instructions for Authors. A number of these same elements were found in the professional society guidelines of the Society for Neuroscience and the American Chemical Society, as well as the ICMJE Uniform Requirements for Manuscripts Submitted to Biomedical Journals. Taken together, these sources provide the basis for articulating best practices in authorship in scientific research. Emerging from this material is a definition of authorship, as well as policy statements on duplicative publication, conflict of interest disclosure, electronic access, data sharing, digital image integrity, and research requiring subjects' protection, including prior registration of clinical trials. These common elements provide a foundation for teaching about scientific authorship and publication practices across biomedical and life sciences disciplines.

  9. A proposal to establish master's in biomedical sciences degree programs in medical school environments.

    Science.gov (United States)

    Ingoglia, Nicholas A

    2009-04-01

    Most graduate schools associated with medical schools offer programs leading to the PhD degree but pay little attention to master's programs. This is unfortunate because many university graduates who are interested specifically in biomedical rather than pure science fields need further education before making decisions on whether to enter clinical, research, education, or business careers. Training for these students is done best in a medical school, rather than a graduate university, environment and by faculty who are engaged in research in the biomedical sciences. Students benefit from these programs by exploring career options they might not have previously considered while learning about disease-related subjects at the graduate level. Graduate faculty can also benefit by being compensated for their teaching with a portion of the tuition revenue, funds that can help run their laboratories and support other academic expenses. Faculty also may attract talented students to their labs and to their PhD programs by exposing them to a passion for research. The graduate school also benefits by collecting masters tuition revenue that can be used toward supporting PhD stipends. Six-year outcome data from the program at Newark show that, on completion of the program, most students enter educational, clinical, or research careers and that the graduate school has established a new and significant stream of revenue. Thus, the establishment of a master's program in biomedical sciences that helps students match their academic abilities with their career goals significantly benefits students as well as the graduate school and its faculty.

  10. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  11. Should there be greater use of preprint servers for publishing reports of biomedical science?

    Science.gov (United States)

    Chalmers, Iain; Glasziou, Paul

    2016-01-01

    Vitek Tracz and Rebecca Lawrence declare the current journal publishing system to be broken beyond repair. They propose that it should be replaced by immediate publication followed by transparent peer review as the starting place for more open and efficient reporting of science. While supporting this general objective, we suggest that research is needed both to understand why biomedical scientists have been slow to take up preprint options, as well as to assess the relative merits of this and other alternatives to journal publishing.

  12. Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility

    Science.gov (United States)

    Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.

    1992-01-01

    In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.

  13. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  14. Recent developments in fluorescence-based microscopy applied in biomedical sciences

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The present short review aims to give an overview of the most recent de velopments in fluorescence microscopy and its applications in biomedical science s. Apart from improvements in well-established methods based on conventional fl u orescence microscopy and confocal microscopy (fluorescence in situ hybridisa tion (FISH), tyramide signal amplification (TSA) in immunocytochemistry, new fluorop hores), more recently introduced techniques like fluorescence resonance energy t ransfer (FRET), fluorescence recovery after photobleaching (FRAP), multiphoton m icroscopy and fluorescence correlation spectroscopy (FCS) will be discussed.

  15. Predicting Transition and Adjustment to College: Biomedical and Behavioral Science Aspirants' and Minority Students' First Year of College

    Science.gov (United States)

    Hurtado, Sylvia; Han, June C.; Saenz, Victor B.; Espinosa, Lorelle L.; Cabrera, Nolan L.; Cerna, Oscar S.

    2007-01-01

    The purpose of this study is to explore key factors that impact the college transition of aspiring underrepresented minority students in the biomedical and behavioral sciences, in comparison with White, Asian students and non-science minority students. We examined successful management of the academic environment and sense of belonging during the…

  16. Boundary-Work in the Health Research Field: Biomedical and Clinician Scientists' Perceptions of Social Science Research

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D.

    2009-01-01

    Funding agencies in Canada are attempting to break down the organizational boundaries between disciplines to promote interdisciplinary research and foster the integration of the social sciences into the health research field. This paper explores the extent to which biomedical and clinician scientists' perceptions of social science research operate…

  17. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2016-06-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  18. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E.; Altintas, Ilkay

    2016-01-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  19. Lecture 10: The European Bioinformatics Institute - "Big data" for biomedical sciences

    CERN Document Server

    CERN. Geneva; Dana, Jose

    2013-01-01

    Part 1: Big data for biomedical sciences (Tom Hancocks) Ten years ago witnessed the completion of the first international 'Big Biology' project that sequenced the human genome. In the years since biological sciences, have seen a vast growth in data. In the coming years advances will come from integration of experimental approaches and the translation into applied technologies is the hospital, clinic and even at home. This talk will examine the development of infrastructure, physical and virtual, that will allow millions of life scientists across Europe better access to biological data Tom studied Human Genetics at the University of Leeds and McMaster University, before completing an MSc in Analytical Genomics at the University of Birmingham. He has worked for the UK National Health Service in diagnostic genetics and in training healthcare scientists and clinicians in bioinformatics. Tom joined the EBI in 2012 and is responsible for the scientific development and delivery of training for the BioMedBridges pr...

  20. Hegemony in the marketplace of biomedical innovation: consumer demand and stem cell science.

    Science.gov (United States)

    Salter, Brian; Zhou, Yinhua; Datta, Saheli

    2015-04-01

    The global political economy of stem cell therapies is characterised by an established biomedical hegemony of expertise, governance and values in collision with an increasingly informed health consumer demand able to define and pursue its own interest. How does the hegemony then deal with the challenge from the consumer market and what does this tell us about its modus operandi? In developing a theoretical framework to answer these questions, the paper begins with an analysis of the nature of the hegemony of biomedical innovation in general, its close relationship with the research funding market, the current political modes of consumer incorporation, and the ideological role performed by bioethics as legitimating agency. Secondly, taking the case of stem cell innovation, it explores the hegemonic challenge posed by consumer demand working through the global practice based market of medical innovation, the response of the national and international institutions of science and their reassertion of the values of the orthodox model, and the supporting contribution of bioethics. Finally, the paper addresses the tensions within the hegemonic model of stem cell innovation between the key roles and values of scientist and clinician, the exacerbation of these tensions by the increasingly visible demands of health consumers, and the emergence of political compromise.

  1. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    Directory of Open Access Journals (Sweden)

    Wendy Arneson

    2013-03-01

    Full Text Available Background: There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs.Objectives: Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA.Method: Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself.Results: The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes.Conclusions: These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  2. Applications of 14C-AMS in biomedical sciences (Bio-14C-AMS)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Accelerator mass spectrometry (AMS) is an ultrasensitive measure for tracing 14C labeled molecules in vivo or detecting the biomarker for assessment of carcinogenesis. In this review, basic principles, wide applications and new progresses of 14C-bio-AMS are presented. It has been a new advanced tool for measuring the adduction of biologcial molecules with xenobiotics, including carcinogens, drugs, agrochemicals, nicotine, etc. The successful applications have proven the effectiveness of AMS to assessing cancer risk, screening drug toxicity and studying nutrients uptake. In particular, AMS is characterized by measuring xenobiotics at very low dose levels relevant to human environmental exposure. It is sensitive and precise to an attomole (10-18 mole) or less of 14C per mg carbon. Although it has some shortcomings, undoubtedly, AMS possesses an evident merit of high sensitivity and will have widespread applications in the biomedical sciences.

  3. Additive manufacturing in biomedical sciences and the need for definitions and norms.

    Science.gov (United States)

    Chhaya, Mohit P; Poh, Patrina S P; Balmayor, Elizabeth R; van Griensven, Martijn; Schantz, Jan-Thorsten; Hutmacher, Dietmar W

    2015-01-01

    The application of additive biomanufacturing represents one of the most rapidly advancing areas of biomedical science, in which engineers, scientists, and clinicians are contributing to the future of health care. The combined efforts of a large number of groups around the globe have developed a strong research thrust that has resulted in a large number of publications. Reviewing this body of literature, there is an increasing trend of research groups inventing their own definitions and terminology. This has made it difficult to find and compare the results. Therefore, to move the field constructively forward, it is a conditio sine qua non to clarify various terminologies and standards. Based on this background, this article advocates tightening the terminology and has the objective of penning out definitions that will ultimately allow the development of official industry standard terms, such as American Society for Testing and Materials and or International Organization for Standardization for technologies developed for Tissue Engineering and Regenerative Medicine.

  4. Advancement and applications of peptide phage display technology in biomedical science.

    Science.gov (United States)

    Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung

    2016-01-01

    Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

  5. Exploring lecturers' views of first-year health science students' misconceptions in biomedical domains.

    Science.gov (United States)

    Badenhorst, Elmi; Mamede, Sílvia; Hartman, Nadia; Schmidt, Henk G

    2015-05-01

    Research has indicated that misconceptions hamper the process of knowledge construction. Misconceptions are defined as persistent ideas not supported by current scientific views. Few studies have explored how misconceptions develop when first year health students conceptually move between anatomy and physiology to construct coherent knowledge about the human body. This explorative study analysed lecturers' perceptions of first-year health science students' misconceptions in anatomy and physiology to gain a deeper understanding of how and why misconceptions could potentially arise, by attempting to link sources of misconceptions with four schools of thought, namely theories on concept formation, complexity, constructivism and conceptual change. This was a qualitative study where ten lecturers involved in teaching anatomy and physiology in the health science curricula at the University of Cape Town were interviewed to explore perceptions of students' misconceptions. Analytical induction was used to uncover categories within the interview data by using a coding system. A deeper analysis was done to identify emerging themes that begins to explore a theoretical understanding of why and how misconceptions arise. Nine sources of misconceptions were identified, including misconceptions related to language, perception, three dimensional thinking, causal reasoning, curricula design, learning styles and moving between macro and micro levels. The sources of misconceptions were then grouped together to assist educators with finding educational interventions to overcome potential misconceptions. This explorative study is an attempt in theory building to understand what is at the core of biomedical misconceptions. Misconceptions identified in this study hold implications for educators as not all students have the required building blocks and cognitive skills to successfully navigate their way through biomedical courses. Theoretical insight into the sources of misconceptions can

  6. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Getsi, J.A. (comps.)

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives. (JGB)

  7. Adventurism in biomedical science: Washington University-Monsanto program in biotechnology.

    Science.gov (United States)

    Gordon, J I

    1992-01-01

    The Washington University-Monsanto relationship has supported innovation in the biological sciences. It has done so in part by making the fence between an industrial and an academic institution more transparent and more easy to cross. A unique means of promoting intellectual adventurism may be lost, however, if this type of relationship is not structured to maximize the likelihood of obtaining products or if products are the only financial benefit that the industrial partner can derive from such interactions (for example other benefits could include governmental R&D tax credits for those relationships that satisfy some minimal criteria for size and/or length of commitment). I hope that this and other forms of industrial-university relationships that encourage discovery by providing institutional support for new ideas will flourish. Whatever their fate, the responsibility for promoting dreams must be shared by all of us: by those who are privileged to have students in their labs, by academic institutions as they seek to define their roles in the next century, by peer review boards, by national science policymakers, and perhaps by industry. I have presented the Washington University-Monsanto collaboration not as a complete answer to the question of how to promote intellectual adventurism in the biomedical sciences but rather as a concrete response to a problem that must be clearly articulated, thoroughly examined, and creatively addressed.

  8. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences.

    Science.gov (United States)

    Jun, Young-Wook; Seo, Jung-Wook; Cheon, Jinwoo

    2008-02-01

    Magnetic nanoparticles, which exhibit a variety of unique magnetic phenomena that are drastically different from those of their bulk counterparts, are garnering significant interest since these properties can be advantageous for utilization in a variety of applications ranging from storage media for magnetic memory devices to probes and vectors in the biomedical sciences. In this Account, we discuss the nanoscaling laws of magnetic nanoparticles including metals, metal ferrites, and metal alloys, while focusing on their size, shape, and composition effects. Their fundamental magnetic properties such as blocking temperature (Tb), spin life time (tau), coercivity (Hc), and susceptibility (chi) are strongly influenced by the nanoscaling laws, and as a result, these scaling relationships can be leveraged to control magnetism from the ferromagnetic to the superparamagnetic regimes. At the same time, they can be used in order to tune magnetic values including Hc, chi, and remanence (Mr). For example, life time of magnetic spin is directly related to the magnetic anisotropy energy (KuV) and also the size and volume of nanoparticles. The blocking temperature (Tb) changes from room temperature to 10 K as the size of cobalt nanoparticles is reduced from 13 to 2 nm. Similarly, H c is highly susceptible to the anisotropy of nanoparticles, while saturation magnetization is directly related to the canting effects of the disordered surface magnetic spins and follows a linear relationship upon plotting of ms (1/3) vs r(-1). Therefore, the nanoscaling laws of magnetic nanoparticles are important not only for understanding the behavior of existing materials but also for developing novel nanomaterials with superior properties. Since magnetic nanoparticles can be easily conjugated with biologically important constituents such as DNA, peptides, and antibodies, it is possible to construct versatile nano-bio hybrid particles, which simultaneously possess magnetic and biological functions

  9. Developmental programming: State-of-the-science and future directions-summary from a Pennington biomedical symposium

    Science.gov (United States)

    On December 8-9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current s...

  10. Engineering behaviour change in an epidemic: the epistemology of NIH-funded HIV prevention science.

    Science.gov (United States)

    Green, Adam; Kolar, Kat

    2015-05-01

    Social scientific and public health literature on National Institutes of Health-funded HIV behavioural prevention science often assumes that this body of work has a strong biomedical epistemological orientation. We explore this assumption by conducting a systematic content analysis of all NIH-funded HIV behavioural prevention grants for men who have sex with men between 1989 and 2012. We find that while intervention research strongly favours a biomedical orientation, research into the antecedents of HIV risk practices favours a sociological, interpretive and structural orientation. Thus, with respect to NIH-funded HIV prevention science, there exists a major disjunct in the guiding epistemological orientations of how scientists understand HIV risk, on the one hand, and how they engineer behaviour change in behavioural interventions, on the other. Building on the extant literature, we suggest that the cause of this disjunct is probably attributable not to an NIH-wide positivist orientation, but to the specific standards of evidence used to adjudicate HIV intervention grant awards, including randomised controlled trials and other quantitative measures of intervention efficacy.

  11. The role biomedical science laboratories can play in improving science knowledge and promoting first-year nursing academic success

    Science.gov (United States)

    Arneson, Pam

    The Role Biomedical Science Laboratories Can Play In Improving Science Knowledge and Promoting First-Year Nursing Academic Success The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an analysis of the role bioscience labs have in first-year nursing academic success is apposite. In response, this study sought to determine whether concurrent enrollment in anatomy and microbiology lecture and lab courses improved final lecture course grades. The investigation was expanded to include a comparison of first-year nursing GPA and prerequisite bioscience concurrent lecture/lab enrollment. Additionally, research has indicated that learning is affected by student perception of the course, instructor, content, and environment. To gain an insight regarding students' perspectives of laboratory courses, almost 100 students completed a 20-statement perception survey to understand how lab participation affects learning. Data analyses involved comparing anatomy and microbiology final lecture course grades between students who concurrently enrolled in the lecture and lab courses and students who completed the lecture course alone. Independent t test analyses revealed that there was no significant difference between the groups for anatomy, t(285) = .11, p = .912, but for microbiology, the lab course provided a significant educational benefit, t(256) = 4.47, p = .000. However, when concurrent prerequisite bioscience lecture/lab enrollment was compared to non-concurrent enrollment for first-year nursing GPA using independent t test analyses, no significant difference was found for South Dakota State University, t(37) = -1.57, p = .125, or for the University of South Dakota, t(38) = -0.46, p

  12. Teaching of parasitology to students of veterinary medicine and biomedical sciences.

    Science.gov (United States)

    Thompson, R C A; Lymbery, A J; Hobbs, R P

    2002-10-02

    The teaching of an applied parasitology course suitable for both veterinary and biomedical students is described. A common lecture course is given complemented by separate and specific practical, research and problem-based learning components designed for veterinary and biomedical students. For veterinary and biomedical students, teaching of parasitology during the full course comprises a total of 46 lectures; 13 practical classes for veterinary students and five for biomedical students who also undertake an independent research project.

  13. Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical andTranslational Science Award programs.

    Science.gov (United States)

    Bernstam, Elmer V; Hersh, William R; Johnson, Stephen B; Chute, Christopher G; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark G; Miller, Perry; DiLaura, Robert P; Overcash, Marc; Lehmann, Harold P; Eichmann, David; Athey, Brian D; Scheuermann, Richard H; Anderson, Nick; Starren, Justin; Harris, Paul A; Smith, Jack W; Barbour, Ed; Silverstein, Jonathan C; Krusch, David A; Nagarajan, Rakesh; Becich, Michael J

    2009-07-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally oriented groups including information technology (IT) professionals, computer scientists, and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays, and suboptimal results. Although written from the perspective of Clinical and Translational Science Award (CTSA) programs within academic medical centers, this article addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science, and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information, and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers.

  14. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  15. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  16. Programmatic Efforts at the National Institutes of Health to Promote and Support the Careers of Women in Biomedical Science.

    Science.gov (United States)

    Plank-Bazinet, Jennifer L; Bunker Whittington, Kjersten; Cassidy, Sara K B; Filart, Rosemarie; Cornelison, Terri L; Begg, Lisa; Austin Clayton, Janine

    2016-08-01

    Although women have reached parity at the training level in the biological sciences and medicine, they are still significantly underrepresented in the professoriate and in mid- and senior-level life science positions. Considerable effort has been devoted by individuals and organizations across science sectors to understanding this disparity and to developing interventions in support of women's career development. The National Institutes of Health (NIH) formed the Office of Research on Women's Health (ORWH) in 1990 with the goals of supporting initiatives to improve women's health and providing opportunities and support for the recruitment, retention, reentry, and sustained advancement of women in biomedical careers. Here, the authors review several accomplishments and flagship activities initiated by the NIH and ORWH in support of women's career development during this time. These include programming to support researchers returning to the workforce after a period away (Research Supplements to Promote Reentry into Biomedical and Behavioral Research Careers), career development awards made through the Building Interdisciplinary Research Careers in Women's Health program, and trans-NIH involvement and activities stemming from the NIH Working Group on Women in Biomedical Careers. These innovative programs have contributed to advancement of women by supporting the professional and personal needs of women in science. The authors discuss the unique opportunities that accompany NIH partnerships with the scientific community, and conclude with a summary of the impact of these programs on women in science.

  17. Integrating behavioral and biomedical research in HIV interventions: challenges and opportunities.

    Science.gov (United States)

    Rausch, Dianne M; Grossman, Cynthia I; Erbelding, Emily J

    2013-06-01

    Recent clinical trials have demonstrated overwhelming success of biomedical tools to prevent the spread of HIV infection. However, the complex and somewhat disparate results of some of these trials have highlighted the need for effective integration of biomedical and behavioral sciences in the design and implementation of any future intervention trial. Integrating behavioral and biomedical sciences will require appropriate behavioral theories that can be used in the context of biomedical clinical trials and multidisciplinary teams working together from the earliest stages of trial design through to completion. It is also clear that integration of behavioral science will be necessary to implement prevention at the population level and reverse the HIV epidemic.

  18. Should MD-PhD programs encourage graduate training in disciplines beyond conventional biomedical or clinical sciences?

    Science.gov (United States)

    O'Mara, Ryan J; Hsu, Stephen I; Wilson, Daniel R

    2015-02-01

    The goal of MD-PhD training programs is to produce physician-scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician-scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD-PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This question is especially relevant because the central value and ultimate goal of the academic medicine community is to help attain the highest level of health and health equity for all people. Advances in medical science and practice, along with improvements in health care access and delivery, are steps toward health equity, but alone they will not come close to eliminating health inequalities. Addressing the complex health issues in our communities and society as a whole requires a biomedical research workforce with knowledge, practice, and research skills well beyond conventional biomedical or clinical sciences. To make real progress in advancing health equity, educational pathways must prepare physician-scientists to treat both micro and macro determinants of health. The authors argue that MD-PhD programs should allow and encourage their scholars to cross boundaries into less traditional disciplines such as epidemiology, statistics, anthropology, sociology, ethics, public policy, management, economics, education, social work, informatics, communications, and marketing. To fulfill current and coming health care needs, nontraditional MD-PhD students should be welcomed and supported as valuable members of our biomedical research workforce.

  19. Pharmaceutical HIV prevention technologies in the UK: six domains for social science research.

    Science.gov (United States)

    Keogh, Peter; Dodds, Catherine

    2015-01-01

    The development of pharmaceutical HIV prevention technologies (PPTs) over the last five years has generated intense interest from a range of stakeholders. There are concerns that these clinical and pharmaceutical interventions are proceeding with insufficient input of the social sciences. Hence key questions around implementation and evaluation remain unexplored whilst biomedical HIV prevention remains insufficiently critiqued or theorised from sociological as well as other social science perspectives. This paper presents the results of an expert symposium held in the UK to explore and build consensus on the role of the social sciences in researching and evaluating PPTs in this context. The symposium brought together UK social scientists from a variety of backgrounds. A position paper was produced and distributed in advance of the symposium and revised in the light this consultation phase. These exchanges and the emerging structure of this paper formed the basis for symposium panel presentations and break-out sessions. Recordings of all sessions were used to further refine the document which was also redrafted in light of ongoing comments from symposium participants. Six domains of enquiry for the social sciences were identified and discussed: self, identity and personal narrative; intimacy, risk and sex; communities, resistance and activism; systems, structures and institutions; economic considerations and analyses; and evaluation and outcomes. These are discussed in depth alongside overarching consensus points for social science research in this area as it moves forward.

  20. Preventing Federal Government Abuse of Science

    Science.gov (United States)

    Grifo, F. T.

    2006-12-01

    Investigations by the Union of Concerned Scientists and the mainstream media provide evidence of widespread and serious political interference in federal government science. To restore scientific integrity to the policy making process, the United States must adopt reforms that adequately protect government scientists, provide better scientific advice to Congress, strengthen the Office of Science and Technology Policy, ensure the independence of scientific advisory committees, and effectively insulate government science from politics. Methods for accomplishing these goals include ensuring that the next president is committed to respecting the scientific process and pressing Congress to exercise its oversight responsibilities. Creating meaningful reform will require the persistent and energetic engagement of the scientific community—in universities, laboratories, government agencies, and private companies. Individual scientists and scientific institutions have the opportunity to monitor the way science informs policy making and to act to defend the integrity of science.

  1. Low statistical power in biomedical science: a review of three human research domains

    Science.gov (United States)

    Dumas-Mallet, Estelle; Button, Katherine S.; Boraud, Thomas; Gonon, Francois

    2017-01-01

    Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0–10% or 11–20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation.

  2. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  3. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research Part 1: Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1995-04-01

    Research in the biomedical sciences at PNL is described. Activities reported include: inhaled plutonium in dogs; national radiobiology archives; statistical analysis of data from animal studies; genotoxicity of inhaled energy effluents; molecular events during tumor initiation; biochemistry of free radical induced DNA damage; radon hazards in homes; mechanisms of radon injury; genetics of radon induced lung cancer; and in vivo/in vitro radon induced cellular damage.

  4. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  5. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  6. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  7. Integrating Behavioral HIV Interventions into Biomedical Prevention Trials with Youth: Lessons from Chicago's Project PrEPare.

    Science.gov (United States)

    Hosek, Sybil G; Green, Keith R; Siberry, George; Lally, Michelle; Balthazar, Christopher; Serrano, Pedro A; Kapogiannis, Bill

    2013-01-01

    On the heels of several trials demonstrating the efficacy of pre-exposure prophylaxis (PrEP) and the recent approval by the FDA of the supplemental indication for Truvada as PrEP, researchers, advocates, and community providers are calling for the investigation of implementation strategies that combine behavioral interventions with biomedical prevention. This paper describes the modification and integration of an evidence-based group-level intervention into a small PrEP pilot trial with young men who have sex with men (YMSM). The behavioral intervention as well as ongoing risk reduction counseling sessions were found to be highly acceptable among a sample of racially diverse YMSM.

  8. Implementation science: how to jump‐start infection prevention.

    Science.gov (United States)

    Saint, Sanjay; Howell, Joel D; Krein, Sarah L

    2010-11-01

    Implementing evidence‐based infection prevention practices is challenging. Implementation science, which is the study of methods promoting the uptake of evidence into practice, addresses the gap between theory and practice. Just as healthcare epidemiology has emerged as a paradigm for patient safety, infection prevention may serve as a clinical model for implementation researchers.

  9. Effective HIV prevention: the indispensable role of social science

    Directory of Open Access Journals (Sweden)

    Susan Kippax

    2012-04-01

    Full Text Available This paper examines the ways in which HIV prevention is understood including “biomedical”, “behavioural”, “structural”, and “combination” prevention. In it I argue that effective prevention entails developing community capacity and requires that public health addresses people not only as individuals but also as connected members of groups, networks and collectives who interact (talk, negotiate, have sex, use drugs, etc. together. I also examine the evaluation of prevention programmes or interventions and argue that the distinction between efficacy and effectiveness is often glossed and that, while efficacy can be evaluated by randomized controlled trials, the evaluation of effectiveness requires long-term descriptive strategies and/or modelling. Using examples from a number of countries, including a detailed account of the Australian HIV prevention response, effectiveness is shown to be dependent not only on the efficacy of the prevention technology or tool but also on the responses of people – individuals, communities and governments – to those technologies. Whether a particular HIV prevention technology is adopted and its use sustained depends on a range of social, cultural and political factors. The paper concludes by calling on biomedical and social scientists to work together and describes a “social public health”.

  10. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-04-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia materials online and prior to engaging in classroom activities. Pre-lecture questions on both the medical content covered in the video media and the physics concepts in the written material were designed to engage students and probe their understanding of physics. The course featured group discussion and peer-lead instruction. Following in-class instruction, students engaged with homework assignments which explore the connections of physics and the medical field in a quantitative manner. Course surveys showed a positive response by the vast majority of students. Students largely indicated that the course helped them to make a connection between physics and the biomedical field. The biomedical focus and different course format were seen as an improvement to previous traditional physics instruction.

  11. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  12. Nutritional Science Staff | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  13. Surveys of current status in biomedical science grant review: funding organisations' and grant reviewers' perspectives

    DEFF Research Database (Denmark)

    Schroter, Sara; Groves, Trish; Højgaard, Liselotte

    2010-01-01

    The objectives of this research were (a) to describe the current status of grant review for biomedical projects and programmes from the perspectives of international funding organisations and grant reviewers, and (b) to explore funders' interest in developing uniform requirements for grant review...... aimed at making the processes and practices of grant review more consistent, transparent, and user friendly....

  14. Surveys of current status in biomedical science grant review: funding organisations' and grant reviewers' perspectives

    DEFF Research Database (Denmark)

    Schroter, Sara; Groves, Trish; Højgaard, Liselotte

    2010-01-01

    The objectives of this research were (a) to describe the current status of grant review for biomedical projects and programmes from the perspectives of international funding organisations and grant reviewers, and (b) to explore funders' interest in developing uniform requirements for grant review...

  15. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Science.gov (United States)

    Nisbet, Matthew; Markowitz, Ezra M

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  16. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Directory of Open Access Journals (Sweden)

    Matthew Nisbet

    Full Text Available As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  17. Advancing cervical cancer prevention in India: implementation science priorities.

    Science.gov (United States)

    Krishnan, Suneeta; Madsen, Emily; Porterfield, Deborah; Varghese, Beena

    2013-01-01

    Cervical cancer is the leading cause of cancer mortality in India, accounting for 17% of all cancer deaths among women aged 30 to 69 years. At current incidence rates, the annual burden of new cases in India is projected to increase to 225,000 by 2025, but there are few large-scale, organized cervical cancer prevention programs in the country. We conducted a review of the cervical cancer prevention research literature and programmatic experiences in India to summarize the current state of knowledge and practices and recommend research priorities to address the gap in services. We found that research and programs in India have demonstrated the feasibility and acceptability of cervical cancer prevention efforts and that screening strategies requiring minimal additional human resources and laboratory infrastructure can reduce morbidity and mortality. However, additional evidence generated through implementation science research is needed to ensure that cervical cancer prevention efforts have the desired impact and are cost-effective. Specifically, implementation science research is needed to understand individual- and community-level barriers to screening and diagnostic and treatment services; to improve health care worker performance; to strengthen links among screening, diagnosis, and treatment; and to determine optimal program design, outcomes, and costs. With a quarter of the global burden of cervical cancer in India, there is no better time than now to translate research findings to practice. Implementation science can help ensure that investments in cervical cancer prevention and control result in the greatest impact.

  18. Beyond the biomedical and behavioural: towards an integrated approach to HIV prevention in the southern African mining industry.

    Science.gov (United States)

    Campbell, C; Williams, B

    1999-06-01

    While migrant labour is believed to play an important role in the dynamics of HIV-transmission in many of the countries of southern Africa, little has been written about the way in which HIV/AIDS has been dealt with in the industrial settings in which many migrant workers are employed. This paper takes the gold mining industry in the countries of the Southern African Development Community (SADC) as a case study. While many mines made substantial efforts to establish HIV-prevention programmes relatively early on in the epidemic, these appear to have had little impact. The paper analyses the response of key players in the mining industry, in the interests of highlighting the limitations of the way in which both managements and trade unions have responded to HIV. It will be argued that the energy that has been devoted either to biomedical or behavioural prevention programmes or to human rights issues has served to obscure the social and developmental dimensions of HIV-transmission. This argument is supported by means of a case study which seeks to highlight the complexity of the dynamics of disease transmission in this context, a complexity which is not reflected in individualistic responses. An account is given of a new intervention which seeks to develop a more integrated approach to HIV management in an industrial setting.

  19. Sex role segregation and mixing among men who have sex with men: implications for biomedical HIV prevention interventions.

    Directory of Open Access Journals (Sweden)

    Benjamin Armbruster

    Full Text Available OBJECTIVE: Men who have sex with men (MSM practice role segregation - insertive or receptive only sex positions instead of a versatile role - in several international settings where candidate biomedical HIV prevention interventions (e.g., circumcision, anal microbicide will be tested. The effects of these position-specific interventions on HIV incidence are modeled. MATERIALS AND METHODS: We developed a deterministic compartmental model to predict HIV incidence among Indian MSM using data from 2003-2010. The model's sex mixing matrix was derived from network data of Indian MSM (n=4604. Our model captures changing distribution of sex roles over time. We modeled microbicide and circumcision efficacy on trials with heterosexuals. RESULTS: Increasing numbers of versatile MSM resulted in little change in HIV incidence over 20 years. Anal microbicides and circumcision would decrease the HIV prevalence at 10 years from 15.6% to 12.9% and 12.7% respectively. Anal microbicides would provide similar protection to circumcision at the population level despite lower modeled efficacy (54% and 60% risk reduction, respectively. Combination of the interventions were additive: in 5 years, the reduction in HIV prevalence of the combination (-3.2% is almost the sum of their individual reductions in HIV prevalence (-1.8% and -1.7%. CONCLUSIONS: MSM sex role segregation and mixing, unlike changes in the sex role distribution, may be important for evaluating HIV prevention interventions in international settings. Synergies between some position-specific prevention interventions such as circumcision and anal microbicides warrant further study.

  20. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    Science.gov (United States)

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future.

  1. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research.

    Science.gov (United States)

    King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  2. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  3. Biomedical and veterinary science can increase our understanding of coral disease

    Science.gov (United States)

    Work, Thierry M.; Richardson, Laurie L.; Reynolds, T.L.; Willis, Bette L.

    2008-01-01

    A balanced approach to coral disease investigation is critical for understanding the global decline of corals. Such an approach should involve the proper use of biomedical concepts, tools, and terminology to address confusion and promote clarity in the coral disease literature. Investigating disease in corals should follow a logical series of steps including identification of disease, systematic morphologic descriptions of lesions at the gross and cellular levels, measurement of health indices, and experiments to understand disease pathogenesis and the complex interactions between host, pathogen, and the environment. This model for disease investigation is widely accepted in the medical, veterinary and invertebrate pathology disciplines. We present standard biomedical rationale behind the detection, description, and naming of diseases and offer examples of the application of Koch's postulates to elucidate the etiology of some infectious diseases. Basic epidemiologic concepts are introduced to help investigators think systematically about the cause(s) of complex diseases. A major goal of disease investigation in corals and other organisms is to gather data that will enable the establishment of standardized case definitions to distinguish among diseases. Concepts and facts amassed from empirical studies over the centuries by medical and veterinary pathologists have standardized disease investigation and are invaluable to coral researchers because of the robust comparisons they enable; examples of these are given throughout this paper. Arguments over whether coral diseases are caused by primary versus opportunistic pathogens reflect the lack of data available to prove or refute such hypotheses and emphasize the need for coral disease investigations that focus on: characterizing the normal microbiota and physiology of the healthy host; defining ecological interactions within the microbial community associated with the host; and investigating host immunity, host

  4. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    Science.gov (United States)

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine.

  5. Pressure sensor-based tongue-placed electrotactile biofeedback for balance improvement - Biomedical application to prevent pressure sores formation and falls

    CERN Document Server

    Vuillerme, Nicolas; Pinsault, Nicolas; Moreau-Gaudry, Alexandre; Fleury, Anthony; Demongeot, Jacques; Payan, Yohan

    2007-01-01

    We introduce the innovative technologies, based on the concept of "sensory substitution", we are developing in the fields of biomedical engineering and human disability. Precisely, our goal is to design, develop and validate practical assistive biomedical and/or technical devices and/or rehabilitating procedures for persons with disabilities, using artificial tongue-placed tactile biofeedback systems. Proposed applications are dealing with: (1) pressure sores prevention in case of spinal cord injuries (persons with paraplegia, or tetraplegia); and (2) balance control improvement to prevent fall in older and/or disabled adults. This paper describes the architecture and the functioning principle of these biofeedback systems and presents preliminary results of two feasibility studies performed on young healthy adults.

  6. Using a popular science nonfiction book to introduce biomedical research ethics in a biology majors course.

    Science.gov (United States)

    Walton, Kristen L W

    2014-12-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  7. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course

    Directory of Open Access Journals (Sweden)

    Kristen L.W. Walton

    2014-08-01

    Full Text Available Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States.  Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course.  The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research.  Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research.  Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course.  This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  8. The reincarnation of a biomedical researcher: from bench science to medical education.

    Science.gov (United States)

    Brawer, James R

    2008-02-01

    After 33 years as a biomedical research scientist, I embarked on a new career in medical education. The transformation was awkward, difficult and exciting. Although I had assumed that previous experience in research and scholarship would stand me in good stead, such was hardly the case. I had to learn to navigate a strange new literature, replete with terms that I did not understand, and to deal with concepts that challenged my physico-chemical mindset. As I learned, I found myself discovering a field rich in essential questions, controversial hypotheses, and important potential applications. With my newly acquired knowledge and skills, I began to reflect on my own educational endeavors. I identified a number of outstanding issues and I designed studies to address them. What made these investigations particularly significant for me was their applicability. Although medical education is an exciting and meaningful career path, because of its low profile in most medical schools, few faculty are aware of the academic opportunities that it affords.

  9. Mentoring Strategies and Outcomes of Two Federally Funded Cancer Research Training Programs for Underrepresented Students in the Biomedical Sciences.

    Science.gov (United States)

    Ford, Marvella E; Abraham, Latecia M; Harrison, Anita L; Jefferson, Melanie S; Hazelton, Tonya R; Varner, Heidi; Cannady, Kimberly; Frichtel, Carla S; Bagasra, Omar; Davis, Leroy; Rivers, David E; Slaughter, Sabra C; Salley, Judith D

    2016-06-01

    The US is experiencing a severe shortage of underrepresented biomedical researchers. The purpose of this paper is to present two case examples of cancer research mentoring programs for underrepresented biomedical sciences students. The first case example is a National Institutes of Health/National Cancer Institute (NIH/NCI) P20 grant titled "South Carolina Cancer Disparities Research Center (SC CaDRe)" Training Program, contributing to an increase in the number of underrepresented students applying to graduate school by employing a triple-level mentoring strategy. Since 2011, three undergraduate and four graduate students have participated in the P20 SC CaDRe program. One graduate student published a peer-reviewed scientific paper. Two graduate students (50 %) have completed their master's degrees, and the other two graduate students will receive their degrees in spring 2015. Two undergraduate students (67 %) are enrolled in graduate or professional school (grad./prof. school), and the other graduate student is completing her final year of college. The second case example is a prostate cancer-focused Department of Defense grant titled "The SC Collaborative Undergraduate HBCU Student Summer Training Program," providing 24 students training since 2009. Additionally, 47 students made scientific presentations, and two students have published peer-reviewed scientific papers. All 24 students took a GRE test preparation course; 15 (63 %) have applied to graduate school, and 11 of them (73 %) are enrolled in grad./prof. school. Thirteen remaining students (54 %) are applying to grad./prof. school. Leveraged funding provided research-training opportunities to an additional 201 National Conference on Health Disparities Student Forum participants and to 937 Ernest E. Just Research Symposium participants at the Medical University of South Carolina.

  10. Beyond Preparation: Identity, Cultural Capital, and Readiness for Graduate School in the Biomedical Sciences

    Science.gov (United States)

    Gazley, J. Lynn; Remich, Robin; Naffziger-Hirsch, Michelle E.; Keller, Jill; Campbell, Patricia B.; McGee, Richard

    2014-01-01

    In this study, we conducted in-depth interviews with 52 college graduates as they entered a Postbaccalaureate Research Education Program (PREP). Our goal was to investigate what it means for these aspiring scientists, most of whom are from groups underrepresented in the sciences, to feel ready to apply to a doctoral program in the biomedical…

  11. 77 FR 20489 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-04-04

    ... Town Alexandria. Cellular and Molecular June 4, 2012..... *VA Central Office. Medicine. Infectious... May 24, 2012..... Sheraton Suites--Old Science-B. Town Alexandria. Neurobiology-D May 24-25, 2012.... Neurobiology-A June 1, 2012..... Sheraton Suites--Old Town Alexandria. Clinical Application of June 1,...

  12. Making Bioinformatics Projects a Meaningful Experience in an Undergraduate Biotechnology or Biomedical Science Programme

    Science.gov (United States)

    Sutcliffe, Iain C.; Cummings, Stephen P.

    2007-01-01

    Bioinformatics has emerged as an important discipline within the biological sciences that allows scientists to decipher and manage the vast quantities of data (such as genome sequences) that are now available. Consequently, there is an obvious need to provide graduates in biosciences with generic, transferable skills in bioinformatics. We present…

  13. Subject Design and Factors Affecting Achievement in Mathematics for Biomedical Science

    Science.gov (United States)

    Carnie, Steven; Morphett, Anthony

    2017-01-01

    Reports such as Bio2010 emphasize the importance of integrating mathematical modelling skills into undergraduate biology and life science programmes, to ensure students have the skills and knowledge needed for biological research in the twenty-first century. One way to do this is by developing a dedicated mathematics subject to teach modelling and…

  14. Leading Change: Curriculum Reform in Graduate Education in the Biomedical Sciences

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were…

  15. [A study of development of medicine and science in the nineteenth century science fiction: biomedical experiments in Mary Shelley's Frankenstein].

    Science.gov (United States)

    Choo, Jae-Uk

    2014-12-01

    As the sciences advanced rapidly in the modern European world, outstanding achievements have been made in medicine, chemistry, biology, physiology, physics and others, which have been co-influencing each of the scientific disciplines. Accordingly, such medical and scientific phenomena began to be reflected in novels. In particular, Mary Shelley's Frankenstein includes the diverse aspects of the change and development in the medicine and science. Associated with medical and scientific information reflected in Frankenstein and Frankenstein's experiments in the text, accordingly, this research will investigate the aspects of medical and scientific development taking place in the nineteenth century in three ways. First, the medical and scientific development of the nineteenth century has been reviewed by summerizing both the information of alchemy in which Frankenstein shows his interest and the new science in general that M. Waldman introduces in the text. Second, the actual features of medical and scientific development have been examined through some examples of the experimental methods that M. Waldman implicitly uttered to Frankenstein. Third, it has been checked how the medical and scientific development is related to the main issues of mechanism and vitalism which can be explained as principles of life. Even though this research deals with the developmental process of medicine & science and origin & principles of life implied in Mary Shelley's Frankenstein, its significance is that it is the interdisciplinary research focussing on how deeply medical and scientific discourse of Mary Shelley's period has been imbedded in the nineteenth century novel.

  16. Healthcare and biomedical technology in the 21st century an introduction for non-science majors

    CERN Document Server

    Baran, George R; Samuel, Solomon Praveen

    2014-01-01

    This textbook introduces students not pursuing degrees in science or engineering to the remarkable new applications of technology now available to physicians and their patients and discusses how these technologies are evolving to permit new treatments and procedures.  The book also elucidates the societal and ethical impacts of advances in medical technology, such as extending life and end of life decisions, the role of genetic testing, confidentiality, costs of health care delivery, scrutiny of scientific claims, and provides background on the engineering approach in healthcare and the scientific method as a guiding principle. This concise, highly relevant text enables faculty to offer a substantive course for students from non-scientific backgrounds that will empower them to make more informed decisions about their healthcare by significantly enhancing their understanding of these technological advancements. This book also: ·         Presents scientific concepts from modern medical science using r...

  17. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  18. Some Aspects of the State-of-the-Arts in Biomedical Science Research: A Perspective for Organizational Change in African Academia.

    Science.gov (United States)

    John, Theresa Adebola

    2014-01-01

    In the biomedical sciences, there is need to generate solutions for Africa's health and economic problems through the impact of university research. To guide organizational transformation, the author here presents some aspects of the state-of-the-arts of biomedical science research in advanced countries using a perspective derived from the FASEB journal publications. The author examines the thirty three peer reviewed scientific research articles in a centennial (April 2012) issue of the FASEB Journal [Volume 26(4)] using the following parameters: number of authors contributing to the paper; number of academic departments contributing to the paper; number of academic institutions contributing to the paper; funding of the research reported in the article. The articles were written by 7.97±0.61 authors from 3.46±0.3 departments of 2.79±0.29 institutions. The contributors were classified into four categories: basic sciences, clinical sciences, institutions and centers, and programs and labs. Amongst the publications, 21.2% were single disciplinary. Two tier collaboration amongst any two of the four categories were observed in 16/33 (48.5%) of the articles. Three tier and four tier collaborations were observed amongst 7/33 (21.2%) and 3/33 (9%) of the articles respectively. Therefore 26/33 (78.7%) of the articles were multidisciplinary. Collaborative efforts between basic science and clinical science departments were observed in 9/33 (27.3%) articles. Public funding through government agencies provided 85 out of a total of 143 (59.5%) grants. The collaborative and multidisciplinary nature and government support are characteristic of biomedical science in the US where research tends to result in solutions to problems and economic benefits.

  19. Biomedical Science, Unit II: Nutrition in Health and Medicine. Digestion of Foods; Organic Chemistry of Nutrients; Energy and Cell Respiration; The Optimal Diet; Foodborne Diseases; Food Technology; Dental Science and Nutrition. Student Text. Revised Version, 1975.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This student text presents instructional materials for a unit of science within the Biomedical Interdisciplinary Curriculum Project (BICP), a two-year interdisciplinary precollege curriculum aimed at preparing high school students for entry into college and vocational programs leading to a career in the health field. Lessons concentrate on…

  20. The importance of being elegant: a discussion of elegance in nephrology and biomedical science.

    Science.gov (United States)

    Nathan, Marco J; Brancaccio, Diego

    2013-06-01

    Elegance is pursued and appreciated in virtually all aspects of our lives, from fashion to visual and performing arts, from literature to architecture. While most of us praise the elegance and beauty of science when we see it, elegance is typically treated as something that need not concern our research and thus does not belong inside the laboratory. In this article, we provide an alternative perspective, according to which elegance is more than an accessory ornament of scientific theories. We endorse and defend the view that elegance is an intrinsic feature of successful scientific practice and observation, a benchmark that demarcates between good experiments and bad ones. In support of our conclusions, we present and discuss three paradigms of scientific elegance: Jenner's discovery of vaccination, Bricker and Slatopolsky's trade-off hypothesis and Brenner's hypothesis regarding the role of residual nephrons in the decline of renal function.

  1. Career Coaches as a Source of Vicarious Learning for Racial and Ethnic Minority PhD Students in the Biomedical Sciences: A Qualitative Study

    Science.gov (United States)

    Williams, Simon N.; Thakore, Bhoomi K.; McGee, Richard

    2016-01-01

    Introduction Many recent mentoring initiatives have sought to help improve the proportion of underrepresented racial and ethnic minorities (URMs) in academic positions across the biomedical sciences. However, the intractable nature of the problem of underrepresentation suggests that many young scientists may require supplemental career development beyond what many mentors are able to offer. As an adjunct to traditional scientific mentoring, we created a novel academic career “coaching” intervention for PhD students in the biomedical sciences. Objective To determine whether and how academic career coaches can provide effective career-development-related learning experiences for URM PhD students in the biomedical sciences. We focus specifically on vicarious learning experiences, where individuals learn indirectly through the experiences of others. Method The intervention is being tested as part of a longitudinal randomized control trial (RCT). Here, we describe a nested qualitative study, using a framework approach to analyze data from a total of 48 semi-structured interviews from 24 URM PhD students (2 interviews per participant, 1 at baseline, 1 at 12-month follow-up) (16 female, 8 male; 11 Black, 12 Hispanic, 1 Native-American). We explored the role of the coach as a source of vicarious learning, in relation to the students’ goal of being future biomedical science faculty. Results Coaches were resources through which most students in the study were able to learn vicariously about how to pursue, and succeed within, an academic career. Coaches were particularly useful in instances where students’ research mentors are unable to provide such vicarious learning opportunities, for example because the mentor is too busy to have career-related discussions with a student, or because they have, or value, a different type of academic career to the type the student hopes to achieve. Implications Coaching can be an important way to address the lack of structured career

  2. Web of Science, Scopus, and Google Scholar citation rates: a case study of medical physics and biomedical engineering: what gets cited and what doesn't?

    Science.gov (United States)

    Trapp, Jamie

    2016-12-01

    There are often differences in a publication's citation count, depending on the database accessed. Here, aspects of citation counts for medical physics and biomedical engineering papers are studied using papers published in the journal Australasian physical and engineering sciences in medicine. Comparison is made between the Web of Science, Scopus, and Google Scholar. Papers are categorised into subject matter, and citation trends are examined. It is shown that review papers as a group tend to receive more citations on average; however the highest cited individual papers are more likely to be research papers.

  3. Why not just Google it? An assessment of information literacy skills in a biomedical science curriculum

    Science.gov (United States)

    2011-01-01

    Background Few issues in higher education are as fundamental as the ability to search for, evaluate, and synthesize information. The need to develop information literacy, the process of finding, retrieving, organizing, and evaluating the ever-expanding collection of online information, has precipitated the need for training in skill-based competencies in higher education, as well as medical and dental education. Methods The current study evaluated the information literacy skills of first-year dental students, consisting of two, consecutive dental student cohorts (n = 160). An assignment designed to evaluate information literacy skills was conducted. In addition, a survey of student online search engine or database preferences was conducted to identify any significant associations. Subsequently, an intervention was developed, based upon the results of the assessment and survey, to address any deficiencies in information literacy. Results Nearly half of students (n = 70/160 or 43%) missed one or more question components that required finding an evidence-based citation. Analysis of the survey revealed a significantly higher percentage of students who provided incorrect responses (n = 53/70 or 75.7%) reported using Google as their preferred online search method (p < 0.01). In contrast, a significantly higher percentage of students who reported using PubMed (n = 39/45 or 86.7%) were able to provide correct responses (p < 0.01). Following a one-hour intervention by a health science librarian, virtually all students were able to find and retrieve evidence-based materials for subsequent coursework. Conclusions This study confirmed that information literacy among this student population was lacking and that integration of modules within the curriculum can help students to filter and establish the quality of online information, a critical component in the training of new health care professionals. Furthermore, incorporation of these modules early in the curriculum may be of

  4. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D; Bronzino, Joseph D

    2006-01-01

    Over the last century,medicine has come out of the "black bag" and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiology to informatics and signal processing. Reflecting the enormous growth and change in biomedical engineering during the infancy of the 21st century, The Biomedical Engineering Handbook enters its third edition as a set of three carefully focused and

  5. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1984-02-01

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base.

  6. From science to action and from action to science: the Nunavik Trichinellosis Prevention Program

    Directory of Open Access Journals (Sweden)

    Sylvain Larrat

    2012-07-01

    Full Text Available Objectives. During the 1980s, walrus-meat consumption caused infections with the parasite Trichinella nativa in Nunavik inhabitants. In response to these events, stakeholders set up the community-based Nunavik Trichinellosis Prevention Program (NTPP. The objectives of the present communication are to review the NTPP, describe how science and action were interwoven in its development and identify its assets and limitations. Study design. Descriptive study. Methods. The NTPP relies on a pooled digestion assay of tongue samples taken from each harvested walrus. The public health recommendations depend on the results of the analyses: infected walrus meat should be destroyed; parasite-free meat may be eaten raw or cooked. Results. All communities involved in the walrus hunt participate in the NTPP and a high percentage of harvested walruses are included in the NTPP. Infected animals account for 2.9% of the walruses tested (20/694 since 1992. The NTPP permitted the early management of a trichinellosis event in 1997. Since then, it prevented the new occurrence of outbreaks related to walruses hunted by Nunavimmiut. Conclusions. The absence of recent major outbreaks of trichinellosis in Nunavik may reasonably be attributed to the NTPP. The success of the program stands on many facilitating factors such as the nature of the disease and its source, the existence of an efficient analytic method, the strong involvement of the different partners including direct resource users, as well as the comprehensive bidirectional science-to-action approach that has been followed.

  7. NIH Funding for Biomedical Imaging

    Science.gov (United States)

    Conroy, Richard

    Biomedical imaging, and in particular MRI and CT, is often identified as among the top 10 most significant advances in healthcare in the 20th century. This presentation will describe some of the recent advances in medical physics and imaging being funded by NIH in this century and current funding opportunities. The presentation will also highlight the role of multidisciplinary research in bringing concepts from the physical sciences and applying them to challenges in biological and biomedical research.. NIH Funding for Biomedical Imaging.

  8. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  9. FDA Researchers Advance Science for Vaccines to Prevent Mumps and Whooping Cough

    Science.gov (United States)

    ... Advance Science for Vaccines to Prevent Mumps and Whooping Cough Share Tweet Linkedin Pin it More sharing options ... in the FDA’s laboratories in Silver Spring, MD. Whooping Cough: Background and Key Findings The FDA is studying ...

  10. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  11. Biomedical problems of hydrotechnical construction

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, A.B.; El' piner, L.I.; Delitsyn, V.M.

    1988-04-01

    The effect of hydrotechnical and water-management construction on the living conditions and health of the population was examined. The results were used to develop the scientific bases and methods of biomedical predictions in several stages: evaluating biomedical conditions in territories where a change is expected, and constructing biomedical prediction proper of the effect of hydrotechnical constructions. The development of the indicated predictions make it possible to include measures on intensifying the positive and preventing or abating undesired effects on the biomedical situation when designing hydrotechnical and water-management construction.

  12. Nutrition and the science of disease prevention: a systems approach to support metabolic health

    Science.gov (United States)

    Bennett, Brian J.; Hall, Kevin D.; Hu, Frank B.; McCartney, Anne L.; Roberto, Christina

    2017-01-01

    Progress in nutritional science, genetics, computer science, and behavioral economics can be leveraged to address the challenge of noncommunicable disease. This report highlights the connection between nutrition and the complex science of preventing disease and discusses the promotion of optimal metabolic health, building on input from several complementary disciplines. The discussion focuses on (1) the basic science of optimal metabolic health, including data from gene–diet interactions, microbiome, and epidemiological research in nutrition, with the goal of defining better targets and interventions, and (2) how nutrition, from pharma to lifestyle, can build on systems science to address complex issues. PMID:26415028

  13. Principles of Biomedical Agriculture Applied to the Plant Family Theaceae To Identify Novel Interventions for Cancer Prevention and Control.

    Science.gov (United States)

    Wang, Yijun; Yang, Yunqiu; Wei, Chaoling; Wan, Xiaochun; Thompson, Henry J

    2016-04-13

    Plant materials from the family Theaceae have been used for over a thousand years as integral components within the food systems of many globally distributed cultures and to treat a variety of human ailments. These markedly different uses remain of considerable interest in the 21st century. This perspective draws heavily from the agricultural and biomedical literature published using plant materials from the genus Camellia. Our objective is to provide a rationale and framework for broadening the scope of investigation of genera and species within Theaceae beyond Camellia sinensis to accelerate the development of a new generation of Theaceae-based pharmaceuticals/nutraceuticals and the more general enhancement of the food supply with Theaceae-containing products that affect the development of chronic diseases such as cancer. This will require a concerted effort to systematically capitalize on the rapidly growing knowledge of germplasm resources within Theaceae using metabolomic profiling in combination with in vivo and in vitro approaches. The successful translation of this research into products that affect human health will be facilitated by recognition of the agronomic factors that are critical in making hot water infusions generically referred to as tea as well as food products containing ground leaf powders.

  14. What is biomedical informatics?

    Science.gov (United States)

    Bernstam, Elmer V; Smith, Jack W; Johnson, Todd R

    2010-02-01

    Biomedical informatics lacks a clear and theoretically-grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine.

  15. On Biomedical Research Policy in the Future

    Science.gov (United States)

    1989-01-01

    0 ON BIOMEDICAL RESEARCH POLICY IN THE FUTURE Albert P. Williams January 1989 DTIC ELECTE P-7520 "’T,, . The RAND Corporation Papers are issued by...BIOMEDICAL RESEARCH POLICY IN THE FUTURE[l] Mr. Walden, members of the Science Policy Task Force, I am honored to be invited to appear on this panel and...to offer my thoughts on future biomedical research policy . My perspective is that of an outsider with a longstanding interest in federal biomedical

  16. About the Nutritional Science Research Group | Division of Cancer Prevention

    Science.gov (United States)

    The Nutritional Science Research Group (NSRG) promotes and supports studies establishing a comprehensive understanding of the precise role of diet and food components in modulating cancer risk and tumor cell behavior. This focus includes approaches to characterize molecular targets and variability in individual responses to nutrients and dietary patterns. |

  17. Nutritional Science Clinical Trials | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  18. Active Nutritional Science Grants | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  19. Nutritional Science Meetings and Events | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  20. Nutritional Science Funding Opportunities | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  2. Publication and other reporting biases in cognitive sciences: detection, prevalence, and prevention.

    Science.gov (United States)

    Ioannidis, John P A; Munafò, Marcus R; Fusar-Poli, Paolo; Nosek, Brian A; David, Sean P

    2014-05-01

    Recent systematic reviews and empirical evaluations of the cognitive sciences literature suggest that publication and other reporting biases are prevalent across diverse domains of cognitive science. In this review, we summarize the various forms of publication and reporting biases and other questionable research practices, and overview the available methods for probing into their existence. We discuss the available empirical evidence for the presence of such biases across the neuroimaging, animal, other preclinical, psychological, clinical trials, and genetics literature in the cognitive sciences. We also highlight emerging solutions (from study design to data analyses and reporting) to prevent bias and improve the fidelity in the field of cognitive science research.

  3. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  4. Green fluorescent protein purification through Immobilized Metal Affinity Chromatografy (IMAC and its relevance for Biomedical Science students during Biochemistry practical classes at La Trobe University – Australia

    Directory of Open Access Journals (Sweden)

    Alex Jose José de Melo Silva

    2016-12-01

    Full Text Available This work was performed as an integrated practical of a Biomedical Science undergraduate course of Biochemistry subject, in order to demonstrate used techniques to purify of Green Fluorescent Protein (GFP. To perform the experiments the main methodology applied was the by immobilized metal affinity chromatography (IMAC.  The open reading frame for enhanced GFP was sub-cloned into the pQE30 expression vector. The subsequent production of protein tagged N-terminally with hexahistidine, facilitated its purification by IMAC.  An approximate 3-fold purification of GFP was achieved. Thus, the students who completed the course gained significant experience related to fundamental techniques in molecular cloning and a sound basis in the principles of recombinant protein expression and purification.

  5. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  6. Effect of seasonal variation on adult clinical laboratory parameters in Rwanda, Zambia, and Uganda: implications for HIV biomedical prevention trials.

    Directory of Open Access Journals (Sweden)

    Eugene Ruzagira

    Full Text Available To investigate the effect of seasonal variation on adult clinical laboratory parameters in Rwanda, Zambia, and Uganda and determine its implications for HIV prevention and other clinical trials.Volunteers in a cross-sectional study to establish laboratory reference intervals were asked to return for a seasonal visit after the local season had changed from dry to rainy or vice versa. Volunteers had to be clinically healthy, not pregnant and negative for HIV, Hepatitis B and C, and syphilis infection at both visits. At each visit, blood was taken for measurement of hemoglobin, haematocrit, mean corpuscular volume, red blood cells, platelets, total white blood cells (WBC, neutrophils, lymphocytes, monocytes, eosinophils, basophils, CD4/CD8 T cells, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, direct bilirubin, total bilirubin, total immunoglobulin gamma, total protein, creatinine, total amylase, creatine phosphokinase and lactate dehydrogenase (LDH. Consensus dry season reference intervals were applied to rainy season values (and vice versa and the proportion of 'out-of-range' values determined. Percentage differences between dry and rainy season parameter mean values were estimated.In this cohort of 903 volunteers, less than 10.0% of consensus parameter (except LDH values in one season were "out-of-range" in the other. Twenty-two (22 percent of rainy season LDH values fell outside of the consensus dry season interval with the higher values observed in the rainy season. Variability between consensus seasonal means ranged from 0.0% (total WBC, neutrophils, monocytes, basophils, and direct bilirubin to 40.0% (eosinophils. Within sites, the largest seasonal variations were observed for monocytes (Masaka, 11.5%, LDH (Lusaka, 21.7%, and basophils (Kigali, 22.2%.Seasonality had minimal impact on adult clinical laboratory parameter values in Rwanda, Zambia, and Uganda. Seasonal variation may not be an important factor in the

  7. Fluorides in caries prevention and control: empiricism or science.

    Science.gov (United States)

    Ten Cate, J M

    2004-01-01

    The caries-preventive effects of fluoride are beyond any reasonable doubt! Inclusion of fluoride use in caries prevention protocols has resulted in significant reduction in caries prevalence in the majority of the population. Nevertheless, even in low-caries prevalence populations up to 20% of individuals may suffer to an unacceptable degree from caries. In the history of caries research various phases can be discerned. Starting with the initial - laboratory - studies to reveal the mode of action of fluoride, attention later shifted to intra-oral studies and in situ product testing. Currently much emphasis is given to evidence-based dentistry and guidelines for clinical practice, which trend has also focussed the research on fluoride and caries. While on some topics, such as the efficacy of fluoride toothpastes, evidence is convincing, additional research is indicated to resolve remaining questions. One such question is that of high-prevalence individuals for which a comprehensive research programme focussing both on caries aetiological and behavioural aspects should be further developed. Efforts should continue to be directed at improving our understanding of fluoride, in particular on topics where success so far has failed.

  8. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1986-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology.

  9. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1987-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1986. The research develops the knowledge and scientific principles necessary to identify, understand and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect the PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological methods for assessing health risks among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include effects of radiation and of energy-related chemicals. The last section is related to medical applications of nuclear technology.

  10. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1989-06-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1988. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals.

  11. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1988-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology.

  12. Medicine's perception of reality - a split picture: critical reflections on apparent anomalies within the biomedical theory of science.

    Science.gov (United States)

    Kirkengen, Anna Luise; Ekeland, Tor-Johan; Getz, Linn; Hetlevik, Irene; Schei, Edvin; Ulvestad, Elling; Vetlesen, Arne Johan

    2016-08-01

    Escalating costs, increasing multi-morbidity, medically unexplained health problems, complex risk, poly-pharmacy and antibiotic resistance can be regarded as artefacts of the traditional knowledge production in Western medicine, arising from its particular worldview. Our paper presents a historically grounded critical analysis of this view. The materialistic shift of Enlightenment philosophy, separating subjectivity from bodily matter, became normative for modern medicine and yielded astonishing results. The traditional dichotomies of mind/body and subjective/objective are, however, incompatible with modern biological theory. Medical knowledge ignores central tenets of human existence, notably the physiological impact of subjective experience, relationships, history and sociocultural contexts. Biomedicine will not succeed in resolving today's poorly understood health problems by doing 'more of the same'. We must acknowledge that health, sickness and bodily functioning are interwoven with human meaning-production, fundamentally personal and biographical. This implies that the biomedical framework, although having engendered 'success stories' like the era of antibiotics, needs to be radically revised.

  13. The science of fencing: implications for performance and injury prevention.

    Science.gov (United States)

    Roi, Giulio S; Bianchedi, Diana

    2008-01-01

    In this review we analyse the data from the literature on fencing with the aim of creating a psychobiological and multi-factorial model of fencing performance. Fencing is an open-skilled combat sport that was admitted to the first modern Olympic Games in Athens (1896). It is mainly practised indoors, with three different weapons: the foil, the sabre and the épée, each contested with different rules. A fencing international tournament may last between 9 and 11 hours. Bouts represent only 18% of total competition time, with an effective fight time of between 17 and 48 minutes. The physical demands of fencing competitions are high, involving the aerobic and anaerobic alactic and lactic metabolisms, and are also affected by age, sex, level of training and technical and tactical models utilized in relation to the adversary. The anthropometrical characteristics of fencers show a typical asymmetry of the limbs as a result of the practice of an asymmetrical sport activity. Fencing produces typical functional asymmetries that emphasize the very high level of specific function, strength and control required in this sport. Moreover, the physical demands of fencing are closely linked to the perceptual and psychological ones, and all are subjected to a continuous succession of changes during the bouts based on the behaviour of the opponent. For this reason it is difficult to identify a significant relationship between any one physiological characteristic and performance, and performance is more likely to be influenced by perceptual and neuro-physiological characteristics. Fencers need to anticipate the opponent and to mask their true intentions with a game of feints and counter-feints, which must be supported by an adequate psycho-physical condition to prevent central and peripheral fatigue. Fencing is not particularly dangerous; however, there is a fine line between a fatal lesion and a simple wound from a broken blade. The suggestions for injury prevention fall into three

  14. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  15. [Biomedical activity of biosurfactants].

    Science.gov (United States)

    Krasowska, Anna

    2010-07-23

    Biosurfactants, amphiphilic compounds, synthesized by microorganisms have surface, antimicrobial and antitumor properties. Biosurfactants prevent adhesion and biofilms formation by bacteria and fungi on various surfaces. For many years microbial surfactants are used as antibiotics with board spectrum of activity against microorganisms. Biosurfactants act as antiviral compounds and their antitumor activities are mediated through induction of apoptosis. This work presents the current state of knowledge related to biomedical activity of biosurfactants.

  16. Developing a prevention synthesis and translation system to promote science-based approaches to teen pregnancy, HIV and STI prevention.

    Science.gov (United States)

    Lewis, Kelly M; Lesesne, Catherine A; Zahniser, S Christine; Wilson, Mary Martha; Desiderio, Gina; Wandersman, Abraham; Green, Diane C

    2012-12-01

    The Interactive Systems Framework for Dissemination and Implementation (ISF) is a multi-system framework that can guide research-to-practice efforts by building and supporting the work of three interacting systems: the Prevention Delivery, Support, and Synthesis and Translation Systems. The Synthesis and Translation system is vital to bridging science and practice, yet how to develop it and train support system partners to use it is under-researched. This article bridges this gap by offering a case example of the planning, development, and use of a synthesis and translation product called Promoting Science-based Approaches to Teen Pregnancy Prevention using Getting To Outcomes. The case presented documents the process used for developing the synthesis and translation product, reports on efforts to engage the Prevention Support system to use the product, and how we approached building interaction between the Synthesis and Translation System and the Support System partners. Practice-oriented evaluation data are also presented. Implications for practice, policy and research are discussed.

  17. Biomedical Libraries

    Science.gov (United States)

    Pizer, Irwin H.

    1978-01-01

    Biomedical libraries are discussed as a distinct and specialized group of special libraries and their unique services and user interactions are described. The move toward professional standards, as evidenced by the Medical Library Association's new certification program, and the current state of development for a new section of IFLA established…

  18. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  19. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course †

    Science.gov (United States)

    Walton, Kristen L. W.

    2014-01-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research. PMID:25574289

  20. The Effects of Training Community Leaders in Prevention Science: Communities that Care in Pennsylvania.

    Science.gov (United States)

    Feinberg, Mark E.; Greenberg, Mark T.; Osgood, D. Wayne; Anderson, Amy; Babinski, Leslie

    2002-01-01

    Examined the effects of training community leaders in prevention science in the context of the Communities That Care (CTC) model fo community empowerment. Data from an evaluation of CTC in 21 Pennsylvania communities and interviews with 203 community leaders show that training is positively, although modestly, associated with participant attitudes…

  1. Health Promotion for Adolescent Childhood Leukemia Survivors: Building on Prevention Science and eHealth

    OpenAIRE

    Elliot, Diane L.; Lindemulder, Susan J; Goldberg, Linn; Stadler, Diane D.; Smith, Jennifer

    2012-01-01

    Teenage survivors of childhood acute lymphoblastic leukemia (ALL) have increased morbidity likely due to their prior multicomponent treatment. Habits established in adolescence can impact individuals’ subsequent adult behaviors. Accordingly, healthy lifestyles, avoiding harmful actions, and appropriate disease surveillance are of heightened importance among teenage survivors. We review the findings from prevention science and their relevance to heath promotion. The capabilities and current us...

  2. Community Partnership Designed to Promote Lyme Disease Prevention and Engagement in Citizen Science.

    Science.gov (United States)

    Seifert, Veronica A; Wilson, Shane; Toivonen, Samantha; Clarke, Benjamin; Prunuske, Amy

    2016-03-01

    The goal of this project is to promote Lyme disease prevention and to cultivate an interest in science through a citizen-science project coordinated by researchers at a public university and teachers at rural high schools. The lesson plan is designed to increase student interest in pursuing a science career through participation in an authentic research experience, utilizing a topic that has implications on the health of the surrounding community. Students are introduced in the classroom to zoonotic diseases transmitted by the Ixodes tick, the health risks of Lyme disease, and disease prevention strategies. Students then participate in a research experience collecting field data and ticks from their community, which are used in university research. To measure changes in student knowledge and attitudes toward Lyme disease and science careers, students completed surveys related to the learning objectives associated with the experience. We found participation in the activity increased student confidence and ability to correctly differentiate a deer tick from a wood tick and to recognize the symptoms of Lyme disease. In addition, students reported increased interest in pursuing a science degree in college or graduate school. Authentic research experience related to a disease relevant to the local community is effective at enhancing high school student engagement in science.

  3. Community Partnership Designed to Promote Lyme Disease Prevention and Engagement in Citizen Science

    Directory of Open Access Journals (Sweden)

    Veronica A. Seifert

    2015-11-01

    Full Text Available The goal of this project is to promote Lyme disease prevention and to cultivate an interest in science through a citizen-science project coordinated by researchers at a public university and teachers at rural high schools. The lesson plan is designed to increase student interest in pursuing a science career through participation in an authentic research experience, utilizing a topic that has implications on the health of the surrounding community. Students are introduced in the classroom to zoonotic diseases transmitted by the Ixodes tick, the health risks of Lyme disease, and disease prevention strategies. Students then participate in a research experience collecting field data and ticks from their community, which are used in university research. To measure changes in student knowledge and attitudes toward Lyme disease and science careers, students completed surveys related to the learning objectives associated with the experience. We found participation in the activity increased student confidence and ability to correctly differentiate a deer tick from a wood tick and to recognize the symptoms of Lyme disease. In addition, students reported increased interest in pursuing a science degree in college or graduate school. Authentic research experience related to a disease relevant to the local community is effective at enhancing high school student engagement in science.

  4. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, C.C. [ed.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  5. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1992-09-01

    This report summarizes progress in OHER biological research and general life sciences research programs conducted conducted at PNL in FLY 1991. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long- term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and newly developed energy-related technologies through an increased understanding of the ways in which radiation and chemicals cause biological damage.

  6. Advancing the prevention agenda for HIV and other sexually transmitted infections in south China: social science research to inform effective public health interventions.

    Science.gov (United States)

    Muessig, Kathryn E; Smith, M Kumi; Maman, Suzanne; Huang, Yingying; Chen, Xiang-Sheng

    2014-02-01

    Despite widespread biomedical advances in treatment and prevention, HIV and other sexually transmitted infections (STI) continue to affect a large portion of the world's population. The profoundly social nature of behaviorally driven epidemics and disparities across socioeconomic divides in the distribution of HIV/STI and care outcomes emphasize the need for innovative, multilevel interventions. Interdisciplinary approaches to HIV/STI control are needed to combine insights from the social and biological sciences and public health fields. In this concluding essay to a Special Issue on HIV/STI in south China, we describe the evolution of the region's HIV/STI epidemics and the government response, then synthesize findings from the 11 studies presented in this issue to extend seven recommendations for future HIV/STI prevention and care research in China. We discuss lessons learned from forging international collaborations between the social and biological sciences and public health to inform a shared research agenda to better meet the needs of those most affected by HIV and other STI.

  7. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  8. A Review of Biomedical Composite Materials

    Institute of Scientific and Technical Information of China (English)

    吴珊珊

    2013-01-01

    This article addresses the review of the biomedical composite materials.It introduces the operational definition,the classification of biomedical composite materials,and its constituents within itself.In this thesis,the last part presents the application of this kind of material.By writing this paper,I hope that people will get a comprehensive knowledge of the biomedical composite material and make further and deeper research in this material by which way to animate the material science industry.

  9. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research - Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1990-05-01

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiological studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.

  10. Rhythm Analysis by Heartbeat Classification in the Electrocardiogram (Review article of the research achievements of the members of the Centre of Biomedical Engineering, Bulgarian Academy of Sciences

    Directory of Open Access Journals (Sweden)

    Irena Jekova

    2009-08-01

    Full Text Available The morphological and rhythm analysis of the electrocardiogram (ECG is based on ventricular beats detection, wave parameters measurement, as amplitudes, widths, polarities, intervals and relations between them, and a subsequent classification supporting the diagnostic process. Number of algorithms for detection and classification of the QRS complexes have been developed by researchers in the Centre of Biomedical Engineering - Bulgarian Academy of Sciences, and are reviewed in this material. Combined criteria have been introduced dealing with the QRS areas and amplitudes, the waveshapes evaluated by steep slopes and sharp peaks, vectorcardiographic (VCG loop descriptors, RR intervals irregularities. Algorithms have been designed for application on a single ECG lead, a synthesized lead derived by multichannel synchronous recordings, or simultaneous multilead analysis. Some approaches are based on templates matching, cross-correlation or rely on a continuous updating of adaptive thresholds. Various beat classification methods have been designed involving discriminant analysis, the K-th nearest neighbors, fuzzy sets, genetic algorithms, neural networks, etc. The efficiency of the developed methods has been assessed using internationally recognized arrhythmia ECG databases with annotated beats and rhythm disturbances. In general, high values for specificity and sensitivity competitive to those reported in the literature have been achieved.

  11. Efficient Retrieval of Text for Biomedical Domain using Expectation Maximization Algorithm

    Directory of Open Access Journals (Sweden)

    Sumit Vashishtha

    2011-11-01

    Full Text Available Data mining, a branch of computer science [1], is the process of extracting patterns from large data sets by combining methods from statistics and artificial intelligence with database management. Data mining is seen as an increasingly important tool by modern business to transform data into business intelligence giving an informational advantage. Biomedical text retrieval refers to text retrieval techniques applied to biomedical resources and literature available of the biomedical and molecular biology domain. The volume of published biomedical research, and therefore the underlying biomedical knowledge base, is expanding at an increasing rate. Biomedical text retrieval is a way to aid researchers in coping with information overload. By discovering predictive relationships between different pieces of extracted data, data-mining algorithms can be used to improve the accuracy of information extraction. However, textual variation due to typos, abbreviations, and other sources can prevent the productive discovery and utilization of hard-matching rules. Recent methods of soft clustering can exploit predictive relationships in textual data. This paper presents a technique for using soft clustering data mining algorithm to increase the accuracy of biomedical text extraction. Experimental results demonstrate that this approach improves text extraction more effectively that hard keyword matching rules.

  12. Fraud and deceit in biomedical research

    Directory of Open Access Journals (Sweden)

    Buitrago Juliana

    2004-05-01

    Full Text Available History: Scientists are supposed to be moved by lofty ideals and be taught to work restlessly in pursue of the truth, but sadly fraud in biomedical research can be traced through the entire history of science. Definition: Nowadays, typology of fraud is clearly defined. Principal types of misconduct are reviewed. Consequences: It is impossible to know to what extent the damage will remain. Fraud threats public confidence in the integrity of science and may change professional attitudes and health public policies leading to serious social consequences. Evaluation of the problem: Prevalence of research fraud is unknown but in almost every country where investigation has been largely developed, at least a corroborated case of mis-conduct has been known. Policies on the scientific process may eventually contribute to fraudulent behaviour. Situation in Colombia: Colombia lacks of comprehensive policies to deal with fraud in research. How to tackle this problem: Finally, some recommendations are given to prevent, detect and deal with fraud in biomedical research.

  13. Human Subjects Protection and Technology in Prevention Science: Selected Opportunities and Challenges.

    Science.gov (United States)

    Pisani, Anthony R; Wyman, Peter A; Mohr, David C; Perrino, Tatiana; Gallo, Carlos; Villamar, Juan; Kendziora, Kimberly; Howe, George W; Sloboda, Zili; Brown, C Hendricks

    2016-08-01

    Internet-connected devices are changing the way people live, work, and relate to one another. For prevention scientists, technological advances create opportunities to promote the welfare of human subjects and society. The challenge is to obtain the benefits while minimizing risks. In this article, we use the guiding principles for ethical human subjects research and proposed changes to the Common Rule regulations, as a basis for discussing selected opportunities and challenges that new technologies present for prevention science. The benefits of conducting research with new populations, and at new levels of integration into participants' daily lives, are presented along with five challenges along with technological and other solutions to strengthen the protections that we provide: (1) achieving adequate informed consent with procedures that are acceptable to participants in a digital age; (2) balancing opportunities for rapid development and broad reach, with gaining adequate understanding of population needs; (3) integrating data collection and intervention into participants' lives while minimizing intrusiveness and fatigue; (4) setting appropriate expectations for responding to safety and suicide concerns; and (5) safeguarding newly available streams of sensitive data. Our goal is to promote collaboration between prevention scientists, institutional review boards, and community members to safely and ethically harness advancing technologies to strengthen impact of prevention science.

  14. [Projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo].

    Science.gov (United States)

    Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji

    2014-01-01

    Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.

  15. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  16. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  17. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  18. Writing intelligible English prose for biomedical journals.

    Science.gov (United States)

    Ludbrook, John

    2007-01-01

    1. I present a combination of semi-objective and subjective evidence that the quality of English prose in biomedical scientific writing is deteriorating. 2. I consider seven possible strategies for reversing this apparent trend. These refer to a greater emphasis on good writing by students in schools and by university students, consulting books on science writing, one-on-one mentoring, using 'scientific' measures to reveal lexical poverty, making use of freelance science editors and encouraging the editors of biomedical journals to pay more attention to the problem. 3. I conclude that a fruitful, long-term, strategy would be to encourage more biomedical scientists to embark on a career in science editing. This strategy requires a complementary initiative on the part of biomedical research institutions and universities to employ qualified science editors. 4. An immediately realisable strategy is to encourage postgraduate students in the biomedical sciences to undertake the service courses provided by many universities on writing English prose in general and scientific prose in particular. This strategy would require that heads of departments and supervisors urge their postgraduate students to attend such courses. 5. Two major publishers of biomedical journals, Blackwell Publications and Elsevier Science, now provide lists of commercial editing services on their web sites. I strongly recommend that authors intending to submit manuscripts to their journals (including Blackwell's Clinical and Experimental Pharmacology and Physiology) make use of these services. This recommendation applies especially to those for whom English is a second language.

  19. Using mixed methods effectively in prevention science: designs, procedures, and examples.

    Science.gov (United States)

    Zhang, Wanqing; Watanabe-Galloway, Shinobu

    2014-10-01

    There is growing interest in using a combination of quantitative and qualitative methods to generate evidence about the effectiveness of health prevention, services, and intervention programs. With the emerging importance of mixed methods research across the social and health sciences, there has been an increased recognition of the value of using mixed methods for addressing research questions in different disciplines. We illustrate the mixed methods approach in prevention research, showing design procedures used in several published research articles. In this paper, we focused on two commonly used mixed methods designs: concurrent and sequential mixed methods designs. We discuss the types of mixed methods designs, the reasons for, and advantages of using a particular type of design, and the procedures of qualitative and quantitative data collection and integration. The studies reviewed in this paper show that the essence of qualitative research is to explore complex dynamic phenomena in prevention science, and the advantage of using mixed methods is that quantitative data can yield generalizable results and qualitative data can provide extensive insights. However, the emphasis of methodological rigor in a mixed methods application also requires considerable expertise in both qualitative and quantitative methods. Besides the necessary skills and effective interdisciplinary collaboration, this combined approach also requires an open-mindedness and reflection from the involved researchers.

  20. Keeping gay and bisexual men safe: The arena of HIV prevention science and praxis.

    Science.gov (United States)

    Green, Adam Isaiah

    2016-04-01

    Abstract In this article, I draw from an ongoing ethnographic study of HIV prevention for gay, bisexual, and 'men who have sex with men' to develop an institutional analysis of HIV behavioral intervention science and praxis. I approach this analysis through the lens of the social worlds framework, focusing on the institutional arena in which HIV behavioral interventions are devised and executed. Toward this end, I focus on two fundamental points of contention that lie at the heart of the prevention enterprise and put its social organization in high relief: (1) conceptions of health and lifestyle practices and (2) attributions of expertise. These core contentions reveal less the steady advance of normal science than an arena of actors ensconced in boundary work and jurisdictional struggles over how to engineer behavior change and reduce the scale of the HIV epidemic. Their resolution, I argue, has occurred in a historically contingent process determined by the political economy of the US HIV prevention arena and the differential structural location of its social worlds.

  1. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  2. Innovations in Biomedical Engineering 2016

    CERN Document Server

    Tkacz, Ewaryst; Paszenda, Zbigniew; Piętka, Ewa

    2017-01-01

    This book presents the proceedings of the “Innovations in Biomedical Engineering IBE’2016” Conference held on October 16–18, 2016 in Poland, discussing recent research on innovations in biomedical engineering. The past decade has seen the dynamic development of more and more sophisticated technologies, including biotechnologies, and more general technologies applied in the area of life sciences. As such the book covers the broadest possible spectrum of subjects related to biomedical engineering innovations. Divided into four parts, it presents state-of-the-art achievements in: • engineering of biomaterials, • modelling and simulations in biomechanics, • informatics in medicine • signal analysis The book helps bridge the gap between technological and methodological engineering achievements on the one hand and clinical requirements in the three major areas diagnosis, therapy and rehabilitation on the other.

  3. On the Crisis in Biomedical Education: Is There an Overproduction of Biomedical PhDs?

    Science.gov (United States)

    Domer, Judith E.; And Others

    1996-01-01

    The debate over whether there is an oversupply of doctorates in the biomedical sciences is examined, and a case study of doctoral graduates and postdoctoral fellows at the Tulane University (Louisiana) Medical Center is reported. It is concluded that there is no biomedical doctoral glut and that doctoral program downsizing would have serious…

  4. STD patients’ preferences for HIV prevention strategies

    Directory of Open Access Journals (Sweden)

    Castro JG

    2014-12-01

    Full Text Available Jose G Castro,1 Deborah L Jones,2 Stephen M Weiss2 1Infectious Diseases, Department of Medicine, 2Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA Abstract: The objective of this pilot study was to explore the knowledge of and preferences regarding effective biomedical interventions among high risk individuals attending a sexually transmitted diseases clinic, and to examine the effect of a brief information intervention on preference. Participants completed a baseline assessment, attended a presentation on human immunodeficiency virus (HIV prevention methods, and completed a postintervention assessment. Outcome measures included: demographics and sexual risk factors, self-perceived HIV risk, and knowledge and attitudes regarding new biomedical methods of HIV prevention. After the baseline evaluation, participants were provided with information on new biomedical prevention strategies. Participants were given the option to review the information by reading a pamphlet or by viewing a brief video containing the same information. Participants (n=97 were female (n=51 and male (n=46. At baseline, only a small minority of participants were aware of the newer biomedical strategies to prevent HIV infection. Postintervention, 40% endorsed having heard about the use of HIV medications to prevent HIV infection; 72% had heard that male circumcision can decrease the risk of acquiring HIV infection in men; and 73% endorsed knowledge of the potential role of microbicides in decreasing the risk of acquiring HIV. Following the intervention, the most preferred prevention method was male condoms, followed by preexposure prophylaxis, and microbicides. The least preferred methods were male circumcision and female condoms. This study provides preliminary information on knowledge and attitudes regarding newer biomedical interventions to protect against HIV infection. Keywords: STD clinic, biomedical HIV prevention, PrEP, male

  5. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  6. Politics of science: Progress toward prevention of the dementia-Alzheimer's syndrome.

    Science.gov (United States)

    Khachaturian, Zaven S; Khachaturian, Ara S

    2015-01-01

    There exist many challenges hampering the discovery and development of effective interventions to prevent dementia. Three major trends have now intersected to influence the emerging interest in disease modifying therapies that may delay or halt dementia. The three crucial factors shaping this current focus are: (1) the emergence of the longevity revolution and the impact of a aging society, (2) the effects of the US Federal investment in research in advancing knowledge about the neurobiology of aging and dementia, and (3) the problem of US legislators and health policy makers to balance the allocation of evermore scarce research funding resources. The purpose of this essay is to provide a survey of the politics of science and to describe efforts to correctly manage the high level of expectations of both the patient and research communities. The perspective offered reviews the history and evolution of the ideas to treat or prevent dementia and Alzheimer's disease as a national strategic goal. The aim is to evaluate the interplay between science and formulation of public policy for setting research priority. We use the history of developing US National Institute of Aging's extramural research programs on brain aging and Alzheimer's disease (Khachaturian, 2006; 2007) as an initial case study.

  7. [Biomedical research in Revista de Biologia Tropical].

    Science.gov (United States)

    Gutiérrez, José María

    2002-01-01

    The contributions published in Revista de Biología Tropical in the area of Biomedical Sciences are reviewed in terms of number of contributions and scope of research subjects. Biomedical Sciences, particularly Parasitology and Microbiology, constituted the predominant subject in the Revista during the first decade, reflecting the intense research environment at the School of Microbiology of the University of Costa Rica and at Hospital San Juan de Dios. The relative weight of Biomedicine in the following decades diminished, due to the outstanding increment in publications in Biological Sciences; however, the absolute number of contributions in Biomedical Sciences remained constant throughout the last decades, with around 80 contributions per decade. In spite of the predominance of Parasitology as the main biomedical subject, the last decades have witnessed the emergence of new areas of interest in the Revista, such as Pharmacology of natural products, Toxinology, especially related to snake venoms, and Human Genetics. This retrospective analysis evidences that Biomedical Sciences, particularly those related to Tropical Medicine, were a fundamental component during the first years of Revista de Biología Tropical, and have maintained a significant presence in the scientific output of this journal, the most relevant scientific publication in biological sciences in Central America.

  8. Biomedical applications of nisin.

    Science.gov (United States)

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications.

  9. Handbook of photonics for biomedical engineering

    CERN Document Server

    Kim, Donghyun; Somekh, Michael

    2017-01-01

    Nanophotonics has emerged rapidly into technological mainstream with the advent and maturity of nanotechnology available in photonics and enabled many new exciting applications in the area of biomedical science and engineering that were unimagined even a few years ago with conventional photonic engineering techniques. Handbook of Nanophotonics in Biomedical Engineering is intended to be a reliable resource to a wealth of information on nanophotonics that can inspire readers by detailing emerging and established possibilities of nanophotonics in biomedical science and engineering applications. This comprehensive reference presents not only the basics of nanophotonics but also explores recent experimental and clinical methods used in biomedical and bioengineering research. Each peer-reviewed chapter of this book discusses fundamental aspects and materials/fabrication issues of nanophotonics, as well as applications in interfaces, cell, tissue, animal studies, and clinical engineering. The organization provides ...

  10. Biomedical wellness challenges and opportunities

    Science.gov (United States)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  11. Health promotion for adolescent childhood leukemia survivors: building on prevention science and ehealth.

    Science.gov (United States)

    Elliot, Diane L; Lindemulder, Susan J; Goldberg, Linn; Stadler, Diane D; Smith, Jennifer

    2013-06-01

    Teenage survivors of childhood acute lymphoblastic leukemia (ALL) have increased morbidity likely due to their prior multicomponent treatment. Habits established in adolescence can impact individuals' subsequent adult behaviors. Accordingly, healthy lifestyles, avoiding harmful actions, and appropriate disease surveillance are of heightened importance among teenage survivors. We review the findings from prevention science and their relevance to heath promotion. The capabilities and current uses of eHealth components including e-learning, serious video games, exergaming, behavior tracking, individual messaging, and social networking are briefly presented. The health promotion needs of adolescent survivors are aligned with those eHealth aspects to propose a new paradigm to enhance the wellbeing of adolescent ALL survivors.

  12. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  13. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  14. Development of Support Service for Prevention and Recovery from Dementia and Science of Lethe

    Science.gov (United States)

    Otake, Mihoko

    This paper proposes multiscale service design method through the development of support service for prevention and recovery from dementia towards science of lethe. Proposed multiscale service model consists of tool, event, human, network, style and rule. Service elements at different scales are developed according to the model. Firstly, the author proposes and practices coimagination method as an ``event'', which is expected to prevent the progress of cognitive impairment. Coimagination support system was developed as a ``tool''. Experimental results suggest the effective activation of episodic memory, division of attention, and planning function of participants by the measurement of cognitive activities during the coimagination. Then, Fonobono Research Institute was established as a ''network'' for ``human'' who studies coimagination, which is a multisector research organization including elderly people living around Kashiwa city, companies including instrument and welfare companies, Kashiwa city and Chiba prefecture, researchers of the University of Tokyo. The institute proposes and realizes lifelong research as a novel life ``style'' for elderly people, and discusses life with two rounds as an innovative ``rule'' for social system of aged society.

  15. Education and research in biomedical engineering of the Budapest University of Technology and Economics.

    Science.gov (United States)

    Benyó, Z

    2006-03-01

    Biomedical Engineering is a relatively new interdisciplinary science. This review paper presents the biomedical engineering activity, which is carried out at the Budapest University of Technology and Economics (BUTE) and its partner institutions. In the first parts the main goals and the curriculum of the Biomedical Engineering Education Program is presented. The second part of the paper summarizes the most important biomedical engineering researches most of them carried out in the Biomedical Engineering Laboratory of BUTE.

  16. 15th International Conference on Biomedical Engineering

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organisations working i...

  17. Biomedical engineering and society: policy and ethics.

    Science.gov (United States)

    Flexman, J A; Lazareck, L

    2007-01-01

    Biomedical engineering impacts health care and contributes to fundamental knowledge in medicine and biology. Policy, such as through regulation and research funding, has the potential to dramatically affect biomedical engineering research and commercialization. New developments, in turn, may affect society in new ways. The intersection of biomedical engineering and society and related policy issues must be discussed between scientists and engineers, policy-makers and the public. As a student, there are many ways to become engaged in the issues surrounding science and technology policy. At the University of Washington in Seattle, the Forum on Science Ethics and Policy (FOSEP, www.fosep.org) was started by graduate students and post-doctoral fellows interested in improving the dialogue between scientists, policymakers and the public and has received support from upper-level administration. This is just one example of how students can start thinking about science policy and ethics early in their careers.

  18. Science-based prevention through communities that care: a model of social work practice for public health.

    Science.gov (United States)

    Haggerty, Kevin P; Shapiro, Valerie B

    2013-01-01

    This article describes a public health orientation to drug and alcohol abuse prevention; reviews the state of the science underlying a risk and protective factor approach to alcohol and drug abuse prevention; describes Communities That Care, a community practice model that makes use of this evidence; and considers how this model reflects four important principles of social work practice. The intent of this article is to provide guidance to social workers who support the National Association of Social Work's intention to make prevention practice central to the provision of alcohol and drug abuse services by social workers.

  19. The Potential Improvement of Team-Working Skills in Biomedical and Natural Science Students Using a Problem-Based Learning Approach

    Science.gov (United States)

    Nowrouzian, Forough L.; Farewell, Anne

    2013-01-01

    Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled.…

  20. Averting HIV infections in New York City: a modeling approach estimating the future impact of additional behavioral and biomedical HIV prevention strategies.

    Directory of Open Access Journals (Sweden)

    Jason Kessler

    Full Text Available BACKGROUND: New York City (NYC remains an epicenter of the HIV epidemic in the United States. Given the variety of evidence-based HIV prevention strategies available and the significant resources required to implement each of them, comparative studies are needed to identify how to maximize the number of HIV cases prevented most economically. METHODS: A new model of HIV disease transmission was developed integrating information from a previously validated micro-simulation HIV disease progression model. Specification and parameterization of the model and its inputs, including the intervention portfolio, intervention effects and costs were conducted through a collaborative process between the academic modeling team and the NYC Department of Health and Mental Hygiene. The model projects the impact of different prevention strategies, or portfolios of prevention strategies, on the HIV epidemic in NYC. RESULTS: Ten unique interventions were able to provide a prevention benefit at an annual program cost of less than $360,000, the threshold for consideration as a cost-saving intervention (because of offsets by future HIV treatment costs averted. An optimized portfolio of these specific interventions could result in up to a 34% reduction in new HIV infections over the next 20 years. The cost-per-infection averted of the portfolio was estimated to be $106,378; the total cost was in excess of $2 billion (over the 20 year period, or approximately $100 million per year, on average. The cost-savings of prevented infections was estimated at more than $5 billion (or approximately $250 million per year, on average. CONCLUSIONS: Optimal implementation of a portfolio of evidence-based interventions can have a substantial, favorable impact on the ongoing HIV epidemic in NYC and provide future cost-saving despite significant initial costs.

  1. The Application of the Theory of Reasoned Action and Planned Behavior to Prevention Science in Counseling Psychology

    Science.gov (United States)

    Romano, John L.; Netland, Jason D.

    2008-01-01

    The theory of reasoned action and planned behavior (TRA/PB) is a model of behavior change that has been extensively studied in the health sciences but has had limited exposure in the counseling psychology literature. The model offers counseling psychologists a framework to conceptualize prevention research and practice. The model is important to…

  2. Assessing Capacity to Promote Science-Based Programs: A Key Informant Study of State Teen Pregnancy Prevention Organizations

    Science.gov (United States)

    Saunders, Edward; Sabri, Bushra; Huberman, Barbara; Klaus, T. W.; Davis, Laura

    2011-01-01

    The purpose of this qualitative study was to identify significant external and internal challenges that state organization leaders face in promoting science-based teen pregnancy prevention programs within their states. The state organization administrators were chosen because their organizations were funded by the U.S. Centers for Disease Control…

  3. Evaluation of research in biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gkoutos, Georgios V

    2013-11-01

    Ontologies are now pervasive in biomedicine, where they serve as a means to standardize terminology, to enable access to domain knowledge, to verify data consistency and to facilitate integrative analyses over heterogeneous biomedical data. For this purpose, research on biomedical ontologies applies theories and methods from diverse disciplines such as information management, knowledge representation, cognitive science, linguistics and philosophy. Depending on the desired applications in which ontologies are being applied, the evaluation of research in biomedical ontologies must follow different strategies. Here, we provide a classification of research problems in which ontologies are being applied, focusing on the use of ontologies in basic and translational research, and we demonstrate how research results in biomedical ontologies can be evaluated. The evaluation strategies depend on the desired application and measure the success of using an ontology for a particular biomedical problem. For many applications, the success can be quantified, thereby facilitating the objective evaluation and comparison of research in biomedical ontology. The objective, quantifiable comparison of research results based on scientific applications opens up the possibility for systematically improving the utility of ontologies in biomedical research.

  4. 面向生物医学影像e-Science平台的审计监控系统%An Auditing and Monitoring System for Biomedical Image E-Science Platform

    Institute of Scientific and Technical Information of China (English)

    王土生; 杨媛媛; 张建国

    2013-01-01

    During Research in biomedical imaging and clinical applications for major diseases, it is often necessary to involve scientist of basic medicine, clinical medicine, physics and biomedical engineering for collaborative research. To do this, we built a grid-based biomedical image e-Science platform, providing data sharing and exchange between the different institutions. Due to the distribution of system and node heterogeneity, it is difficult to avoid the system hardware and software failures. Therefore, this paper designed an XMPP-based audit and monitoring system, which supports both real-time monitoring of each host, and auditing of the data business happening in e-Science. The system is running with e-Science platform, showing good convenient and soundness.%在面向重大疾病的生物医学成像与临床应用等研究中,常常需要包括基础医学、临床医学、物理学和生物医学工程多学科的科研工作者进行协同交互。为此采用网格技术构建了生物医学影像e-Science平台,实现了跨机构之间大数据的快速共享与交换。由于系统的分布性和节点的异构性,难以避免会碰到系统的软硬件故障。因此,设计了一种基于XMPP协议的审计监控系统,既对e-Science的各个主机系统资源进行实时监测,又对平台中数据业务进行审计跟踪。系统最终被部署应用在e-Science平台,具有良好的便捷性和稳健性。

  5. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  6. The diversity of experimental organisms in biomedical research may be influenced by biomedical funding.

    Science.gov (United States)

    Erick Peirson, B R; Kropp, Heather; Damerow, Julia; Laubichler, Manfred D

    2017-03-30

    Contrary to concerns of some critics, we present evidence that biomedical research is not dominated by a small handful of model organisms. An exhaustive analysis of research literature suggests that the diversity of experimental organisms in biomedical research has increased substantially since 1975. There has been a longstanding worry that organism-centric funding policies can lead to biases in experimental organism choice, and thus negatively impact the direction of research and the interpretation of results. Critics have argued that a focus on model organisms has unduly constrained the diversity of experimental organisms. The availability of large electronic databases of scientific literature, combined with interest in quantitative methods among philosophers of science, presents new opportunities for data-driven investigations into organism choice in biomedical research. The diversity of organisms used in NIH-funded research may be considerably lower than in the broader biomedical sciences, and may be subject to greater constraints on organism choice.

  7. Joseph F. Keithley Award For Advances in Measurement Science Lecture: Thermophotonic and Photoacoustic Radar Imaging Methods for Biomedical and Dental Imaging

    Science.gov (United States)

    Mandelis, Andreas

    2012-02-01

    In the first part of this presentation I will introduce thermophotonic radar imaging principles and techniques using chirped or binary-phase-coded modulation, methods which can break through the maximum detection depth/depth resolution limitations of conventional photothermal waves. Using matched-filter principles, a methodology enabling parabolic diffusion-wave energy fields to exhibit energy localization akin to propagating hyperbolic wave-fields has been developed. It allows for deconvolution of individual responses of superposed axially discrete sources, opening a new field: depth-resolved thermal coherence tomography. Several examples from dental enamel caries diagnostic imaging to metal subsurface defect thermographic imaging will be discussed. The second part will introduce the field of photoacoustic radar (or sonar) biomedical imaging. I will report the development of a novel biomedical imaging system that utilizes a continuous-wave laser source with a custom intensity modulation pattern, ultrasonic phased array for signal detection and processing coupled with a beamforming algorithm for reconstruction of photoacoustic correlation images. Utilization of specific chirped modulation waveforms (``waveform engineering'') achieves dramatic signal-to-noise-ratio increase and improved axial resolution over pulsed laser photoacoustics. The talk will conclude with aspects of instrumental sensitivity of the PA Radar to optical contrast using cancerous breast tissue-mimicking phantoms, super paramagnetic iron oxide nanoparticles as contrast enhancement agents and in-vivo tissue samples.

  8. Biomedical Engineering Laboratory

    Science.gov (United States)

    2007-11-02

    The Masters of Engineering program with concentration in Biomedical Engineering at Tennessee State University was established in fall 2000. Under... biomedical engineering . The lab is fully equipped with 10 Pentium5-based, 2 Pentium4-based laptops for mobile experiments at remote locations, 8 Biopac...students (prospective graduate students in biomedical engineering ) are regularly using this lab. This summer, 8 new prospective graduate students

  9. Manpower development for the biomedical industry space.

    Science.gov (United States)

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  10. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  11. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  12. A study on knowledge and practice regarding biomedical waste management among staff nurses and nursing students of Rajendra Institute of Medical Sciences, Ranchi

    Directory of Open Access Journals (Sweden)

    Shamim Haider

    2015-03-01

    Full Text Available Background: Hospitals are the centre of cure and also the important centres of infectious waste generation. Effective management of Biomedical Waste (BMW is not only a legal necessity but also a social responsibility. Aims and Objectives: To assess the knowledge and practice in managing the biomedical wastes among nursing staff and student nurses in RIMS, Ranchi. Materials and methods: The study was conducted at RIMS, Ranchi from Oct 2013 to March 2014 (6 months. It was a descriptive, hospital based, cross-sectional study. A total of 240 nurses participated in the present study, randomly chosen from various departments A pre-designed, pre-tested, structured proforma was used for data collection after getting their informed consent. Self-made scoring system was used to categorize the participants as having good, average and poor scores. Data was tabulated and analyzed using percentages and chi-square test. Results: The knowledge regarding general information about BMW management was assessed(with scores 0-8,it was found  that level of knowledge was better in student nurses than staff nurses as student nurses scored good(6-8correct answers in more than half of the questions (65%.Whereas staff nurses scored good in only 33.33% questions. When the practical information regarding the BMW management is assessed (with scores 0-8, it was found that staff nurses had relatively better practice regarding BMW management than students as they scored good(6-8correct answers in 40% and 30% respectively. Conclusion: Though overall knowledge of study participants was good but still they need good quality training to improve their current knowledge about BMW. 

  13. Critically engaging: integrating the social and the biomedical in international microbicides research.

    Science.gov (United States)

    Montgomery, Catherine M; Pool, Robert

    2011-09-27

    Randomized controlled trials and critical social theory are known not to be happy bedfellows. Such trials are embedded in a positivist view of the world, seeking definitive answers to testable questions; critical social theory questions the methods by which we deem the world knowable and may consider experiments in the biomedical sciences as social artifacts. Yet both of these epistemologically and methodologically divergent fields offer potentially important advances in HIV research. In this paper, we describe collaboration between social and biomedical researchers on a large, publicly funded programme to develop vaginal microbicides for HIV prevention. In terms of critical engagement, having integrated and qualitative social science components in the protocol meant potentially nesting alternative epistemologies at the heart of the randomized controlled trial. The social science research highlighted the fallibility and fragility of trial data by demonstrating inconsistencies in key behavioural measurements. It also foregrounded the disjuncture between biomedical conceptions of microbicides and the meanings and uses of the study gel in the context of users' everyday lives. These findings were communicated to the clinical and epidemiological members of the team on an ongoing basis via a feedback loop, through which new issues of concern could also be debated and, in theory, data collection adjusted to the changing needs of the programme. Although critical findings were taken on board by the trialists, a hierarchy of evidence nonetheless remained that limited the utility of some social science findings. This was in spite of mutual respect between clinical epidemiologists and social scientists, equal representation in management and coordination bodies, and equity in funding for the different disciplines. We discuss the positive role that social science integrated into an HIV prevention trial can play, but nonetheless highlight tensions that remain where a hierarchy

  14. Capturing the Value of Biomedical Research.

    Science.gov (United States)

    Bertuzzi, Stefano; Jamaleddine, Zeina

    2016-03-24

    Assessing the real-world impact of biomedical research is notoriously difficult. Here, we present the framework for building a prospective science-centered information system from scratch that has been afforded by the Sidra Medical and Research Center in Qatar. This experiment is part of the global conversation on maximizing returns on research investment.

  15. The application of crime science to the prevention of elder abuse.

    Science.gov (United States)

    Cox, Karen

    The abuse of older people is a significant problem, with estimates intimating that there may be over 340,000 cases per year in the United Kingdom. Despite improvements in screening and assessment to identify and treat those who are abused or at risk of abuse, the healthcare community remains preoccupied with prevalence rather than prevention. In light of the paucity of health-related research evidence to support the effectiveness of preventative measures, the application of crime prevention theory and knowledge is appropriate. Routine activity theory and situational crime prevention literature acknowledges the vulnerability of older people to abuse and the potential of any person employed as a carer to be an abuser. Preventative measures are focused on techniques that make abuse more difficult and more risky for the perpetrator and, therefore, less 'rewarding'. The regulation of healthcare support workers and increased workplace surveillance are examples of the 25 techniques of situational prevention that could be applied in a healthcare setting.

  16. Improving Graduate Education to Support a Branching Career Pipeline: Recommendations Based on a Survey of Doctoral Students in the Basic Biomedical Sciences

    Science.gov (United States)

    Fuhrmann, C. N.; Halme, D. G.; O'Sullivan, P. S.; Lindstaedt, B.

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of…

  17. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  18. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  19. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  20. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  1. Science from evaluation: testing hypotheses about differential effects of three youth-focused suicide prevention trainings.

    Science.gov (United States)

    Coleman, Daniel; Del Quest, Aisling

    2015-01-01

    As part of an evaluation component of a youth suicide prevention, a quasi-experimental repeated measures design tested hypotheses about two brief suicide prevention gatekeeper trainings (Question, Persuade, Refer [QPR] and RESPONSE) and one longer suicide intervention skills training (Applied Suicide Intervention Skills Training [ASIST]). All three trainings showed large changes in prevention attitudes and self-efficacy, largely maintained at follow-up. ASIST trainees had large increases in asking at-risk youth about suicide at follow-up. Convergent with other research, modeling and role-play in training are crucial to increased prevention behaviors. Practice and research implications are discussed, including social work roles in suicide prevention and research.

  2. Sensors for biomedical applications

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.

  3. Statistics in biomedical research

    OpenAIRE

    González-Manteiga, Wenceslao; Cadarso-Suárez, Carmen

    2007-01-01

    The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new p...

  4. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  5. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  6. [Biomedical engineering today : An overview from the viewpoint of the German Biomedical Engineering Society].

    Science.gov (United States)

    Schlötelburg, C; Becks, T; Stieglitz, T

    2010-08-01

    Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.

  7. Transfer Entails Communication: The Public Understanding of (Social) Science as a Stage and a Play for Implementing Evidence-Based Prevention Knowledge and Programs.

    Science.gov (United States)

    Bromme, Rainer; Beelmann, Andreas

    2016-07-30

    Many social science-based interventions entail the transfer of evidence-based knowledge to the "target population," because the acquisition and the acceptance of that knowledge are necessary for the intended improvement of behavior or development. Furthermore, the application of a certain prevention program is often legitimated by a reference to science-based reasons such as an evaluation according to scientific standards. Hence, any implementation of evidence-based knowledge and programs is embedded in the public understanding of (social) science. Based on recent research on such public understanding of science, we shall discuss transfer as a process of science communication.

  8. DCP's Early Detection Research Guides Future Science | Division of Cancer Prevention

    Science.gov (United States)

    Early detection research funded by the NCI's Division of Cancer Prevention has positively steered both public health and clinical outcomes, and set the stage for findings in the next generation of research. |

  9. [Reflections about the historical development of biomedical sciences in Chile and the role of Revista Médica de Chile: an homage on 130-years old].

    Science.gov (United States)

    Vargas Fernández, Luis

    2002-12-01

    When Revista Médica de Chile turns to be 130 years old, the author reflects about the difficulties that scientific and technological creativity faces in Chile, considering that there was a 70 years gap between its historical origin in Chile compared to developed countries. The scientific progress erases the boundaries between Biomedicine and science and technology. This progress has resulted in an improvement in the quality of scientific publications in Revista Medica de Chile. The editorial work has also contributed to this improvement. Revista Medica de Chile has obtained international recognition and stands in a good position as a medical journal in Latin America and Chile.

  10. Scientists and the 3Rs: attitudes to animal use in biomedical research and the effect of mandatory training in laboratory animal science.

    Science.gov (United States)

    Franco, N H; Olsson, I A S

    2014-01-01

    The 3Rs principle of replacement, reduction, and refinement has increasingly been endorsed by legislators and regulatory bodies as the best approach to tackle the ethical dilemma presented by animal experimentation in which the potential benefits for humans stand against the costs borne by the animals. Even when animal use is tightly regulated and supervised, the individual researcher's responsibility is still decisive in the implementation of the 3Rs. Training in laboratory animal science (LAS) aims to raise researchers' awareness and increase their knowledge, but its effect on scientists' attitudes and practice has not so far been systematically assessed. Participants (n = 206) in eight LAS courses (following the Federation of European Laboratory Animal Science Associations category C recommendations) in Portugal were surveyed in a self-administered questionnaire during the course. Questions were related mainly to the 3Rs and their application, attitudes to animal use and the ethical review of animal experiments. One year later, all the respondents were asked to answer a similar questionnaire (57% response rate) with added self-evaluation questions on the impact of training. Our results suggest that the course is effective in promoting awareness and increasing knowledge of the 3Rs, particularly with regard to refinement. However, participation in the course did not change perceptions on the current and future needs for animal use in research.

  11. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  12. The Present State and Future Perspective of Biomedical Engineering in Japan

    Science.gov (United States)

    2007-11-02

    The Present State and Future Perspective of Biomedical Engineering in Japan Shunsuke Sato (Osaka University, Graduate School of Engineering...21st century is a century of life sciences. Biomedical engineering is a field of integrated science and biotechnology, a paradigm where the basic... biomedical engineering and technological development in Japan. The number of members of the society was 900 at the time of establishment, but has

  13. Preventing biological weapon development through the governance of life science research.

    Science.gov (United States)

    Epstein, Gerald L

    2012-03-01

    The dual-use dilemma in the life sciences-that illicit applications draw on the same science and technology base as legitimate applications-makes it inherently difficult to control one without inhibiting the other. Since before the September 11 attacks, the science and security communities in the United States have struggled to develop governance processes that can simultaneously minimize the risk of misuse of the life sciences, promote their beneficial applications, and protect the public trust. What has become clear over that time is that while procedural steps can be specified for assessing and managing dual-use risks in the review of research proposals, oversight of ongoing research, and communication of research results, the actions or decisions to be taken at each of these steps to mitigate dual-use risk defy codification. Yet the stakes are too high to do nothing, or to be seen as doing nothing. The U.S. government should therefore adopt an oversight framework largely along the lines recommended by the National Science Advisory Board for Biosecurity almost 5 years ago-one that builds on existing processes, can gain buy-in from the scientific community, and can be implemented at modest cost (both direct and opportunity), while providing assurance that a considered and independent examination of dual-use risks is being applied. Without extraordinary visibility into the actions of those who would misuse biology, it may be impossible to know how well such an oversight system will actually succeed at mitigating misuse. But maintaining the public trust will require a system to be established in which reasonably foreseeable dual-use consequences of life science research are anticipated, evaluated, and addressed.

  14. Conception of Pharmacological Knowledge and Needs Amongst Nigerian Medical Students at Lagos State University College of Medicine: Implication for Future Biomedical Science in Africa.

    Science.gov (United States)

    Agaga, Luther Agbonyegbeni; John, Theresa Adebola

    2016-08-30

    In Nigeria, medical students are trained in more didactic environments than their counterparts in researchintensive academic medical centers. Their conception of pharmacology was thus sought. Students who are taking/have takenthe medical pharmacology course completed an 18-question survey within 10min by marking one/more choices fromalternatives. Instructions were: "Dear Participant, Please treat as confidential, give your true view, avoid influences, avoidcrosstalk, return survey promptly." Out of 301 students, 188 (62.46%) participated. Simple statistics showed: 61.3%respondents associated pharmacology with medicine, 24.9% with science, 16.8 % with industry, and 11.1% with government;32.8% want to know clinical pharmacology, 7.1% basic pharmacology, 6.7% pharmacotherapy, and 34.2% want a blend ofall three; 57.8% want to know clinical uses of drugs, 44.8% mechanisms of action, 44.4% side effects, and 31.1% differentdrugs in a group; 45.8% prefer to study lecturers' notes, 26.7% textbooks, 9.8% the Internet, and 2.7% journals; 46.7% usestandard textbooks, 11.5% revision texts, 2.66% advanced texts, and 8.4% no textbook; 40.4% study pharmacology to beable to treat patients, 39.1% to complete the requirements for MBBS degree, 8.9% to know this interesting subject, and 3.1%to make money. Respondents preferring aspects of pharmacology were: 42.7, 16, 16, and 10 (%) respectively for mechanismsof action, pharmacokinetics, side effects, and drug lists. Medical students' conception and need for pharmacology werebased on MBBS degree requirements; they lacked knowledge/interest in pharmacology as a science and may not be thepotential trusts for Africa's future pharmacology.

  15. Interprofessional Integrative Medicine Training for Preventive Medicine Residents.

    Science.gov (United States)

    Cowen, Virginia S; Thomas, Pauline A; Gould-Fogerite, Susan E; Passannante, Marian R; Mahon, Gwendolyn M

    2015-11-01

    Integrative medicine training was incorporated into the Rutgers New Jersey Medical School Preventive Medicine residency at the Rutgers Biomedical and Health Sciences Newark Campus as a collaboration between the Rutgers New Jersey Medical School and the School of Health Related Professions. Beginning in 2012, an interdisciplinary faculty team organized an Integrative Medicine program in a Preventive Medicine residency that leveraged existing resources across Rutgers Biomedical and Health Sciences. The overarching aim of the programs was to introduce residents and faculty to the scope and practice of integrative medicine in the surrounding Newark community and explore evidence-based research on integrative medicine. The faculty team tapped into an interprofessional network of healthcare providers to organize rotations for the preventive medicine residents that reflected the unique nature of integrative medicine in the greater Newark area. Residents provided direct care as part of interdisciplinary teams at clinical affiliates and shadowed health professionals from diverse disciplines as they filled different roles in providing patient care. The residents also participated in research projects. A combination of formal and informal programs on integrative medicine topics was offered to residents and faculty. The Integrative Medicine program, which ran from 2013 through 2014, was successful in exposing residents and faculty to the unique nature of integrative medicine across professions in the community served by Rutgers Biomedical and Health Sciences.

  16. Introducing the B I P (Biomedical Instrumentation Package). Many Important Electronic Functions in One Instrument.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    Described are the use and purposes of the Biomedical Instrumentation Package (BIP) in science classrooms. Science activities are suggested and equipment use is described. A sample laboratory activity, which includes materials, procedure, and discussion, is provided. (SA)

  17. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  18. Neurobiological Processes of Risk and Resilience in Adolescence: Implications for Policy and Prevention Science

    Science.gov (United States)

    Busso, Daniel S.

    2014-01-01

    This article focuses on the concepts of risk and resilience and their potential to inform clinical interventions, school-based prevention programs, and social policies. Research suggests that childhood adversity can trigger a cascade of psychological and neurobiological events that can lead to mental disorders in later life. Yet little is known…

  19. Prevention of shoulder injuries in overhead athletes: a science-based approach

    Directory of Open Access Journals (Sweden)

    Ann M. Cools

    2015-10-01

    Full Text Available The shoulder is at high risk for injury during overhead sports, in particular in throwing or hitting activities, such as baseball, tennis, handball, and volleyball. In order to create a scientific basis for the prevention of recurrent injuries in overhead athletes, four steps need to be undertaken: (1 risk factors for injury and re-injury need to be defined; (2 established risk factors may be used as return-to-play criteria, with cut-off values based on normative databases; (3 these variables need to be measured using reliable, valid assessment tools and procedures; and (4 preventative training programs need to be designed and implemented into the training program of the athlete in order to prevent re-injury. In general, three risk factors have been defined that may form the basis for recommendations for the prevention of recurrent injury and return to play after injury: glenohumeral internal-rotation deficit (GIRD; rotator cuff strength, in particular the strength of the external rotators; and scapular dyskinesis, in particular scapular position and strength.

  20. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  1. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society.

  2. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  3. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  4. Biomedical implantable microelectronics.

    Science.gov (United States)

    Meindl, J D

    1980-10-17

    Innovative applications of microelectronics in new biomedical implantable instruments offer a singular opportunity for advances in medical research and practice because of two salient factors: (i) beyond all other types of biomedical instruments, implants exploit fully the inherent technical advantages--complex functional capability, high reliability, lower power drain, small size and weight-of microelectronics, and (ii) implants bring microelectronics into intimate association with biological systems. The combination of these two factors enables otherwise impossible new experiments to be conducted and new paostheses developed that will improve the quality of human life.

  5. Ethics in biomedical engineering.

    Science.gov (United States)

    Morsy, Ahmed; Flexman, Jennifer

    2008-01-01

    This session focuses on a number of aspects of the subject of Ethics in Biomedical Engineering. The session starts by providing a case study of a company that manufactures artificial heart valves where the valves were failing at an unexpected rate. The case study focuses on Biomedical Engineers working at the company and how their education and training did not prepare them to deal properly with such situation. The second part of the session highlights the need to learn about various ethics rules and policies regulating research involving human or animal subjects.

  6. What is preventing relevant understanding of climate science in the public, media, and policy arenas?

    Science.gov (United States)

    Reisman, J. P.

    2012-12-01

    We need to do a critical self examination of why the communication has thus far failed to sufficiently convey relevance in order to provide a basis for public and policy-maker understanding of the science. This session will focus on major impediments to communicating relevance and the foundations of climate science in two target audiences, those that are unsure, and those that have been misled. The question of 'why' is key. Considerations focus on social psychology and confluence effects that improve, or impede, climate communications and achievement of relevant understanding. Key components of human understanding require context in order to be addressed. Understanding these components form the basis for more effective climate communications.

  7. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences.

  8. Prevention, innovation and implementation science in mental health: the next wave of reform.

    Science.gov (United States)

    McGorry, Patrick

    2013-01-01

    Although the corrosive effect of mental ill health on human health and happiness has long been recognised, it is only relatively recently that mental illness has been acknowledged as one of the major threats to economic productivity worldwide. This is because the major mental disorders most commonly have their onset during adolescence and early adulthood, and therefore have a disproportionate impact on the most productive decades of life. With the costs associated with mental ill health estimated to double over the next two decades, a greater emphasis on prevention and early intervention has become even more imperative. Although prevention largely remains aspirational for many reasons, early intervention is well within our current reach and offers the potential to significantly reduce the impact of mental ill health on our health, happiness and prosperity in the immediate future.

  9. A history of fish vaccination: science-based disease prevention in aquaculture.

    Science.gov (United States)

    Gudding, Roar; Van Muiswinkel, Willem B

    2013-12-01

    Disease prevention and control are crucial in order to maintain a sustainable aquaculture, both economically and environmentally. Prophylactic measures based on stimulation of the immune system of the fish have been an effective measure for achieving this goal. Immunoprophylaxis has become an important part in the successful development of the fish-farming industry. The first vaccine for aquaculture, a vaccine for prevention of yersiniosis in salmonid fish, was licensed in USA in 1976. Since then the use of vaccines has expanded to new countries and new species simultaneous with the growth of the aquaculture industry. This paper gives an overview of the achievements in fish vaccinology with particular emphasis on immunoprophylaxis as a practical tool for a successful development of bioproduction of aquatic animals.

  10. Inorganic nanolayers: structure, preparation, and biomedical applications

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  11. Inorganic nanolayers: structure, preparation, and biomedical applications.

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  12. Academic Integrity and Plagiarism Prevention at Tata Institute of Social Sciences, Mumbai: A case Study

    OpenAIRE

    Bandi, Shekappa; Pothare, Devyani; Angadi, Mallikarjun; Jange, Suresh

    2016-01-01

    Plagiarism is not always a black and white issue. The boundary between plagiarism and research is often unclear. Learning to recognize the various forms of plagiarism, especially the more ambiguous ones, is an important step towards effective prevention. The study overview the concept and types of plagiarism and it`s benefits, Plagiarism Policies in India, and also discussed turnitin and its workflow process of the TISS comparison of the Turnitin and iThenticate plagiarism tools and other rel...

  13. Family-Centered Preventive Intervention for Military Families: Implications for Implementation Science

    Science.gov (United States)

    2011-01-01

    2006). Intergenerational benefits of family-based HIVinterventions. Journal of Consulting and Clinical Psychology, 74, 622–627. Rutter, M. (1985...rapidly deploying a prevention program across diverse sites, as well as to key elements of implementation success. FOCUS, developed by a UCLA- Harvard...been a call for greater study of how to implement and disseminate programs widely and effectively. The sustained operational tempo in Iraq and

  14. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  15. Anatomy for Biomedical Engineers

    Science.gov (United States)

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  16. Pollution prevention opportunity assessment for building 878, manufacturing science and technology, organization 14100.

    Energy Technology Data Exchange (ETDEWEB)

    Klossner, Kristin Ann

    2004-05-01

    This report describes the methodology, analysis and conclusions of a preliminary assessment carried out for activities and operations at Sandia National Laboratories Building 878, Manufacturing Science and Technology, Organization 14100. The goal of this assessment is to evaluate processes being carried out within the building to determine ways to reduce waste generation and resource use. The ultimate purpose of this assessment is to analyze and prioritize processes within Building 878 for more in-depth assessments and to identify projects that can be implemented immediately.

  17. Investigating the teaching methodology of English for science and technology in the major of biomedical engineering%生物医学工程专业《科技英语》教学方法探讨

    Institute of Scientific and Technical Information of China (English)

    景达; 罗二平; 谢康宁; 申广浩; 汤池; 吴小明; 郭伟; 刘娟; 佟世超

    2015-01-01

    科技英语是科技工作者进行学术交流的语言媒介,其表述具有简明、准确、客观和易懂的特点。《科技英语》课程是学生继大学公共英语学习之后,夯实英语基础知识、提高专业英语水平和应用技能的一个重要环节。实践中针对从事生物医学工程专业开展的科技英语教学,结合了本专业”医工结合“的学科特点,总结出一套以兴趣驱动、输出牵引、由点及面为主体的交互式教学思路。%English for science and technology (EST) is the language medium for academic communication among scientists and technologists. The expression of EST is characterized by concise-ness, correctness, objectiveness and understandability. The EST course is regarded as a key process for the undergraduate students to reinforce the English foundation and improve the capacity of English application after their College English study. In this paper, the authors introduced an interest-motivated, output-dominated, snowballing and interactive teaching strategy, according to the accumulated experi-ence of EST teaching in the past few years coupled with the unique medicine-engineering combined characteristics for the major of biomedical engineering.

  18. Preventing depression in later life: state of the art and science circa 2011.

    Science.gov (United States)

    Hindi, Fawzi; Dew, Mary Amanda; Albert, Steven M; Lotrich, Francis E; Reynolds, Charles F

    2011-03-01

    Unipolar major depression is among the leading contributors to the global burden of illness-related disability, and is predicted to be the greatest contributor to illness burden by 2030. It is a matter of public health significance to identify people at high risk for depression and/or already mildly symptomatic, and to discover ways of implementing timely and rational risk reduction strategies to preempt major depression. In this article, the published literature is reviewed to summarize what is known about depression prevention in older adults, and, ultimately, to inform future research.

  19. [Clinical and preventive intervention in eating behaviour: a dialogue between psychology and nutritional sciences].

    Science.gov (United States)

    Tinoco, Rui; Paiva, Isabel

    2011-12-01

    The eating habits modification is a clinical challenge, both on therapeutic and preventive levels, which requires tools from various areas of health, such as psychology and nutrition. In the structured work in these areas, that includes the referral to specialist consultants, there is a need of a first intervention in Primary Health Care, in clinical and community levels. In this paper, we attempt to systematize useful information for intervention. We will start by reviewing some important interviewing skills, some models of motivational interviewing, and we will make a brief reflection about the client. Then we will analyse an individual case structured in two complementary levels of interpretation: a closer look in general factors and another that reflect the antecedents, consequences and the description of the behaviour problem. We will also tackle issues related to the context in which the individual moves. We will analyse some group intervention programs within a clinical and preventive perspectives. Finally, we will discuss some concepts related to therapeutic adherence.

  20. Liberty to decide on dual use biomedical research: an acknowledged necessity.

    Science.gov (United States)

    Keuleyan, Emma

    2010-03-01

    Humanity entered the twenty-first century with revolutionary achievements in biomedical research. At the same time multiple "dual-use" results have been published. The battle against infectious diseases is meeting new challenges, with newly emerging and re-emerging infections. Both natural disaster epidemics, such as SARS, avian influenza, haemorrhagic fevers, XDR and MDR tuberculosis and many others, and the possibility of intentional mis-use, such as letters containing anthrax spores in USA, 2001, have raised awareness of the real threats. Many great men, including Goethe, Spinoza, J.B. Shaw, Fr. Engels, J.F. Kennedy and others, have recognized that liberty is also a responsibility. That is why the liberty to decide now represents an acknowledged necessity: biomedical research should be supported, conducted and published with appropriate measures to prevent potential "dual use". Biomedical scientists should work according to the ethical principles of their Code of Conduct, an analogue of Hippocrates Oath of doctors; and they should inform government, society and their juniors about the problem. National science consulting boards of experts should be created to prepare guidelines and control the problem at state level. An international board should develop minimum standards to be applicable by each country. Bio-preparedness is considered another key-measure.

  1. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  2. Deep data science to prevent and treat growth faltering in Maya children.

    Science.gov (United States)

    Varela-Silva, M I; Bogin, B; Sobral, J A G; Dickinson, F; Monserrat-Revillo, S

    2016-06-01

    The Maya people are descended from the indigenous inhabitants of southern Mexico, Guatemala and adjacent regions of Central America. In Guatemala, 50% of infants and children are stunted (very low height-for-age), and some rural Maya regions have >70% children stunted. A large, longitudinal, intergenerational database was created to (1) provide deep data to prevent and treat somatic growth faltering and impaired neurocognitive development, (2) detect key dependencies and predictive relations between highly complex, time-varying, and interacting biological and cultural variables and (3) identify targeted multifactorial intervention strategies for field testing and validation. Contributions to this database included data from the Universidad del Valle de Guatemala Longitudinal Study of Child and Adolescent Development, child growth and intergenerational studies among the Maya in Mexico and studies about Maya migrants in the United States.

  3. How has the economic downturn affected communities and implementation of science-based prevention in the randomized trial of communities that care?

    Science.gov (United States)

    Kuklinski, Margaret R; Hawkins, J David; Plotnick, Robert D; Abbott, Robert D; Reid, Carolina K

    2013-06-01

    This study examined implications of the economic downturn that began in December 2007 for the Community Youth Development Study (CYDS), a longitudinal randomized controlled trial of the Communities That Care (CTC) prevention system. The downturn had the potential to affect the internal validity of the CYDS research design and implementation of science-based prevention in study communities. We used archival economic indicators and community key leader reports of economic conditions to assess the extent of the economic downturn in CYDS communities and potential internal validity threats. We also examined whether stronger economic downturn effects were associated with a decline in science-based prevention implementation. Economic indicators suggested the downturn affected CYDS communities to different degrees. We found no evidence of systematic differences in downturn effects in CTC compared to control communities that would threaten internal validity of the randomized trial. The Community Economic Problems scale was a reliable measure of community economic conditions, and it showed criterion validity in relation to several objective economic indicators. CTC coalitions continued to implement science-based prevention to a significantly greater degree than control coalitions 2 years after the downturn began. However, CTC implementation levels declined to some extent as unemployment, the percentage of students qualifying for free lunch, and community economic problems worsened. Control coalition implementation levels were not related to economic conditions before or after the downturn, but mean implementation levels of science-based prevention were also relatively low in both periods.

  4. Current state of biomedical engineering; Biomedical Engineering ha ima

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, K. [Waseda Univ., Tokyo (Japan). School of Science and Engineering; Kanamori, T. [National Inst. of Materials and Chemical Research, Tsukuba (Japan)

    1996-11-05

    Medical science is divided into basic medical science and clinical medicine, and the technology of the medical treatment is established as their aggregate power. This concept can be compared with the presence of industrial engineering as a product of physical science and engineering. Basic medical science has come to be combined with science deeply as a result of the rise of recent molecular biology. As to clinical medicine, current highly advanced medical treatment can be said to be made up of scientific technology. Medical treatment can be considered to include prevention, diagnosis, remedy, and rehabilitation stages. It is closely connected with engineering in each stage. The methods of approaching medical science are elucidation of the functions of internal organs and tissue considering that a living body is a plant, and offering of new therapeutical means by applying chemical devices to a living body. The functions of artificial organs can e divided roughly into convection transport, mass transfer, structural members, and signal transfer from the viewpoint of chemical engineering. Medical treatment will be brought into close relation with scientific technology in the future. 10 refs., 3 figs., 2 tabs.

  5. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  6. Functional supramolecular polymers for biomedical applications.

    Science.gov (United States)

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology.

  7. Multilingual biomedical dictionary.

    Science.gov (United States)

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical information from a domain-specific, multilingual corpus.

  8. Adaptive Biomedical Innovation.

    Science.gov (United States)

    Honig, P K; Hirsch, G

    2016-12-01

    Adaptive Biomedical Innovation (ABI) is a multistakeholder approach to product and process innovation aimed at accelerating the delivery of clinical value to patients and society. ABI offers the opportunity to transcend the fragmentation and linearity of decision-making in our current model and create a common collaborative framework that optimizes the benefit and access of new medicines for patients as well as creating a more sustainable innovation ecosystem.

  9. Biomedical accelerator mass spectrometry

    Science.gov (United States)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  10. [The Chilean Association of Biomedical Journal Editors].

    Science.gov (United States)

    Reyes, H

    2001-01-01

    On September 29th, 2000, The Chilean Association of Biomedical Journal Editors was founded, sponsored by the "Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)" (the Governmental Agency promoting and funding scientific research and technological development in Chile) and the "Sociedad Médica de Santiago" (Chilean Society of Internal Medicine). The Association adopted the goals of the World Association of Medical Editors (WAME) and therefore it will foster "cooperation and communication among Editors of Chilean biomedical journals; to improve editorial standards, to promote professionalism in medical editing through education, self-criticism and self-regulation; and to encourage research on the principles and practice of medical editing". Twenty nine journals covering a closely similar number of different biomedical sciences, medical specialties, veterinary, dentistry and nursing, became Founding Members of the Association. A Governing Board was elected: President: Humberto Reyes, M.D. (Editor, Revista Médica de Chile); Vice-President: Mariano del Sol, M.D. (Editor, Revista Chilena de Anatomía); Secretary: Anna María Prat (CONICYT); Councilors: Manuel Krauskopff, Ph.D. (Editor, Biological Research) and Maritza Rahal, M.D. (Editor, Revista de Otorrinolaringología y Cirugía de Cabeza y Cuello). The Association will organize a Symposium on Biomedical Journal Editing and will spread information stimulating Chilean biomedical journals to become indexed in international databases and in SciELO-Chile, the main Chilean scientific website (www.scielo.cl).

  11. Nanotechnologies for biomedical science and translational medicine.

    Science.gov (United States)

    Heath, James R

    2015-11-24

    In 2000 the United States launched the National Nanotechnology Initiative and, along with it, a well-defined set of goals for nanomedicine. This Perspective looks back at the progress made toward those goals, within the context of the changing landscape in biomedicine that has occurred over the past 15 years, and considers advances that are likely to occur during the next decade. In particular, nanotechnologies for health-related genomics and single-cell biology, inorganic and organic nanoparticles for biomedicine, and wearable nanotechnologies for wellness monitoring are briefly covered.

  12. Handbook of photonics for biomedical science

    CERN Document Server

    Tuchin, Valery V

    2010-01-01

    Many of the chapters are written by leaders in their field and thus provide both good foundational descriptions as well as up-to-date accounts of the state of the field. … the book does well throughout: providing a better than skin-deep introduction to a subject, focusing on the core issues within a field and providing references to enable more detailed investigation. … It brings together much of the most important literature into an easily accessible form. Written by leaders in their respective fields, this book would be a valuable addition to the collection of researchers, engineers and c

  13. Light-actuated microrobots for biomedical science

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Palima, Darwin Z.

    2017-01-01

    Light can be used to fabricate, handle, power, and actuate microrobotics functionalities, such as the loading and unloading of micro-cargo, showing promise for drug delivery and biological-testing applications....

  14. Biomedical research applications of electromagnetically separated enriched stable isotopes

    Science.gov (United States)

    Lambrecht, R. M.

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.

  15. Knowledge, Attitudes, and Commitment Concerning Evidence-Based Prevention Programs: Differences between Family and Consumer Sciences and 4-H Youth Development Educators

    Science.gov (United States)

    Perkins, Daniel F.; Chilenski, Sarah Meyer; Olson, Jonathan R.; Mincemoyer, Claudia C.

    2014-01-01

    We describe the results of a study designed to assess knowledge, perceptions, and attitudes towards evidence-based and other prevention programs among county Extension educators. We examined differences across educators from Family and Consumer Sciences (FCS) and 4-H Youth Development. Analyses based on a multi-state sample of educators revealed…

  16. BIMS: Biomedical Information Management System

    OpenAIRE

    Mora, Oscar; Bisbal, Jesús

    2013-01-01

    In this paper, we present BIMS (Biomedical Information Management System). BIMS is a software architecture designed to provide a flexible computational framework to manage the information needs of a wide range of biomedical research projects. The main goal is to facilitate the clinicians' job in data entry, and researcher's tasks in data management, in high data quality biomedical research projects. The BIMS architecture has been designed following the two-level modeling paradigm, a promising...

  17. Biomedical Sensors and Instruments

    CERN Document Server

    Tagawa, Tatsuo

    2011-01-01

    The living body is a difficult object to measure: accurate measurements of physiological signals require sensors and instruments capable of high specificity and selectivity that do not interfere with the systems under study. As a result, detailed knowledge of sensor and instrument properties is required to be able to select the "best" sensor from one of the many designed to meet these challenges. From the underlying principles to practical applications, this updated edition of Biomedical Sensors and Instruments provides an easy-to-understand introduction to the various kinds of biome

  18. Principles of Biomedical Engineering

    CERN Document Server

    Madihally, Sundararajan V

    2010-01-01

    Describing the role of engineering in medicine today, this comprehensive volume covers a wide range of the most important topics in this burgeoning field. Supported with over 145 illustrations, the book discusses bioelectrical systems, mechanical analysis of biological tissues and organs, biomaterial selection, compartmental modeling, and biomedical instrumentation. Moreover, you find a thorough treatment of the concept of using living cells in various therapeutics and diagnostics.Structured as a complete text for students with some engineering background, the book also makes a valuable refere

  19. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  20. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1974-01-01

    Advances in Biomedical Engineering, Volume 4, is a collection of papers that deals with gas chromatography, mass spectroscopy and the analysis of minute samples, as well as the role of the government in regulating the production, usage, safety, and efficacy of medical devices. One paper reviews the use of mass spectrometry and computer technology in relation to gas-phase analytical methods based on gas chromatograph-mass spectrometer instruments and gas chromatograph-mass spectrometer-computer analytical systems. Many health practitioners, government and private health agencies, the legal prof

  1. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  2. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  3. A Meta-analysis of alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis

    Institute of Scientific and Technical Information of China (English)

    杨琳

    2013-01-01

    Objective To assess the efficiency and safety of alendronate for the prevention and treatment of glucocorticoidinduced osteoporosis (GIOP) .Methods The electronic databases of PubMed,EMBASE,Cochrane Library,Web of Science,Chinese BioMedical Literature Database (CBM) and Wanfang Data were searched for all randomized controlled trials (RCT) of alendronate vs.placebo.Two reviewers independently selected trials for inclusion,assessed trial quality using Jadad’s scale and extracted

  4. What Do I Want to Be with My PhD? The Roles of Personal Values and Structural Dynamics in Shaping the Career Interests of Recent Biomedical Science PhD Graduates

    Science.gov (United States)

    Gibbs, Kenneth D., Jr.; Griffin, Kimberly A.

    2013-01-01

    Interest in faculty careers decreases as graduate training progresses; however, the process underlying career-interest formation remains poorly defined. To better understand this process and whether/how it differs across social identity (i.e., race/ethnicity, gender), we conducted focus groups with 38 biomedical scientists who received PhDs…

  5. Biomedical Technology Assessment The 3Q Method

    CERN Document Server

    Weinfurt, Phillip

    2010-01-01

    Evaluating biomedical technology poses a significant challenge in light of the complexity and rate of introduction in today's healthcare delivery system. Successful evaluation requires an integration of clinical medicine, science, finance, and market analysis. Little guidance, however, exists for those who must conduct comprehensive technology evaluations. The 3Q Method meets these present day needs. The 3Q Method is organized around 3 key questions dealing with 1) clinical and scientific basis, 2) financial fit and 3) strategic and expertise fit. Both healthcare providers (e.g., hospitals) an

  6. Environmental practices for biomedical research facilities.

    Science.gov (United States)

    Medlin, E L; Grupenhoff, J T

    2000-12-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12.

  7. Training probabilistic VLSI models on-chip to recognise biomedical signals under hardware nonidealities.

    Science.gov (United States)

    Jiang, P C; Chen, H

    2006-01-01

    VLSI implementation of probabilistic models is attractive for many biomedical applications. However, hardware non-idealities can prevent probabilistic VLSI models from modelling data optimally through on-chip learning. This paper investigates the maximum computational errors that a probabilistic VLSI model can tolerate when modelling real biomedical data. VLSI circuits capable of achieving the required precision are also proposed.

  8. Training Multidisciplinary Biomedical Informatics Students: Three Years of Experience

    NARCIS (Netherlands)

    E.M. van Mulligen (Erik); M. Cases (Montserrat); K.M. Hettne (Kristina); E. Molero (Eva); M. Weeber (Marc); K.A. Robertson (Kevin); B. Oliva (Baldomero); G. de la Calle (Guillermo); V. Maojo (Victor)

    2008-01-01

    textabstractObjective: The European INFOBIOMED Network of Excellence1recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams. Desig

  9. Biomedical Engineering: A Compendium of Research Training Programs.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This document was prepared to provide a comprehensive view of the programs in biomedical engineering in existence in 1969. These programs are supported by the National Institute of General Medical Sciences and are located at 18 universities. This compendium provides information as to the intent and content of these programs from data provided by…

  10. Distributed Representation of Biomedical Words for Drug Repositioning

    OpenAIRE

    ゴー, ドゥク, ルー

    2016-01-01

    博士論文本文 以下に掲載:Journal of Biomedical Science and Engineering 9(1) pp.7-16 2016 January. Scientific Research Publishing Inc. 共著者:Duc Luu Ngo, Naoki Yamamoto, Vu Anh Tran, Ngoc Giang Nguyen, Dau Phan, Favorisen Rosyking Lumbanraja, Mamoru Kubo, Kenji Satou

  11. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  12. Ethical considerations for biomedical scientists and engineers: issues for the rank and file.

    Science.gov (United States)

    Kwarteng, K B

    2000-01-01

    Biomedical science and engineering is inextricably linked with the fields of medicine and surgery. Yet, while physicians and surgeons, nurses, and other medical professionals receive instruction in ethics during their training and must abide by certain codes of ethics during their practice, those engaged in biomedical science and engineering typically receive no formal training in ethics. In fact, the little contact that many biomedical science and engineering professionals have with ethics occurs either when they participate in government-funded research or submit articles for publication in certain journals. Thus, there is a need for biomedical scientists and engineers as a group to become more aware of ethics. Moreover, recent advances in biomedical technology and the ever-increasing use of new devices virtually guarantee that biomedical science and engineering will become even more important in the future. Although they are rarely in direct contact with patients, biomedical scientists and engineers must become aware of ethics in order to be able to deal with the complex ethical issues that arise from our society's increasing reliance on biomedical technology. In this brief communication, the need for ethical awareness among workers in biomedical science and engineering is discussed in terms of certain conflicts that arise in the workaday world of the biomedical scientist in a complex, modern society. It is also recognized that inasmuch as workers in the many branches of bioengineering are not regulated like their counterparts in medicine and surgery, perhaps academic institutions and professional societies are best equipped to heighten ethical awareness among workers in this important field.

  13. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  14. Student engagement in biomedical courses : studies in technology-enhanced seminar learning

    NARCIS (Netherlands)

    Bouwmeester, R.A.M.

    2016-01-01

    Academic medical and biomedical curricula are designed to educate future academics contributing to new developments in science, clinical practice and society. During undergraduate programs student training is typically focused on acquisition of knowledge and understanding of these interdisciplinary

  15. Biomedical applications of functionalized fullerene-based nanomaterials

    OpenAIRE

    Ranga Partha; Conyers, Jodie L.

    2009-01-01

    Ranga Partha, Jodie L ConyersCenter for Translational Injury Research, The University of Texas Health Science Center, Houston, TX 77030, USAAbstract: Since their discovery in 1985, fullerenes have been investigated extensively due to their unique physical and chemical properties. In recent years, studies on functionalized fullerenes for various applications in the field of biomedical sciences have seen a significant increase. The ultimate goal is towards employing these functionalized fullere...

  16. Checklists in biomedical publications

    Directory of Open Access Journals (Sweden)

    Pardal-Refoyo JL

    2013-12-01

    Full Text Available Introduction and objectives: the authors, reviewers, editors and readers must have specific tools that help them in the process of drafting, review, or reading the articles. Objective: to offer a summary of the major checklists for different types of biomedical research articles. Material and method: review literature and resources of the EQUATOR Network and adaptations in Spanish published by Medicina Clínica and Evidencias en Pediatría journals. Results: are the checklists elaborated by various working groups. (CONSORT and TREND, experimental studies for observational studies (STROBE, accuracy (STARD diagnostic studies, systematic reviews and meta-analyses (PRISMA and for studies to improve the quality (SQUIRE. Conclusions: the use of checklists help to improve the quality of articles and help to authors, reviewers, to the editor and readers in the development and understanding of the content.

  17. Biomedical applications of collagens.

    Science.gov (United States)

    Ramshaw, John A M

    2016-05-01

    Collagen-based biomedical materials have developed into important, clinically effective materials used in a range of devices that have gained wide acceptance. These devices come with collagen in various formats, including those based on stabilized natural tissues, those that are based on extracted and purified collagens, and designed composite, biosynthetic materials. Further knowledge on the structure and function of collagens has led to on-going developments and improvements. Among these developments has been the production of recombinant collagen materials that are well defined and are disease free. Most recently, a group of bacterial, non-animal collagens has emerged that may provide an excellent, novel source of collagen for use in biomaterials and other applications. These newer collagens are discussed in detail. They can be modified to direct their function, and they can be fabricated into various formats, including films and sponges, while solutions can also be adapted for use in surface coating technologies.

  18. MEMS biomedical implants

    Institute of Scientific and Technical Information of China (English)

    Tai Yuchong

    2012-01-01

    The field of micro-electro-mechanical systems (MEMS) has advanced tremendously for the last 20 years. Most commercially noticeably, the field has successfully advanced from pressure sensors to micro physical sensors, such as accelerometers and gyros, for handheld electronics application. In parallel, MEMS has also advanced into micro total analysis system(TAS) and/or lab-on-a-chip applications. This article would discuss a relatively new but promising future direction towards MEMS biomedical implants. Specifically, Parylene C has been explored to be used as a good MEMS implant material and will be discussed in detail. Demonstrated implant devices, such as retinal and spinal cord implants, are presented in this article.

  19. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Alphus D. Wilson

    2011-01-01

    Full Text Available The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.

  20. Overview of the biomedical and environmental programs at the Oak Ridge National Laboratory. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B. (comps.)

    1981-07-01

    Separate abstracts were prepared for each of the 6 chapters presented by the six divisions involved in the Biomedical and Environmental Sciences Program at Oak Ridge National Laboratory. The introduction is not covered by an abstract and deals with the environmental, health and safety considerations of energy technology decisions, the major initiatives now being taken by these 6 divisions, and recent major accomplishments in the biomedical and environmental science program. (KRM)

  1. Nanomaterials and nanofabrication for biomedical applications

    Science.gov (United States)

    Cheng, Chao-Min; Chia-Wen Wu, Kevin

    2013-08-01

    Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery

  2. Organic Bioelectronic Tools for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Susanne Löffler

    2015-11-01

    Full Text Available Organic bioelectronics forms the basis of conductive polymer tools with great potential for application in biomedical science and medicine. It is a rapidly growing field of both academic and industrial interest since conductive polymers bridge the gap between electronics and biology by being electronically and ionically conductive. This feature can be employed in numerous ways by choosing the right polyelectrolyte system and tuning its properties towards the intended application. This review highlights how active organic bioelectronic surfaces can be used to control cell attachment and release as well as to trigger cell signaling by means of electrical, chemical or mechanical actuation. Furthermore, we report on the unique properties of conductive polymers that make them outstanding materials for labeled or label-free biosensors. Techniques for electronically controlled ion transport in organic bioelectronic devices are introduced, and examples are provided to illustrate their use in self-regulated medical devices. Organic bioelectronics have great potential to become a primary platform in future bioelectronics. We therefore introduce current applications that will aid in the development of advanced in vitro systems for biomedical science and of automated systems for applications in neuroscience, cell biology and infection biology. Considering this broad spectrum of applications, organic bioelectronics could lead to timely detection of disease, and facilitate the use of remote and personalized medicine. As such, organic bioelectronics might contribute to efficient healthcare and reduced hospitalization times for patients.

  3. Recent progress in biomedical applications of magnetic nanoparticles

    KAUST Repository

    Giouroudi, Ioanna

    2010-06-01

    Magnetic nanoparticles have been proposed for biomedical applications for several years. Various research groups worldwide have focused on improving their synthesis, their characterization techniques and the specific tailoring of their properties. Yet, it is the recent, impressive advances in nanotechnology and biotechnology which caused the breakthrough in their successful application in biomedicine. This paper aims at reviewing some current biomedical applications of magnetic nanoparticles as well as some recent patents in this field. Special emphasis is placed on i) hyperthermia, ii) therapeutics iii) diagnostics. Future prospects are also discussed. © 2010 Bentham Science Publishers Ltd.

  4. A community of practice: librarians in a biomedical research network.

    Science.gov (United States)

    De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara

    2014-01-01

    Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine.

  5. A meta-analysis of direct and mediating effects of community coalitions that implemented science-based substance abuse prevention interventions.

    Science.gov (United States)

    Collins, David; Johnson, Knowlton; Becker, Betsy Jane

    2007-01-01

    This article reports results of a meta-analysis of the effects of a set of community coalitions that implemented science-based substance use prevention interventions as part of a State Incentive Grant (SIG) in Kentucky. The analysis included assessment of direct effects on prevalence of substance use among adolescents as well as assessment of what "risk" and "protective" factors mediated the coalition effects. In addition, we tested whether multiple science-based prevention interventions enhanced the effects of coalitions on youth substance use. Short-term results (using 8th-grade data) showed no significant decreases in six prevalence of substance use outcomes -- and, in fact, a significant though small increase in prevalence of use of one substance (inhalants). Sustained results (using 10th-grade data), however, showed significant, though small decreases in three of six substance use outcomes -- past month prevalence of cigarette use, alcohol use, and binge drinking. We found evidence that the sustained effects on these three prevalence outcomes were mediated by two posited risk factors: friends' drug use and perceived availability of drugs. Finally, we found that the number of science-based prevention interventions implemented in schools within the coalitions did not moderate the effects of the coalitions on the prevalence of drug use. Study limitations are noted.

  6. Biomedical education for clinical engineers.

    Science.gov (United States)

    Langevin, Francois; Donadey, Alain; Hadjes, Pierre; Blagosklonov, Oleg

    2007-01-01

    Biomedical equipment Master's degree is recognized by the French Ministry of Health, since its creation in 1975 under the denomination of "Specialization for Hospital Biomedical Engineers". Since the new national status of technical staff in the public service by decree of September 5th of 1991, it allows to access directly to the level of Chief Hospital Engineer (first category, second class, by ordinance of October 23rd, 1992). Biomedical Engineers jobs in French hospitals are selected after an examination organized by the recruiting hospital. Master's graduates are most often the best qualified.

  7. Engaging the community through an undergraduate biomedical physics course

    Science.gov (United States)

    Van Ness, G. R.; Widenhorn, Ralf

    2012-12-01

    We report on the development of an undergraduate biomedical physics course at Portland State University, motivated by both student interest and the desire of the university's Physics Department to provide an interdisciplinary intermediate-level physics course. The course was developed through the community engagement of physicians, clinical researchers, and basic science researchers. Class meetings were a combination of regular and guest lectures, hands-on exercises, web-based activities, class discussions, and a student poster information session for patrons at a local science museum. The course inspired students to engage in research projects in biomedical physics that enhance their understanding of science and education as well as benefit the learning of future students. Furthermore, this course offers an opportunity for traditionally underrepresented groups in physics courses, such as women, to gain additional exposure to physics.

  8. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    No 10, Oct 84) 36 NONIONIZING ELECTROMAGNETIC RADIATION EFFECTS Combined Effects of Heterogenous 2,4 GHz Microwave and Gamma-Irradiation on...632.8 nm, 25 mW) in this respect. Such pretreatment has been shown to stimulate germination and growth and, by diminishing losses due to fungal...ELECTROMAGNETIC RADIATION EFFECTS UDC 591.1 COMBINED EFFECTS OF HETEROGENOUS 2,4 GHz MICROWAVE AND GAMMA-IRRADIATION ON BLOOD-BRAIN BARRIER IN RAT Moscow

  9. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    1985-01-28

    south, in 15 years. It must be noted that there had also been accidental transportation of rats to this zone even before the virgin land started to be...interrelationship between cortical and autonomic processes in healthy subjects (18-33 years) and patients with cerebrovascular disease (42-56 years), to...toto, these observations indicate that the pattern of interaction responsible for regulating brain function is compromised in cerebrovascular

  10. USSR Report, Life Sciences, Biomedical and Behavioral Sciences, No. 39

    Science.gov (United States)

    2007-11-02

    deliberately asked in a " sick " voice: "May I please speak with Trifilov." "This is Trifilov." "Hello, Boris Ivanovich. You recognized me?" "Of course...patients and 10 persons with chronic tonsillitis, in reference to their agglutinability by the patient’s blood serum and their sensitivity to...antibiotics Clevomycetin, tetracyclin, streptomycin, erythromycin, penicillin , chlorotetracycline, monomycin) showed great non-uniformity in sensitivity

  11. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    2007-11-02

    brucellosis from sheep, goats , and pigs. In all the animals infected with a brucellosis agent, the highest titers of autoantibodies were against...infected with brucellosis agents from sheep, goats , and especially pigs, the titers of autoantibodies against antigens from the spleen and lymph nodes were...EPIDEMIOLOGII I IMMUNOBIOLOGII, No 11, 1983) 143 Autoantibody Formation in Brucellosis (N. I. Tikhenko, et al.; ZHURNAL MIKROBIOLOGII

  12. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    contribution. After all, from one plant cell one can obtain a mature plant—a fruit tree , berry bushes, potatoes, and many vegetables. Such production is...ground, cotton growing, intensive industrial horticulture, citrus growing, viticulture, tea growing, and so forth. The Kiev Institute of Labor Hygiene...an allergical nature: allergic rhinopathy, conjunctivitis, dermatitis, eczema , bronchial asthma, and chronic asthmatic bronchitis, which are

  13. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    1987-03-10

    arsenal of research techniques . Among those honored in this fashion is Valeriy Kazimirovich Lishko, director of the Institute of Biochemistry of the...cytogenetic stabilization, pollen fertility, aneuploidy and formation of productivity traits of plants in early generations (F..-F5) of new hexaploid...view of reports, some contested, that laser irradiation of crop seeds promotes germination and enhances yields, a statistical evaluation was conducted

  14. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    1984-12-05

    was observed in the experiments on mice and chicks. Pathological changes in the lungs were reduced, and dissemination of the virus In the body was...present article reports on molecular mechanisms of glucocorticoid hormones such as corticosterone, hydrocortisone and, to a lesser degree, cortisone , as

  15. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    2007-11-02

    system involvement: hepatorenal, cardiovascular, pulmonary, meningeal, abdominal and gastrointestinal . References 6: 3 Russian, 3 Western. [229...method for fecal and urine examination is best for detecting nematodes . In blood analysis for tropical diseases, thick drop and thin smears treated...Malyutka and Malysh-fed displayed more acute gastrointestinal infections. The kefir-fed babies suffered more frequent respiratory tract infections

  16. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    the way of the sonic wave is an acoustical lens, a very special part of the body, which exists only in cetaceans , the so-called melon (Figure 8...specialized children’s homes until they are 4 years old, and then are transferred to the home-boarding school system of social welfare . Thus, according

  17. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    most important groups of phytoparasitic nematodes was very important to the development of systematics ; it was organized in the 1970’s by the...plant protection. Consideration is given to useful organisms referable to different systematic groups: insects, viruses, fungi, protozoans, etc...used is a few grams per hectare, and it destroys many species of pests ( Lepidoptera , beetles, bugs, aphids, Coccidae). Fastak is virtually safe for

  18. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    Krylov, A. N. Petrov, et al.; FARMAKOLOGIYA I TOKSIKOLOGIYA, No 1, Jan-Feb 86) 51 Experimental Tests for Detection of Addictive Agents (N. K... carbohydrates characterized by low levels of metabolic activity. Equilibrium situation for 14C is attained in ca. 78 days in the case of bean leaves...EXPERIMENTAL TESTS FOR DETECTION OF ADDICTIVE AGENTS Moscow FARMAKOLOGIYA I TOKSIKOLOGIYA in Russian Vol 49, No 1, Jan-Feb 86 (manuscript received 7 Jun 84) pp

  19. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    Composition of Free Aminoacids in Blood of Hypokinetic Rats (T. F. Vlasova, M. S. Belakovskiy, et al.; VOPROSY PITANIYA, No 1, Jan-Feb 86...06:612.766.2 EFFECT OF DIETS WITH ACTIVE VITAMIN D3 METABOLITE AND VARYING CALCIUM AND PHOSPHORUS CONTENT ON COMPOSITION OF FREE AMINOACIDS IN...Miroshnikova, I. N. Sergeyev and V. B. Spirichev, Institute of Medical Biological Problems, USSR Ministry of Health, Moscow] [Abstract] Aminoacid metabolism

  20. USSR Report. Life Sciences: Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    schedule). Yields rise to 25 percent. Besides, seed treatment improves the biochemical properties of the plants. For example, the green mass of maize ...grown for silage has a higher fat and protein content, while cabbage contains more vitamin C. Sugar beets increase their sugar content, and sunflower

  1. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    1983-09-13

    conditions, the young females reached sexual maturity at the age of 50 days, on the average, but onset of the estral cycle varied for individuals...Cloning and Structure of Rat DNA Fragments Homologous to Murine Sarcoma Virus Mos Oncogene (0, V. Sayanova, et al.; DOKLADY AKADEMII NAÜK SSSR, Feb 83...32 LASER EFFECTS Effects of Low Intensity Laser Light on Aspartate Aminotransferase Activity in Rat Brain and Liver (V. M. Lavrova, et al,; VYESTSI

  2. USSR Report, Life Sciences, Biomedical and Behavioral Sciences.

    Science.gov (United States)

    2007-11-02

    1 Chair of Eye Diseases and Chair of Histology and Embryology , Rostov Medical Institute] [Abstract] Histological comparison was conducted on the...determination of alcohol, its storage, and other processes. This required a review of rules and regulations pertaining to the acquisition, processing...and presently represent about 12% of all pharmacies. One of their major functions is monitoring adherence to pharmaceutical rules and quality of

  3. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    SERIYA BIOLOGICHESKAYA, No 5, Sep-Oct 83) 11 Fucoid Algae as Bioindicators of Heavy Metal Contamination of Atlantic and Western Pacific Coastal Waters...Preparing Bioindicators for Monitoring Effectiveness of Sterilization Processes (N. M. Kalinina, et al.; ANTIBIOTIKI, No 8, Aug 83) 47 Microbial... BIOINDICATORS OF HEAVY METAL CONTAMINATION OF ATLANTIC AND WESTERN PACIFIC COASTAL WATERS Vladivostok BIOLOGIYA MORYA in Russian No 1, Jan-Feb 83

  4. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    EPIDEMIOLOGII I IMMUNOBIOLOGII, No 6, Jun 84) 40 Congenital and Hereditary Nephropathies Among Children According to Epidemiologie Investigation...Capabilities for Diagnosis of Hepatitis B (A. S. Novokhatskiy, V. M. Zhdanov; VOPROSY VIRUSOLOGII, No 2, Mar-Apr 84) 73 Formation of Specific...19° Influence of Therapy for Pregnancy -Associated Anemia on Status of Neonates and Children Under One Year of Age (T. P. Kollsnlchenko

  5. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    2007-11-02

    E, Nizkyy; RADIOBIOLOGIYA, No 4, Jul-Aug 83) ’ • • " 56 Radioprotectlve and Toxic Effects of ATP- AET -Serotonin Combination in Mice: Optimum...Krasnov), USSR Ministry of Health, Moscow iAbsrract] Preretinal macular fibrosis is a major cause of reduced visual acuity following surgical treatment...and the effectiveness of traditional methods of laser coagulation is compared with that of a new principle of laser surgery considering annew visual

  6. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    1985-02-05

    bonding the antigens to erythrocytes were determined.. The concentrations of chromium chloride and tannin to-be used for preliminary treatment of the...conducted on the utility and effective- ness of using chlorine derived from sea water by electrolysis for disinfection aboard fishing vessels. Chlorine...used for technical purposes, was readily disinfected with chlorine concentrations of 5 mg/ml and exposure times of 10 min, if the microbial flora did

  7. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    1984-02-15

    the blood-brain barrier and lipid synthesis. References 9: 1 Polish, 4 Russian, 4 Western. [130-12172] 34 UDC 616.61-78 POROUS STRUCTURE OF...Latrodectus tredecimguttatus spider venom possess- ing channel-forming properties on bilayer lipid membranes has been isolated and identified as a presynaptic...Pathologic-anatomic changes included hemorrhagic diathesis, liver dystrophy, myocardial atrophy, jaundice of subcutaneous tissue and serous linings and

  8. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    Science.gov (United States)

    2007-11-02

    et al.; VESTNIK KHIRURGII IMENI I.I. GREKOVA, No 10, Oct 86) 24 MICROBIOLOGY Adhesion of Aspergillus Niger Conidia to Polymeric Surfaces (I.V...579.083.131:621.0398 ADHESION OF ASPERGILLUS NIGER CONIDIA TO POLYMERIC SURFACES Moscow DOKLADY AKADEMII NAUK SSSR in Russian Vol 291, No 5, Dec 86...deterioration of polymeric materials, a study was conducted on the adhesion of Aspergillus niger conidia to polymeric surfaces. Strength of adhesion was

  9. USSR Report, Life Sciences, Biomedical and Behavioral Sciences, No. 38.

    Science.gov (United States)

    1983-07-22

    membrane protein". Using sodium dodecylsulfate with electro- phoresis in a polyacrylamide gel, Lugtenberg and coauthors [10] discovered that this...outer membrane proteins was done in a 10 percent polyacrylamide gel with 2 percent sodium dodecylsulfate [10], The electrophoresis was done in glass...the food ration of individual population groups, a predominance of starch and groats dishes and in some cases an insufficient consumption of animal

  10. USSR Report. Life Sciences: Biomedical and Behavioral Sciences

    Science.gov (United States)

    2007-11-02

    abscisic acid led to enhanced accumulation of plant levels of mono- and disaccharides, water-soluble polysaccharides, starch , hemicellulose, and...transferring the nuclear proteins from polyacrylamide gel to a nitrocellulose filter and incubation with a 125I-labeled regulatory subunit. The subunit can...purification are homogeneous according to electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulfate. Figures 3; references 10: 2

  11. USSR Report: Life Sciences, Biomedical and Behavioral Sciences, No. 40

    Science.gov (United States)

    1983-09-02

    formed a dilatation of its caudal end in the form of wings . Concurrently, there was proliferation in width of its anterior end. These age-related...and presphenoid are formed from three ossification centers. The ossification centers merge into the anterior and central sphenoid in Stenella when the...supraoccipital membrane bone and surrounded, in the form of wide wings , virtually the entire supraoccipital bone on the sides and at the top (Romer

  12. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    Science.gov (United States)

    1987-01-20

    of the gram-positive bacteria Bacillus oligonitrophilus in rocking flasks. The method of "dialysis" of cultures was used, allowing a comparison to...male white mice and rats. The anticonvulsive effect of the compounds was studied by their antagonism to the convulsive effect of corazol

  13. Functionalized carbon nanotubes: biomedical applications.

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.

  14. New Directions for Biomedical Engineering

    Science.gov (United States)

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  15. Program of “Okayama Biomedical Engineering Professional” for Local Renovation

    Science.gov (United States)

    Hayashi, Kozaburo

    Okayama University of Science, Department of Biomedical Engineering, is promoting a program of “Okayama Biomedical Engineering Professional” for the development and renovation of biomedical industries in Okayama area. This is one of the programs of the national project on “Formation of the Center for the Production of Capable Persons for Local Renovation” , sponsored by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and performed by the Japan Science and Technology Agency. The purpose of the program is to develop and educate specialists for the research, development, production, and marketing of biomedical devices and equipment in local industries in Okayama area. A half a year training for approximately 5 students from industries consists of 12 days of lectures and experiments, which is repeatedly provided for 5 years (approximately 45 students in total) .

  16. Biomedical engineer: an international job.

    Science.gov (United States)

    Crolet, Jean-Marie

    2007-01-01

    Biomedical engineer is an international job for several reasons and it means that the knowledge of at least one foreign language is a necessity. A geographical and structural analysis of the biomedical sector concludes to the teaching of a second foreign language. But in spite of the presence of adequate means, it is not possible for us for the moment to set up such a teaching. This paper presents the solution we have chosen in the framework of Erasmus exchanges.

  17. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  18. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  19. Biomedical ontologies: a functional perspective.

    Science.gov (United States)

    Rubin, Daniel L; Shah, Nigam H; Noy, Natalya F

    2008-01-01

    The information explosion in biology makes it difficult for researchers to stay abreast of current biomedical knowledge and to make sense of the massive amounts of online information. Ontologies--specifications of the entities, their attributes and relationships among the entities in a domain of discourse--are increasingly enabling biomedical researchers to accomplish these tasks. In fact, bio-ontologies are beginning to proliferate in step with accruing biological data. The myriad of ontologies being created enables researchers not only to solve some of the problems in handling the data explosion but also introduces new challenges. One of the key difficulties in realizing the full potential of ontologies in biomedical research is the isolation of various communities involved: some workers spend their career developing ontologies and ontology-related tools, while few researchers (biologists and physicians) know how ontologies can accelerate their research. The objective of this review is to give an overview of biomedical ontology in practical terms by providing a functional perspective--describing how bio-ontologies can and are being used. As biomedical scientists begin to recognize the many different ways ontologies enable biomedical research, they will drive the emergence of new computer applications that will help them exploit the wealth of research data now at their fingertips.

  20. The Duty to Prevent Emotional Harm at Work: Arguments from Science and Law, Implications for Policy and Practice

    Science.gov (United States)

    Shain, Martin

    2004-01-01

    Although science and law employ different methods to gather and weigh evidence, their conclusions are remarkably convergent with regard to the effect that workplace stress has on the health of employees. Science, using the language of probability, affirms that certain stressors predict adverse health outcomes such as disabling anxiety and…

  1. An examination of the advances in science and technology of prevention of tooth decay in young children since the Surgeon General's Report on Oral Health.

    Science.gov (United States)

    Milgrom, Peter; Zero, Domenick T; Tanzer, Jason M

    2009-01-01

    This paper addresses a number of areas related to how effectively science and technology have met Healthy People 2010 goals for tooth decay prevention. In every area mentioned, it appears that science and technology are falling short of these goals. Earlier assessments identified water fluoridation as one of the greatest public health accomplishments of the last century. Yet, failure to complete needed clinical and translational research has shortchanged the caries prevention agenda at a critical juncture. Science has firmly established the transmissible nature of tooth decay. However, there is evidence that tooth decay in young children is increasing, although progress has been made in other age groups. Studies of risk assessment have not been translated into improved practice. Antiseptics, chlorhexidine varnish, and polyvinylpyrrolidone iodine (PVI-I) may have value, but definitive trials are needed. Fluorides remain the most effective agents, but are not widely disseminated to the most needy. Fluoride varnish provides a relatively effective topical preventive for very young children, yet definitive trials have not been conducted. Silver diamine fluoride also has potential but requires study in the United States. Data support effectiveness and safety of xylitol, but adoption is not widespread. Dental sealants remain a mainstay of public policy, yet after decades of research, widespread use has not occurred. We conclude that research has established the public health burden of tooth decay, but insufficient research addresses the problems identified in the report Oral Health in America: A Report of the Surgeon General. Transfer of technology from studies to implementation is needed to prevent tooth decay among children. This should involve translational research and implementation of scientific and technological advances into practice.

  2. Biomedical activity of biosurfactants

    OpenAIRE

    Anna Krasowska

    2010-01-01

    Biosurfactants, amphiphilic compounds, synthesized by microorganisms have surface, antimicrobial and antitumor properties. Biosurfactants prevent adhesion and biofilms formation by bacteria and fungi on various surfaces. For many years microbial surfactants are used as antibiotics with board spectrum of activity against microorganisms. Biosurfactants act as antiviral compounds and their antitumor activities are mediated through induction of apoptosis. This work presents the current state of k...

  3. Marine Polysaccharides from Algae with Potential Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2015-05-01

    Full Text Available There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  4. RPCs in biomedical applications

    Science.gov (United States)

    Belli, G.; De Vecchi, C.; Giroletti, E.; Guida, R.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Sani, G.; Vicini, A.; Vitulo, P.; Viviani, C.

    2006-08-01

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 μm and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi 2O 3 and Tl 2O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C 2H 2F 4 92.5%, SF 6 2.5%, C 4H 10 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  5. RPCs in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Belli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); De Vecchi, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Giroletti, E. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Guida, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Musitelli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Nardo, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Necchi, M.M. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Pagano, D. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Ratti, S.P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Sani, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vicini, A. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vitulo, P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Viviani, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy)

    2006-08-15

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 {mu}m and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi{sub 2}O{sub 3} and Tl{sub 2}O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C{sub 2}H{sub 2}F{sub 4} 92.5%, SF{sub 6} 2.5%, C{sub 4}H{sub 10} 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  6. Evolving technologies drive the new roles of Biomedical Engineering.

    Science.gov (United States)

    Frisch, P H; St Germain, J; Lui, W

    2008-01-01

    Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.

  7. Biomedical journals in Republic of Macedonia: the current state.

    Science.gov (United States)

    Polenakovic, Momir; Danevska, Lenche

    2014-01-01

    Several biomedical journals in the Republic of Macedonia have succeeded in maintaining regular publication over the years, but only a few have a long-standing tradition. In this paper we present the basic characteristics of 18 biomedical journals that have been published without a break in the Republic of Macedonia. Of these, more details are given for 14 journals, a particular emphasis being on the journal Prilozi/Contributions of the Macedonian Academy of Sciences and Arts, Section of Medical Sciences as one of the journals with a long-term publishing tradition and one of the journals included in the Medline/PubMed database. A brief or broad description is given for the following journals: Macedonian Medical Review, Acta Morphologica, Physioacta, MJMS-Macedonian Journal of Medical Sciences, International Medical Journal Medicus, Archives of Public Health, Epilepsy, Macedonian Orthopaedics and Traumatology Journal, BANTAO Journal, Macedonian Dental Review, Macedonian Pharmaceutical Bulletin, Macedonian Veterinary Review, Journal of Special Education and Rehabilitation, Balkan Journal of Medical Genetics, Contributions of the Macedonian Scientific Society of Bitola, Vox Medici, Social Medicine: Professional Journal for Public Health, and Prilozi/Contributions of the Macedonian Academy of Sciences and Arts. Journals from Macedonia should aim to be published regularly, should comply with the Uniform requirements for manuscripts submitted to biomedical journals, and with the recommendations of reliable organizations working in the field of publishing and research. These are the key prerequisites which Macedonian journals have to accomplish in order to be included in renowned international bibliographic databases. Thus the results of biomedical science from the Republic of Macedonia will be presented to the international scientific arena.

  8. From biomedical-engineering research to clinical application and industrialization

    Science.gov (United States)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  9. The biomedical engineer as a driver for Health Technology innovation.

    Science.gov (United States)

    Colas Fustero, Javier; Guillen Arredondo, Alejandra

    2010-01-01

    Health Technology has played a mayor role on most of the fundamental advances in medicine, in the last 30 years. Right now, beginning the XXI Century, it is well accepted that the most important revolution expected in Health Care is the empowerment of the individuals on their own health management. Innovation in health care technologies will continue being paramount, not only in the advances of medicine and in the self health management of patients but also in allowing the sustainability of the public health care becomes more important, the role of the biomedical engineer will turn to be more crucial for the society. The paper targets the development of new curricula for the Biomedical Engineers, The needs of evolving on his different fields in which the contribution of the Biomedical Engineer is becoming fundamental to drive the innovation that Health Care Technology Industry must provide to continue improving human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice.

  10. The biomedical discourse relation bank

    Directory of Open Access Journals (Sweden)

    Joshi Aravind

    2011-05-01

    Full Text Available Abstract Background Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource. Results We have developed the Biomedical Discourse Relation Bank (BioDRB, in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB, which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89. These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28, mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57. Conclusion Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more

  11. Rotation Covariant Image Processing for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Henrik Skibbe

    2013-01-01

    Full Text Available With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  12. Biomedical journals: keeping up and reading critically.

    Science.gov (United States)

    Chase, Karen L; DiGiacomo, Ronald F; Van Hoosier, Gerald L

    2006-09-01

    By extrapolation from studies of physicians, knowledge and practice of laboratory animal medicine and science are expected to become progressively more outdated the longer practitioners are out of school. Keeping up with current literature and practice is a challenge that necessitates the use of many different sources of continuing education. Both veterinarians and physicians consistently list journals as the most beneficial source of new information. Accordingly, they must select from the veterinary and biomedical literature articles that report original studies and systematic reviews and recognize and respond to valid new knowledge to improve diagnostic and therapeutic approaches and maintain consistent clinical skills. Other objectives include selecting journals for general information and for information relevant or specific to one's field of research. Lastly, candidates for board certification need to read articles from journals that potentially provide the basis for questions on the examination. 'High-impact' journals should be identified, and articles should be reviewed critically. In a survey of recent candidates for laboratory animal medicine board examination, these journals included Contemporary Topics (now JAALAS), Comparative Medicine, ILAR Journal, and Laboratory Animals. Strategies for coping with the challenge of staying current with the literature include wise use of technology, journal clubs, and consultation with colleagues. A laboratory animal practitioner can become a better scientist and clinician by evaluating the research performed by others. Thorough, critical review of biomedical literature is paramount to these goals.

  13. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  14. [Master course in biomedical engineering].

    Science.gov (United States)

    Jobbágy, Akos; Benyó, Zoltán; Monos, Emil

    2009-11-22

    The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.

  15. An Examination of Biomedical Intellectual Reputation in Relationship to Graduates' Productivity, Regional Innovation and Absorptive Capacity at Selected Universities Worldwide

    Science.gov (United States)

    Cavanaugh, Gesulla

    2014-01-01

    The purpose of this study was first to determine factors associated with intellectual reputation, specifically among selected biomedical departments worldwide within the university setting. Second, the study aimed to examine intellectual reputation in relationship to doctoral graduates' productivity in the biomedical sciences and in relationship…

  16. Biomedical Use of Aerospace Personal Cooling Garments

    Science.gov (United States)

    Webbon, Bruce W.; Montgomery, Leslie D.; Callaway, Robert K.

    1994-01-01

    Personal thermoregulatory systems are required during extravehicular activity (EVA) to remove the metabolic heat generated by the suited astronaut. The Extravehicular and Protective Systems (STE) Branch of NASA Ames Research Center has developed advanced concepts or liquid cooling garments for both industrial and biomedical applications for the past 25 years. Examples of this work include: (1) liquid cooled helmets for helicopter pilots and race car drivers; (2) vests for fire and mine rescue personnel; (3) bras to increase the definition of tumors during thermography; (4) lower body garments for young women with erythomelaigia; and (5) whole body garments used by patients with multiple sclerosis (MS). The benefits of the biomedical application of artificial thermoregulation received national attention through two recent events: (1) the liquid-cooled garment technology was inducted into the United States Space Foundation's Space Technology Hall of Fame (1993); and (2) NASA has signed a joint Memorandum of Understanding with the Multiple Sclerosis Association (1994) to share this technology for use with MS patient treatment. The STE Branch is currently pursuing a program to refine thermoregulatory design in light of recent technology developments that might be applicable for use by several medical patient populations. Projects have been initiated to apply thermoregulatory technology for the treatment and/or rehabilitation of patients with spinal cord injuries, multiple sclerosis, migraine headaches, and to help prevent the loss of hair during chemotherapy.

  17. Pathophysiologic mechanisms of biomedical nanomaterials.

    Science.gov (United States)

    Wang, Liming; Chen, Chunying

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell-cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future.

  18. Leveraging Industry-Academia Collaborations in Adaptive Biomedical Innovation.

    Science.gov (United States)

    Stewart, S R; Barone, P W; Bellisario, A; Cooney, C L; Sharp, P A; Sinskey, A J; Natesan, S; Springs, S L

    2016-12-01

    Despite the rapid pace of biomedical innovation, research and development (R&D) productivity in the pharmaceutical industry has not improved broadly. Increasingly, firms need to leverage new approaches to product development and commercial execution, while maintaining adaptability to rapid changes in the marketplace and in biomedical science. Firms are also seeking ways to capture some of the talent, infrastructure, and innovation that depends on federal R&D investment. As a result, a major transition to external innovation is taking place across the industry. One example of these external innovation initiatives is the Sanofi-MIT Partnership, which provided seed funding to MIT investigators to develop novel solutions and approaches in areas of interest to Sanofi. These projects were highly collaborative, with information and materials flowing both ways. The relatively small amount of funding and short time frame of the awards built an adaptable and flexible process to advance translational science.

  19. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  20. Fluid-structure interaction and biomedical applications

    CERN Document Server

    Galdi, Giovanni; Nečasová, Šárka

    2014-01-01

    This book presents, in a methodical way, updated and comprehensive descriptions and analyses of some of the most relevant problems in the context of fluid-structure interaction (FSI). Generally speaking, FSI is among the most popular and intriguing problems in applied sciences and includes industrial as well as biological applications. Various fundamental aspects of FSI are addressed from different perspectives, with a focus on biomedical applications. More specifically, the book presents a mathematical analysis of basic questions like the well-posedness of the relevant initial and boundary value problems, as well as the modeling and the numerical simulation of a number of fundamental phenomena related to human biology. These latter research topics include blood flow in arteries and veins, blood coagulation and speech modeling. We believe that the variety of the topics discussed, along with the different approaches used to address and solve the corresponding problems, will help readers to develop a more holis...

  1. Implantable biomedical devices on bioresorbable substrates

    Science.gov (United States)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  2. 病毒样颗粒技术——现代生物医学应用的新平台%Virus-like particles: new platforms for the applications of contemporary biomedical sciences

    Institute of Scientific and Technical Information of China (English)

    龙遗芳; 郭中敏; 陆家海

    2013-01-01

    Virus-like particles (VLPs) are composed of one or several virus structural proteins but not packaged the virus genome inside the capsid.VLPs have remarkable advantages over the complete viruses such as VLP can closely mimick the three-dimensional nature of a real virus; VLPs are safe with strong immunogenicity,flexibility of structure and unique ability of bearing DNA and other molecules.VLP technology has been widely accepted especially in the field of vaccinology.In this review,we summarize the applications of VLPs in the field of biomedical research including basic research,development of immunoassays,novel vaccines and VLPs as vehicles for delivering therapeutic molecules.

  3. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  4. Research and technology activities at Ames Research Center's Biomedical Research Division

    Science.gov (United States)

    Martello, N.

    1985-01-01

    Various research and technology activities at Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include descriptions of research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, behavior and performance, gravitational biology, and life sciences flight experiments.

  5. Biomedical applications of poisonous plant research.

    Science.gov (United States)

    James, Lynn F; Panter, Kip E; Gaffield, William; Molyneux, Russell J

    2004-06-01

    Research designed to isolate and identify the bioactive compounds responsible for the toxicity of plants to livestock that graze them has been extremely successful. The knowledge gained has been used to design management techniques to prevent economic losses, predict potential outbreaks of poisoning, and treat affected animals. The availability of these compounds in pure form has now provided scientists with tools to develop animal models for human diseases, study modes of action at the molecular level, and apply such knowledge to the development of potential drug candidates for the treatment of a number of genetic and infectious conditions. These advances are illustrated by specific examples of biomedical applications of the toxins of Veratrum californicum (western false hellebore), Lupinus species (lupines), and Astragalus and Oxytropis species (locoweeds).

  6. Moving evidence-based drug abuse prevention programs from basic science to practice: "bridging the efficacy-effectiveness interface".

    Science.gov (United States)

    August, Gerald J; Winters, Ken C; Realmuto, George M; Tarter, Ralph; Perry, Cheryl; Hektner, Joel M

    2004-01-01

    This article examines the challenges faced by developers of youth drug abuse prevention programs in transporting scientifically proven or evidence-based programs into natural community practice systems. Models for research on the transfer of prevention technology are described with specific emphasis given to the relationship between efficacy and effectiveness studies. Barriers that impede the successful integration of efficacy methods within effectiveness studies (e.g., client factors, practitioner factors, intervention structure characteristics, and environmental and organizational factors) are discussed. We present a modified model for program development and evaluation that includes a new type of research design, the hybrid efficacy-effectiveness study that addresses program transportability. The utility of the hybrid study is illustrated in the evaluation of the Early Risers "Skills for Success" prevention program.

  7. Inorganic nanolayers: structure, preparation, and biomedical applications

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2015-09-01

    Full Text Available Bullo Saifullah, Mohd Zobir B HusseinMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes, high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.Keywords: inorganic nanolayers, layered double hydroxides, layered hydroxy salts, drug delivery, biosensors, bioimaging

  8. Composite Gels Based on Poly (Vinyl alcohol) for Biomedical Uses

    OpenAIRE

    Hoppe, Cristina Elena; Alvarez, Vera Alejandra; Maiolo, Sebastián; Gonzalez, Jimena Soledad

    2016-01-01

    Nowadays, poly (vinyl alcohol) (PVA) hydrogels are being studied for several biomedical applications such as joint replacement, wound dressings and controlled drug-releasing devices, among others. Reinforced PVA hydrogels show good mechanical properties and are a suitable option to replace cartilages. Furthermore, these materials can prevent loss of body fluids, be a barrier against bacteria and also permeable to oxygen, for these all interesting properties, they are used like wound dressing...

  9. National Institute of Biomedical Imaging and Bioengineering

    Science.gov (United States)

    ... Health & Human Services National Institutes of Health Creating Biomedical Technologies to Improve Health En Español | Site Map | ... 2016 VIEW MORE NEWS AND HIGHLIGHTS Design by Biomedical Undergraduate Teams Challenge RSS LISTSERV YOUTUBE FACEBOOK TWITTER ...

  10. Macro-Level Approaches to HIV Prevention among Ethnic Minority Youth: State of the Science, Opportunities, and Challenges

    Science.gov (United States)

    Prado, Guillermo; Lightfoot, Marguerita; Brown, C. Hendricks

    2013-01-01

    The HIV epidemic continues to disproportionately affect ethnic minority youth. These disconcerting health disparities indicate that although existing HIV preventive strategies for ethnic minority youth have been efficacious, they have not significantly reduced the impact of the epidemic in this population. Macro-level interventions, such as…

  11. Skin tears: state of the science: consensus statements for the prevention, prediction, assessment, and treatment of skin tears©.

    Science.gov (United States)

    LeBlanc, Kimberly; Baranoski, Sharon

    2011-09-01

    The appropriate management of patients with skin tears is an ongoing challenge for healthcare professionals. Skins tears are often painful, acute wounds resulting from trauma to the skin and are largely preventable. Healthcare professionals must be able to identify individuals at risk for skin tears and aid in the prevention of these wounds and in their treatment when they occur. Despite preliminary studies that suggest skin tears may be more prevalent than pressure ulcers, there remains a paucity of literature to guide prevention, assessment, and treatment of skin tears. As a result, these wounds are often mismanaged and misdiagnosed, leading to complications, including pain, infection, and delayed wound healing. In addition, skin tears increase caregiver time and facility costs, cause anxiety for patients and families, and may reflect poorly on the quality of care delivered in a facility. In an effort to shift awareness toward this largely unheeded healthcare issue, a consensus panel of 13 internationally recognized key opinion leaders convened to establish consensus statements on the prevention, prediction, assessment, and treatment of skin tears. The initial consensus panel meeting was held in January 2011 and was made possible by an unrestricted educational grant from Hollister Wound Care. This document details the consensus definition and statements, as well as recommendations for future research and steps toward establishing a validated, comprehensive program for managing skin tears.

  12. Mathematical modeling in biomedical imaging

    CERN Document Server

    2009-01-01

    This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

  13. Mathematical modeling in biomedical imaging

    CERN Document Server

    2012-01-01

    This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools.  It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.

  14. Biomedical applications of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bormann, D.

    2012-01-01

    This chapter deals with the emerging field of biomedical applications for magnesium-based materials, envisioning degradable implants that dissolve in the human body after having cured a particular medical condition. After outlining the background of this interest, some major aspects concerning degra

  15. Allergen immunotherapy for the prevention of allergy

    DEFF Research Database (Denmark)

    Kristiansen, Maria; Dhami, Sangeeta; Netuveli, Gopal

    2017-01-01

    Background: There is a need to establish the effectiveness, cost-effectiveness and safety of allergen immunotherapy (AIT) for the prevention of allergic disease. Methods:Two reviewers independently screened nine international biomedical databases. Studies were quantitatively synthesized using ran...

  16. Are graduate students rational? Evidence from the market for biomedical scientists.

    Science.gov (United States)

    Blume-Kohout, Margaret E; Clack, John W

    2013-01-01

    The U.S. National Institutes of Health (NIH) budget expansion from 1998 through 2003 increased demand for biomedical research, raising relative wages and total employment in the market for biomedical scientists. However, because research doctorates in biomedical sciences can often take six years or more to complete, the full labor supply response to such changes in market conditions is not immediate, but rather is observed over a period of several years. Economic rational expectations models assume that prospective students anticipate these future changes, and also that students take into account the opportunity costs of their pursuing graduate training. Prior empirical research on student enrollment and degree completions in science and engineering (S&E) fields indicates that "cobweb" expectations prevail: that is, at least in theory, prospective graduate students respond to contemporaneous changes in market wages and employment, but do not forecast further changes that will arise by the time they complete their degrees and enter the labor market. In this article, we analyze time-series data on wages and employment of biomedical scientists versus alternative careers, on completions of S&E bachelor's degrees and biomedical sciences PhDs, and on research expenditures funded both by NIH and by biopharmaceutical firms, to examine the responsiveness of the biomedical sciences labor supply to changes in market conditions. Consistent with previous studies, we find that enrollments and completions in biomedical sciences PhD programs are responsive to market conditions at the time of students' enrollment. More striking, however, is the close correspondence between graduate student enrollments and completions, and changes in availability of NIH-funded traineeships, fellowships, and research assistantships.

  17. Vaccine safety--vaccine benefits: science and the public's perception.

    Science.gov (United States)

    Wilson, C B; Marcuse, E K

    2001-11-01

    The development of cowpox vaccination by Jenner led to the development of immunology as a scientific discipline. The subsequent eradication of smallpox and the remarkable effects of other vaccines are among the most important contributions of biomedical science to human health. Today, the need for new vaccines has never been greater. However, in developed countries, the public's fear of vaccine-preventable diseases has waned, and awareness of potential adverse effects has increased, which is threatening vaccine acceptance. To further the control of disease by vaccination, we must develop safe and effective new vaccines to combat infectious diseases, and address the public's concerns.

  18. Recent advances in biomedical applications of accelerator mass spectrometry.

    Science.gov (United States)

    Hah, Sang Soo; Henderson, Paul T; Turteltaub, Kenneth W

    2009-06-17

    The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided.

  19. Recent advances in biomedical applications of accelerator mass spectrometry

    Directory of Open Access Journals (Sweden)

    Hah Sang

    2009-06-01

    Full Text Available Abstract The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS, an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1 toxicant and drug metabolism, 2 neuroscience, 3 pharmacokinetics, and 4 nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided.

  20. Full text clustering and relationship network analysis of biomedical publications.

    Directory of Open Access Journals (Sweden)

    Renchu Guan

    Full Text Available Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  1. Carbon nanotubes from synthesis to in vivo biomedical applications.

    Science.gov (United States)

    Sajid, Muhammad Imran; Jamshaid, Usama; Jamshaid, Talha; Zafar, Nadiah; Fessi, H; Elaissari, Abdelhamid

    2016-03-30

    Owing to their unique and interesting properties, extensive research round the globe has been carried out on carbon nanotubes and carbon nanotubes based systems to investigate their practical usefulness in biomedical applications. The results from these studies demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Although, carbon nanotubes possess quite interesting properties, which make them potential candidates in the biomedical science, but they also have some inherent properties which arise great concern regarding their biosafety. In this comprehensive review, we have discussed different aspects of carbon nanotubes and carbon nanotube based systems related to biomedical applications. In the beginning, a short historical account of these tiny yet powerful particles is given followed by discussion regarding their types, properties, methods of synthesis, large scale production method, purification techniques and characterization aspects of carbon nanotubes. In the second part of the review, the functionalization of carbon nanotubes is reviewed in detail, which is not only important to make them biocompatible and stable in biological systems but also render them a great property of loading various biomolecules, diagnostic and therapeutic moieties resulting in diversified applications. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future.

  2. Biomedical ethics and the biomedical engineer: a review.

    Science.gov (United States)

    Saha, S; Saha, P S

    1997-01-01

    Biomedical engineering is responsible for many of the dramatic advances in modern medicine. This has resulted in improved medical care and better quality of life for patients. However, biomedical technology has also contributed to new ethical dilemmas and has challenged some of our moral values. Bioengineers often lack adequate training in facing these moral and ethical problems. These include conflicts of interest, allocation of scarce resources, research misconduct, animal experimentation, and clinical trials for new medical devices. This paper is a compilation of our previous published papers on these topics, and it summarizes many complex ethical issues that a bioengineer may face during his or her research career or professional practice. The need for ethics training in the education of a bioengineering student is emphasized. We also advocate the adoption of a code of ethics for bioengineers.

  3. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  4. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  5. 23 July - Italian Director-General for Prevention G. Ruocco and Director-General for European and International Relations Ministry of Health D. Roderigo visiting the ATLAS experimental cavern with ATLAS Deputy Spokesperson B. Heinemann. Life Sciences Section M. Cirilli and Life Sciences Adviser M. Dosanjh present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    23 July - Italian Director-General for Prevention G. Ruocco and Director-General for European and International Relations Ministry of Health D. Roderigo visiting the ATLAS experimental cavern with ATLAS Deputy Spokesperson B. Heinemann. Life Sciences Section M. Cirilli and Life Sciences Adviser M. Dosanjh present.

  6. Biomedical and environmental applications of magnetic nanoparticles

    Science.gov (United States)

    Tran, Dai Lam; Le, Van Hong; Linh Pham, Hoai; Nhung Hoang, Thi My; Quy Nguyen, Thi; Luong, Thien Tai; Thu Ha, Phuong; Phuc Nguyen, Xuan

    2010-12-01

    This paper presents an overview of syntheses and applications of magnetic nanoparticles (MNPs) at the Institute of Materials Science, Vietnam Academy of Science and Technology. Three families of oxide MNPs, magnetite, manganite and spinel ferrite materials, were prepared in various ways: coprecipitation, sol-gel and high energy mechanical milling. Basic properties of MNPs were characterized by Vibrating Sample Magnetometer (VSM) and Physical Properties Measurement Systems (PPMS). As for biomedical application, the aim was to design a novel multifunctional, nanosized magnetofluorescent water-dispersible Fe3O4-curcumin conjugate, and its ability to label, target and treat tumor cells was described. The conjugate possesses a magnetic nano Fe3O4 core, chitosan (CS) or Oleic acid (OL) as an outer shell and entrapped curcumin (Cur), serving the dual function of naturally autofluorescent dye as well as antitumor model drug. Fe3O4-Cur conjugate exhibited a high loading cellular uptake with the help of a macrophage, which was clearly visualized dually by Fluorescence Microscope and Laser Scanning Confocal Microscope (LSCM), as well as by magnetization measurement (PPMS). A preliminary magnetic resonance imaging (MRI) study also showed a clear contrast enhancement by using the conjugate. As for the environmental aspect, the use of magnetite MNPs for the removal of heavy toxic metals, such as Arsenic (As) and Lead (Pb), from contaminated water was studied.

  7. Carbon nanotubes: engineering biomedical applications.

    Science.gov (United States)

    Gomez-Gualdrón, Diego A; Burgos, Juan C; Yu, Jiamei; Balbuena, Perla B

    2011-01-01

    Carbon nanotubes (CNTs) are cylinder-shaped allotropic forms of carbon, most widely produced under chemical vapor deposition. They possess astounding chemical, electronic, mechanical, and optical properties. Being among the most promising materials in nanotechnology, they are also likely to revolutionize medicine. Among other biomedical applications, after proper functionalization carbon nanotubes can be transformed into sophisticated biosensing and biocompatible drug-delivery systems, for specific targeting and elimination of tumor cells. This chapter provides an introduction to the chemical and electronic structure and properties of single-walled carbon nanotubes, followed by a description of the main synthesis and post-synthesis methods. These sections allow the reader to become familiar with the specific characteristics of these materials and the manner in which these properties may be dependent on the specific synthesis and post-synthesis processes. The chapter ends with a review of the current biomedical applications of carbon nanotubes, highlighting successes and challenges.

  8. Biomedical Applications of Biodegradable Polyesters

    Directory of Open Access Journals (Sweden)

    Iman Manavitehrani

    2016-01-01

    Full Text Available The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have been driven by a need to target the general hydrophobic nature of polyesters and their limited cell motif sites. This review provides a comprehensive investigation into advanced strategies to modify polyesters and their clinical potential for future biomedical applications.

  9. [Biomedical update in bioethics: a primordial ethical imperative].

    Science.gov (United States)

    Pastor, Luis Miguel

    2011-01-01

    In this brief article we continue our reflection about the relations that should exist between the knowledge of biomedical sciences and the development of bioethics. After stating the principle of not absolute concordance between empirical and philosophical data as well as the former data are partial truths and highly contextualized by the experiment, we propose a certain criteria that should govern the use of biomedical sciences in bioethics. These criteria are based on ability to distinguish the two areas of knowledge and, without confusing each other, achieve their integration in a new unit of knowledge. Approximating the two disciplines in this way each will be more able to accommodate the other. From contiguity to integration into a higher order unit, without that both losing their own nature. We conclude that not only this posture avoid the mistake of deducting the bioethics from experimental scientific date but also not to manipulate biomedical data based on previous philosophical positions. Furthermore we also reached a more comprehensive and real understanding of bioethics. This implies that both scientists and humanists that work in bioethics must live an ethical imperative in their research that we have described as essential. This consist in a continuously update in biomedicine for research and development the bioethics.

  10. New biomedical applications of radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.C.

    1990-12-01

    The potential of accelerator mass spectrometry (AMS) and radiocarbon in biomedical applications is being investigated by Lawrence Livermore National Laboratory (LLNL). A measurement of the dose-response curve for DNA damage caused by a carcinogen in mouse liver cells was an initial experiment. This demonstrated the sensitivity and utility of AMS for detecting radiocarbon tags and led to numerous follow-on experiments. The initial experiment and follow-on experiments are discussed in this report. 12 refs., 4 figs. (SM)

  11. Biomedical Applications of Biodegradable Polyesters

    OpenAIRE

    Iman Manavitehrani; Ali Fathi; Hesham Badr; Sean Daly; Ali Negahi Shirazi; Fariba Dehghani

    2016-01-01

    The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have be...

  12. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  13. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  14. ISIFC - dual Biomedical Engineering School.

    Science.gov (United States)

    Butterlin, Nadia; Soto-Romero, Georges; Duffaud, Jacques; Blagosklonov, Oleg

    2007-01-01

    The Superior Institute for Biomedical Engineering (ISIFC), created in 2001, is part of the Franche-Comté University and is accredited by the French Ministry of National Education. Its originality lies in its innovative course of studies, which trains engineers in the scientific and medical fields to get both competencies. The Institute therefore collaborates with the University Hospital Centre of Besançon (CHU), biomedical companies and National Research Centres (CNRS and INSERM). The dual expertise trainees will have acquired at the end of their 3 years course covers medical and biological skills, scientific and Technical expertises. ISIFC engineers answer to manufacturer needs for skilled scientific and technical staff in instrumentation and techniques adapted to diagnosis, therapeutics and medical control, as well as the needs of potential users for biomedical devices, whether they are doctors, hospital staff, patients, laboratories, etc... Both the skills and the knowledge acquired by an ISIFC engineer will enable him/her to fulfil functions of study, research and development in the industrial sector.

  15. Biomedical engineering - A means to add new dimension to medicine and research

    Science.gov (United States)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  16. Biomedical informatics: changing what physicians need to know and how they learn.

    Science.gov (United States)

    Stead, William W; Searle, John R; Fessler, Henry E; Smith, Jack W; Shortliffe, Edward H

    2011-04-01

    The explosive growth of biomedical complexity calls for a shift in the paradigm of medical decision making-from a focus on the power of an individual brain to the collective power of systems of brains. This shift alters professional roles and requires biomedical informatics and information technology (IT) infrastructure. The authors illustrate this future role of medical informatics with a vignette and summarize the evolving understanding of both beneficial and deleterious effects of informatics-rich environments on learning, clinical care, and research. The authors also provide a framework of core informatics competencies for health professionals of the future and conclude with broad steps for faculty development. They recommend that medical schools advance on four fronts to prepare their faculty to teach in a biomedical informatics-rich world: (1) create academic units in biomedical informatics; (2) adapt the IT infrastructure of academic health centers (AHCs) into testing laboratories; (3) introduce medical educators to biomedical informatics sufficiently for them to model its use; and (4) retrain AHC faculty to lead the transformation to health care based on a new systems approach enabled by biomedical informatics. The authors propose that embracing this collective and informatics-enhanced future of medicine will provide opportunities to advance education, patient care, and biomedical science.

  17. The Theory of Biomedical Knowledge Integration(Ⅳ)

    Institute of Scientific and Technical Information of China (English)

    BAO Han-fei

    2005-01-01

    This paper presented some philosophic viewpoints of the Theory of BMKI (The Theory of Biomedical Knowledge Integration), a new exploration in BioMedical Informatics. It discussed an evolutional relation from propositional calculus, predicate calculus, through framework, to neural network.. The differences in exclusivity and other natures were explored for physical systems (the real world), quasi-physical systems (the copies of the real world) and mental systems(the abstracts of the real world). Based on their behaviours in cognitive sciences and knowledge engineering, the new concepts quasi-infinity or -infinitesimal,potential knowledge,dynamic knowledge were introduced. This paper has also described so called "big-or" space which is the base of scientific understanding or association. Furthermore the paper put forward the viewpoint that "reasoning only can implement in an axiomatic space" and then outlined the building processes of such kind of space. At last so called "beacon-andcompass strategy" in BMKI was introduced.

  18. Biological and biomedical aspects of genetically modified food.

    Science.gov (United States)

    Celec, Peter; Kukucková, Martina; Renczésová, Veronika; Natarajan, Satheesh; Pálffy, Roland; Gardlík, Roman; Hodosy, Július; Behuliak, Michal; Vlková, Barbora; Minárik, Gabriel; Szemes, Tomás; Stuchlík, Stanislav; Turna, Ján

    2005-12-01

    Genetically modified (GM) foods are the product of one of the most progressive fields of science-biotechnology. There are major concerns about GM foods in the public; some of them are reasonable, some of them are not. Biomedical risks of GM foods include problems regarding the potential allergenicity, horizontal gene transfer, but environmental side effects on biodiversity must also be recognized. Numerous methods have been developed to assess the potential risk of every GM food type. Benefits of the first generation of GM foods were oriented towards the production process and companies, the second generation of GM foods offers, on contrary, various advantages and added value for the consumer. This includes improved nutritional composition or even therapeutic effects. Recombinant probiotics and the principle of alternative gene therapy represent the latest approach of using GM organisms for biomedical applications. This article tries to summarize and to explain the problematic topic of GM food.

  19. A general method for modeling biochemical and biomedical response

    Science.gov (United States)

    Ortiz, Roberto; Lerd Ng, Jia; Hughes, Tyler; Abou Ghantous, Michel; Bouhali, Othmane; Arredouani, Abdelilah; Allen, Roland

    2012-10-01

    The impressive achievements of biomedical science have come mostly from experimental research with human subjects, animal models, and sophisticated laboratory techniques. Additionally, theoretical chemistry has been a major aid in designing new drugs. Here we introduce a method which is similar to others already well known in theoretical systems biology, but which specifically addresses biochemical changes as the human body responds to medical interventions. It is common in systems biology to use first-order differential equations to model the time evolution of various chemical concentrations, and we as physicists can make a significant impact through designing realistic models and then solving the resulting equations. Biomedical research is rapidly advancing, and the technique presented in this talk can be applied in arbitrarily large models containing tens, hundreds, or even thousands of interacting species, to determine what beneficial effects and side effects may result from pharmaceuticals or other medical interventions.

  20. Because of Science You Also Die...; Comment on “Quaternary Prevention, an Answer of Family Doctors to Over Medicalization”

    Directory of Open Access Journals (Sweden)

    Jorge Bernstein

    2015-09-01

    Full Text Available The concept of quaternary prevention (P4 refers to the idea that medicine has acquired the ability to damage through the proper exercise. Family medicine or general practice has the duty of recovering the ethical values and the exercise of a profession with the doctor-patient relationship serving to people’s humanity. In the fourth Congress of Family and Community Medicine, held in Montevideo (Uruguay last March 18-21, 2015, it was established the Working Group P4 WONCA-CIMF with communication tools included as constitutive part of P4. It was also remarked that we should be wary of attempts to denature the P4, diminishing its ethic value and limiting it to a reason for cost control.

  1. The Central Importance of Laboratories for Reducing Waste in Biomedical Research.

    Science.gov (United States)

    Stroth, Nikolas

    2016-12-01

    The global biomedical research enterprise is driving substantial advances in medicine and healthcare. Yet it appears that the enterprise is rather wasteful, falling short of its true innovative potential. Suggested reasons are manifold and involve various stakeholders, such that there is no single remedy. In the present paper, I will argue that laboratories are the basic working units of the biomedical research enterprise and an important site of action for corrective intervention. Keeping laboratories relatively small will enable better training and mentoring of individual scientists, which in turn will yield better performance of the scientific workforce. The key premise of this argument is that people are at the heart of the successes and failures of biomedical research, yet the human dimension of science has been unduly neglected in practice. Renewed focus on the importance of laboratories and their constituent scientists is one promising approach to reducing waste and increasing efficiency within the biomedical research enterprise.

  2. Teaching Research Integrity and Bioethics to Science Undergraduates

    Science.gov (United States)

    Turrens, Julio F.

    2005-01-01

    Undergraduate students in the Department of Biomedical Sciences at the University of South Alabama, Mobile, are required to take a course entitled "Issues in Biomedical Sciences," designed to increase students' awareness about bioethical questions and issues concerning research integrity. This paper describes the main features of this…

  3. Metal-Based Antibacterial Substrates for Biomedical Applications.

    Science.gov (United States)

    Paladini, Federica; Pollini, Mauro; Sannino, Alessandro; Ambrosio, Luigi

    2015-07-13

    The interest in nanotechnology and the growing concern for the antibiotic resistance demonstrated by many microorganisms have recently stimulated many efforts in designing innovative biomaterials and substrates with antibacterial properties. Among the implemented strategies to control the incidence of infections associated with the use of biomedical device and implants, interesting routes are represented by the incorporation of bactericidal agents onto the surface of biomaterials for the prevention of bacterial adhesion and biofilm growth. Natural products and particularly bioactive metals such as silver, copper and zinc represent an interesting alternative for the development of advanced biomaterials with antimicrobial properties. This review presents an overview of recent progress in the modification of biomaterials as well as the most attractive techniques for the deposition of antimicrobial coatings on different substrates for biomedical application. Moreover, some research activities and results achieved by the authors in the development of antibacterial materials are also presented and discussed.

  4. Discussing study limitations in reports of biomedical studies- the need for more transparency

    Directory of Open Access Journals (Sweden)

    Puhan Milo A

    2012-02-01

    Full Text Available Abstract Unbiased and frank discussion of study limitations by authors represents a crucial part of the scientific discourse and progress. In today's culture of publishing many authors or scientific teams probably balance 'utter honesty' when discussing limitations of their research with the risk of being unable to publish their work. Currently, too few papers in the medical literature frankly discuss how limitations could have affected the study findings and interpretations. The goals of this commentary are to review how limitations are currently acknowledged in the medical literature, to discuss the implications of limitations in biomedical studies, and to make suggestions as to how to openly discuss limitations for scientists submitting their papers to journals. This commentary was developed through discussion and logical arguments by the authors who are doing research in the area of hedging (use of language to express uncertainty and who have extensive experience as authors and editors of biomedical papers. We strongly encourage authors to report on all potentially important limitations that may have affected the quality and interpretation of the evidence being presented. This will not only benefit science but also offers incentives for authors: If not all important limitations are acknowledged readers and reviewers of scientific articles may perceive that the authors were unaware of them. Authors should take advantage of their content knowledge and familiarity with the study to prevent misinterpretations of the limitations by reviewers and readers. Articles discussing limitations help shape the future research agenda and are likely to be cited because they have informed the design and conduct of future studies. Instead of perceiving acknowledgment of limitations negatively, authors, reviewers and editors should recognize the potential of a frank and unbiased discussion of study limitations that should not jeopardize acceptance of

  5. Latino beliefs about biomedical research participation: a qualitative study on the U.S.-Mexico border.

    Science.gov (United States)

    Ceballos, Rachel M; Knerr, Sarah; Scott, Mary Alice; Hohl, Sarah D; Malen, Rachel C; Vilchis, Hugo; Thompson, Beti

    2014-10-01

    Latinos are under-represented in biomedical research conducted in the United States, impeding disease prevention and treatment efforts for this growing demographic group. We gathered perceptions of biomedical research and gauged willingness to participate through elicitation interviews and focus groups with Latinos living on the U.S.-Mexico border. Themes that emerged included a strong willingness to participate in biomedical studies and suggested that Latinos may be under-represented due to limited formal education and access to health information, not distrust. The conflation of research and clinical care was common and motivated participation. Outreach efforts and educational interventions to inform Latinos of participation opportunities and clarify harms and benefits associated with biomedical research participation will be essential to maintain trust within Latino communities.

  6. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  7. Securing a biomedical communications future: thinking strategically.

    Science.gov (United States)

    Stein, D

    1985-11-01

    Ensuring continued growth and viability of the biomedical communication function has become a critical task of the biomedical communications director. Thinking strategically is a cognitive process which assists a director in visualizing programs and tactics which meet clients needs, creates competitive advantages for the biomedical communications unit and builds on existing unit strengths. Thinking strategically can be divided into five phases: strategic vision, strategy development, strategic plan implementation, strategic plan dissemination, and strategic plan evaluation. Each sequence leads the biomedical communications director through a process designed to increase the effectiveness of the biomedical unit and to meet the challenges posed by an environment characterized by diminished financial, material, and human resources as well as respond to threats and opportunities posed by increased competition in the biomedical communications product and marketplace.

  8. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery.

  9. Novel Hyperbranched Polyurethane Brushes for Biomedical Applications

    Institute of Scientific and Technical Information of China (English)

    Ton; Loontjens; Bart; Plum

    2007-01-01

    1 Results The objective was to make hyperbranched (HB) polyurethane brushes with reactive end groups, to coat biomedical devices and to enable the introduction of various functionalities that are needed to fulfill biomedical tasks.Biomedical materials should fulfill at least three requirements: (1) good mechanical properties, (2) good biocompatibility and (3) provided with functionalities to perform the required tasks. Since polyurethanes are able to fulfill the first 2 requirements we focused in this w...

  10. Memories of the past contribute to prevention: photography as a direct means for public understanding of science

    Directory of Open Access Journals (Sweden)

    Caterina Piccione

    2012-07-01

    Full Text Available There are thousands of ways to achieve a sustainable future for our Planet. Some of these follow high-value scientific research activities, while others simply aim to increase people’s awareness of what can and should be done to improve our, and our children’s, quality of life. The easiest way to develop this specific kind of ‘spread of culture’ consists of bringing back to life what was preserved of the history of a population and of a territory, by representing it in a renewed form, and by making it ‘food for thought’. The Istituto Nazionale di Geofisica e Vulcanologia (INGV followed this approach and decided to publish two volumes where the objective was to make people more aware of the geological and volcanic risks in some specific areas of Italy. The immediacy of the photography is used to tell the stories of volcanoes and earthquakes, to represent past events that have become ‘memories’. and to use these as a basis to build a better future. Terremoto Calabro Messinese, 1908/2008 and Terre di Fuoco are the two photographic books that have been published by INGV in cooperation with Alinari, the oldest firm in the world in the field of photography and image communication. The photographs selected to be included in the two books had a double significance: on the one side, they had to convey to the reader the immediacy of the emotions that other people had felt and lived; and on the other side, they had to make people understand the importance of prevention. The fascination of history, the importance of memories of the past, and the extraordinary strength of images help the reader build a link between the past, the present and the future, where the lessons learnt from past centuries and from the study of the Earth and its energy help us to understand which steps should be taken to achieve a ‘sustainable’ future.

  11. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  12. An introduction to biomedical instrumentation

    CERN Document Server

    Dewhurst, D J

    1976-01-01

    An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handli

  13. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou

    2011-08-01

    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  14. Microfabrication materials for biomedical microdevices

    Science.gov (United States)

    Hansford, Derek James

    Major hurdles to the implementation of microfabricated devices for therapeutic applications include materials processing and biocompatibility issues. This dissertation reports research on improving the materials selection and fabrication for biomedical microdevices, using a microfabricated immunoisolation biocapsule as an example. Two material classes in the microfabrication protocol were examined based on the requirements determined for biomedical microdevices: the adhesive layer for bonding devices to encapsulate delicate biological substances and the thin film structural materials for surface structures, such as the biocapsule membrane. The major requirements for the adhesive layer material included non-cytotoxicity during bonding, adhesive strength, and durability under physiological conditions. Low glassy-phase transition temperature (Tg) methacrylates were found to be suitable candidates for adhesives of biomedical microdevices. A comparison study of poly propy1methacrylate (PPMA), poly (butyl, ethyl) methacrylate (PBEMA), and the higher Tg PMMA showed that all of the methacrylates had similar biocompatibility, adhesive strength, and durability. The adhesive strengths were found to be suitable for the adhesion of biomedical microdevices, as shown by measurement using a pressurized plate test and the current use of PMMA as bone cement. None of the methacrylates showed evidence of cytotoxicity, as measured by both optical and cytometric cell culture cytotoxicity tests. A protocol for the selective placement of smooth, thin films of PPMA using a Gel-PakTM transfer substrate was developed and demonstrated. The major requirements determined for the thin film structural materials were based on processing, mechanical, and biological parameters. Several candidates were identified as for structural materials based on these requirements: polycrystalline silicon. silicon nitride, fluoropolymers, PMMA, and silicone. A new fabrication protocol was developed to allow the

  15. Review of Biomedical Image Processing

    Directory of Open Access Journals (Sweden)

    Ciaccio Edward J

    2011-11-01

    Full Text Available Abstract This article is a review of the book: 'Biomedical Image Processing', by Thomas M. Deserno, which is published by Springer-Verlag. Salient information that will be useful to decide whether the book is relevant to topics of interest to the reader, and whether it might be suitable as a course textbook, are presented in the review. This includes information about the book details, a summary, the suitability of the text in course and research work, the framework of the book, its specific content, and conclusions.

  16. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  17. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  18. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  19. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  20. Imaging sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. The knowledge levels and opinions of biomedical students regarding the human papillomavirus quadrivalent (types 6, 11, 16, and 18) recombinant vaccine.

    Science.gov (United States)

    Tsau, Kristy; Reutzel, Thomas J; Wang, Sheila; Quiñones, Ana; Nguyen, Patrick; Hasan, Shehrbano; Workman, Gloria

    2011-04-01

    The objective of this research was to assess the knowledge levels and attitudes of all students enrolled in 1 biomedical university regarding the human papillomavirus quadrivalent (types 6, 11, 16, and 18) recombinant vaccine (Gardasil-Merck; the HPV vaccine). A survey of students from all 7 programs at the University was conducted in January 2009. A total of 1120 useable questionnaires were obtained. These programs included pharmacy, osteopathic medicine, physician assistant, physical therapy, occupational therapy, doctor of psychology, and master of biomedical sciences. Mean percentage correct on the HPV vaccine knowledge test was 73. Subjects scored highest on the question that asks whether the vaccine helps prevent cervical cancer (97% correct) and lowest on the one asking whether it helps prevent genital warts (41% correct). Eighty-eight percent thought that patients 18 years and older should be able to receive the HPV vaccine without parental consent. Only about 5% think that the vaccine would cause patients to become sexually active, or that it would cause patients to have unprotected sex. The results suggest that these students have reasonable but limited knowledge of the vaccine. Their positive attitudes suggest that they will likely recommend or provide the vaccine to their patients.

  2. How best can we plan & implement HIV prevention? A review of successful evidence based practices & research

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Chattu

    2014-07-01

    Full Text Available Context: Around 2.5 million people become infected with HIV each year and its impact on human life and public health can only be tackled and reversed only by sound prevention strategies. Aim: This paper aims to provide the reader about different types of prevention strategies that are effective and practiced in various countries with special emphasis on evidence for success. It also highlights the importance of to the evidence based medicine& strategies. It describes about the importance of combination prevention, which encompasses complementary behavioral, biomedical and structural prevention strategies. Methods & Materials: Searches for peer reviewed journal articles was conducted using the search engines to gather the information from databases of medicine, health sciences and social sciences. Information for each strategy is organized & presented systematically with detailed discussion. Results: For a successful reduction in HIV transmission, there is a great need for combined effects of radical & sustainable behavioral changes among individuals who are potentially at risk. Second, combination prevention is essential for HIV prevention is neither simple nor simplistic. Reductions in HIV transmission need widespread and sustained efforts. A mix of communication channels are essential to disseminate messages to motivate people to engage in various methods of risk reduction. Conclusions: The effect of behavioral strategies could be increased by aiming for many goals that are achieved by use of multilevel approaches with populations both uninfected and infected with HIV. Combination prevention programs operate on different levels to address the specific, but diverse needs of the populations at risk of HIV infection.

  3. Hypercompetition in biomedical research evaluation and its impact on young scientist careers.

    Science.gov (United States)

    Kamerlin, Shina Caroline Lynn

    2015-12-01

    Recent years have seen tremendous changes in the modes of publication and dissemination of biomedical information, with the introduction of countless new publishers and publishing models, as well as alternative modes of research evaluation. In parallel, we are witnessing an unsustainable explosion in the amount of information generated by each individual scientist, at the same time as many countries' shrinking research budgets are greatly increasing the competition for research funding. In such a hypercompetitive environment, how does one measure excellence? This contribution will provide an overview of some of the ongoing changes in authorship practices in the biomedical sciences, and also the consequences of hypercompetition to the careers of young scientists, from the perspective of a tenured young faculty member in the biomedical sciences. It will also provide some suggestions as to alternate dissemination and evaluation practices that could reverse current trends. [Int Microbiol 18(4):253-261 (2015)].

  4. Phytofabricated gold nanoparticles and their biomedical applications.

    Science.gov (United States)

    Ahmad, Bashir; Hafeez, Nabia; Bashir, Shumaila; Rauf, Abdur; Mujeeb-Ur-Rehman

    2017-02-26

    In a couple of decades, nanotechnology has become a trending technology owing to its integrated science collection that incorporates variety of fields such as chemistry, physics, medicine, catalytic processes, food processing industries, electronics and energy sectors. One of the emerging fields of nanotechnology that has gained momentous admiration is nano-biotechnology. Nano-biotechnology is an integrated combination of biology with nanotechnology that encompasses the tailoring, and synthesis of small particles that are less than 100nm in size and subsequent exploitation of these particles for their biological applications. Though the variety of physical techniques and chemical procedures are known for the nanoparticles synthesis, biological approach is considered to be the preferred one. Environmental hazards and concerns associated with the physical and chemical approaches of nanoparticles synthesis has added impetus and zenith to the biological approach involving the use of plants and microorganisms. The current review article is focused on the synthesis of plant-derived (phytochemical) gold nanoparticles alongside their scope in biomedical applications.

  5. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.

  6. Legacy of Biomedical Research During the Space Shuttle Program

    Science.gov (United States)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  7. Biomedical information retrieval across languages.

    Science.gov (United States)

    Daumke, Philipp; Markü, Kornél; Poprat, Michael; Schulz, Stefan; Klar, Rüdiger

    2007-06-01

    This work presents a new dictionary-based approach to biomedical cross-language information retrieval (CLIR) that addresses many of the general and domain-specific challenges in current CLIR research. Our method is based on a multilingual lexicon that was generated partly manually and partly automatically, and currently covers six European languages. It contains morphologically meaningful word fragments, termed subwords. Using subwords instead of entire words significantly reduces the number of lexical entries necessary to sufficiently cover a specific language and domain. Mediation between queries and documents is based on these subwords as well as on lists of word-n-grams that are generated from large monolingual corpora and constitute possible translation units. The translations are then sent to a standard Internet search engine. This process makes our approach an effective tool for searching the biomedical content of the World Wide Web in different languages. We evaluate this approach using the OHSUMED corpus, a large medical document collection, within a cross-language retrieval setting.

  8. Biomedical applications of control engineering

    CERN Document Server

    Hacısalihzade, Selim S

    2013-01-01

    Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engin­eering and biomedical engineering students as well as for medical prac­ti­tioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice.   The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like ·         Different models for the human operator, ·         Dosage and timing optimization in oral drug administration, ·         Measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, ·         Measure­ment and control of blood glucose le­vels both naturally and by means of external controllers in diabetes, and ·         Control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers....

  9. ENLIGHT and LEIR biomedical facility.

    Science.gov (United States)

    Dosanjh, M; Cirilli, M; Navin, S

    2014-07-01

    Particle therapy (including protons and carbon ions) allows a highly conformal treatment of deep-seated tumours with good accuracy and minimal dose to surrounding tissues, compared to conventional radiotherapy using X-rays. Following impressive results from early phase trials, over the last decades particle therapy in Europe has made considerable progress in terms of new institutes dedicated to charged particle therapy in several countries. Particle therapy is a multidisciplinary subject that involves physicists, biologists, radio-oncologists, engineers and computer scientists. The European Network for Light Ion Hadron Therapy (ENLIGHT) was created in response to the growing needs of the European community to coordinate such efforts. A number of treatment centres are already operational and treating patients across Europe, including two dual ion (protons and carbon ions) centres in Heidelberg (the pioneer in Europe) and Pavia. However, much more research needs to be carried out and beamtime is limited. Hence there is a strong interest from the biomedical research community to have a facility with greater access to relevant beamtime. Such a facility would facilitate research in radiobiology and the development of more accurate techniques of dosimetry and imaging. The Low Energy Ion Ring (LEIR) accelerator at CERN presents such an opportunity, and relies partly on CERN's existing infrastructure. The ENLIGHT network, European Commission projects under the ENLIGHT umbrella and the future biomedical facility are discussed.

  10. [Cancer prevention and tobacco control].

    Science.gov (United States)

    Yang, Gonghuan

    2015-04-01

    The paper summarized briefly the evidences for tobacco use as a cause of cancer based on hundreds of epidemiologic and biomedical studies carried out over the past 50-60 years, as well as overviewed the carcinogens in tobacco products and mechanisms of neoplasm induction by tobacco products. So, tobacco control is the important measure for cancer prevention.

  11. Enhancing Graduate and Postdoctoral Education To Create a Sustainable Biomedical Workforce.

    Science.gov (United States)

    Fuhrmann, Cynthia N

    2016-11-01

    PhD-trained biomedical scientists are moving into an increasingly diverse variety of careers within the sciences. However, graduate and postdoctoral training programs have historically focused on academic career preparation, and have not sufficiently prepared trainees for transitioning into other scientific careers. Advocates for science have raised the concern that the collective disregard of the broader career-development needs for predoctoral and postdoctoral trainees could drive talent away from science in upcoming generations. A shift is occurring, wherein universities are increasingly investing in centralized career development programs to address this need. In this Perspective, I reflect on the movement that brought biomedical PhD career development to the spotlight in recent years, and how this movement has influenced both the academic biomedical community and the field of career development. I offer recommendations for universities looking to establish or strengthen their career development programs, including recommendations for how to develop a campus culture that values career development as part of pre- and postdoctoral training. I also suggest steps that faculty might take to facilitate the career development of their mentees, regardless of the mentee's career aspirations. Finally, I reflect on recent national efforts to incentivize innovation, evaluation, and research in the field of biomedical PhD career development, and propose actions that the scientific community can take to support biomedical career development further as a scholarly discipline. These investments will enable new approaches to be rigorously tested and efficiently disseminated to support this rapidly growing field. Ultimately, strengthening biomedical career development will be essential for attracting the best talent to science and helping them efficiently move into careers that will sustain our nation's scientific enterprise.

  12. Tooth regeneration: challenges and opportunities for biomedical material research.

    Science.gov (United States)

    Du, Chang; Moradian-Oldak, Janet

    2006-03-01

    Tooth regeneration presents many challenges to researchers in the fields of biology, medicine and material science. This review considers the opportunities for biomedical material research to contribute to this multidisciplinary endeavor. We present short summaries and an overview on the collective knowledge of tooth developmental biology, advances in stem-cell research, and progress in the understanding of the tooth biomineralization principles as they provide the foundation for developing strategies for reparative and regenerative medicine. We emphasize that various biomaterials developed via biomimetic strategies have great potential for tooth tissue engineering and regeneration applications. The current practices in tooth tissue engineering approaches and applications of biomimetic carriers or scaffolds are also discussed.

  13. Introduction to fiber optics: Sensors for biomedical applications.

    Science.gov (United States)

    Shah, R Y; Agrawal, Y K

    2011-01-01

    The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.

  14. Reaping the benefits of biomedical research: partnerships required.

    Science.gov (United States)

    Portilla, Lili M; Alving, Barbara

    2010-06-09

    Reaping the benefits of investments in biomedical research can be achieved most efficiently through active collaboration among industry, academia, government, and nonprofit organizations. The National Institutes of Health (NIH) are exploring multiple ways in which to increase the efficiency of the translational process. Investigators involved in the NIH-funded Clinical and Translational Science Awards are developing public-private partnerships, addressing the barriers to collaboration, training the next generation of interdisciplinary team-oriented researchers, and producing open-source tools for collaboration. NIH is engaging with industry through the Foundation for the NIH and the Small Business Innovation Research Awards.

  15. Environmental and biomedical applications of natural metal stable isotope variations

    Science.gov (United States)

    Bullen, T.D.; Walczyk, T.

    2009-01-01

    etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.

  16. Lab-on-a-chip techniques, circuits, and biomedical applications

    CERN Document Server

    Ghallab, Yehya H

    2010-01-01

    Here's a groundbreaking book that introduces and discusses the important aspects of lab-on-a-chip, including the practical techniques, circuits, microsystems, and key applications in the biomedical, biology, and life science fields. Moreover, this volume covers ongoing research in lab-on-a-chip integration and electric field imaging. Presented in a clear and logical manner, the book provides you with the fundamental underpinnings of lab-on-a-chip, presents practical results, and brings you up to date with state-of-the-art research in the field. This unique resource is supported with over 160 i

  17. STD patients’ preferences for HIV prevention strategies

    Science.gov (United States)

    Castro, Jose G; Jones, Deborah L; Weiss, Stephen M

    2014-01-01

    The objective of this pilot study was to explore the knowledge of and preferences regarding effective biomedical interventions among high risk individuals attending a sexually transmitted diseases clinic, and to examine the effect of a brief information intervention on preference. Participants completed a baseline assessment, attended a presentation on human immunodeficiency virus (HIV) prevention methods, and completed a postintervention assessment. Outcome measures included: demographics and sexual risk factors, self-perceived HIV risk, and knowledge and attitudes regarding new biomedical methods of HIV prevention. After the baseline evaluation, participants were provided with information on new biomedical prevention strategies. Participants were given the option to review the information by reading a pamphlet or by viewing a brief video containing the same information. Participants (n=97) were female (n=51) and male (n=46). At baseline, only a small minority of participants were aware of the newer biomedical strategies to prevent HIV infection. Postintervention, 40% endorsed having heard about the use of HIV medications to prevent HIV infection; 72% had heard that male circumcision can decrease the risk of acquiring HIV infection in men; and 73% endorsed knowledge of the potential role of microbicides in decreasing the risk of acquiring HIV. Following the intervention, the most preferred prevention method was male condoms, followed by preexposure prophylaxis, and microbicides. The least preferred methods were male circumcision and female condoms. This study provides preliminary information on knowledge and attitudes regarding newer biomedical interventions to protect against HIV infection. PMID:25540597

  18. Announcement of new division: C9 – Biomedical, Health-Beneficial, and Nutritionally Enhanced Plants

    Science.gov (United States)

    Crop Science, is pleased to announce that manuscript submissions are now being accepted to the journal through the new Provisional Division C09 – Biomedical, Health-Beneficial, and Nutritionally Enhanced Plants. The focus of this Division is on plants as food or feed, and on the development and eva...

  19. Peer Relationships and the Biomedical Doctorate: A Key Component of the Contemporary Learning Environment

    Science.gov (United States)

    Kemp, Matthew W.; Molloy, Timothy J.; Pajic, Marina; Chapman, Elaine

    2013-01-01

    Little attention has been paid to the scholarship of doctoral education in the biomedical sciences, hindering the formulation of research-informed improvements to this important area of higher education. We present an analysis of interview data from Australian PhD students and suggest that relationships between students and their…

  20. Potential of Electrospun Nanofibers for Biomedical and Dental Applications

    Directory of Open Access Journals (Sweden)

    Muhammad Zafar

    2016-01-01

    Full Text Available Electrospinning is a versatile technique that has gained popularity for various biomedical applications in recent years. Electrospinning is being used for fabricating nanofibers for various biomedical and dental applications such as tooth regeneration, wound healing and prevention of dental caries. Electrospun materials have the benefits of unique properties for instance, high surface area to volume ratio, enhanced cellular interactions, protein absorption to facilitate binding sites for cell receptors. Extensive research has been conducted to explore the potential of electrospun nanofibers for repair and regeneration of various dental and oral tissues including dental pulp, dentin, periodontal tissues, oral mucosa and skeletal tissues. However, there are a few limitations of electrospinning hindering the progress of these materials to practical or clinical applications. In terms of biomaterials aspects, the better understanding of controlled fabrication, properties and functioning of electrospun materials is required to overcome the limitations. More in vivo studies are definitely required to evaluate the biocompatibility of electrospun scaffolds. Furthermore, mechanical properties of such scaffolds should be enhanced so that they resist mechanical stresses during tissue regeneration applications. The objective of this article is to review the current progress of electrospun nanofibers for biomedical and dental applications. In addition, various aspects of electrospun materials in relation to potential dental applications have been discussed.

  1. Magnetic Resonance Imaging in Biomedical Engineering

    Science.gov (United States)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  2. Biomedical engineering research at DOE national labs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    Biomedical Engineering is the application of principles of physics, chemistry, nd engineering to problems of human health. The National Laboratories of the U.S. Department of Energy have been leaders in this scientific field since 1947. This inventory of their biomedical engineering projects was compiled in January 1999.

  3. Cross language information retrieval for biomedical literature

    NARCIS (Netherlands)

    Schuemie, M.; Trieschnigg, D.; Kraaij, W.

    2007-01-01

    This workshop report discusses the collaborative work of UT, EMC and TNO on the TREC Genomics Track 2007. The biomedical information retrieval task is approached using cross language methods, in which biomedical concept detection is combined with effective IR based on unigram language models. Furthe

  4. Locally Learning Biomedical Data Using Diffusion Frames

    Science.gov (United States)

    2012-01-01

    expands, increasingly detailed biomedical data must be integrated to betterunderstand normal function and evolution of multifactorial chronic disease ...1259 approach on two standard datasets, we aimed to classify and predict disease progression in AMD patients. Drusen were classified in multispectral...early disease stages in standard and new biomedical datasets. Key words: graphs and networks, machine learning. 1. INTRODUCTION As personalized medicine

  5. Biomedical informatics research network: building a national collaboratory to hasten the derivation of new understanding and treatment of disease.

    Science.gov (United States)

    Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H

    2005-01-01

    Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.

  6. An evaluative conservative case for biomedical enhancement.

    Science.gov (United States)

    Danaher, John

    2016-09-01

    It is widely believed that a conservative moral outlook is opposed to biomedical forms of human enhancement. In this paper, I argue that this widespread belief is incorrect. Using Cohen's evaluative conservatism as my starting point, I argue that there are strong conservative reasons to prioritise the development of biomedical enhancements. In particular, I suggest that biomedical enhancement may be essential if we are to maintain our current evaluative equilibrium (ie, the set of values that undergird and permeate our current political, economic and personal lives) against the threats to that equilibrium posed by external, non-biomedical forms of enhancement. I defend this view against modest conservatives who insist that biomedical enhancements pose a greater risk to our current evaluative equilibrium, and against those who see no principled distinction between the forms of human enhancement.

  7. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  8. Design and analysis of biomedical studies

    DEFF Research Database (Denmark)

    Hansen, Merete Kjær

    Biomedicine is a field that has great influence on the majority of mankind. The constant development has considerably changed our way of life during the last centuries. This has been achieved through the dedication of biomedical researchers along with the tremendous ressources that over time have...... been allocated this field. It is utterly important to utilize these ressources responsibly and efficiently by constantly striving to ensure high-quality biomedical studies. This involves the use of a sound statistical methodology regarding both the design and analysis of biomedical studies. The focus...... for biomedical studies are a recurring theme in this thesis. Data collected in some biomedical studies are positively skewed; hence methods relying on the normal distribution are not directly applicable. We investigated how data from one of these studies are suitably analyzed. We extracted 23 different summary...

  9. Animals in biomedical space research

    Science.gov (United States)

    Phillips, Robert W.

    The use of experimental animals has been a major component of biomedical research progress. Using animals in space presents special problems, but also provides special opportunities. Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalian function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertebrate development. Following these preliminary animals experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.

  10. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  11. Biomedical Perspective of Electrochemical Nanobiosensor

    Institute of Scientific and Technical Information of China (English)

    Priti Singh; Shailendra Kumar Pandey; Jyoti Singh; Sameer Srivastava; Sadhana Sachan; Sunil Kumar Singh

    2016-01-01

    Electrochemical biosensor holds great promise in the biomedical area due to its enhanced specificity, sensi-tivity, label-free nature and cost effectiveness for rapid point-of-care detection of diseases at bedside. In this review, we are focusing on the working principle of electrochemical biosensor and how it can be employed in detecting biomarkers of fatal diseases like cancer, AIDS, hepatitis and cardiovascular diseases. Recent advances in the development of implantable biosensors and exploration of nanomaterials in fabrication of electrodes with increasing the sensitivity of biosensor for quick and easy detection of biomolecules have been elucidated in detail. Electrochemical-based detection of heavy metal ions which cause harmful effect on human health has been discussed. Key challenges associated with the electrochemical sensor and its future perspectives are also addressed.

  12. Tritium AMS for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.L.; Velsko, C.; Turteltaub, K.W.

    1993-08-01

    We are developing {sup 3}H-AMS to measure {sup 3}H activity of mg-sized biological samples. LLNL has already successfully applied {sup 14}C AMS to a variety of problems in the area of biomedical research. Development of {sup 3}H AMS would greatly complement these studies. The ability to perform {sup 3}H AMS measurements at sensitivities equivalent to those obtained for {sup 14}C will allow us to perform experiments using compounds that are not readily available in {sup 14}C-tagged form. A {sup 3}H capability would also allow us to perform unique double-labeling experiments in which we learn the fate, distribution, and metabolism of separate fractions of biological compounds.

  13. Biomedical Applications for Introductory Physics

    Science.gov (United States)

    Tuszynski, J. A.; Dixon, J. M.

    2001-12-01

    Can be utilized in either Algebra or Calculus-based courses and is available either as a standalone text or as a supplement for books like Cutnell PHYSICS, 5e or Halliday, Resnick, & Walker FUNDAMENTALS OF PHYSICS, 6e. Math level is Algebra & Trigonometry; however, a few examples require the use of integration and differentiation. Unlike competing supplements, Tuszinski offers both a wealth of engaging biomedical applications as well as quantitative problem-solving. The quantitative problem-solving is presented in the form of worked examples and homework problems. The quantitative problem-solving is presented in the form of worked examples and homework problems. The standard organization facilitates the integration of the material into most introductory courses.

  14. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  15. Cell mechanics in biomedical cavitation

    Science.gov (United States)

    Wang, Qianxi; Manmi, Kawa; Liu, Kuo-Kang

    2015-01-01

    Studies on the deformation behaviours of cellular entities, such as coated microbubbles and liposomes subject to a cavitation flow, become increasingly important for the advancement of ultrasonic imaging and drug delivery. Numerical simulations for bubble dynamics of ultrasound contrast agents based on the boundary integral method are presented in this work. The effects of the encapsulating shell are estimated by adapting Hoff's model used for thin-shell contrast agents. The viscosity effects are estimated by including the normal viscous stress in the boundary condition. In parallel, mechanical models of cell membranes and liposomes as well as state-of-the-art techniques for quantitative measurement of viscoelasticity for a single cell or coated microbubbles are reviewed. The future developments regarding modelling and measurement of the material properties of the cellular entities for cutting-edge biomedical applications are also discussed. PMID:26442142

  16. Science and Technology of Bio-Inert Thin Films as Hermetic-Encapsulating Coatings for Implantable Biomedical Devices: Application to Implantable Microchip in the Eye for the Artificial Retina

    Science.gov (United States)

    Auciello, Orlando; Shi, Bing

    Extensive research has been devoted to the development of neuron prostheses and hybrid bionic systems to establish links between the nervous system and electronic or robotic prostheses with the main focus of restoring motor and sensory functions in blind patients. Artificial retinas, one type of neural prostheses we are currently working on, aim to restore some vision in blind patients caused by retinitis picmentosa or macular degeneration, and in the future to restore vision at the level of face recognition, if not more. Currently there is no hermetic microchip-size coating that provides a reliable, long-term (years) performance as encapsulating coating for the artificial retina Si microchip to be implanted inside the eye. This chapter focuses on the critical topics relevant to the development of a robust, long-term artificial retina device, namely the science and technology of hermetic bio-inert encapsulating coatings to protect a Si microchip implanted in the human eye from being attacked by chemicals existing in the eye's saline environment. The work discussed in this chapter is related to the development of a novel ultrananocrystalline diamond (UNCD) hermetic coating, which exhibited no degradation in rabbit eyes. The material synthesis, characterization, and electrochemical properties of these hermetic coatings are reviewed for application as encapsulating coating for the artificial retinal microchips implantable inside the human eye. Our work has shown that UNCD coatings may provide a reliable hermetic bio-inert coating technology for encapsulation of Si microchips implantable in the eye specifically and in the human body in general. Electrochemical tests of the UNCD films grown under CH4/Ar/H2 (1%) plasma exhibit the lowest leakage currents (˜7 × 10-7 A/cm2) in a saline solution simulating the eye environment. This leakage is incompatible with the functionality of the first-generation artificial retinal microchip. However, the growth of UNCD on top of the

  17. Building biomedical web communities using a semantically aware content management system.

    Science.gov (United States)

    Das, Sudeshna; Girard, Lisa; Green, Tom; Weitzman, Louis; Lewis-Bowen, Alister; Clark, Tim

    2009-03-01

    Web-based biomedical communities are becoming an increasingly popular vehicle for sharing information amongst researchers and are fast gaining an online presence. However, information organization and exchange in such communities is usually unstructured, rendering interoperability between communities difficult. Furthermore, specialized software to create such communities at low cost-targeted at the specific common information requirements of biomedical researchers-has been largely lacking. At the same time, a growing number of biological knowledge bases and biomedical resources are being structured for the Semantic Web. Several groups are creating reference ontologies for the biomedical domain, actively publishing controlled vocabularies and making data available in Resource Description Framework (RDF) language. We have developed the Science Collaboration Framework (SCF) as a reusable platform for advanced structured online collaboration in biomedical research that leverages these ontologies and RDF resources. SCF supports structured 'Web 2.0' style community discourse amongst researchers, makes heterogeneous data resources available to the collaborating scientist, captures the semantics of the relationship among the resources and structures discourse around the resources. The first instance of the SCF framework is being used to create an open-access online community for stem cell research-StemBook (http://www.stembook.org). We believe that such a framework is required to achieve optimal productivity and leveraging of resources in interdisciplinary scientific research. We expect it to be particularly beneficial in highly interdisciplinary areas, such as neurodegenerative disease and neurorepair research, as well as having broad utility across the natural sciences.

  18. Under-reporting of Adverse Events in the Biomedical Literature

    Directory of Open Access Journals (Sweden)

    Ronald N. Kostoff

    2016-11-01

    Full Text Available Purpose: To address the under-reporting of research results, with emphasis on the underreporting/distorted reporting of adverse events in the biomedical research literature. Design/methodology/approach: A four-step approach is used:(1 To identify the characteristics of literature that make it adequate to support policy; (2 to show how each of these characteristics becomes degraded to make inadequate literature; (3 to identify incentives to prevent inadequate literature; and (4 to show policy implications of inadequate literature. Findings: This review has provided reasons for, and examples of, adverse health effects of myriad substances (1 being under-reported in the premiere biomedical literature, or (2 entering this literature in distorted form. Since there is no way to gauge the extent of this under/distorted-reporting, the quality and credibility of the ‘premiere’ biomedical literature is unknown. Therefore, any types of meta-analyses or scientometric analyses of this literature will have unknown quality and credibility. The most sophisticated scientometric analysis cannot compensate for a highly flawed database. Research limitations: The main limitation is in identifying examples of under-reporting. There are many incentives for under-reporting and few dis-incentives. Practical implications: Almost all research publications, addressing causes of disease, treatments for disease, diagnoses for disease, scientometrics of disease and health issues, and other aspects of healthcare, build upon previous healthcare-related research published. Many researchers will not have laboratories or other capabilities to replicate or validate the published research, and depend almost completely on the integrity of this literature. If the literature is distorted, then future research can be misguided, and health policy recommendations can be ineffective or worse. Originality/value: This review has examined a much wider range of technical and nontechnical

  19. Biomedical text mining and its applications in cancer research.

    Science.gov (United States)

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research.

  20. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.