WorldWideScience

Sample records for biomedical informatics grid

  1. Action GRID: assessing the impact of Nanotechnology on biomedical informatics.

    Science.gov (United States)

    Lopez-Alonso, Victoria; Hermosilla-Gimeno, Isabel; Lopez-Campos, Guillermo; Maojo, Victor; Martin-Sanchez, Fernando J

    2008-11-06

    Recent advances in Nanotechnology are slowly extending their influence in biomedical research and clinical practice (nanomedicine). The authors have recently been granted with an European Commission research project, Action-GRID. This initiative will review current developments in nanomedicine, and analyze the area of nanoinformatics. Its main outcome will be the identification of needs and the discussion of future challenges and priorities for Biomedical Informatics in terms of information processing in nanomedicine and regenerative medicine.

  2. [Biomedical informatics].

    Science.gov (United States)

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  3. 76 FR 24889 - Submission for OMB Review; Comment Request; Cancer Biomedical Informatics Grid® (caBIG®) Support...

    Science.gov (United States)

    2011-05-03

    ... to offer to their unique organizational goals and needs, so having this customized support option...; Comment Request; Cancer Biomedical Informatics Grid[supreg] (caBIG[supreg]) Support Service Provider (SSP... Grid [supreg] (caBIG [supreg]) Support Service Provider (SSP) Program (NCI). Type of Information...

  4. Biomedical informatics and translational medicine

    Directory of Open Access Journals (Sweden)

    Sarkar Indra

    2010-02-01

    Full Text Available Abstract Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians" can be essential members of translational medicine teams.

  5. Informatics in radiology: An open-source and open-access cancer biomedical informatics grid annotation and image markup template builder.

    Science.gov (United States)

    Mongkolwat, Pattanasak; Channin, David S; Kleper, Vladimir; Rubin, Daniel L

    2012-01-01

    In a routine clinical environment or clinical trial, a case report form or structured reporting template can be used to quickly generate uniform and consistent reports. Annotation and image markup (AIM), a project supported by the National Cancer Institute's cancer biomedical informatics grid, can be used to collect information for a case report form or structured reporting template. AIM is designed to store, in a single information source, (a) the description of pixel data with use of markups or graphical drawings placed on the image, (b) calculation results (which may or may not be directly related to the markups), and (c) supplemental information. To facilitate the creation of AIM annotations with data entry templates, an AIM template schema and an open-source template creation application were developed to assist clinicians, image researchers, and designers of clinical trials to quickly create a set of data collection items, thereby ultimately making image information more readily accessible.

  6. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  7. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2015-06-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Optimization and Data Analysis in Biomedical Informatics

    CERN Document Server

    Pardalos, Panos M; Xanthopoulos, Petros

    2012-01-01

    This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines

  9. Biomedical informatics: we are what we publish.

    Science.gov (United States)

    Elkin, P L; Brown, S H; Wright, G

    2013-01-01

    This article is part of a For-Discussion-Section of Methods of Information in Medicine on "Biomedical Informatics: We are what we publish". It is introduced by an editorial and followed by a commentary paper with invited comments. In subsequent issues the discussion may continue through letters to the editor. Informatics experts have attempted to define the field via consensus projects which has led to consensus statements by both AMIA. and by IMIA. We add to the output of this process the results of a study of the Pubmed publications with abstracts from the field of Biomedical Informatics. We took the terms from the AMIA consensus document and the terms from the IMIA definitions of the field of Biomedical Informatics and combined them through human review to create the Health Informatics Ontology. We built a terminology server using the Intelligent Natural Language Processor (iNLP). Then we downloaded the entire set of articles in Medline identified by searching the literature by "Medical Informatics" OR "Bioinformatics". The articles were parsed by the joint AMIA / IMIA terminology and then again using SNOMED CT and for the Bioinformatics they were also parsed using HGNC Ontology. We identified 153,580 articles using "Medical Informatics" and 20,573 articles using "Bioinformatics". This resulted in 168,298 unique articles and an overlap of 5,855 articles. Of these 62,244 articles (37%) had titles and abstracts that contained at least one concept from the Health Informatics Ontology. SNOMED CT indexing showed that the field interacts with most all clinical fields of medicine. Further defining the field by what we publish can add value to the consensus driven processes that have been the mainstay of the efforts to date. Next steps should be to extract terms from the literature that are uncovered and create class hierarchies and relationships for this content. We should also examine the high occurring of MeSH terms as markers to define Biomedical Informatics

  10. Statistics and Biomedical Informatics in Forensic Sciences

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2009-01-01

    Roč. 20, č. 6 (2009), s. 743-750 ISSN 1180-4009. [TIES 2007. Annual Meeting of the International Environmental Society /18./. Mikulov, 16.08.2007-20.08.2007] Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * biomedical statistics * genetic information * forensic dentistry Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.000, year: 2009

  11. Biomedical informatics discovering knowledge in big data

    CERN Document Server

    Holzinger, Andreas

    2014-01-01

    This book provides a broad overview of the topic Bioinformatics (medical informatics + biological information) with a focus on data, information and knowledge. From data acquisition and storage to visualization, privacy, regulatory, and other practical and theoretical topics, the author touches on several fundamental aspects of the innovative interface between the medical and computational domains that form biomedical informatics. Each chapter starts by providing a useful inventory of definitions and commonly used acronyms for each topic, and throughout the text, the reader finds several real-world examples, methodologies, and ideas that complement the technical and theoretical background. Also at the beginning of each chapter a new section called "key problems", has been added, where the author discusses possible traps and unsolvable or major problems. This new edition includes new sections at the end of each chapter, called "future outlook and research avenues," providing pointers to future challenges.

  12. Research Strategies for Biomedical and Health Informatics

    Science.gov (United States)

    Kulikowski, Casimir A.; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra Neil; Leong, Tze Yun; McCray, Alexa T.

    2017-01-01

    Summary Background Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes. PMID:28119991

  13. An information technology emphasis in biomedical informatics education.

    Science.gov (United States)

    Kane, Michael D; Brewer, Jeffrey L

    2007-02-01

    Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.

  14. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    Science.gov (United States)

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  15. Biomedical and Health Informatics Education – the IMIA Years

    Science.gov (United States)

    2016-01-01

    Summary Objective This paper presents the development of medical informatics education during the years from the establishment of the International Medical Informatics Association (IMIA) until today. Method A search in the literature was performed using search engines and appropriate keywords as well as a manual selection of papers. The search covered English language papers and was limited to search on papers title and abstract only. Results The aggregated papers were analyzed on the basis of the subject area, origin, time span, and curriculum development, and conclusions were drawn. Conclusions From the results, it is evident that IMIA has played a major role in comparing and integrating the Biomedical and Health Informatics educational efforts across the different levels of education and the regional distribution of educators and institutions. A large selection of references is presented facilitating future work on the field of education in biomedical and health informatics. PMID:27488405

  16. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    International Nuclear Information System (INIS)

    Phillips, M; Kalet, I; McNutt, T; Smith, W

    2014-01-01

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussion in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be

  17. Training multidisciplinary biomedical informatics students: three years of experience.

    Science.gov (United States)

    van Mulligen, Erik M; Cases, Montserrat; Hettne, Kristina; Molero, Eva; Weeber, Marc; Robertson, Kevin A; Oliva, Baldomero; de la Calle, Guillermo; Maojo, Victor

    2008-01-01

    The European INFOBIOMED Network of Excellence recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams. A carefully developed 3-year training program for biomedical informatics students addressed these educational aspects through the following four activities: (1) an internet course database containing an overview of all Medical Informatics and BioInformatics courses, (2) a BioMedical Informatics Summer School, (3) a mobility program based on a 'brokerage service' which published demands and offers, including funding for research exchange projects, and (4) training challenges aimed at the development of multi-disciplinary skills. This paper focuses on experiences gained in the development of novel educational activities addressing work in multidisciplinary teams. The training challenges described here were evaluated by asking participants to fill out forms with Likert scale based questions. For the mobility program a needs assessment was carried out. The mobility program supported 20 exchanges which fostered new BMI research, resulted in a number of peer-reviewed publications and demonstrated the feasibility of this multidisciplinary BMI approach within the European Union. Students unanimously indicated that the training challenge experience had contributed to their understanding and appreciation of multidisciplinary teamwork. The training activities undertaken in INFOBIOMED have contributed to a multi-disciplinary BMI approach. It is our hope that this work might provide an impetus for training efforts in Europe, and yield a new generation of biomedical informaticians.

  18. The diversity and disparity in biomedical informatics (DDBI) workshop.

    Science.gov (United States)

    Southerland, William M; Swamidass, S Joshua; Payne, Philip R O; Wiley, Laura; Williams-DeVane, ClarLynda

    2018-01-01

    The Diversity and Disparity in Biomedical Informatics (DDBI) workshop will be focused on complementary and critical issues concerned with enhancing diversity in the informatics workforce as well as diversity in patient cohorts. According to the National Institute of Minority Health and Health Disparities (NIMHD) at the NIH, diversity refers to the inclusion of the following traditionally underrepresented groups: African Americans/Blacks, Asians (>30 countries), American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Latino or Hispanic (20 countries). Gender, culture, and socioeconomic status are also important dimensions of diversity, which may define some underrepresented groups. The under-representation of specific groups in both the biomedical informatics workforce as well as in the patient-derived data that is being used for research purposes has contributed to an ongoing disparity; these groups have not experienced equity in contributing to or benefiting from advancements in informatics research. This workshop will highlight innovative efforts to increase the pool of minority informaticians and discuss examples of informatics research that addresses the health concerns that impact minority populations. This workshop topics will provide insight into overcoming pipeline issues in the development of minority informaticians while emphasizing the importance of minority participation in health related research. The DDBI workshop will occur in two parts. Part I will discuss specific minority health & health disparities research topics and Part II will cover discussions related to overcoming pipeline issues in the training of minority informaticians.

  19. Data Analysis and Data Mining: Current Issues in Biomedical Informatics

    Science.gov (United States)

    Bellazzi, Riccardo; Diomidous, Marianna; Sarkar, Indra Neil; Takabayashi, Katsuhiko; Ziegler, Andreas; McCray, Alexa T.

    2011-01-01

    Summary Background Medicine and biomedical sciences have become data-intensive fields, which, at the same time, enable the application of data-driven approaches and require sophisticated data analysis and data mining methods. Biomedical informatics provides a proper interdisciplinary context to integrate data and knowledge when processing available information, with the aim of giving effective decision-making support in clinics and translational research. Objectives To reflect on different perspectives related to the role of data analysis and data mining in biomedical informatics. Methods On the occasion of the 50th year of Methods of Information in Medicine a symposium was organized, that reflected on opportunities, challenges and priorities of organizing, representing and analysing data, information and knowledge in biomedicine and health care. The contributions of experts with a variety of backgrounds in the area of biomedical data analysis have been collected as one outcome of this symposium, in order to provide a broad, though coherent, overview of some of the most interesting aspects of the field. Results The paper presents sections on data accumulation and data-driven approaches in medical informatics, data and knowledge integration, statistical issues for the evaluation of data mining models, translational bioinformatics and bioinformatics aspects of genetic epidemiology. Conclusions Biomedical informatics represents a natural framework to properly and effectively apply data analysis and data mining methods in a decision-making context. In the future, it will be necessary to preserve the inclusive nature of the field and to foster an increasing sharing of data and methods between researchers. PMID:22146916

  20. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  1. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  2. Interdisciplinary innovations in biomedical and health informatics graduate education.

    Science.gov (United States)

    Demiris, G

    2007-01-01

    Biomedical and health informatics (BHI) is a rapidly growing domain that relies on the active collaboration with diverse disciplines and professions. Educational initiatives in BHI need to prepare students with skills and competencies that will allow them to function within and even facilitate interdisciplinary teams (IDT). This paper describes an interdisciplinary educational approach introduced into a BHI graduate curriculum that aims to prepare informatics researchers to lead IDT research. A case study of the "gerontechnology" research track is presented which highlights how the curriculum fosters collaboration with and understanding of the disciplines of Nursing, Engineering, Computer Science, and Health Administration. Gerontechnology is a new interdisciplinary field that focuses on the use of technology to support aging. Its aim is to explore innovative ways to use information technology and develop systems that support independency and increase quality of life for senior citizens. As a result of a large research group that explores "smart home" technologies and the use of information technology, we integrated this new domain into the curriculum providing a platform for computer scientists, engineers, nurses and physicians to explore challenges and opportunities with our informatics students and faculty. The interdisciplinary educational model provides an opportunity for health informatics students to acquire the skills for communication and collaboration with other disciplines. Numerous graduate and postgraduate students have already participated in this initiative. The evaluation model of this approach is presented. Interdisciplinary educational models are required for health informatics graduate education. Such models need to be innovative and reflect the needs and trends in the domains of health care and information technology.

  3. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Informatics Solutions for Prosumers connected to Smart Grids

    Directory of Open Access Journals (Sweden)

    Simona Vasilica OPREA

    2015-03-01

    Full Text Available This paper gives a brief overview about electricity consumption optimization based on consumption profiles of electricity prosumers that are connected to smart grids. The main object of this approach is identification of informatics solutions for electricity consumption optimization in order to decrease electricity bill. In this way, larger scale integration of renewable energy sources is allowed therefore entire society will gain benefits. This paper describes the main objectives of such informatics system and stages for its implementation. The system will analyze the specific profile and behavior of each electricity consumer or prosumer, automatically assist him to make right decisions and offer optimal advice for usage of controllable and non-controllable appliances. It will serve, based on big data transfer from electricity consumers or prosumers, as a powerful tool for grid operators that will be able to better plan their resources.

  5. An Informatics Approach to Demand Response Optimization in Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Aman, Saima; Cao, Baohua; Giakkoupis, Mike; Kumbhare, Alok; Zhou, Qunzhi; Paul, Donald; Fern, Carol; Sharma, Aditya; Prasanna, Viktor K

    2011-03-03

    Power utilities are increasingly rolling out “smart” grids with the ability to track consumer power usage in near real-time using smart meters that enable bidirectional communication. However, the true value of smart grids is unlocked only when the veritable explosion of data that will become available is ingested, processed, analyzed and translated into meaningful decisions. These include the ability to forecast electricity demand, respond to peak load events, and improve sustainable use of energy by consumers, and are made possible by energy informatics. Information and software system techniques for a smarter power grid include pattern mining and machine learning over complex events and integrated semantic information, distributed stream processing for low latency response,Cloud platforms for scalable operations and privacy policies to mitigate information leakage in an information rich environment. Such an informatics approach is being used in the DoE sponsored Los Angeles Smart Grid Demonstration Project, and the resulting software architecture will lead to an agile and adaptive Los Angeles Smart Grid.

  6. Big Data and Biomedical Informatics: A Challenging Opportunity

    Science.gov (United States)

    2014-01-01

    Summary Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations. PMID:24853034

  7. Big data and biomedical informatics: a challenging opportunity.

    Science.gov (United States)

    Bellazzi, R

    2014-05-22

    Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations.

  8. BIG: a Grid Portal for Biomedical Data and Images

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-06-01

    Full Text Available Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc., advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid, a Web-based Grid portal for management of biomedical information (data and images in a distributed environment. BIG is an interactive environment that deals with complex user's requests, regarding the acquisition of biomedical data, the "processing" and "delivering" of biomedical images, using the power and security of Computational Grids.

  9. Biomedical informatics and the convergence of Nano-Bio-Info-Cogno (NBIC) technologies.

    Science.gov (United States)

    Martin-Sanchez, F; Maojo, V

    2009-01-01

    To analyze the role that biomedical informatics could play in the application of the NBIC Converging Technologies in the medical field and raise awareness of these new areas throughout the Biomedical Informatics community. Review of the literature and analysis of the reference documents in this domain from the biomedical informatics perspective. Detailing existing developments showing that partial convergence of technologies have already yielded relevant results in biomedicine (such as bioinformatics or biochips). Input from current projects in which the authors are involved is also used. Information processing is a key issue in enabling the convergence of NBIC technologies. Researchers in biomedical informatics are in a privileged position to participate and actively develop this new scientific direction. The experience of biomedical informaticians in five decades of research in the medical area and their involvement in the completion of the Human and other genome projects will help them participate in a similar role for the development of applications of converging technologies -particularly in nanomedicine. The proposed convergence will bring bridges between traditional disciplines. Particular attention should be placed on the ethical, legal, and social issues raised by the NBIC convergence. These technologies provide new directions for research and education in Biomedical Informatics placing a greater emphasis in multidisciplinary approaches.

  10. Computer science, biology and biomedical informatics academy: outcomes from 5 years of immersing high-school students into informatics research

    Directory of Open Access Journals (Sweden)

    Andrew J King

    2017-01-01

    Full Text Available The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  11. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research.

    Science.gov (United States)

    King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  12. Biomedical Informatics Research for Individualized Life - Long Shared Healthcare

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana; Hanzlíček, Petr; Nagy, Miroslav; Přečková, Petra; Zvára, K.; Seidl, L.; Bureš, V.; Šubrt, D.; Dostálová, T.; Seydlová, M.

    2009-01-01

    Roč. 29, č. 2 (2009), s. 31-41 ISSN 0208-5216 R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : electronic health record * semantic interoperability * dentistry * cardiology Subject RIV: IN - Informatics, Computer Science

  13. On exemplary scientific conduct regarding submission of manuscripts to biomedical informatics journals

    NARCIS (Netherlands)

    Miller, R. A.; Groth, T.; Hasman, A.; Safran, C.; Shortliffe, E. H.; Haux, R.; McCray, A. T.

    2006-01-01

    As the Editors of leading international biomedical informatics journals, the authors report on a recent pattern of improper manuscript submissions to journals in our field. As a guide for future authors, we describe ethical and pragmatic issues related to submitting work for peer-reviewed journal

  14. Biomedical Informatics Research and Education at the EuroMISE Center

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2006-01-01

    Roč. 45, Suppl. (2006), s. 166-173 ISSN 0026-1270 Grant - others:Evropské sociální fondy CZ04307/42011/0013 Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * research * education * healthcare * information society Subject RIV: BJ - Thermodynamics Impact factor: 1.684, year: 2006

  15. Multiscale integration of -omic, imaging, and clinical data in biomedical informatics.

    Science.gov (United States)

    Phan, John H; Quo, Chang F; Cheng, Chihwen; Wang, May Dongmei

    2012-01-01

    This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data.

  16. Review of "Biomedical Informatics; Computer Applications in Health Care and Biomedicine" by Edward H. Shortliffe and James J. Cimino

    OpenAIRE

    Clifford Gari D

    2006-01-01

    Abstract This article is an invited review of the third edition of "Biomedical Informatics; Computer Applications in Health Care and Biomedicine", one of thirty-six volumes in Springer's 'Health Informatics Series', edited by E. Shortliffe and J. Cimino. This book spans most of the current methods and issues in health informatics, ranging through subjects as varied as data acquisition and storage, standards, natural language processing, imaging, electronic health records, decision support, te...

  17. LexGrid: a framework for representing, storing, and querying biomedical terminologies from simple to sublime.

    Science.gov (United States)

    Pathak, Jyotishman; Solbrig, Harold R; Buntrock, James D; Johnson, Thomas M; Chute, Christopher G

    2009-01-01

    Many biomedical terminologies, classifications, and ontological resources such as the NCI Thesaurus (NCIT), International Classification of Diseases (ICD), Systematized Nomenclature of Medicine (SNOMED), Current Procedural Terminology (CPT), and Gene Ontology (GO) have been developed and used to build a variety of IT applications in biology, biomedicine, and health care settings. However, virtually all these resources involve incompatible formats, are based on different modeling languages, and lack appropriate tooling and programming interfaces (APIs) that hinder their wide-scale adoption and usage in a variety of application contexts. The Lexical Grid (LexGrid) project introduced in this paper is an ongoing community-driven initiative, coordinated by the Mayo Clinic Division of Biomedical Statistics and Informatics, designed to bridge this gap using a common terminology model called the LexGrid model. The key aspect of the model is to accommodate multiple vocabulary and ontology distribution formats and support of multiple data stores for federated vocabulary distribution. The model provides a foundation for building consistent and standardized APIs to access multiple vocabularies that support lexical search queries, hierarchy navigation, and a rich set of features such as recursive subsumption (e.g., get all the children of the concept penicillin). Existing LexGrid implementations include the LexBIG API as well as a reference implementation of the HL7 Common Terminology Services (CTS) specification providing programmatic access via Java, Web, and Grid services.

  18. Developing an Open-Source Bibliometric Ranking Website Using Google Scholar Citation Profiles for Researchers in the Field of Biomedical Informatics.

    Science.gov (United States)

    Sittig, Dean F; McCoy, Allison B; Wright, Adam; Lin, Jimmy

    2015-01-01

    We developed the Biomedical Informatics Researchers ranking website (rank.informatics-review.com) to overcome many of the limitations of previous scientific productivity ranking strategies. The website is composed of four key components that work together to create an automatically updating ranking website: (1) list of biomedical informatics researchers, (2) Google Scholar scraper, (3) display page, and (4) updater. The site has been useful to other groups in evaluating researchers, such as tenure and promotions committees in interpreting the various citation statistics reported by candidates. Creation of the Biomedical Informatics Researchers ranking website highlights the vast differences in scholarly productivity among members of the biomedical informatics research community.

  19. Recommendations of the International Medical Informatics Association (IMIA) on Education in Biomedical and Health Informatics. First Revision

    NARCIS (Netherlands)

    Mantas, John; Ammenwerth, Elske; Demiris, George; Hasman, Arie; Haux, Reinhold; Hersh, William; Hovenga, Evelyn; Lun, K. C.; Marin, Heimar; Martin-Sanchez, Fernando; Wright, Graham

    2010-01-01

    Objective: The International Medical Informatics Association (IMIA) agreed on revising the existing international recommendations in health informatics/medical informatics education. These should help to establish courses, course tracks or even complete programs in this field, to further develop

  20. Drug knowledge bases and their applications in biomedical informatics research.

    Science.gov (United States)

    Zhu, Yongjun; Elemento, Olivier; Pathak, Jyotishman; Wang, Fei

    2018-01-03

    Recent advances in biomedical research have generated a large volume of drug-related data. To effectively handle this flood of data, many initiatives have been taken to help researchers make good use of them. As the results of these initiatives, many drug knowledge bases have been constructed. They range from simple ones with specific focuses to comprehensive ones that contain information on almost every aspect of a drug. These curated drug knowledge bases have made significant contributions to the development of efficient and effective health information technologies for better health-care service delivery. Understanding and comparing existing drug knowledge bases and how they are applied in various biomedical studies will help us recognize the state of the art and design better knowledge bases in the future. In addition, researchers can get insights on novel applications of the drug knowledge bases through a review of successful use cases. In this study, we provide a review of existing popular drug knowledge bases and their applications in drug-related studies. We discuss challenges in constructing and using drug knowledge bases as well as future research directions toward a better ecosystem of drug knowledge bases. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  2. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  3. A Semantic Web management model for integrative biomedical informatics.

    Directory of Open Access Journals (Sweden)

    Helena F Deus

    2008-08-01

    Full Text Available Data, data everywhere. The diversity and magnitude of the data generated in the Life Sciences defies automated articulation among complementary efforts. The additional need in this field for managing property and access permissions compounds the difficulty very significantly. This is particularly the case when the integration involves multiple domains and disciplines, even more so when it includes clinical and high throughput molecular data.The emergence of Semantic Web technologies brings the promise of meaningful interoperation between data and analysis resources. In this report we identify a core model for biomedical Knowledge Engineering applications and demonstrate how this new technology can be used to weave a management model where multiple intertwined data structures can be hosted and managed by multiple authorities in a distributed management infrastructure. Specifically, the demonstration is performed by linking data sources associated with the Lung Cancer SPORE awarded to The University of Texas MD Anderson Cancer Center at Houston and the Southwestern Medical Center at Dallas. A software prototype, available with open source at www.s3db.org, was developed and its proposed design has been made publicly available as an open source instrument for shared, distributed data management.The Semantic Web technologies have the potential to addresses the need for distributed and evolvable representations that are critical for systems Biology and translational biomedical research. As this technology is incorporated into application development we can expect that both general purpose productivity software and domain specific software installed on our personal computers will become increasingly integrated with the relevant remote resources. In this scenario, the acquisition of a new dataset should automatically trigger the delegation of its analysis.

  4. Eleven quick tips for architecting biomedical informatics workflows with cloud computing.

    Science.gov (United States)

    Cole, Brian S; Moore, Jason H

    2018-03-01

    Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.

  5. Toward More Successful Biomedical Informatics Education Programs and Ecosystems in the Arab World.

    Science.gov (United States)

    Wageih, Mohamed A; Marcano-Cedeño, Alexis; Gómez, Enrique J; Mantas, John

    2015-01-01

    Biomedical & Health Informatics (BMHI) is relatively new in Arab States. However, several programs/ tracks are running, with high promises of expansion. Programs are evaluated by national authorities, not by a specialized body/association. This does not always mean that the program is of an international standard. One of the possible ways of ensuring the quality of these programs is to be evaluated by international agencies. The International Medical Informatics Association (IMIA) has the expertise in the evaluation BMHI education programs. Accredited programs staffs will have the opportunities for Internationalization and to be engaged with other top-notch organizations, which will have great impacts on the overall implementations of the BMHI in the Arab World. The goal of this document is to show to Arab Universities (pilot: Egypt) how to apply for IMIA Accreditation for their programs.

  6. Biomedical applications on the GRID efficient management of parallel jobs

    CERN Document Server

    Moscicki, Jakub T; Lee Hurng Chun; Lin, S C; Pia, Maria Grazia

    2004-01-01

    Distributed computing based on the Master-Worker and PULL interaction model is applicable to a number of applications in high energy physics, medical physics and bio-informatics. We demonstrate a realistic medical physics use-case of a dosimetric system for brachytherapy using distributed Grid resources. We present the efficient techniques for running parallel jobs in a case of the BLAST, a gene sequencing application, as well as for the Monte Carlo simulation based on Geant4. We present a strategy for improving the runtime performance and robustness of the jobs as well as for the minimization of the development time needed to migrate the applications to a distributed environment.

  7. Development and institutionalization of the first online certificate and master program of biomedical informatics in global health in Peru

    OpenAIRE

    Garcia, Patricia J.; Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia. Lima, Perú. Department of Global Health, University of Washington. Seattle, Washington, EE. UU.; Egoavil, Miguel S.; Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia. Lima, Perú.; Blas, Magaly M.; Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia. Lima, Perú.; Alvarado-Vásquez, Eduardo; Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia. Lima, Perú.; Curioso, Walter H.; Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia. Lima, Perú. Department of Biomedical Informatics, School of Medicine, University of Washington. Seattle, Washington, EE. UU.; Zimic, Mirko; Unidad de Bioinformática, Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú.; Castagnetto, Jesus M.; Dirección Universitaria de Informática, Universidad Peruana Cayetano Heredia. Lima, Perú.; Lescano, Andres G.; US Naval Medical Research Unit No. 6 (NAMRU-6). Lima, Perú.; Lopez, Diego M.; Universidad del Cauca. Popayán, Colombia.; Carcamo, Cesar P.; Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia. Lima, Perú.

    2015-01-01

    Training in Biomedical Informatics is essential to meet the challenges of a globalized world. However, the development of postgraduate training and research programs in this area are scarce in Latin America. Through QUIPU: Andean Center for Training and research in Iformatics for Global Health, has developed the first Certificate and Master’s Program on Biomedical Informatics in the Andean Region. The aim of this article is to describe the experience of the program. To date, 51 students from ...

  8. Biomedical and health informatics education and research at the Information Technology Institute in Egypt.

    Science.gov (United States)

    Hussein, R; Khalifa, A

    2011-01-01

    During the last decade, Egypt has experienced a revolution in the field of Information and Communication Technology (ICT) that has had a corresponding impact on the field of healthcare. Since 1993, the Information Technology Institute (ITI) has been leading the development of the Information Technology (IT) professional training and education in Egypt to produce top quality IT professionals who are considered now the backbone of the IT revolution in Egypt. For the past five years, ITI has been adopting the objective of building high caliber health professionals who can effectively serve the ever-growing information society. Academic links have been established with internationally renowned universities, e.g., Oregon Health and Science University (OHSU) in US, University of Leipzig in Germany, in addition those with the Egyptian Fellowship Board in order to enrich ITI Medical Informatics Education and Research. The ITI Biomedical and Health Informatics (BMHI) education and training programs target fresh graduates as well as life-long learners. Therefore, the program's learning objectives are framed within the context of the four specialization tracks: Healthcare Management (HCM), Biomedical Informatics Research (BMIR), Bioinformatics Professional (BIP), and Healthcare Professional (HCP). The ITI BMHI research projects tackle a wide-range of current challenges in this field, such as knowledge management in healthcare, providing tele-consultation services for diagnosis and treatment of infectious diseases for underserved regions in Egypt, and exploring the cultural and educational aspects of Nanoinformatics. Since 2006, ITI has been positively contributing to develop the discipline of BMHI in Egypt in order to support improved healthcare services.

  9. Big Data: Are Biomedical and Health Informatics Training Programs Ready? Contribution of the IMIA Working Group for Health and Medical Informatics Education.

    Science.gov (United States)

    Otero, P; Hersh, W; Jai Ganesh, A U

    2014-08-15

    The growing volume and diversity of health and biomedical data indicate that the era of Big Data has arrived for healthcare. This has many implications for informatics, not only in terms of implementing and evaluating information systems, but also for the work and training of informatics researchers and professionals. This article addresses the question: What do biomedical and health informaticians working in analytics and Big Data need to know? We hypothesize a set of skills that we hope will be discussed among academic and other informaticians. The set of skills includes: Programming - especially with data-oriented tools, such as SQL and statistical programming languages; Statistics - working knowledge to apply tools and techniques; Domain knowledge - depending on one's area of work, bioscience or health care; and Communication - being able to understand needs of people and organizations, and articulate results back to them. Biomedical and health informatics educational programs must introduce concepts of analytics, Big Data, and the underlying skills to use and apply them into their curricula. The development of new coursework should focus on those who will become experts, with training aiming to provide skills in "deep analytical talent" as well as those who need knowledge to support such individuals.

  10. On transferring the grid technology to the biomedical community.

    Science.gov (United States)

    Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".

  11. Eleven quick tips for architecting biomedical informatics workflows with cloud computing

    Science.gov (United States)

    Moore, Jason H.

    2018-01-01

    Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world’s largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction. PMID:29596416

  12. Eleven quick tips for architecting biomedical informatics workflows with cloud computing.

    Directory of Open Access Journals (Sweden)

    Brian S Cole

    2018-03-01

    Full Text Available Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.

  13. Closing the loops in biomedical informatics from theory to daily practice.

    Science.gov (United States)

    Gaudinat, A

    2009-01-01

    This article presents the 2009 selection of the best papers in the special section dedicated to biomedical informatics and cybernetics. Synopsis of the articles selected for the IMIA yearbook 2009 Five papers from international peer reviewed journals where selected for this section. Most of the papers have a strong practical orientation in clinical care. And this selection gives a good overview of what is done with "closing loop" approach, particularly during the year 2008. While quite mature for some clinical applications such as mechanical ventilation, it remains a challenge where rules for the decision system could be difficult to identify due to the number of variables. More complex systems with greater Artificial Intelligence approaches will certainly be the next trend for closed-loop applications.

  14. The New Role of Biomedical Informatics in the Age of Digital Medicine.

    Science.gov (United States)

    Martin-Sanchez, Fernando J; Lopez-Campos, Guillermo H

    2016-10-17

    To reflect on the recent rise of Digital Medicine, as well as to analyse main research opportunities in this area. Through the use of several examples, this article aims to highlight the new role that Biomedical Informatics (BMI) can play to facilitate progress in research fields such as participatory and precision medicine. This paper also examines the potential impact and associated risks for BMI due to the development of digital medicine and other recent trends. Lastly, possible strategies to place BMI in a better position to face these challenges are suggested. The core content of this article is based on a recent invited keynote lecture delivered by one of the authors (Martin-Sanchez) at the Medical Informatics Europe conference (MIE 2015) held in Madrid in May 2015. Both authors (Lopez-Campos and Martin-Sanchez) have collaborated during the last four years in projects such as the ones described in section 3 and have also worked in reviewing relevant articles and initiatives to prepare this talk. Challenges for BMI posed by the rise of technologically driven fields such as Digital Medicine are explored. New opportunities for BMI, in the context of two main avenues for biomedical and clinical research (participatory and precision medicine) are also emphasised. Several examples of current research illustrate that BMI plays a key role in the new area of Digital Medicine. Embracing these opportunities will allow academic groups in BMI to maintain their leadership, identify new research funding opportunities and design new educational programs to train the next generation of BMI scientists.

  15. Research Strategies for Biomedical and Health Informatics. Some Thought-provoking and Critical Proposals to Encourage Scientific Debate on the Nature of Good Research in Medical Informatics.

    Science.gov (United States)

    Haux, Reinhold; Kulikowski, Casimir A; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra N; Leong, Tze Yun; McCray, Alexa T

    2017-01-25

    Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes.

  16. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  17. [Development and institutionalization of the first online certificate and Master Program of Biomedical Informatics in global health in Peru].

    Science.gov (United States)

    García, Patricia J; Egoavil, Miguel S; Blas, Magaly M; Alvarado-Vásquez, Eduardo; Curioso, Walter H; Zimic, Mirko; Castagnetto, Jesus M; Lescano, Andrés G; Lopez, Diego M; Cárcamo, Cesar P

    2015-01-01

    Training in Biomedical Informatics is essential to meet the challenges of a globalized world. However, the development of postgraduate training and research programs in this area are scarce in Latin America. Through QUIPU: Andean Center for Training and research in Iformatics for Global Health, has developed the first Certificate and Master’s Program on Biomedical Informatics in the Andean Region. The aim of this article is to describe the experience of the program. To date, 51 students from Peru, Chile, Ecuador, Colombia and Venezuela have participated; they come from health ministries, hospitals, universities, research centers, professional associations and private companies. Seventeen courses were offered with the participation of faculty from Argentina, Chile, Colombia, USA, Mexico and Peru. This program is already institutionalized at the School of Public Health and Administration from the Universidad Peruana Cayetano Heredia.

  18. DEVELOPMENT AND INSTITUTIONALIZATION OF THE FIRST ONLINE CERTIFICATE AND MASTER PROGRAM OF BIOMEDICAL INFORMATICS IN GLOBAL HEALTH IN PERU

    Science.gov (United States)

    García, Patricia J.; Egoavil, Miguel S.; Blas, Magaly M.; Alvarado-Vásquez, Eduardo; Curioso, Walter H.; Zimic, Mirko; Castagnetto, Jesus M.; Lescano, Andrés G.; Lopez, Diego M.; Cárcamo, Cesar P.

    2017-01-01

    Training in Biomedical Informatics is essential to meet the challenges of a globalized world. However, the development of postgraduate training and research programs in this area are scarce in Latin America. Through QUIPU: Andean Center for Training and research in Iformatics for Global Health, has developed the first Certificate and Master’s Program on Biomedical Informatics in the Andean Region. The aim of this article is to describe the experience of the program. To date, 51 students from Peru, Chile, Ecuador, Colombia and Venezuela have participated; they come from health ministries, hospitals, universities, research centers, professional associations and private companies. Seventeen courses were offered with the participation of faculty from Argentina, Chile, Colombia, USA, Mexico and Peru. This program is already institutionalized at the School of Public Health and Administration from the Universidad Peruana Cayetano Heredia. PMID:26338399

  19. Electricity tariff systems for informatics system design regarding consumption optimization in smart grids

    Directory of Open Access Journals (Sweden)

    Simona Vasilica OPREA

    2016-01-01

    Full Text Available High volume of data is gathered via sensors and recorded by smart meters. These data are processed at the electricity consumer and grid operators' side by big data analytics. Electricity consumption optimization offers multiple advantages for both consumers and grid operators. At the electricity customer level, by optimizing electricity consumption savings are significant, but the main benefits will come from indirect aspects such as avoiding onerous grid investments, higher volume of renewable energy sources' integration, less polluted environment etc. In order to optimize electricity consumption, advanced tariff systems are essential due to the financial incentive they provide for electricity consumers' behaviour change. In this paper several advanced tariff systems are described in details. These systems are applied in England, Spain, Italy, France, Norway and Germany. These systems are compared from characteristics, advantages/disadvantages point of view. Then, different tariff systems applied in Romania are presented. Romanian tariff systems have been designed for various electricity consumers' types. Different tariff systems applied by grid operators or electricity suppliers will be included in the database model that is part of an informatics system for electricity consumption optimization.

  20. Biomedical Informatics Education at Charles University in Prague for Undergraduate and Doctoral Degree Studies

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana; Svačina, Š.; Dostálová, T.; Seydlová, M.; Zvára Jr., Karel; Papíková, Vendula; Zvolský, Miroslav; Štuka, Č.; Vejražka, M.; Feberová, J.

    2011-01-01

    Roč. 7, č. 2 (2011), s. 72-78 ISSN 1801-5603 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : education * biomedicine * informatics * e-learning * healthcare Subject RIV: IN - Informatics, Computer Science http://www.ejbi.org/img/ejbi/2011/2/Zvarova_en.pdf

  1. The UAB Informatics Institute and 2016 CEGS N-GRID de-identification shared task challenge.

    Science.gov (United States)

    Bui, Duy Duc An; Wyatt, Mathew; Cimino, James J

    2017-11-01

    Clinical narratives (the text notes found in patients' medical records) are important information sources for secondary use in research. However, in order to protect patient privacy, they must be de-identified prior to use. Manual de-identification is considered to be the gold standard approach but is tedious, expensive, slow, and impractical for use with large-scale clinical data. Automated or semi-automated de-identification using computer algorithms is a potentially promising alternative. The Informatics Institute of the University of Alabama at Birmingham is applying de-identification to clinical data drawn from the UAB hospital's electronic medical records system before releasing them for research. We participated in a shared task challenge by the Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-Scale and RDoC Individualized Domains (N-GRID) at the de-identification regular track to gain experience developing our own automatic de-identification tool. We focused on the popular and successful methods from previous challenges: rule-based, dictionary-matching, and machine-learning approaches. We also explored new techniques such as disambiguation rules, term ambiguity measurement, and used multi-pass sieve framework at a micro level. For the challenge's primary measure (strict entity), our submissions achieved competitive results (f-measures: 87.3%, 87.1%, and 86.7%). For our preferred measure (binary token HIPAA), our submissions achieved superior results (f-measures: 93.7%, 93.6%, and 93%). With those encouraging results, we gain the confidence to improve and use the tool for the real de-identification task at the UAB Informatics Institute. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Informatic infrastructure for Climatological and Oceanographic data based on THREDDS technology in a Grid environment

    Science.gov (United States)

    Tronconi, C.; Forneris, V.; Santoleri, R.

    2009-04-01

    CNR-ISAC-GOS is responsible for the Mediterranean Sea satellite operational system in the framework of MOON Patnership. This Observing System acquires satellite data and produces Near Real Time, Delayed Time and Re-analysis of Ocean Colour and Sea Surface Temperature products covering the Mediterranean and the Black Seas and regional basins. In the framework of several projects (MERSEA, PRIMI, Adricosm Star, SeaDataNet, MyOcean, ECOOP), GOS is producing Climatological/Satellite datasets based on optimal interpolation and specific Regional algorithm for chlorophyll, updated in Near Real Time and in Delayed mode. GOS has built • an informatic infrastructure data repository and delivery based on THREDDS technology The datasets are generated in NETCDF format, compliant with both the CF convention and the international satellite-oceanographic specification, as prescribed by GHRSST (for SST). All data produced, are made available to the users through a THREDDS server catalog. • A LAS has been installed in order to exploit the potential of NETCDF data and the OPENDAP URL. It provides flexible access to geo-referenced scientific data • a Grid Environment based on Globus Technologies (GT4) connecting more than one Institute; in particular exploiting CNR and ESA clusters makes possible to reprocess 12 years of Chlorophyll data in less than one month.(estimated processing time on a single core PC: 9months). In the poster we will give an overview of: • the features of the THREDDS catalogs, pointing out the powerful characteristics of this new middleware that has replaced the "old" OPENDAP Server; • the importance of adopting a common format (as NETCDF) for data exchange; • the tools (e.g. LAS) connected with THREDDS and NETCDF format use. • the Grid infrastructure on ISAC We will present also specific basin-scale High Resolution products and Ultra High Resolution regional/coastal products available on these catalogs.

  3. The human factors engineering approach to biomedical informatics projects: state of the art, results, benefits and challenges.

    Science.gov (United States)

    Beuscart-Zéphir, M-C; Elkin, Peter; Pelayo, Sylvia; Beuscart, Regis

    2007-01-01

    The objective of this paper is to define a comprehensible overview of the Human Factors approach to biomedical informatics applications for healthcare. The overview starts with a presentation of the necessity of a proper management of Human factors for Healthcare IT projects to avoid unusable products and unsafe work situations. The first section is dedicated to definitions of the Human Factors Engineering (HFE) main concepts. The second section describes a functional model of an HFE lifecycle adapted for healthcare work situations. The third section provides an overview of existing HF and usability methods for healthcare products and presents a selection of interesting results. The last section discusses the benefits and limitations of the HFE approach. Literature review based on Pubmed and conference proceedings in the field of Medical Informatics coupled with a review of other databases and conference proceedings in the field of Ergonomics focused on papers addressing healthcare work and system design. Usability studies performed on healthcare applications have uncovered unacceptable usability flaws that make the systems error prone, thus endangering the patient safety. Moreover, in many cases, the procurement and the implementation process simply forget about human factors: following only technological considerations, they issue potentially dangerous and always unpleasant work situations. But when properly applied to IT projects, the HFE approach proves efficient when seeking to improve patient safety, users' satisfaction and adoption of the products. We recommend that the HFE methodology should be applied to most informatics and systems development projects, and the usability of the products should be systematically checked before permitting their release and implementation. This requires the development of Centers specialized in Human Factors for Healthcare and Patient safety in each Country/Region.

  4. Women in biomedical engineering and health informatics and its impact on gender representation for accepted publications at IEEE EMBC 2007.

    Science.gov (United States)

    McGregor, Carolyn; Smith, Kathleen P; Percival, Jennifer

    2008-01-01

    The study of women within the professions of Engineering and Computer Science has consistently been found to demonstrate women as a minority within these professions. However none of that previous work has assessed publication behaviours based on gender. This paper presents research findings on gender distribution of authors of accepted papers for the IEEE Engineering and Medicine Society annual conference for 2007 (EMBC '07) held in Lyon, France. This information is used to present a position statement of the current state of gender representation for conference publication within the domain of biomedical engineering and health informatics. Issues in data preparation resulting from the lack of inclusion of gender in information gathered from accepted authors are presented and discussed.

  5. MSBIS: A Multi-Step Biomedical Informatics Screening Approach for Identifying Medications that Mitigate the Risks of Metoclopramide-Induced Tardive Dyskinesia

    OpenAIRE

    Dong Xu; Alexandrea G. Ham; Rickey D. Tivis; Matthew L. Caylor; Aoxiang Tao; Steve T. Flynn; Peter J. Economen; Hung K. Dang; Royal W. Johnson; Vaughn L. Culbertson

    2017-01-01

    In 2009 the U.S. Food and Drug Administration (FDA) placed a black box warning on metoclopramide (MCP) due to the increased risks and prevalence of tardive dyskinesia (TD). In this study, we developed a multi-step biomedical informatics screening (MSBIS) approach leveraging publicly available bioactivity and drug safety data to identify concomitant drugs that mitigate the risks of MCP-induced TD. MSBIS includes (1) TargetSearch (http://dxulab.org/software) bioinformatics scoring for drug anti...

  6. caGrid 1.0: a Grid enterprise architecture for cancer research.

    Science.gov (United States)

    Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel

    2007-10-11

    caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIG. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5.

  7. Porting of Bio-Informatics Tools for Plant Virology on a Computational Grid

    International Nuclear Information System (INIS)

    Lanzalone, G.; Lombardo, A.; Muoio, A.; Iacono-Manno, M.

    2007-01-01

    The goal of Tri Grid Project and PI2S2 is the creation of the first Sicilian regional computational Grid. In particular, it aims to build various software-hardware interfaces between the infrastructure and some scientific and industrial applications. In this context, we have integrated some among the most innovative computing applications in virology research inside these Grid infrastructure. Particularly, we have implemented in a complete work flow, various tools for pairwise or multiple sequence alignment and phylogeny tree construction (ClustalW-MPI), phylogenetic networks (Splits Tree), detection of recombination by phylogenetic methods (TOPALi) and prediction of DNA or RNA secondary consensus structures (KnetFold). This work will show how the ported applications decrease the execution time of the analysis programs, improve the accessibility to the data storage system and allow the use of metadata for data processing. (Author)

  8. Guest Editorial - Special Section on Emerging Informatics for Risk Hedging and Decision Making in Smart Grids

    DEFF Research Database (Denmark)

    Xu, Zhao; Lai, Loi Lei; Wong, Kit Po

    2017-01-01

    The development of smart grids worldwide aims at tackling various challenges facing power system operation and planning due to increased penetration of many new technologies of diversified properties. On the one hand, system operators and many other participants have to deal with increased...... uncertainties and risks involved in daily operation and planning activities. On the other hand, applications of many new metering and measurement devices, capable of closely monitoring and sensing grid operation in real time, result in overwhelming amount of measurement data of high precision and resolution...

  9. The role of ethics in information technology decisions: a case-based approach to biomedical informatics education.

    Science.gov (United States)

    Anderson, James G

    2004-03-18

    The purpose of this paper is to propose a case-based approach to instruction regarding ethical issues raised by the use of information technology (IT) in healthcare. These issues are rarely addressed in graduate degree and continuing professional education programs in health informatics. There are important reasons why ethical issues need to be addressed in informatics training. Ethical issues raised by the introduction of information technology affect practice and are ubiquitous. These issues are frequently among the most challenging to young practitioners who are ill prepared to deal with them in practice. First, the paper provides an overview of methods of moral reasoning that can be used to identify and analyze ethical problems in health informatics. Second, we provide a framework for defining cases that involve ethical issues and outline major issues raised by the use of information technology. Specific cases are used as examples of new dilemmas that are posed by the introduction of information technology in healthcare. These cases are used to illustrate how ethics can be integrated with the other elements of informatics training. The cases discussed here reflect day-to-day situations that arise in health settings that require decisions. Third, an approach that can be used to teach ethics in health informatics programs is outlined and illustrated.

  10. Education in Biomedical and Health Informatics in the Web 3.0 Era: Standards for data, curricula, and activities. Contribution of the IMIA Working Group on Health and Medical Informatics Education.

    Science.gov (United States)

    Otero, P; Hersh, W

    2011-01-01

    Web 3.0 is transforming the World Wide Web by allowing knowledge and reasoning to be gleaned from its content. Describe a new scenario in education and training known as "Education 3.0" that can help in the promotion of learning in health informatics in a collaborative way. Review of the current standards available for curricula and learning activities in in Biomedical and Health Informatics (BMHI) for a Web 3.0 scenario. A new scenario known as "Education 3.0" can provide open educational resources created and reused throughout different institutions and improved by means of an international collaborative knowledge powered by the use of E-learning. Currently there are standards that could be used in identifying and deliver content in education in BMHI in the semantic web era such as Resource Description Format (RDF), Web Ontology Language (OWL) and Sharable Content Object Reference Model (SCORM). In addition, there are other standards to support healthcare education and training. There are few experiences in the use of standards in e-learning in BMHI published in the literature. Web 3.0 can propose new approaches to building the BMHI workforce so there is a need to build tools as knowledge infrastructure to leverage it. The usefulness of standards in the content and competencies of training programs in BMHI needs more experience and research so as to promote the interoperability and sharing of resources in this growing discipline.

  11. Historical Roots of International Biomedical and Health Informatics: The Road to IFIP-TC4 and IMIA through Cybernetic Medicine and the Elsinore Meetings.

    Science.gov (United States)

    Kulikowski, C A

    2017-08-01

    Background: It is 50 years since the International Federation of Information Processing (IFIP) Societies approved the formation of a new Technical Committee (TC) 4 on Medical Information Processing under the leadership of Professor Francois Grémy, which was the direct precursor of the International Medical Informatics Association (IMIA). Objectives: The goals of this paper are to give a very brief overview of early international developments leading to informatics in medicine, with the origins of the applications of computers to medicine in the USA and Europe, and two meetings - of the International Society of Cybernetic Medicine, and the Elsinore Meetings on Hospital Information Systems-that took place in 1966. These set the stage for the formation of IFIP-TC4 the following year, with later sponsorship of the first MEDINFO in 1974, setting the path for the evolution to IMIA. Methods: This paper reviews and analyzes some of the earliest research and publications, together with two critical contrasting meetings in 1966 involving international activities in what evolved into biomedical and health informatics in terms of their probable influence on the formation of IFIP-TC4. Conclusion: The formation of IFIP-TC 4 in 1967 by Francois Grémy arose out of his concerns for merging, at an international level, the diverse strands from the more abstract work on cybernetic medicine and its basis in biophysical and neural modeling, with the more concrete and health-oriented medical information processing that was developing at the time for hospitals and clinical decision-making. Georg Thieme Verlag KG Stuttgart.

  12. MSBIS: A Multi-Step Biomedical Informatics Screening Approach for Identifying Medications that Mitigate the Risks of Metoclopramide-Induced Tardive Dyskinesia.

    Science.gov (United States)

    Xu, Dong; Ham, Alexandrea G; Tivis, Rickey D; Caylor, Matthew L; Tao, Aoxiang; Flynn, Steve T; Economen, Peter J; Dang, Hung K; Johnson, Royal W; Culbertson, Vaughn L

    2017-12-01

    In 2009 the U.S. Food and Drug Administration (FDA) placed a black box warning on metoclopramide (MCP) due to the increased risks and prevalence of tardive dyskinesia (TD). In this study, we developed a multi-step biomedical informatics screening (MSBIS) approach leveraging publicly available bioactivity and drug safety data to identify concomitant drugs that mitigate the risks of MCP-induced TD. MSBIS includes (1) TargetSearch (http://dxulab.org/software) bioinformatics scoring for drug anticholinergic activity using CHEMBL bioactivity data; (2) unadjusted odds ratio (UOR) scoring for indications of TD-mitigating effects using the FDA Adverse Event Reporting System (FAERS); (3) adjusted odds ratio (AOR) re-scoring by removing the effect of cofounding factors (age, gender, reporting year); (4) logistic regression (LR) coefficient scoring for confirming the best TD-mitigating drug candidates. Drugs with increasing TD protective potential and statistical significance were obtained at each screening step. Fentanyl is identified as the most promising drug against MCP-induced TD (coefficient: -2.68; p-valueTD after fentanyl-induced general anesthesia. Loperamide is identified as a potent mitigating drug against a broader range of drug-induced movement disorders through pharmacokinetic modifications. Using drug-induced TD as an example, we demonstrated that MSBIS is an efficient in silico tool for unknown drug-drug interaction detection, drug repurposing, and combination therapy design. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. 76 FR 7867 - Proposed Collection; Comment Request; Cancer Biomedical Informatics Grid® (caBIG®) Support...

    Science.gov (United States)

    2011-02-11

    ... proposed projects to be submitted to the Office of Management and Budget (OMB) for review and approval... freedom to match what caBIG [supreg] has to offer to their unique organizational goals and needs, so.... Affected Public: Private sector including Business or other for-profits and not-for-profit organizations...

  14. MSBIS: A Multi-Step Biomedical Informatics Screening Approach for Identifying Medications that Mitigate the Risks of Metoclopramide-Induced Tardive Dyskinesia

    Directory of Open Access Journals (Sweden)

    Dong Xu

    2017-12-01

    Full Text Available In 2009 the U.S. Food and Drug Administration (FDA placed a black box warning on metoclopramide (MCP due to the increased risks and prevalence of tardive dyskinesia (TD. In this study, we developed a multi-step biomedical informatics screening (MSBIS approach leveraging publicly available bioactivity and drug safety data to identify concomitant drugs that mitigate the risks of MCP-induced TD. MSBIS includes (1 TargetSearch (http://dxulab.org/software bioinformatics scoring for drug anticholinergic activity using CHEMBL bioactivity data; (2 unadjusted odds ratio (UOR scoring for indications of TD-mitigating effects using the FDA Adverse Event Reporting System (FAERS; (3 adjusted odds ratio (AOR re-scoring by removing the effect of cofounding factors (age, gender, reporting year; (4 logistic regression (LR coefficient scoring for confirming the best TD-mitigating drug candidates. Drugs with increasing TD protective potential and statistical significance were obtained at each screening step. Fentanyl is identified as the most promising drug against MCP-induced TD (coefficient: −2.68; p-value < 0.01. The discovery is supported by clinical reports that patients fully recovered from MCP-induced TD after fentanyl-induced general anesthesia. Loperamide is identified as a potent mitigating drug against a broader range of drug-induced movement disorders through pharmacokinetic modifications. Using drug-induced TD as an example, we demonstrated that MSBIS is an efficient in silico tool for unknown drug-drug interaction detection, drug repurposing, and combination therapy design.

  15. Leveraging the national cyberinfrastructure for biomedical research.

    Science.gov (United States)

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the 'Big Data' challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community.

  16. Reaching for the cloud: on the lessons learned from grid computing technology transfer process to the biomedical community.

    Science.gov (United States)

    Mohammed, Yassene; Dickmann, Frank; Sax, Ulrich; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which led to the creation of the Grid. The inter domain transfer process of this technology has hitherto been an intuitive process without in depth analysis. Some difficulties facing the life science community in this transfer can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies which have achieved certain stability. Grid and Cloud solutions are technologies, which are still in flux. We show how Grid computing creates new difficulties in the transfer process that are not considered in Bozeman's model. We show why the success of healthgrids should be measured by the qualified scientific human capital and the opportunities created, and not primarily by the market impact. We conclude with recommendations that can help improve the adoption of Grid and Cloud solutions into the biomedical community. These results give a more concise explanation of the difficulties many life science IT projects are facing in the late funding periods, and show leveraging steps that can help overcoming the "vale of tears".

  17. DOORS to the semantic web and grid with a PORTAL for biomedical computing.

    Science.gov (United States)

    Taswell, Carl

    2008-03-01

    The semantic web remains in the early stages of development. It has not yet achieved the goals envisioned by its founders as a pervasive web of distributed knowledge and intelligence. Success will be attained when a dynamic synergism can be created between people and a sufficient number of infrastructure systems and tools for the semantic web in analogy with those for the original web. The domain name system (DNS), web browsers, and the benefits of publishing web pages motivated many people to register domain names and publish web sites on the original web. An analogous resource label system, semantic search applications, and the benefits of collaborative semantic networks will motivate people to register resource labels and publish resource descriptions on the semantic web. The Domain Ontology Oriented Resource System (DOORS) and Problem Oriented Registry of Tags and Labels (PORTAL) are proposed as infrastructure systems for resource metadata within a paradigm that can serve as a bridge between the original web and the semantic web. The Internet Registry Information Service (IRIS) registers [corrected] domain names while DNS publishes domain addresses with mapping of names to addresses for the original web. Analogously, PORTAL registers resource labels and tags while DOORS publishes resource locations and descriptions with mapping of labels to locations for the semantic web. BioPORT is proposed as a prototype PORTAL registry specific for the problem domain of biomedical computing.

  18. Building and evaluating an informatics tool to facilitate analysis of a biomedical literature search service in an academic medical center library.

    Science.gov (United States)

    Hinton, Elizabeth G; Oelschlegel, Sandra; Vaughn, Cynthia J; Lindsay, J Michael; Hurst, Sachiko M; Earl, Martha

    2013-01-01

    This study utilizes an informatics tool to analyze a robust literature search service in an academic medical center library. Structured interviews with librarians were conducted focusing on the benefits of such a tool, expectations for performance, and visual layout preferences. The resulting application utilizes Microsoft SQL Server and .Net Framework 3.5 technologies, allowing for the use of a web interface. Customer tables and MeSH terms are included. The National Library of Medicine MeSH database and entry terms for each heading are incorporated, resulting in functionality similar to searching the MeSH database through PubMed. Data reports will facilitate analysis of the search service.

  19. Informatics for Metabolomics.

    Science.gov (United States)

    Kusonmano, Kanthida; Vongsangnak, Wanwipa; Chumnanpuen, Pramote

    2016-01-01

    Metabolome profiling of biological systems has the powerful ability to provide the biological understanding of their metabolic functional states responding to the environmental factors or other perturbations. Tons of accumulative metabolomics data have thus been established since pre-metabolomics era. This is directly influenced by the high-throughput analytical techniques, especially mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based techniques. Continuously, the significant numbers of informatics techniques for data processing, statistical analysis, and data mining have been developed. The following tools and databases are advanced for the metabolomics society which provide the useful metabolomics information, e.g., the chemical structures, mass spectrum patterns for peak identification, metabolite profiles, biological functions, dynamic metabolite changes, and biochemical transformations of thousands of small molecules. In this chapter, we aim to introduce overall metabolomics studies from pre- to post-metabolomics era and their impact on society. Directing on post-metabolomics era, we provide a conceptual framework of informatics techniques for metabolomics and show useful examples of techniques, tools, and databases for metabolomics data analysis starting from preprocessing toward functional interpretation. Throughout the framework of informatics techniques for metabolomics provided, it can be further used as a scaffold for translational biomedical research which can thus lead to reveal new metabolite biomarkers, potential metabolic targets, or key metabolic pathways for future disease therapy.

  20. From bed to bench: bridging from informatics practice to theory: an exploratory analysis.

    Science.gov (United States)

    Haux, R; Lehmann, C U

    2014-01-01

    In 2009, Applied Clinical Informatics (ACI)--focused on applications in clinical informatics--was launched as a companion journal to Methods of Information in Medicine (MIM). Both journals are official journals of the International Medical Informatics Association. To explore which congruencies and interdependencies exist in publications from theory to practice and from practice to theory and to determine existing gaps. Major topics discussed in ACI and MIM were analyzed. We explored if the intention of publishing companion journals to provide an information bridge from informatics theory to informatics practice and vice versa could be supported by this model. In this manuscript we will report on congruencies and interdependences from practice to theory and on major topics in MIM. Retrospective, prolective observational study on recent publications of ACI and MIM. All publications of the years 2012 and 2013 were indexed and analyzed. Hundred and ninety-six publications were analyzed (ACI 87, MIM 109). In MIM publications, modelling aspects as well as methodological and evaluation approaches for the analysis of data, information, and knowledge in biomedicine and health care were frequently raised - and often discussed from an interdisciplinary point of view. Important themes were ambient-assisted living, anatomic spatial relations, biomedical informatics as scientific discipline, boosting, coding, computerized physician order entry, data analysis, grid and cloud computing, health care systems and services, health-enabling technologies, health information search, health information systems, imaging, knowledge-based decision support, patient records, signal analysis, and web science. Congruencies between journals could be found in themes, but with a different focus on content. Interdependencies from practice to theory, found in these publications, were only limited. Bridging from informatics theory to practice and vice versa remains a major component of successful

  1. Health Informatics.

    Science.gov (United States)

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  2. Informatics and Technology in Resident Education.

    Science.gov (United States)

    Niehaus, William

    2017-05-01

    Biomedical or clinical informatics is the transdisciplinary field that studies and develops effective uses of biomedical data, information technology innovations, and medical knowledge for scientific inquiry, problem solving, and decision making, with an emphasis on improving human health. Given the ongoing advances in information technology, the field of informatics is becoming important to clinical practice and to residency education. This article will discuss how informatics is specifically relevant to residency education and the different ways to incorporate informatics into residency education, and will highlight applications of current technology in the context of residency education. How informatics can optimize communication for residents, promote information technology use, refine documentation techniques, reduce medical errors, and improve clinical decision making will be reviewed. It is hoped that this article will increase faculty and trainees' knowledge of the field of informatics, awareness of available technology, and will assist practitioners to maximize their ability to provide quality care to their patients. This article will also introduce the idea of incorporating informatics specialists into residency programs to help practitioners deliver more evidenced-based care and to further improve their efficiency. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Nursing informatics and nursing ethics

    DEFF Research Database (Denmark)

    Kaltoft, Mette Kjer

    2013-01-01

    All healthcare visions, including that of The TIGER (Technology-Informatics-Guiding-Educational-Reform) Initiative envisage a crucial role for nursing. However, its 7 descriptive pillars do not address the disconnect between Nursing Informatics and Nursing Ethics and their distinct communities......-of-(care)-decision. Increased pressure for translating 'evidence-based' research findings into 'ethically-sound', 'value-based' and 'patient-centered' practice requires rethinking the model implicit in conventional knowledge translation and informatics practice in all disciplines, including nursing. The aim is to aid 'how...... nurses and other health care scientists more clearly identify clinical and other relevant data that can be captured to inform future comparative effectiveness research. 'A prescriptive, theory-based discipline of '(Nursing) Decisionics' expands the Grid for Volunteer Development of TIGER's newly launched...

  4. Applications of the pipeline environment for visual informatics and genomics computations

    Directory of Open Access Journals (Sweden)

    Genco Alex

    2011-07-01

    Full Text Available Abstract Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The

  5. From GRID to gridlock: the relationship between scientific biomedical breakthroughs and HIV/AIDS policy in the US Congress.

    Science.gov (United States)

    Platt, Matthew B; Platt, Manu O

    2013-11-27

    From the travel ban on people living with HIV (PLHIV) to resistance to needle exchange programmes, there are many examples where policy responses to HIV/AIDS in the United States seem divorced from behavioural, public health and sociological evidence. At its root, however, the unknowns about HIV/AIDS lie at biomedical science, and scientific researchers have made tremendous progress over the past 30 years of the epidemic by using antiretroviral therapy to increase the life expectancy of PLHIV almost to the same level as non-infected individuals; but a relationship between biomedical science discoveries and congressional responses to HIV/AIDS has not been studied. Using quantitative approaches, we directly examine the hypothesis that progress in HIV/AIDS biomedical science discoveries would have a correlative relationship with congressional response to HIV/AIDS from 1981 to 2010. This study used original data on every bill introduced, hearing held and law passed by the US Congress relating to HIV/AIDS over 30 years (1981-2010). We combined congressional data with the most cited and impactful biomedical research scientific publications over the same time period as a metric of biomedical science breakthroughs. Correlations between congressional policy and biomedical research were then analyzed at the aggregate and individual levels. Biomedical research advancements helped shape both the level and content of bill sponsorship on HIV/AIDS, but they had no effect on other stages of the legislative process. Examination of the content of bills and biomedical research indicated that science helped transform HIV/AIDS bill sponsorship from a niche concern of liberal Democrats to a bipartisan coalition when Republicans became the majority party. The trade-off for that expansion has been an emphasis on the global epidemic to the detriment of domestic policies and programmes. Breakthroughs in biomedical science did associate with the number and types of HIV/AIDS bills introduced

  6. IMIA Educational Recommendations and Nursing Informatics

    NARCIS (Netherlands)

    Mantas, John; Hasman, Arie

    2017-01-01

    The updated version of the IMIA educational recommendations has given an adequate guidelines platform for developing educational programs in Biomedical and Health Informatics at all levels of education, vocational training, and distance learning. This chapter will provide a brief introduction of the

  7. Grid-Enabled Measures

    Science.gov (United States)

    Moser, Richard P.; Hesse, Bradford W.; Shaikh, Abdul R.; Courtney, Paul; Morgan, Glen; Augustson, Erik; Kobrin, Sarah; Levin, Kerry; Helba, Cynthia; Garner, David; Dunn, Marsha; Coa, Kisha

    2011-01-01

    Scientists are taking advantage of the Internet and collaborative web technology to accelerate discovery in a massively connected, participative environment —a phenomenon referred to by some as Science 2.0. As a new way of doing science, this phenomenon has the potential to push science forward in a more efficient manner than was previously possible. The Grid-Enabled Measures (GEM) database has been conceptualized as an instantiation of Science 2.0 principles by the National Cancer Institute with two overarching goals: (1) Promote the use of standardized measures, which are tied to theoretically based constructs; and (2) Facilitate the ability to share harmonized data resulting from the use of standardized measures. This is done by creating an online venue connected to the Cancer Biomedical Informatics Grid (caBIG®) where a virtual community of researchers can collaborate together and come to consensus on measures by rating, commenting and viewing meta-data about the measures and associated constructs. This paper will describe the web 2.0 principles on which the GEM database is based, describe its functionality, and discuss some of the important issues involved with creating the GEM database, such as the role of mutually agreed-on ontologies (i.e., knowledge categories and the relationships among these categories— for data sharing). PMID:21521586

  8. From GRID to gridlock: the relationship between scientific biomedical breakthroughs and HIV/AIDS policy in the US Congress

    OpenAIRE

    Platt, Matthew B; Platt, Manu O

    2013-01-01

    Introduction: From the travel ban on people living with HIV (PLHIV) to resistance to needle exchange programmes, there are many examples where policy responses to HIV/AIDS in the United States seem divorced from behavioural, public health and sociological evidence. At its root, however, the unknowns about HIV/AIDS lie at biomedical science, and scientific researchers have made tremendous progress over the past 30 years of the epidemic by using antiretroviral therapy to increase the life expec...

  9. Advanced Processing for Biomedical Informatics (APBI)

    Science.gov (United States)

    2009-10-01

    pothetical gene CG018 CG018 90634 1.62E-06 4.16E-05 7.21 4.81 -5.3 203881_s_at dystrophin (muscular dystrophy , Duchenne and Becker types) DMD 1756 1.93E-06...fundus dystrophy , pseudoinflammatory) TIMP3 7078 1.62E-06 4.16E-05 10.96 8.63 -5.0 1563466_at myosin, light chain kinase MYLK 4638 1.62E-06 4.16E-05

  10. UT Biomedical Informatics Lab (BMIL) probability wheel

    Science.gov (United States)

    Huang, Sheng-Cheng; Lee, Sara; Wang, Allen; Cantor, Scott B.; Sun, Clement; Fan, Kaili; Reece, Gregory P.; Kim, Min Soon; Markey, Mia K.

    A probability wheel app is intended to facilitate communication between two people, an "investigator" and a "participant", about uncertainties inherent in decision-making. Traditionally, a probability wheel is a mechanical prop with two colored slices. A user adjusts the sizes of the slices to indicate the relative value of the probabilities assigned to them. A probability wheel can improve the adjustment process and attenuate the effect of anchoring bias when it is used to estimate or communicate probabilities of outcomes. The goal of this work was to develop a mobile application of the probability wheel that is portable, easily available, and more versatile. We provide a motivating example from medical decision-making, but the tool is widely applicable for researchers in the decision sciences.

  11. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  12. A stimulus to define informatics and health information technology.

    Science.gov (United States)

    Hersh, William

    2009-05-15

    Despite the growing interest by leaders, policy makers, and others, the terminology of health information technology as well as biomedical and health informatics is poorly understood and not even agreed upon by academics and professionals in the field. The paper, presented as a Debate to encourage further discussion and disagreement, provides definitions of the major terminology used in biomedical and health informatics and health information technology. For informatics, it focuses on the words that modify the term as well as individuals who practice the discipline. Other categories of related terms are covered as well, from the associated disciplines of computer science, information technology and health information management to the major application categories of applications used. The discussion closes with a classification of individuals who work in the largest segment of the field, namely clinical informatics. The goal of presenting in Debate format is to provide a starting point for discussion to reach a documented consensus on the definition and use of these terms.

  13. Nursing Informatics Certification Worldwide: History, Pathway, Roles, and Motivation

    Science.gov (United States)

    Cummins, M. R.; Gundlapalli, A. V.; Murray, P.; Park, H.-A.; Lehmann, C. U.

    2016-01-01

    numbers of informatics nurses are pursuing certification. Conclusions The pathway to certification is clear and well-established for U.S. based informatics nurses. The motivation for obtaining and maintaining nursing informatics certification appears to be stronger for nurses who do not have an advanced informatics degree. The primary difference between nursing and physician certification pathways relates to the requirement of formal training and level of informatics practice. Nurse informatics certification requires no formal education or training and verifies knowledge and skill at a more basic level. Physician informatics certification validates informatics knowledge and skill at a more advanced level; currently this requires documentation of practice and experience in clinical informatics and in the future will require successful completion of an accredited two-year fellowship in clinical informatics. For the profession of nursing, a graduate degree in nursing or biomedical informatics validates specialty knowledge at a level more comparable to the physician certification. As the field of informatics and its professional organization structures mature, a common certification pathway may be appropriate. Nurses, physicians, and other healthcare professionals with informatics training and certification are needed to contribute their expertise in clinical operations, teaching, research, and executive leadership. PMID:27830261

  14. Towards health informatics 3.0. Editorial.

    Science.gov (United States)

    Kulikowski, Casimir A; Geissbuhler, Antoine

    2011-01-01

    To provide an editorial introduction to the 2011 IMIA Yearbook of Medical Informatics with an overview of its contents and contributors. A brief overview of the main theme, and an outline of the purposes, contents, format, and acknowledgment of contributions for the 2011 IMIA Yearbook. This 2011 issue of the IMIA Yearbook highlights important developments in the development of Web 3.0 capabilities that are increasing in Health Informatics, impacting the activities in research, education and practice in this interdisciplinary field. There has been steady progress towards introducing semantics into informatics systems through more sophisticated representations of knowledge in their underlying information. Health Informatics 3.0 capabilities are identified from the recent literature, illustrated by selected papers published during the past 12 months, and articles reported by IMIA Working Groups. Surveys of the main research sub-fields in biomedical informatics in the Yearbook provide an overview of progress and current challenges across the spectrum of the discipline, focusing on Web 3.0 challenges and opportunities.

  15. Pathology informatics fellowship training: Focus on molecular pathology

    Directory of Open Access Journals (Sweden)

    Diana Mandelker

    2014-01-01

    Full Text Available Background: Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Methods and Results: Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program′s core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. Conclusions: The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists.

  16. Pathology informatics fellowship training: Focus on molecular pathology.

    Science.gov (United States)

    Mandelker, Diana; Lee, Roy E; Platt, Mia Y; Riedlinger, Gregory; Quinn, Andrew; Rao, Luigi K F; Klepeis, Veronica E; Mahowald, Michael; Lane, William J; Beckwith, Bruce A; Baron, Jason M; McClintock, David S; Kuo, Frank C; Lebo, Matthew S; Gilbertson, John R

    2014-01-01

    Pathology informatics is both emerging as a distinct subspecialty and simultaneously becoming deeply integrated within the breadth of pathology practice. As specialists, pathology informaticians need a broad skill set, including aptitude with information fundamentals, information systems, workflow and process, and governance and management. Currently, many of those seeking training in pathology informatics additionally choose training in a second subspecialty. Combining pathology informatics training with molecular pathology is a natural extension, as molecular pathology is a subspecialty with high potential for application of modern biomedical informatics techniques. Pathology informatics and molecular pathology fellows and faculty evaluated the current fellowship program's core curriculum topics and subtopics for relevance to molecular pathology. By focusing on the overlap between the two disciplines, a structured curriculum consisting of didactics, operational rotations, and research projects was developed for those fellows interested in both pathology informatics and molecular pathology. The scope of molecular diagnostics is expanding dramatically as technology advances and our understanding of disease extends to the genetic level. Here, we highlight many of the informatics challenges facing molecular pathology today, and outline specific informatics principles necessary for the training of future molecular pathologists.

  17. Synergy between Medical Informatics and Bioinformatics: Facilitating Genomic Medicine for Future Health Care

    Czech Academy of Sciences Publication Activity Database

    Martin-Sanchez, F.; Iakovidis, I.; Norager, S.; Maojo, V.; de Groen, P.; Van der Lei, J.; Jones, T.; Abraham-Fuchs, K.; Apweiler, R.; Babic, A.; Baud, R.; Breton, V.; Cinquin, P.; Doupi, P.; Dugas, M.; Eils, R.; Engelbrecht, R.; Ghazal, P.; Jehenson, P.; Kulikowski, C.; Lampe, K.; De Moor, G.; Orphanoudakis, S.; Rossing, N.; Sarachan, B.; Sousa, A.; Spekowius, G.; Thireos, G.; Zahlmann, G.; Zvárová, Jana; Hermosilla, I.; Vicente, F. J.

    2004-01-01

    Roč. 37, - (2004), s. 30-42 ISSN 1532-0464 Institutional research plan: CEZ:AV0Z1030915 Keywords : bioinformatics * medical informatics * genomics * genomic medicine * biomedical informatics Subject RIV: BD - Theory of Information Impact factor: 1.013, year: 2004

  18. Health informatics 3.0.

    Science.gov (United States)

    Kalra, Dipak

    2011-01-01

    Web 3.0 promises us smart computer services that will interact with each other and leverage knowledge about us and our immediate context to deliver prioritised and relevant information to support decisions and actions. Healthcare must take advantage of such new knowledge-integrating services, in particular to support better co-operation between professionals of different disciplines working in different locations, and to enable well-informed co-operation between clinicians and patients. To grasp the potential of Web 3.0 we will need well-harmonised semantic resources that can richly connect virtual teams and link their strategies to real-time and tailored evidence. Facts, decision logic, care pathway steps, alerts, education need to be embedded within components that can interact with multiple EHR systems and services consistently. Using Health Informatics 3.0 a patient's current situation could be compared with the outcomes of very similar patients (from across millions) to deliver personalised care recommendations. The integration of EHRs with biomedical sciences ('omics) research results and predictive models such as the Virtual Physiological Human could help speed up the translation of new knowledge into clinical practice. The mission, and challenge, for Health Informatics 3.0 is to enable healthy citizens, patients and professionals to collaborate within a knowledge-empowered social network in which patient specific information and personalised real-time evidence are seamlessly interwoven.

  19. International Conference on Health Informatics

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the International Conference on Health Informatics (ICHI). The conference was a new special topic conference initiative by the International Federation of Medical and Biological Engineering (IFMBE), held in Vilamoura, Portugal on 7-9 November, 2013. The main theme of the ICHI2013 was “Integrating Information and Communication Technologies with Biomedicine for Global Health”. The proceedings offer a unique forum to examine enabling technologies of sensors, devices and systems that optimize the acquisition, transmission, processing, storage, retrieval of biomedical and health information as well as to report novel clinical applications of health information systems and the deployment of m-Health, e-Health, u-Health, p-Health and Telemedicine.

  20. INFORMATIZATION IN EDUCATION

    Directory of Open Access Journals (Sweden)

    А А Меджидова

    2016-12-01

    Full Text Available The article draws attention to the fact that the Informatization of primary education is a uniform process, in which I the first turn mathematics and computer science are associated. Learning these disciplines is in natural interrelation and this comes from the nature of these disciplines. But in other subjects both mathematics and computer science play an applied role. It is proved that at the modern stage of Informatization in education contributes to improving the quality of assimilated knowledge acquired and skills.The article touches upon issues that reveal the relevance of the subject of Informatics in education. In connection with the information development there is a need of Informatization of education and society as a whole. The basic concepts of Informatics as a scientific and academic discipline are shown. Set out the subject, object and objectives of teaching science. Methodical program of the subject, aimed to develop school education is also considered.

  1. Informatics and Standards for Nanomedicine Technology

    Science.gov (United States)

    Thomas, Dennis G.; Klaessig, Fred; Harper, Stacey L.; Fritts, Martin; Hoover, Mark D.; Gaheen, Sharon; Stokes, Todd H.; Reznik-Zellen, Rebecca; Freund, Elaine T.; Klemm, Juli D.; Paik, David S.; Baker, Nathan A.

    2011-01-01

    There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards. Informatics methods and standards in each of these areas are critical for enabling collaboration, data sharing, unambiguous representation and interpretation of data, semantic (meaningful) search and integration of data; and for ensuring data quality, reliability, and reproducibility. In particular, we have considered four types of information standards in this review, which are standard characterization protocols, common terminology standards, minimum information standards, and standard data communication (exchange) formats. Currently, due to gaps and ambiguities in the data, it is also difficult to apply computational methods and machine learning techniques to analyze, interpret and recognize patterns in data that are high dimensional in nature, and also to relate variations in nanomaterial properties to variations in their chemical composition, synthesis, characterization protocols, etc. Progress towards resolving the issues of information management in nanomedicine using informatics methods and standards discussed in this review will be essential to the rapidly growing field of nanomedicine informatics. PMID:21721140

  2. A short history of medical informatics in bosnia and herzegovina.

    Science.gov (United States)

    Masic, Izet

    2014-02-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal "Acta Informatica Medica (Acta Inform Med", indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina, ten years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article is eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  3. Porting Biomedical Applications to Grids

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    2008-01-01

    textabstractToday advances in scientific research as well as clinical diagnostics and treatment are inevitably connected with information solutions concerning computation power and information storage. The needs for information technology are enormous and are in many cases the limiting

  4. Medical Informatics Impact of Information Society in Health Care Development

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2005-01-01

    Roč. 9, - (2005), s. 269-274 ISSN 1335-2393. [YBERC 2005. Young Biomedical Engineers and Researchers Conference. Stará Lesná, 13.07.2005-15.07.2005] Institutional research plan: CEZ:AV0Z10300504 Keywords : medical informatics * information society * telemedicine * education * research and development Subject RIV: BD - Theory of Information

  5. Past and next 10 years of medical informatics

    NARCIS (Netherlands)

    Ückert, Frank; Ammenwerth, Elske; Dujat, Carl; Grant, Andrew; Haux, Reinhold; Hein, Andreas; Hochlehnert, Achim; Knaup-Gregori, Petra; Kulikowski, Casimir; Mantas, John; Maojo, Victor; Marschollek, Michael; Moura, Lincoln; Plischke, Maik; Röhrig, Rainer; Stausberg, Jürgen; Takabayashi, Katsuhiko; Winter, Alfred; Wolf, Klaus-Hendrik; Hasman, Arie

    2014-01-01

    More than 10 years ago Haux et al. tried to answer the question how health care provision will look like in the year 2013. A follow-up workshop was held in Braunschweig, Germany, for 2 days in May, 2013, with 20 invited international experts in biomedical and health informatics. Among other things

  6. On Informatics Diagnostics and Informatics Therapeutics - Good Medical Informatics Research Is Needed Here.

    Science.gov (United States)

    Haux, Reinhold

    2017-01-01

    In the era of digitization some new procedures play an increasing role for diagnosis as well as for therapy: informatics diagnostics and informatics therapeutics. Challenges for such procedures are described. It is discussed, when research on such diagnostics and therapeutics can be regarded as good research. Examples are mentioned for informatics diagnostics and informatics therapeutics, which are based on health-enabling technologies.

  7. Perspectives of System Informatics

    National Research Council Canada - National Science Library

    Bjørner, D

    1999-01-01

    The volume comprises extended abstracts of the papers selected for the presentation at the Third International Andrei Ershov Memorial Conference Perspectives of System Informatics, Akademgorodok (Novosibirsk, Russia), July 6-9, 1999...

  8. Solving Interoperability in Translational Health. Perspectives of Students from the International Partnership in Health Informatics Education (IPHIE) 2016 Master Class.

    Science.gov (United States)

    Turner, Anne M; Facelli, Julio C; Jaspers, Monique; Wetter, Thomas; Pfeifer, Daniel; Gatewood, Laël Cranmer; Adam, Terry; Li, Yu-Chuan; Lin, Ming-Chin; Evans, R Scott; Beukenhorst, Anna; van Mens, Hugo Johan Theodoore; Tensen, Esmee; Bock, Christian; Fendrich, Laura; Seitz, Peter; Suleder, Julian; Aldelkhyyel, Ranyah; Bridgeman, Kent; Hu, Zhen; Sattler, Aaron; Guo, Shin-Yi; Mohaimenul, Islam Md Mohaimenul; Anggraini Ningrum, Dina Nur; Tung, Hsin-Ru; Bian, Jiantano; Plasek, Joseph M; Rommel, Casey; Burke, Juandalyn; Sohih, Harkirat

    2017-06-20

    In the summer of 2016 an international group of biomedical and health informatics faculty and graduate students gathered for the 16th meeting of the International Partnership in Health Informatics Education (IPHIE) masterclass at the University of Utah campus in Salt Lake City, Utah. This international biomedical and health informatics workshop was created to share knowledge and explore issues in biomedical health informatics (BHI). The goal of this paper is to summarize the discussions of biomedical and health informatics graduate students who were asked to define interoperability, and make critical observations to gather insight on how to improve biomedical education. Students were assigned to one of four groups and asked to define interoperability and explore potential solutions to current problems of interoperability in health care. We summarize here the student reports on the importance and possible solutions to the "interoperability problem" in biomedical informatics. Reports are provided from each of the four groups of highly qualified graduate students from leading BHI programs in the US, Europe and Asia. International workshops such as IPHIE provide a unique opportunity for graduate student learning and knowledge sharing. BHI faculty are encouraged to incorporate into their curriculum opportunities to exercise and strengthen student critical thinking to prepare our students for solving health informatics problems in the future.

  9. Medical informatics in morocco.

    Science.gov (United States)

    Bouhaddou, O; Bennani Othmani, M; Diouny, S

    2013-01-01

    Informatics is an essential tool for helping to transform healthcare from a paper-based to a digital sector. This article explores the state-of-the-art of health informatics in Morocco. Specifically, it aims to give a general overview of the Moroccan healthcare system, the challenges it is facing, and the efforts undertaken by the informatics community and Moroccan government in terms of education, research and practice to reform the country's health sector. Through the experience of establishing Medical Informatics as a medical specialty in 2008, creating a Moroccan Medical Informatics Association in 2010 and holding a first national congress took place in April 2012, the authors present their assessment of some important priorities for health informatics in Morocco. These Moroccan initiatives are facilitating collaboration in education, research, and implementation of clinical information systems. In particular, the stakeholders have recognized the need for a national coordinator office and the development of a national framework for standards and interoperability. For developing countries like Morocco, new health IT approaches like mobile health and trans-media health advertising could help optimize scarce resources, improve access to rural areas and focus on the most prevalent health problems, optimizing health care access, quality, and cost for Morocco population.

  10. Clinical microbiology informatics.

    Science.gov (United States)

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. It's Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence.

    Science.gov (United States)

    McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders.

  12. Solving Interoperability in Translational Health. Perspectives of Students from the International Partnership in Health Informatics Education (IPHIE) 2016 Master Class

    NARCIS (Netherlands)

    Turner, Anne M.; Facelli, Julio C.; Jaspers, Monique; Wetter, Thomas; Pfeifer, Daniel; Gatewood, Laël Cranmer; Adam, Terry; Li, Yu-Chuan; Lin, Ming-Chin; Evans, R. Scott; Beukenhorst, Anna; van Mens, Hugo Johan Theodoore; Tensen, Esmee; Bock, Christian; Fendrich, Laura; Seitz, Peter; Suleder, Julian; Aldelkhyyel, Ranyah; Bridgeman, Kent; Hu, Zhen; Sattler, Aaron; Guo, Shin-Yi; Mohaimenul, Islam Md Mohaimenul; Anggraini Ningrum, Dina Nur; Tung, Hsin-Ru; Bian, Jiantano; Plasek, Joseph M.; Rommel, Casey; Burke, Juandalyn; Sohih, Harkirat

    2017-01-01

    In the summer of 2016 an international group of biomedical and health informatics faculty and graduate students gathered for the 16th meeting of the International Partnership in Health Informatics Education (IPHIE) masterclass at the University of Utah campus in Salt Lake City, Utah. This

  13. Case-based medical informatics

    Directory of Open Access Journals (Sweden)

    Arocha José F

    2004-11-01

    Full Text Available Abstract Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences

  14. Developing capacity in health informatics in a resource poor setting: lessons from Peru.

    Science.gov (United States)

    Kimball, Ann Marie; Curioso, Walter H; Arima, Yuzo; Fuller, Sherrilynne; Garcia, Patricia J; Segovia-Juarez, Jose; Castagnetto, Jesus M; Leon-Velarde, Fabiola; Holmes, King K

    2009-10-27

    The public sectors of developing countries require strengthened capacity in health informatics. In Peru, where formal university graduate degrees in biomedical and health informatics were lacking until recently, the AMAUTA Global Informatics Research and Training Program has provided research and training for health professionals in the region since 1999. The Fogarty International Center supports the program as a collaborative partnership between Universidad Peruana Cayetano Heredia in Peru and the University of Washington in the United States of America. The program aims to train core professionals in health informatics and to strengthen the health information resource capabilities and accessibility in Peru. The program has achieved considerable success in the development and institutionalization of informatics research and training programs in Peru. Projects supported by this program are leading to the development of sustainable training opportunities for informatics and eight of ten Peruvian fellows trained at the University of Washington are now developing informatics programs and an information infrastructure in Peru. In 2007, Universidad Peruana Cayetano Heredia started offering the first graduate diploma program in biomedical informatics in Peru.

  15. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  16. Clinical research informatics

    CERN Document Server

    Richesson, Rachel L

    2012-01-01

    This book provides foundational coverage of key areas, concepts, constructs, and approaches of medical informatics as it applies to clinical research activities, in both current settings and in light of emerging policies. The field of clinical research is fully characterized (in terms of study design and overarching business processes), and there is emphasis on information management aspects and informatics implications (including needed activities) within various clinical research environments. The purpose of the book is to provide an overview of clinical research (types), activities, and are

  17. RAS - Target Identification - Informatics

    Science.gov (United States)

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  18. Nursing Informatics Competency Program

    Science.gov (United States)

    Dunn, Kristina

    2017-01-01

    Currently, C Hospital lacks a standardized nursing informatics competency program to validate nurses' skills and knowledge in using electronic medical records (EMRs). At the study locale, the organization is about to embark on the implementation of a new, more comprehensive EMR system. All departments will be required to use the new EMR, unlike…

  19. The Euratom informatics architecture

    International Nuclear Information System (INIS)

    Blerot, J.F.; Kschwendt, H.

    1991-01-01

    Open systems and standards in a multi product environment are the EURATOM guidelines. Consequently, the OSI model, UNIX (POSIX) and X/OPEN specifications determine the EURATOM informatic strategy. The major objectives are the development of secured telecommunications, the migration to open systems and the integration of data processing from measurements in the plants to accountancy the headquarters

  20. Don E. Detmer and the American Medical Informatics Association: An Appreciation

    Science.gov (United States)

    Shortliffe, Edward H.; Bates, David W.; Bloomrosen, Meryl; Greenwood, Karen; Safran, Charles; Steen, Elaine B.; Tang, Paul C.; Williamson, Jeffrey J.

    2009-01-01

    Don E. Detmer has served as President and Chief Executive Officer of the American Medical Informatics Association (AMIA) for the past five years, helping to set a course for the organization and demonstrating remarkable leadership as AMIA has evolved into a vibrant and influential professional association. On the occasion of Dr. Detmer's retirement, we fondly reflect on his professional life and his many contributions to biomedical informatics and, more generally, to health care in the U.S. and globally. PMID:19574463

  1. The jubilee of medical informatics in bosnia and herzegovina - 20 years anniversary.

    Science.gov (United States)

    Masic, Izet

    2009-01-01

    NONE DECLARED LAST TWO YEARS, THE HEALTH INFORMATICS PROFESSION CELEBRATED FIVE JUBILEES IN BOSNIA AND HERZEGOVINA: thirty years from the introduction of the first automatic manipulation of data, twenty years from the establishment of Society for Medical Informatics BiH, fifteen years from the establishment of the Scientific and Professional Journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica", fifteen years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina and five years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article are eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  2. Intelligent Electric Vehicle Integration - Domain Interfaces and Supporting Informatics

    DEFF Research Database (Denmark)

    Andersen, Peter Bach

    This thesis seeks to apply the field of informatics to the intelligent integration of electric vehicles into the power system. The main goal is to release the potential of electric vehicles in relation to a reliable, economically efficient power system based on renewables. To make intelligent EV...... and services in which the electric vehicle may be best suited to participate. The next stakeholder investigated is the distribution system operator representing the low voltage grid. The challenge is assessed by considering a number of grid impacts studies. Next, a set of grid congestion mitigation strategies...

  3. Blockchain distributed ledger technologies for biomedical and health care applications.

    Science.gov (United States)

    Kuo, Tsung-Ting; Kim, Hyeon-Eui; Ohno-Machado, Lucila

    2017-11-01

    To introduce blockchain technologies, including their benefits, pitfalls, and the latest applications, to the biomedical and health care domains. Biomedical and health care informatics researchers who would like to learn about blockchain technologies and their applications in the biomedical/health care domains. The covered topics include: (1) introduction to the famous Bitcoin crypto-currency and the underlying blockchain technology; (2) features of blockchain; (3) review of alternative blockchain technologies; (4) emerging nonfinancial distributed ledger technologies and applications; (5) benefits of blockchain for biomedical/health care applications when compared to traditional distributed databases; (6) overview of the latest biomedical/health care applications of blockchain technologies; and (7) discussion of the potential challenges and proposed solutions of adopting blockchain technologies in biomedical/health care domains. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  4. Context Sensitive Health Informatics

    DEFF Research Database (Denmark)

    involves careful consideration of both human and organizational factors. This book presents the proceedings of the Context Sensitive Health Informatics (CSHI) conference, held in Copenhagen, Denmark, in August 2013. The theme of this year’s conference is human and sociotechnical approaches. The Human...... different healthcare contexts. Healthcare organizations, health policy makers and regulatory bodies globally are starting to acknowledge this essential role of human and organizational factors for safe and effective health information technology. This book will be of interest to all those involved......Healthcare information technologies are now routinely deployed in a variety of healthcare contexts. These contexts differ widely, but the smooth integration of IT systems is crucial, so the design, implementation, and evaluation of safe, effective, efficient and easy to adopt health informatics...

  5. Twenty years of society of medical informatics of b&h and the journal acta informatica medica.

    Science.gov (United States)

    Masic, Izet

    2012-03-01

    In 2012, Health/Medical informatics profession celebrates five jubilees in Bosnia and Herzegovina: a) Thirty five years from the introduction of the first automatic manipulation of data; b) Twenty five years from establishing Society for Medical Informatics BiH; c) Twenty years from establishing scientific and professional journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica"; d) Twenty years from establishing first Cathdra for Medical Informatics on biomedical faculties in Bosnia and Herzegovina and e) Ten years from the introduction of "Distance learning" in medical curriculum. All of the five mentioned activities in the area of Medical informatics had special importance and gave appropriate contribution in the development of Health/Medical informatics in Bosnia And Herzegovina.

  6. Innovations in Biomedical Engineering 2016

    CERN Document Server

    Tkacz, Ewaryst; Paszenda, Zbigniew; Piętka, Ewa

    2017-01-01

    This book presents the proceedings of the “Innovations in Biomedical Engineering IBE’2016” Conference held on October 16–18, 2016 in Poland, discussing recent research on innovations in biomedical engineering. The past decade has seen the dynamic development of more and more sophisticated technologies, including biotechnologies, and more general technologies applied in the area of life sciences. As such the book covers the broadest possible spectrum of subjects related to biomedical engineering innovations. Divided into four parts, it presents state-of-the-art achievements in: • engineering of biomaterials, • modelling and simulations in biomechanics, • informatics in medicine • signal analysis The book helps bridge the gap between technological and methodological engineering achievements on the one hand and clinical requirements in the three major areas diagnosis, therapy and rehabilitation on the other.

  7. NURSING INFORMATICS EDUCATION AND USE: CHALLENGES ...

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    179 .... how organizations can utilize IT to progress their strategic goal from ... Clinical informatics, Veterinary informatics, Dental informatics ... In the late 1990s, the Finnish/Nigerian research ..... International Journal of Nursing &. Midwifery, 5, (5): ...

  8. Evaluation of Founding Members of the International Academy of Health Sciences Informatics (IAHSI) Based on Google Scholar and Scopus Parameters.

    Science.gov (United States)

    Masic, Izet

    2017-12-01

    The International Academy of Health Sciences Informatics (IAHSI) is established by International Medical Informatics Association (IMIA) which is the world body for health and biomedical informatics. The Academy will serve as an honor society that recognizes expertise in biomedical and health informatics internationally. Academy membership will be one of the highest honors in the international field of biomedical and health informatics. To present scientometric analysis of founding members of the International Academy of Health Sciences Informatics, to evaluate members and their scientific rating. The work has an analytical character and presents analysis of the data obtained from the Google Scholar and Scopus database. Results are shown through number of cases, percentage and graphically. The analysis showed a significant correlation between the Academy and the country (continent) of origin of the academician. In IAHSI are mainly represented academics originating from Europe - 40 members (33,3%), North America - 39 members (32,5%), Asia - 20 members (16,6%), South America - 9 members (7,5%), Australia - 7 members (5,8%), while only 5 members or 4,16% come from Africa. Criteria for number of representatives of each continent to main academic communities are relatively questionable, as this analysis showed. Development of Health Sciences Informatics should be the main purpose, and it should be evenly distributed with slight deviations in number of representatives of each continent.

  9. Informatics applied to cytology

    Directory of Open Access Journals (Sweden)

    Pantanowitz Liron

    2008-01-01

    Full Text Available Automation and emerging information technologies are being adopted by cytology laboratories to augment Pap test screening and improve diagnostic accuracy. As a result, informatics, the application of computers and information systems to information management, has become essential for the successful operation of the cytopathology laboratory. This review describes how laboratory information management systems can be used to achieve an automated and seamless workflow process. The utilization of software, electronic databases and spreadsheets to perform necessary quality control measures are discussed, as well as a Lean production system and Six Sigma approach, to reduce errors in the cytopathology laboratory.

  10. Context Sensitive Health Informatics

    DEFF Research Database (Denmark)

    Kuziemsky, Craig; Nøhr, Christian; Aarts, Jos

    2013-01-01

    Context is a key consideration when designing and evaluating health information technology (HIT) and cannot be overstated. Unintended consequences are common post HIT implementation and even well designed technology may not achieve desired outcomes because of contextual issues. While context should...... be considered in the design and evaluation of health information systems (HISs) there is a shortcoming of empirical research on contextual aspects of HIT. This conference integrates the sociotechnical and Human-Centered-Design (HCD) approaches and showcases current research on context sensitive health...... informatics. The papers and presentations outlines theories and models for studying contextual issues and insights on how we can better design HIT to accommodate different healthcare contexts....

  11. Informatics and Autopsy Pathology.

    Science.gov (United States)

    Levy, Bruce

    2015-06-01

    Many health care providers believe that the autopsy is no longer relevant in high-technology medicine era. This has fueled a decline in the hospital autopsy rate. Although it seems that advanced diagnostic tests answer all clinical questions, studies repeatedly demonstrate that an autopsy uncovers as many undiagnosed conditions today as in the past. The forensic autopsy rate has also declined, although not as precipitously. Pathologists are still performing a nineteenth century autopsy procedure that remains essentially unchanged. Informatics offers several potential answers that will evolve the low-tech autopsy into the high-tech autopsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Energy informatics: Fundamentals and standardization

    Directory of Open Access Journals (Sweden)

    Biyao Huang

    2017-06-01

    Full Text Available Based on international standardization and power utility practices, this paper presents a preliminary and systematic study on the field of energy informatics and analyzes boundary expansion of information and energy system, and the convergence of energy system and ICT. A comprehensive introduction of the fundamentals and standardization of energy informatics is provided, and several key open issues are identified.

  13. Education of medical informatics in Bosnia and Herzegowina.

    Science.gov (United States)

    Masić, I

    1998-06-01

    Time of information in which the authors live resulted in the increase of the amount of the information exponential growth of the new kind of knowledge, flourishing of the familiar ones and the appearance of the new sciences. Medical (health) informatics occupies the central place in all the segments of modern medicine in the past 30 years--in practical work, education and scientific research. In all that, computers have taken over the most important role and are used intensively for the development of the health information systems. Following activities develop within the area of health informatics: health-documentation, health-statistics, health-informatics and bio-medical, scientific and professional information. The pioneer in the development of the health statistics and informatics in Bosnia and Herzegovina (BiH) was Dr Evgenije Sherstnew, who was the Chief of Health Statistics in the Ministry of Health of BiH from 1946-1952, and who founded and led, from 1952 to the end of his life, the Department of Medical Documentation and Health Statistics of the Central Health Institute of BiH, the core around which a group of experts for the development of this field have gathered. In the eighties computers were intensively used as a tool for the processing medical data and with them the development of health information systems at the level of the outpatient-clinics, hospitals, clinical centers, as well as the integral information system of health, health insurance and the social security system of BiH began. Finally, Society for Medical Informatics of BiH, which as a professional association gathers experts in the area of health informatics, actively propagates this profession in the Republic, was founded. With reform of the lectures and curriculum at the medical faculty in Sarajevo, the course in 'Medical Informatics' has been in 1992. into the second semester, since it was assumed that an early insight into the principles of information along with studies of so

  14. Translational Research from an Informatics Perspective

    Science.gov (United States)

    Bernstam, Elmer; Meric-Bernstam, Funda; Johnson-Throop, Kathy A.; Turley, James P.; Smith, Jack W.

    2007-01-01

    Clinical and translational research (CTR) is an essential part of a sustainable global health system. Informatics is now recognized as an important en-abler of CTR and informaticians are increasingly called upon to help CTR efforts. The US National Institutes of Health mandated biomedical informatics activity as part of its new national CTR grant initiative, the Clinical and Translational Science Award (CTSA). Traditionally, translational re-search was defined as the translation of laboratory discoveries to patient care (bench to bedside). We argue, however, that there are many other kinds of translational research. Indeed, translational re-search requires the translation of knowledge dis-covered in one domain to another domain and is therefore an information-based activity. In this panel, we will expand upon this view of translational research and present three different examples of translation to illustrate the point: 1) bench to bedside, 2) Earth to space and 3) academia to community. We will conclude with a discussion of our local translational research efforts that draw on each of the three examples.

  15. Bioinformatics and Medical Informatics: Collaborations on the Road to Genomic Medicine?

    Science.gov (United States)

    Maojo, Victor; Kulikowski, Casimir A.

    2003-01-01

    In this report, the authors compare and contrast medical informatics (MI) and bioinformatics (BI) and provide a viewpoint on their complementarities and potential for collaboration in various subfields. The authors compare MI and BI along several dimensions, including: (1) historical development of the disciplines, (2) their scientific foundations, (3) data quality and analysis, (4) integration of knowledge and databases, (5) informatics tools to support practice, (6) informatics methods to support research (signal processing, imaging and vision, and computational modeling, (7) professional and patient continuing education, and (8) education and training. It is pointed out that, while the two disciplines differ in their histories, scientific foundations, and methodologic approaches to research in various areas, they nevertheless share methods and tools, which provides a basis for exchange of experience in their different applications. MI expertise in developing health care applications and the strength of BI in biological “discovery science” complement each other well. The new field of biomedical informatics (BMI) holds great promise for developing informatics methods that will be crucial in the development of genomic medicine. The future of BMI will be influenced strongly by whether significant advances in clinical practice and biomedical research come about from separate efforts in MI and BI, or from emerging, hybrid informatics subdisciplines at their interface. PMID:12925552

  16. Usage statistics and usage patterns on the NorduGrid: Analyzing the logging information collected on one of the largest production Grids of the world

    OpenAIRE

    Kónya, B; Eerola, Paule Anna Mari; Ekelöf, T J C; Ellert, M; Hansen, J; Konstantinov, A; Nielsen, J; Ould-Saada, F; Smirnova, O; Wäänänen, A; Erkarslan, U; Pajchel, K

    2005-01-01

    The Nordic Grid facility (NorduGrid [1]) came into operation during summer 2002 when the Scandinavian ATLAS HEP group started to use the Grid for the ATLAS Data Challenges (DC) and was thus the first Grid ever contributing to an ATLAS production. Since then, the Grid facility has been in continuous 24/7 operation. NorduGrid is being used by a growing set of active users from various scientific areas including physics, chemistry, biology and informatics. It has given ma...

  17. A current perspective on medical informatics and health sciences librarianship.

    Science.gov (United States)

    Perry, Gerald J; Roderer, Nancy K; Assar, Soraya

    2005-04-01

    The article offers a current perspective on medical informatics and health sciences librarianship. The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as "boundary spanners," incorporating human factors that unite technology with health care delivery.

  18. An informatics research agenda to support precision medicine: seven key areas.

    Science.gov (United States)

    Tenenbaum, Jessica D; Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R

    2016-07-01

    The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM's vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  19. Design of e-Science platform for biomedical imaging research cross multiple academic institutions and hospitals

    Science.gov (United States)

    Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin

    2012-02-01

    More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.

  20. Informatics in radiology: automated structured reporting of imaging findings using the AIM standard and XML.

    Science.gov (United States)

    Zimmerman, Stefan L; Kim, Woojin; Boonn, William W

    2011-01-01

    Quantitative and descriptive imaging data are a vital component of the radiology report and are frequently of paramount importance to the ordering physician. Unfortunately, current methods of recording these data in the report are both inefficient and error prone. In addition, the free-text, unstructured format of a radiology report makes aggregate analysis of data from multiple reports difficult or even impossible without manual intervention. A structured reporting work flow has been developed that allows quantitative data created at an advanced imaging workstation to be seamlessly integrated into the radiology report with minimal radiologist intervention. As an intermediary step between the workstation and the reporting software, quantitative and descriptive data are converted into an extensible markup language (XML) file in a standardized format specified by the Annotation and Image Markup (AIM) project of the National Institutes of Health Cancer Biomedical Informatics Grid. The AIM standard was created to allow image annotation data to be stored in a uniform machine-readable format. These XML files containing imaging data can also be stored on a local database for data mining and analysis. This structured work flow solution has the potential to improve radiologist efficiency, reduce errors, and facilitate storage of quantitative and descriptive imaging data for research. Copyright © RSNA, 2011.

  1. [Master course in biomedical engineering].

    Science.gov (United States)

    Jobbágy, Akos; Benyó, Zoltán; Monos, Emil

    2009-11-22

    The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.

  2. The Structure of Medical Informatics Journal Literature

    Science.gov (United States)

    Morris, Theodore A.; McCain, Katherine W.

    1998-01-01

    Abstract Objective: Medical informatics is an emergent interdisciplinary field described as drawing upon and contributing to both the health sciences and information sciences. The authors elucidate the disciplinary nature and internal structure of the field. Design: To better understand the field's disciplinary nature, the authors examine the intercitation relationships of its journal literature. To determine its internal structure, they examined its journal cocitation patterns. Measurements: The authors used data from the Science Citation Index (SCI) and Social Science Citation Index (SSCI) to perform intercitation studies among productive journal titles, and software routines from SPSS to perform multivariate data analyses on cocitation data for proposed core journals. Results: Intercitation network analysis suggests that a core literature exists, one mark of a separate discipline. Multivariate analyses of cocitation data suggest that major focus areas within the field include biomedical engineering, biomedical computing, decision support, and education. The interpretable dimensions of multidimensional scaling maps differed for the SCI and SSCI data sets. Strong links to information science literature were not found. Conclusion: The authors saw indications of a core literature and of several major research fronts. The field appears to be viewed differently by authors writing in journals indexed by SCI from those writing in journals indexed by SSCI, with more emphasis placed on computers and engineering versus decision making by the former and more emphasis on theory versus application (clinical practice) by the latter. PMID:9760393

  3. Public Policy and Health Informatics.

    Science.gov (United States)

    Bell, Katherine

    2018-04-05

    To provide an overview of the history of electronic health policy and identify significant laws that influence health informatics. US Department of Health and Human Services. The development of health information technology has influenced the process for delivering health care. Public policy and regulations are an important part of health informatics and establish the structure of electronic health systems. Regulatory bodies of the government initiate policies to ease the execution of electronic health record implementation. These same bureaucratic entities regulate the system to protect the rights of the patients and providers. Nurses should have an overall understanding of the system behind health informatics and be able to advocate for change. Nurses can utilize this information to optimize the use of health informatics and campaign for safe, effective, and efficient health information technology. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Machine learning in healthcare informatics

    CERN Document Server

    Acharya, U; Dua, Prerna

    2014-01-01

    The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

  5. Medical imaging informatics simulators: a tutorial.

    Science.gov (United States)

    Huang, H K; Deshpande, Ruchi; Documet, Jorge; Le, Anh H; Lee, Jasper; Ma, Kevin; Liu, Brent J

    2014-05-01

    A medical imaging informatics infrastructure (MIII) platform is an organized method of selecting tools and synthesizing data from HIS/RIS/PACS/ePR systems with the aim of developing an imaging-based diagnosis or treatment system. Evaluation and analysis of these systems can be made more efficient by designing and implementing imaging informatics simulators. This tutorial introduces the MIII platform and provides the definition of treatment/diagnosis systems, while primarily focusing on the development of the related simulators. A medical imaging informatics (MII) simulator in this context is defined as a system integration of many selected imaging and data components from the MIII platform and clinical treatment protocols, which can be used to simulate patient workflow and data flow starting from diagnostic procedures to the completion of treatment. In these processes, DICOM and HL-7 standards, IHE workflow profiles, and Web-based tools are emphasized. From the information collected in the database of a specific simulator, evidence-based medicine can be hypothesized to choose and integrate optimal clinical decision support components. Other relevant, selected clinical resources in addition to data and tools from the HIS/RIS/PACS and ePRs platform may also be tailored to develop the simulator. These resources can include image content indexing, 3D rendering with visualization, data grid and cloud computing, computer-aided diagnosis (CAD) methods, specialized image-assisted surgical, and radiation therapy technologies. Five simulators will be discussed in this tutorial. The PACS-ePR simulator with image distribution is the cradle of the other simulators. It supplies the necessary PACS-based ingredients and data security for the development of four other simulators: the data grid simulator for molecular imaging, CAD-PACS, radiation therapy simulator, and image-assisted surgery simulator. The purpose and benefits of each simulator with respect to its clinical relevance

  6. Translational Biomedical Informatics in the Cloud: Present and Future

    Directory of Open Access Journals (Sweden)

    Jiajia Chen

    2013-01-01

    Full Text Available Next generation sequencing and other high-throughput experimental techniques of recent decades have driven the exponential growth in publicly available molecular and clinical data. This information explosion has prepared the ground for the development of translational bioinformatics. The scale and dimensionality of data, however, pose obvious challenges in data mining, storage, and integration. In this paper we demonstrated the utility and promise of cloud computing for tackling the big data problems. We also outline our vision that cloud computing could be an enabling tool to facilitate translational bioinformatics research.

  7. Person-generated Data in Self-quantification. A Health Informatics Research Program.

    Science.gov (United States)

    Gray, Kathleen; Martin-Sanchez, Fernando J; Lopez-Campos, Guillermo H; Almalki, Manal; Merolli, Mark

    2017-01-09

    The availability of internet-connected mobile, wearable and ambient consumer technologies, direct-to-consumer e-services and peer-to-peer social media sites far outstrips evidence about the efficiency, effectiveness and efficacy of using them in healthcare applications. The aim of this paper is to describe one approach to build a program of health informatics research, so as to generate rich and robust evidence about health data and information processing in self-quantification and associated healthcare and health outcomes. The paper summarises relevant health informatics research approaches in the literature and presents an example of developing a program of research in the Health and Biomedical Informatics Centre (HaBIC) at the University of Melbourne. The paper describes this program in terms of research infrastructure, conceptual models, research design, research reporting and knowledge sharing. The paper identifies key outcomes from integrative and multiple-angle approaches to investigating the management of information and data generated by use of this Centre's collection of wearable, mobiles and other devices in health self-monitoring experiments. These research results offer lessons for consumers, developers, clinical practitioners and biomedical and health informatics researchers. Health informatics is increasingly called upon to make sense of emerging self-quantification and other digital health phenomena that are well beyond the conventions of healthcare in which the field of informatics originated and consolidated. To make a substantial contribution to optimise the aims, processes and outcomes of health self-quantification needs further work at scale in multi-centre collaborations for this Centre and for health informatics researchers generally.

  8. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  9. Integrating Informatics Technologies into Oracle

    Directory of Open Access Journals (Sweden)

    Manole VELICANU

    2006-01-01

    Full Text Available A characteristic of the actual informatics’ context is the interference of the technologies, which assumes that for creating an informatics product, is necessary to use integrate many technologies. This thing is also used for database systems which had integrated, in the past few years, almost everything is new in informatics technology. The idea is that when using database management systems - DBMS the user can benefit all the necessary interfaces and instruments for developing an application with databases from the very beginning to the end, no matter the type of application and the work environment. For example, if the database application needs any Internet facilities these could be appealed from the products that the DBMS is working with offers. The concept of the interference of informatics technologies has many advantages, which all contribute to increasing the efficiency of the activities that develop and maintain complex databases applications.

  10. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  11. Engaging clinicians in health informatics projects.

    Science.gov (United States)

    Caballero Muñoz, Erika; Hullin Lucay Cossio, Carola M

    2010-01-01

    This chapter gives an educational overview of: * The importance of the engagement of clinicians within a health informatics project * Strategies required for an effective involvement of clinicians throughout a change management process within a clinical context for the implementation of a health informatics project * The critical aspects for a successful implementation of a health informatics project that involves clinicians as end users * Key factors during the administration of changes during the implementation of an informatics project for an information system in clinical practice.

  12. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  13. Computational intelligence in medical informatics

    CERN Document Server

    Gunjan, Vinit

    2015-01-01

    This Brief highlights Informatics and related techniques to Computer Science Professionals, Engineers, Medical Doctors, Bioinformatics researchers and other interdisciplinary researchers. Chapters include the Bioinformatics of Diabetes and several computational algorithms and statistical analysis approach to effectively study the disorders and possible causes along with medical applications.

  14. Open Issues in Design Informatics

    DEFF Research Database (Denmark)

    McMahon, Chris

    2017-01-01

    Design informatics—the use of computers as a means of generating, communicating and sharing data, information and knowledge in design—has been a central theme in design research and practice for many years. This paper reviews the recent progress of research in design informatics, and makes...

  15. 1st International Conference on Computational Intelligence and Informatics

    CERN Document Server

    Prasad, V; Rani, B; Udgata, Siba; Raju, K

    2017-01-01

    The book covers a variety of topics which include data mining and data warehousing, high performance computing, parallel and distributed computing, computational intelligence, soft computing, big data, cloud computing, grid computing, cognitive computing, image processing, computer networks, wireless networks, social networks, wireless sensor networks, information and network security, web security, internet of things, bioinformatics and geoinformatics. The book is a collection of best papers submitted in the First International Conference on Computational Intelligence and Informatics (ICCII 2016) held during 28-30 May 2016 at JNTUH CEH, Hyderabad, India. It was hosted by Department of Computer Science and Engineering, JNTUH College of Engineering in association with Division V (Education & Research) CSI, India. .

  16. Medical imaging, PACS, and imaging informatics: retrospective.

    Science.gov (United States)

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  17. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  18. Smart grid

    International Nuclear Information System (INIS)

    Choi, Dong Bae

    2001-11-01

    This book describes press smart grid from basics to recent trend. It is divided into ten chapters, which deals with smart grid as green revolution in energy with introduction, history, the fields, application and needed technique for smart grid, Trend of smart grid in foreign such as a model business of smart grid in foreign, policy for smart grid in U.S.A, Trend of smart grid in domestic with international standard of smart grid and strategy and rood map, smart power grid as infrastructure of smart business with EMS development, SAS, SCADA, DAS and PQMS, smart grid for smart consumer, smart renewable like Desertec project, convergence IT with network and PLC, application of an electric car, smart electro service for realtime of electrical pricing system, arrangement of smart grid.

  19. INFORMATIZATION: PHILOSOPHICAL AND ANTHROPOLOGICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    A. A. Kosolapov

    2015-07-01

    Full Text Available Purpose.Computerization and informatization in recent decades gave the mankind automated electronic document management systems, automated process of production, Internet and network information resources WWW, expanded the communications capabilities and led to the globalization of the information society. At the same time gives rise to a number of processes of informatization philosophical and anthropological problems, that has become an existential character. It is necessary to identify and understanding of these issues on the basis of the gnoseological model of the evolution informatization paradigms and determine their main characteristics. Methodology. The system-activity approach was used; it allowed identifying and analyzing the impact of the main components of information and communication technologies (ICT for educational activities. And further to present them as a unified system of human activity in conditions computerization/informatization. The philosophical principles: a comprehensive review of the subject, the unity of the logical and historical, ascending from the abstract to the concrete was used. The general scientific principles: unity and development of the system, the decomposition hierarchy, individualization and cooperation, diversity and taxonomy were applied. Findings.The three-stage gnoseological model of the paradigms computerization/informatization evolution was proposed by the author. It is based on three information system characteristics: speed, interface and data access. The seven-bar anthrop-centric model, which is called the architecture of information systems (AIS, which describes the changes in their types of procuring, was proposed for each paradigm. The philosophical-anthropological problems that affect negatively its progress were formulated for each stage of modern information society transformation. Originality. The gnoseological model of development processes of informatization in the form of three

  20. The Biodiversity Informatics Potential Index

    Science.gov (United States)

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  1. Translational informatics: an industry perspective.

    Science.gov (United States)

    Cantor, Michael N

    2012-01-01

    Translational informatics (TI) is extremely important for the pharmaceutical industry, especially as the bar for regulatory approval of new medications is set higher and higher. This paper will explore three specific areas in the drug development lifecycle, from tools developed by precompetitive consortia to standardized clinical data collection to the effective delivery of medications using clinical decision support, in which TI has a major role to play. Advancing TI will require investment in new tools and algorithms, as well as ensuring that translational issues are addressed early in the design process of informatics projects, and also given higher weight in funding or publication decisions. Ultimately, the source of translational tools and differences between academia and industry are secondary, as long as they move towards the shared goal of improving health.

  2. The Emerging Role of the Chief Research Informatics Officer in Academic Health Centers.

    Science.gov (United States)

    Sanchez-Pinto, L Nelson; Mosa, Abu S M; Fultz-Hollis, Kate; Tachinardi, Umberto; Barnett, William K; Embi, Peter J

    2017-08-16

    The role of the Chief Research Informatics Officer (CRIO) is emerging in academic health centers to address the challenges clinical researchers face in the increasingly digitalized, data-intensive healthcare system. Most current CRIOs are the first officers in their institutions to hold that role. To date there is very little published information about this role and the individuals who serve it. To increase our understanding of the CRIO role, the leaders who serve it, and the factors associated with their success in their organizations. The Clinical Research Informatics Working Group of the American Medical Informatics Association (AMIA) conducted a national survey of CRIOs in the United States and convened an expert panel of CRIOs to discuss their experience during the 2016 AMIA Annual Symposium. CRIOs come from diverse academic backgrounds. Most have advance training and extensive experience in biomedical informatics but the majority have been CRIOs for less than three years. CRIOs identify funding, data governance, and advancing data analytics as their major challenges. CRIOs play an important role in helping shape the future of clinical research, innovation, and data analytics in healthcare in their organizations. They share many of the same challenges and see the same opportunities for the future of the field. Better understanding the background and experience of current CRIOs can help define and develop the role in other organizations and enhance their influence in the field of research informatics.

  3. Recommendations of the International Medical Informatics Association (IMIA) on Education in Health and Medical Informatics

    Czech Academy of Sciences Publication Activity Database

    Arokiasamy, J.; Ball, M.; Barnett, D.; Bearman, M.; Bemmel van, J.; Douglas, J.; Fisher, P.; Garrie, R.; Gatewood, L.; Goossen, W.; Grant, A.; Hales, J.; Hasman, A.; Haux, R.; Hovenga, E.; Johns, M.; Knaup, P.; Leven, F. J.; Lorenzi, N.; Murray, P.; Neame, R.; Protti, D.; Power, M.; Richard, J.; Schuster, E.; Swinkels, W.; Yang, J.; Zelmer, L.; Zvárová, Jana

    2001-01-01

    Roč. 40, č. 5 (2001), s. 267-277 ISSN 0026-1270 Institutional research plan: AV0Z1030915 Keywords : health informatics * medical informatics * education * recommendations * International Medical Informatics Association * IMIA Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.254, year: 2001

  4. The Informatics Security Cost of Distributed Applications

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2010-01-01

    Full Text Available The objective, necessity, means and estimated efficiency of information security cost modeling are presented. The security requirements of distributed informatics applications are determined. Aspects regarding design, development and implementation are established. Influence factors for informatics security are presented and their correlation is analyzed. The costs associated to security processes are studied. Optimal criteria for informatics security are established. The security cost of the informatics application for validating organizational identifiers is determined using theoretical assumptions made for cost models. The conclusions highlight the validity of research results and offer perspectives for future research.

  5. All India Seminar on Biomedical Engineering 2012

    CERN Document Server

    Bhatele, Mukta

    2013-01-01

    This book is a collection of articles presented by researchers and practitioners, including engineers, biologists, health professionals and informatics/computer scientists, interested in both theoretical advances and applications of information systems, artificial intelligence, signal processing, electronics and other engineering tools in areas related to biology and medicine in the All India Seminar on Biomedical Engineering 2012 (AISOBE 2012), organized by The Institution of Engineers (India), Jabalpur Local Centre, Jabalpur, India during November 3-4, 2012. The content of the book is useful to doctors, engineers, researchers and academicians as well as industry professionals.

  6. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    Science.gov (United States)

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  7. Nursing informatics: the future now.

    Science.gov (United States)

    Mamta

    2014-01-01

    Technological advancements in the health care field have always impacted the health care practices. Nursing practice has also been greatly influenced by the technology. In the recent years, use of information technology including computers, handheld digital devices, internet has advanced the nursing by bridging the gap from nursing as an art to nursing as science. In every sphere of nursing practice, nursing research, nursing education and nursing informatics play a very important role. If used properly it is a way to save time, helping to provide quality nursing care and increases the proficiency of nursing personnel.

  8. Practitioner's guide to health informatics

    CERN Document Server

    Braunstein, Mark

    2015-01-01

    ""This book will be a terrific introduction to the field of clinical IT and clinical informatics"" -- Kevin Johnson ""Dr. Braunstein has done a wonderful job of exploring a number of key trends in technology in the context of the transformations that are occurring in our health care system"" -- Bob Greenes ""This insightful book is a perfect primer for technologists entering the health tech field."" -- Deb Estrin ""This book should be read by everyone.​"" -- David Kibbe This book provides care providers and other non-technical readers with a broad, practical overview of the changi

  9. Medical Imaging Informatics in Nuclear Medicine

    NARCIS (Netherlands)

    van Ooijen, Peter; Glaudemans, Andor W.J.M.; Medema, Jitze; van Zanten, Annie K.; Dierckx, Rudi A.J.O.; Ahaus, C.T.B. (Kees)

    2016-01-01

    Medical imaging informatics is gaining importance in medicine both in clinical practice and in scientific research. Besides radiology, nuclear medicine is also a major stakeholder in medical imaging informatics because of the variety of available imaging modalities and the imaging-oriented operation

  10. The Teaching of Informatics for Business Students

    Science.gov (United States)

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  11. Assessment of Health Informatics Competencies in Undergraduate ...

    African Journals Online (AJOL)

    Rwanda Journal Series F: Medicine and Health Sciences Vol. ... establishment of continuous on-the-job training in health informatics for those ... deals with the resources, devices and formalized methods .... informatics competencies in undergraduate level, the tool ... Descriptive statistics were used to describe numerical.

  12. The Grid

    CERN Document Server

    Klotz, Wolf-Dieter

    2005-01-01

    Grid technology is widely emerging. Grid computing, most simply stated, is distributed computing taken to the next evolutionary level. The goal is to create the illusion of a simple, robust yet large and powerful self managing virtual computer out of a large collection of connected heterogeneous systems sharing various combinations of resources. This talk will give a short history how, out of lessons learned from the Internet, the vision of Grids was born. Then the extensible anatomy of a Grid architecture will be discussed. The talk will end by presenting a selection of major Grid projects in Europe and US and if time permits a short on-line demonstration.

  13. Knowledge management and informatics considerations for comparative effectiveness research: a case-driven exploration.

    Science.gov (United States)

    Embi, Peter J; Hebert, Courtney; Gordillo, Gayle; Kelleher, Kelly; Payne, Philip R O

    2013-08-01

    As clinical data are increasingly collected and stored electronically, their potential use for comparative effectiveness research (CER) grows. Despite this promise, challenges face those wishing to leverage such data. In this paper we aim to enumerate some of the knowledge management and informatics issues common to such data reuse. After reviewing the current state of knowledge regarding biomedical informatics challenges and best practices related to CER, we then present 2 research projects at our institution. We analyze these and highlight several common themes and challenges related to the conduct of CER studies. Finally, we represent these emergent themes. The informatics challenges commonly encountered by those conducting CER studies include issues related to data information and knowledge management (eg, data reuse, data preparation) as well as those related to people and organizational issues (eg, sociotechnical factors and organizational factors). Examples of these are described in further detail and a formal framework for describing these findings is presented. Significant challenges face researchers attempting to use often diverse and heterogeneous datasets for CER. These challenges must be understood in order to be dealt with successfully and can often be overcome with the appropriate use of informatics best practices. Many research and policy questions remain to be answered in order to realize the full potential of the increasingly electronic clinical data available for such research.

  14. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    Pawar, S.H.; Khyalappa, R.J.; Yakhmi, J.V.

    2009-01-01

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  15. Big Data Application in Biomedical Research and Health Care: A Literature Review.

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care.

  16. BACHELOR OF INFORMATICS COMPETENCE IN PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Andrii M. Striuk

    2015-04-01

    Full Text Available Based on the analysis of approaches to the definition of professional competencies of IT students the competence in programming of bachelor of informatics is proposed. Due to the standard of training in 040302 “Informatics” and Computing Curricula 2001 it was defined the content and structure of the competence in programming of bachelor of informatics. The system of content modules providing its formation was designed. The contribution of regulatory competencies of bachelor of informatics in the formation of competence in programming is defined. The directions of formation of competence in programming in the cloudy-oriented learning environment are proposed.

  17. Antibody informatics for drug discovery

    DEFF Research Database (Denmark)

    Shirai, Hiroki; Prades, Catherine; Vita, Randi

    2014-01-01

    to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic...... infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies...... for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii...

  18. Scientific papers for health informatics.

    Science.gov (United States)

    Pereira, Samáris Ramiro; Duarte, Jacy Marcondes; Bandiera-Paiva, Paulo

    2013-01-01

    From the hypothesis that the development of scientific papers, mainly in interdisciplinary areas such as Health Informatics, may bring difficulties to the author, as had its communicative efficacy decreased or compromising their approval for publication; we aim to make considerations on the main items to good players making this kind of text. The scientific writing has peculiarities that must be taken into consideration when it writes: general characteristics, such as simplicity and objectivity, and characteristics of each area of knowledge, such as terminology, formatting and standardization. The research methodology adopted is bibliographical. The information was based on literature review and the authors' experience, teachers and assessors of scientific methodology in peer review publications in the area. As a result, we designed a checklist of items to be checked before submission of a paper to a scientific publication vehicle in order to contribute to the promotion of research, facilitating the publication and increase its capacity in this important area of knowledge.

  19. Informatics enables public health surveillance

    Directory of Open Access Journals (Sweden)

    Scott J. N McNabb

    2017-01-01

    Full Text Available Over the past decade, the world has radically changed. New advances in information and communication technologies (ICT connect the world in ways never imagined. Public health informatics (PHI leveraged for public health surveillance (PHS, can enable, enhance, and empower essential PHS functions (i.e., detection, reporting, confirmation, analyses, feedback, response. However, the tail doesn't wag the dog; as such, ICT cannot (should not drive public health surveillance strengthening. Rather, ICT can serve PHS to more effectively empower core functions. In this review, we explore promising ICT trends for prevention, detection, and response, laboratory reporting, push notification, analytics, predictive surveillance, and using new data sources, while recognizing that it is the people, politics, and policies that most challenge progress for implementation of solutions.

  20. The challenge of ubiquitous computing in health care: technology, concepts and solutions. Findings from the IMIA Yearbook of Medical Informatics 2005.

    Science.gov (United States)

    Bott, O J; Ammenwerth, E; Brigl, B; Knaup, P; Lang, E; Pilgram, R; Pfeifer, B; Ruderich, F; Wolff, A C; Haux, R; Kulikowski, C

    2005-01-01

    To review recent research efforts in the field of ubiquitous computing in health care. To identify current research trends and further challenges for medical informatics. Analysis of the contents of the Yearbook on Medical Informatics 2005 of the International Medical Informatics Association (IMIA). The Yearbook of Medical Informatics 2005 includes 34 original papers selected from 22 peer-reviewed scientific journals related to several distinct research areas: health and clinical management, patient records, health information systems, medical signal processing and biomedical imaging, decision support, knowledge representation and management, education and consumer informatics as well as bioinformatics. A special section on ubiquitous health care systems is devoted to recent developments in the application of ubiquitous computing in health care. Besides additional synoptical reviews of each of the sections the Yearbook includes invited reviews concerning E-Health strategies, primary care informatics and wearable healthcare. Several publications demonstrate the potential of ubiquitous computing to enhance effectiveness of health services delivery and organization. But ubiquitous computing is also a societal challenge, caused by the surrounding but unobtrusive character of this technology. Contributions from nearly all of the established sub-disciplines of medical informatics are demanded to turn the visions of this promising new research field into reality.

  1. Handbook of evaluation methods for health informatics

    National Research Council Canada - National Science Library

    Brender, Jytte

    2006-01-01

    .... Amsterdam: lOS Press, Studies in Health Technology and Informatics 1997; 42, with permission. This book is printed on acid-free paper. (~ Copyright 92006, Elsevier Inc. All rights reserved. No part ...

  2. PRINCIPLES, BASES, AND LAWS OF FUNDAMENTAL INFORMATICS

    Directory of Open Access Journals (Sweden)

    Gennady N. Zverev

    2013-01-01

    Full Text Available This paper defines the goals and problems of fundamental informatics, formulates principal laws of information universe and constructive bases of information objects and processes. The classification of semantics types of knowledge and skills is presented. 

  3. Public health informatics and information systems

    CERN Document Server

    Magnuson, J A

    2013-01-01

    In a revised edition, this book covers all aspects of public health informatics, and discusses the creation and management of an information technology infrastructure that is essential in linking state and local organizations in their efforts to gather data.

  4. Comparative effectiveness research and medical informatics.

    Science.gov (United States)

    D'Avolio, Leonard W; Farwell, Wildon R; Fiore, Louis D

    2010-12-01

    As is the case for environmental, ecological, astronomical, and other sciences, medical practice and research finds itself in a tsunami of data. This data deluge, due primarily to the introduction of digitalization in routine medical care and medical research, affords the opportunity for improved patient care and scientific discovery. Medical informatics is the subdiscipline of medicine created to make greater use of information in order to improve healthcare. The 4 areas of medical informatics research (information access, structure, analysis, and interaction) are used as a framework to discuss the overlap in information needs of comparative effectiveness research and potential contributions of medical informatics. Examples of progress from the medical informatics literature and the Veterans Affairs Healthcare System are provided. Published by Elsevier Inc.

  5. Impact Analysis for Risks in Informatics Systems

    OpenAIRE

    Baicu, Floarea; Baches, Maria Alexandra

    2013-01-01

    In this paper are presented methods of impact analysis on informatics system security accidents, qualitative and quantitative methods, starting with risk and informational system security definitions. It is presented the relationship between the risks of exploiting vulnerabilities of security system, security level of these informatics systems, probability of exploiting the weak points subject to financial losses of a company, respectively impact of a security accident on the company. Herewit...

  6. Research and development and industrial informatization

    International Nuclear Information System (INIS)

    1995-08-01

    This book deals with research and development and industrial informatization with development of technology international trend, the present conditions of scientific technology in the major nations, politics of technical development and trend, process of national research and development, research for industrial research and development, strengthen cooperation for scientific technology among nations, current situation and development of technology by field such as energy, software and system, and technology for industrial informatization.

  7. Advances in Intelligence and Security Informatics

    CERN Document Server

    Mao, Wenji

    2012-01-01

    The Intelligent Systems Series comprises titles that present state of the art knowledge and the latest advances in intelligent systems. Its scope includes theoretical studies, design methods, and real-world implementations and applications. Traditionally, Intelligence and Security Informatics (ISI) research and applications have focused on information sharing and data mining, social network analysis, infrastructure protection and emergency responses for security informatics. With the continuous advance of IT technologies and the increasing sophistication of national and international securi

  8. Moving toward a United States strategic plan in primary care informatics: a White Paper of the Primary Care Informatics Working Group, American Medical Informatics Association

    Directory of Open Access Journals (Sweden)

    David Little

    2003-06-01

    Full Text Available The Primary Care Informatics Working Group (PCIWG of the American Medical Informatics Association (AMIA has identified the absence of a national strategy for primary care informatics. Under PCIWG leadership, major national and international societies have come together to create the National Alliance for Primary Care Informatics (NAPCI, to promote a connection between the informatics community and the organisations that support primary care. The PCIWG clinical practice subcommittee has recognised the necessity of a global needs assessment, and proposed work in point-of-care technology, clinical vocabularies, and ambulatory electronic medical record development. Educational needs include a consensus statement on informatics competencies, recommendations for curriculum and teaching methods, and methodologies to evaluate their effectiveness. The research subcommittee seeks to define a primary care informatics research agenda, and to support and disseminate informatics research throughout the primary care community. The AMIA board of directors has enthusiastically endorsed the conceptual basis for this White Paper.

  9. Gaps in the existing public health informatics training programs: a challenge to the development of a skilled global workforce.

    Science.gov (United States)

    Joshi, Ashish; Perin, Douglas Marcel Puricelli

    2012-01-01

    The objective of this study was to explore public health informatics (PHI) training programs that currently exist to meet the growing demand for a trained global workforce. We used several search engines, scientific databases, and the websites of informatics organizations; sources included PubMed, Google, the American Medical Informatics Organization, and the International Medical Informatics Organization. The search was conducted from May to July 2011 and from January to February 2012 using key words such as informatics, public health informatics, or biomedical informatics along with academic programs, training, certificate, graduate programs, or postgraduate programs. Course titles and catalog descriptions were gathered from the program or institution websites. Variables included PHI program categories, location and mode of delivery, program credits, and costs. Each course was then categorized based on its title and description as available on the Internet. Finally, we matched course titles and descriptions with the competencies for PHIs determined by Centers for Disease Control and Prevention (CDC). Descriptive analysis was performed to report means and frequency distributions for continuous and categorical variables. Stratified analysis was performed to explore average credits and cost per credit among both the public and private institutions. Fifteen PHI programs were identified across 13 different institutions, the majority of which were US-based. The average number of credits and the associated costs required to obtain PHI training were much higher in private as compared to public institutions. The study results suggest that a need for online contextual and cost-effective PHI training programs exists to address the growing needs of professionals worldwide who are using technology to improve public health in their respective countries.

  10. Grid Security

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The aim of Grid computing is to enable the easy and open sharing of resources between large and highly distributed communities of scientists and institutes across many independent administrative domains. Convincing site security officers and computer centre managers to allow this to happen in view of today's ever-increasing Internet security problems is a major challenge. Convincing users and application developers to take security seriously is equally difficult. This paper will describe the main Grid security issues, both in terms of technology and policy, that have been tackled over recent years in LCG and related Grid projects. Achievements to date will be described and opportunities for future improvements will be addressed.

  11. Building the informatics infrastructure for comparative effectiveness research (CER): a review of the literature.

    Science.gov (United States)

    Lopez, Marianne Hamilton; Holve, Erin; Sarkar, Indra Neil; Segal, Courtney

    2012-07-01

    Technological advances in clinical informatics have made large amounts of data accessible and potentially useful for research. As a result, a burgeoning literature addresses efforts to bridge the fields of health services research and biomedical informatics. The Electronic Data Methods Forum review examines peer-reviewed literature at the intersection of comparative effectiveness research and clinical informatics. The authors are specifically interested in characterizing this literature and identifying cross-cutting themes and gaps in the literature. A 3-step systematic literature search was conducted, including a structured search of PubMed, manual reviews of articles from selected publication lists, and manual reviews of research activities based on prospective electronic clinical data. Two thousand four hundred thirty-five citations were identified as potentially relevant. Ultimately, a full-text review was performed for 147 peer-reviewed papers. One hundred thirty-two articles were selected for inclusion in the review. Of these, 88 articles are the focus of the discussion in this paper. Three types of articles were identified, including papers that: (1) provide historical context or frameworks for using clinical informatics for research, (2) describe platforms and projects, and (3) discuss issues, challenges, and applications of natural language processing. In addition, 2 cross-cutting themes emerged: the challenges of conducting research in the absence of standardized ontologies and data collection; and unique data governance concerns related to the transfer, storage, deidentification, and access to electronic clinical data. Finally, the authors identified several current gaps on important topics such as the use of clinical informatics for cohort identification, cloud computing, and single point access to research data.

  12. Consumer Health Informatics: Past, Present, and Future of a Rapidly Evolving Domain.

    Science.gov (United States)

    Demiris, G

    2016-05-20

    Consumer Health Informatics (CHI) is a rapidly growing domain within the field of biomedical and health informatics. The objective of this paper is to reflect on the past twenty five years and showcase informatics concepts and applications that led to new models of care and patient empowerment, and to predict future trends and challenges for the next 25 years. We discuss concepts and systems based on a review and analysis of published literature in the consumer health informatics domain in the last 25 years. The field was introduced with the vision that one day patients will be in charge of their own health care using informatics tools and systems. Scientific literature in the field originally focused on ways to assess the quality and validity of available printed health information, only to grow significantly to cover diverse areas such as online communities, social media, and shared decision-making. Concepts such as home telehealth, mHealth, and the quantified-self movement, tools to address transparency of health care organizations, and personal health records and portals provided significant milestones in the field. Consumers are able to actively participate in the decision-making process and to engage in health care processes and decisions. However, challenges such as health literacy and the digital divide have hindered us from maximizing the potential of CHI tools with a significant portion of underserved populations unable to access and utilize them. At the same time, at a global scale consumer tools can increase access to care for underserved populations in developing countries. The field continues to grow and emerging movements such as precision medicine and the sharing economy will introduce new opportunities and challenges.

  13. Grid Computing

    Indian Academy of Sciences (India)

    A computing grid interconnects resources such as high performancecomputers, scientific databases, and computercontrolledscientific instruments of cooperating organizationseach of which is autonomous. It precedes and is quitedifferent from cloud computing, which provides computingresources by vendors to customers ...

  14. Grid Computing

    Indian Academy of Sciences (India)

    IAS Admin

    emergence of supercomputers led to the use of computer simula- tion as an .... Scientific and engineering applications (e.g., Tera grid secure gate way). Collaborative ... Encryption, privacy, protection from malicious software. Physical Layer.

  15. MEDICAL INFORMATICS TODAY AND TOMORROW

    Directory of Open Access Journals (Sweden)

    Jure Dimec

    2004-02-01

    Full Text Available The article describes the state and some trends in the development of medical informatics especially regarding the fields of scientific information, knowledge discovery in databases, and the role of standards in data exchange.The ways of publication of scientific documents experienced dramatic changes with the development of the www, hence causing major changes in daily information practice. Contemporary textual databases contain full documents of hypertextual and multimedia nature and links to full documents are increasingly common within the records of bibliographic databases. The last decade brought the advent of the web information tools, from web portals to global search engines, which are powerful aids but demand strong precaution regarding the quality of retrieved documents from the users. On the other hand, we are witnessing the development of digital libraries of scientific documents as a result of the self-organization of academic institutions, research groups and individuals, often in the opposition to the interests of publishing companies.The information support as an important element of medical procedures made possible the exchange of data between all segments of the health-care system and it has become clear that lack of standards governing structure, understanding and safety is among the biggest obstacles to successful data exchange.In addition, the article comprises a report on the methods of knowledge discovery in databases, which help us discover hidden structures and potential knowledge, invisible to the normal data-processing software, in the enormous amount of data.

  16. X-Informatics: Practical Semantic Science

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The discipline of data science is merging with multiple science disciplines to form new X-informatics research disciplines. They are almost too numerous to name, but they include geoinformatics, bioinformatics, cheminformatics, biodiversity informatics, ecoinformatics, materials informatics, and the emerging discipline of astroinformatics. Within any X-informatics discipline, the information granules are unique to that discipline -- e.g., gene sequences in bio, the sky object in astro, and the spatial object in geo (such as points, lines, and polygons in the vector model, and pixels in the raster model). Nevertheless the goals are similar: transparent data re-use across subdisciplines and within education settings, information and data integration and fusion, personalization of user interactions with the data collection, semantic search and retrieval, and knowledge discovery. The implementation of an X-informatics framework enables these semantic e-science research goals. We describe the concepts, challenges, and new developments associated with the new discipline of astroinformatics, and how geoinformatics provides valuable lessons learned and a model for practical semantic science within a traditional science discipline through the accretion of data science methodologies (such as formal metadata creation, data models, data mining, information retrieval, knowledge engineering, provenance, taxonomies, and ontologies). The emerging concept of data-as-a-service (DaaS) builds upon the concept of smart data (or data DNA) for intelligent data management, automated workflows, and intelligent processing. Smart data, defined through X-informatics, enables several practical semantic science use cases, including self-discovery, data intelligence, automatic recommendations, relevance analysis, dimension reduction, feature selection, constraint-based mining, interdisciplinary data re-use, knowledge-sharing, data use in education, and more. We describe these concepts within the

  17. Building a biomedical ontology recommender web service

    Directory of Open Access Journals (Sweden)

    Jonquet Clement

    2010-06-01

    Full Text Available Abstract Background Researchers in biomedical informatics use ontologies and terminologies to annotate their data in order to facilitate data integration and translational discoveries. As the use of ontologies for annotation of biomedical datasets has risen, a common challenge is to identify ontologies that are best suited to annotating specific datasets. The number and variety of biomedical ontologies is large, and it is cumbersome for a researcher to figure out which ontology to use. Methods We present the Biomedical Ontology Recommender web service. The system uses textual metadata or a set of keywords describing a domain of interest and suggests appropriate ontologies for annotating or representing the data. The service makes a decision based on three criteria. The first one is coverage, or the ontologies that provide most terms covering the input text. The second is connectivity, or the ontologies that are most often mapped to by other ontologies. The final criterion is size, or the number of concepts in the ontologies. The service scores the ontologies as a function of scores of the annotations created using the National Center for Biomedical Ontology (NCBO Annotator web service. We used all the ontologies from the UMLS Metathesaurus and the NCBO BioPortal. Results We compare and contrast our Recommender by an exhaustive functional comparison to previously published efforts. We evaluate and discuss the results of several recommendation heuristics in the context of three real world use cases. The best recommendations heuristics, rated ‘very relevant’ by expert evaluators, are the ones based on coverage and connectivity criteria. The Recommender service (alpha version is available to the community and is embedded into BioPortal.

  18. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  19. Integrating best evidence into patient care: a process facilitated by a seamless integration with informatics tools.

    Science.gov (United States)

    Giuse, Nunzia B; Williams, Annette M; Giuse, Dario A

    2010-07-01

    The Vanderbilt University paper discusses how the Eskind Biomedical Library at Vanderbilt University Medical Center transitioned from a simplistic approach that linked resources to the institutional electronic medical record system, StarPanel, to a value-added service that is designed to deliver highly relevant information. Clinical teams formulate complex patient-specific questions via an evidence-based medicine literature request basket linked to individual patient records. The paper transitions into discussing how the StarPanel approach acted as a springboard for two additional projects that use highly trained knowledge management librarians with informatics expertise to integrate evidence into both order sets and a patient portal, MyHealth@Vanderbilt.

  20. MO-C-BRCD-03: The Role of Informatics in Medical Physics and Vice Versa.

    Science.gov (United States)

    Andriole, K

    2012-06-01

    Like Medical Physics, Imaging Informatics encompasses concepts touching every aspect of the imaging chain from image creation, acquisition, management and archival, to image processing, analysis, display and interpretation. The two disciplines are in fact quite complementary, with similar goals to improve the quality of care provided to patients using an evidence-based approach, to assure safety in the clinical and research environments, to facilitate efficiency in the workplace, and to accelerate knowledge discovery. Use-cases describing several areas of informatics activity will be given to illustrate current limitations that would benefit from medical physicist participation, and conversely areas in which informaticists may contribute to the solution. Topics to be discussed include radiation dose monitoring, process management and quality control, display technologies, business analytics techniques, and quantitative imaging. Quantitative imaging is increasingly becoming an essential part of biomedicalresearch as well as being incorporated into clinical diagnostic activities. Referring clinicians are asking for more objective information to be gleaned from the imaging tests that they order so that they may make the best clinical management decisions for their patients. Medical Physicists may be called upon to identify existing issues as well as develop, validate and implement new approaches and technologies to help move the field further toward quantitative imaging methods for the future. Biomedical imaging informatics tools and techniques such as standards, integration, data mining, cloud computing and new systems architectures, ontologies and lexicons, data visualization and navigation tools, and business analytics applications can be used to overcome some of the existing limitations. 1. Describe what is meant by Medical Imaging Informatics and understand why the medical physicist should care. 2. Identify existing limitations in information technologies with

  1. History of health informatics: a global perspective.

    Science.gov (United States)

    Cesnik, Branko; Kidd, Michael R

    2010-01-01

    In considering a 'history' of Health Informatics it is important to be aware that the discipline encompasses a wide array of activities, products, research and theories. Health Informatics is as much a result of evolution as planned philosophy, having its roots in the histories of information technology and medicine. The process of its growth continues so that today's work is tomorrow's history. A 'historical' discussion of the area is its history to date, a report rather than a summation. As well as its successes, the history of Health Informatics is populated with visionary promises that have failed to materialise despite the best intentions. For those studying the subject or working in the field, the experiences of others' use of Information Technologies for the betterment of health care can provide a necessary perspective. This chapter starts by noting some of the major events and people that form a technological backdrop to Health Informatics and ends with some thoughts on the future. This chapter gives an educational overview of: * The history of computing * The beginnings of the health informatics discipline.

  2. Medical Informatics Education & Research in Greece.

    Science.gov (United States)

    Chouvarda, I; Maglaveras, N

    2015-08-13

    This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated.

  3. Craniofacial imaging informatics and technology development.

    Science.gov (United States)

    Vannier, M W

    2003-01-01

    'Craniofacial imaging informatics' refers to image and related scientific data from the dentomaxillofacial complex, and application of 'informatics techniques' (derived from disciplines such as applied mathematics, computer science and statistics) to understand and organize the information associated with the data. Major trends in information technology determine the progress made in craniofacial imaging and informatics. These trends include industry consolidation, disruptive technologies, Moore's law, electronic atlases and on-line databases. Each of these trends is explained and documented, relative to their influence on craniofacial imaging. Craniofacial imaging is influenced by major trends that affect all medical imaging and related informatics applications. The introduction of cone beam craniofacial computed tomography scanners is an example of a disruptive technology entering the field. An important opportunity lies in the integration of biologic knowledge repositories with craniofacial images. The progress of craniofacial imaging will continue subject to limitations imposed by the underlying technologies, especially imaging informatics. Disruptive technologies will play a major role in the evolution of this field.

  4. Chapter 17: bioimage informatics for systems pharmacology.

    Directory of Open Access Journals (Sweden)

    Fuhai Li

    2013-04-01

    Full Text Available Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi. Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies.

  5. Philosophy of Information and Fundamental Problems of Modern Informatics

    Directory of Open Access Journals (Sweden)

    Konstantin Kolin

    2011-10-01

    Full Text Available Actual philosophical and scientifically methodological problems of modern Informatics as fundamental science and a complex scientific direction are considered. Communication of these problems with prospects of development of Informatics and fundamental science as a whole is shown.

  6. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  7. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John D; Blanchard, Susan M

    2005-01-01

    Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering * New chapters o...

  8. Unravelling the tangled taxonomies of health informatics

    Directory of Open Access Journals (Sweden)

    David Barrett

    2014-08-01

    Full Text Available Even though informatics is a term used commonly in healthcare, it can be a confusing and disengaging one. Many definitions exist in the literature, and attempts have been made to develop a clear taxonomy. Despite this, informatics is still a term that lacks clarity in both its scope and the classification of sub-terms that it encompasses.This paper reviews the importance of an agreed taxonomy and explores the challenges of establishing exactly what is meant by health informatics (HI. It reviews what a taxonomy should do, summarises previous attempts at categorising and organising HI and suggests the elements to consider when seeking to develop a system of classification.The paper does not provide all the answers, but it does clarify the questions. By plotting a path towards a taxonomy of HI, it will be possible to enhance understanding and optimise the benefits of embracing technology in clinical practice.

  9. XCEDE: an extensible schema for biomedical data.

    Science.gov (United States)

    Gadde, Syam; Aucoin, Nicole; Grethe, Jeffrey S; Keator, David B; Marcus, Daniel S; Pieper, Steve

    2012-01-01

    The XCEDE (XML-based Clinical and Experimental Data Exchange) XML schema, developed by members of the BIRN (Biomedical Informatics Research Network), provides an extensive metadata hierarchy for storing, describing and documenting the data generated by scientific studies. Currently at version 2.0, the XCEDE schema serves as a specification for the exchange of scientific data between databases, analysis tools, and web services. It provides a structured metadata hierarchy, storing information relevant to various aspects of an experiment (project, subject, protocol, etc.). Each hierarchy level also provides for the storage of data provenance information allowing for a traceable record of processing and/or changes to the underlying data. The schema is extensible to support the needs of various data modalities and to express types of data not originally envisioned by the developers. The latest version of the XCEDE schema and manual are available from http://www.xcede.org/ .

  10. Approaches, requirements and trends in teacher training informatics to attestation of pedagogical stuff under conditions of informatization

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Заславская

    2013-12-01

    Full Text Available This article describes the requirements for the training of teachers of Informatics, the need for managerial competence. Recommendations to the teacher of Informatics for the attestation of pedagogical staff.

  11. Energy Decision Science and Informatics | Integrated Energy Solutions |

    Science.gov (United States)

    NREL Decision Science and Informatics Energy Decision Science and Informatics NREL utilizes and advances state-of-the-art decision science and informatics to help partners make well-informed energy decisions backed by credible, objective data analysis and insights to maximize the impact of energy

  12. Improving Bridging from Informatics Practice to Theory.

    Science.gov (United States)

    Lehmann, C U; Gundlapalli, A V

    2015-01-01

    In 1962, Methods of Information in Medicine ( MIM ) began to publish papers on the methodology and scientific fundamentals of organizing, representing, and analyzing data, information, and knowledge in biomedicine and health care. Considered a companion journal, Applied Clinical Informatics ( ACI ) was launched in 2009 with a mission to establish a platform that allows sharing of knowledge between clinical medicine and health IT specialists as well as to bridge gaps between visionary design and successful and pragmatic deployment of clinical information systems. Both journals are official journals of the International Medical Informatics Association. As a follow-up to prior work, we set out to explore congruencies and interdependencies in publications of ACI and MIM. The objectives were to describe the major topics discussed in articles published in ACI in 2014 and to determine if there was evidence that theory in 2014 MIM publications was informed by practice described in ACI publications in any year. We also set out to describe lessons learned in the context of bridging informatics practice and theory and offer opinions on how ACI editorial policies could evolve to foster and improve such bridging. We conducted a retrospective observational study and reviewed all articles published in ACI during the calendar year 2014 (Volume 5) for their main theme, conclusions, and key words. We then reviewed the citations of all MIM papers from 2014 to determine if there were references to ACI articles from any year. Lessons learned in the context of bridging informatics practice and theory and opinions on ACI editorial policies were developed by consensus among the two authors. A total of 70 articles were published in ACI in 2014. Clinical decision support, clinical documentation, usability, Meaningful Use, health information exchange, patient portals, and clinical research informatics emerged as major themes. Only one MIM article from 2014 cited an ACI article. There

  13. The caCORE Software Development Kit: Streamlining construction of interoperable biomedical information services

    Directory of Open Access Journals (Sweden)

    Warzel Denise

    2006-01-01

    Full Text Available Abstract Background Robust, programmatically accessible biomedical information services that syntactically and semantically interoperate with other resources are challenging to construct. Such systems require the adoption of common information models, data representations and terminology standards as well as documented application programming interfaces (APIs. The National Cancer Institute (NCI developed the cancer common ontologic representation environment (caCORE to provide the infrastructure necessary to achieve interoperability across the systems it develops or sponsors. The caCORE Software Development Kit (SDK was designed to provide developers both within and outside the NCI with the tools needed to construct such interoperable software systems. Results The caCORE SDK requires a Unified Modeling Language (UML tool to begin the development workflow with the construction of a domain information model in the form of a UML Class Diagram. Models are annotated with concepts and definitions from a description logic terminology source using the Semantic Connector component. The annotated model is registered in the Cancer Data Standards Repository (caDSR using the UML Loader component. System software is automatically generated using the Codegen component, which produces middleware that runs on an application server. The caCORE SDK was initially tested and validated using a seven-class UML model, and has been used to generate the caCORE production system, which includes models with dozens of classes. The deployed system supports access through object-oriented APIs with consistent syntax for retrieval of any type of data object across all classes in the original UML model. The caCORE SDK is currently being used by several development teams, including by participants in the cancer biomedical informatics grid (caBIG program, to create compatible data services. caBIG compatibility standards are based upon caCORE resources, and thus the caCORE SDK has

  14. Power grids

    International Nuclear Information System (INIS)

    Viterbo, J.

    2012-01-01

    The implementation of renewable energies represents new challenges for electrical systems. The objective: making power grids smarter so they can handle intermittent production. The advent of smart grids will allow flexible operations like distributing energy in a multidirectional manner instead of just one way and it will make electrical systems capable of integrating actions by different users, consumers and producers in order to maintain efficient, sustainable, economical and secure power supplies. Practically speaking, they associate sensors, instrumentation and controls with information processing and communication systems in order to create massively automated networks. Smart grids require huge investments: for example more than 7 billion dollars have been invested in China and in the Usa in 2010 and France is ranked 9. worldwide with 265 million dollars invested. It is expected that smart grids will promote the development of new business models and a change in the value chain for energy. Decentralized production combined with the probable introduction of more or less flexible rates for sales or purchases and of new supplier-customer relationships will open the way to the creation of new businesses. (A.C.)

  15. 10th International Conference on Health Informatics

    CERN Document Server

    2017-01-01

    The purpose of the International Conference on Health Informatics is to bring together researchers and practitioners interested in the application of information and communication technologies (ICT) to healthcare and medicine in general and to the support of persons with special needs in particular.

  16. Informatics and machine learning to define the phenotype.

    Science.gov (United States)

    Basile, Anna Okula; Ritchie, Marylyn DeRiggi

    2018-03-01

    For the past decade, the focus of complex disease research has been the genotype. From technological advancements to the development of analysis methods, great progress has been made. However, advances in our definition of the phenotype have remained stagnant. Phenotype characterization has recently emerged as an exciting area of informatics and machine learning. The copious amounts of diverse biomedical data that have been collected may be leveraged with data-driven approaches to elucidate trait-related features and patterns. Areas covered: In this review, the authors discuss the phenotype in traditional genetic associations and the challenges this has imposed.Approaches for phenotype refinement that can aid in more accurate characterization of traits are also discussed. Further, the authors highlight promising machine learning approaches for establishing a phenotype and the challenges of electronic health record (EHR)-derived data. Expert commentary: The authors hypothesize that through unsupervised machine learning, data-driven approaches can be used to define phenotypes rather than relying on expert clinician knowledge. Through the use of machine learning and an unbiased set of features extracted from clinical repositories, researchers will have the potential to further understand complex traits and identify patient subgroups. This knowledge may lead to more preventative and precise clinical care.

  17. Past and next 10 years of medical informatics.

    Science.gov (United States)

    Ückert, Frank; Ammenwerth, Elske; Dujat, Carl; Grant, Andrew; Haux, Reinhold; Hein, Andreas; Hochlehnert, Achim; Knaup-Gregori, Petra; Kulikowski, Casimir; Mantas, John; Maojo, Victor; Marschollek, Michael; Moura, Lincoln; Plischke, Maik; Röhrig, Rainer; Stausberg, Jürgen; Takabayashi, Katsuhiko; Winter, Alfred; Wolf, Klaus-Hendrik; Hasman, Arie

    2014-07-01

    More than 10 years ago Haux et al. tried to answer the question how health care provision will look like in the year 2013. A follow-up workshop was held in Braunschweig, Germany, for 2 days in May, 2013, with 20 invited international experts in biomedical and health informatics. Among other things it had the objectives to discuss the suggested goals and measures of 2002 and how priorities on MI research in this context should be set from the viewpoint of today. The goals from 2002 are now as up-to-date as they were then. The experts stated that the three goals: "patient-centred recording and use of medical data for cooperative care"; "process-integrated decision support through current medical knowledge" and "comprehensive use of patient data for research and health care reporting" have not been reached yet and are still relevant. A new goal for ICT in health care should be the support of patient centred personalized (individual) medicine. MI as an academic discipline carries out research concerning tools that support health care professionals in their work. This research should be carried out without the pressure that it should lead to systems that are immediately and directly accepted in practice.

  18. Perspectives for medical informatics. Reusing the electronic medical record for clinical research.

    Science.gov (United States)

    Prokosch, H U; Ganslandt, T

    2009-01-01

    Even though today most university hospitals have already implemented commercial hospital information systems and started to build up comprehensive electronic medical records, reuse of such data for data warehousing and research purposes is still very rare. Given this situation, the focus of this paper is to present an overview on exemplary projects, which have already tackled this challenge, reflect on current initiatives within the United States of America and the European Union to establish IT infrastructures for clinical and translational research, and draw attention to new challenges in this area. This paper does not intend to provide a fully comprehensive review on all the issues of clinical routine data reuse. It is based, however, on a presentation of a large variety of historical, but also most recent activities in data warehousing, data retrieval and linking medical informatics with translational research. The article presents an overview of the various international approaches to this issue and illustrates concepts and solutions which have been published, thus giving an impression of activities pursued in this field of medical informatics. Further, problems and open questions, which have also been named in the literature, are presented and three challenges (to establish comprehensive clinical data warehouses, to establish professional IT infrastructure applications supporting clinical trial data capture and to integrate medical record systems and clinical trial databases) related to this area of medical informatics are identified and presented. Translational biomedical research with the aim "to integrate bedside and biology" and to bridge the gap between clinical care and medical research today and in the years to come, provides a large and interesting field for medical informatics researchers. Especially the need for integrating clinical research projects with data repositories built up during documentation of routine clinical care, today still leaves

  19. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  20. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  1. Grid pulser

    International Nuclear Information System (INIS)

    Jansweijer, P.P.M.; Es, J.T. van.

    1990-01-01

    This report describes a fast pulse generator. This generator delivers a high-voltage pulse of at most 6000 V with a rise time being smaller than 50 nS. this results in a slew rate of more than 120.000 volts per μS. The pulse generator is used to control the grid of the injector of the electron accelerator MEA. The capacity of this grid is about 60 pF. In order to charge this capacity up to 6000 volts in 50 nS a current of 8 ampere is needed. The maximal pulse length is 50 μS with a repeat frequency of 500 Hz. During this 50 μS the stability of the pulse amplitude is better than 0.1%. (author). 20 figs

  2. Current Status of Nursing Informatics Education in Korea

    Science.gov (United States)

    Jeon, Eunjoo; Kim, Jeongeun; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-01-01

    Objectives This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. Methods A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. Results A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Conclusions Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses. PMID:27200224

  3. Current Status of Nursing Informatics Education in Korea.

    Science.gov (United States)

    Jeon, Eunjoo; Kim, Jeongeun; Park, Hyeoun-Ae; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-04-01

    This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses.

  4. The grid

    OpenAIRE

    Morrad, Annie; McArthur, Ian

    2018-01-01

    Project Anywhere Project title: The Grid   Artists: Annie Morrad: Artist/Senior Lecturer, University of Lincoln, School of Film and Media, Lincoln, UK   Dr Ian McArthur: Hybrid Practitioner/Senior Lecturer, UNSW Art & Design, UNSW Australia, Sydney, Australia   Annie Morrad is a London-based artist and musician and senior lecturer at the University of Lincoln, UK. Dr Ian McArthur is a Sydney-based hybrid practitione...

  5. BiOSS: A system for biomedical ontology selection.

    Science.gov (United States)

    Martínez-Romero, Marcos; Vázquez-Naya, José M; Pereira, Javier; Pazos, Alejandro

    2014-04-01

    In biomedical informatics, ontologies are considered a key technology for annotating, retrieving and sharing the huge volume of publicly available data. Due to the increasing amount, complexity and variety of existing biomedical ontologies, choosing the ones to be used in a semantic annotation problem or to design a specific application is a difficult task. As a consequence, the design of approaches and tools addressed to facilitate the selection of biomedical ontologies is becoming a priority. In this paper we present BiOSS, a novel system for the selection of biomedical ontologies. BiOSS evaluates the adequacy of an ontology to a given domain according to three different criteria: (1) the extent to which the ontology covers the domain; (2) the semantic richness of the ontology in the domain; (3) the popularity of the ontology in the biomedical community. BiOSS has been applied to 5 representative problems of ontology selection. It also has been compared to existing methods and tools. Results are promising and show the usefulness of BiOSS to solve real-world ontology selection problems. BiOSS is openly available both as a web tool and a web service. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Nursing informatics and nursing ethics: addressing their disconnect through an enhanced TIGER-vision.

    Science.gov (United States)

    Kaltoft, Mette Kjer

    2013-01-01

    All healthcare visions, including that of The TIGER (Technology-Informatics-Guiding-Educational-Reform) Initiative envisage a crucial role for nursing. However, its 7 descriptive pillars do not address the disconnect between Nursing Informatics and Nursing Ethics and their distinct communities in the clinical-disciplinary landscape. Each sees itself as providing decision support by way of information inputs and ethical insights, respectively. Both have reasons - ideological, professional, institutional - for their task construction, but this simultaneously disables each from engaging fully in the point-of-(care)-decision. Increased pressure for translating 'evidence-based' research findings into 'ethically-sound', 'value-based' and 'patient-centered' practice requires rethinking the model implicit in conventional knowledge translation and informatics practice in all disciplines, including nursing. The aim is to aid 'how nurses and other health care scientists more clearly identify clinical and other relevant data that can be captured to inform future comparative effectiveness research. 'A prescriptive, theory-based discipline of '(Nursing) Decisionics' expands the Grid for Volunteer Development of TIGER's newly launched virtual learning environment (VLE). This provides an enhanced TIGER-vision for educational reform to deliver ethically coherent, person-centered care transparently.

  7. Safe Grid

    Science.gov (United States)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  8. Grid interoperability: joining grid information systems

    International Nuclear Information System (INIS)

    Flechl, M; Field, L

    2008-01-01

    A grid is defined as being 'coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations'. Over recent years a number of grid projects, many of which have a strong regional presence, have emerged to help coordinate institutions and enable grids. Today, we face a situation where a number of grid projects exist, most of which are using slightly different middleware. Grid interoperation is trying to bridge these differences and enable Virtual Organizations to access resources at the institutions independent of their grid project affiliation. Grid interoperation is usually a bilateral activity between two grid infrastructures. Recently within the Open Grid Forum, the Grid Interoperability Now (GIN) Community Group is trying to build upon these bilateral activities. The GIN group is a focal point where all the infrastructures can come together to share ideas and experiences on grid interoperation. It is hoped that each bilateral activity will bring us one step closer to the overall goal of a uniform grid landscape. A fundamental aspect of a grid is the information system, which is used to find available grid services. As different grids use different information systems, interoperation between these systems is crucial for grid interoperability. This paper describes the work carried out to overcome these differences between a number of grid projects and the experiences gained. It focuses on the different techniques used and highlights the important areas for future standardization

  9. Pathology Informatics Essentials for Residents: A flexible informatics curriculum linked to Accreditation Council for Graduate Medical Education milestones

    Science.gov (United States)

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:27563486

  10. Biomedical applications engineering tasks

    Science.gov (United States)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  11. Biomedical engineering undergraduate education in Latin America

    International Nuclear Information System (INIS)

    Allende, R; Morales, D; Avendano, G; Chabert, S

    2007-01-01

    As in other parts of the World, in recent times there has been an increasing interest on Biomedical Engineering (BME) in Latin America (LA). This interest grows from the need for a larger number of such specialists, originated in a spreading use of health technologies. Indeed, at many universities, biomedical engineering departments have been created, which also brought along discussions on strategies to achieve the best education possible for both undergraduate and graduate programs. In these settings, different positions were taken as regards which subject to emphasize. In such a context, this work aimed to make a survey on the 'state-of-the-art' of undergraduate BME education in LA, and to analyze the observed differences. Broadly speaking, similar education profiles are perceived in the entire continent, with main emphasis on electronics and bioinstrumentation, biology and informatics respectively. Much less relevance is given to biomechanics and biomaterials. This tendency is similar in Departments with many decades of experience or in newly opened ones

  12. Dynamic tables: an architecture for managing evolving, heterogeneous biomedical data in relational database management systems.

    Science.gov (United States)

    Corwin, John; Silberschatz, Avi; Miller, Perry L; Marenco, Luis

    2007-01-01

    Data sparsity and schema evolution issues affecting clinical informatics and bioinformatics communities have led to the adoption of vertical or object-attribute-value-based database schemas to overcome limitations posed when using conventional relational database technology. This paper explores these issues and discusses why biomedical data are difficult to model using conventional relational techniques. The authors propose a solution to these obstacles based on a relational database engine using a sparse, column-store architecture. The authors provide benchmarks comparing the performance of queries and schema-modification operations using three different strategies: (1) the standard conventional relational design; (2) past approaches used by biomedical informatics researchers; and (3) their sparse, column-store architecture. The performance results show that their architecture is a promising technique for storing and processing many types of data that are not handled well by the other two semantic data models.

  13. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    OpenAIRE

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We pr...

  14. Secure grid-based computing with social-network based trust management in the semantic web

    Czech Academy of Sciences Publication Activity Database

    Špánek, Roman; Tůma, Miroslav

    2006-01-01

    Roč. 16, č. 6 (2006), s. 475-488 ISSN 1210-0552 R&D Projects: GA AV ČR 1ET100300419; GA MŠk 1M0554 Institutional research plan: CEZ:AV0Z10300504 Keywords : semantic web * grid computing * trust management * reconfigurable networks * security * hypergraph model * hypergraph algorithms Subject RIV: IN - Informatics, Computer Science

  15. Developing a grid infrastructure in Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Aldama, D.; Dominguez, M.; Ricardo, H.; Gonzalez, A.; Nolasco, E.; Fernandez, E.; Fernandez, M.; Sanchez, M.; Suarez, F.; Nodarse, F.; Moreno, N.; Aguilera, L.

    2007-07-01

    A grid infrastructure was deployed at Centro de Gestion de la Informacion y Desarrollo de la Energia (CUBAENERGIA) in the frame of EELA project and of a national initiative for developing a Cuban Network for Science. A stand-alone model was adopted to overcome connectivity limitations. The e-infrastructure is based on gLite-3.0 middleware and is fully compatible with EELA-infrastructure. Afterwards, the work was focused on grid applications. The application GATE was deployed from the early beginning for biomedical users. Further, two applications were deployed on the local grid infrastructure: MOODLE for e-learning and AERMOD for assessment of local dispersion of atmospheric pollutants. Additionally, our local grid infrastructure was made interoperable with a Java based distributed system for bioinformatics calculations. This experience could be considered as a suitable approach for national networks with weak Internet connections. (Author)

  16. Medical image informatics infrastructure design and applications.

    Science.gov (United States)

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  17. 2012 International Conference on Cybernetics and Informatics

    CERN Document Server

    2014-01-01

    Cybernetics and informatics being a high-profile and fast-moving fields, the papers included in this proceedings will command a wide professional and academic readership. This book covers the very latest developments in the field of cybernetics and informatics. The 2012 conference in Chongqing, China, combined a focus on innovative technologies with an emphasis on sustainable solutions and strategies. Attended by leading figures from academia and industry whose work is represented here, the conference allowed effective cross-pollination between the theoretical and applied sectors of the field. Conference organizers received more than 1,000 papers, of which only ten percent were chosen to be featured in this publication. All of the papers are at the leading edge of developments, and so this book will not only ensure that the very best current work is disseminated, but that it also acts as a spur to future research.

  18. The imaging 3.0 informatics scorecard.

    Science.gov (United States)

    Kohli, Marc; Dreyer, Keith J; Geis, J Raymond

    2015-04-01

    Imaging 3.0 is a radiology community initiative to empower radiologists to create and demonstrate value for their patients, referring physicians, and health systems. In image-guided health care, radiologists contribute to the entire health care process, well before and after the actual examination, and out to the point at which they guide clinical decisions and affect patient outcome. Because imaging is so pervasive, radiologists who adopt Imaging 3.0 concepts in their practice can help their health care systems provide consistently high-quality care at reduced cost. By doing this, radiologists become more valuable in the new health care setting. The authors describe how informatics is critical to embracing Imaging 3.0 and present a scorecard that can be used to gauge a radiology group's informatics resources and capabilities. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  19. Proceedings of the 10th international symposium on biomedical engineering '94

    International Nuclear Information System (INIS)

    1994-11-01

    Main topics of the Symposium were presented and discussed through eight sessions: 1) biomedical instrumentation, 2) biomedical signal measurements and processing, 3) biomechanics, 4) medical imaging, 5) medical informatics, 6) bioelectrical measurements, 7) bioengineering in dentistry and 8) modelling and simulation. The most of the participants were electrical and electronics engineers, physicists and physicians. All submitted papers were reviewed by international reviewers and 48 of the papers were accepted and presented on the symposium. Papers were mainly from Croatia, but there was also a number of papers from Austria, Slovenia, Germany, Italy, France, USA etc

  20. Proceedings of the 10th international symposium on biomedical engineering `94

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    Main topics of the Symposium were presented and discussed through eight sessions: (1) biomedical instrumentation, (2) biomedical signal measurements and processing, (3) biomechanics, (4) medical imaging, (5) medical informatics, (6) bioelectrical measurements, (7) bioengineering in dentistry and (8) modelling and simulation. The most of the participants were electrical and electronics engineers, physicists and physicians. All submitted papers were reviewed by international reviewers and 48 of the papers were accepted and presented on the symposium. Papers were mainly from Croatia, but there was also a number of papers from Austria, Slovenia, Germany, Italy, France, USA etc.

  1. The exploration of the exhibition informatization

    Science.gov (United States)

    Zhang, Jiankang

    2017-06-01

    The construction and management of exhibition informatization is the main task and choke point during the process of Chinese exhibition industry’s transformation and promotion. There are three key points expected to realize a breakthrough during the construction of Chinese exhibition informatization, and the three aspects respectively are adopting service outsourcing to construct and maintain the database, adopting advanced chest card technology to collect various kinds of information, developing statistics analysis to maintain good cutomer relations. The success of Chinese exhibition informatization mainly calls for mature suppliers who can provide construction and maintenance of database, the proven technology, a sense of data security, advanced chest card technology, the ability of data mining and analysis and the ability to improve the exhibition service basing on the commercial information got from the data analysis. Several data security measures are expected to apply during the process of system developing, including the measures of the terminal data security, the internet data security, the media data security, the storage data security and the application data security. The informatization of this process is based on the chest card designing. At present, there are several types of chest card technology: bar code chest card; two-dimension code card; magnetic stripe chest card; smart-chip chest card. The information got from the exhibition data will help the organizers to make relevant service strategies, quantify the accumulated indexes of the customers, and improve the level of the customer’s satisfaction and loyalty, what’s more, the information can also provide more additional services like the commercial trips, VIP ceremonial reception.

  2. R and D project and informatization

    International Nuclear Information System (INIS)

    1996-10-01

    This book deals with present situation and view of research and development project by industry, which includes general machinery industry, the steel industry, non ferrous metal industry, petrochemistry industry, auto industry, shipbuilding industry, aerospace engineering industry, daily supplies industry, fine chemistry industry, the ceramic industry, plate glass industry, biology life industry, electron industry, information industry, and semiconductor industry. It also describes project management of R and D and informatization of industry.367

  3. Techno-Anthropological Sensibilities in Health Informatics

    DEFF Research Database (Denmark)

    Bossen, Claus

    2015-01-01

    What kind of knowledges, skills and competences may be required by Techno-Anthropology engaging with health informatics? If we understand Techno-Anthropology to mean conducting anthropological analyses of the interwoven and mutually shaping relationship between organizing, technologies and actors...... professions and organizations; and skilled in generating analyses and proposing new solutions. Also, people with insight into how action, technologies and organizing are interwoven and redistribute competences, responsibilities and risks are invaluable: Look at from afar, technologies seem to cause...

  4. Interrogating the druggable genome with structural informatics.

    Science.gov (United States)

    Hambly, Kevin; Danzer, Joseph; Muskal, Steven; Debe, Derek A

    2006-08-01

    Structural genomics projects are producing protein structure data at an unprecedented rate. In this paper, we present the Target Informatics Platform (TIP), a novel structural informatics approach for amplifying the rapidly expanding body of experimental protein structure information to enhance the discovery and optimization of small molecule protein modulators on a genomic scale. In TIP, existing experimental structure information is augmented using a homology modeling approach, and binding sites across multiple target families are compared using a clique detection algorithm. We report here a detailed analysis of the structural coverage for the set of druggable human targets, highlighting drug target families where the level of structural knowledge is currently quite high, as well as those areas where structural knowledge is sparse. Furthermore, we demonstrate the utility of TIP's intra- and inter-family binding site similarity analysis using a series of retrospective case studies. Our analysis underscores the utility of a structural informatics infrastructure for extracting drug discovery-relevant information from structural data, aiding researchers in the identification of lead discovery and optimization opportunities as well as potential "off-target" liabilities.

  5. Materials Informatics: Statistical Modeling in Material Science.

    Science.gov (United States)

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Increased Productivity for Emerging Grid Applications the Application Support System

    CERN Document Server

    Maier, Andrew; Mendez Lorenzo, Patricia; Moscicki, Jakub; Lamanna, Massimo; Muraru, Adrian

    2008-01-01

    Recently a growing number of various applications have been quickly and successfully enabled on the Grid by the CERN Grid application support team. This allowed the applications to achieve and publish large-scale results in a short time which otherwise would not be possible. We present the general infrastructure, support procedures and tools that have been developed. We discuss the general patterns observed in supporting new applications and porting them to the EGEE environment. The CERN Grid application support team has been working with the following real-life applications: medical and particle physics simulation (Geant4, Garfield), satellite imaging and geographic information for humanitarian relief operations (UNOSAT), telecommunications (ITU), theoretical physics (Lattice QCD, Feynman-loop evaluation), Bio-informatics (Avian Flu Data Challenge), commercial imaging processing and classification (Imense Ltd.) and physics experiments (ATLAS, LHCb, HARP). Using the EGEE Grid we created a standard infrastruct...

  7. Establishing a national resource: a health informatics collection to maintain the legacy of health informatics development.

    Science.gov (United States)

    Ellis, Beverley; Roberts, Jean; Cooper, Helen

    2007-01-01

    This case study report of the establishment of a national repository of multi-media materials describes the creation process, the challenges faced in putting it into operation and the opportunities for the future. The initial resource has been incorporated under standard library and knowledge management practices. A collaborative action research method was used with active experts in the domain to determine the requirements and priorities for further development. The National Health Informatics Collection (NatHIC) is now accessible and the further issues are being addressed by inclusion in future University and NHS strategic plans. Ultimately the Collection will link with other facilities that contribute to the description and maintenance of effective informatics in support of health globally. The issues raised about the National Health Informatics Collection as established in the UK have resonance with the challenges of capturing the overall historic development of an emerging discipline in any country.

  8. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  9. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  10. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  11. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  12. Health-e-Child a grid platform for european paediatrics

    CERN Document Server

    Skaburskas, K; Shade, J; Manset, D; Revillard, J; Rios, A; Anjum, A; Branson, A; Bloodsworth, P; Hauer, T; McClatchey, R; Rogulin, D

    2008-01-01

    The Health-e-Child (HeC) project [1], [2] is an EC Framework Programme 6 Integrated Project that aims to develop a grid-based integrated healthcare platform for paediatrics. Using this platform biomedical informaticians will integrate heterogeneous data and perform epidemiological studies across Europe. The resulting Grid enabled biomedical information platform will be supported by robust search, optimization and matching techniques for information collected in hospitals across Europe. In particular, paediatricians will be provided with decision support, knowledge discovery and disease modelling applications that will access data in hospitals in the UK, Italy and France, integrated via the Grid. For economy of scale, reusability, extensibility, and maintainability, HeC is being developed on top of an EGEE/gLite [3] based infrastructure that provides all the common data and computation management services required by the applications. This paper discusses some of the major challenges in bio-medical data integr...

  13. Informatization Level Assessment Framework and Educational Policy Implications

    OpenAIRE

    Ana Sekulovska; Pece Mitrevski

    2018-01-01

    Seeing the informatization as a measure of the educational policy, we propose an informatization level assessment framework and introduce a composite indicator – Education Informatization Index, calculated as a weighted sum by applying the Rank-Order Centroid method for weight designation. Although it is made up of only two main categories (Educational Policy Implementation subindex and Educational Policy Creation subindex) and a total of six individual indicators, it captures well all the so...

  14. Outcomes management of mechanically ventilated patients: utilizing informatics technology.

    Science.gov (United States)

    Smith, K R

    1998-11-01

    This article examines an informatics system developed for outcomes management of the mechanically ventilated adult population, focusing on weaning the patient from mechanical ventilation. The link between medical informatics and outcomes management is discussed, along with the development of methods, tools, and data sets for outcomes management of the mechanically ventilated adult population at an acute care academic institution. Pros and cons of this system are identified, and specific areas for improvement of future health care outcomes medical informatics systems are discussed.

  15. Biomedical Accelerator Mass Spectrometry

    Data.gov (United States)

    Federal Laboratory Consortium — Industrial partner projects focus on big, complex challenges and opportunities like smart grid, weather forecasting for renewable energy sources, alternative energy...

  16. Discussion on informatization teaching of certain radar transmitter

    Science.gov (United States)

    Liang, Guanhui; Lv, Guizhou; Meng, Yafeng

    2017-04-01

    With the development of informatization, the traditional teaching method of certain radar transmitter is more and more difficult to meet the need of cultivating new type of high-quality military talents. This paper first analyzes the problems traditional teaching method of certain radar transmitter, and then puts forward the strategy of informatization teaching, and finally elaborates the concrete steps and contents of informatization teaching. Using the multimedia maintenance training system, information simulation training system and network courses and other informatization means, effectively improves the master degree to radar transmitter by trainees, but also lays a good foundation for repair in the next step.

  17. Centralisation of informatics (more effective processes via using new technologies)

    International Nuclear Information System (INIS)

    Cocher, L.

    2004-01-01

    In this presentation author deals with next problems of Slovenske elektrarne, Plc (SE): - Centralisation and optimisation of informatics management; - New technologies within Integrated Informatics System IIS-SE: presentation of preliminary Project of 2 nd generation IIS-SE; - Centralisation of the selected data processing. At the present the intensive process of restructuring is taking place in SE, Plc, focused on increasing of the effectiveness of the pursued activities. In connection with this the Informatics section solves two projects: More effective self-management and human resources; Change of Informatics system architecture from decentralised to the centralised ones with an aim to consolidate all information and to make new conditions for higher mobility

  18. NDE in biomedical engineering

    International Nuclear Information System (INIS)

    Bhagwat, Aditya; Kumar, Pradeep

    2015-01-01

    Biomedical Engineering (BME) is an interdisciplinary field, marking the conjunction of Medical and Engineering disciplines. It combines the design and problem solving skills of engineering with medical and biological sciences to advance health care treatment, including diagnosis, monitoring, and therapy

  19. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  20. Session Introduction: Challenges of Pattern Recognition in Biomedical Data.

    Science.gov (United States)

    Verma, Shefali Setia; Verma, Anurag; Basile, Anna Okula; Bishop, Marta-Byrska; Darabos, Christian

    2018-01-01

    The analysis of large biomedical data often presents with various challenges related to not just the size of the data, but also to data quality issues such as heterogeneity, multidimensionality, noisiness, and incompleteness of the data. The data-intensive nature of computational genomics problems in biomedical informatics warrants the development and use of massive computer infrastructure and advanced software tools and platforms, including but not limited to the use of cloud computing. Our session aims to address these challenges in handling big data for designing a study, performing analysis, and interpreting outcomes of these analyses. These challenges have been prevalent in many studies including those which focus on the identification of novel genetic variant-phenotype associations using data from sources like Electronic Health Records (EHRs) or multi-omic data. One of the biggest challenges to focus on is the imperfect nature of the biomedical data where a lot of noise and sparseness is observed. In our session, we will present research articles that can help in identifying innovative ways to recognize and overcome newly arising challenges associated with pattern recognition in biomedical data.

  1. The MammoGrid Project Grids Architecture

    CERN Document Server

    McClatchey, Richard; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri; Buncic, Predrag; Clatchey, Richard Mc; Buncic, Predrag; Manset, David; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri

    2003-01-01

    The aim of the recently EU-funded MammoGrid project is, in the light of emerging Grid technology, to develop a European-wide database of mammograms that will be used to develop a set of important healthcare applications and investigate the potential of this Grid to support effective co-working between healthcare professionals throughout the EU. The MammoGrid consortium intends to use a Grid model to enable distributed computing that spans national borders. This Grid infrastructure will be used for deploying novel algorithms as software directly developed or enhanced within the project. Using the MammoGrid clinicians will be able to harness the use of massive amounts of medical image data to perform epidemiological studies, advanced image processing, radiographic education and ultimately, tele-diagnosis over communities of medical "virtual organisations". This is achieved through the use of Grid-compliant services [1] for managing (versions of) massively distributed files of mammograms, for handling the distri...

  2. Clinical Research Informatics Contributions from 2015.

    Science.gov (United States)

    Daniel, C; Choquet, R

    2016-11-10

    To summarize key contributions to current research in the field of Clinical Research Informatics (CRI) and to select best papers published in 2015. A bibliographic search using a combination of MeSH and free terms search over PubMed on Clinical Research Informatics (CRI) was performed followed by a double-blind review in order to select a list of candidate best papers to be then peer-reviewed by external reviewers. A consensus meeting between the two section editors and the editorial team was finally organized to conclude on the selection of best papers. Among the 579 returned papers published in the past year in the various areas of Clinical Research Informatics (CRI) - i) methods supporting clinical research, ii) data sharing and interoperability, iii) re-use of healthcare data for research, iv) patient recruitment and engagement, v) data privacy, security and regulatory issues and vi) policy and perspectives - the full review process selected four best papers. The first selected paper evaluates the capability of the Clinical Data Interchange Standards Consortium (CDISC) Operational Data Model (ODM) to support the representation of case report forms (in both the design stage and with patient level data) during a complete clinical study lifecycle. The second selected paper describes a prototype for secondary use of electronic health records data captured in non-standardized text. The third selected paper presents a privacy preserving electronic health record linkage tool and the last selected paper describes how big data use in US relies on access to health information governed by varying and often misunderstood legal requirements and ethical considerations. A major trend in the 2015 publications is the analysis of observational, "nonexperimental" information and the potential biases and confounding factors hidden in the data that will have to be carefully taken into account to validate new predictive models. In addiction, researchers have to understand

  3. Using informatics to capture older adults' wellness.

    Science.gov (United States)

    Demiris, George; Thompson, Hilaire J; Reeder, Blaine; Wilamowska, Katarzyna; Zaslavsky, Oleg

    2013-11-01

    The aim of this paper is to demonstrate how informatics applications can support the assessment and visualization of older adults' wellness. A theoretical framework is presented that informs the design of a technology enhanced screening platform for wellness. We highlight an ongoing pilot demonstration in an assisted living facility where a community room has been converted into a living laboratory for the use of diverse technologies (including a telehealth component to capture vital signs and customized questionnaires, a gait analysis component and cognitive assessment software) to assess the multiple aspects of wellness of older adults. A demonstration project was introduced in an independent retirement community to validate our theoretical framework of informatics and wellness assessment for older adults. Subjects are being recruited to attend a community room and engage in the use of diverse technologies to assess cognitive performance, physiological and gait variables as well as psychometrics pertaining to social and spiritual components of wellness for a period of eight weeks. Data are integrated from various sources into one study database and different visualization approaches are pursued to efficiently display potential correlations between different parameters and capture overall trends of wellness. Preliminary findings indicate that older adults are willing to participate in technology-enhanced interventions and embrace different information technology applications given appropriate and customized training and hardware and software features that address potential functional limitations and inexperience with computers. Informatics can advance health care for older adults and support a holistic assessment of older adults' wellness. The described framework can support decision making, link formal and informal caregiving networks and identify early trends and patterns that if addressed could reduce adverse health events. Copyright © 2011 Elsevier Ireland

  4. [Standards in Medical Informatics: Fundamentals and Applications].

    Science.gov (United States)

    Suárez-Obando, Fernando; Camacho Sánchez, Jhon

    2013-09-01

    The use of computers in medical practice has enabled novel forms of communication to be developed in health care. The optimization of communication processes is achieved through the use of standards to harmonize the exchange of information and provide a common language for all those involved. This article describes the concept of a standard applied to medical informatics and its importance in the development of various applications, such as computational representation of medical knowledge, disease classification and coding systems, medical literature searches and integration of biological and clinical sciences. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  5. Mining social networks and security informatics

    CERN Document Server

    Özyer, Tansel; Rokne, Jon; Khoury, Suheil

    2013-01-01

    Crime, terrorism and security are in the forefront of current societal concerns. This edited volume presents research based on social network techniques showing how data from crime and terror networks can be analyzed and how information can be extracted. The topics covered include crime data mining and visualization; organized crime detection; crime network visualization; computational criminology; aspects of terror network analyses and threat prediction including cyberterrorism and the related area of dark web; privacy issues in social networks; security informatics; graph algorithms for soci

  6. Development of a medical informatics data warehouse.

    Science.gov (United States)

    Wu, Cai

    2006-01-01

    This project built a medical informatics data warehouse (MedInfo DDW) in an Oracle database to analyze medical information which has been collected through Baylor Family Medicine Clinic (FCM) Logician application. The MedInfo DDW used Star Schema with dimensional model, FCM database as operational data store (ODS); the data from on-line transaction processing (OLTP) were extracted and transferred to a knowledge based data warehouse through SQLLoad, and the patient information was analyzed by using on-line analytic processing (OLAP) in Crystal Report.

  7. Massive open online course for health informatics education.

    Science.gov (United States)

    Paton, Chris

    2014-04-01

    This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). The Health Informatics Forum is a social networking site for educating health informatics students and professionals [corrected]. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost.

  8. Personal Informatics in the Wild: Hacking Habits for Health & Happiness

    DEFF Research Database (Denmark)

    Li, Ian; Froehlich, Jon; Larsen, Jakob Eg

    2013-01-01

    Personal informatics is a class of systems that help people collect personal information to improve selfknowledge. Improving self-knowledge can foster selfinsight and promote positive behaviors, such as healthy living and energy conservation. The development of personal informatics applications p...

  9. Informatics, Data Mining, Econometrics and Financial Economics: A Connection

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael); W.-K. Wong (Wing-Keung)

    2015-01-01

    textabstractThis short communication reviews some of the literature in econometrics and financial economics that is related to informatics and data mining. We then discuss some of the research on econometrics and financial economics that could be extended to informatics and data mining beyond the

  10. The Recurrence Relations in Teaching Students of Informatics

    Science.gov (United States)

    Bakoev, Valentin P.

    2010-01-01

    The topic "Recurrence relations" and its place in teaching students of Informatics is discussed in this paper. We represent many arguments about the importance, the necessity and the benefit of studying this subject by Informatics students. They are based on investigation of some fundamental books and textbooks on Discrete Mathematics,…

  11. Characteristics of Information Systems and Business Informatics Study Programs

    Science.gov (United States)

    Helfert, Markus

    2011-01-01

    Over the last decade there is an intensive discussion within the Information Systems (IS) and Informatics community about the characteristics and identity of the discipline. Simultaneously with the discussion, there is an ongoing debate on essential skills and capabilities of IS and Business Informatics graduates as well as the profile of IS…

  12. Transforming consumer health informatics through a patient work framework: connecting patients to context.

    Science.gov (United States)

    Valdez, Rupa S; Holden, Richard J; Novak, Laurie L; Veinot, Tiffany C

    2015-01-01

    Designing patient-centered consumer health informatics (CHI) applications requires understanding and creating alignment with patients' and their family members' health-related activities, referred to here as 'patient work'. A patient work approach to CHI draws on medical social science and human factors engineering models and simultaneously attends to patients, their family members, activities, and context. A patient work approach extends existing approaches to CHI design that are responsive to patients' biomedical realities and personal skills and behaviors. It focuses on the embeddedness of patients' health management in larger processes and contexts and prioritizes patients' perspectives on illness management. Future research is required to advance (1) theories of patient work, (2) methods for assessing patient work, and (3) techniques for translating knowledge of patient work into CHI application design. Advancing a patient work approach within CHI is integral to developing and deploying consumer-facing technologies that are integrated with patients' everyday lives. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com. For numbered affiliations see end of article.

  13. Building Comprehensive and Sustainable Health Informatics Institutions in Developing Countries: Moi University Experience.

    Science.gov (United States)

    Were, Martin C; Siika, Abraham; Ayuo, Paul O; Atwoli, Lukoye; Esamai, Fabian

    2015-01-01

    Current approaches for capacity building in Health Informatics (HI) in developing countries mostly focus on training, and often rely on support from foreign entities. In this paper, we describe a comprehensive and multidimensional capacity-building framework by Lansang & Dennis, and its application for HI capacity building as implemented in a higher-education institution in Kenya. This framework incorporates training, learning-by-doing, partnerships, and centers of excellence. At Moi University (Kenya), the training dimensions include an accredited Masters in HI Program, PhD in HI, and HI short courses. Learning-by-doing occurs through work within MOH facilities at the AMPATH care and treatment program serving 3 million people. Moi University has formed strategic HI partnerships with Regenstrief Institute, Inc. (USA), University of Bergen (Norway), and Makerere University (Uganda), among others. The University has also created an Institute of Biomedical Informatics to serve as an HI Center of Excellence in the region. This Institute has divisions in Training, Research, Service and Administration. The HI capacity-building approach by Moi provides a model for adoption by other institutions in resource-limited settings.

  14. Clinical Research Informatics: Challenges, Opportunities and Definition for an Emerging Domain

    Science.gov (United States)

    Embi, Peter J.; Payne, Philip R.O.

    2009-01-01

    Objectives Clinical Research Informatics, an emerging sub-domain of Biomedical Informatics, is currently not well defined. A formal description of CRI including major challenges and opportunities is needed to direct progress in the field. Design Given the early stage of CRI knowledge and activity, we engaged in a series of qualitative studies with key stakeholders and opinion leaders to determine the range of challenges and opportunities facing CRI. These phases employed complimentary methods to triangulate upon our findings. Measurements Study phases included: 1) a group interview with key stakeholders, 2) an email follow-up survey with a larger group of self-identified CRI professionals, and 3) validation of our results via electronic peer-debriefing and member-checking with a group of CRI-related opinion leaders. Data were collected, transcribed, and organized for formal, independent content analyses by experienced qualitative investigators, followed by an iterative process to identify emergent categorizations and thematic descriptions of the data. Results We identified a range of challenges and opportunities facing the CRI domain. These included 13 distinct themes spanning academic, practical, and organizational aspects of CRI. These findings also informed the development of a formal definition of CRI and supported further representations that illustrate areas of emphasis critical to advancing the domain. Conclusions CRI has emerged as a distinct discipline that faces multiple challenges and opportunities. The findings presented summarize those challenges and opportunities and provide a framework that should help inform next steps to advance this important new discipline. PMID:19261934

  15. 50th Anniversary International Medical Informatics Association (IMIA) History Working Group and Its Projects.

    Science.gov (United States)

    Kulikowski, Casimir A; Mihalas, George; Greenes, Robert; Yacubsohn, Valerio; Park, Hyeoun-Ae

    2017-01-01

    The IMIA History Working Group has as its first goal the editing of a volume of contributions from pioneers and leaders in the field of biomedical and health informatics (BMHI) to commemorate the 50th anniversary of IMIA's predecessor IFIP-TC4. This paper describes how the IMIA History WG evolved from an earlier Taskforce, and has focused on producing the edited book of original contributions. We describe its proposed outline of objectives for the personal stories, and national and regional society narratives, together with some comments on the evolution of Medinfo meeting contributions over the years, to provide a reference source for the early motivations of the scientific, clinical, educational, and professional changes that have influenced the historical course of our field.

  16. Public health informatics in India: the potential and the challenges.

    Science.gov (United States)

    Athavale, A V; Zodpey, Sanjay P

    2010-01-01

    Public health informatics is emerging as a new and distinct specialty area in the global scenario within the broader discipline of health informatics. The potential role of informatics in reducing health disparities in underserved populations has been identified by a number of reports from all over the world. The article discusses the scope, the limitations, and future perspective of this novice discipline in context to India. It also highlights information and technology related tools namely Geographical Information Systems, Telemedicine and Electronic Medical Record/Electronic Health Record. India needs to leverage its "technology" oriented growth until now (e.g., few satellite-based telemedicine projects, etc.) simultaneously toward development of "information"-based public health informatics systems in future. Under the rapidly evolving scenario of global public health, the future of the public health governance and population health in India would depend upon building and integrating the comprehensive and responsive domain of public health informatics.

  17. Contemporary issues in transfusion medicine informatics

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma

    2011-01-01

    Full Text Available The Transfusion Medicine Service (TMS covers diverse clinical and laboratory-based services that must be delivered with accuracy, efficiency and reliability. TMS oversight is shared by multiple regulatory agencies that cover product manufacturing and validation standards geared toward patient safety. These demands present significant informatics challenges. Over the past few decades, TMS information systems have improved to better handle blood product manufacturing, inventory, delivery, tracking and documentation. Audit trails and access to electronic databases have greatly facilitated product traceability and biovigilance efforts. Modern blood bank computing has enabled novel applications such as the electronic crossmatch, kiosk-based blood product delivery systems, and self-administered computerized blood donor interview and eligibility determination. With increasing use of barcoding technology, there has been a marked improvement in patient and specimen identification. Moreover, the emergence of national and international labeling standards such as ISBT 128 have facilitated the availability, movement and tracking of blood products across national and international boundaries. TMS has only recently begun to leverage the electronic medical record to address quality issues in transfusion practice and promote standardized documentation within institutions. With improved technology, future growth is expected in blood bank automation and product labeling with applications such as radio frequency identification devices. This article reviews several of these key informatics issues relevant to the contemporary practice of TMS.

  18. Ethical and Legal Considerations of Healthcare Informatics

    Directory of Open Access Journals (Sweden)

    Maria ALUAŞ

    2016-12-01

    Full Text Available Internet, cloud computing, social networks and mobile technology, all facilitate information transfer. Healthcare professionals, physicians and patients can use informatic devices in order to simplify their access to medical information, to streamline testing, and to understand clinical results. The use of computers and software facilitate doctor-patient interactions by optimizing communication and information flow. However, digital interfaces also increase the risks that information specialists use information without fully complying with ethical principles and laws in force. Our premise is that these information specialists should: 1 be informed of the rights, duties, and responsibilities linked to their profession and laws in force; 2 have guidelines and ethical tutoring on what they need to do in order to avoid or prevent conflict or misconduct; 3 have renewed specific training on how to interpret and translate legal frameworks into internal rules and standards of good practice. The purpose of this paper was: 1 to familiarize professionals who work in healthcare informatics with the ethical and legal issues related to their work; 2 to provide information about codes of ethics and legal regulations concerning this specific area; 3 to summarize some risks linked to wrong or inadequate use of patient information, such as medical, genetic, or personal data.

  19. Health informatics model for helminthiasis in Thailand.

    Science.gov (United States)

    Nithikathkul, C; Trevanich, A; Wongsaroj, T; Wongsawad, C; Reungsang, P

    2017-09-01

    At the beginning of the new millennium, helminth infections continue to be prevalent, particularly among impoverished populations. This study attempts to create the first health informatics model of helminthiasis in Thailand. The authors investigate how a health informatics model could be used to predict the control and eradication in a national control campaign. Fish-borne helminthiasis caused by Opisthorchis viverrini remains a major public health problem in many parts of South-East Asia, including Thailand, Lao PDR, Vietnam and Cambodia. The epicentre of this disease is located in north-east Thailand, where high prevalence coexists with a high incidence of cholangiocarcinoma (CHCA). The current report was conducted to determine a mathematical model of surveillance for helminthiasis while also using a geographic information system. The fish-borne helminthiasis model or the predicted equation was Y1 = 3.028 + 0.020 (elevation) - 2.098 (clay). For soil-transmitted helminthiasis, the mathematical model or the predicted equation was Y2 = -1.559 + 0.005 (rainfall) + 0.004 (elevation) - 2.198 (clay). The Ministry of Public Health has concluded that mass treatment for helminthiasis in the Thai population, targeting high-risk individuals, may be a cost-effective way to allocate limited funds. This type of approach, as well as further study on the correlation of clinical symptoms with environmental and geographic information, may offer a novel strategy to the helminth crisis.

  20. A survey of medical informatics in Belgium.

    Science.gov (United States)

    Roger, F H; Behets, M; Andre, J; de Moor, G; Sevens, C; Willems, J L

    1987-01-01

    The Belgian Society for Medical Informatics (MIM) organized a survey in 1986 in order to assess the present state of development of medical informatics in Belgium. Questionnaires were sent to hospitals, laboratories, private practitioners and pharmacists, as well as to social security organizations and software industries. The response rate was higher in hospitals (93%) than in any other category. Results showed a large number of computerized hospitals (93% of general acute care hospitals and 91% of psychiatric hospitals). There has been a sharp increase (+ 15%) in computerization of the admission, accounting and billing procedures since 1985, most likely in relation with administrative rules issued by the Belgian Government. The same trend (+ 20%) has been observed for computer applications in clinical laboratories, between 1984 and 1985. There is almost one computer terminal for ten beds in the hospitals with more than 200 beds in 1986. This figure exemplifies the present trend to on-line access to data. Computerized instrumental aids to medicine such as text processing, imaging or computerized interpretation of signals have known a rapid extension during recent years, although less comprehensive than administrative applications in hospitals and in social security organizations. The present state of other applications in medicine (general practice, pharmacy, etc.) was more difficult to assess as those information systems remain more pinpointed. In all medical fields, there appears to be a new rise in computer programs offered by software companies.

  1. Contemporary issues in transfusion medicine informatics.

    Science.gov (United States)

    Sharma, Gaurav; Parwani, Anil V; Raval, Jay S; Triulzi, Darrell J; Benjamin, Richard J; Pantanowitz, Liron

    2011-01-07

    The Transfusion Medicine Service (TMS) covers diverse clinical and laboratory-based services that must be delivered with accuracy, efficiency and reliability. TMS oversight is shared by multiple regulatory agencies that cover product manufacturing and validation standards geared toward patient safety. These demands present significant informatics challenges. Over the past few decades, TMS information systems have improved to better handle blood product manufacturing, inventory, delivery, tracking and documentation. Audit trails and access to electronic databases have greatly facilitated product traceability and biovigilance efforts. Modern blood bank computing has enabled novel applications such as the electronic crossmatch, kiosk-based blood product delivery systems, and self-administered computerized blood donor interview and eligibility determination. With increasing use of barcoding technology, there has been a marked improvement in patient and specimen identification. Moreover, the emergence of national and international labeling standards such as ISBT 128 have facilitated the availability, movement and tracking of blood products across national and international boundaries. TMS has only recently begun to leverage the electronic medical record to address quality issues in transfusion practice and promote standardized documentation within institutions. With improved technology, future growth is expected in blood bank automation and product labeling with applications such as radio frequency identification devices. This article reviews several of these key informatics issues relevant to the contemporary practice of TMS.

  2. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  3. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society. © 2013 John Wiley & Sons Ltd.

  4. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  5. GEO-ENGINEERING MODELING THROUGH INTERNET INFORMATICS (GEMINI)

    Energy Technology Data Exchange (ETDEWEB)

    W. Lynn Watney; John H. Doveton

    2004-05-13

    GEMINI (Geo-Engineering Modeling through Internet Informatics) is a public-domain web application focused on analysis and modeling of petroleum reservoirs and plays (http://www.kgs.ukans.edu/Gemini/index.html). GEMINI creates a virtual project by ''on-the-fly'' assembly and analysis of on-line data either from the Kansas Geological Survey or uploaded from the user. GEMINI's suite of geological and engineering web applications for reservoir analysis include: (1) petrofacies-based core and log modeling using an interactive relational rock catalog and log analysis modules; (2) a well profile module; (3) interactive cross sections to display ''marked'' wireline logs; (4) deterministic gridding and mapping of petrophysical data; (5) calculation and mapping of layer volumetrics; (6) material balance calculations; (7) PVT calculator; (8) DST analyst, (9) automated hydrocarbon association navigator (KHAN) for database mining, and (10) tutorial and help functions. The Kansas Hydrocarbon Association Navigator (KHAN) utilizes petrophysical databases to estimate hydrocarbon pay or other constituent at a play- or field-scale. Databases analyzed and displayed include digital logs, core analysis and photos, DST, and production data. GEMINI accommodates distant collaborations using secure password protection and authorized access. Assembled data, analyses, charts, and maps can readily be moved to other applications. GEMINI's target audience includes small independents and consultants seeking to find, quantitatively characterize, and develop subtle and bypassed pays by leveraging the growing base of digital data resources. Participating companies involved in the testing and evaluation of GEMINI included Anadarko, BP, Conoco-Phillips, Lario, Mull, Murfin, and Pioneer Resources.

  6. Biomedical cloud computing with Amazon Web Services.

    Science.gov (United States)

    Fusaro, Vincent A; Patil, Prasad; Gafni, Erik; Wall, Dennis P; Tonellato, Peter J

    2011-08-01

    In this overview to biomedical computing in the cloud, we discussed two primary ways to use the cloud (a single instance or cluster), provided a detailed example using NGS mapping, and highlighted the associated costs. While many users new to the cloud may assume that entry is as straightforward as uploading an application and selecting an instance type and storage options, we illustrated that there is substantial up-front effort required before an application can make full use of the cloud's vast resources. Our intention was to provide a set of best practices and to illustrate how those apply to a typical application pipeline for biomedical informatics, but also general enough for extrapolation to other types of computational problems. Our mapping example was intended to illustrate how to develop a scalable project and not to compare and contrast alignment algorithms for read mapping and genome assembly. Indeed, with a newer aligner such as Bowtie, it is possible to map the entire African genome using one m2.2xlarge instance in 48 hours for a total cost of approximately $48 in computation time. In our example, we were not concerned with data transfer rates, which are heavily influenced by the amount of available bandwidth, connection latency, and network availability. When transferring large amounts of data to the cloud, bandwidth limitations can be a major bottleneck, and in some cases it is more efficient to simply mail a storage device containing the data to AWS (http://aws.amazon.com/importexport/). More information about cloud computing, detailed cost analysis, and security can be found in references.

  7. Grid Integration Research | Wind | NREL

    Science.gov (United States)

    Grid Integration Research Grid Integration Research Researchers study grid integration of wind three wind turbines with transmission lines in the background. Capabilities NREL's grid integration electric power system operators to more efficiently manage wind grid system integration. A photo of

  8. Reducing Friction: An Update on the NCIP Open Development Initiative - NCI BioMedical Informatics Blog

    Science.gov (United States)

    NCIP has migrated 132 repositories from the NCI subversion repository to our public NCIP GitHub channel with the goal of facilitating third party contributions to the existing code base. Within the GitHub environment, we are advocating use of the GitHub “fork and pull” model.

  9. Biomedical informatics as support to individual healthcare in hereditary colon cancer: the Danish HNPCC system

    DEFF Research Database (Denmark)

    Bernstein, Inge Thomsen; Larsen, K.L.; Timshel, Susanne

    2011-01-01

    The Danish HNPCC register is a publically financed national database. The register gathers epidemiological and genomic data in HNPCC families to improve prognosis by screening and identifying family members at risk. Diagnostic data are generated throughout the country and collected over several d...

  10. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Rama R Gullapalli

    2012-01-01

    Full Text Available The Human Genome Project (HGP provided the initial draft of mankind′s DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized. [7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it′s hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future.

  11. Biomedical informatics as support to individual healthcare in hereditary colon cancer: the Danish HNPCC system

    DEFF Research Database (Denmark)

    Bernstein, Inge T; Lindorff-Larsen, Karen; Timshel, Susanne

    2011-01-01

    . The aim of digitization was to optimize the organization of screening by facilitating combination of genotype-phenotype information, and to generate IT-tools sufficiently usable and generic to be implemented in other countries and for other oncogenetic diseases. The focus was on integration...

  12. Biomedical informatics as support to individual healthcare in hereditary colon cancer: the Danish HNPCC system.

    Science.gov (United States)

    Bernstein, Inge T; Lindorff-Larsen, Karen; Timshel, Susanne; Brandt, Carsten A; Dinesen, Birger; Fenger, Mogens; Gerdes, Anne-Marie; Iversen, Lene H; Madsen, Mogens R; Okkels, Henrik; Sunde, Lone; Rahr, Hans B; Wikman, Friedrick P; Rossing, Niels

    2011-05-01

    The Danish HNPCC register is a publically financed national database. The register gathers epidemiological and genomic data in HNPCC families to improve prognosis by screening and identifying family members at risk. Diagnostic data are generated throughout the country and collected over several decades. Until recently, paper-based reports were sent to the register and typed into the database. In the EC cofunded-INFOBIOMED network of excellence, the register was a model for electronic exchange of epidemiological and genomic data between diagnosing/treating departments and the central database. The aim of digitization was to optimize the organization of screening by facilitating combination of genotype-phenotype information, and to generate IT-tools sufficiently usable and generic to be implemented in other countries and for other oncogenetic diseases. The focus was on integration of heterogeneous data, elaboration, and dissemination of classification systems and development of communication standards. At the conclusion of the EU project in 2007 the system was implemented in 12 pilot departments. In the surgical departments this resulted in a 192% increase of reports to the database. Several gaps were identified: lack of standards for data to be exchanged, lack of local databases suitable for direct communication, reporting being time-consuming and dependent on interest and feedback. © 2011 Wiley-Liss, Inc.

  13. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  14. Biomedical Image Registration

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 8th International Workshop on Biomedical Image Registration, WBIR 2018, held in Leiden, The Netherlands, in June 2018. The 11 full and poster papers included in this volume were carefully reviewed and selected from 17 submitted papers. The pap...

  15. Biomedical Data Mining

    NARCIS (Netherlands)

    Peek, N.; Combi, C.; Tucker, A.

    2009-01-01

    Objective: To introduce the special topic of Methods of Information in Medicine on data mining in biomedicine, with selected papers from two workshops on Intelligent Data Analysis in bioMedicine (IDAMAP) held in Verona (2006) and Amsterdam (2007). Methods: Defining the field of biomedical data

  16. Careers in biomedical engineering.

    Science.gov (United States)

    Madrid, R E; Rotger, V I; Herrera, M C

    2010-01-01

    Although biomedical engineering was started in Argentina about 35 years ago, it has had a sustained growth for the last 25 years in human resources, with the emergence of new undergraduate and postgraduate careers, as well as in research, knowledge, technological development, and health care.

  17. Anatomy for Biomedical Engineers

    Science.gov (United States)

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  18. Biomedical research applications

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The biomedical research Panel believes that the Calutron facility at Oak Ridge is a national and international resource of immense scientific value and of fundamental importance to continued biomedical research. This resource is essential to the development of new isotope uses in biology and medicine. It should therefore be nurtured by adequate support and operated in a way that optimizes its services to the scientific and technological community. The Panel sees a continuing need for a reliable supply of a wide variety of enriched stable isotopes. The past and present utilization of stable isotopes in biomedical research is documented in Appendix 7. Future requirements for stable isotopes are impossible to document, however, because of the unpredictability of research itself. Nonetheless we expect the demand for isotopes to increase in parallel with the continuing expansion of biomedical research as a whole. There are a number of promising research projects at the present time, and these are expected to lead to an increase in production requirements. The Panel also believes that a high degree of priority should be given to replacing the supplies of the 65 isotopes (out of the 224 previously available enriched isotopes) no longer available from ORNL

  19. The history of pathology informatics: A global perspective

    Science.gov (United States)

    Park, Seung; Parwani, Anil V.; Aller, Raymond D.; Banach, Lech; Becich, Michael J.; Borkenfeld, Stephan; Carter, Alexis B.; Friedman, Bruce A.; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  20. Health-e-Child: a grid platform for european paediatrics

    International Nuclear Information System (INIS)

    Skaburskas, K; Estrella, F; Shade, J; Manset, D; Revillard, J; Rios, A; Anjum, A; Branson, A; Bloodsworth, P; Hauer, T; McClatchey, R; Rogulin, D

    2008-01-01

    The Health-e-Child (HeC) project [1], [2] is an EC Framework Programme 6 Integrated Project that aims to develop a grid-based integrated healthcare platform for paediatrics. Using this platform biomedical informaticians will integrate heterogeneous data and perform epidemiological studies across Europe. The resulting Grid enabled biomedical information platform will be supported by robust search, optimization and matching techniques for information collected in hospitals across Europe. In particular, paediatricians will be provided with decision support, knowledge discovery and disease modelling applications that will access data in hospitals in the UK, Italy and France, integrated via the Grid. For economy of scale, reusability, extensibility, and maintainability, HeC is being developed on top of an EGEE/gLite [3] based infrastructure that provides all the common data and computation management services required by the applications. This paper discusses some of the major challenges in bio-medical data integration and indicates how these will be resolved in the HeC system. HeC is presented as an example of how computer science (and, in particular Grid infrastructures) originating from high energy physics can be adapted for use by biomedical informaticians to deliver tangible real-world benefits

  1. Quo Vadis, Informatics Education?--Towards a More Up-to-Date Informatics Education

    Science.gov (United States)

    Zsakó, László; Horváth, Gyozo

    2017-01-01

    Informatics education has been in a cul-de-sac for several years (not only in Hungary), being less and less able to meet the needs of the industry and higher education. In addition, the latest PISA survey shows that--to put it a little strongly--the majority of the x-, y- and z generations are digital illiterates. The aim of this paper to examine…

  2. Time for TIGER to ROAR! Technology Informatics Guiding Education Reform.

    Science.gov (United States)

    O'Connor, Siobhan; Hubner, Ursula; Shaw, Toria; Blake, Rachelle; Ball, Marion

    2017-11-01

    Information Technology (IT) continues to evolve and develop with electronic devices and systems becoming integral to healthcare in every country. This has led to an urgent need for all professions working in healthcare to be knowledgeable and skilled in informatics. The Technology Informatics Guiding Education Reform (TIGER) Initiative was established in 2006 in the United States to develop key areas of informatics in nursing. One of these was to integrate informatics competencies into nursing curricula and life-long learning. In 2009, TIGER developed an informatics competency framework which outlines numerous IT competencies required for professional practice and this work helped increase the emphasis of informatics in nursing education standards in the United States. In 2012, TIGER expanded to the international community to help synthesise informatics competencies for nurses and pool educational resources in health IT. This transition led to a new interprofessional, interdisciplinary approach, as health informatics education needs to expand to other clinical fields and beyond. In tandem, a European Union (EU) - United States (US) Collaboration on eHealth began a strand of work which focuses on developing the IT skills of the health workforce to ensure technology can be adopted and applied in healthcare. One initiative within this is the EU*US eHealth Work Project, which started in 2016 and is mapping the current structure and gaps in health IT skills and training needs globally. It aims to increase educational opportunities by developing a model for open and scalable access to eHealth training programmes. With this renewed initiative to incorporate informatics into the education and training of nurses and other health professionals globally, it is time for educators, researchers, practitioners and policy makers to join in and ROAR with TIGER. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The twenty first century informatization and artificial intelligence system

    International Nuclear Information System (INIS)

    Noh, Jung Ho

    1999-12-01

    The contents of this book are competition of mental weakness and visually handicapped people, barbarian about the knowledge of commodity, we are living in notion of time of the agricultural age, parade of informatization of fool. Is there a successful case of informatization when it is done as others do?, what is technology of informatization?, there is mistake in traditional information technology from a system of thought, information system, and analysis of improvement of industrial structure case of development for program case of system installation, and a thief free society.

  4. The twenty first century informatization and artificial intelligence system

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jung Ho

    1999-12-15

    The contents of this book are competition of mental weakness and visually handicapped people, barbarian about the knowledge of commodity, we are living in notion of time of the agricultural age, parade of informatization of fool. Is there a successful case of informatization when it is done as others do?, what is technology of informatization?, there is mistake in traditional information technology from a system of thought, information system, and analysis of improvement of industrial structure case of development for program case of system installation, and a thief free society.

  5. Nurse Leadership and Informatics Competencies: Shaping Transformation of Professional Practice.

    Science.gov (United States)

    Kennedy, Margaret Ann; Moen, Anne

    2017-01-01

    Nurse leaders must demonstrate capacities and develop specific informatics competencies in order to provide meaningful leadership and support ongoing transformation of the healthcare system. Concurrently, staff informatics competencies must be planned and fostered to support critical principles of transformation and patient safety in practice, advance evidence-informed practice, and enable nursing to flourish in complex digital environments across the healthcare continuum. In addition to nurse leader competencies, two key aspects of leadership and informatics competencies will be addressed in this chapter - namely, the transformation of health care and preparation of the nursing workforce.

  6. 2nd International Conference on Advanced Intelligent Systems and Informatics

    CERN Document Server

    Shaalan, Khaled; Gaber, Tarek; Azar, Ahmad; Tolba, M

    2017-01-01

    This book gathers the proceedings of the 2nd International Conference on Advanced Intelligent Systems and Informatics (AISI2016), which took place in Cairo, Egypt during October 24–26, 2016. This international interdisciplinary conference, which highlighted essential research and developments in the field of informatics and intelligent systems, was organized by the Scientific Research Group in Egypt (SRGE) and sponsored by the IEEE Computational Intelligence Society (Egypt chapter) and the IEEE Robotics and Automation Society (Egypt Chapter). The book’s content is divided into four main sections: Intelligent Language Processing, Intelligent Systems, Intelligent Robotics Systems, and Informatics.

  7. Opal web services for biomedical applications.

    Science.gov (United States)

    Ren, Jingyuan; Williams, Nadya; Clementi, Luca; Krishnan, Sriram; Li, Wilfred W

    2010-07-01

    Biomedical applications have become increasingly complex, and they often require large-scale high-performance computing resources with a large number of processors and memory. The complexity of application deployment and the advances in cluster, grid and cloud computing require new modes of support for biomedical research. Scientific Software as a Service (sSaaS) enables scalable and transparent access to biomedical applications through simple standards-based Web interfaces. Towards this end, we built a production web server (http://ws.nbcr.net) in August 2007 to support the bioinformatics application called MEME. The server has grown since to include docking analysis with AutoDock and AutoDock Vina, electrostatic calculations using PDB2PQR and APBS, and off-target analysis using SMAP. All the applications on the servers are powered by Opal, a toolkit that allows users to wrap scientific applications easily as web services without any modification to the scientific codes, by writing simple XML configuration files. Opal allows both web forms-based access and programmatic access of all our applications. The Opal toolkit currently supports SOAP-based Web service access to a number of popular applications from the National Biomedical Computation Resource (NBCR) and affiliated collaborative and service projects. In addition, Opal's programmatic access capability allows our applications to be accessed through many workflow tools, including Vision, Kepler, Nimrod/K and VisTrails. From mid-August 2007 to the end of 2009, we have successfully executed 239,814 jobs. The number of successfully executed jobs more than doubled from 205 to 411 per day between 2008 and 2009. The Opal-enabled service model is useful for a wide range of applications. It provides for interoperation with other applications with Web Service interfaces, and allows application developers to focus on the scientific tool and workflow development. Web server availability: http://ws.nbcr.net.

  8. Tourism informatics towards novel knowledge based approaches

    CERN Document Server

    Hashimoto, Kiyota; Iwamoto, Hidekazu

    2015-01-01

    This book introduces new trends of theory and practice of information technologies in tourism. The book does not handle only the fundamental contribution, but also discusses innovative and emerging technologies to promote and develop new generation tourism informatics theory and their applications. Some chapters are concerned with data analysis, web technologies, social media, and their case studies. Travel information on the web provided by travelers is very useful for other travelers make their travel plan. A chapter in this book proposes a method for interactive retrieval of information on accommodation facilities to support travelling customers in their travel preparations. Also an adaptive user interface for personalized transportation guidance system is proposed. Another chapter in this book shows a novel support system for the collaborative tourism planning by using the case reports that are collected via Internet. Also, a system for recommending hotels for the users is proposed and evaluated. Other ch...

  9. Informatics derived materials databases for multifunctional properties

    International Nuclear Information System (INIS)

    Broderick, Scott; Rajan, Krishna

    2015-01-01

    In this review, we provide an overview of the development of quantitative structure–property relationships incorporating the impact of data uncertainty from small, limited knowledge data sets from which we rapidly develop new and larger databases. Unlike traditional database development, this informatics based approach is concurrent with the identification and discovery of the key metrics controlling structure–property relationships; and even more importantly we are now in a position to build materials databases based on design ‘intent’ and not just design parameters. This permits for example to establish materials databases that can be used for targeted multifunctional properties and not just one characteristic at a time as is presently done. This review provides a summary of the computational logic of building such virtual databases and gives some examples in the field of complex inorganic solids for scintillator applications. (review)

  10. A primer on precision medicine informatics.

    Science.gov (United States)

    Sboner, Andrea; Elemento, Olivier

    2016-01-01

    In this review, we describe key components of a computational infrastructure for a precision medicine program that is based on clinical-grade genomic sequencing. Specific aspects covered in this review include software components and hardware infrastructure, reporting, integration into Electronic Health Records for routine clinical use and regulatory aspects. We emphasize informatics components related to reproducibility and reliability in genomic testing, regulatory compliance, traceability and documentation of processes, integration into clinical workflows, privacy requirements, prioritization and interpretation of results to report based on clinical needs, rapidly evolving knowledge base of genomic alterations and clinical treatments and return of results in a timely and predictable fashion. We also seek to differentiate between the use of precision medicine in germline and cancer. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. [Looking for evidence-based medical informatics].

    Science.gov (United States)

    Coiera, Enrico

    2016-03-01

    e-Health is experiencing a difficult time. On the one side, the forecast is for a bright digital health future created by precision medicine and smart devices. On the other hand, most large scale e-health projects struggle to make a difference and are often controversial. Both futures fail because they are not evidence-based. Medical informatics should follow the example of evidence-based medicine, i.e. conduct rigorous research that gives us evidence to solve real world problems, synthesise that evidence and then apply it strictly. We already have the tools for creating a different universe. What we need is evidence, will, a culture of learning, and hard work.

  12. Health informatics and modernisation: bridging the gap

    Directory of Open Access Journals (Sweden)

    Cheryl Cowley

    2003-12-01

    Full Text Available This pilot initiative uses an approach that focuses on improving the whole business of primary care, its processes and its people. The Health Informatics Programme for Coronary Heart Disease (HIP for CHD addresses the two faces of clinical governance but has a prime focus on the development of learning organisations. The project has developed a methodology and an associated set of tools that it has tested and evaluated in a small number of pilot sites. The work of HIP for CHD is focused on coronary heart disease but the methodology is equally applicable to other clinical areas. In particular, HIP for CHD provides an approach that allows the diverse strands of all of the National Service Frameworks to be handled in a joined-up way in primary care.

  13. Medical Informatics Idle YouTube Potential.

    Science.gov (United States)

    Hucíková, Anežka; Babic, Ankica

    2017-01-01

    YouTube as an online video-sharing service in the context of Web 2.0 goes beyond the bounds of pure fun, for which the platform was primarily established. Nowadays, commonly to other social media, it serves also educational, informational and last but not least, marketing purposes. The importance of video sharing is supported by several predictions about video reaching over 90% of global internet traffic by 2020. Using qualitative content analysis over selected YouTube videos, paper examines the current situation of the platform's marketing potential usage by medical informatics organizations, researches and other healthcare professionals. Results of the analysis demonstrate several ways in which YouTube is already used to inform, educate or promote above-mentioned medical institutions. However, their engagement in self-promo or spreading awareness of their research projects via YouTube is considered to be low.

  14. Peculiarities of Teaching Medical Informatics and Statistics

    Directory of Open Access Journals (Sweden)

    Sergey Glushkov

    2017-05-01

    Full Text Available The article reviews features of teaching Medical Informatics and Statistics. The course is referred to the disciplines of Mathematical and Natural sciences. The course is provided in all the faculties of I. M. Sechenov First Moscow State Medical University. For students of Preventive Medicine Department the time frame allotted for studying the course is significantly larger than for similar course provided at other faculties. To improve the teaching methodology of the discipline an analysis of the curriculum has been carried out, attendance and students’ performance statistics have been summarized. As a result, the main goals and objectives have been identified. Besides, general educational functions and the contribution to the solution of problems of education, students’ upbringing and development have been revealed; two stages of teaching have been presented. Recommendations referred to the newest methodological development aimed at improving the quality of teaching the discipline are provided. The ways of improving the methods and organizational forms of education are outlined.

  15. A Grid Architecture for Manufacturing Database System

    Directory of Open Access Journals (Sweden)

    Laurentiu CIOVICĂ

    2011-06-01

    Full Text Available Before the Enterprise Resource Planning concepts business functions within enterprises were supported by small and isolated applications, most of them developed internally. Yet today ERP platforms are not by themselves the answer to all organizations needs especially in times of differentiated and diversified demands among end customers. ERP platforms were integrated with specialized systems for the management of clients, Customer Relationship Management and vendors, Supplier Relationship Management. They were integrated with Manufacturing Execution Systems for better planning and control of production lines. In order to offer real time, efficient answers to the management level, ERP systems were integrated with Business Intelligence systems. This paper analyses the advantages of grid computing at this level of integration, communication and interoperability between complex specialized informatics systems with a focus on the system architecture and data base systems.

  16. Eco-informatics and natural resource management

    Science.gov (United States)

    Cushing, J.B.; Wilson, T.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Schnase, J.; Sonntag, W.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schweik, C.; Brandt, L.; Gregg, V.; Spengler, S.

    2006-01-01

    This project highlight reports on the 2004 workshop [1], as well as follow-up activities in 2005 and 2006, regarding how informatics tools can help manage natural resources and decide policy. The workshop was sponsored jointly by sponsored by the NSF, NBII, NASA, and EPA, and attended by practitioners from government and non-government agencies, and university researchers from the computer, social, and ecological sciences. The workshop presented the significant information technology (IT) problems that resource managers face when integrating ecological or environmental information to make decisions. These IT problems fall into five categories: data presentation, data gaps, tools, indicators, and policy making and implementation. To alleviate such problems, we recommend informatics research in four IT areas, as defined in this abstract and our final report: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, we recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. Follow-on activities to the workshop subsequent to dg.o 2005 included: an invited talk presenting workshop results at DILS 2005, publication of the workshop final report by the NBII [1], and a poster at the NBII All Hands Meeting (Oct. 2005). We also expect a special issue of the JIIS to appear in 2006 that addresses some of these questions. As we go to press, no solicitation by funding agencies has as yet been published, but various NASA and NBII, and NSF cyber-infrastructure and DG research efforts now underway address the above issues.

  17. Parallel grid population

    Science.gov (United States)

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  18. OSIRIS, an entirely in-house developed drug discovery informatics system.

    Science.gov (United States)

    Sander, Thomas; Freyss, Joel; von Korff, Modest; Reich, Jacqueline Renée; Rufener, Christian

    2009-02-01

    We present OSIRIS, an entirely in-house developed drug discovery informatics system. Its components cover all information handling aspects from compound synthesis via biological testing to preclinical development. Its design principles are platform and vendor independence, a consistent look and feel, and complete coverage of the drug discovery process by custom tailored applications. These include electronic laboratory notebook applications for biology and chemistry, tools for high-throughput and secondary screening evaluation, chemistry-aware data visualization, physicochemical property prediction, 3D-pharmacophore comparisons, interactive modeling, computing grid based ligand-protein docking, and more. Most applications are developed in Java and are built on top of a Java library layer that provides reusable cheminformatics functionality and GUI components such as chemical editors, structure canonicalization, substructure search, combinatorial enumeration, enhanced stereo perception, force field minimization, and conformation generation.

  19. Smart grid security

    CERN Document Server

    Goel, Sanjay; Papakonstantinou, Vagelis; Kloza, Dariusz

    2015-01-01

    This book on smart grid security is meant for a broad audience from managers to technical experts. It highlights security challenges that are faced in the smart grid as we widely deploy it across the landscape. It starts with a brief overview of the smart grid and then discusses some of the reported attacks on the grid. It covers network threats, cyber physical threats, smart metering threats, as well as privacy issues in the smart grid. Along with the threats the book discusses the means to improve smart grid security and the standards that are emerging in the field. The second part of the b

  20. Introduction to Metagenomics at DOE JGI: Program Overview and Program Informatics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, Susannah

    2011-10-12

    Susannah Tringe of the DOE Joint Genome Institute talks about the Program Overview and Program Informatics at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  1. Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders

    Directory of Open Access Journals (Sweden)

    Simona-Vasilica Oprea

    2018-01-01

    Full Text Available Although in 2012 the European Union (EU has promoted energy efficiency in order to ensure a gradual 20% reduction of energy consumption by 2020, its targets related to energy efficiency have increased and extended to new time horizons. Therefore, in 2016, a new proposal for 2030 of energy efficiency target of 30% has been agreed. However, during the last years, even if the electricity consumption by households decreased in the EU-28, the largest expansion was recorded in Romania. Taking into account that the projected consumption peak is increasing and energy consumption management for residential activities is an important measure for energy efficiency improvement since its ratio from total consumption can be around 25–30%, in this paper, we propose an informatics solution that assists both electricity suppliers/grid operators and consumers. It includes three models for electricity consumption optimization, profiles, clustering and forecast. By this solution, the daily operation of appliances can be optimized and scheduled to minimize the consumption peak and reduce the stress on the grid. For optimization purpose, we propose three algorithms for shifting the operation of the programmable appliances from peak to off-peak hours. This approach enables the supplier to apply attractive time-of-use tariffs due to the fact that by flattening the consumption peak, it becomes more predictable, and thus improves the strategies on the electricity markets. According to the results of the optimization process, we compare the proposed algorithms emphasizing the benefits. For building consumption profiles, we develop a clustering algorithm based on self-organizing maps. By running the algorithm for three scenarios, well-delimited profiles are obtained. As for the consumption forecast, highly accurate feedforward artificial neural networks algorithm with backpropagation is implemented. Finally, we test these algorithms using several datasets showing their

  2. New study program: Interdisciplinary Postgraduate Specialist Study in Medical Informatics.

    Science.gov (United States)

    Hercigonja-Szekeres, Mira; Simić, Diana; Božikov, Jadranka; Vondra, Petra

    2014-01-01

    Paper presents an overview of the EU funded Project of Curriculum Development for Interdisciplinary Postgraduate Specialist Study in Medical Informatics named MEDINFO to be introduced in Croatia. The target group for the program is formed by professionals in any of the areas of medicine, IT professionals working on applications of IT for health and researchers and teachers in medical informatics. In addition to Croatian students, the program will also provide opportunity for enrolling students from a wider region of Southeast Europe. Project partners are two faculties of the University of Zagreb - Faculty of Organization and Informatics from Varaždin and School of Medicine, Andrija Štampar School of Public Health from Zagreb with the Croatian Society for Medical Informatics, Croatian Chamber of Economy, and Ericsson Nikola Tesla Company as associates.

  3. Medical Informatics in Clinical Practice: An Overview. | Okoromah ...

    African Journals Online (AJOL)

    Providing a high-quality service to patients involves having the right information at the ... Knowledge and practice and application of computer technology in both ... informatics and to stimulate interest in computer support in health care in our ...

  4. Informatics everywhere : information and computation in society, science, and technology

    NARCIS (Netherlands)

    Verhoeff, T.

    2013-01-01

    Informatics is about information and its processing, also known as computation. Nowadays, children grow up taking smartphones and the internet for granted. Information and computation rule society. Science uses computerized equipment to collect, analyze, and visualize massive amounts of data.

  5. Centralisation of informatics (more effective processes via using new technologies)

    International Nuclear Information System (INIS)

    Cocher, L.

    2004-01-01

    In this paper author deals with next problems of Slovenske elektrarne, Plc (SE): - Centralisation and optimisation of informatics management; - New technologies within Integrated Informatics System IIS-SE: presentation of preliminary Project of 2 nd generation IIS-SE; - Centralisation of the selected data processing. At the present the intensive process of restructuring is taking place in SE, Plc, focused on increasing of the effectiveness of the pursued activities. In connection with this the Informatics section solves two projects: More effective self-management and human resources; Change of Informatics system architecture from decentralised to the centralised ones with an aim to consolidate all information and to make new conditions for higher mobility. (author)

  6. On Development of Medical Informatics Education via European Cooperation

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    1998-01-01

    Roč. 50, - (1998), s. 219-223 ISSN 1386-5056 Keywords : information technologies * education * training * medical informatics * medical statistics * epidemiology Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.357, year: 1998

  7. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    Science.gov (United States)

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott

    2014-01-01

    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  8. Nursing informatics education and use: challenges and prospects in ...

    African Journals Online (AJOL)

    Nursing informatics education and use: challenges and prospects in Nigeria. ... that training in NI is critical in the delivery of safe and quality patient care. ... Director of Nursing Services and Principals as well as Nursing associations like ...

  9. SWOT Analysis on Medical Informatics and Development Strategies

    Science.gov (United States)

    Ma, Xiaoyan; Han, Zhongdong; Ma, Hua

    2015-01-01

    This article aims at clarifying the strategic significance of developing medical informatics, conducting SWOT analysis on this discipline and hence establishing the strategic objectives and focal points for its development.

  10. Second International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Konar, Amit; Chakraborty, Aruna

    2014-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two-volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 148 scholarly papers, which have been accepted for presentation from over 640 submissions in the second International Conference on Advanced Computing, Networking and Informatics, 2014, held in Kolkata, India during June 24-26, 2014. The first volume includes innovative computing techniques and relevant research results in informatics with selective applications in pattern recognition, signal/image process...

  11. Characteristics of the Audit Processes for Distributed Informatics Systems

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2009-01-01

    Full Text Available The paper contains issues regarding: main characteristics and examples of the distributed informatics systems and main difference categories among them, concepts, principles, techniques and fields for auditing the distributed informatics systems, concepts and classes of the standard term, characteristics of this one, examples of standards, guidelines, procedures and controls for auditing the distributed informatics systems. The distributed informatics systems are characterized by the following issues: development process, resources, implemented functionalities, architectures, system classes, particularities. The audit framework has two sides: the audit process and auditors. The audit process must be led in accordance with the standard specifications in the IT&C field. The auditors must meet the ethical principles and they must have a high-level of professional skills and competence in IT&C field.

  12. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  13. Harnessing Biomedical Natural Language Processing Tools to Identify Medicinal Plant Knowledge from Historical Texts.

    Science.gov (United States)

    Sharma, Vivekanand; Law, Wayne; Balick, Michael J; Sarkar, Indra Neil

    2017-01-01

    The growing amount of data describing historical medicinal uses of plants from digitization efforts provides the opportunity to develop systematic approaches for identifying potential plant-based therapies. However, the task of cataloguing plant use information from natural language text is a challenging task for ethnobotanists. To date, there have been only limited adoption of informatics approaches used for supporting the identification of ethnobotanical information associated with medicinal uses. This study explored the feasibility of using biomedical terminologies and natural language processing approaches for extracting relevant plant-associated therapeutic use information from historical biodiversity literature collection available from the Biodiversity Heritage Library. The results from this preliminary study suggest that there is potential utility of informatics methods to identify medicinal plant knowledge from digitized resources as well as highlight opportunities for improvement.

  14. Neonatal Informatics: Transforming Neonatal Care Through Translational Bioinformatics

    Science.gov (United States)

    Palma, Jonathan P.; Benitz, William E.; Tarczy-Hornoch, Peter; Butte, Atul J.; Longhurst, Christopher A.

    2012-01-01

    The future of neonatal informatics will be driven by the availability of increasingly vast amounts of clinical and genetic data. The field of translational bioinformatics is concerned with linking and learning from these data and applying new findings to clinical care to transform the data into proactive, predictive, preventive, and participatory health. As a result of advances in translational informatics, the care of neonates will become more data driven, evidence based, and personalized. PMID:22924023

  15. Formation of the portfolio of projects for informatization programs

    Directory of Open Access Journals (Sweden)

    Ion Bolun

    2009-12-01

    Full Text Available in informatization programs are approached: criteria of efficiency, general problem, aggregate problem in continuous form, general problem in discrete form and solving of problems. As criterion of informatization projects' economic efficiency, the total profit maximization due to investments is used. In preliminary calculations, the opportunity of considering continuous dependences of profit on the volume of investments by domain activities is grounded. Eleven classes of such dependences are investigated and analytical solutions and algorithms for solving formulated problems are described.

  16. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    Science.gov (United States)

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.

  17. Grid generation methods

    CERN Document Server

    Liseikin, Vladimir D

    2010-01-01

    This book is an introduction to structured and unstructured grid methods in scientific computing, addressing graduate students, scientists as well as practitioners. Basic local and integral grid quality measures are formulated and new approaches to mesh generation are reviewed. In addition to the content of the successful first edition, a more detailed and practice oriented description of monitor metrics in Beltrami and diffusion equations is given for generating adaptive numerical grids. Also, new techniques developed by the author are presented, in particular a technique based on the inverted form of Beltrami’s partial differential equations with respect to control metrics. This technique allows the generation of adaptive grids for a wide variety of computational physics problems, including grid clustering to given function values and gradients, grid alignment with given vector fields, and combinations thereof. Applications of geometric methods to the analysis of numerical grid behavior as well as grid ge...

  18. Combining medical informatics and bioinformatics toward tools for personalized medicine.

    Science.gov (United States)

    Sarachan, B D; Simmons, M K; Subramanian, P; Temkin, J M

    2003-01-01

    Key bioinformatics and medical informatics research areas need to be identified to advance knowledge and understanding of disease risk factors and molecular disease pathology in the 21 st century toward new diagnoses, prognoses, and treatments. Three high-impact informatics areas are identified: predictive medicine (to identify significant correlations within clinical data using statistical and artificial intelligence methods), along with pathway informatics and cellular simulations (that combine biological knowledge with advanced informatics to elucidate molecular disease pathology). Initial predictive models have been developed for a pilot study in Huntington's disease. An initial bioinformatics platform has been developed for the reconstruction and analysis of pathways, and work has begun on pathway simulation. A bioinformatics research program has been established at GE Global Research Center as an important technology toward next generation medical diagnostics. We anticipate that 21 st century medical research will be a combination of informatics tools with traditional biology wet lab research, and that this will translate to increased use of informatics techniques in the clinic.

  19. Improving the quality of the evidence base of health informatics.

    Science.gov (United States)

    Talmon, Jan

    2008-11-06

    Evaluation of health informatics technology has had attention from quite a few researchers in health informatics in the last few decades. In the early nineties of the past century several working groups and research projects have discussed evaluation methods and methodologies. Despite these activities, evaluation of health informatics has not received the recognition it deserves. In this presentation we will reiterate the arguments put forward in the Declaration of Innsbruck to consider evaluation an essential element of the evidence base of health informatics. Not only are evaluation studies essential, it is also required that such studies are properly reported. A joint effort of the IMIA, EFMI and AMIA working groups on evaluation has resulted in a guideline for reporting the results of evaluation studies of health informatics applications (STARE-HI). STARE-HI is currently endorsed by EFMI. The general assembly of IMIA has adopted STARE-HI as an official IMIA document. Endorsement from AMIA is being sought. A pilot study in which STARE-HI was applied to assess the quality of current reporting clearly indicates that there is quite some room for improvement. Application of guidelines such as STARE-HI would contribute to a further improvement of the evidence base of health informatics and would open the road for high quality reviews and meta-analyses.

  20. An overview of medical informatics education in China.

    Science.gov (United States)

    Hu, Dehua; Sun, Zhenling; Li, Houqing

    2013-05-01

    To outline the history of medical informatics education in the People's Republic of China, systematically analyze the current status of medical informatics education at different academic levels (bachelor's, master's, and doctoral), and suggest reasonable strategies for the further development of the field in China. The development of medical informatics education was divided into three stages, defined by changes in the specialty's name. Systematic searches of websites for material related to the specialty of medical informatics were then conducted. For undergraduate education, the websites surveyed included the website of the Ministry of Education of the People's Republic of China (MOE) and those of universities or colleges identified using the baidu.com search engine. For postgraduate education, the websites included China's Graduate Admissions Information Network (CGAIN) and the websites of the universities or their schools or faculties. Specialties were selected on the basis of three criteria: (1) for undergraduate education, the name of specialty or program was medical informatics or medical information or information management and information system; for postgraduate education, medical informatics or medical information; (2) the specialty was approved and listed by the MOE; (3) the specialty was set up by a medical college or medical university, or a school of medicine of a comprehensive university. The information abstracted from the websites included the year of program approval and listing, the university/college, discipline catalog, discipline, specialty, specialty code, objectives, and main courses. A total of 55 program offerings for undergraduate education, 27 for master's-level education, and 5 for PhD-level education in medical informatics were identified and assessed in China. The results indicate that medical informatics education, a specialty rooted in medical library and information science education in China, has grown significantly in that

  1. Chimera Grid Tools

    Science.gov (United States)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  2. Bayesian grid matching

    DEFF Research Database (Denmark)

    Hartelius, Karsten; Carstensen, Jens Michael

    2003-01-01

    A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which r...

  3. Smart grid in China

    DEFF Research Database (Denmark)

    Sommer, Simon; Ma, Zheng; Jørgensen, Bo Nørregaard

    2015-01-01

    China is planning to transform its traditional power grid in favour of a smart grid, since it allows a more economically efficient and a more environmentally friendly transmission and distribution of electricity. Thus, a nationwide smart grid is likely to save tremendous amounts of resources...

  4. Quantum Bio-Informatics:From Quantum Information to Bio-Informatics

    CERN Document Server

    Freudenberg, W; Ohya, M

    2008-01-01

    The purpose of this volume is examine bio-informatics and quantum information, which are growing rapidly at present, and to attempt to connect the two, with a view to enumerating and solving the many fundamental problems they entail. To this end, we look for interdisciplinary bridges in mathematics, physics, and information and life sciences. In particular, research into a new paradigm for information science and life science on the basis of quantum theory is emphasized. Sample Chapter(s). Markov Fields on Graphs (599 KB). Contents: Markov Fields on Graphs (L Accardi & H Ohno); Some Aspects of

  5. Grid Architecture 2

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  6. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  7. Biomedical applications of batteries

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Roger [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Linford, Roger [The Research Office, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Schlindwein, Walkiria [School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom)

    2004-08-31

    An overview is presented of the many ways in which batteries and battery materials are used in medicine and in biomedical studies. These include the use of batteries as power sources for motorised wheelchairs, surgical tools, cardiac pacemakers and defibrillators, dynamic prostheses, sensors and monitors for physiological parameters, neurostimulators, devices for pain relief, and iontophoretic, electroporative and related devices for drug administration. The various types of battery and fuel cell used for this wide range of applications will be considered, together with the potential harmful side effects, including accidental ingestion of batteries and the explosive nature of some of the early cardiac pacemaker battery systems.

  8. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  9. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  10. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  11. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  12. Radiochemicals in biomedical research

    International Nuclear Information System (INIS)

    Evans, E.A.; Oldham, K.G.

    1988-01-01

    This volume describes the role of radiochemicals in biomedical research, as tracers in the development of new drugs, their interaction and function with receptor proteins, with the kinetics of binding of hormone - receptor interactions, and their use in cancer research and clinical oncology. The book also aims to identify future trends in this research, the main objective of which is to provide information leading to improvements in the quality of life, and to give readers a basic understanding of the development of new drugs, how they function in relation to receptor proteins and lead to a better understanding of the diagnosis and treatment of cancers. (author)

  13. Smart grid technologies in local electric grids

    Science.gov (United States)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  14. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, Florin; Hansen, A.D.; Sørensen, P.

    loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads......The present report is a part of the research project "Grid fault and design basis for wind turbine" supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...

  15. Mapping of grid faults and grid codes

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    loads of wind turbines. The goal is also to clarify and define possible new directions in the certification process of power plant wind turbines, namely wind turbines, which participate actively in the stabilisation of power systems. Practical experience shows that there is a need...... challenges for the design of both the electrical system and the mechanical structure of wind turbines. An overview over the frequency of grid faults and the grid connection requirements in different relevant countries is done in this report. The most relevant study cases for the quantification of the loads......The present report is a part of the research project ''Grid fault and designbasis for wind turbine'' supported by Energinet.dk through the grant PSO F&U 6319. The objective of this project is to investigate into the consequences of the new grid connection requirements for the fatigue and extreme...

  16. Smart grid security

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, Jorge (ed.) [Siemens AG, Muenchen (Germany). Corporate Technology

    2013-11-01

    The engineering, deployment and security of the future smart grid will be an enormous project requiring the consensus of many stakeholders with different views on the security and privacy requirements, not to mention methods and solutions. The fragmentation of research agendas and proposed approaches or solutions for securing the future smart grid becomes apparent observing the results from different projects, standards, committees, etc, in different countries. The different approaches and views of the papers in this collection also witness this fragmentation. This book contains the following papers: 1. IT Security Architecture Approaches for Smart Metering and Smart Grid. 2. Smart Grid Information Exchange - Securing the Smart Grid from the Ground. 3. A Tool Set for the Evaluation of Security and Reliability in Smart Grids. 4. A Holistic View of Security and Privacy Issues in Smart Grids. 5. Hardware Security for Device Authentication in the Smart Grid. 6. Maintaining Privacy in Data Rich Demand Response Applications. 7. Data Protection in a Cloud-Enabled Smart Grid. 8. Formal Analysis of a Privacy-Preserving Billing Protocol. 9. Privacy in Smart Metering Ecosystems. 10. Energy rate at home Leveraging ZigBee to Enable Smart Grid in Residential Environment.

  17. Evaluation of a joint Bioinformatics and Medical Informatics international course in Peru.

    Science.gov (United States)

    Curioso, Walter H; Hansen, Jacquelyn R; Centurion-Lara, Arturo; Garcia, Patricia J; Wolf, Fredric M; Fuller, Sherrilynne; Holmes, King K; Kimball, Ann Marie

    2008-01-14

    New technologies that emerge at the interface of computational and biomedical science could drive new advances in global health, therefore more training in technology is needed among health care workers. To assess the potential for informatics training using an approach designed to foster interaction at this interface, the University of Washington and the Universidad Peruana Cayetano Heredia developed and assessed a one-week course that included a new Bioinformatics (BIO) track along with an established Medical/Public Health Informatics track (MI) for participants in Peru. We assessed the background of the participants, and measured the knowledge gained by track-specific (MI or BIO) 30-minute pre- and post-tests. Participants' attitudes were evaluated both by daily evaluations and by an end-course evaluation. Forty-three participants enrolled in the course - 20 in the MI track and 23 in the BIO track. Of 20 questions, the mean % score for the MI track increased from 49.7 pre-test (standard deviation or SD = 17.0) to 59.7 (SD = 15.2) for the post-test (P = 0.002, n = 18). The BIO track mean score increased from 33.6 pre-test to 51.2 post-test (P < 0.001, n = 21). Most comments (76%) about any aspect of the course were positive. The main perceived strength of the course was the quality of the speakers, and the main perceived weakness was the short duration of the course. Overall, the course acceptability was very good to excellent with a rating of 4.1 (scale 1-5), and the usefulness of the course was rated as very good. Most participants (62.9%) expressed a positive opinion about having had the BIO and MI tracks come together for some of the lectures. Pre- and post-test results and the positive evaluations by the participants indicate that this first joint Bioinformatics and Medical/Public Health Informatics (MI and BIO) course was a success.

  18. Informatics for Health 2017: Advancing both science and practice

    Directory of Open Access Journals (Sweden)

    Philip J. Scott

    2017-04-01

    Full Text Available Introduction: The Informatics for Health congress, 24-26 April 2017, in Manchester, UK, brought together the Medical Informatics Europe (MIE conference and the Farr Institute International Conference. This special issue of the Journal of Innovation in Health Informatics contains 113 presentation abstracts and 149 poster abstracts from the congress. Discussion: The twin programmes of “Big Data” and “Digital Health” are not always joined up by coherent policy and investment priorities. Substantial global investment in health IT and data science has led to sound progress but highly variable outcomes. Society needs an approach that brings together the science and the practice of health informatics. The goal is multi-level Learning Health Systems that consume and intelligently act upon both patient data and organizational intervention outcomes. Conclusions: Informatics for Health demonstrated the art of the possible, seen in the breadth and depth of our contributions. We call upon policy makers, research funders and programme leaders to learn from this joined-up approach.

  19. Innovation in transformative nursing leadership: nursing informatics competencies and roles.

    Science.gov (United States)

    Remus, Sally; Kennedy, Margaret Ann

    2012-12-01

    In a recent brief to the Canadian Nurses Association's National Expert Commission on the Health of Our Nation, the Academy of Canadian Executive Nurses (ACEN) discussed leadership needs in the Canadian healthcare system, and promoted the pivotal role of nursing executives in transforming Canada's healthcare system into an integrated patient-centric system. Included among several recommendations was the need to develop innovative leadership competencies that enable nurse leaders to lead and advance transformative health system change. This paper focuses on an emerging "avant-garde executive leadership competency" recommended for today's health leaders to guide health system transformation. Specifically, this competency is articulated as "state of the art communication and technology savvy," and it implies linkages between nursing informatics competencies and transformational leadership roles for nurse executive. The authors of this paper propose that distinct nursing informatics competencies are required to augment traditional executive skills to support transformational outcomes of safe, integrated, high-quality care delivery through knowledge-driven care. International trends involving nursing informatics competencies and the evolution of new corporate informatics roles, such as chief nursing informatics officers (CNIOs), are demonstrating value and advanced transformational leadership as nursing executive roles that are informed by clinical data. Copyright © 2013 Longwoods Publishing.

  20. Mathematics of the quantum informatics. An introduction; Mathematik der Quanteninformatik. Eine Einfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Wolfgang

    2016-07-01

    Starting from the physical foundations all mathematics required for the quantum informatics are introduced and explained. The essential aspects of the quantum informatics are mathematically formulated. All statements made are also proved in the book.

  1. Development of social informatics as a step of optimization the higher education process in Kazakhstan

    OpenAIRE

    Lyazzat Tungatarova

    2015-01-01

    The Kazakhstani geopolitical situation raise the concerns on the worsening of the security situation on post-Soviet Central Asia and its involvement into the global informatization demands a development of social informatics as a new educational trend.

  2. Cognitive informatics in health and biomedicine case studies on critical care, complexity and errors

    CERN Document Server

    Patel, Vimla L; Cohen, Trevor

    2014-01-01

    This interdisciplinary book offers an introduction to cognitive informatics, focusing on key examples drawn from the application of methods and theories from cognitive informatics to challenges specific to the practice of critical-care medicine.

  3. Biomedical ontologies: toward scientific debate.

    Science.gov (United States)

    Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C

    2011-01-01

    Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.

  4. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  5. Egyptian Journal of Biomedical Sciences

    African Journals Online (AJOL)

    The Egyptian Journal of Biomedical Sciences publishes in all aspects of biomedical research sciences. Both basic and clinical research papers are welcomed. Vol 23 (2007). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Table of Contents. Articles. Phytochemical And ...

  6. African Journal of Biomedical Research

    African Journals Online (AJOL)

    The African Journal of biomedical Research was founded in 1998 as a joint project ... of the journal led to the formation of a group (Biomedical Communications Group, ... analysis of multidrug resistant aerobic gram-negative clinical isolates from a ... Dental formula and dental abnormalities observed in the Eidolon helvum ...

  7. LHC computing grid

    International Nuclear Information System (INIS)

    Novaes, Sergio

    2011-01-01

    Full text: We give an overview of the grid computing initiatives in the Americas. High-Energy Physics has played a very important role in the development of grid computing in the world and in Latin America it has not been different. Lately, the grid concept has expanded its reach across all branches of e-Science, and we have witnessed the birth of the first nationwide infrastructures and its use in the private sector. (author)

  8. Urban micro-grids

    International Nuclear Information System (INIS)

    Faure, Maeva; Salmon, Martin; El Fadili, Safae; Payen, Luc; Kerlero, Guillaume; Banner, Arnaud; Ehinger, Andreas; Illouz, Sebastien; Picot, Roland; Jolivet, Veronique; Michon Savarit, Jeanne; Strang, Karl Axel

    2017-02-01

    ENEA Consulting published the results of a study on urban micro-grids conducted in partnership with the Group ADP, the Group Caisse des Depots, ENEDIS, Omexom, Total and the Tuck Foundation. This study offers a vision of the definition of an urban micro-grid, the value brought by a micro-grid in different contexts based on real case studies, and the upcoming challenges that micro-grid stakeholders will face (regulation, business models, technology). The electric production and distribution system, as the backbone of an increasingly urbanized and energy dependent society, is urged to shift towards a more resilient, efficient and environment-friendly infrastructure. Decentralisation of electricity production into densely populated areas is a promising opportunity to achieve this transition. A micro-grid enhances local production through clustering electricity producers and consumers within a delimited electricity network; it has the ability to disconnect from the main grid for a limited period of time, offering an energy security service to its customers during grid outages for example. However: The islanding capability is an inherent feature of the micro-grid concept that leads to a significant premium on electricity cost, especially in a system highly reliant on intermittent electricity production. In this case, a smart grid, with local energy production and no islanding capability, can be customized to meet relevant sustainability and cost savings goals at lower costs For industrials, urban micro-grids can be economically profitable in presence of high share of reliable energy production and thermal energy demand micro-grids face strong regulatory challenges that should be overcome for further development Whether islanding is or is not implemented into the system, end-user demand for a greener, more local, cheaper and more reliable energy, as well as additional services to the grid, are strong drivers for local production and consumption. In some specific cases

  9. High density grids

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Aina E.; Baxter, Elizabeth L.

    2018-01-16

    An X-ray data collection grid device is provided that includes a magnetic base that is compatible with robotic sample mounting systems used at synchrotron beamlines, a grid element fixedly attached to the magnetic base, where the grid element includes at least one sealable sample window disposed through a planar synchrotron-compatible material, where the planar synchrotron-compatible material includes at least one automated X-ray positioning and fluid handling robot fiducial mark.

  10. People, organizational, and leadership factors impacting informatics support for clinical and translational research

    Directory of Open Access Journals (Sweden)

    Payne Philip RO

    2013-02-01

    Full Text Available Abstract Background In recent years, there have been numerous initiatives undertaken to describe critical information needs related to the collection, management, analysis, and dissemination of data in support of biomedical research (J Investig Med 54:327-333, 2006; (J Am Med Inform Assoc 16:316–327, 2009; (Physiol Genomics 39:131-140, 2009; (J Am Med Inform Assoc 18:354–357, 2011. A common theme spanning such reports has been the importance of understanding and optimizing people, organizational, and leadership factors in order to achieve the promise of efficient and timely research (J Am Med Inform Assoc 15:283–289, 2008. With the emergence of clinical and translational science (CTS as a national priority in the United States, and the corresponding growth in the scale and scope of CTS research programs, the acuity of such information needs continues to increase (JAMA 289:1278–1287, 2003; (N Engl J Med 353:1621–1623, 2005; (Sci Transl Med 3:90, 2011. At the same time, systematic evaluations of optimal people, organizational, and leadership factors that influence the provision of data, information, and knowledge management technologies and methods are notably lacking. Methods In response to the preceding gap in knowledge, we have conducted both: 1 a structured survey of domain experts at Academic Health Centers (AHCs; and 2 a subsequent thematic analysis of public-domain documentation provided by those same organizations. The results of these approaches were then used to identify critical factors that may influence access to informatics expertise and resources relevant to the CTS domain. Results A total of 31 domain experts, spanning the Biomedical Informatics (BMI, Computer Science (CS, Information Science (IS, and Information Technology (IT disciplines participated in a structured surveyprocess. At a high level, respondents identified notable differences in theaccess to BMI, CS, and IT expertise and services depending on the

  11. Mission and Sustainability of Informatics for Integrating Biology and the Bedside (i2b2).

    Science.gov (United States)

    Murphy, Shawn; Wilcox, Adam

    2014-01-01

    A visible example of a successfully disseminated research project in the healthcare space is Informatics for Integrating Biology and the Bedside, or i2b2. The project serves to provide the software that can allow a researcher to do direct, self-serve queries against the electronic healthcare data form a hospital. The goals of these queries are to find cohorts of patients that fit specific profiles, while providing for patient privacy and discretion. Sustaining this resource and keeping its direction has always been a challenge, but ever more so as the ten year National Centers for Biomedical Computing (NCBCs) sunset their funding. Building on the i2b2 structures has helped the dissemination plans for grants leveraging it because it is a disseminated national resource. While this has not directly increased the support of i2b2 internally, it has increased the ability of institutions to leverage the resource and generally leads to increased institutional support. The successful development, use, and dissemination i2b2 has been significant in clinical research and informatics. Its evolution has been from a local research data infrastructure to one disseminated more broadly than any other product of the National Centers for Biomedical Computing, and an infrastructure spawning larger investments than were originally used to create it. Throughout this, there were two main lessons about the benefits of dissemination: that people have great creativity in utilizing a resource in different ways and that broader system use can make the system more robust. One option for long-term sustainability of the central authority would be to translate the function to an industry partner. Another option currently being pursued is to create a foundation that would be a central authority for the project. Over the past 10 years, i2b2 has risen to be an important staple in the toolkit of health care researchers. There are now over 110 hospitals that use i2b2 for research. This open

  12. Micro grids toward the smart grid

    International Nuclear Information System (INIS)

    Guerrero, J.

    2011-01-01

    Worldwide electrical grids are expecting to become smarter in the near future, with interest in Microgrids likely to grow. A microgrid can be defined as a part of the grid with elements of prime energy movers, power electronics converters, distributed energy storage systems and local loads, that can operate autonomously but also interacting with main grid. Thus, the ability of intelligent Microgrids to operate in island mode or connected to the grid will be a keypoint to cope with new functionalities and the integration of renewable energy resources. The functionalities expected for these small grids are: black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management. In this presentation, a review of the main concepts related to flexible Microgrids will be introduced, with examples of real Microgrids. AC and DC Microgrids to integrate renewable and distributed energy resources will also be presented, as well as distributed energy storage systems, and standardization issues of these Microgrids. Finally, Microgrid hierarchical control will be analyzed looking at three different levels: i) a primary control based on the droop method, including an output impedance virtual loop; ii) a secondary control, which enables restoring any deviations produced by the primary control; and iii) a tertiary control to manage the power flow between the microgrid and the external electrical distribution system.

  13. Biomedical Science Technologists in Lagos Universities: Meeting ...

    African Journals Online (AJOL)

    Biomedical Science Technologists in Lagos Universities: Meeting Modern Standards ... like to see in biomedical science in Nigeria; 5) their knowledge of ten state-of-the-arts ... KEY WORDS: biomedical science, state-of-the-arts, technical staff ...

  14. Journal of Biomedical Investigation: Editorial Policies

    African Journals Online (AJOL)

    Journal of Biomedical Investigation: Editorial Policies. Journal Home ... The focus of the Journal of Biomedical Research is to promote interdisciplinary research across all Biomedical Sciences. It publishes ... Business editor – Sam Meludu.

  15. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  16. Design of Cognitive Interfaces for Personal Informatics Feedback

    DEFF Research Database (Denmark)

    Jensen, Camilla Birgitte Falk

    to personal informatics systems, and propose an approach to design cognitive interfaces, which considers both users’ motivations, needs, and goals. In this thesis I propose a new personal informatics framework, the feedback loop, which incorporates lean agile design principles. Including hierarchical modeling...... of goals, activities, and tasks to create minimal viable products. While considering how micro-interactions based on an understanding of data, couples with user needs and the context they appear in, can contribute to creating cognitive interfaces. Designing cognitive interfaces requires a focus....... For instance, examining emotional responses to pleasant and unpleasant media content from brain activity, reveals the large amount of data and extensive analysis required to apply this to future personal informatics systems. In addition we analyse challenges related to temporal aspects of the feedback loop...

  17. Topical directions of informatics in memory of V. M. Glushkov

    CERN Document Server

    Sergienko, Ivan V

    2014-01-01

    This work is devoted to the late Ukrainian computer scientist V. M. Glushkov  on the 90th anniversary of his birthday. Dr. Glushkov is known for his contribution to the world computer science and technology, and this volume analyzes the ideas and paths of development of informatics formulated by him, and demonstrates their important role in constructing computer technologies of basic research in the fields of applied mathematics, theories of computer programming, and computing systems.   A significant portion of the monograph is devoted to the elucidation of new results obtained  in the field of mathematical modeling of complicated processes, creation of new methods for solving and investigating optimization problems in different statements, and development of computer technologies for investigations in the field of economy, biology, medicine, and information security in systems.   The monograph will be of particular interest to informatics specialists and experts using methods of informatics and computer...

  18. Wellbeing Understanding in High Quality Healthcare Informatics and Telepractice.

    Science.gov (United States)

    Fiorini, Rodolfo A; De Giacomo, Piero; L'Abate, Luciano

    2016-01-01

    The proper use of healthcare informatics technology and multidimensional conceptual clarity are fundamental to create and boost outstanding clinical and telepractice results. Avoiding even terminology ambiguities is mandatory for high quality of care service. For instance, well-being or wellbeing is a different way to write the same concept only, or there is a good deal of ambiguity around the meanings of these terms the way they are written. In personal health, healthcare and healthcare informatics, this kind of ambiguity and lack of conceptual clarity has been called out repeatedly over the past 50 years. It is time to get the right, terse scenario. We present a brief review to develop and achieve ultimate wellbeing understanding for practical high quality healthcare informatics and telepractice application. This article presents an innovative point of view on deeper wellbeing understanding towards its increased clinical effective application.

  19. 3rd International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Chaki, Nabendu

    2016-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 132 scholarly articles, which have been accepted for presentation from over 550 submissions in the Third International Conference on Advanced Computing, Networking and Informatics, 2015, held in Bhubaneswar, India during June 23–25, 2015.

  20. 1st International Conference on Advanced Intelligent System and Informatics

    CERN Document Server

    Hassanien, Aboul; El-Bendary, Nashwa; Dey, Nilanjan

    2016-01-01

    The conference topics address different theoretical and practical aspects, and implementing solutions for intelligent systems and informatics disciplines including bioinformatics, computer science, medical informatics, biology, social studies, as well as robotics research. The conference also discuss and present solutions to the cloud computing and big data mining which are considered hot research topics. The conference papers discussed different topics – techniques, models, methods, architectures, as well as multi aspect, domain-specific, and new solutions for the above disciplines. The accepted papers have been grouped into five parts: Part I—Intelligent Systems and Informatics, addressing topics including, but not limited to, medical application, predicting student performance, action classification, and detection of dead stained microscopic cells, optical character recognition, plant identification, rehabilitation of disabled people. Part II—Hybrid Intelligent Systems, addressing topics including, b...

  1. Computer, Informatics, Cybernetics and Applications : Proceedings of the CICA 2011

    CERN Document Server

    Hua, Ertian; Lin, Yun; Liu, Xiaozhu

    2012-01-01

    Computer Informatics Cybernetics and Applications offers 91 papers chosen for publication from among 184 papers accepted for presentation to the International Conference on Computer, Informatics, Cybernetics and Applications 2011 (CICA 2011), held in Hangzhou, China, September 13-16, 2011. The CICA 2011 conference provided a forum for engineers and scientists in academia, industry, and government to address the most innovative research and development including technical challenges and social, legal, political, and economic issues, and to present and discuss their ideas, results, work in progress and experience on all aspects of Computer, Informatics, Cybernetics and Applications. Reflecting the broad scope of the conference, the contents are organized in these topical categories: Communication Technologies and Applications Intelligence and Biometrics Technologies Networks Systems and Web Technologies Data Modeling and Programming Languages Digital Image Processing Optimization and Scheduling Education and In...

  2. The Great Chains of Computing: Informatics at Multiple Scales

    Directory of Open Access Journals (Sweden)

    Kevin Kirby

    2011-10-01

    Full Text Available The perspective from which information processing is pervasive in the universe has proven to be an increasingly productive one. Phenomena from the quantum level to social networks have commonalities that can be usefully explicated using principles of informatics. We argue that the notion of scale is particularly salient here. An appreciation of what is invariant and what is emergent across scales, and of the variety of different types of scales, establishes a useful foundation for the transdiscipline of informatics. We survey the notion of scale and use it to explore the characteristic features of information statics (data, kinematics (communication, and dynamics (processing. We then explore the analogy to the principles of plenitude and continuity that feature in Western thought, under the name of the "great chain of being", from Plato through Leibniz and beyond, and show that the pancomputational turn is a modern counterpart of this ruling idea. We conclude by arguing that this broader perspective can enhance informatics pedagogy.

  3. Challenges facing production grids

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  4. Informatics and communication in a state public health department: a case study.

    Science.gov (United States)

    Hills, Rebecca A; Turner, Anne M

    2008-11-06

    State and local health departments are witnessing growth in the area of informatics. As new informatics projects commence, existing methods of communication within the health department may not be sufficient. We gathered information about roles and communication between a development team and a user group working simultaneously on an informatics project in a state public health department in an effort to better define how communication and role definition is best used within an informatics project.

  5. Examining the need & potential for biomedical engineering to strengthen health care delivery for displaced populations & victims of conflict.

    Science.gov (United States)

    Nadkarni, Devika; Elhajj, Imad; Dawy, Zaher; Ghattas, Hala; Zaman, Muhammad H

    2017-01-01

    Conflict and the subsequent displacement of populations creates unique challenges in the delivery of quality health care to the affected population. Equitable access to quality care demands a multi-pronged strategy with a growing need, and role, for technological innovation to address these challenges. While there have been significant contributions towards alleviating the burden of conflict via data informatics and analytics, communication technology, and geographic information systems, little has been done within biomedical engineering. This article elaborates on the causes for gaps in biomedical innovation for refugee populations affected by conflict, tackles preconceived notions, takes stock of recent developments in promising technologies to address these challenges, and identifies tangible action items to create a stronger and sustainable pipeline for biomedical technological innovation to improve the health and well-being of an increasing group of vulnerable people around the world.

  6. Customization of biomedical terminologies.

    Science.gov (United States)

    Homo, Julien; Dupuch, Laëtitia; Benbrahim, Allel; Grabar, Natalia; Dupuch, Marie

    2012-01-01

    Within the biomedical area over one hundred terminologies exist and are merged in the Unified Medical Language System Metathesaurus, which gives over 1 million concepts. When such huge terminological resources are available, the users must deal with them and specifically they must deal with irrelevant parts of these terminologies. We propose to exploit seed terms and semantic distance algorithms in order to customize the terminologies and to limit within them a semantically homogeneous space. An evaluation performed by a medical expert indicates that the proposed approach is relevant for the customization of terminologies and that the extracted terms are mostly relevant to the seeds. It also indicates that different algorithms provide with similar or identical results within a given terminology. The difference is due to the terminologies exploited. A special attention must be paid to the definition of optimal association between the semantic similarity algorithms and the thresholds specific to a given terminology.

  7. Biomedical applications of nanotechnology.

    Science.gov (United States)

    Ramos, Ana P; Cruz, Marcos A E; Tovani, Camila B; Ciancaglini, Pietro

    2017-04-01

    The ability to investigate substances at the molecular level has boosted the search for materials with outstanding properties for use in medicine. The application of these novel materials has generated the new research field of nanobiotechnology, which plays a central role in disease diagnosis, drug design and delivery, and implants. In this review, we provide an overview of the use of metallic and metal oxide nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. The chemical and physical properties of the surface of these materials allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology that studies the surface effects emerging from nanostructured materials.

  8. Informatics competencies for nurse leaders: protocol for a scoping review.

    Science.gov (United States)

    Kassam, Iman; Nagle, Lynn; Strudwick, Gillian

    2017-12-14

    Globally, health information technologies are now being used by nurses in a variety of settings. However, nurse leaders often do not have the necessary strategic and tactical informatics competencies to adequately ensure their effective adoption and use. Although informatics competencies and competency frameworks have been identified and developed, to date there has not been review or consolidation of the work completed in this area. In order to address this gap, a scoping review is being conducted. The objectives of this scoping review are to: (1) identify informatics competencies of relevance to nurse leaders, (2) identify frameworks or theories that have been used to develop informatics competencies for nurse leaders, (3) identify instruments used to assess the informatics competencies of nurse leaders and (4) examine the psychometric properties of identified instruments. Using the Arksey and O'Malley five-step framework, a literature review will be conducted using a scoping review methodology. The search will encompass academic and grey literature and include two primary databases and five secondary databases. Identified studies and documents will be independently screened for eligibility by two reviewers. Data from the studies and documents will be extracted and compiled into a chart. Qualitative data will be subject to a thematic analysis and descriptive statistics applied to the quantitative data. Ethical approval was not required for this study. Results will be used to inform a future study designed to validate an instrument used to evaluate informatics competencies for nurse leaders within a Canadian context. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. The Epilepsy Phenome/Genome Project (EPGP) informatics platform.

    Science.gov (United States)

    Nesbitt, Gerry; McKenna, Kevin; Mays, Vickie; Carpenter, Alan; Miller, Kevin; Williams, Michael

    2013-04-01

    The Epilepsy Phenome/Genome Project (EPGP) is a large-scale, multi-institutional, collaborative network of 27 epilepsy centers throughout the U.S., Australia, and Argentina, with the objective of collecting detailed phenotypic and genetic data on a large number of epilepsy participants. The goals of EPGP are (1) to perform detailed phenotyping on 3750 participants with specific forms of non-acquired epilepsy and 1500 parents without epilepsy, (2) to obtain DNA samples on these individuals, and (3) to ultimately genotype the samples in order to discover novel genes that cause epilepsy. To carry out the project, a reliable and robust informatics platform was needed for standardized electronic data collection and storage, data quality review, and phenotypic analysis involving cases from multiple sites. EPGP developed its own suite of web-based informatics applications for participant tracking, electronic data collection (using electronic case report forms/surveys), data management, phenotypic data review and validation, specimen tracking, electroencephalograph and neuroimaging storage, and issue tracking. We implemented procedures to train and support end-users at each clinical site. Thus far, 3780 study participants have been enrolled and 20,957 web-based study activities have been completed using this informatics platform. Over 95% of respondents to an end-user satisfaction survey felt that the informatics platform was successful almost always or most of the time. The EPGP informatics platform has successfully and effectively allowed study management and efficient and reliable collection of phenotypic data. Our novel informatics platform met the requirements of a large, multicenter research project. The platform has had a high level of end-user acceptance by principal investigators and study coordinators, and can serve as a model for new tools to support future large scale, collaborative research projects collecting extensive phenotypic data. Copyright © 2012

  10. Mediator infrastructure for information integration and semantic data integration environment for biomedical research.

    Science.gov (United States)

    Grethe, Jeffrey S; Ross, Edward; Little, David; Sanders, Brian; Gupta, Amarnath; Astakhov, Vadim

    2009-01-01

    This paper presents current progress in the development of semantic data integration environment which is a part of the Biomedical Informatics Research Network (BIRN; http://www.nbirn.net) project. BIRN is sponsored by the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). A goal is the development of a cyberinfrastructure for biomedical research that supports advance data acquisition, data storage, data management, data integration, data mining, data visualization, and other computing and information processing services over the Internet. Each participating institution maintains storage of their experimental or computationally derived data. Mediator-based data integration system performs semantic integration over the databases to enable researchers to perform analyses based on larger and broader datasets than would be available from any single institution's data. This paper describes recent revision of the system architecture, implementation, and capabilities of the semantically based data integration environment for BIRN.

  11. Medical informatics: A boon to the healthcare industry

    Directory of Open Access Journals (Sweden)

    Dinesh Bhatia

    2010-01-01

    Full Text Available Newer healthcare technologies and treatment procedures are being developed rapidly, and clinicians are incorporating them into their daily practice. They are integrating the past and the present knowledge for better patient healthcare. Previously, it had been difficult to organize, store and retrieve medical and patient information. But, today, with the advent of computers and, moreover, information technology has led to the development of medical informatics that is helping physicians to overcome these challenges. Medical informatics deals with all aspects of understanding and promoting the effective organization analysis, management and use of information in healthcare, which are being highlighted in this review paper.

  12. A core curriculum for clinical fellowship training in pathology informatics

    Directory of Open Access Journals (Sweden)

    David S McClintock

    2012-01-01

    Full Text Available Background: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. Materials and Methods: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Results: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1 Information Fundamentals, (2 Information Systems, (3 Workflow and Process, and (4 Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012. Discussion: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world

  13. Observations on sustainable and ubiquitous healthcare informatics from Florence Nightingale.

    Science.gov (United States)

    Betts, Helen J; Wright, Graham

    2009-01-01

    As nurses around the world prepare to celebrate the centenary of the death of Florence Nightingale in 2010 this paper reviews her work on using information, especially statistics, to analyze and manage patient care and links that to current developments in informatics. It then examines assistive technologies and how they may impact on nursing practice in the future and links these developments to the writings of Florence Nightingale. The paper concludes by suggesting that in progressing towards sustainable and ubiquitous healthcare informatics we need to study history in order to learn from the lessons of Florence Nightingale and other healthcare pioneers.

  14. The informatics teaching with the use of networks.

    Directory of Open Access Journals (Sweden)

    Eduardo Hernández Martín

    2013-09-01

    Full Text Available To achieve a differentiated teaching learning process in informatics, in which each student should be able to keep his/her own rhythm, is one of the most complex themes to deal with at any educational level. The present work is the result of the scientific methodological work in the Educative Informatics discipline, it is pretended to reflect about the way of using the UCP LAN in the teaching learning process. To carry out the article some documents such as the disciplines and subjects study syllabuses were revised, the information obtained from an updated bibliography was analyzed – synthesized and itwas exemplified with a theory practical lesson.

  15. A comparative analysis of moral principles and behavioral norms in eight ethical codes relevant to health sciences librarianship, medical informatics, and the health professions.

    Science.gov (United States)

    Byrd, Gary D; Winkelstein, Peter

    2014-10-01

    Based on the authors' shared interest in the interprofessional challenges surrounding health information management, this study explores the degree to which librarians, informatics professionals, and core health professionals in medicine, nursing, and public health share common ethical behavior norms grounded in moral principles. Using the "Principlism" framework from a widely cited textbook of biomedical ethics, the authors analyze the statements in the ethical codes for associations of librarians (Medical Library Association [MLA], American Library Association, and Special Libraries Association), informatics professionals (American Medical Informatics Association [AMIA] and American Health Information Management Association), and core health professionals (American Medical Association, American Nurses Association, and American Public Health Association). This analysis focuses on whether and how the statements in these eight codes specify core moral norms (Autonomy, Beneficence, Non-Maleficence, and Justice), core behavioral norms (Veracity, Privacy, Confidentiality, and Fidelity), and other norms that are empirically derived from the code statements. These eight ethical codes share a large number of common behavioral norms based most frequently on the principle of Beneficence, then on Autonomy and Justice, but rarely on Non-Maleficence. The MLA and AMIA codes share the largest number of common behavioral norms, and these two associations also share many norms with the other six associations. The shared core of behavioral norms among these professions, all grounded in core moral principles, point to many opportunities for building effective interprofessional communication and collaboration regarding the development, management, and use of health information resources and technologies.

  16. A materials informatics approach for crystal chemistry

    Science.gov (United States)

    Kong, Chang Sun

    This thesis addresses one of the fundamental questions in materials crystal chemistry, namely why do atoms arrange themselves in the way they do? The ability to broadly design and predict new phases [i.e. crystal structures] can be partly met using concepts that employ phase homologies. Homologous series of compounds are those that seem chemically diverse but can be expressed in terms of a mathematical formula that is capable of producing each chemical member in that crystal structure. A well-established strategy to help discover new compounds -- or at least to try to develop chemical design strategies for discovery -- is to search, organize and classify homologous compounds from known data. These classification schemes are developed with the hope that they can provide sufficient insight to help us forecast with some certainty, specific new phases or compounds. Yet, while the classification schemes (over a dozen have been reported in the last 50 years) have proved to be instructive, mostly in hindsight, but they have had limited impact, if at all, on the a priori design of materials chemistry. The aim of this research project is to develop a totally new approach to the study of chemical complexity in materials science using the tools of information theory and data science, which link diverse and high dimensional data derived from physical modeling and experiments. A very large scale binary AB2 crystallographic database is used as a data platform to develop a new data mining/informatics protocol based on high dimensional recursive partitioning schemes coupled to information theoretic measures to: (1) Identify which type of structure prototype is preferred over another for a given chemistry of compound; (2) discover new classification schemes of structure/chemistry/property relationships that classical homologies do not detect and finally we; (3) Extract and organize the underlying design rules for the formation of a given structure by quantitatively assessing the

  17. GridOrbit public display

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Tabard, Aurélien; Bardram, Jakob

    2010-01-01

    We introduce GridOrbit, a public awareness display that visualizes the activity of a community grid used in a biology laboratory. This community grid executes bioin-formatics algorithms and relies on users to donate CPU cycles to the grid. The goal of GridOrbit is to create a shared awareness about...

  18. Security for grids

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  19. The LHCb Grid Simulation

    CERN Multimedia

    Baranov, Alexander

    2016-01-01

    The LHCb Grid access if based on the LHCbDirac system. It provides access to data and computational resources to researchers with different geographical locations. The Grid has a hierarchical topology with multiple sites distributed over the world. The sites differ from each other by their number of CPUs, amount of disk storage and connection bandwidth. These parameters are essential for the Grid work. Moreover, job scheduling and data distribution strategy have a great impact on the grid performance. However, it is hard to choose an appropriate algorithm and strategies as they need a lot of time to be tested on the real grid. In this study, we describe the LHCb Grid simulator. The simulator reproduces the LHCb Grid structure with its sites and their number of CPUs, amount of disk storage and bandwidth connection. We demonstrate how well the simulator reproduces the grid work, show its advantages and limitations. We show how well the simulator reproduces job scheduling and network anomalies, consider methods ...

  20. The play grid

    DEFF Research Database (Denmark)

    Fogh, Rune; Johansen, Asger

    2013-01-01

    In this paper we propose The Play Grid, a model for systemizing different play types. The approach is psychological by nature and the actual Play Grid is based, therefore, on two pairs of fundamental and widely acknowledged distinguishing characteristics of the ego, namely: extraversion vs. intro...

  1. Planning in Smart Grids

    NARCIS (Netherlands)

    Bosman, M.G.C.

    2012-01-01

    The electricity supply chain is changing, due to increasing awareness for sustainability and an improved energy efficiency. The traditional infrastructure where demand is supplied by centralized generation is subject to a transition towards a Smart Grid. In this Smart Grid, sustainable generation

  2. Gridded Species Distribution, Version 1: Global Amphibians Presence Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Amphibians Presence Grids of the Gridded Species Distribution, Version 1 is a reclassified version of the original grids of amphibian species distribution...

  3. Grid generation methods

    CERN Document Server

    Liseikin, Vladimir D

    2017-01-01

    This new edition provides a description of current developments relating to grid methods, grid codes, and their applications to actual problems. Grid generation methods are indispensable for the numerical solution of differential equations. Adaptive grid-mapping techniques, in particular, are the main focus and represent a promising tool to deal with systems with singularities. This 3rd edition includes three new chapters on numerical implementations (10), control of grid properties (11), and applications to mechanical, fluid, and plasma related problems (13). Also the other chapters have been updated including new topics, such as curvatures of discrete surfaces (3). Concise descriptions of hybrid mesh generation, drag and sweeping methods, parallel algorithms for mesh generation have been included too. This new edition addresses a broad range of readers: students, researchers, and practitioners in applied mathematics, mechanics, engineering, physics and other areas of applications.

  4. The GRID seminar

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The Grid infrastructure is a key part of the computing environment for the simulation, processing and analysis of the data of the LHC experiments. These experiments depend on the availability of a worldwide Grid infrastructure in several aspects of their computing model. The Grid middleware will hide much of the complexity of this environment to the user, organizing all the resources in a coherent virtual computer center. The general description of the elements of the Grid, their interconnections and their use by the experiments will be exposed in this talk. The computational and storage capability of the Grid is attracting other research communities beyond the high energy physics. Examples of these applications will be also exposed during the presentation.

  5. A data grid for imaging-based clinical trials

    Science.gov (United States)

    Zhou, Zheng; Chao, Sander S.; Lee, Jasper; Liu, Brent; Documet, Jorge; Huang, H. K.

    2007-03-01

    Clinical trials play a crucial role in testing new drugs or devices in modern medicine. Medical imaging has also become an important tool in clinical trials because images provide a unique and fast diagnosis with visual observation and quantitative assessment. A typical imaging-based clinical trial consists of: 1) A well-defined rigorous clinical trial protocol, 2) a radiology core that has a quality control mechanism, a biostatistics component, and a server for storing and distributing data and analysis results; and 3) many field sites that generate and send image studies to the radiology core. As the number of clinical trials increases, it becomes a challenge for a radiology core servicing multiple trials to have a server robust enough to administrate and quickly distribute information to participating radiologists/clinicians worldwide. The Data Grid can satisfy the aforementioned requirements of imaging based clinical trials. In this paper, we present a Data Grid architecture for imaging-based clinical trials. A Data Grid prototype has been implemented in the Image Processing and Informatics (IPI) Laboratory at the University of Southern California to test and evaluate performance in storing trial images and analysis results for a clinical trial. The implementation methodology and evaluation protocol of the Data Grid are presented.

  6. Personal informatics in practice: Improving quality of life through data

    DEFF Research Database (Denmark)

    Li, Ian; Medynskiy, Yevgeniy; Froehlich, Jon

    2012-01-01

    of personal informatics applications poses new challenges for human-computer interaction and creates opportunities for applications in various domains related to quality of life, such as fitness, nutrition, wellness, mental health, and sustainability. This workshop will continue the conversations from the CHI...

  7. Building blocks for a clinical imaging informatics environment.

    Science.gov (United States)

    Kohli, Marc D; Warnock, Max; Daly, Mark; Toland, Christopher; Meenan, Chris; Nagy, Paul G

    2014-04-01

    Over the past 20 years, imaging informatics has been driven by the widespread adoption of radiology information and picture archiving and communication and speech recognition systems. These three clinical information systems are commonplace and are intuitive to most radiologists as they replicate familiar paper and film workflow. So what is next? There is a surge of innovation in imaging informatics around advanced workflow, search, electronic medical record aggregation, dashboarding, and analytics tools for quality measures (Nance et al., AJR Am J Roentgenol 200:1064-1070, 2013). The challenge lies in not having to rebuild the technological wheel for each of these new applications but instead attempt to share common components through open standards and modern development techniques. The next generation of applications will be built with moving parts that work together to satisfy advanced use cases without replicating databases and without requiring fragile, intense synchronization from clinical systems. The purpose of this paper is to identify building blocks that can position a practice to be able to quickly innovate when addressing clinical, educational, and research-related problems. This paper is the result of identifying common components in the construction of over two dozen clinical informatics projects developed at the University of Maryland Radiology Informatics Research Laboratory. The systems outlined are intended as a mere foundation rather than an exhaustive list of possible extensions.

  8. The Integration of Nursing Informatics in Delaware Nursing Education Programs

    Science.gov (United States)

    Wheeler, Bernadette

    2016-01-01

    Over the past decade, there has been a conversion to electronic health records (EHRs) in an effort to improve patient care, access, and efficiency. The goal, which has been supported by federal initiatives, is to meaningfully use informatics to improve the safety and quality of patient care as a major force in improving healthcare. How nurses…

  9. Entrepreneurial Health Informatics for Computer Science and Information Systems Students

    Science.gov (United States)

    Lawler, James; Joseph, Anthony; Narula, Stuti

    2014-01-01

    Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…

  10. Microcomputers and Informatics Education at the University Level.

    Science.gov (United States)

    Boyanov, Todor

    1984-01-01

    Because of the widespread use of microcomputers in Bulgaria, informatics education for all college students is considered both possible and necessary. Uses of microcomputers in various disciplines are described, including those in mathematics/mechanics, the experimental sciences, and humanities. Brief comments on computer-assisted-learning and…

  11. An Informatics Approach to Establishing a Sustainable Public Health Community

    Science.gov (United States)

    Kriseman, Jeffrey Michael

    2012-01-01

    This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease Surveillance System (NNDSS) was instrumental in…

  12. ICTEI-2015: International Conference on Telecommunications, Electronics and Informatics. Proceedings

    International Nuclear Information System (INIS)

    Kantser, V.; Andronic, S.

    2015-01-01

    This book includes articles which cover a vast range of subjects, such as: telecommunications networks and technologies; electronic, optoelectronic, photonic and information systems and devices; materials, components and equipment in electronics and communications; informatics and computer science; software development and testing etc.

  13. Pre-School Teachers' Informatics and Information Literacy

    Science.gov (United States)

    Tatkovic, Nevenka; Ruzic, Maja; Pecaric, Dilda

    2006-01-01

    The life and activities of every man in the period of transition from the second into the third millennium have been marked by epochal changes which appear as the consequence of scientific and technological revolution dominated by highly developed information and communication technology. Informatics and information education based on information…

  14. Smart nanomaterials for biomedics.

    Science.gov (United States)

    Choi, Soonmo; Tripathi, Anuj; Singh, Deepti

    2014-10-01

    Nanotechnology has become important in various disciplines of technology and science. It has proven to be a potential candidate for various applications ranging from biosensors to the delivery of genes and therapeutic agents to tissue engineering. Scaffolds for every application can be tailor made to have the appropriate physicochemical properties that will influence the in vivo system in the desired way. For highly sensitive and precise detection of specific signals or pathogenic markers, or for sensing the levels of particular analytes, fabricating target-specific nanomaterials can be very useful. Multi-functional nano-devices can be fabricated using different approaches to achieve multi-directional patterning in a scaffold with the ability to alter topographical cues at scale of less than or equal to 100 nm. Smart nanomaterials are made to understand the surrounding environment and act accordingly by either protecting the drug in hostile conditions or releasing the "payload" at the intended intracellular target site. All of this is achieved by exploiting polymers for their functional groups or incorporating conducting materials into a natural biopolymer to obtain a "smart material" that can be used for detection of circulating tumor cells, detection of differences in the body analytes, or repair of damaged tissue by acting as a cell culture scaffold. Nanotechnology has changed the nature of diagnosis and treatment in the biomedical field, and this review aims to bring together the most recent advances in smart nanomaterials.

  15. Zirconia in biomedical applications.

    Science.gov (United States)

    Chen, Yen-Wei; Moussi, Joelle; Drury, Jeanie L; Wataha, John C

    2016-10-01

    The use of zirconia in medicine and dentistry has rapidly expanded over the past decade, driven by its advantageous physical, biological, esthetic, and corrosion properties. Zirconia orthopedic hip replacements have shown superior wear-resistance over other systems; however, risk of catastrophic fracture remains a concern. In dentistry, zirconia has been widely adopted for endosseous implants, implant abutments, and all-ceramic crowns. Because of an increasing demand for esthetically pleasing dental restorations, zirconia-based ceramic restorations have become one of the dominant restorative choices. Areas covered: This review provides an updated overview of the applications of zirconia in medicine and dentistry with a focus on dental applications. The MEDLINE electronic database (via PubMed) was searched, and relevant original and review articles from 2010 to 2016 were included. Expert commentary: Recent data suggest that zirconia performs favorably in both orthopedic and dental applications, but quality long-term clinical data remain scarce. Concerns about the effects of wear, crystalline degradation, crack propagation, and catastrophic fracture are still debated. The future of zirconia in biomedical applications will depend on the generation of these data to resolve concerns.

  16. Bio-medical CMOS ICs

    CERN Document Server

    Yoo, Hoi-Jun

    2011-01-01

    This book is based on a graduate course entitled, Ubiquitous Healthcare Circuits and Systems, that was given by one of the editors. It includes an introduction and overview to biomedical ICs and provides information on the current trends in research.

  17. Functionalized carbon nanotubes: biomedical applications

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  18. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  19. New Directions for Biomedical Engineering

    Science.gov (United States)

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  20. Summer Biomedical Engineering Institute 1972

    Science.gov (United States)

    Deloatch, E. M.

    1973-01-01

    The five problems studied for biomedical applications of NASA technology are reported. The studies reported are: design modification of electrophoretic equipment, operating room environment control, hematological viscometry, handling system for iridium, and indirect blood pressure measuring device.

  1. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse.

    Science.gov (United States)

    Eppig, Janan T

    2017-07-01

    The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.

  2. Development of an informatics infrastructure for data exchange of biomolecular simulations: Architecture, data models and ontology.

    Science.gov (United States)

    Thibault, J C; Roe, D R; Eilbeck, K; Cheatham, T E; Facelli, J C

    2015-01-01

    Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data - both within the same organization and among different ones - remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations.

  3. Introducing a technology-enabled problem-based learning approach into a health informatics curriculum.

    Science.gov (United States)

    Green, Carolyn J; van Gyn, Geraldine H; Moehr, Jochen R; Lau, Francis Y; Coward, Patricia M

    2004-03-18

    To investigate the effect on learner satisfaction of introducing a technology-enabled problem-based learning (PBL) approach into a health informatics curriculum. Course redesign was undertaken to prepare students for three 4-month work terms and a rapidly changing professional environment upon graduation. Twenty-six Canadian undergraduate students of a redesigned course in biomedical fundamentals completed a midterm questionnaire in 2002. Eight of these students participated in a focus group. Students agreed that seven of nine functions provided by the web-based online course management system enhanced their learning: private email (92.3%), calendaring (88.5%), course notes (88.5%), discussion forums (84.5%), online grades (84.5%) assignment descriptions (80.8%) and online quizzes (80.8%). Although students agreed that two PBL activities enhanced learning (learning to present information) (84.5%) and learning to identify information needed (73.1%), the majority of students (69.2%) expressed a preference for the traditional lecture approach over the PBL approach. Students reported feeling uncertain of what was required of them and related anxiety accounted for most of the negative feedback. These findings give us clear goals for improvement in the course beginning with a comprehensive, carefully guided introduction to the processes of PBL. The positive trends are encouraging for the use of web-enabled courseware and for the further development of the PBL approach.

  4. Decentral Smart Grid Control

    Science.gov (United States)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  5. Decentral Smart Grid Control

    International Nuclear Information System (INIS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals. (paper)

  6. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  7. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  8. Open Access Publishing in the Field of Medical Informatics.

    Science.gov (United States)

    Kuballa, Stefanie

    2017-05-01

    The open access paradigm has become an important approach in today's information and communication society. Funders and governments in different countries stipulate open access publications of funded research results. Medical informatics as part of the science, technology and medicine disciplines benefits from many research funds, such as National Institutes of Health in the US, Wellcome Trust in UK, German Research Foundation in Germany and many more. In this study an overview of the current open access programs and conditions of major journals in the field of medical informatics is presented. It was investigated whether there are suitable options and how they are shaped. Therefore all journals in Thomson Reuters Web of Science that were listed in the subject category "Medical Informatics" in 2014 were examined. An Internet research was conducted by investigating the journals' websites. It was reviewed whether journals offer an open access option with a subsequent check of conditions as for example the type of open access, the fees and the licensing. As a result all journals in the field of medical informatics that had an impact factor in 2014 offer an open access option. A predominantly consistent pricing range was determined with an average fee of 2.248 € and a median fee of 2.207 €. The height of a journals' open access fee did not correlate with the height of its Impact Factor. Hence, medical informatics journals have recognized the trend of open access publishing, though the vast majority of them are working with the hybrid method. Hybrid open access may however lead to problems in questions of double dipping and the often stipulated gold open access.

  9. The open science grid

    International Nuclear Information System (INIS)

    Pordes, R.

    2004-01-01

    The U.S. LHC Tier-1 and Tier-2 laboratories and universities are developing production Grids to support LHC applications running across a worldwide Grid computing system. Together with partners in computer science, physics grid projects and active experiments, we will build a common national production grid infrastructure which is open in its architecture, implementation and use. The Open Science Grid (OSG) model builds upon the successful approach of last year's joint Grid2003 project. The Grid3 shared infrastructure has for over eight months provided significant computational resources and throughput to a range of applications, including ATLAS and CMS data challenges, SDSS, LIGO, and biology analyses, and computer science demonstrators and experiments. To move towards LHC-scale data management, access and analysis capabilities, we must increase the scale, services, and sustainability of the current infrastructure by an order of magnitude or more. Thus, we must achieve a significant upgrade in its functionalities and technologies. The initial OSG partners will build upon a fully usable, sustainable and robust grid. Initial partners include the US LHC collaborations, DOE and NSF Laboratories and Universities and Trillium Grid projects. The approach is to federate with other application communities in the U.S. to build a shared infrastructure open to other sciences and capable of being modified and improved to respond to needs of other applications, including CDF, D0, BaBar, and RHIC experiments. We describe the application-driven, engineered services of the OSG, short term plans and status, and the roadmap for a consortium, its partnerships and national focus

  10. A multilingual gold-standard corpus for biomedical concept recognition: the Mantra GSC.

    Science.gov (United States)

    Kors, Jan A; Clematide, Simon; Akhondi, Saber A; van Mulligen, Erik M; Rebholz-Schuhmann, Dietrich

    2015-09-01

    To create a multilingual gold-standard corpus for biomedical concept recognition. We selected text units from different parallel corpora (Medline abstract titles, drug labels, biomedical patent claims) in English, French, German, Spanish, and Dutch. Three annotators per language independently annotated the biomedical concepts, based on a subset of the Unified Medical Language System and covering a wide range of semantic groups. To reduce the annotation workload, automatically generated preannotations were provided. Individual annotations were automatically harmonized and then adjudicated, and cross-language consistency checks were carried out to arrive at the final annotations. The number of final annotations was 5530. Inter-annotator agreement scores indicate good agreement (median F-score 0.79), and are similar to those between individual annotators and the gold standard. The automatically generated harmonized annotation set for each language performed equally well as the best annotator for that language. The use of automatic preannotations, harmonized annotations, and parallel corpora helped to keep the manual annotation efforts manageable. The inter-annotator agreement scores provide a reference standard for gauging the performance of automatic annotation techniques. To our knowledge, this is the first gold-standard corpus for biomedical concept recognition in languages other than English. Other distinguishing features are the wide variety of semantic groups that are being covered, and the diversity of text genres that were annotated. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  11. Pathophysiologic mechanisms of biomedical nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.

  12. Pathophysiologic mechanisms of biomedical nanomaterials

    International Nuclear Information System (INIS)

    Wang, Liming; Chen, Chunying

    2016-01-01

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs

  13. Desktop grid computing

    CERN Document Server

    Cerin, Christophe

    2012-01-01

    Desktop Grid Computing presents common techniques used in numerous models, algorithms, and tools developed during the last decade to implement desktop grid computing. These techniques enable the solution of many important sub-problems for middleware design, including scheduling, data management, security, load balancing, result certification, and fault tolerance. The book's first part covers the initial ideas and basic concepts of desktop grid computing. The second part explores challenging current and future problems. Each chapter presents the sub-problems, discusses theoretical and practical

  14. Transmission grid security

    CERN Document Server

    Haarla, Liisa; Hirvonen, Ritva; Labeau, Pierre-Etienne

    2011-01-01

    In response to the growing importance of power system security and reliability, ""Transmission Grid Security"" proposes a systematic and probabilistic approach for transmission grid security analysis. The analysis presented uses probabilistic safety assessment (PSA) and takes into account the power system dynamics after severe faults. In the method shown in this book the power system states (stable, not stable, system breakdown, etc.) are connected with the substation reliability model. In this way it is possible to: estimate the system-wide consequences of grid faults; identify a chain of eve

  15. Trends in life science grid: from computing grid to knowledge grid

    Directory of Open Access Journals (Sweden)

    Konagaya Akihiko

    2006-12-01

    Full Text Available Abstract Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  16. Pathology informatics fellowship retreats: The use of interactive scenarios and case studies as pathology informatics teaching tools

    Directory of Open Access Journals (Sweden)

    Roy E Lee

    2012-01-01

    Full Text Available Background: Last year, our pathology informatics fellowship added informatics-based interactive case studies to its existing educational platform of operational and research rotations, clinical conferences, a common core curriculum with an accompanying didactic course, and national meetings. Methods: The structure of the informatics case studies was based on the traditional business school case study format. Three different formats were used, varying in length from short, 15-minute scenarios to more formal multiple hour-long case studies. Case studies were presented over the course of three retreats (Fall 2011, Winter 2012, and Spring 2012 and involved both local and visiting faculty and fellows. Results: Both faculty and fellows found the case studies and the retreats educational, valuable, and enjoyable. From this positive feedback, we plan to incorporate the retreats in future academic years as an educational component of our fellowship program. Conclusions: Interactive case studies appear to be valuable in teaching several aspects of pathology informatics that are difficult to teach in more traditional venues (rotations and didactic class sessions. Case studies have become an important component of our fellowship′s educational platform.

  17. Pathology informatics fellowship retreats: The use of interactive scenarios and case studies as pathology informatics teaching tools.

    Science.gov (United States)

    Lee, Roy E; McClintock, David S; Balis, Ulysses J; Baron, Jason M; Becich, Michael J; Beckwith, Bruce A; Brodsky, Victor B; Carter, Alexis B; Dighe, Anand S; Haghighi, Mehrvash; Hipp, Jason D; Henricks, Walter H; Kim, Jiyeon Y; Klepseis, Veronica E; Kuo, Frank C; Lane, William J; Levy, Bruce P; Onozato, Maristela L; Park, Seung L; Sinard, John H; Tuthill, Mark J; Gilbertson, John R

    2012-01-01

    Last year, our pathology informatics fellowship added informatics-based interactive case studies to its existing educational platform of operational and research rotations, clinical conferences, a common core curriculum with an accompanying didactic course, and national meetings. The structure of the informatics case studies was based on the traditional business school case study format. Three different formats were used, varying in length from short, 15-minute scenarios to more formal multiple hour-long case studies. Case studies were presented over the course of three retreats (Fall 2011, Winter 2012, and Spring 2012) and involved both local and visiting faculty and fellows. Both faculty and fellows found the case studies and the retreats educational, valuable, and enjoyable. From this positive feedback, we plan to incorporate the retreats in future academic years as an educational component of our fellowship program. Interactive case studies appear to be valuable in teaching several aspects of pathology informatics that are difficult to teach in more traditional venues (rotations and didactic class sessions). Case studies have become an important component of our fellowship's educational platform.

  18. RPCs in biomedical applications

    Science.gov (United States)

    Belli, G.; De Vecchi, C.; Giroletti, E.; Guida, R.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Sani, G.; Vicini, A.; Vitulo, P.; Viviani, C.

    2006-08-01

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 μm and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi 2O 3 and Tl 2O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C 2H 2F 4 92.5%, SF 6 2.5%, C 4H 10 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  19. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  20. CMS computing on grid

    International Nuclear Information System (INIS)

    Guan Wen; Sun Gongxing

    2007-01-01

    CMS has adopted a distributed system of services which implement CMS application view on top of Grid services. An overview of CMS services will be covered. Emphasis is on CMS data management and workload Management. (authors)

  1. Technology Roadmaps: Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The development of Technology Roadmaps: Smart Grids -- which the IEA defines as an electricity network that uses digital and other advanced technologies to monitor and manage the transport of electricity from all generation sources to meet the varying electricity demands of end users -- is essential if the global community is to achieve shared goals for energy security, economic development and climate change mitigation. Unfortunately, existing misunderstandings of exactly what smart grids are and the physical and institutional complexity of electricity systems make it difficult to implement smart grids on the scale that is needed. This roadmap sets out specific steps needed over the coming years to achieve milestones that will allow smart grids to deliver a clean energy future.

  2. Meet the Grid

    CERN Multimedia

    Yurkewicz, Katie

    2005-01-01

    Today's cutting-edge scientific projects are larger, more complex, and more expensive than ever. Grid computing provides the resources that allow researchers to share knowledge, data, and computer processing power across boundaries

  3. World Wide Grid

    CERN Multimedia

    Grätzel von Grätz, Philipp

    2007-01-01

    Whether for genetic risk analysis or 3D-rekonstruktion of the cerebral vessels: the modern medicine requires more computing power. With a grid infrastructure, this one can be if necessary called by the network. (4 pages)

  4. Spacer grid corner gusset

    International Nuclear Information System (INIS)

    Larson, J.G.

    1984-01-01

    There is provided a spacer grid for a bundle of longitudinally extending rods in spaced generally parallel relationship comprising spacing means for holding the rods in spaced generally parallel relationship; the spacing means includes at least one exterior grid strip circumscribing the bundle of rods along the periphery thereof; with at least one exterior grid strip having a first edge defining the boundary of the strip in one longitudinal direction and a second edge defining the boundary of the strip in the other longitudinal direction; with at least one exterior grid strip having at least one band formed therein parallel to the longitudinal direction; a plurality of corner gussets truncating each of a plurality of corners formed by at least one band and the first edge and the second edge

  5. Smart grids - French Expertise

    International Nuclear Information System (INIS)

    2015-11-01

    The adaptation of electrical systems is the focus of major work worldwide. Bringing electricity to new territories, modernizing existing electricity grids, implementing energy efficiency policies and deploying renewable energies, developing new uses for electricity, introducing electric vehicles - these are the challenges facing a multitude of regions and countries. Smart Grids are the result of the convergence of electrical systems technologies with information and communications technologies. They play a key role in addressing the above challenges. Smart Grid development is a major priority for both public and private-sector actors in France. The experience of French companies has grown with the current French electricity system, a system that already shows extensive levels of 'intelligence', efficiency and competitiveness. French expertise also leverages substantial competence in terms of 'systems engineering', and can provide a tailored response to meet all sorts of needs. French products and services span all the technical and commercial building blocks that make up the Smart Grid value chain. They address the following issues: Improving the use and valuation of renewable energies and decentralized means of production, by optimizing the balance between generation and consumption. Strengthening the intelligence of the transmission and distribution grids: developing 'Supergrid', digitizing substations in transmission networks, and automating the distribution grids are the focus of a great many projects designed to reinforce the 'self-healing' capacity of the grid. Improving the valuation of decentralized flexibilities: this involves, among others, deploying smart meters, reinforcing active energy efficiency measures, and boosting consumers' contribution to grid balancing, via practices such as demand response which implies the aggregation of flexibility among residential, business, and/or industrial sites. Addressing current technological challenges, in

  6. US National Grid

    Data.gov (United States)

    Kansas Data Access and Support Center — This is a polygon feature data layer of United States National Grid (1000m x 1000m polygons ) constructed by the Center for Interdisciplinary Geospatial Information...

  7. Controlling smart grid adaptivity

    NARCIS (Netherlands)

    Toersche, Hermen; Nykamp, Stefan; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2012-01-01

    Methods are discussed for planning oriented smart grid control to cope with scenarios with limited predictability, supporting an increasing penetration of stochastic renewable resources. The performance of these methods is evaluated with simulations using measured wind generation and consumption

  8. Grid Computing Education Support

    Energy Technology Data Exchange (ETDEWEB)

    Steven Crumb

    2008-01-15

    The GGF Student Scholar program enabled GGF the opportunity to bring over sixty qualified graduate and under-graduate students with interests in grid technologies to its three annual events over the three-year program.

  9. Beyond grid security

    International Nuclear Information System (INIS)

    Hoeft, B; Epting, U; Koenig, T

    2008-01-01

    While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls

  10. Near-Body Grid Adaption for Overset Grids

    Science.gov (United States)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  11. Progress of Grid technology in Argentina: Lessons learned from EELA

    International Nuclear Information System (INIS)

    Dova, M. T.; Grunfeld, C.; Monticelli, F.; Tripiana, M.; Veiga, A.; Ambrosi, V.; Barbieri, A.; Diaz, J.; Luengo, M.; Macia, M.; Molinari, L.; Veonosa, P.; Zabaljauregui, M.

    2007-01-01

    The EELA project aimed to create a collaboration network between Europe and Latin American for training in Grid technologies and the deployment of a pilot Grid infrastructure for e-science applications. Grid computing has emerged as an important new field, and its development in Argentina is particularly important for a number of reasons, such as that Argentina has recently joined the ATLAS collaboration at CERN and the increasing interest in future biomedical applications. The potential of GRID technology is well known, however, its adoption is not a trivial task as it requires significant investment in several areas. In this paper, the achievements and progress in Argentina through close collaboration with EELA are presented. Among these are the deployment of a Grid Certification Authority infrastructure that is a crucial component in the activities of the e-Science community in the country; the deployment, integration and validation of a small local EELA node; installation and running of an analysis ATLAS application on the EELA infrastructure. The experience gained in participating in EELA dissemination events also allowed us to actively promote the GRID and training for its use different target audiences in Argentina and in LA. (Author)

  12. The Benefits of Grid Networks

    Science.gov (United States)

    Tennant, Roy

    2005-01-01

    In the article, the author talks about the benefits of grid networks. In speaking of grid networks the author is referring to both networks of computers and networks of humans connected together in a grid topology. Examples are provided of how grid networks are beneficial today and the ways in which they have been used.

  13. Smart Grid Integration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Troxell, Wade [Colorado State Univ., Fort Collins, CO (United States)

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3

  14. The biomedical discourse relation bank

    Directory of Open Access Journals (Sweden)

    Joshi Aravind

    2011-05-01

    Full Text Available Abstract Background Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource. Results We have developed the Biomedical Discourse Relation Bank (BioDRB, in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB, which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89. These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28, mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57. Conclusion Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more

  15. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    Science.gov (United States)

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm. PMID:27879895

  16. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    Directory of Open Access Journals (Sweden)

    John Hassard

    2008-06-01

    Full Text Available In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  17. Air Pollution Monitoring and Mining Based on Sensor Grid in London.

    Science.gov (United States)

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-06-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  18. Eco-informatics for decision makers advancing a research agenda

    Science.gov (United States)

    Cushing, J.B.; Wilson, T.; Brandt, L.; Gregg, V.; Spengler, S.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schnase, J.L.; Schweik, C.; Sonntag, W.; ,

    2005-01-01

    Resource managers often face significant information technology (IT) problems when integrating ecological or environmental information to make decisions. At a workshop sponsored by the NSF and USGS in December 2004, university researchers, natural resource managers, and information managers met to articulate IT problems facing ecology and environmental decision makers. Decision making IT problems were identified in five areas: 1) policy, 2) data presentation, 3) data gaps, 4) tools, and 5) indicators. To alleviate those problems, workshop participants recommended specific informatics research in modeling and simulation, data quality, information integration and ontologies, and social and human aspects. This paper reports the workshop findings, and briefly compares these with research that traditionally falls under the emerging eco-informatics rubric. ?? Springer-Verlag Berlin Heidelberg 2005.

  19. Four Data Visualization Heuristics to Facilitate Reflection in Personal Informatics

    DEFF Research Database (Denmark)

    Cuttone, Andrea; Petersen, Michael Kai; Larsen, Jakob Eg

    2014-01-01

    In this paper we discuss how to facilitate the process of reflection in Personal Informatics and Quantified Self systems through interactive data visualizations. Four heuristics for the design and evaluation of such systems have been identified through analysis of self-tracking devices and apps....... Dashboard interface paradigms in specific self-tracking devices (Fitbit and Basis) are discussed as representative examples of state of the art in feedback and reflection support. By relating to existing work in other domains, such as event related representation of time series multivariate data...... in financial analytics, it is discussed how the heuristics could guide designs that would further facilitate reflection in self-tracking personal informatics systems....

  20. Interdisciplinary training to build an informatics workforce for precision medicine

    Directory of Open Access Journals (Sweden)

    Marc S. Williams

    2015-09-01

    Full Text Available The proposed Precision Medicine Initiative has the potential to transform medical care in the future through a shift from interventions based on evidence from population studies and empiric response to ones that account for a range of individual factors that more reliably predict response and outcomes for the patient. Many things are needed to realize this vision, but one of the most critical is an informatics workforce that has broad interdisciplinary training in basic science, applied research and clinical implementation. Current approaches to informatics training do not support this requirement. We present a collaborative model of training that has the potential to produce a workforce prepared for the challenges of implementing precision medicine.

  1. Introduction to mathematical and informatics methods in Nuclear Medicine

    International Nuclear Information System (INIS)

    Martin, J.; Monot, C.; Legras, B.

    1975-01-01

    Mathematical and statistical methods are widely used in nuclear medicine because of the abundance and precision of the data obtained during morphological and dynamic explorations, and the number and complexity of the calculations involved has led to the use of informatics. Very elaborate techniques may be employed with the help of the computer. In spite of its cost it is closely associated with exploration techniques, especially in conjunction with the scintillation camera. To keep the machine in full-time use and ensure its profitability it is employed in other capacities, for an service management in particular. Each subject is dealt with from its fundamental aspect: nuclear medicine and biomathematics, statistics, informatics; compartment models in nuclear medicine (interpretation of dynamic examinations); quantitive image processing; special computer services (connections with apparatus, service and records management problems) [fr

  2. The importance of informatics systems for the sustainable development

    Directory of Open Access Journals (Sweden)

    Maria ANDRONIE

    2010-12-01

    Full Text Available One of the fields whose importance has been surging lately is the durable development, which is impossible to achieve unless humankind gives up gradually to the fossil energy sources and switches to the exploitation of the renewable energy sources.  This shift is mainly due to the fact that the traditional energy sources are limited, pricier and pricier and have a negative and irreversible effect upon the environment. In the durable development area, particularly the renewable energies, there are informatics systems used in a wide range of activities, from investments management and energy sources to the operation itself of their exploitation systems.  Such informatics systems may be integrated at a higher level, as the national weather forecast system or other specific systems.

  3. The DIMBI project – innovative approaches for teaching business informatics

    Directory of Open Access Journals (Sweden)

    Ivan Kuyumdzhiev

    2016-11-01

    Full Text Available The purpose of this article is to collect and analyze data on existing methods of teaching business informatics in leading Bulgarian universities and suggest areas for improvements. Based on a collected data guidelines for innovative teaching methods in the field of BI and DW are developed. Proposed methods are divided in several sections – lectures, exercises (groups’ size, tools used, software, hardware, teaching methods, and real life customers, students’ projects, control methods. The findings of conducted feasibility study show that the business, students and universities need an innovative methodology of teaching business informatics and properly implemented this methodology has a high probability of success. This paper is written within the Erasmus plus KA2 project “Developing the innovative methodology of teaching business informatics” (DIMBI, 2015-1-PL01-KA203-0016636.

  4. Role of Informatics in Patient Safety and Quality Assurance.

    Science.gov (United States)

    Nakhleh, Raouf E

    2015-06-01

    Quality assurance encompasses monitoring daily processes for accurate, timely, and complete reports in surgical pathology. Quality assurance also includes implementation of policies and procedures that prevent or detect errors in a timely manner. This article presents uses of informatics in quality assurance. Three main foci are critical to the general improvement of diagnostic surgical pathology. First is the application of informatics to specimen identification with lean methods for real-time statistical control of specimen receipt and processing. Second is the development of case reviews before sign-out. Third is the development of information technology in communication of results to assure treatment in a timely manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Evolving National Strategy Driving Nursing Informatics in New Zealand.

    Science.gov (United States)

    Honey, Michelle; Westbrooke, Lucy

    2016-01-01

    An update to the New Zealand Health Strategy identifying direction and priorities for health services is underway. Three specific areas have implications for nursing informatics and link to education and practice: best use of technology and information, fostering and spreading innovation and quality improvements, and building leaders and capability for the future. An emphasis on prevention and wellness means nursing needs to focus on health promotion and the role of consumers is changing with access to their on-line information a major focus. As the modes of delivery for services such as telehealth and telenursing changes, nurses are increasingly working independently and utilizing information and communication technologies to collaborate with the health team. New Zealand, and other countries, need strong nursing leadership to sustain the nursing voice in policy and planning and ensure nurses develop the required informatics skills.

  6. ASHP statement on the pharmacy technician's role in pharmacy informatics.

    Science.gov (United States)

    2014-02-01

    The American Society of Health- System Pharmacists (ASHP) believes that specially trained pharmacy technicians can assume important supportive roles in pharmacy informatics. These roles include automation and technology systems management, management of projects, training and education, policy and governance, customer service, charge integrity, and reporting. Such roles require pharmacy technicians to gain expertise in information technology (IT) systems, including knowledge of interfaces, computer management techniques, problem resolution, and database maintenance. This knowledge could be acquired through specialized training or experience in a health science or allied scientific field (e.g., health informatics). With appropriate safeguards and supervision, pharmacy technician informaticists (PTIs) will manage IT processes in health-system pharmacy services, ensuring a safe and efficient medication-use process.

  7. Annual Report 1991. Institute for systems engineering and informatics

    International Nuclear Information System (INIS)

    1992-01-01

    The report presents the achievements of the Institute for Systems Engineering and Informatics (ISEI) of the Joint Research Centre (JRC) of the Commission of the European Communities (CEC) for 1991. The JRC is a European scientific and technical research centre established by the member states of the CEC. Its four sites in Belgium (Geel), Germany (Karlsruhe), the Netherland (Petten) and Italy (Ispra) house 8 institutes, each with its own focus of expertise. ISEI, based at Ispra, was created in 1990 by the merger of the Institute for Systems Engineering (ISE) and the Centre for Information Technologies and Electronics (CITE). The main areas of activity of the Institute are: - Industrial and Environmental Risk, - Nuclear Safeguards, -Fusion Reactor Systems Integration and Safety, - Solar Energy Systems and Energy Management, - Advanced Computing, - Informatic services

  8. Nursing informatics, ethics and decisions: implications for translational research

    DEFF Research Database (Denmark)

    Kaltoft, Mette Kjer; Nielsen, Jesper Bo; Dowie, Jack

    Nursing informatics, ethics and decisions: implications for translational research Objective: To introduce, in the multi-disciplinary contexts of clinical decision making and policy formation, a theory-based decision-analytic framework for the transparent forward translation of research......-calculation with evidence-based ratings for option performance on those criteria to produce a preference-sensitive assessment or opinion. Results: The first example shows the framework connecting nursing informatics and nursing ethics in the clinical context of a nurse’s decision to disclose or not disclose information......, satisfaction, Quality of Life), organization-related (staff and work environment, internal and external communication and relationships) and economics-related (start-up costs, financial implications and externalities)). Conclusion: Web-based decision support can provide nursing with a template, technique...

  9. Importance of Grid Center Arrangement

    Science.gov (United States)

    Pasaogullari, O.; Usul, N.

    2012-12-01

    In Digital Elevation Modeling, grid size is accepted to be the most important parameter. Despite the point density and/or scale of the source data, it is freely decided by the user. Most of the time, arrangement of the grid centers are ignored, even most GIS packages omit the choice of grid center coordinate selection. In our study; importance of the arrangement of grid centers is investigated. Using the analogy between "Raster Grid DEM" and "Bitmap Image", importance of placement of grid centers in DEMs are measured. The study has been conducted on four different grid DEMs obtained from a half ellipsoid. These grid DEMs are obtained in such a way that they are half grid size apart from each other. Resulting grid DEMs are investigated through similarity measures. Image processing scientists use different measures to investigate the dis/similarity between the images and the amount of different information they carry. Grid DEMs are projected to a finer grid in order to co-center. Similarity measures are then applied to each grid DEM pairs. These similarity measures are adapted to DEM with band reduction and real number operation. One of the measures gives function graph and the others give measure matrices. Application of similarity measures to six grid DEM pairs shows interesting results. These four different grid DEMs are created with the same method for the same area, surprisingly; thirteen out of 14 measures state that, the half grid size apart grid DEMs are different from each other. The results indicated that although grid DEMs carry mutual information, they have also additional individual information. In other words, half grid size apart constructed grid DEMs have non-redundant information.; Joint Probability Distributions Function Graphs

  10. Synergies and Distinctions between Computational Disciplines in Biomedical Research: Perspective from the Clinical and Translational Science Award Programs

    Science.gov (United States)

    Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.

    2010-01-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198

  11. Resolving complex research data management issues in biomedical laboratories: Qualitative study of an industry-academia collaboration.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L; Bova, G Steven; Wang, Jian; Ackerman, Christopher F; Berlinicke, Cynthia A; Chen, Steve H; Lindvall, Mikael; Zack, Donald J

    2016-04-01

    This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to (1) characterize specific problems faced by biomedical researchers with traditional information management practices, (2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to (3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. GridCom, Grid Commander: graphical interface for Grid jobs and data management

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    2011-01-01

    GridCom - the software package for maintenance of automation of access to means of distributed system Grid (jobs and data). The client part, executed in the form of Java-applets, realises the Web-interface access to Grid through standard browsers. The executive part Lexor (LCG Executor) is started by the user in UI (User Interface) machine providing performance of Grid operations

  13. Mobile Connectivity and Security Issues for Cloud Informatic Systems

    OpenAIRE

    Cosmin Cătălin Olteanu

    2015-01-01

    The main purpose of the paper is to illustrate the importance of new software tools that can be used with mobile devices to make them more secure for the use of day to day business software. Many companies are using mobile applications to access some components to ERP’s or CRM’s remotely. Even the new come, cloud Informatic Systems are using more remote devices than ever. This is why we need to secure somehow these mobile applications.

  14. Designing for an inclusive school of informatics for blind students

    DEFF Research Database (Denmark)

    Vargas Brenes, Ronald

    enrolled in UNA attended education careers programmes or philosophy. So I asked myself: Why are blind people not interested in studying informatics? Then I learned about a blind student who was interested in enrolling in the system engineering career programme a few years ago, but she quit from her...... and efficient in ensuring equal opportunities for blind and sighted students, particularly in connection with system engineering or other computer science-related career programmes....

  15. Mobile Connectivity and Security Issues for Cloud Informatic Systems

    Directory of Open Access Journals (Sweden)

    Cosmin Cătălin Olteanu

    2015-05-01

    Full Text Available The main purpose of the paper is to illustrate the importance of new software tools that can be used with mobile devices to make them more secure for the use of day to day business software. Many companies are using mobile applications to access some components to ERP’s or CRM’s remotely. Even the new come, cloud Informatic Systems are using more remote devices than ever. This is why we need to secure somehow these mobile applications.

  16. Particularities of Verification Processes for Distributed Informatics Applications

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2013-01-01

    Full Text Available This paper presents distributed informatics applications and characteristics of their development cycle. It defines the concept of verification and there are identified the differences from software testing. Particularities of the software testing and software verification processes are described. The verification steps and necessary conditions are presented and there are established influence factors of quality verification. Software optimality verification is analyzed and some metrics are defined for the verification process.

  17. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    1981-01-01

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  18. Grid and Entrepreneurship Workshop

    CERN Multimedia

    2006-01-01

    The CERN openlab is organising a special workshop about Grid opportunities for entrepreneurship. This one-day event will provide an overview of what is involved in spin-off technology, with a special reference to the context of computing and data Grids. Lectures by experienced entrepreneurs will introduce the key concepts of entrepreneurship and review, in particular, the industrial potential of EGEE (the EU co-funded Enabling Grids for E-sciencE project, led by CERN). Case studies will be given by CEOs of European start-ups already active in the Grid and computing cluster area, and regional experts will provide an overview of efforts in several European regions to stimulate entrepreneurship. This workshop is designed to encourage students and researchers involved or interested in Grid technology to consider the entrepreneurial opportunities that this technology may create in the coming years. This workshop is organized as part of the CERN openlab student programme, which is co-sponsored by CERN, HP, ...

  19. For smart electric grids

    International Nuclear Information System (INIS)

    Tran Thiet, Jean-Paul; Leger, Sebastien; Bressand, Florian; Perez, Yannick; Bacha, Seddik; Laurent, Daniel; Perrin, Marion

    2012-01-01

    The authors identify and discuss the main challenges faced by the French electric grid: the management of electricity demand and the needed improvement of energy efficiency, the evolution of consumer's state of mind, and the integration of new production capacities. They notably outline that France have been living until recently with an electricity abundance, but now faces the highest consumption peaks in Europe, and is therefore facing higher risks of power cuts. They also notice that the French energy mix is slowly evolving, and outline the problems raised by the fact that renewable energies which are to be developed, are decentralised and intermittent. They propose an overview of present developments of smart grids, and outline their innovative characteristics, challenges raised by their development and compare international examples. They show that smart grids enable a better adapted supply and decentralisation. A set of proposals is formulated about how to finance and to organise the reconfiguration of electric grids, how to increase consumer's responsibility for peak management and demand management, how to create the conditions of emergence of a European market of smart grids, and how to support self-consumption and the building-up of an energy storage sector

  20. The European community and its standardization efforts in medical informatics

    Science.gov (United States)

    Mattheus, Rudy A.

    1992-07-01

    A summary of the CEN TC 251/4 ''Medical Imaging and Multi-Media'' activities will be given. CEN is the European standardization institute, TC 251 deals with medical informatics. Standardization is a condition for the wide scale use of health care and medical informatics and for the creation of a common market. In the last two years, three important categories-- namely, the Commission of the European Communities with their programs and the mandates, the medical informaticians through their European professional federation, and the national normalization institutes through the European committee--have shown to be aware of this problem and have taken actions. As a result, a number of AIM (Advanced Informatics in Medicine), CEC sponsored projects, the CEC mandates to CEN and EWOS, the EFMI working group on standardization, the technical committee of CEN, and the working groups and project teams of CEN and EWOS are working on the subject. On overview of the CEN TC 251/4 ''Medical Imaging and Multi-Media'' activities will be given, including their relation to other work.

  1. Machine learning in materials informatics: recent applications and prospects

    Science.gov (United States)

    Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam; Mannodi-Kanakkithodi, Arun; Kim, Chiho

    2017-12-01

    Propelled partly by the Materials Genome Initiative, and partly by the algorithmic developments and the resounding successes of data-driven efforts in other domains, informatics strategies are beginning to take shape within materials science. These approaches lead to surrogate machine learning models that enable rapid predictions based purely on past data rather than by direct experimentation or by computations/simulations in which fundamental equations are explicitly solved. Data-centric informatics methods are becoming useful to determine material properties that are hard to measure or compute using traditional methods—due to the cost, time or effort involved—but for which reliable data either already exists or can be generated for at least a subset of the critical cases. Predictions are typically interpolative, involving fingerprinting a material numerically first, and then following a mapping (established via a learning algorithm) between the fingerprint and the property of interest. Fingerprints, also referred to as "descriptors", may be of many types and scales, as dictated by the application domain and needs. Predictions may also be extrapolative—extending into new materials spaces—provided prediction uncertainties are properly taken into account. This article attempts to provide an overview of some of the recent successful data-driven "materials informatics" strategies undertaken in the last decade, with particular emphasis on the fingerprint or descriptor choices. The review also identifies some challenges the community is facing and those that should be overcome in the near future.

  2. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  3. Biomedical applications of magnetic particles

    CERN Document Server

    Mefford, Thompson

    2018-01-01

    Magnetic particles are increasingly being used in a wide variety of biomedical applications. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, and detailing methods to characterize magnetic particles. The second section describes biomedical applications, including chemical sensors and cellular actuators, and diagnostic applications such as drug delivery, hyperthermia cancer treatment, and magnetic resonance imaging contrast.

  4. [Role of self-leadership in the relationship between organizational culture and informatics competency].

    Science.gov (United States)

    Kim, Myoung Soo

    2009-10-01

    The purpose of this study was to identify the moderating and mediating effects of self-leadership in the relationship between organizational culture and nurses' informatics competency. Participants in this study were 297 nurses from the cities of Busan and Ulsan. The scales of organizational culture, self-leadership and informatics competency for nurses were used in this study. Descriptive statistics, Pearson correlation coefficient, stepwise multiple regression were used for data analysis. Nursing informatics competency of the participants was relatively low with a mean score 3.02. There were significant positive correlations between subcategories of perceived organizational culture, self-leadership and nursing informatics competency. Self-leadership was a moderator and a mediator between organizational culture and informatics competency. Based on the results of this study, self-leadership promotion strategies to improve nursing informatics competency are needed.

  5. Reducing Health Cost: Health Informatics and Knowledge Management as a Business and Communication Tool

    Science.gov (United States)

    Gyampoh-Vidogah, Regina; Moreton, Robert; Sallah, David

    Health informatics has the potential to improve the quality and provision of care while reducing the cost of health care delivery. However, health informatics is often falsely regarded as synonymous with information management (IM). This chapter (i) provides a clear definition and characteristic benefits of health informatics and information management in the context of health care delivery, (ii) identifies and explains the difference between health informatics (HI) and managing knowledge (KM) in relation to informatics business strategy and (iii) elaborates the role of information communication technology (ICT) KM environment. This Chapter further examines how KM can be used to improve health service informatics costs, and identifies the factors that could affect its implementation and explains some of the reasons driving the development of electronic health record systems. This will assist in avoiding higher costs and errors, while promoting the continued industrialisation of KM delivery across health care communities.

  6. ArchaeoGRID, the Archaeology on the e-Infrastructures

    International Nuclear Information System (INIS)

    Pelfer, G.; Cechini, R.; Pelfer, P. G.; Politi, A.

    2007-01-01

    It is well known that in archaeology large use is done of digital technologies and computer applications for data acquisition, storage, analysis and visualization. The approach of modern archaeology to the study of the evolution of ancient human societies is based on the acquisition and analysis of many types of data. The amount of information coming from the archaeology and the other connected sciences and human ties that need to be stored and made available for analysis are increasing at a very large extent. Such data must, however, be analyzed if they are to become valuable information and knowledge. The data analysis use advanced methods developed in mathematics, informatics, physics, geology, biology, ecology, anthropology and in other natural and human sciences. The inevitable result of this is an exponential increase of the amount and complexity of information that must be acquired, transferred, stored, processed and analyzed. From another, side natural disasters, wars and terrorism created enormous damages to the archaeological heritage and in many case destroyed definitively all information about ancient civilizations. It is urgent a long term project for acquiring, storing and preserving at least the archaeological information. The paper presents the EGEE- II ArchaeoGRID project that, using GRID technologies developed at CERN and in other laboratories, is developing a grid able to fit the very challenging requests of contemporary archaeology. (Author)

  7. Future electrical distribution grids: Smart Grids

    International Nuclear Information System (INIS)

    Hadjsaid, N.; Sabonnadiere, J.C.; Angelier, J.P.

    2010-01-01

    The new energy paradigm faced by distribution network represents a real scientific challenge. Thus, national and EU objectives in terms of environment and energy efficiency with resulted regulatory incentives for renewable energies, the deployment of smart meters and the need to respond to changing needs including new uses related to electric and plug-in hybrid vehicles introduce more complexity and favour the evolution towards a smarter grid. The economic interest group in Grenoble IDEA in connection with the power laboratory G2ELab at Grenoble Institute of technology, EDF and Schneider Electric are conducting research on the electrical distribution of the future in presence of distributed generation for ten years.Thus, several innovations emerged in terms of flexibility and intelligence of the distribution network. One can notice the intelligence solutions for voltage control, the tools of network optimization, the self-healing techniques, the innovative strategies for connecting distributed and intermittent generation or load control possibilities for the distributor. All these innovations are firmly in the context of intelligent networks of tomorrow 'Smart Grids'. (authors)

  8. Health Departments’ Engagement in Emergency Preparedness Activities: The Influence of Health Informatics Capacity

    OpenAIRE

    Gulzar H. Shah; Bobbie Newell; Ruth E. Whitworth

    2016-01-01

    Background: Local health departments (LHDs) operate in a complex and dynamic public health landscape, with changing demands on their emergency response capacities. Informatics capacities might play an instrumental role in aiding LHDs emergency preparedness. This study aimed to explore the extent to which LHDs’ informatics capacities are associated with their activity level in emergency preparedness and to identify which health informatics capacities are associated with improved em...

  9. Selected Topics on Business Informatics Research: Editorial Introduction to Issue 6 of CSIMQ

    OpenAIRE

    Maggi, Fabrizio Maria; Matulevičius, Raimundas

    2016-01-01

    Business informatics research bridges management and engineering domains and facilitates communication between scientific and practical applications. The sixth issue of the journal of Complex Systems Informatics and Modeling Quarterly contains four publications that present the extended papers from the workshops of the 14th International Conference on Perspectives in Business Informatics Research (BIR 2015) that was organized in Tartu, Estonia, 26-28 August, 2015. The BIR 2015 workshops captu...

  10. A Study on Impact of Informatization on Tourist Behavior : Analysis of Anime Pilgrimage

    OpenAIRE

    岡本, 健

    2009-01-01

    This paper shows impact of informatization on tourist behavior in Japan. This research adopts analysis of "Anime Pilgrimage" in order to accomplish the above mentioned objective. Recently, in Japan, some of anime fans make "Anime Pilgrimage" which is a kind of tourist behavior. It would appear that this behavior was affected by informatization strongly. As a result, it was found that "Anime Pilgrim" was affected by informatization not only before "Anime Pilgrimage" but also throughout "Anime ...

  11. The pathology informatics curriculum wiki: Harnessing the power of user-generated content.

    Science.gov (United States)

    Kim, Ji Yeon; Gudewicz, Thomas M; Dighe, Anand S; Gilbertson, John R

    2010-07-13

    The need for informatics training as part of pathology training has never been so critical, but pathology informatics is a wide and complex field and very few programs currently have the resources to provide comprehensive educational pathology informatics experiences to their residents. In this article, we present the "pathology informatics curriculum wiki", an open, on-line wiki that indexes the pathology informatics content in a larger public wiki, Wikipedia, (and other online content) and organizes it into educational modules based on the 2003 standard curriculum approved by the Association for Pathology Informatics (API). In addition to implementing the curriculum wiki at http://pathinformatics.wikispaces.com, we have evaluated pathology informatics content in Wikipedia. Of the 199 non-duplicate terms in the API curriculum, 90% have at least one associated Wikipedia article. Furthermore, evaluation of articles on a five-point Likert scale showed high scores for comprehensiveness (4.05), quality (4.08), currency (4.18), and utility for the beginner (3.85) and advanced (3.93) learners. These results are compelling and support the thesis that Wikipedia articles can be used as the foundation for a basic curriculum in pathology informatics. The pathology informatics community now has the infrastructure needed to collaboratively and openly create, maintain and distribute the pathology informatics content worldwide (Wikipedia) and also the environment (the curriculum wiki) to draw upon its own resources to index and organize this content as a sustainable basic pathology informatics educational resource. The remaining challenges are numerous, but largest by far will be to convince the pathologists to take the time and effort required to build pathology informatics content in Wikipedia and to index and organize this content for education in the curriculum wiki.

  12. Sciences, computing, informatics: who is the keeper of the real faith?

    OpenAIRE

    Benvenuti, Laura; van der Vet, P.E.; van der Veer, Gerrit C.; Sloep, P.; van Eekelen, M.

    2011-01-01

    Computing, or informatics as we call it in Europe, covers many areas. In this paper we will discuss an important difference between two of these areas: software engineering and information systems. Epistemology, the study of the question: "What grounds can we justifiably have for believing the truth of assertions about reality?", is complex in informatics. This question has different answers, depending on the area we investigate. Curricula in informatics do not discuss this difference explici...

  13. Grid sleeve bulge tool

    International Nuclear Information System (INIS)

    Phillips, W.D.; Vaill, R.E.

    1980-01-01

    An improved grid sleeve bulge tool is designed for securing control rod guide tubes to sleeves brazed in a fuel assembly grid. The tool includes a cylinder having an outer diameter less than the internal diameter of the control rod guide tubes. The walls of the cylinder are cut in an axial direction along its length to provide several flexible tines or ligaments. These tines are similar to a fork except they are spaced in a circumferential direction. The end of each alternate tine is equipped with a semispherical projection which extends radially outwardly from the tine surface. A ram or plunger of generally cylindrical configuration and about the same length as the cylinder is designed to fit in and move axially of the cylinder and thereby force the tined projections outwardly when the ram is pulled into the cylinder. The ram surface includes axially extending grooves and plane surfaces which are complimentary to the inner surfaces formed on the tines on the cylinder. As the cylinder is inserted into a control rod guide tube, and the projections on the cylinder placed in a position just below or above a grid strap, the ram is pulled into the cylinder, thus moving the tines and the projections thereon outwardly into contact with the sleeve, to plastically deform both the sleeve and the control rod guide tube, and thereby form four bulges which extend outwardly from the sleeve surface and beyond the outer periphery of the grid peripheral strap. This process is then repeated at the points above the grid to also provide for outwardly projecting surfaces, the result being that the grid is accurately positioned on and mechanically secured to the control rod guide tubes which extend the length of a fuel assembly

  14. Grids, Clouds and Virtualization

    CERN Document Server

    Cafaro, Massimo

    2011-01-01

    Research into grid computing has been driven by the need to solve large-scale, increasingly complex problems for scientific applications. Yet the applications of grid computing for business and casual users did not begin to emerge until the development of the concept of cloud computing, fueled by advances in virtualization techniques, coupled with the increased availability of ever-greater Internet bandwidth. The appeal of this new paradigm is mainly based on its simplicity, and the affordable price for seamless access to both computational and storage resources. This timely text/reference int

  15. Smart Grid Architectures

    DEFF Research Database (Denmark)

    Dondossola, Giovanna; Terruggia, Roberta; Bessler, Sandford

    2014-01-01

    The scope of this paper is to address the evolution of distribution grid architectures following the widespread introduction of renewable energy sources. The increasing connection of distributed resources has a strong impact on the topology and the control functionality of the current distribution...... grids requiring the development of new Information and Communication Technology (ICT) solutions with various degrees of adaptation of the monitoring, communication and control technologies. The costs of ICT based solutions need however to be taken into account, hence it is desirable to work...

  16. Instant jqGrid

    CERN Document Server

    Manricks, Gabriel

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A step-by-step, practical Starter book, Instant jqGrid embraces you while you take your first steps, and introduces you to the content in an easy-to-follow order.This book is aimed at people who have some knowledge of HTML and JavaScript. Knowledge of PHP and SQL would also prove to be beneficial. No prior knowledge of jqGrid is expected.

  17. Smart Grid, Smart Europe

    OpenAIRE

    VITIELLO SILVIA; FULLI Gianluca; MENGOLINI Anna Maria

    2013-01-01

    Le smart grid, o reti elettriche intelligenti, aprono la strada a nuove applicazioni con conseguenze di vasta portata per l’intero sistema elettrico, tra le quali la principale è la capacità di integrare nella rete esistente più fonti di energia rinnovabili (FER), veicoli elettrici e fonti di generazione distribuita. Le smart grid inoltre garantiscono una più efficiente ed affidabile risposta alla domanda di energia, sia da un punto di vista tecnico, permettendo un monitoraggio e un controll...

  18. Distributed photovoltaic grid transformers

    CERN Document Server

    Shertukde, Hemchandra Madhusudan

    2014-01-01

    The demand for alternative energy sources fuels the need for electric power and controls engineers to possess a practical understanding of transformers suitable for solar energy. Meeting that need, Distributed Photovoltaic Grid Transformers begins by explaining the basic theory behind transformers in the solar power arena, and then progresses to describe the development, manufacture, and sale of distributed photovoltaic (PV) grid transformers, which help boost the electric DC voltage (generally at 30 volts) harnessed by a PV panel to a higher level (generally at 115 volts or higher) once it is

  19. Assuring image authenticity within a data grid using lossless digital signature embedding and a HIPAA-compliant auditing system

    Science.gov (United States)

    Lee, Jasper C.; Ma, Kevin C.; Liu, Brent J.

    2008-03-01

    A Data Grid for medical images has been developed at the Image Processing and Informatics Laboratory, USC to provide distribution and fault-tolerant storage of medical imaging studies across Internet2 and public domain. Although back-up policies and grid certificates guarantee privacy and authenticity of grid-access-points, there still lacks a method to guarantee the sensitive DICOM images have not been altered or corrupted during transmission across a public domain. This paper takes steps toward achieving full image transfer security within the Data Grid by utilizing DICOM image authentication and a HIPAA-compliant auditing system. The 3-D lossless digital signature embedding procedure involves a private 64 byte signature that is embedded into each original DICOM image volume, whereby on the receiving end the signature can to be extracted and verified following the DICOM transmission. This digital signature method has also been developed at the IPILab. The HIPAA-Compliant Auditing System (H-CAS) is required to monitor embedding and verification events, and allows monitoring of other grid activity as well. The H-CAS system federates the logs of transmission and authentication events at each grid-access-point and stores it into a HIPAA-compliant database. The auditing toolkit is installed at the local grid-access-point and utilizes Syslog [1], a client-server standard for log messaging over an IP network, to send messages to the H-CAS centralized database. By integrating digital image signatures and centralized logging capabilities, DICOM image integrity within the Medical Imaging and Informatics Data Grid can be monitored and guaranteed without loss to any image quality.

  20. Journal of Innovation in Health Informatics: building on the 20-year history of a BCS Health peer review journal

    Directory of Open Access Journals (Sweden)

    Simon de Lusignan

    2015-02-01

    Full Text Available After 20-years as Informatics in Primary Care the journal is renamed Journal of Innovation in Health Informatics. The title was carefully selected to reflect that:(1 informatics provides the opportunity to innovate rather than simply automates;(2 implementing informatics solutions often results in unintended consequences, and many implementations fail and benefits and innovations may go unrecognised;(3 health informatics is a boundary spanning discipline and is by its very nature likely to give rise to innovation.Informatics is an innovative science, and informaticians need to innovate across professional and discipline boundaries.