WorldWideScience

Sample records for biomedical informatics grid

  1. The Cancer Biomedical Informatics Grid (caBIG™) Security Infrastructure

    OpenAIRE

    Langella, Stephen; Oster, Scott; Hastings, Shannon; Siebenlist, Frank; Phillips, Joshua; Ervin, David; Permar, Justin; Kurc, Tahsin; Saltz, Joel

    2007-01-01

    Security is a high priority issue in medical domain, because many institutions performing biomedical research work with sensitive medical data regularly. This issue becomes more complicated, when it is desirable or needed to access and analyze data in a multi-institutional setting. In the NCI cancer Biomedical Informatics Grid (caBIG™) program, several security issues were raised that existing security technologies could not address. Considering caBIG is envisioned to span a large number of c...

  2. 76 FR 7867 - Proposed Collection; Comment Request; Cancer Biomedical Informatics Grid® (caBIG®) Support...

    Science.gov (United States)

    2011-02-11

    ... Informatics Grid (caBIG ) Support Service Provider (SSP) Program (NCI) SUMMARY: In compliance with the... Informatics Grid (caBIG ) Support Service Provider (SSP) Program (NCI). Type of Information Collection Request... for Biomedical Informatics and Information Technology (CBIIT) launched the enterprise phase of the...

  3. 76 FR 24889 - Submission for OMB Review; Comment Request; Cancer Biomedical Informatics Grid® (caBIG®) Support...

    Science.gov (United States)

    2011-05-03

    ... Business or other for-profits and not- for-profit organizations and institutions. Type of Respondents... information collection was previously published in the Federal Register on February 11, 2011 (76 FR 7867) and... control number. Proposed Collection: Title: cancer Biomedical Informatics Grid (caBIG ) Support...

  4. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  5. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations.

  6. NASA Biomedical Informatics Capabilities and Needs

    Science.gov (United States)

    Johnson-Throop, Kathy A.

    2009-01-01

    To improve on-orbit clinical capabilities by developing and providing operational support for intelligent, robust, reliable, and secure, enterprise-wide and comprehensive health care and biomedical informatics systems with increasing levels of autonomy, for use on Earth, low Earth orbit & exploration class missions. Biomedical Informatics is an emerging discipline that has been defined as the study, invention, and implementation of structures and algorithms to improve communication, understanding and management of medical information. The end objective of biomedical informatics is the coalescing of data, knowledge, and the tools necessary to apply that data and knowledge in the decision-making process, at the time and place that a decision needs to be made.

  7. Optimization and Data Analysis in Biomedical Informatics

    CERN Document Server

    Pardalos, Panos M; Xanthopoulos, Petros

    2012-01-01

    This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines

  8. Use of statistical analysis in the biomedical informatics literature

    OpenAIRE

    Scotch, Matthew; Duggal, Mona; Brandt, Cynthia; Lin, Zhenqui; Shiffman, Richard

    2010-01-01

    Statistics is an essential aspect of biomedical informatics. To examine the use of statistics in informatics research, a literature review of recent articles in two high-impact factor biomedical informatics journals, the Journal of American Medical Informatics Association (JAMIA) and the International Journal of Medical Informatics was conducted. The use of statistical methods in each paper was examined. Articles of original investigations from 2000 to 2007 were reviewed. For each journal, th...

  9. Biomedical informatics discovering knowledge in big data

    CERN Document Server

    Holzinger, Andreas

    2014-01-01

    This book provides a broad overview of the topic Bioinformatics (medical informatics + biological information) with a focus on data, information and knowledge. From data acquisition and storage to visualization, privacy, regulatory, and other practical and theoretical topics, the author touches on several fundamental aspects of the innovative interface between the medical and computational domains that form biomedical informatics. Each chapter starts by providing a useful inventory of definitions and commonly used acronyms for each topic, and throughout the text, the reader finds several real-world examples, methodologies, and ideas that complement the technical and theoretical background. Also at the beginning of each chapter a new section called "key problems", has been added, where the author discusses possible traps and unsolvable or major problems. This new edition includes new sections at the end of each chapter, called "future outlook and research avenues," providing pointers to future challenges.

  10. Modeling in biomedical informatics - An exploratory analysis (Part 1)

    NARCIS (Netherlands)

    A. Hasman; R. Haux

    2006-01-01

    Objectives: Modeling is a significant part of research, education and practice in biomedical and health informatics. Our objective was to explore, which types of models of processes are used in current biomedical/health informatics research, as reflected in publications of scientific journals in thi

  11. Gap Analysis of Biomedical Informatics Graduate Education Competencies

    OpenAIRE

    Ritko, Anna L.; ODLUM, Michelle

    2013-01-01

    Graduate training in biomedical informatics (BMI) is evolving rapidly. BMI graduate programs differ in informatics domain, delivery method, degrees granted, as well as breadth and depth of curricular competencies. Using the current American Medical Informatics Association (AMIA) definition of BMI core competencies as a framework, we identified and labeled course offerings within graduate programs. From our qualitative analysis, gaps between defined competencies and curricula emerged. Topics m...

  12. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    International Nuclear Information System (INIS)

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussion in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be

  13. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M [University Washington, Seattle, WA (United States); Kalet, I [Kirkland, WA (United States); McNutt, T [Johns Hopkins University, Severna Park, MD (United States); Smith, W [New York Oncology Hematology, Albany, NY (United States)

    2014-06-15

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussion in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be

  14. Ontology-Oriented Programming for Biomedical Informatics.

    Science.gov (United States)

    Lamy, Jean-Baptiste

    2016-01-01

    Ontologies are now widely used in the biomedical domain. However, it is difficult to manipulate ontologies in a computer program and, consequently, it is not easy to integrate ontologies with databases or websites. Two main approaches have been proposed for accessing ontologies in a computer program: traditional API (Application Programming Interface) and ontology-oriented programming, either static or dynamic. In this paper, we will review these approaches and discuss their appropriateness for biomedical ontologies. We will also present an experience feedback about the integration of an ontology in a computer software during the VIIIP research project. Finally, we will present OwlReady, the solution we developed.

  15. The Function Biomedical Informatics Research Network Data Repository

    OpenAIRE

    Keator, DB; van Erp, TGM; Turner, JA; Glover, GH; Mueller, BA; Liu, TT; Voyvodic, JT; Rasmussen, J.; Calhoun, VD; Lee, HJ.; Toga, AW; McEwen, S.; Ford, JM; Mathalon, DH; Diaz, M

    2016-01-01

    © 2015 Elsevier Inc. The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associa...

  16. Big Data and Biomedical Informatics: A Challenging Opportunity

    OpenAIRE

    Bellazzi, Riccardo

    2014-01-01

    Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity...

  17. Medical students' perspectives on biomedical informatics learning objectives

    Directory of Open Access Journals (Sweden)

    Denise E. Beaudoin

    2013-01-01

    Full Text Available Objectives: To explore medical student perspectives regarding the importance of biomedical informatics learning objectives to career development, and the amount of emphasis that should be placed on content associated with these objectives in the curriculum. Methods: A Web-based survey was e-mailed to 405 students enrolled at the University of Utah, School of Medicine in spring 2008. Respondents rated the importance of biomedical informatics learning objectives using a five-point Likert-type scale, and indicated whether this content should be given a minimal, moderate or large amount of emphasis. ANOVA and the Kruskal-Wallis test were conducted to determine differences in perceived importance and desired emphasis by academic year. Results: A total of 259 medical students submitted a survey for an overall response rate of 63.9 Learning objectives associated with the physician role of Clinician received the highest overall rating (mean = 3.29 ± 0.47. Objectives for the physician roles of Clinician, Life-long Learner and Manager received higher ratings than the Educator/Communicator and Researcher roles in terms of both perceived importance and amount of emphasis. Student ratings of importance varied significantly by academic year, with third-year students consistently assigning lower ratings to learning objectives for the Educator/Communicator, Researcher and Manager roles compared to students in some other years. Conclusions: Study results suggest that biomedical informatics content is desired by medical students at the University of Utah. Study findings are being used to inform efforts to integrate biomedical informatics content into the curriculum and may assist other medical schools seeking to incorporate similar content.

  18. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  19. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  20. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  1. Trends in biomedical informatics: automated topic analysis of JAMIA articles.

    Science.gov (United States)

    Han, Dong; Wang, Shuang; Jiang, Chao; Jiang, Xiaoqian; Kim, Hyeon-Eui; Sun, Jimeng; Ohno-Machado, Lucila

    2015-11-01

    Biomedical Informatics is a growing interdisciplinary field in which research topics and citation trends have been evolving rapidly in recent years. To analyze these data in a fast, reproducible manner, automation of certain processes is needed. JAMIA is a "generalist" journal for biomedical informatics. Its articles reflect the wide range of topics in informatics. In this study, we retrieved Medical Subject Headings (MeSH) terms and citations of JAMIA articles published between 2009 and 2014. We use tensors (i.e., multidimensional arrays) to represent the interaction among topics, time and citations, and applied tensor decomposition to automate the analysis. The trends represented by tensors were then carefully interpreted and the results were compared with previous findings based on manual topic analysis. A list of most cited JAMIA articles, their topics, and publication trends over recent years is presented. The analyses confirmed previous studies and showed that, from 2012 to 2014, the number of articles related to MeSH terms Methods, Organization & Administration, and Algorithms increased significantly both in number of publications and citations. Citation trends varied widely by topic, with Natural Language Processing having a large number of citations in particular years, and Medical Record Systems, Computerized remaining a very popular topic in all years.

  2. Biomedical informatics: changing what physicians need to know and how they learn.

    Science.gov (United States)

    Stead, William W; Searle, John R; Fessler, Henry E; Smith, Jack W; Shortliffe, Edward H

    2011-04-01

    The explosive growth of biomedical complexity calls for a shift in the paradigm of medical decision making-from a focus on the power of an individual brain to the collective power of systems of brains. This shift alters professional roles and requires biomedical informatics and information technology (IT) infrastructure. The authors illustrate this future role of medical informatics with a vignette and summarize the evolving understanding of both beneficial and deleterious effects of informatics-rich environments on learning, clinical care, and research. The authors also provide a framework of core informatics competencies for health professionals of the future and conclude with broad steps for faculty development. They recommend that medical schools advance on four fronts to prepare their faculty to teach in a biomedical informatics-rich world: (1) create academic units in biomedical informatics; (2) adapt the IT infrastructure of academic health centers (AHCs) into testing laboratories; (3) introduce medical educators to biomedical informatics sufficiently for them to model its use; and (4) retrain AHC faculty to lead the transformation to health care based on a new systems approach enabled by biomedical informatics. The authors propose that embracing this collective and informatics-enhanced future of medicine will provide opportunities to advance education, patient care, and biomedical science.

  3. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences.

  4. Big data and biomedical informatics: a challenging opportunity.

    Science.gov (United States)

    Bellazzi, R

    2014-05-22

    Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations.

  5. Big data and biomedical informatics: a challenging opportunity.

    Science.gov (United States)

    Bellazzi, R

    2014-01-01

    Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations. PMID:24853034

  6. Informatics Solutions for Prosumers connected to Smart Grids

    Directory of Open Access Journals (Sweden)

    Simona Vasilica OPREA

    2015-03-01

    Full Text Available This paper gives a brief overview about electricity consumption optimization based on consumption profiles of electricity prosumers that are connected to smart grids. The main object of this approach is identification of informatics solutions for electricity consumption optimization in order to decrease electricity bill. In this way, larger scale integration of renewable energy sources is allowed therefore entire society will gain benefits. This paper describes the main objectives of such informatics system and stages for its implementation. The system will analyze the specific profile and behavior of each electricity consumer or prosumer, automatically assist him to make right decisions and offer optimal advice for usage of controllable and non-controllable appliances. It will serve, based on big data transfer from electricity consumers or prosumers, as a powerful tool for grid operators that will be able to better plan their resources.

  7. Informatics Solutions for Prosumers connected to Smart Grids

    OpenAIRE

    Simona Vasilica OPREA

    2015-01-01

    This paper gives a brief overview about electricity consumption optimization based on consumption profiles of electricity prosumers that are connected to smart grids. The main object of this approach is identification of informatics solutions for electricity consumption optimization in order to decrease electricity bill. In this way, larger scale integration of renewable energy sources is allowed therefore entire society will gain benefits. This paper describes the main objectives of such inf...

  8. An Informatics Approach to Demand Response Optimization in Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Aman, Saima; Cao, Baohua; Giakkoupis, Mike; Kumbhare, Alok; Zhou, Qunzhi; Paul, Donald; Fern, Carol; Sharma, Aditya; Prasanna, Viktor K

    2011-03-03

    Power utilities are increasingly rolling out “smart” grids with the ability to track consumer power usage in near real-time using smart meters that enable bidirectional communication. However, the true value of smart grids is unlocked only when the veritable explosion of data that will become available is ingested, processed, analyzed and translated into meaningful decisions. These include the ability to forecast electricity demand, respond to peak load events, and improve sustainable use of energy by consumers, and are made possible by energy informatics. Information and software system techniques for a smarter power grid include pattern mining and machine learning over complex events and integrated semantic information, distributed stream processing for low latency response,Cloud platforms for scalable operations and privacy policies to mitigate information leakage in an information rich environment. Such an informatics approach is being used in the DoE sponsored Los Angeles Smart Grid Demonstration Project, and the resulting software architecture will lead to an agile and adaptive Los Angeles Smart Grid.

  9. BIG: a Grid Portal for Biomedical Data and Images

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-06-01

    Full Text Available Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc., advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid, a Web-based Grid portal for management of biomedical information (data and images in a distributed environment. BIG is an interactive environment that deals with complex user's requests, regarding the acquisition of biomedical data, the "processing" and "delivering" of biomedical images, using the power and security of Computational Grids.

  10. A case for using grid architecture for state public health informatics: the Utah perspective

    Directory of Open Access Journals (Sweden)

    Rolfs Robert

    2009-06-01

    Full Text Available Abstract This paper presents the rationale for designing and implementing the next-generation of public health information systems using grid computing concepts and tools. Our attempt is to evaluate all grid types including data grids for sharing information and computational grids for accessing computational resources on demand. Public health is a broad domain that requires coordinated uses of disparate and heterogeneous information systems. System interoperability in public health is limited. The next-generation public health information systems must overcome barriers to integration and interoperability, leverage advances in information technology, address emerging requirements, and meet the needs of all stakeholders. Grid-based architecture provides one potential technical solution that deserves serious consideration. Within this context, we describe three discrete public health information system problems and the process by which the Utah Department of Health (UDOH and the Department of Biomedical Informatics at the University of Utah in the United States has approached the exploration for eventual deployment of a Utah Public Health Informatics Grid. These three problems are: i integration of internal and external data sources with analytic tools and computational resources; ii provide external stakeholders with access to public health data and services; and, iii access, integrate, and analyze internal data for the timely monitoring of population health status and health services. After one year of experience, we have successfully implemented federated queries across disparate administrative domains, and have identified challenges and potential solutions concerning the selection of candidate analytic grid services, data sharing concerns, security models, and strategies for reducing expertise required at a public health agency to implement a public health grid.

  11. BIG: a Grid Portal for Biomedical Data and Images

    OpenAIRE

    Giovanni Aloisio; Maria Cristina Barba; Euro Blasi; Massimo Cafaro; Sandro Fiore; Maria Mirto

    2004-01-01

    Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc.), advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid), a Web-based Grid portal for management of biomedic...

  12. The Function Biomedical Informatics Research Network Data Repository.

    Science.gov (United States)

    Keator, David B; van Erp, Theo G M; Turner, Jessica A; Glover, Gary H; Mueller, Bryon A; Liu, Thomas T; Voyvodic, James T; Rasmussen, Jerod; Calhoun, Vince D; Lee, Hyo Jong; Toga, Arthur W; McEwen, Sarah; Ford, Judith M; Mathalon, Daniel H; Diaz, Michele; O'Leary, Daniel S; Jeremy Bockholt, H; Gadde, Syam; Preda, Adrian; Wible, Cynthia G; Stern, Hal S; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G

    2016-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. PMID:26364863

  13. A “Fundamental Theorem” of Biomedical Informatics

    OpenAIRE

    Friedman, Charles P

    2009-01-01

    This paper proposes, in words and pictures, a “fundamental theorem” to help clarify what informatics is and what it is not. In words, the theorem stipulates that a person working in partnership with an information resource is “better” than that same person unassisted. The theorem is applicable to health care, research, education, and administrative activities. Three corollaries to the theorem illustrate that informatics is more about people than technology; that in order for the theorem to ho...

  14. Developing new pathways into the biomedical informatics field: the AMIA High School Scholars Program.

    Science.gov (United States)

    Unertl, Kim M; Finnell, John T; Sarkar, Indra Neil

    2016-07-01

    Increasing access to biomedical informatics experiences is a significant need as the field continues to face workforce challenges. Looking beyond traditional medical school and graduate school pathways into the field is crucial for expanding the number of individuals and increasing diversity in the field. This case report provides an overview of the development and initial implementation of the American Medical Informatics Association (AMIA) High School Scholars Program. Initiated in 2014, the program's primary goal was to provide dissemination opportunities for high school students engaged in biomedical informatics research. We discuss success factors including strong cross-institutional, cross-organizational collaboration and the high quality of high school student submissions to the program. The challenges encountered, especially around working with minors and communicating program expectations clearly, are also discussed. Finally, we present the path forward for the continued evolution of the AMIA High School Scholars Program. PMID:27076620

  15. On exemplary scientific conduct regarding submission of manuscripts to biomedical informatics journals

    NARCIS (Netherlands)

    R.A. Miller; T. Groth; A. Hasman; C. Safran; E.H. Shortliffe; R. Haux; A.T. McCray

    2006-01-01

    As the Editors of leading international biomedical informatics journals, the authors report on a recent pattern of improper manuscript submissions to journals in our field. As a guide for future authors, we describe ethical and pragmatic issues related to submitting work for peer-reviewed journal pu

  16. Review of "Biomedical Informatics; Computer Applications in Health Care and Biomedicine" by Edward H. Shortliffe and James J. Cimino

    OpenAIRE

    Clifford Gari D

    2006-01-01

    Abstract This article is an invited review of the third edition of "Biomedical Informatics; Computer Applications in Health Care and Biomedicine", one of thirty-six volumes in Springer's 'Health Informatics Series', edited by E. Shortliffe and J. Cimino. This book spans most of the current methods and issues in health informatics, ranging through subjects as varied as data acquisition and storage, standards, natural language processing, imaging, electronic health records, decision support, te...

  17. The Life and Death of URLs in Five Biomedical Informatics Journals

    OpenAIRE

    Carnevale, Randy J.; Aronsky, Dominik

    2005-01-01

    With the increased use of the World Wide Web has come an increase in the number of Uniform Resource Locator (URL) references cited in journals. Out of the 17,698 references we collected from five biomedical informatics journals between 1999 and 2005, 6.8% contained URLs. Overall, 22.6% of these URLs were inaccessible. In-press articles had 10.8% unavailable URLs. Approaches that guarantee permanent access to URL citations of scientific publications are needed.

  18. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  19. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  20. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine. PMID:26955500

  1. Architecture of a Biomedical Informatics Research Data Management Pipeline.

    Science.gov (United States)

    Bauer, Christian R; Umbach, Nadine; Baum, Benjamin; Buckow, Karoline; Franke, Thomas; Grütz, Romanus; Gusky, Linda; Nussbeck, Sara Yasemin; Quade, Matthias; Rey, Sabine; Rottmann, Thorsten; Rienhoff, Otto; Sax, Ulrich

    2016-01-01

    In University Medical Centers, heterogeneous data are generated that cannot always be clearly attributed to patient care or biomedical research. Each data set has to adhere to distinct intrinsic and operational quality standards. However, only if high-quality data, tools to work with the data, and most importantly guidelines and rules of how to work with the data are addressed adequately, an infrastructure can be sustainable. Here, we present the IT Research Architecture of the University Medical Center Göttingen and describe our ten years' experience and lessons learned with infrastructures in networked medical research. PMID:27577384

  2. Architecture of a Biomedical Informatics Research Data Management Pipeline.

    Science.gov (United States)

    Bauer, Christian R; Umbach, Nadine; Baum, Benjamin; Buckow, Karoline; Franke, Thomas; Grütz, Romanus; Gusky, Linda; Nussbeck, Sara Yasemin; Quade, Matthias; Rey, Sabine; Rottmann, Thorsten; Rienhoff, Otto; Sax, Ulrich

    2016-01-01

    In University Medical Centers, heterogeneous data are generated that cannot always be clearly attributed to patient care or biomedical research. Each data set has to adhere to distinct intrinsic and operational quality standards. However, only if high-quality data, tools to work with the data, and most importantly guidelines and rules of how to work with the data are addressed adequately, an infrastructure can be sustainable. Here, we present the IT Research Architecture of the University Medical Center Göttingen and describe our ten years' experience and lessons learned with infrastructures in networked medical research.

  3. A Semantic Web management model for integrative biomedical informatics.

    Directory of Open Access Journals (Sweden)

    Helena F Deus

    Full Text Available BACKGROUND: Data, data everywhere. The diversity and magnitude of the data generated in the Life Sciences defies automated articulation among complementary efforts. The additional need in this field for managing property and access permissions compounds the difficulty very significantly. This is particularly the case when the integration involves multiple domains and disciplines, even more so when it includes clinical and high throughput molecular data. METHODOLOGY/PRINCIPAL FINDINGS: The emergence of Semantic Web technologies brings the promise of meaningful interoperation between data and analysis resources. In this report we identify a core model for biomedical Knowledge Engineering applications and demonstrate how this new technology can be used to weave a management model where multiple intertwined data structures can be hosted and managed by multiple authorities in a distributed management infrastructure. Specifically, the demonstration is performed by linking data sources associated with the Lung Cancer SPORE awarded to The University of Texas MD Anderson Cancer Center at Houston and the Southwestern Medical Center at Dallas. A software prototype, available with open source at www.s3db.org, was developed and its proposed design has been made publicly available as an open source instrument for shared, distributed data management. CONCLUSIONS/SIGNIFICANCE: The Semantic Web technologies have the potential to addresses the need for distributed and evolvable representations that are critical for systems Biology and translational biomedical research. As this technology is incorporated into application development we can expect that both general purpose productivity software and domain specific software installed on our personal computers will become increasingly integrated with the relevant remote resources. In this scenario, the acquisition of a new dataset should automatically trigger the delegation of its analysis.

  4. AMIA Board white paper: definition of biomedical informatics and specification of core competencies for graduate education in the discipline.

    Science.gov (United States)

    Kulikowski, Casimir A; Shortliffe, Edward H; Currie, Leanne M; Elkin, Peter L; Hunter, Lawrence E; Johnson, Todd R; Kalet, Ira J; Lenert, Leslie A; Musen, Mark A; Ozbolt, Judy G; Smith, Jack W; Tarczy-Hornoch, Peter Z; Williamson, Jeffrey J

    2012-01-01

    The AMIA biomedical informatics (BMI) core competencies have been designed to support and guide graduate education in BMI, the core scientific discipline underlying the breadth of the field's research, practice, and education. The core definition of BMI adopted by AMIA specifies that BMI is 'the interdisciplinary field that studies and pursues the effective uses of biomedical data, information, and knowledge for scientific inquiry, problem solving and decision making, motivated by efforts to improve human health.' Application areas range from bioinformatics to clinical and public health informatics and span the spectrum from the molecular to population levels of health and biomedicine. The shared core informatics competencies of BMI draw on the practical experience of many specific informatics sub-disciplines. The AMIA BMI analysis highlights the central shared set of competencies that should guide curriculum design and that graduate students should be expected to master.

  5. The Theory of Bio-Medical Knowledge Integration(Ⅷ)——The Intrinsic Medical Informatics(IMI) and Meta-dimensions(MDs) of SNOMED

    Institute of Scientific and Technical Information of China (English)

    BAO Han-fei

    2008-01-01

    This paper presented the profile of Intrinsic Medical Informatics(IMI), which consists of Medical Cognition Informatics(MCI) and Organism Informatics (OI). MCI and OI are taken as two cornerstones of the Theory of BioMedical Knowledge Integration(BMKI). Additionally, so called Meta-dimension architecture of SNOMED is discussed in order to venture its context computing.

  6. Informatics Solutions for Data Processing of Electricity Consumption Optimization in Smart Grids

    OpenAIRE

    Simona-Vasilica Oprea; Adela Bara

    2016-01-01

    Considering the scarcity of primary resources of electricity environmental issues of global warming and the need to optimize electricity consumption at household level, in this paper we will present solutions for developing the data model of an informatics prototype for optimizing the electricity consumption in smart grids.

  7. Informatics Solutions for Data Processing of Electricity Consumption Optimization in Smart Grids

    Directory of Open Access Journals (Sweden)

    Simona-Vasilica Oprea

    2016-07-01

    Full Text Available Considering the scarcity of primary resources of electricity environmental issues of global warming and the need to optimize electricity consumption at household level, in this paper we will present solutions for developing the data model of an informatics prototype for optimizing the electricity consumption in smart grids.

  8. Biomedical applications on the GRID efficient management of parallel jobs

    CERN Document Server

    Moscicki, Jakub T; Lee Hurng Chun; Lin, S C; Pia, Maria Grazia

    2004-01-01

    Distributed computing based on the Master-Worker and PULL interaction model is applicable to a number of applications in high energy physics, medical physics and bio-informatics. We demonstrate a realistic medical physics use-case of a dosimetric system for brachytherapy using distributed Grid resources. We present the efficient techniques for running parallel jobs in a case of the BLAST, a gene sequencing application, as well as for the Monte Carlo simulation based on Geant4. We present a strategy for improving the runtime performance and robustness of the jobs as well as for the minimization of the development time needed to migrate the applications to a distributed environment.

  9. Biomedical informatics: development of a comprehensive data warehouse for clinical and genomic breast cancer research.

    Science.gov (United States)

    Hu, Hai; Brzeski, Henry; Hutchins, Joe; Ramaraj, Mohan; Qu, Long; Xiong, Richard; Kalathil, Surendran; Kato, Rand; Tenkillaya, Santhosh; Carney, Jerry; Redd, Rosann; Arkalgudvenkata, Sheshkumar; Shahzad, Kashif; Scott, Richard; Cheng, Hui; Meadow, Stephen; McMichael, John; Sheu, Shwu-Lin; Rosendale, David; Kvecher, Leonid; Ahern, Stephen; Yang, Song; Zhang, Yonghong; Jordan, Rick; Somiari, Stella B; Hooke, Jeffrey; Shriver, Craig D; Somiari, Richard I; Liebman, Michael N

    2004-10-01

    The Windber Research Institute is an integrated high-throughput research center employing clinical, genomic and proteomic platforms to produce terabyte levels of data. We use biomedical informatics technologies to integrate all of these operations. This report includes information on a multi-year, multi-phase hybrid data warehouse project currently under development in the Institute. The purpose of the warehouse is to host the terabyte-level of internal experimentally generated data as well as data from public sources. We have previously reported on the phase I development, which integrated limited internal data sources and selected public databases. Currently, we are completing phase II development, which integrates our internal automated data sources and develops visualization tools to query across these data types. This paper summarizes our clinical and experimental operations, the data warehouse development, and the challenges we have faced. In phase III we plan to federate additional manual internal and public data sources and then to develop and adapt more data analysis and mining tools. We expect that the final implementation of the data warehouse will greatly facilitate biomedical informatics research.

  10. Review of "Biomedical Informatics; Computer Applications in Health Care and Biomedicine" by Edward H. Shortliffe and James J. Cimino

    Directory of Open Access Journals (Sweden)

    Clifford Gari D

    2006-11-01

    Full Text Available Abstract This article is an invited review of the third edition of "Biomedical Informatics; Computer Applications in Health Care and Biomedicine", one of thirty-six volumes in Springer's 'Health Informatics Series', edited by E. Shortliffe and J. Cimino. This book spans most of the current methods and issues in health informatics, ranging through subjects as varied as data acquisition and storage, standards, natural language processing, imaging, electronic health records, decision support, teaching methods and ethics. The book is aimed at 'healthcare professionals', and is certainly appropriate for the non-technical informatics user. However, this book is also excellent background reading for the technical engineer who may be interested in the possible problems that confront the users in this field.

  11. Extending VIVO ontology to represent research and educational resources in an academic biomedical informatics department.

    Science.gov (United States)

    Nakikj, Drashko; Weng, Chunhua

    2013-01-01

    The increasing need for interdisciplinary team sciences makes it vital for academic research departments to publicize their research and educational resources as part of "linked data" on the semantic web to facilitate research networking and recruitment. We extended an open-source ontology, VIVO, to represent the research and educational resources in an academic biomedical informatics department to enable ontology-based information storage and retrieval. Using participatory design methods, we surveyed representative types of visitors to the department web site to understand their information needs, and incorporated these needs into the ontology design. We added 114 classes and 186 properties to VIVO. Generalizability and scalability are the measures used in our theoretical evaluation.

  12. On transferring the grid technology to the biomedical community.

    Science.gov (United States)

    Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears". PMID:20543424

  13. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science). PMID:25592607

  14. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  15. [Development and institutionalization of the first online certificate and Master Program of Biomedical Informatics in global health in Peru].

    Science.gov (United States)

    García, Patricia J; Egoavil, Miguel S; Blas, Magaly M; Alvarado-Vásquez, Eduardo; Curioso, Walter H; Zimic, Mirko; Castagnetto, Jesus M; Lescano, Andrés G; Lopez, Diego M; Cárcamo, Cesar P

    2015-01-01

    Training in Biomedical Informatics is essential to meet the challenges of a globalized world. However, the development of postgraduate training and research programs in this area are scarce in Latin America. Through QUIPU: Andean Center for Training and research in Iformatics for Global Health, has developed the first Certificate and Master’s Program on Biomedical Informatics in the Andean Region. The aim of this article is to describe the experience of the program. To date, 51 students from Peru, Chile, Ecuador, Colombia and Venezuela have participated; they come from health ministries, hospitals, universities, research centers, professional associations and private companies. Seventeen courses were offered with the participation of faculty from Argentina, Chile, Colombia, USA, Mexico and Peru. This program is already institutionalized at the School of Public Health and Administration from the Universidad Peruana Cayetano Heredia.

  16. The evolution of a novel biomedical informatics curriculum for medical students.

    Science.gov (United States)

    Silverman, Howard; Cohen, Trevor; Fridsma, Douglas

    2012-01-01

    Health information technology is an essential component of current medical practice, and federal initiatives to promote the further adoption of these technologies are under way. Therefore, it is increasingly important that medical students receive training in the use of these technologies and become familiar with the discipline of biomedical informatics (BMI), which seeks to maximize the utility of health information. In August 2007, the University of Arizona College of Medicine established a new four-year medical school campus in Phoenix. At the same time, a new BMI department was created by the Arizona State University on the same campus. One of the unique features of the new medical school curriculum was a significant focus on BMI, consisting of over 45 hours of required sequenced and integrated instruction in BMI topics. This article describes how the medical school curriculum was created, what BMI elements were contained within the curriculum, and how the instruction was provided. Evaluation of the curriculum included subjective and objective components and revealed significant differences both within group (pre- and posttraining) and across groups when compared with students without formal BMI training. Specifically, self-assessment of BMI ability increased after exposure to the curriculum, and students receiving the BMI curriculum were able to answer objective questions related to BMI content. Implications and lessons learned in the implementation are also discussed.

  17. Electricity tariff systems for informatics system design regarding consumption optimization in smart grids

    Directory of Open Access Journals (Sweden)

    Simona Vasilica OPREA

    2016-01-01

    Full Text Available High volume of data is gathered via sensors and recorded by smart meters. These data are processed at the electricity consumer and grid operators' side by big data analytics. Electricity consumption optimization offers multiple advantages for both consumers and grid operators. At the electricity customer level, by optimizing electricity consumption savings are significant, but the main benefits will come from indirect aspects such as avoiding onerous grid investments, higher volume of renewable energy sources' integration, less polluted environment etc. In order to optimize electricity consumption, advanced tariff systems are essential due to the financial incentive they provide for electricity consumers' behaviour change. In this paper several advanced tariff systems are described in details. These systems are applied in England, Spain, Italy, France, Norway and Germany. These systems are compared from characteristics, advantages/disadvantages point of view. Then, different tariff systems applied in Romania are presented. Romanian tariff systems have been designed for various electricity consumers' types. Different tariff systems applied by grid operators or electricity suppliers will be included in the database model that is part of an informatics system for electricity consumption optimization.

  18. Data federation in the Biomedical Informatics Research Network: tools for semantic annotation and query of distributed multiscale brain data.

    Science.gov (United States)

    Bug, William; Astahkov, Vadim; Boline, Jyl; Fennema-Notestine, Christine; Grethe, Jeffrey S; Gupta, Amarnath; Kennedy, David N; Rubin, Daniel L; Sanders, Brian; Turner, Jessica A; Martone, Maryann E

    2008-01-01

    The broadly defined mission of the Biomedical Informatics Research Network (BIRN, www.nbirn.net) is to better understand the causes human disease and the specific ways in which animal models inform that understanding. To construct the community-wide infrastructure for gathering, organizing and managing this knowledge, BIRN is developing a federated architecture for linking multiple databases across sites contributing data and knowledge. Navigating across these distributed data sources requires a shared semantic scheme and supporting software framework to actively link the disparate repositories. At the core of this knowledge organization is BIRNLex, a formally-represented ontology facilitating data exchange. Source curators enable database interoperability by mapping their schema and data to BIRNLex semantic classes thereby providing a means to cast BIRNLex-based queries against specific data sources in the federation. We will illustrate use of the source registration, term mapping, and query tools. PMID:18999211

  19. Development of A Biomedical Imaging Informatics System for Diagnosis and Treatment Planning

    OpenAIRE

    Wang, Geoffrey; Wang, May D.

    2003-01-01

    The medical imaging technologies have been used for detecting tumors through the years. Tumors that can be viewed in imaging are usually big enough to contain billion tumor cells. Some patients may be cured if detected earlier and the surgery is performed well. Those lead to molecular imaging and image-guided surgery research activities, which post new challenges on large scale imaging data management and 3-D visualization. The goal of this project is to develop 3-D imaging informatics system...

  20. Knowledge acquisition, semantic text mining, and security risks in health and biomedical informatics

    OpenAIRE

    Huang, Jingshan; Dou, Dejing; Dang, Jiangbo; Pardue, J Harold; Qin, Xiao; Huan, Jun; Gerthoffer, William T; Tan, Ming

    2012-01-01

    Computational techniques have been adopted in medical and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from original data, nontrivial transformation is necessary, which is regarded as a critical l...

  1. Knowledge acquisition, semantic text mining, and security risks in health and biomedical informatics

    Institute of Scientific and Technical Information of China (English)

    J; Harold; Pardue; William; T; Gerthoffer

    2012-01-01

    Computational techniques have been adopted in medi-cal and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from origi- nal data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research.

  2. Knowledge acquisition, semantic text mining, and security risks in health and biomedical informatics.

    Science.gov (United States)

    Huang, Jingshan; Dou, Dejing; Dang, Jiangbo; Pardue, J Harold; Qin, Xiao; Huan, Jun; Gerthoffer, William T; Tan, Ming

    2012-02-26

    Computational techniques have been adopted in medical and biological systems for a long time. There is no doubt that the development and application of computational methods will render great help in better understanding biomedical and biological functions. Large amounts of datasets have been produced by biomedical and biological experiments and simulations. In order for researchers to gain knowledge from original data, nontrivial transformation is necessary, which is regarded as a critical link in the chain of knowledge acquisition, sharing, and reuse. Challenges that have been encountered include: how to efficiently and effectively represent human knowledge in formal computing models, how to take advantage of semantic text mining techniques rather than traditional syntactic text mining, and how to handle security issues during the knowledge sharing and reuse. This paper summarizes the state-of-the-art in these research directions. We aim to provide readers with an introduction of major computing themes to be applied to the medical and biological research.

  3. The Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) database and analysis pipeline for arterial spin labeling MRI data.

    Science.gov (United States)

    Shin, David D; Ozyurt, I Burak; Liu, Thomas T

    2013-01-01

    Arterial spin labeling (ASL) is a magnetic resonance imaging technique that provides a non-invasive and quantitative measure of cerebral blood flow (CBF). After more than a decade of active research, ASL is now emerging as a robust and reliable CBF measurement technique with increased availability and ease of use. There is a growing number of research and clinical sites using ASL for neuroscience research and clinical care. In this paper, we present an online CBF Database and Analysis Pipeline, collectively called the Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) that allows researchers to upload and share ASL and clinical data. In addition to serving the role as a central data repository, the CBFBIRN provides a streamlined data processing infrastructure for CBF quantification and group analysis, which has the potential to accelerate the discovery of new scientific and clinical knowledge. All capabilities and features built into the CBFBIRN are accessed online using a web browser through a secure login. In this work, we begin with a general description of the CBFBIRN system data model and its architecture, then devote the remainder of the paper to the CBFBIRN capabilities. The latter part of our work is divided into two processing modules: (1) Data Upload and CBF Quantification Module; (2) Group Analysis Module that supports three types of analysis commonly used in neuroscience research. To date, the CBFBIRN hosts CBF maps and associated clinical data from more than 1,300 individual subjects. The data have been contributed by more than 20 different research studies, investigating the effect of various conditions on CBF including Alzheimer's, schizophrenia, bipolar disorder, depression, traumatic brain injury, HIV, caffeine usage, and methamphetamine abuse. Several example results, generated by the CBFBIRN processing modules, are presented. We conclude with the lessons learned during implementation and deployment of the CBFBIRN and our

  4. Trends in Publication of Nursing Informatics Research

    OpenAIRE

    Kim, Hyeoneui; Ohno-Machado, Lucila; Oh, Janet; Jiang, Xiaoqian

    2014-01-01

    We analyzed 741 journal articles on nursing informatics published in 7 biomedical/nursing informatics journals and 6 nursing journals from 2005 to 2013 to begin to understand publication trends in nursing informatics research and identify gaps. We assigned a research theme to each article using AMIA 2014 theme categories and normalized the citation counts using time from publication. Overall, nursing informatics research covered a broad spectrum of research topics in biomedical informatics an...

  5. Porting of Bio-Informatics Tools for Plant Virology on a Computational Grid

    International Nuclear Information System (INIS)

    The goal of Tri Grid Project and PI2S2 is the creation of the first Sicilian regional computational Grid. In particular, it aims to build various software-hardware interfaces between the infrastructure and some scientific and industrial applications. In this context, we have integrated some among the most innovative computing applications in virology research inside these Grid infrastructure. Particularly, we have implemented in a complete work flow, various tools for pairwise or multiple sequence alignment and phylogeny tree construction (ClustalW-MPI), phylogenetic networks (Splits Tree), detection of recombination by phylogenetic methods (TOPALi) and prediction of DNA or RNA secondary consensus structures (KnetFold). This work will show how the ported applications decrease the execution time of the analysis programs, improve the accessibility to the data storage system and allow the use of metadata for data processing. (Author)

  6. Road Traffic Related Injury Research and Informatics. New Opportunities for Biomedical and Health Informatics as a Contribution to the United Nations' Sustainable Development Goals?

    Science.gov (United States)

    Al-Shorbaji, N; Haux, R; Krishnamurthy, R; Marschollek, M; Mattfeld, D C; Bartolomeos, K; Reynolds, T A

    2015-01-01

    The United Nations has recently adopted 17 sustainable development goals for 2030, including ensuring healthy lives and promoting well-being for all at all ages, and making cities and human settlements inclusive, safe, resilient and sustainable. Road injuries remain among the ten leading causes of death in the world, and are projected to increase with rapidly increasing motorisation globally. Lack of comprehensive data on road injuries has been identified as one of the barriers for effective implementation of proven road safety interventions. Building, linking and analysing electronic patient records in conjunction with establishing injury event and care registries can substantially contribute to healthy lives and safe transportation. Appropriate use of new technological approaches and health informatics best practices could provide significant added value to WHO's global road safety work and assist Member States in identifying prevention targets, monitoring progress and improving quality of care to reduce injury-related deaths. This paper encourages the initiation of new multidisciplinary research at a global level.

  7. Development and implementation of a biomedical informatics course for medical students: challenges of a large-scale blended-learning program.

    Science.gov (United States)

    Sánchez-Mendiola, Melchor; Martínez-Franco, Adrián I; Rosales-Vega, Argelia; Villamar-Chulin, Joel; Gatica-Lara, Florina; García-Durán, Rocío; Martínez-González, Adrián

    2013-01-01

    Biomedical informatics (BMI) competencies are recognized as core requirements for the healthcare professional, but the amount of BMI educational interventions in the curricula of medical schools is limited. UNAM Faculty of Medicine in Mexico is a large public medical school, with more than 7000 undergraduate students. The undergraduate program recently underwent a major curricular revision, which includes BMI education. Two one-semester BMI courses (BMI-1 and BMI-2) were designed, with a blended-learning educational model. A department of BMI was created, with budget, offices and personnel. The first class of 1199 students started the course in 2010, with 32 groups of 40 students each. BMI-1 includes core conceptual notions of informatics applied to medicine (medical databases, electronic health record, telemedicine, among other topics), and BMI-2 embodies medical decision making and clinical reasoning. The program had a positive evaluation by students and teachers. BMI can be successfully incorporated in a large-scale medical school program in a developing country, using a blended-learning model and organizational change strategies.

  8. Development and implementation of a biomedical informatics course for medical students: challenges of a large-scale blended-learning program.

    Science.gov (United States)

    Sánchez-Mendiola, Melchor; Martínez-Franco, Adrián I; Rosales-Vega, Argelia; Villamar-Chulin, Joel; Gatica-Lara, Florina; García-Durán, Rocío; Martínez-González, Adrián

    2013-01-01

    Biomedical informatics (BMI) competencies are recognized as core requirements for the healthcare professional, but the amount of BMI educational interventions in the curricula of medical schools is limited. UNAM Faculty of Medicine in Mexico is a large public medical school, with more than 7000 undergraduate students. The undergraduate program recently underwent a major curricular revision, which includes BMI education. Two one-semester BMI courses (BMI-1 and BMI-2) were designed, with a blended-learning educational model. A department of BMI was created, with budget, offices and personnel. The first class of 1199 students started the course in 2010, with 32 groups of 40 students each. BMI-1 includes core conceptual notions of informatics applied to medicine (medical databases, electronic health record, telemedicine, among other topics), and BMI-2 embodies medical decision making and clinical reasoning. The program had a positive evaluation by students and teachers. BMI can be successfully incorporated in a large-scale medical school program in a developing country, using a blended-learning model and organizational change strategies. PMID:22700870

  9. Health Informatics - Introduction

    OpenAIRE

    Aziz, Hassan

    2015-01-01

    Health informatics is a wide-ranging science incorporating the complex mixture of people, organizations, illnesses, patient care and treatment. It is a scientific field that deals with the storage, retrieval, sharing, and optimal use of biomedical information, data, and knowledge for problem solving and decision making. The field touches on all basic and applied fields in biomedical science and is closely tied to modern information technologies, notably in the areas of computing and communica...

  10. Reaching for the cloud: on the lessons learned from grid computing technology transfer process to the biomedical community.

    Science.gov (United States)

    Mohammed, Yassene; Dickmann, Frank; Sax, Ulrich; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which led to the creation of the Grid. The inter domain transfer process of this technology has hitherto been an intuitive process without in depth analysis. Some difficulties facing the life science community in this transfer can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies which have achieved certain stability. Grid and Cloud solutions are technologies, which are still in flux. We show how Grid computing creates new difficulties in the transfer process that are not considered in Bozeman's model. We show why the success of healthgrids should be measured by the qualified scientific human capital and the opportunities created, and not primarily by the market impact. We conclude with recommendations that can help improve the adoption of Grid and Cloud solutions into the biomedical community. These results give a more concise explanation of the difficulties many life science IT projects are facing in the late funding periods, and show leveraging steps that can help overcoming the "vale of tears". PMID:20841902

  11. Medical Informatics: Market for IS/IT.

    Science.gov (United States)

    Morris, Theodore Allan

    2002-01-01

    Uses co-occurrence analysis of INSPEC classification codes and thesaurus terms assigned to medical informatics (biomedical information) journal articles and proceedings papers to reveal a more complete perspective of how information science and information technology (IS/IT) authors view medical informatics. Discusses results of cluster analysis…

  12. Next generation informatics for big data in precision medicine era

    OpenAIRE

    Zhang, Yuji; Zhu, Qian; Liu, Hongfang

    2015-01-01

    The rise of data-intensive biology, advances in informatics technology, and changes in the way health care is delivered has created an compelling opportunity to allow us investigate biomedical questions in the context of “big data” and develop knowledge systems to support precision medicine. To promote such data mining and informatics technology development in precision medicine, we hosted two international informatics workshops in 2014: 1) the first workshop on Data Mining in Biomedical info...

  13. Informatics Moments

    Science.gov (United States)

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  14. Building and evaluating an informatics tool to facilitate analysis of a biomedical literature search service in an academic medical center library.

    Science.gov (United States)

    Hinton, Elizabeth G; Oelschlegel, Sandra; Vaughn, Cynthia J; Lindsay, J Michael; Hurst, Sachiko M; Earl, Martha

    2013-01-01

    This study utilizes an informatics tool to analyze a robust literature search service in an academic medical center library. Structured interviews with librarians were conducted focusing on the benefits of such a tool, expectations for performance, and visual layout preferences. The resulting application utilizes Microsoft SQL Server and .Net Framework 3.5 technologies, allowing for the use of a web interface. Customer tables and MeSH terms are included. The National Library of Medicine MeSH database and entry terms for each heading are incorporated, resulting in functionality similar to searching the MeSH database through PubMed. Data reports will facilitate analysis of the search service.

  15. Bringing nursing informatics into the undergraduate classroom.

    Science.gov (United States)

    Vanderbeek, J; Ulrich, D; Jaworski, R; Werner, L; Hergert, D; Beery, T; Baas, L

    1994-01-01

    Nursing informatics is not formally addressed in most undergraduate nursing education programs. Nurses usually rely on their employer and/or device vendors to provide this education. Few nurses are able to capitalize on the potential of computer technology because they have not been sufficiently exposed to nursing informatics during their nursing education. Biomedical computer technology/informatics needs to be brought into the classroom, away from the pressures of the work environment. Informatics training needs to be incorporated into undergraduate nursing education through an integrated systems approach, combining elements of nursing, systems analysis, and engineering. In this article, a university-based state-of-the-art classroom and education plan using an integrated approach to educate nurses in nursing informatics is described. PMID:7954066

  16. Applications of the pipeline environment for visual informatics and genomics computations

    Directory of Open Access Journals (Sweden)

    Genco Alex

    2011-07-01

    Full Text Available Abstract Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The

  17. Climate Informatics

    Science.gov (United States)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; Tedesco, Marco

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  18. Polymer Informatics

    Science.gov (United States)

    Adams, Nico

    Polymers are arguably the most important set of materials in common use. The increasing adoption of both combinatorial as well as high-throughput approaches, coupled with an increasing amount of interdisciplinarity, has wrought tremendous change in the field of polymer science. Yet the informatics tools required to support and further enhance these changes are almost completely absent. In the first part of the chapter, a critical analysis of the challenges facing modern polymer informatics is provided. It is argued, that most of the problems facing the field today are rooted in the current scholarly communication process and the way in which chemists and polymer scientists handle and publish data. Furthermore, the chapter reviews existing modes of representing and communicating polymer information and discusses the impact, which the emergence of semantic technologies will have on the way in which scientific and polymer data is published and transmitted. In the second part, a review of the use of informatics tools for the prediction of polymer properties and in silico design of polymers is offered.

  19. The cancer translational research informatics platform

    Directory of Open Access Journals (Sweden)

    Johnson Kimberly

    2008-12-01

    Full Text Available Abstract Background Despite the pressing need for the creation of applications that facilitate the aggregation of clinical and molecular data, most current applications are proprietary and lack the necessary compliance with standards that would allow for cross-institutional data exchange. In line with its mission of accelerating research discoveries and improving patient outcomes by linking networks of researchers, physicians, and patients focused on cancer research, caBIG (cancer Biomedical Informatics Grid™ has sponsored the creation of the caTRIP (Cancer Translational Research Informatics Platform tool, with the purpose of aggregating clinical and molecular data in a repository that is user-friendly, easily accessible, as well as compliant with regulatory requirements of privacy and security. Results caTRIP has been developed as an N-tier architecture, with three primary tiers: domain services, the distributed query engine, and the graphical user interface, primarily making use of the caGrid infrastructure to ensure compatibility with other tools currently developed by caBIG. The application interface was designed so that users can construct queries using either the Simple Interface via drop-down menus or the Advanced Interface for more sophisticated searching strategies to using drag-and-drop. Furthermore, the application addresses the security concerns of authentication, authorization, and delegation, as well as an automated honest broker service for deidentifying data. Conclusion Currently being deployed at Duke University and a few other centers, we expect that caTRIP will make a significant contribution to further the development of translational research through the facilitation of its data exchange and storage processes.

  20. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D; Bronzino, Joseph D

    2006-01-01

    Over the last century,medicine has come out of the "black bag" and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiology to informatics and signal processing. Reflecting the enormous growth and change in biomedical engineering during the infancy of the 21st century, The Biomedical Engineering Handbook enters its third edition as a set of three carefully focused and

  1. From GRID to gridlock: the relationship between scientific biomedical breakthroughs and HIV/AIDS policy in the US Congress

    Directory of Open Access Journals (Sweden)

    Matthew B Platt

    2013-11-01

    Full Text Available Introduction: From the travel ban on people living with HIV (PLHIV to resistance to needle exchange programmes, there are many examples where policy responses to HIV/AIDS in the United States seem divorced from behavioural, public health and sociological evidence. At its root, however, the unknowns about HIV/AIDS lie at biomedical science, and scientific researchers have made tremendous progress over the past 30 years of the epidemic by using antiretroviral therapy to increase the life expectancy of PLHIV almost to the same level as non-infected individuals; but a relationship between biomedical science discoveries and congressional responses to HIV/AIDS has not been studied. Using quantitative approaches, we directly examine the hypothesis that progress in HIV/AIDS biomedical science discoveries would have a correlative relationship with congressional response to HIV/AIDS from 1981 to 2010. Methods: This study used original data on every bill introduced, hearing held and law passed by the US Congress relating to HIV/AIDS over 30 years (1981–2010. We combined congressional data with the most cited and impactful biomedical research scientific publications over the same time period as a metric of biomedical science breakthroughs. Correlations between congressional policy and biomedical research were then analyzed at the aggregate and individual levels. Results: Biomedical research advancements helped shape both the level and content of bill sponsorship on HIV/AIDS, but they had no effect on other stages of the legislative process. Examination of the content of bills and biomedical research indicated that science helped transform HIV/AIDS bill sponsorship from a niche concern of liberal Democrats to a bipartisan coalition when Republicans became the majority party. The trade-off for that expansion has been an emphasis on the global epidemic to the detriment of domestic policies and programmes. Conclusions: Breakthroughs in biomedical science did

  2. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  3. From GRID to gridlock: the relationship between scientific biomedical breakthroughs and HIV/AIDS policy in the US Congress

    OpenAIRE

    Platt, Matthew B; Platt, Manu O

    2013-01-01

    Introduction: From the travel ban on people living with HIV (PLHIV) to resistance to needle exchange programmes, there are many examples where policy responses to HIV/AIDS in the United States seem divorced from behavioural, public health and sociological evidence. At its root, however, the unknowns about HIV/AIDS lie at biomedical science, and scientific researchers have made tremendous progress over the past 30 years of the epidemic by using antiretroviral therapy to increase the life expec...

  4. Next generation informatics for big data in precision medicine era.

    Science.gov (United States)

    Zhang, Yuji; Zhu, Qian; Liu, Hongfang

    2015-01-01

    The rise of data-intensive biology, advances in informatics technology, and changes in the way health care is delivered has created an compelling opportunity to allow us investigate biomedical questions in the context of "big data" and develop knowledge systems to support precision medicine. To promote such data mining and informatics technology development in precision medicine, we hosted two international informatics workshops in 2014: 1) the first workshop on Data Mining in Biomedical informatics and Healthcare, in conjunction with the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2014), and 2) the first workshop on Translational biomedical and clinical informatics, in conjunction with the 8th International Conference on Systems Biology and the 4th Translational Bioinformatics Conference (ISB/TBC 2014). This thematic issue of BioData Mining presents a series of selected papers from these two international workshops, aiming to address the data mining needs in the informatics field due to the deluge of "big data" generated by next generation biotechnologies such as next generation sequencing, metabolomics, and proteomics, as well as the structured and unstructured biomedical and healthcare data from electronic health records. We are grateful for the BioData Mining's willingness to produce this forward-looking thematic issue. PMID:26539249

  5. It’s Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence

    OpenAIRE

    McIntosh, Leslie D.; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices off...

  6. Informatics at the National Institues of Health: A Call to Action

    OpenAIRE

    Hendee, William R.

    1999-01-01

    Biomedical informatics, imaging, and engineering are major forces driving the knowledge revolutions that are shaping the agendas for biomedical research and clinical medicine in the 21st century. These disciplines produce the tools and techniques to advance biomedical research, and continually feed new technologies and procedures into clinical medicine. To sustain this force, an increased investment is needed in the physics, biomedical science, engineering, mathematics, information scie...

  7. Health informatics 3.0.

    Science.gov (United States)

    Kalra, Dipak

    2011-01-01

    Web 3.0 promises us smart computer services that will interact with each other and leverage knowledge about us and our immediate context to deliver prioritised and relevant information to support decisions and actions. Healthcare must take advantage of such new knowledge-integrating services, in particular to support better co-operation between professionals of different disciplines working in different locations, and to enable well-informed co-operation between clinicians and patients. To grasp the potential of Web 3.0 we will need well-harmonised semantic resources that can richly connect virtual teams and link their strategies to real-time and tailored evidence. Facts, decision logic, care pathway steps, alerts, education need to be embedded within components that can interact with multiple EHR systems and services consistently. Using Health Informatics 3.0 a patient's current situation could be compared with the outcomes of very similar patients (from across millions) to deliver personalised care recommendations. The integration of EHRs with biomedical sciences ('omics) research results and predictive models such as the Virtual Physiological Human could help speed up the translation of new knowledge into clinical practice. The mission, and challenge, for Health Informatics 3.0 is to enable healthy citizens, patients and professionals to collaborate within a knowledge-empowered social network in which patient specific information and personalised real-time evidence are seamlessly interwoven.

  8. International Conference on Health Informatics

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the International Conference on Health Informatics (ICHI). The conference was a new special topic conference initiative by the International Federation of Medical and Biological Engineering (IFMBE), held in Vilamoura, Portugal on 7-9 November, 2013. The main theme of the ICHI2013 was “Integrating Information and Communication Technologies with Biomedicine for Global Health”. The proceedings offer a unique forum to examine enabling technologies of sensors, devices and systems that optimize the acquisition, transmission, processing, storage, retrieval of biomedical and health information as well as to report novel clinical applications of health information systems and the deployment of m-Health, e-Health, u-Health, p-Health and Telemedicine.

  9. Health Informatics: An Overview.

    Science.gov (United States)

    MacDougall, Jennifer; And Others

    1996-01-01

    Reviews literature related to health informatics and health information management. Provides examples covering types of information, library and information services outcomes, training of informatics professionals, areas of application, the impact of evidence based medicine, professional issues, integrated information systems, and the needs of the…

  10. A short history of medical informatics in bosnia and herzegovina.

    Science.gov (United States)

    Masic, Izet

    2014-02-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal "Acta Informatica Medica (Acta Inform Med", indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics on Biomedical Faculties in Bosnia and Herzegovina, ten years on from the introduction of the method of "Distance learning" in medical curriculum. The author of this article is eager to mark the importance of the above mentioned Anniversaries in the development of Health informatics in Bosnia and Herzegovina and have attempted, very briefly, to present the most significant events and persons with essential roles throughout this period.

  11. Medical informatics as a market for IS/IT.

    OpenAIRE

    Morris, Theodore Allan

    2002-01-01

    Medical informatics is "the application of information science and information technology to the theoretical and practical problems of biomedical research, clinical practice, and medical education." A key difference between the two streams lies in their perspectives of "What Is Important in MI to Me?" MI may be seen as the marketplace where biomedicine consumes products and services provided by information science and information technology.

  12. It's Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence.

    Science.gov (United States)

    McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders. PMID:26306252

  13. It's Just (Academic) Business: A Use Case in Improving Informatics Operations with Business Intelligence.

    Science.gov (United States)

    McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary

    2015-01-01

    Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders.

  14. What Is Primary Care Informatics?

    OpenAIRE

    de Lusignan, Simon

    2003-01-01

    Primary care informatics is an emerging academic discipline that remains undefined. The unique nature of primary care necessitates the development of its own informatics discipline. A definition of primary care informatics is proposed, which encompasses the distinctive nature of primary care. The core concepts and theory that should underpin it are described. Primary care informatics is defined as a science and as a subset of health informatics. The proposed definition is intended to focus th...

  15. Porting Biomedical Applications to Grids

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    2008-01-01

    textabstractToday advances in scientific research as well as clinical diagnostics and treatment are inevitably connected with information solutions concerning computation power and information storage. The needs for information technology are enormous and are in many cases the limiting factor fo

  16. Porting Biomedical Applications to Grids

    OpenAIRE

    Knoch, Tobias

    2008-01-01

    textabstractToday advances in scientific research as well as clinical diagnostics and treatment are inevitably connected with information solutions concerning computation power and information storage. The needs for information technology are enormous and are in many cases the limiting factor for new scientific results or clinical diagnostics and treatment. At the Hogeschool Rotterdam and the Erasmus MC there is a massive need for computation power on a scale of 10,000 to 15,000 computers equ...

  17. Informatics in the care of patients: ten notable challenges.

    Science.gov (United States)

    Altman, R B

    1997-01-01

    What is medical informatics, and why should practicing physicians care about it? Medical informatics is the study of the concepts and conceptual relationships within biomedical information and how they can be harnessed for practical applications. In the past decade, the field has exploded as health professionals recognize the importance of strategic information management and the inadequacies of traditional tools for information storage, retrieval, and analysis. At the same time that medical informatics has established a presence within many academic and industrial research facilities, its goals and methods have become less clear to practicing physicians. In this article, I outline 10 challenges in medical informatics that provide a framework for understanding developments in the field. These challenges have been divided into those relating to infrastructure, specific performance, and evaluation. The primary goals of medical informatics, as for any other branch of biomedical research, are to improve the overall health of patients by combining basic scientific and engineering insights with the useful application of these insights to important problems. PMID:9109328

  18. Engineering Polymer Informatics

    OpenAIRE

    Adams, Nico; Ryder, Jennifer; Jessop, David M; Corbett, Peter; Murray-Rust, Peter

    2007-01-01

    The poster describes a strategy of for the development of polymer informatics. In particular, the development of polymer markup language, a polymer ontology and natural language processing tools for polymer literature.

  19. Progress in Biodiversity Informatics

    OpenAIRE

    Keping Ma; Bin Chen; Liqiang Ji; Lisong Wang

    2010-01-01

    Biodiversity Informatics is a young and rapidly growing field that brings information science and technologies to bear on the data and information generated by the study of biodiversity and related subjects. Recent years, biodiversity informatics community has made an extraordinary effort to digitize primary biodiversity data, and develop modelling tools, data integration, and county/ regional/ global biodiversity networks. In doing so, the community is creating an unprecedented global sharin...

  20. Origins of Medical Informatics

    OpenAIRE

    Collen, Morris F.

    1986-01-01

    Medical informatics is a new knowledge domain of computer and information science, engineering and technology in all fields of health and medicine, including research, education and practice. Medical informatics has evolved over the past 30 years as medicine learned to exploit the extraordinary capabilities of the electronic digital computer to better meet its complex information needs. The first articles on this subject appeared in the 1950s, the number of publications rapidly increased in t...

  1. Informatics in Turkey

    Science.gov (United States)

    Cakir, Serhat

    1994-01-01

    In the last twenty years the rapid change in the informatics sector has had economic and social impact on private and government activities. The Supreme Council for Science and Technology of Turkey assigned highest priority to the informatics in its meeting in February 1993. With this advice TUBITAK (The Scientific and Technical Research Council of Turkey) intends to give a strong impulse to development of a research policy in this field.

  2. Biomedical applications in EELA.

    Science.gov (United States)

    Cardenas, Miguel; Hernández, Vicente; Mayo, Rafael; Blanquer, Ignacio; Perez-Griffo, Javier; Isea, Raul; Nuñez, Luis; Mora, Henry Ricardo; Fernández, Manuel

    2006-01-01

    The current demand for Grid Infrastructures to bring collabarating groups between Latina America and Europe has created the EELA proyect. This e-infrastructure is used by Biomedical groups in Latina America and Europe for the studies of ocnological analisis, neglected diseases, sequence alignments and computation plygonetics. PMID:16823158

  3. Clinical microbiology informatics.

    Science.gov (United States)

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future.

  4. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  5. Case-based medical informatics

    Directory of Open Access Journals (Sweden)

    Arocha José F

    2004-11-01

    Full Text Available Abstract Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences

  6. Multi-Sensory Informatics Education

    Science.gov (United States)

    Katai, Zoltan; Toth, Laszlo; Adorjani, Alpar Karoly

    2014-01-01

    A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1) computational thinking is an important ability that all people should possess; (2) informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school…

  7. Clinical research informatics

    CERN Document Server

    Richesson, Rachel L

    2012-01-01

    This book provides foundational coverage of key areas, concepts, constructs, and approaches of medical informatics as it applies to clinical research activities, in both current settings and in light of emerging policies. The field of clinical research is fully characterized (in terms of study design and overarching business processes), and there is emphasis on information management aspects and informatics implications (including needed activities) within various clinical research environments. The purpose of the book is to provide an overview of clinical research (types), activities, and are

  8. Twenty years of society of medical informatics of b&h and the journal acta informatica medica.

    Science.gov (United States)

    Masic, Izet

    2012-03-01

    In 2012, Health/Medical informatics profession celebrates five jubilees in Bosnia and Herzegovina: a) Thirty five years from the introduction of the first automatic manipulation of data; b) Twenty five years from establishing Society for Medical Informatics BiH; c) Twenty years from establishing scientific and professional journal of the Society for Medical Informatics of Bosnia and Herzegovina "Acta Informatica Medica"; d) Twenty years from establishing first Cathdra for Medical Informatics on biomedical faculties in Bosnia and Herzegovina and e) Ten years from the introduction of "Distance learning" in medical curriculum. All of the five mentioned activities in the area of Medical informatics had special importance and gave appropriate contribution in the development of Health/Medical informatics in Bosnia And Herzegovina.

  9. Informatics: A Brief Survey.

    Science.gov (United States)

    He, Shaoyi

    2003-01-01

    Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…

  10. Progress in Biodiversity Informatics

    Directory of Open Access Journals (Sweden)

    Keping Ma

    2010-09-01

    Full Text Available Biodiversity Informatics is a young and rapidly growing field that brings information science and technologies to bear on the data and information generated by the study of biodiversity and related subjects. Recent years, biodiversity informatics community has made an extraordinary effort to digitize primary biodiversity data, and develop modelling tools, data integration, and county/ regional/ global biodiversity networks. In doing so, the community is creating an unprecedented global sharing of information and data produced by biodiversity science, and encouraging people to consider, survey and monitor natural biodiversity. Due to success of several international biodiversity informatics projects, such as Species 2000, Global Biodiversity Information Facility, Barcoding of Life and Encyclopedia of Life, digitized information on species inventories, herbarium specimens, multimedia and literature is available through internet. These projects not only make great contributions to sharing digitized biodiversity data, but also in prompting the implementation of important biodiversity information standards, such as Darwin Core, and in the establishment of regional and national biodiversity networks. These efforts will facilitate the future establishment of a strong information infrastructure for data sharing and exchange at a global scale. Besides focusing on browsing and searching digitized data, scientists should also work on building data mining and modeling, such as MAXENT for Ecological Niche Modelling and LifeDesk for taxonomist’s knowledge management. At the same time, the idea of citizen sciences gains popularity showing us the benefit of the public working closely with the scientific community in completing internet-based biodiversity informatics activities. Therefore, biodiversity informatics has broad prospects, and is helping to build strong facilities that will aid in implementing the goals set by Global Plant Conservation Strategy and

  11. Multi-Sensory Informatics Education

    Directory of Open Access Journals (Sweden)

    Zoltan KATAI

    2014-10-01

    Full Text Available A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1 computational thinking is an important ability that all people should possess; (2 informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school curriculum. Accordingly, the "2013 Best Practices in Education Award" (organized by Informatics Europe was devoted to initiatives promoting Informatics Education in Primary and Secondary Schools. In this paper we present one of the winning projects: "Multi-Sensory Informatics Education". We have developed effective multi-sensory methods and software-tools to improve the teaching-learning process of elementary, sorting and recursive algorithms. The technologically and artistically enhanced learning environment we present has also the potential to promote intercultural computer science education and the algorithmic thinking of both science- and humanities-oriented learners.

  12. Context Sensitive Health Informatics

    DEFF Research Database (Denmark)

    Kuziemsky, Craig; Nøhr, Christian; Aarts, Jos;

    2013-01-01

    Context is a key consideration when designing and evaluating health information technology (HIT) and cannot be overstated. Unintended consequences are common post HIT implementation and even well designed technology may not achieve desired outcomes because of contextual issues. While context shou...... informatics. The papers and presentations outlines theories and models for studying contextual issues and insights on how we can better design HIT to accommodate different healthcare contexts....

  13. The origins of informatics.

    OpenAIRE

    Collen, M F

    1994-01-01

    This article summarizes the origins of informatics, which is based on the science, engineering, and technology of computer hardware, software, and communications. In just four decades, from the 1950s to the 1990s, computer technology has progressed from slow, first-generation vacuum tubes, through the invention of the transistor and its incorporation into microprocessor chips, and ultimately, to fast, fourth-generation very-large-scale-integrated silicon chips. Programming has undergone a par...

  14. Translational Research from an Informatics Perspective

    Science.gov (United States)

    Bernstam, Elmer; Meric-Bernstam, Funda; Johnson-Throop, Kathy A.; Turley, James P.; Smith, Jack W.

    2007-01-01

    Clinical and translational research (CTR) is an essential part of a sustainable global health system. Informatics is now recognized as an important en-abler of CTR and informaticians are increasingly called upon to help CTR efforts. The US National Institutes of Health mandated biomedical informatics activity as part of its new national CTR grant initiative, the Clinical and Translational Science Award (CTSA). Traditionally, translational re-search was defined as the translation of laboratory discoveries to patient care (bench to bedside). We argue, however, that there are many other kinds of translational research. Indeed, translational re-search requires the translation of knowledge dis-covered in one domain to another domain and is therefore an information-based activity. In this panel, we will expand upon this view of translational research and present three different examples of translation to illustrate the point: 1) bench to bedside, 2) Earth to space and 3) academia to community. We will conclude with a discussion of our local translational research efforts that draw on each of the three examples.

  15. Symposium highlights and synopses of the scientific program: the Sixth Annual Mid-Atlantic Healthcare Informatics Symposium.

    Science.gov (United States)

    Vito, D; Diltz, M; Porter, M; White, P; Luberti, A

    2014-01-01

    As the bar to actively participate in one's own health is consistently lowered through technology, patients are helping to evolve traditional workflows to make data more accessible at the point of care. This growing trend of patient engagement and personalized medicine was the focus of the 2013 Mid-Atlantic Healthcare Informatics Symposium in Philadelphia, PA on April 26, 2013. The conference, presented annually by the Center for Bio-medical Informatics (CBMi) at The Children's Hospital of Philadelphia, featured plenary sessions, panel discussions, and paper presentations on a range of topics, including patient engagement and personalized medicine; using data and analytics to optimize patient care; nursing informatics; and the future of biomedical informatics.

  16. Trends in modeling Biomedical Complex Systems

    OpenAIRE

    Remondini Daniel; Castellani Gastone; Romano Paolo; Milanesi Luciano; Liò Petro

    2009-01-01

    Abstract In this paper we provide an introduction to the techniques for multi-scale complex biological systems, from the single bio-molecule to the cell, combining theoretical modeling, experiments, informatics tools and technologies suitable for biological and biomedical research, which are becoming increasingly multidisciplinary, multidimensional and information-driven. The most important concepts on mathematical modeling methodologies and statistical inference, bioinformatics and standards...

  17. Training Residents in Medical Informatics.

    Science.gov (United States)

    Jerant, Anthony F.

    1999-01-01

    Describes an eight-step process for developing or refining a family-medicine informatics curriculum: needs assessment, review of expert recommendations, enlisting faculty and local institutional support, espousal of a human-centered approach, integrating informatics into the larger curriculum, easy access to computers, practical training, and…

  18. Visualizing the Structure of Medical Informatics Using Term Co-Occurrence Analysis: II. INSPEC Perspective.

    Science.gov (United States)

    Morris, Theodore

    2001-01-01

    Term co-occurrence analysis of INSPEC classification codes and thesaurus terms used to index Medical Informatics literature reveals an information science and technology perspective on the field, to accompany the biomedical perspective previously reported. This study continues the search for a better understanding of the structure of Medical…

  19. Why Medical Informatics (still) Needs Cognitive and Social Sciences.

    OpenAIRE

    Declerck, Gunnar; Aimé, Xavier

    2013-01-01

    International audience OBJECTIVES: To summarize current excellent medical informatics research in the field of human factors and organizational issues. METHODS: Using PubMed, a total of 3,024 papers were selected from 17 journals. The papers were evaluated on the basis of their title, keywords, and abstract, using several exclusion and inclusion criteria. 15 preselected papers were carefully evaluated by six referees using a standard evaluation grid. RESULTS: Six best papers were selected ...

  20. Informatics applied to cytology

    Directory of Open Access Journals (Sweden)

    Pantanowitz Liron

    2008-01-01

    Full Text Available Automation and emerging information technologies are being adopted by cytology laboratories to augment Pap test screening and improve diagnostic accuracy. As a result, informatics, the application of computers and information systems to information management, has become essential for the successful operation of the cytopathology laboratory. This review describes how laboratory information management systems can be used to achieve an automated and seamless workflow process. The utilization of software, electronic databases and spreadsheets to perform necessary quality control measures are discussed, as well as a Lean production system and Six Sigma approach, to reduce errors in the cytopathology laboratory.

  1. Bioimage Informatics for Big Data.

    Science.gov (United States)

    Peng, Hanchuan; Zhou, Jie; Zhou, Zhi; Bria, Alessandro; Li, Yujie; Kleissas, Dean Mark; Drenkow, Nathan G; Long, Brian; Liu, Xiaoxiao; Chen, Hanbo

    2016-01-01

    Bioimage informatics is a field wherein high-throughput image informatics methods are used to solve challenging scientific problems related to biology and medicine. When the image datasets become larger and more complicated, many conventional image analysis approaches are no longer applicable. Here, we discuss two critical challenges of large-scale bioimage informatics applications, namely, data accessibility and adaptive data analysis. We highlight case studies to show that these challenges can be tackled based on distributed image computing as well as machine learning of image examples in a multidimensional environment. PMID:27207370

  2. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  3. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  4. Informatics — EDRN Public Portal

    Science.gov (United States)

    The EDRN provides a comprehensive informatics activity which includes a number of tools and an integrated knowledge environment for capturing, managing, integrating, and sharing results from across EDRN's cancer biomarker research network.

  5. Machine learning in healthcare informatics

    CERN Document Server

    Acharya, U; Dua, Prerna

    2014-01-01

    The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

  6. Informatics and the Environmental Sciences

    OpenAIRE

    Karen S Baker

    2005-01-01

    This report is on the topic of informatics and its relations to scientific research and data - rich, multi-faceted data that represent the earth and environmental systems. Data travel from field and laboratory into collections, repositories and archives. Just as data are a scientific resource, so too the work carried out with data and their organization is a resource for the environmental sciences. Informatics is concerned with the stewardship of data, that is, with the tending of da...

  7. Image-based Informatics for Preclinical Biomedical Research

    Energy Technology Data Exchange (ETDEWEB)

    Tobin Jr, Kenneth William [ORNL; Aykac, Deniz [ORNL; Muthusamy Govindasamy, Vijaya Priya [ORNL; Karnowski, Thomas Paul [ORNL; Price, Jeffery R [ORNL; Wall, Jonathan [ORNL; Gregor, Jens [ORNL; Gleason, Shaun Scott [ORNL

    2006-01-01

    In 2006, the New England Journal of Medicine selected medical imaging as one of the eleven most important innovations of the past 1,000 years, primarily due to its ability to allow physicians and researchers to visualize the very nature of disease. As a result of the broad-based adoption of micro imaging technologies, preclinical researchers today are generating terabytes of image data from both anatomic and functional imaging modes. In this paper we describe our early research to apply content-based image retrieval to index and manage large image libraries generated in the study of amyloid disease in mice. Amyloidosis is associated with diseases such as Alzheimer's, type 2 diabetes, chronic inflammation and myeloma. In particular, we will focus on results to date in the area of small animal organ segmentation and description for CT, SPECT, and PET modes and present a small set of preliminary retrieval results for a specific disease state in kidney CT crosssections.

  8. Translational biomedical informatics in the cloud: present and future.

    Science.gov (United States)

    Chen, Jiajia; Qian, Fuliang; Yan, Wenying; Shen, Bairong

    2013-01-01

    Next generation sequencing and other high-throughput experimental techniques of recent decades have driven the exponential growth in publicly available molecular and clinical data. This information explosion has prepared the ground for the development of translational bioinformatics. The scale and dimensionality of data, however, pose obvious challenges in data mining, storage, and integration. In this paper we demonstrated the utility and promise of cloud computing for tackling the big data problems. We also outline our vision that cloud computing could be an enabling tool to facilitate translational bioinformatics research.

  9. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  10. Intelligent Electric Vehicle Integration - Domain Interfaces and Supporting Informatics

    DEFF Research Database (Denmark)

    Andersen, Peter Bach

    integration a reality, it is prudent to understand the domain in its entirety. In this thesis, this is reflected by a thorough investigation of the stakeholders most relevant to the synergistic relationship between electric vehicle and grid. The rst investigation addresses the power market. The market can...... and the functionalities needed by the control logic are demaned. The next informatics topic, communication, describes a set of protocols and standards applicable for electric vehicle integration. The study investigates the IEC 61850 standard and its ability to support smart charging. Finally it is described how......This thesis seeks to apply the field of informatics to the intelligent integration of electric vehicles into the power system. The main goal is to release the potential of electric vehicles in relation to a reliable, economically efficient power system based on renewables. To make intelligent EV...

  11. A Collaborative Informatics Infrastructure for Multi-scale Science

    Energy Technology Data Exchange (ETDEWEB)

    Myers, James D.; Allison, Thomas C.; Bittner, Sandra J.; Didier, Brett T.; Frenklach, Michael; Green, William H.; Ho, Yen-Ling; Hewson, John; Koegler, Wendy S.; Lansing, Carina S.; Leahy, David; Lee, Michael; McCoy, Renata; Minkoff, Michael; Nijsure, Sandeep; von Laszewski, Gregor; Montoya, David; Oluwole, Luwi; Pancerella, Carmen M.; Pinzon, Reinhardt; Pitz, William; Rahn, Larry A.; Ruscic, Branko; Schuchardt, Karen L.; Stephan, Eric G.; Wagner, Al; Windus, Theresa L.; Yang, Christine

    2005-10-01

    The Collaboratory for Multi-scale Chemical Science (CMCS) is developing a powerful informatics-based approach to synthesizing multi-scale information to support a systems-based research approach and is applying it in support of combustion research. An open source multi-scale informatics toolkit is being developed that addresses a number of issues core to the emerging concept of knowledge grids including provenance tracking and lightweight federation of data and application resources into cross-scale information flows. The CMCS portal is currently in use by a number of high-profile pilot groups and is playing a significant role in enabling their efforts to improve and extend community maintained chemical reference information.

  12. A Collaborative Informatics Infrastructure for Multi-scale Science

    Energy Technology Data Exchange (ETDEWEB)

    Myers, James D.; Allison, Thomas C.; Bittner, Sandra; Didier, Brett T.; Frenklach, Michael; Green, William H.; Ho, Yen-Ling; Hewson, John; Koegler, Wendy S.; Lansing, Carina S.; Leahy, David; Lee, Michael; McCoy, Renata; Minkoff, Michael; Nijsure, Sandeep; von Laszewski, Gregor; Montoya, David W.; Pancerella, Carmen M.; Pinzon, Reinhardt; Pitz, William; Rahn, Larry; Ruscic, Branko; Schuchardt, Karen L.; Stephan, Eric G.; Wagner, Albert F.; Windus, Theresa L.; Yang, Christine

    2004-03-28

    The Collaboratory for Multi-scale Chemical Science (CMCS) is developing a powerful informatics-based approach to synthesizing multi-scale information to support a systems-based research approach and is applying it in support of combustion research. An open source multi-scale informatics toolkit is being developed that addresses a number of issues core to the emerging concept of knowledge grids including provenance tracking and lightweight federation of data and application resources into cross-scale information flows. The CMCS portal is currently in use by a number of high-profile pilot groups and is playing a significant role in enabling their efforts to improve and extend community maintained chemical reference information.

  13. Informatics, evidence-based care, and research; implications for national policy: a report of an American Medical Informatics Association health policy conference.

    Science.gov (United States)

    Bloomrosen, Meryl; Detmer, Don E

    2010-01-01

    There is an increased level of activity in the biomedical and health informatics world (e-prescribing, electronic health records, personal health records) that, in the near future, will yield a wealth of available data that we can exploit meaningfully to strengthen knowledge building and evidence creation, and ultimately improve clinical and preventive care. The American Medical Informatics Association (AMIA) 2008 Health Policy Conference was convened to focus and propel discussions about informatics-enabled evidence-based care, clinical research, and knowledge management. Conference participants explored the potential of informatics tools and technologies to improve the evidence base on which providers and patients can draw to diagnose and treat health problems. The paper presents a model of an evidence continuum that is dynamic, collaborative, and powered by health informatics technologies. The conference's findings are described, and recommendations on terminology harmonization, facilitation of the evidence continuum in a "wired" world, development and dissemination of clinical practice guidelines and other knowledge support strategies, and the role of diverse stakeholders in the generation and adoption of evidence are presented.

  14. Emerging Vaccine Informatics

    Directory of Open Access Journals (Sweden)

    Yongqun He

    2010-01-01

    Full Text Available Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO has been initiated to integrate various vaccine data and support automated reasoning.

  15. A preliminary investigation on materials informatics

    Institute of Scientific and Technical Information of China (English)

    SONG Qinggong

    2004-01-01

    The concept of materials informatics is presented and expounded for the first time. Main tasks and research areas of materials informatics are listed and stated. The significance of developing materials informatics is discussed. Suggestions for developing this new discipline are put forward.

  16. Core informatics competencies for clinical and translational scientists: what do our customers and collaborators need to know?

    Science.gov (United States)

    Valenta, Annette L; Meagher, Emma A; Tachinardi, Umberto; Starren, Justin

    2016-07-01

    Since the inception of the Clinical and Translational Science Award (CTSA) program in 2006, leaders in education across CTSA sites have been developing and updating core competencies for Clinical and Translational Science (CTS) trainees. By 2009, 14 competency domains, including biomedical informatics, had been identified and published. Since that time, the evolution of the CTSA program, changes in the practice of CTS, the rapid adoption of electronic health records (EHRs), the growth of biomedical informatics, the explosion of big data, and the realization that some of the competencies had proven to be difficult to apply in practice have made it clear that the competencies should be updated. This paper describes the process undertaken and puts forth a new set of competencies that has been recently endorsed by the Clinical Research Informatics Workgroup of AMIA. In addition to providing context and background for the current version of the competencies, we hope this will serve as a model for revision of competencies over time.

  17. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  18. Integrating Informatics Technologies into Oracle

    Directory of Open Access Journals (Sweden)

    Manole VELICANU

    2006-01-01

    Full Text Available A characteristic of the actual informatics’ context is the interference of the technologies, which assumes that for creating an informatics product, is necessary to use integrate many technologies. This thing is also used for database systems which had integrated, in the past few years, almost everything is new in informatics technology. The idea is that when using database management systems - DBMS the user can benefit all the necessary interfaces and instruments for developing an application with databases from the very beginning to the end, no matter the type of application and the work environment. For example, if the database application needs any Internet facilities these could be appealed from the products that the DBMS is working with offers. The concept of the interference of informatics technologies has many advantages, which all contribute to increasing the efficiency of the activities that develop and maintain complex databases applications.

  19. More than four decades of medical informatics education for medical students in Germany. New recommendations published.

    Science.gov (United States)

    Winter, A; Hilgers, R-D; Hofestädt, R; Knaup-Gregori, P; Ose, C; Trimmer, A

    2013-01-01

    The publication of German competency-based learning objectives "Medical Informatics" for undergraduate medical education gives reason to report on more publications of the German journal GMS Medical Informatics, Biometry and Epidemiology ( MIBE ) in Methods. The publications in focus deal with support of medical education by health and biomedical informatics, hospital information systems and their relation to medical devices, transinstitutional health information systems and the need of national eHealth strategies, epidemiological research on predicting high consumption of resources, and with the interaction of epidemiologists and medical statisticians in examining mortality risks in diabetes, in genome wide association studies and in dealing with limits and thresholds. This report is the beginning of an annual series intending to support better international cooperation to achieve good information as a basis for good medicine and good healthcare.

  20. Overview of Imaging Informatics

    Directory of Open Access Journals (Sweden)

    M. Fatehi

    2005-08-01

    Full Text Available Introduction & Background: Inclusion of informatics issues in radiology practice and education is no longer an interest or a research topic. Information technol-ogy has affected many aspects of radiology practice much further than technologic advancement of new imaging modalities. The aim of this article is to briefly review the role of computers and IT in mod-ern radiology. Image: Acquisition (CR / DR / DICOM, Storage, Processing (3D reconstruction, Edge enhancement, Contrast change, etc, and Perception of image for computer aided detection are all real example of IT applications affecting diagnostic imaging. Management: Radiology information systems used for multiple purposes (Resource management, Financial management, Report management, Workflow man-agement are professional and specialized manage-ment information systems used in imaging depart-ment. Decision Making: Image understanding, Reference databases, Decision support systems may be consid-ered as examples of how IT may improve the decision makings of a radiologist. Education: E-learning in radiology has many advan-tages to traditional education including reproducibil-ity, use of multimedia technology, distant education, multi-user or even multi-center educations are among them. Digital teaching files can easily replace old film files especially considering the wide avail-ability of originally digital images. Communication: Internet and teleradiology have broken the boundaries of place and time. Consulta-tions, grouped radiology services, overseas practice and countrywide imaging archives are all possible using internet and HTML technology. Wireless tech-nology is growingly included in intra-departmental and intra-hospital radiological image and information transfer shows promising role in emergency radiol-ogy. Reporting: Speech recognition, Structured reporting, Multi-media reporting are example of electronic re-porting depicting emerging change in radiology re-ports that were less

  1. People and ideas in medical informatics - a half century review.

    Science.gov (United States)

    van Bemmel, J H

    2011-01-01

    OBJECTIVE. Reviewing the onset and the rapid changes to make realistic predictions on the future of medical informatics. METHODS. Pointing to the contributions of the early pioneers, who had their roots in other disciplines and by illustrating that from the onset an interdisciplinary approach was characteristic for our field. RESULTS. Some of the reasons for the changes in medical informatics are that nobody was able to predict the advent of the personal computer in the 1970s, the world-wide web in 1991, and the public start of the Internet in 1992, but foremost that nobody expected that it was not primarily the hardware or the software, but human factors that would be crucial for successful applications of computers in health care. In the past sometimes unrealistic expectations were held, such as on the impact of medical decision-support systems, or on the overly optimistic contributions of electronic health records. Although the technology is widely available, some applications appear to be far more complex than expected. Health care processes can seldom be fully standardized. Humans enter at least in two very different roles in the loop of information processing: as subjects conducting care - the clinicians - and as subjects that are the objects of care - the patients. CONCLUSIONS. Medical informatics lacks a specific methodology; methods are borrowed from adjacent disciplines such as physics, mathematics and, of course, computer science. Human factors play a major role in applying computers in health care. Everyone pursuing a career in biomedical informatics needs to be very aware of this. It is to be expected that the quality of health care will increasingly be assessed by computer systems to fulfill the requirements of medical evidence.

  2. Five periods in development of medical informatics.

    Science.gov (United States)

    Masic, Izet

    2014-02-01

    Medical informatics, as scientific discipline, has to do with all aspects of understanding and promoting the effective organization, analysis, management, and use of information in health care. While the field of Medical informatics shares the general scope of these interests with some other health care specialities and disciplines, Medical (Health) informatics has developed its own areas of emphasis and approaches that have set it apart from other disciplines and specialities. For the last fifties of 20th century and some more years of 21st century, Medical informatics had the five time periods of characteristic development. In this paper author shortly described main scientific innovations and inventors who created development of Medical informatics.

  3. Medical imaging, PACS, and imaging informatics: retrospective.

    Science.gov (United States)

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  4. Medical imaging, PACS, and imaging informatics: retrospective.

    Science.gov (United States)

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  5. All India Seminar on Biomedical Engineering 2012

    CERN Document Server

    Bhatele, Mukta

    2013-01-01

    This book is a collection of articles presented by researchers and practitioners, including engineers, biologists, health professionals and informatics/computer scientists, interested in both theoretical advances and applications of information systems, artificial intelligence, signal processing, electronics and other engineering tools in areas related to biology and medicine in the All India Seminar on Biomedical Engineering 2012 (AISOBE 2012), organized by The Institution of Engineers (India), Jabalpur Local Centre, Jabalpur, India during November 3-4, 2012. The content of the book is useful to doctors, engineers, researchers and academicians as well as industry professionals.

  6. Computational intelligence in medical informatics

    CERN Document Server

    Gunjan, Vinit

    2015-01-01

    This Brief highlights Informatics and related techniques to Computer Science Professionals, Engineers, Medical Doctors, Bioinformatics researchers and other interdisciplinary researchers. Chapters include the Bioinformatics of Diabetes and several computational algorithms and statistical analysis approach to effectively study the disorders and possible causes along with medical applications.

  7. Policy Implications of Education Informatics

    Science.gov (United States)

    Carr, Jo Ann; O'Brien, Nancy P.

    2010-01-01

    Background/Context: This concluding article identifies the policy implications of education informatics and explores impacts of current copyright laws, legislative structures, publishing practices, and education organizations. Synthesizing the discussions in the preceding articles, this article highlights the importance of designing information…

  8. Clinical health informatics education for a 21st Century World.

    Science.gov (United States)

    Liaw, Siaw Teng; Gray, Kathleen

    2010-01-01

    This chapter gives an educational overview of: * health informatics competencies in medical, nursing and allied clinical health professions * health informatics learning cultures and just-in-time health informatics training in clinical work settings * major considerations in selecting or developing health informatics education and training programs for local implementation * using elearning effectively to meet the objectives of health informatics education. PMID:20407180

  9. The Biodiversity Informatics Potential Index

    Directory of Open Access Journals (Sweden)

    Ariño Arturo H

    2011-12-01

    Full Text Available Abstract Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a the intrinsic biodiversity potential (the biological richness or ecological diversity of a country; (b the capacity of the country to generate biodiversity data records; and (c the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a identifying

  10. INFORMATIZATION: PHILOSOPHICAL AND ANTHROPOLOGICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    A. A. Kosolapov

    2015-07-01

    Full Text Available Purpose.Computerization and informatization in recent decades gave the mankind automated electronic document management systems, automated process of production, Internet and network information resources WWW, expanded the communications capabilities and led to the globalization of the information society. At the same time gives rise to a number of processes of informatization philosophical and anthropological problems, that has become an existential character. It is necessary to identify and understanding of these issues on the basis of the gnoseological model of the evolution informatization paradigms and determine their main characteristics. Methodology. The system-activity approach was used; it allowed identifying and analyzing the impact of the main components of information and communication technologies (ICT for educational activities. And further to present them as a unified system of human activity in conditions computerization/informatization. The philosophical principles: a comprehensive review of the subject, the unity of the logical and historical, ascending from the abstract to the concrete was used. The general scientific principles: unity and development of the system, the decomposition hierarchy, individualization and cooperation, diversity and taxonomy were applied. Findings.The three-stage gnoseological model of the paradigms computerization/informatization evolution was proposed by the author. It is based on three information system characteristics: speed, interface and data access. The seven-bar anthrop-centric model, which is called the architecture of information systems (AIS, which describes the changes in their types of procuring, was proposed for each paradigm. The philosophical-anthropological problems that affect negatively its progress were formulated for each stage of modern information society transformation. Originality. The gnoseological model of development processes of informatization in the form of three

  11. 非医学信息学专业医学信息学教育课程的设置%Construction of medical informatics curriculum based on IMIA recommendations for non-medical informatics students

    Institute of Scientific and Technical Information of China (English)

    曹洪欣; 汤琳; 单甜甜

    2012-01-01

    According to the recommendations of the International Medical lnformatics Association(IMIA)on education in biomedical and health informatics(first revision)published by IMIA in 2010 and combining the actuality of the basic clinical information skills and medical informatics education of Chinese medical students,the related contents of medical informatics have been integrated into the teaching course based on current medical information retrieval curriculum and medical informatics curriculum for non-medical informatics students of medical colleges and universities was constructed,so that they can meet the requirements of the basic information skills under information-based medical and healthy practice.%以国际医学信息学会(International Medical Informatics Association,IMIA)2010年修订的《关于开展生物医学与健康信息学教育的建议》为依据,结合我国目前医学生基本临床信息技能及医学信息学教育现状,以医学文献检索为课程基础,构建适合高等医学院校非医学信息学专业教育的医学信息学课程,使医学生毕业后能够适应信息化条件下医疗卫生实践对基本信息技能的要求.

  12. Eligibility requirements for advanced health informatics certification.

    Science.gov (United States)

    Gadd, Cynthia S; Williamson, Jeffrey J; Steen, Elaine B; Andriole, Katherine P; Delaney, Connie; Gumpper, Karl; LaVenture, Martin; Rosendale, Doug; Sittig, Dean F; Thyvalikakath, Thankam; Turner, Peggy; Fridsma, Douglas B

    2016-07-01

    AMIA is leading the effort to strengthen the health informatics profession by creating an advanced health informatics certification (AHIC) for individuals whose informatics work directly impacts the practice of health care, public health, or personal health. The AMIA Board of Directors has endorsed a set of proposed AHIC eligibility requirements that will be presented to the future AHIC certifying entity for adoption. These requirements specifically establish who will be eligible to sit for the AHIC examination and more generally signal the depth and breadth of knowledge and experience expected from certified individuals. They also inform the development of the accreditation process and provide guidance to graduate health informatics programs as well as individuals interested in pursuing AHIC. AHIC eligibility will be determined by practice focus, education in primary field and health informatics, and significant health informatics experience. PMID:27358328

  13. The scope and direction of health informatics

    Science.gov (United States)

    McGinnis, Patrick J.

    2002-01-01

    Health Informatics (HI) is a dynamic discipline based on the medical sciences, information sciences, and cognitive sciences. Its domain can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art," and indicate the likely growth areas for health informatics. The sources of information used in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA-Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  14. Cognitive hacking and intelligence and security informatics

    Science.gov (United States)

    Thompson, Paul

    2004-08-01

    This paper describes research on cognitive and semantic attacks on computer systems and their users. Several countermeasures against such attacks are described, including a description of a prototype News Verifier system. It is argued that because misinformation and deception play a much more significant role in intelligence and security informatics than in other informatics disciplines such as science, medicine, and the law, a new science of intelligence and security informatics must concern itself with semantic attacks and countermeasures.

  15. Informatization Expectation with Cloud Computing in China

    Directory of Open Access Journals (Sweden)

    XUE Huacheng

    2012-08-01

    Full Text Available Cloud computing has been the most popular and promising concept in the new century with no doubt, which is the most important strategy filed to occupy for IT giants. It is said to lead the 3rd IT revolution, so it will affect every organization, enterprise and individual and therefore the process of informatization of China definitely. Literatures about informatization are reviewed in this paper, characters from market angle are concluded, and expectation is drawn to lead Cloud Computing informatization.

  16. Informatics monitoring system of environment

    International Nuclear Information System (INIS)

    In this paper the Informatic monitoring system of environment the Slovak Republic (SR) is presented. Monitoring of environment in the SR is based on operation of the following partial monitoring systems (PMS): Air; Water; Soil; Biota (fauna and flora); Forest; Geological factors; Waste; Food and Feed Contamination; Meteorology and climatology; Radiation monitoring. Results of monitoring are presented on the web-site http://atlas.sazp.sk/ and http://atlas.sazp.sk/aplikacie.php

  17. Impact of Informatics on QIPC

    Institute of Scientific and Technical Information of China (English)

    Jozef Gruska

    2011-01-01

    Quantum information processing and communication (QIPC) is an area of science that has two main goals: On one side, it tries to explore (still not well known) potential of quantum phenomena for (efficient and reliable) information processing and ( efficient, reliable and secure) communication. On the other side, it tries to use quantum information storing, processing and transmitting paradigms, principles, laws ,limitations, concepts, models and tools to get deeper insights into the phenomena of quantum world and to find efficient ways to describe and handle/simulate various complex physical phenomena. In order to do that QIPC has to use concepts, models, theories, methods and tools of both physics and informatics. The main role of physics at that is to discover primitive physical phenomena that can be used to design and maintain complex and reliable information storing, processing and transmitting systems. The main role of informatics is, one one side, to explore, from the information processing and communication point of view,limitations and potentials of the potential quantum information processing and communication technology, and to prepare information processing methods that could utilise potential of quantum information processing and communication technologies. On the other side, the main role of informatics is to guide and support,by theoretical tools and outcomes,physics oriented research in QIPC.

  18. The Informatics Security Cost of Distributed Applications

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2010-01-01

    Full Text Available The objective, necessity, means and estimated efficiency of information security cost modeling are presented. The security requirements of distributed informatics applications are determined. Aspects regarding design, development and implementation are established. Influence factors for informatics security are presented and their correlation is analyzed. The costs associated to security processes are studied. Optimal criteria for informatics security are established. The security cost of the informatics application for validating organizational identifiers is determined using theoretical assumptions made for cost models. The conclusions highlight the validity of research results and offer perspectives for future research.

  19. Perspectives from Nurse Managers on Informatics Competencies

    Directory of Open Access Journals (Sweden)

    Li Yang

    2014-01-01

    Full Text Available Background and Purpose. Nurse managers are in an excellent position for providing leadership and support within the institutions they serve and are often responsible for accessing information that is vital to the improvement of health facility processes and patients’ outcomes. Therefore, competency in informatics is essential. The purposes of this study are to examine current informatics competency levels of nurse managers and to identify the variables that influence these competencies. Methods. A questionnaire designed to assess demographic information and nursing informatics competency was completed by 68 nurse managers. Multiple linear regression analysis was conducted to analyze the factors influencing informatics competency. Results. Descriptive analysis of the data revealed that informatics competency of these nurse managers was in the moderate range 77.65±8.14. Multiple linear regression analysis indicated that level of education, nursing administration experience, and informatics education/training were significant factors affecting competency levels. Conclusion. The factors identified in this study can serve as a reference for nurse managers who were wishing to improve their informatics competency, hospital administrators seeking to provide appropriate training, and nursing educators who were making decisions about nursing informatics curricula. These findings suggest that efforts to enhance the informatics competency of nurse managers have marked potential benefits.

  20. Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) facilitates finding and comparing neuroimaging resources for functional and structural...

  1. Big Data Application in Biomedical Research and Health Care: A Literature Review.

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812

  2. Big Data Application in Biomedical Research and Health Care: A Literature Review.

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care.

  3. Big Data Application in Biomedical Research and Health Care: A Literature Review

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812

  4. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  5. The Impact of Medical Informatics on Librarianship.

    Science.gov (United States)

    Dalrymple, Prudence W.

    The thesis of this paper is that the growth of the field of medical informatics, while seemingly a potential threat to medical librarianship, is in fact an opportunity for librarianship to both extend its reach and also to further define its unique characteristics in contrast to those of medical informatics. Furthermore, because medical…

  6. Medical Informatics in Academic Health Science Centers.

    Science.gov (United States)

    Frisse, Mark E.

    1992-01-01

    An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…

  7. The Informatics Audit - A Collaborative Process

    Directory of Open Access Journals (Sweden)

    Cristian CIUREA

    2010-01-01

    Full Text Available The paper present issues regarding the audit in informatics field, the audit seen as a collaborative process and how the collaborative banking systems are audited. In this paper, the methodology and techniques for an effective audit process are described. There are highlighted some aspects regarding the assessment of collaborative systems and specific flows of informatics audit.

  8. Teaching Some Informatics Concepts Using Formal System

    Science.gov (United States)

    Yang, Sojung; Park, Seongbin

    2014-01-01

    There are many important issues in informatics and many agree that algorithms and programming are most important issues that need to be included in informatics education (Dagiene and Jevsikova, 2012). In this paper, we propose how some of these issues can be easily taught using the notion of a formal system which consists of axioms and inference…

  9. The Teaching of Informatics for Business Students

    Science.gov (United States)

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  10. Informatics Education in Italian Secondary Schools

    Science.gov (United States)

    Bellettini, Carlo; Lonati, Violetta; Malchiodi, Dario; Monga, Mattia; Morpurgo, Anna; Torelli, Mauro; Zecca, Luisa

    2014-01-01

    This article describes the state of informatics education in the Italian secondary schools, highlighting how the learning objectives set up by the Ministry of Education are difficult to meet, due to the fact that the subject is often taught by teachers not holding an informatics degree, the lack of suitable teaching material and the expectations…

  11. Agricultural and Rural Informatization Construction in China

    Institute of Scientific and Technical Information of China (English)

    Mao; ZHANG

    2015-01-01

    Currently,faced with the rapid development of information technology and increasing competition of the global economy,many countries have been very concerned about the issues of informatization concerning agriculture and rural areas. The level of informatization in the developed countries has been universally high,and some developing countries are also highly concerned about how to actively promote the rural market information service. With the increasing level of China’s economic development,agriculture and rural economy have placed a growing demand on informatization. From the overall perspective of agricultural and rural informatization,this paper gives a detailed analysis of current situation,goals,tasks and constraints about agricultural and rural informatization construction,and finally makes the corresponding recommendations.

  12. The National Cancer Informatics Program (NCIP) Annotation and Image Markup (AIM) Foundation Model

    OpenAIRE

    Mongkolwat, Pattanasak; Kleper, Vladimir; Talbot, Skip; Rubin, Daniel

    2014-01-01

    Knowledge contained within in vivo imaging annotated by human experts or computer programs is typically stored as unstructured text and separated from other associated information. The National Cancer Informatics Program (NCIP) Annotation and Image Markup (AIM) Foundation information model is an evolution of the National Institute of Health’s (NIH) National Cancer Institute’s (NCI) Cancer Bioinformatics Grid (caBIG®) AIM model. The model applies to various image types created by various techn...

  13. Practitioner's guide to health informatics

    CERN Document Server

    Braunstein, Mark

    2015-01-01

    ""This book will be a terrific introduction to the field of clinical IT and clinical informatics"" -- Kevin Johnson ""Dr. Braunstein has done a wonderful job of exploring a number of key trends in technology in the context of the transformations that are occurring in our health care system"" -- Bob Greenes ""This insightful book is a perfect primer for technologists entering the health tech field."" -- Deb Estrin ""This book should be read by everyone.​"" -- David Kibbe This book provides care providers and other non-technical readers with a broad, practical overview of the changi

  14. Informatics and the clinical laboratory.

    Science.gov (United States)

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-08-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, 'Informatics' - the art and science of turning data into useful information - is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology - whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients - which requires critical assessment of the ever-increasing volume of information available - can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that there is a

  15. Integrating Governance of Research Informatics and Health Care IT Across an Enterprise: Experiences from the Trenches

    Science.gov (United States)

    Embi, Peter J.; Tachinardi, Umberto; Lussier, Yves; Starren, Justin; Silverstein, Jonathan

    Advances in health information technology and biomedical informatics have laid the groundwork for significant improvements in healthcare and biomedical research. For instance, Electronic Health Records can help improve the delivery of evidence-based care, enhance quality, and contribute to discoveries and evidence generation. Despite this promise, there are many challenges to achieving the vision and missions of our healthcare and research enterprises. Given the challenges inherent in doing so, institutions are increasingly moving to establish dedicated leadership and governance models charged with designing, deploying and leveraging various information resources to advance research and advanced care activities at AHCs. Some institutions have even created a new leadership position to oversee such activities, such as the Chief Research Information Officer. This panel will include research informatics leaders discussing their experiences from the proverbial trenches as they work to operationalize such cross-mission governance models. Panelists will start by providing an overview their respective positions and environments, discuss their experiences, and share lessons learned through their work at the intersection of clinical and translational research informatics and Health IT. PMID:24303236

  16. Analyses on Four Models and Cases of Enterprise Informatization

    Institute of Scientific and Technical Information of China (English)

    Shi Chunsheng(石春生); Han Xinjuan; Yang Cuilan; Zhao Dongbai

    2003-01-01

    The basic conditions of the enterprise informatization in Heilongjiang province are analyzed and 4 models are designed to drive the industrial and commercial information enterprise. The 4 models are the Resource Integration Informatization Model, the Flow Management Informatization Model, the Intranet E-commerce Informatization Model and the Network Enterprise Informatization Model. The conditions for using and problems needing attentions of these 4 models are also analyzed.

  17. Materials informatics and study on its further development

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Materials informatics is a cross discipline combining materials science and information science. The concept of materials informatics was introduced and expounded. The current status of research and application of materials informatics was analyzed. And the main tasks and research areas of materials informatics were summarized. Then the foundation and significance of its development in China was discussed. Lastly the development vision of materials informatics was proposed.

  18. STRIDE--An integrated standards-based translational research informatics platform.

    Science.gov (United States)

    Lowe, Henry J; Ferris, Todd A; Hernandez, Penni M; Weber, Susan C

    2009-01-01

    STRIDE (Stanford Translational Research Integrated Database Environment) is a research and development project at Stanford University to create a standards-based informatics platform supporting clinical and translational research. STRIDE consists of three integrated components: a clinical data warehouse, based on the HL7 Reference Information Model (RIM), containing clinical information on over 1.3 million pediatric and adult patients cared for at Stanford University Medical Center since 1995; an application development framework for building research data management applications on the STRIDE platform and a biospecimen data management system. STRIDE's semantic model uses standardized terminologies, such as SNOMED, RxNorm, ICD and CPT, to represent important biomedical concepts and their relationships. The system is in daily use at Stanford and is an important component of Stanford University's CTSA (Clinical and Translational Science Award) Informatics Program. PMID:20351886

  19. Perspective: Materials informatics across the product lifecycle: Selection, manufacturing, and certification

    Directory of Open Access Journals (Sweden)

    Gregory J. Mulholland

    2016-05-01

    Full Text Available The process of taking a new material from invention to deployment can take 20 years or more. Since the announcement of the Materials Genome Initiative in 2011, new attention has been paid to accelerating this timeframe to address key challenges in industries from energy, to biomedical materials, to catalysis, to polymers, particularly in the development of new materials discovery techniques. Materials informatics, or algorithmically analyzing materials data at scale to gain novel insight, has been lauded as a path forward in this regard. An equal challenge to discovery, however, is the acceleration from discovery to market. In this paper, we address application of an informatics approach to materials selection, manufacturing, and qualification and identify key opportunities and challenges in each of these areas with a focus on reducing time to market for new advanced materials technologies.

  20. Perspective: Materials informatics across the product lifecycle: Selection, manufacturing, and certification

    Science.gov (United States)

    Mulholland, Gregory J.; Paradiso, Sean P.

    2016-05-01

    The process of taking a new material from invention to deployment can take 20 years or more. Since the announcement of the Materials Genome Initiative in 2011, new attention has been paid to accelerating this timeframe to address key challenges in industries from energy, to biomedical materials, to catalysis, to polymers, particularly in the development of new materials discovery techniques. Materials informatics, or algorithmically analyzing materials data at scale to gain novel insight, has been lauded as a path forward in this regard. An equal challenge to discovery, however, is the acceleration from discovery to market. In this paper, we address application of an informatics approach to materials selection, manufacturing, and qualification and identify key opportunities and challenges in each of these areas with a focus on reducing time to market for new advanced materials technologies.

  1. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  2. Early experiences of accredited clinical informatics fellowships.

    Science.gov (United States)

    Longhurst, Christopher A; Pageler, Natalie M; Palma, Jonathan P; Finnell, John T; Levy, Bruce P; Yackel, Thomas R; Mohan, Vishnu; Hersh, William R

    2016-07-01

    Since the launch of the clinical informatics subspecialty for physicians in 2013, over 1100 physicians have used the practice and education pathways to become board-certified in clinical informatics. Starting in 2018, only physicians who have completed a 2-year clinical informatics fellowship program accredited by the Accreditation Council on Graduate Medical Education will be eligible to take the board exam. The purpose of this viewpoint piece is to describe the collective experience of the first four programs accredited by the Accreditation Council on Graduate Medical Education and to share lessons learned in developing new fellowship programs in this novel medical subspecialty. PMID:27206458

  3. Moving toward a United States strategic plan in primary care informatics: a White Paper of the Primary Care Informatics Working Group, American Medical Informatics Association

    Directory of Open Access Journals (Sweden)

    David Little

    2003-06-01

    Full Text Available The Primary Care Informatics Working Group (PCIWG of the American Medical Informatics Association (AMIA has identified the absence of a national strategy for primary care informatics. Under PCIWG leadership, major national and international societies have come together to create the National Alliance for Primary Care Informatics (NAPCI, to promote a connection between the informatics community and the organisations that support primary care. The PCIWG clinical practice subcommittee has recognised the necessity of a global needs assessment, and proposed work in point-of-care technology, clinical vocabularies, and ambulatory electronic medical record development. Educational needs include a consensus statement on informatics competencies, recommendations for curriculum and teaching methods, and methodologies to evaluate their effectiveness. The research subcommittee seeks to define a primary care informatics research agenda, and to support and disseminate informatics research throughout the primary care community. The AMIA board of directors has enthusiastically endorsed the conceptual basis for this White Paper.

  4. Comparative effectiveness research and medical informatics.

    Science.gov (United States)

    D'Avolio, Leonard W; Farwell, Wildon R; Fiore, Louis D

    2010-12-01

    As is the case for environmental, ecological, astronomical, and other sciences, medical practice and research finds itself in a tsunami of data. This data deluge, due primarily to the introduction of digitalization in routine medical care and medical research, affords the opportunity for improved patient care and scientific discovery. Medical informatics is the subdiscipline of medicine created to make greater use of information in order to improve healthcare. The 4 areas of medical informatics research (information access, structure, analysis, and interaction) are used as a framework to discuss the overlap in information needs of comparative effectiveness research and potential contributions of medical informatics. Examples of progress from the medical informatics literature and the Veterans Affairs Healthcare System are provided.

  5. The Structure of Medical Informatics Journal Literature

    OpenAIRE

    Morris, Theodore A.; McCain, Katherine W.

    1998-01-01

    Abstract Objective: Medical informatics is an emergent interdisciplinary field described as drawing upon and contributing to both the health sciences and information sciences. The authors elucidate the disciplinary nature and internal structure of the field.

  6. Integrating Informatics Content into the Nursing Curriculum.

    Science.gov (United States)

    Weiner, Elizabeth; Trangenstein, Patricia; Gordon, Jeffry; McNew, Ryan

    2016-01-01

    Contemporary nursing curricula require that nursing informatics content be integrated across the various levels of the programs that are offered. Many such programs face national accreditation requirements that typically relate more to technology than to informatics. International standards vary in these requirements. How can nursing programs meet these vastly different criteria yet continue to level informatics content that follows quality curriculum standards? This presentation describes one approach across programs that considers already developed competencies in nursing informatics while also taking into consideration the various roles that the graduates will have to assume in advanced practice nursing roles. Levels discussed include the baccalaureate, master's, doctorate in nursing practice, and the traditional Doctor of Philosophy degrees. PMID:27332211

  7. Faculty of Mathematics and Informatics, Sofia University

    OpenAIRE

    Nisheva, Maria

    2004-01-01

    The Faculty of Mathematics and Informatics (FMI) of Sofia University “St. Kliment Ohridski” is briefly presented as an educational and research institution. The possible contribution of FMI to KT-DigiCULT-BG project is analyzed.

  8. Grid Computing

    Indian Academy of Sciences (India)

    2016-05-01

    A computing grid interconnects resources such as high performancecomputers, scientific databases, and computercontrolledscientific instruments of cooperating organizationseach of which is autonomous. It precedes and is quitedifferent from cloud computing, which provides computingresources by vendors to customers on demand. In this article,we describe the grid computing model and enumerate themajor differences between grid and cloud computing.

  9. Biomedical Terminology Mapper for UML projects.

    Science.gov (United States)

    Thibault, Julien C; Frey, Lewis

    2013-01-01

    As the biomedical community collects and generates more and more data, the need to describe these datasets for exchange and interoperability becomes crucial. This paper presents a mapping algorithm that can help developers expose local implementations described with UML through standard terminologies. The input UML class or attribute name is first normalized and tokenized, then lookups in a UMLS-based dictionary are performed. For the evaluation of the algorithm 142 UML projects were extracted from caGrid and automatically mapped to National Cancer Institute (NCI) terminology concepts. Resulting mappings at the UML class and attribute levels were compared to the manually curated annotations provided in caGrid. Results are promising and show that this type of algorithm could speed-up the tedious process of mapping local implementations to standard biomedical terminologies.

  10. Distributed medical informatics education using internet2.

    OpenAIRE

    Cummings, Joseph; Tidmarsh, Patricia; Hersh, William; Friedman, Charles

    2002-01-01

    The curricula of most medical informatics training programs are incomplete. We used Internet2-based videoconferencing to expand the educational opportunities of medical informatics students at Oregon Health & Science University and the University of Pittsburgh. Students and faculty in both programs shared extra-curricular research conferences and journal club meetings. A course in Information Retrieval was made available to students in both programs. The conferences, meetings and class were w...

  11. Advances in Intelligence and Security Informatics

    CERN Document Server

    Mao, Wenji

    2012-01-01

    The Intelligent Systems Series comprises titles that present state of the art knowledge and the latest advances in intelligent systems. Its scope includes theoretical studies, design methods, and real-world implementations and applications. Traditionally, Intelligence and Security Informatics (ISI) research and applications have focused on information sharing and data mining, social network analysis, infrastructure protection and emergency responses for security informatics. With the continuous advance of IT technologies and the increasing sophistication of national and international securi

  12. Advanced Extravehicular Mobility Unit Informatics Software Design

    Science.gov (United States)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  13. Oral History and Health Informatics: Mutual Support

    OpenAIRE

    Gyde, Humphrey

    2006-01-01

    Oral history is ‘the interviewing of eyewitness participants in the events of the past for the purposes of historical reconstruction’1. It can make a specific and important contribution to the study of health informatics by adding valuable information to the existing record. At the same time the technology of informatics could facilitate in general the acquisition, storage and retrieval of oral history interviews for research.

  14. Nursing Informatics Education: Latino America & Caribe.

    Science.gov (United States)

    Hullin, Carol

    2016-01-01

    The objective of this panel is to share the current status of Nursing Informatics education at the national (Chile) and regional level. All the panelists are involved in different educational programs by face to face, online and small workshops. The scope is to anyone who is interested in the education in nursing informatics in Spanish, since the entire panelists participate in the design & development of educational programs from certificate, diploma, bachelor, master and PhD curriculums. PMID:27332321

  15. The BioGRID interaction database: 2015 update

    OpenAIRE

    Chatr-aryamontri, Andrew; Breitkreutz, Bobby-Joe; Oughtred, Rose; Boucher, Lorrie; Heinicke, Sven; Chen, Daici; Stark, Chris; Breitkreutz, Ashton; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Nixon, Julie; Ramage, Lindsay; Winter, Andrew; Sellam, Adnane

    2014-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein interactions curated from the primary biomedical literature for all major model organism species and humans. As of September 2014, the BioGRID contains 749 912 interactions as drawn from 43 149 publications that represent 30 model organisms. This interaction count represents a 50% increase compared to our previous 2013 BioGRID update. BioGRID d...

  16. Experiences of Engineering Grid-Based Medical Software

    OpenAIRE

    Estrella, F.; Hauer, T.; McClatchey, R.; Odeh, M.; Rogulin, D; Solomonides, T.

    2007-01-01

    Objectives: Grid-based technologies are emerging as potential solutions for managing and collaborating distributed resources in the biomedical domain. Few examples exist, however, of successful implementations of Grid-enabled medical systems and even fewer have been deployed for evaluation in practice. The objective of this paper is to evaluate the use in clinical practice of a Grid-based imaging prototype and to establish directions for engineering future medical Grid developments and their ...

  17. The Grid

    CERN Document Server

    Klotz, Wolf-Dieter

    2005-01-01

    Grid technology is widely emerging. Grid computing, most simply stated, is distributed computing taken to the next evolutionary level. The goal is to create the illusion of a simple, robust yet large and powerful self managing virtual computer out of a large collection of connected heterogeneous systems sharing various combinations of resources. This talk will give a short history how, out of lessons learned from the Internet, the vision of Grids was born. Then the extensible anatomy of a Grid architecture will be discussed. The talk will end by presenting a selection of major Grid projects in Europe and US and if time permits a short on-line demonstration.

  18. The caCORE Software Development Kit: Streamlining construction of interoperable biomedical information services

    Directory of Open Access Journals (Sweden)

    Warzel Denise

    2006-01-01

    Full Text Available Abstract Background Robust, programmatically accessible biomedical information services that syntactically and semantically interoperate with other resources are challenging to construct. Such systems require the adoption of common information models, data representations and terminology standards as well as documented application programming interfaces (APIs. The National Cancer Institute (NCI developed the cancer common ontologic representation environment (caCORE to provide the infrastructure necessary to achieve interoperability across the systems it develops or sponsors. The caCORE Software Development Kit (SDK was designed to provide developers both within and outside the NCI with the tools needed to construct such interoperable software systems. Results The caCORE SDK requires a Unified Modeling Language (UML tool to begin the development workflow with the construction of a domain information model in the form of a UML Class Diagram. Models are annotated with concepts and definitions from a description logic terminology source using the Semantic Connector component. The annotated model is registered in the Cancer Data Standards Repository (caDSR using the UML Loader component. System software is automatically generated using the Codegen component, which produces middleware that runs on an application server. The caCORE SDK was initially tested and validated using a seven-class UML model, and has been used to generate the caCORE production system, which includes models with dozens of classes. The deployed system supports access through object-oriented APIs with consistent syntax for retrieval of any type of data object across all classes in the original UML model. The caCORE SDK is currently being used by several development teams, including by participants in the cancer biomedical informatics grid (caBIG program, to create compatible data services. caBIG compatibility standards are based upon caCORE resources, and thus the caCORE SDK has

  19. X-Informatics: Practical Semantic Science

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The discipline of data science is merging with multiple science disciplines to form new X-informatics research disciplines. They are almost too numerous to name, but they include geoinformatics, bioinformatics, cheminformatics, biodiversity informatics, ecoinformatics, materials informatics, and the emerging discipline of astroinformatics. Within any X-informatics discipline, the information granules are unique to that discipline -- e.g., gene sequences in bio, the sky object in astro, and the spatial object in geo (such as points, lines, and polygons in the vector model, and pixels in the raster model). Nevertheless the goals are similar: transparent data re-use across subdisciplines and within education settings, information and data integration and fusion, personalization of user interactions with the data collection, semantic search and retrieval, and knowledge discovery. The implementation of an X-informatics framework enables these semantic e-science research goals. We describe the concepts, challenges, and new developments associated with the new discipline of astroinformatics, and how geoinformatics provides valuable lessons learned and a model for practical semantic science within a traditional science discipline through the accretion of data science methodologies (such as formal metadata creation, data models, data mining, information retrieval, knowledge engineering, provenance, taxonomies, and ontologies). The emerging concept of data-as-a-service (DaaS) builds upon the concept of smart data (or data DNA) for intelligent data management, automated workflows, and intelligent processing. Smart data, defined through X-informatics, enables several practical semantic science use cases, including self-discovery, data intelligence, automatic recommendations, relevance analysis, dimension reduction, feature selection, constraint-based mining, interdisciplinary data re-use, knowledge-sharing, data use in education, and more. We describe these concepts within the

  20. Biomedical optical imaging

    CERN Document Server

    Fujimoto, James G

    2009-01-01

    Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this tech

  1. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John

    2011-01-01

    Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering e

  2. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  3. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  4. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  5. BiOSS: A system for biomedical ontology selection.

    Science.gov (United States)

    Martínez-Romero, Marcos; Vázquez-Naya, José M; Pereira, Javier; Pazos, Alejandro

    2014-04-01

    In biomedical informatics, ontologies are considered a key technology for annotating, retrieving and sharing the huge volume of publicly available data. Due to the increasing amount, complexity and variety of existing biomedical ontologies, choosing the ones to be used in a semantic annotation problem or to design a specific application is a difficult task. As a consequence, the design of approaches and tools addressed to facilitate the selection of biomedical ontologies is becoming a priority. In this paper we present BiOSS, a novel system for the selection of biomedical ontologies. BiOSS evaluates the adequacy of an ontology to a given domain according to three different criteria: (1) the extent to which the ontology covers the domain; (2) the semantic richness of the ontology in the domain; (3) the popularity of the ontology in the biomedical community. BiOSS has been applied to 5 representative problems of ontology selection. It also has been compared to existing methods and tools. Results are promising and show the usefulness of BiOSS to solve real-world ontology selection problems. BiOSS is openly available both as a web tool and a web service.

  6. The experience of informatics nurses in Taiwan.

    Science.gov (United States)

    Liu, Chia-Hui; Lee, Ting-Ting; Mills, Mary Etta

    2015-01-01

    Despite recent progress in information technology, health care institutions are constantly confronted with the need to adapt to the resulting new processes of information management and use. Facilitating an effective technology implementation requires dedication from informatics nurses (INs) to bridge the gap between clinical care and technology. The purpose of this study was to explore the working experiences of INs, and alternatives to assist the growth and development of the specialty. This qualitative study recruited 8 participants, and data were collected in 2009 by use of interview guides related to work roles, responsibilities, competencies, and challenges. The emerged themes included (a) diversified roles and functions, (b) vague job description, (c) no decision-making authority, (d) indispensable management support, and (e) searching resources for work fulfillment. Findings indicate that for organizations where nursing informatics development is ongoing, the IN role should be clearly defined as a specialist with identified support resources and decision-making authority. Nursing informatics interest groups should further develop training and certification programs to validate the professional image of the role. Concepts of nursing informatics should be included seamlessly throughout the educational curricula and informatics competency-based courses designed to strengthen student's technology use and data management capabilities. PMID:25839956

  7. Chapter 17: bioimage informatics for systems pharmacology.

    Directory of Open Access Journals (Sweden)

    Fuhai Li

    2013-04-01

    Full Text Available Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi. Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies.

  8. Effect of an informatics for evidence-based practice curriculum on nursing informatics competencies.

    Science.gov (United States)

    Desjardins, Karen S; Cook, Sarah Sheets; Jenkins, Melinda; Bakken, Suzanne

    2005-12-01

    Effective and appropriate use of information and communication technologies is an essential competency for all health care professionals. The purpose of this paper is to describe the effect of an evolving informatics for evidence-based practice (IEBP) curriculum on nursing informatics competencies in three student cohorts in the combined BS/MS program for non-nurses at the Columbia University School of Nursing. A repeated-measures, non-equivalent comparison group design was used to determine differences in self-rated informatics competencies pre- and post-IEBP and between cohorts at the end of the BS year of the combined BS/MS program. The types of Computer Skill competencies on which the students rated themselves as competent (> or =3) on admission were generic in nature and reflective of basic computer literacy. Informatics competencies increased significantly from admission to BS graduation in all areas for the class of 2002 and in all, but three areas, for the class of 2003. None of the three cohorts achieved competence in Computer Skills: Education despite curricular revisions. There were no significant differences between classes at the end of the BS year. Innovative educational approaches, such as the one described in this paper demonstrate promise as a method to achieve informatics competence. It is essential to integrate routine measurement of informatics competency into the curriculum so that approaches can be refined as needed to ensure informatics competent graduates.

  9. Fibonacci Grids

    Science.gov (United States)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  10. Knowledge for medicine and health care--laudation at the occasion of the honorary doctorate bestowed to Donald A. B. Lindberg by UMIT, University for Health Sciences, Medical Informatics and Technology in Innsbruck, Tyrol, Austria.

    Science.gov (United States)

    van Bemmel, Jan H

    2005-01-01

    Dr. Donald A. B. Lindberg, Director of the U.S. National Library of Medicine, received an honorary doctorate from UMIT, the University for Health Sciences, Medical Informatics and Technology in Innsbruck, Tyrol. The celebration took place on September 28, 2004 at an academic event during a conference of the Austrian, German, and Swiss Societies of Medical Informatics, GMDS2004. Dr. Lindberg has been a pioneer in the field of computers in health care from the early 1960s onwards. In 1984 he became the Director of the National Library of Medicine in Bethesda, the world's largest fully computerized biomedical library. Dr. Lindberg has been involved in the early activities of the International Medical Informatics Association (IMIA), among others being the chair of the Organizing Committee for MEDINFO 86 in Washington D.C. He was elected the first president of the American Medical Informatics Association (AMIA), and served as an editor of Methods of Information in Medicine.

  11. Biomedical engineering undergraduate education in Latin America

    Science.gov (United States)

    Allende, R.; Morales, D.; Avendano, G.; Chabert, S.

    2007-11-01

    As in other parts of the World, in recent times there has been an increasing interest on Biomedical Engineering (BME) in Latin America (LA). This interest grows from the need for a larger number of such specialists, originated in a spreading use of health technologies. Indeed, at many universities, biomedical engineering departments have been created, which also brought along discussions on strategies to achieve the best education possible for both undergraduate and graduate programs. In these settings, different positions were taken as regards which subject to emphasize. In such a context, this work aimed to make a survey on the "state-of-the-art" of undergraduate BME education in LA, and to analyze the observed differences. Broadly speaking, similar education profiles are perceived in the entire continent, with main emphasis on electronics and bioinstrumentation, biology and informatics respectively. Much less relevance is given to biomechanics and biomaterials. This tendency is similar in Departments with many decades of experience or in newly opened ones.

  12. Biomedical engineering undergraduate education in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Allende, R [Biomedical Engineering Department, Universidad de Valparaiso, 13 Norte 766, Vina del Mar (Chile); Morales, D [Biomedical Engineering Department, Universidad de Valparaiso, 13 Norte 766, Vina del Mar (Chile); Avendano, G [Biomedical Engineering Department, Universidad de Valparaiso, 13 Norte 766, Vina del Mar (Chile); Chabert, S [Biomedical Engineering Department, Universidad de Valparaiso, 13 Norte 766, Vina del Mar (Chile)

    2007-11-15

    As in other parts of the World, in recent times there has been an increasing interest on Biomedical Engineering (BME) in Latin America (LA). This interest grows from the need for a larger number of such specialists, originated in a spreading use of health technologies. Indeed, at many universities, biomedical engineering departments have been created, which also brought along discussions on strategies to achieve the best education possible for both undergraduate and graduate programs. In these settings, different positions were taken as regards which subject to emphasize. In such a context, this work aimed to make a survey on the 'state-of-the-art' of undergraduate BME education in LA, and to analyze the observed differences. Broadly speaking, similar education profiles are perceived in the entire continent, with main emphasis on electronics and bioinstrumentation, biology and informatics respectively. Much less relevance is given to biomechanics and biomaterials. This tendency is similar in Departments with many decades of experience or in newly opened ones.

  13. Software engineering education in medical informatics.

    Science.gov (United States)

    Leven, F J

    1989-11-01

    Requirements and approaches of Software Engineering education in the field of Medical Informatics are described with respect to the impact of (1) experiences characterizing the "software misery", (2) status and tendencies in software methodology, and (3) educational status and needs in computer science education influenced by the controversy "theoretical versus practical education". Special attention is directed toward the growing importance of analysis, design methods, and techniques in the professional spectrum of Medical Informatics, the relevance of general principles of systems engineering in health care, the potential of non-procedural programming paradigms, and the intersection of Artificial Intelligence and education. Realizations of and experiences with programs in the field of Software Engineering are reported with respect to special requirements in Medical Informatics.

  14. Impact of medical informatics on medical education.

    Science.gov (United States)

    Hou, S M

    1999-11-01

    In recent years, medical informatics has become a well-recognized branch of medicine. It is a multidisciplinary science that combines information technology and various specialties of medicine. The impact of medical informatics on medical education is advancing along with the rapid developments in computer science. Departments of medical informatics or similar divisions have appeared in schools of medicine in Taiwan in the past 5 years. At National Taiwan University College of Medicine, we offer curricula in basic computer concepts, network concepts, operating systems, word processing, database and data processing, computer media resources, multimedia computer statistics, intelligent health information systems, medical diagnostic support systems, and electronic medical record systems. Distance learning has also been favorably accepted on this campus. Recently, we proposed the concept of a virtual medical campus, which will break the physical barriers of time and space. We expect this revolution to influence every aspect of medicine, especially medical education. PMID:10705693

  15. Teaching Some Informatics Concepts Using Formal System

    Directory of Open Access Journals (Sweden)

    Sojung YANG

    2014-10-01

    Full Text Available There are many important issues in informatics and many agree that algorithms and programming are most important issues that need to be included in informatics education (Dagiene and Jevsikova, 2012. In this paper, we propose how some of these issues can be easily taught using the notion of a formal system which consists of axioms and inference rules by which theorems can be proved. As is argued in (Dagiene and Jevsikova, 2012, we can introduce important topics in informatics using puzzle-like examples and students do not need to have prerequisites for learning. The materials presented in this paper have been used in a college-level elective class titled Hypertext and Computability in our university since the fall semester of 2008 and we believe that the contents proposed in this paper can be easily used to teach beginner students without technical backgrounds.

  16. Earth Science Informatics Comes of Age

    Science.gov (United States)

    Jodha, Siri; Khalsa, S.; Ramachandran, Rahul

    2014-01-01

    The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.

  17. Biomedical applications engineering tasks

    Science.gov (United States)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  18. The Theory of Biomedical Knowledge Integration(Ⅳ)

    Institute of Scientific and Technical Information of China (English)

    BAO Han-fei

    2005-01-01

    This paper presented some philosophic viewpoints of the Theory of BMKI (The Theory of Biomedical Knowledge Integration), a new exploration in BioMedical Informatics. It discussed an evolutional relation from propositional calculus, predicate calculus, through framework, to neural network.. The differences in exclusivity and other natures were explored for physical systems (the real world), quasi-physical systems (the copies of the real world) and mental systems(the abstracts of the real world). Based on their behaviours in cognitive sciences and knowledge engineering, the new concepts quasi-infinity or -infinitesimal,potential knowledge,dynamic knowledge were introduced. This paper has also described so called "big-or" space which is the base of scientific understanding or association. Furthermore the paper put forward the viewpoint that "reasoning only can implement in an axiomatic space" and then outlined the building processes of such kind of space. At last so called "beacon-andcompass strategy" in BMKI was introduced.

  19. Core informatics competencies for clinical and translational scientists: what do our customers and collaborators need to know?

    Science.gov (United States)

    Valenta, Annette L; Meagher, Emma A; Tachinardi, Umberto; Starren, Justin

    2016-07-01

    Since the inception of the Clinical and Translational Science Award (CTSA) program in 2006, leaders in education across CTSA sites have been developing and updating core competencies for Clinical and Translational Science (CTS) trainees. By 2009, 14 competency domains, including biomedical informatics, had been identified and published. Since that time, the evolution of the CTSA program, changes in the practice of CTS, the rapid adoption of electronic health records (EHRs), the growth of biomedical informatics, the explosion of big data, and the realization that some of the competencies had proven to be difficult to apply in practice have made it clear that the competencies should be updated. This paper describes the process undertaken and puts forth a new set of competencies that has been recently endorsed by the Clinical Research Informatics Workgroup of AMIA. In addition to providing context and background for the current version of the competencies, we hope this will serve as a model for revision of competencies over time. PMID:27121608

  20. 2nd International Symposium on Intelligent Informatics

    CERN Document Server

    Abraham, Ajith; Pal, Sankar; Rodriguez, Juan

    2014-01-01

    This book constitutes the thoroughly refereed post-conference proceedings of the Second International Symposium on Intelligent Informatics (ISI 2013) held in Mysore, India during August 23-24, 2013. The 47 revised papers presented were carefully reviewed and selected from 126 initial submissions. The papers are organized in topical sections on pattern recognition, signal and image processing; data mining, clustering and intelligent information systems; multi agent systems; and computer networks and distributed systems. The book is directed to the researchers and scientists engaged in various fields of intelligent informatics.

  1. Proceedings of the 10th international symposium on biomedical engineering '94

    International Nuclear Information System (INIS)

    Main topics of the Symposium were presented and discussed through eight sessions: 1) biomedical instrumentation, 2) biomedical signal measurements and processing, 3) biomechanics, 4) medical imaging, 5) medical informatics, 6) bioelectrical measurements, 7) bioengineering in dentistry and 8) modelling and simulation. The most of the participants were electrical and electronics engineers, physicists and physicians. All submitted papers were reviewed by international reviewers and 48 of the papers were accepted and presented on the symposium. Papers were mainly from Croatia, but there was also a number of papers from Austria, Slovenia, Germany, Italy, France, USA etc

  2. After three decades of Medical Informatics Europe congresses.

    Science.gov (United States)

    Dezelic, Gjuro

    2009-01-01

    European medical informatics professionals traditionally gather at congresses of the European Federation for Medical Informatics (EFMI) named "Medical Informatics Europe - MIE". After more than three decades of successive organization of these congresses, some important points of their history of are presented. As the MIE Congress in Sarajevo, organized by the Society for Medical Informatics of Bosnia and Herzegovina (BHSMI), is the third EFMI event in the western part of South-East Europe, a short review of the development of medical informatics in this part of Europe, together with important events in its history, will shortly be presented.

  3. Identification of Business Informatics Specifics in Agricultural Enterprises

    Directory of Open Access Journals (Sweden)

    K. Kubata

    2016-10-01

    Full Text Available Presented paper deals with analysis and identification of business informatics specifics in agricultural enterprises in the Czech Republic farming at land of size up to 500 hectares. The study is based on thorough review of literature about latest issues in agriculture business informatics. There is a follow up to certain results of previous research on business informatics in agriculture that was conducted by authors in 2013. The analysis has brought findings that business informatics has several peculiarities that must be regarded in informatics implementation and innovation. Those are common economic and organisational effects and further aspects typical for the agriculture such as climate, local conditions and seasonal nature of production.

  4. Grid Security

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The aim of Grid computing is to enable the easy and open sharing of resources between large and highly distributed communities of scientists and institutes across many independent administrative domains. Convincing site security officers and computer centre managers to allow this to happen in view of today's ever-increasing Internet security problems is a major challenge. Convincing users and application developers to take security seriously is equally difficult. This paper will describe the main Grid security issues, both in terms of technology and policy, that have been tackled over recent years in LCG and related Grid projects. Achievements to date will be described and opportunities for future improvements will be addressed.

  5. Past and next 10 years of medical informatics.

    Science.gov (United States)

    Ückert, Frank; Ammenwerth, Elske; Dujat, Carl; Grant, Andrew; Haux, Reinhold; Hein, Andreas; Hochlehnert, Achim; Knaup-Gregori, Petra; Kulikowski, Casimir; Mantas, John; Maojo, Victor; Marschollek, Michael; Moura, Lincoln; Plischke, Maik; Röhrig, Rainer; Stausberg, Jürgen; Takabayashi, Katsuhiko; Winter, Alfred; Wolf, Klaus-Hendrik; Hasman, Arie

    2014-07-01

    More than 10 years ago Haux et al. tried to answer the question how health care provision will look like in the year 2013. A follow-up workshop was held in Braunschweig, Germany, for 2 days in May, 2013, with 20 invited international experts in biomedical and health informatics. Among other things it had the objectives to discuss the suggested goals and measures of 2002 and how priorities on MI research in this context should be set from the viewpoint of today. The goals from 2002 are now as up-to-date as they were then. The experts stated that the three goals: "patient-centred recording and use of medical data for cooperative care"; "process-integrated decision support through current medical knowledge" and "comprehensive use of patient data for research and health care reporting" have not been reached yet and are still relevant. A new goal for ICT in health care should be the support of patient centred personalized (individual) medicine. MI as an academic discipline carries out research concerning tools that support health care professionals in their work. This research should be carried out without the pressure that it should lead to systems that are immediately and directly accepted in practice. PMID:24952607

  6. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  7. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  8. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  9. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  10. Medical informatics and telemedicine: A vision

    Science.gov (United States)

    Clemmer, Terry P.

    1991-01-01

    The goal of medical informatics is to improve care. This requires the commitment and harmonious collaboration between the computer scientists and clinicians and an integrated database. The vision described is how medical information systems are going to impact the way medical care is delivered in the future.

  11. Techno-Anthropological Sensibilities in Health Informatics

    DEFF Research Database (Denmark)

    Bossen, Claus

    2015-01-01

    What kind of knowledges, skills and competences may be required by Techno-Anthropology engaging with health informatics? If we understand Techno-Anthropology to mean conducting anthropological analyses of the interwoven and mutually shaping relationship between organizing, technologies and actors....... The chapter points at three issues that seem to be central foundations for appropriate and quality-driven research and interventions of the ‘quick and proper’ kind: Modes of engagement; characteristics of the healthcare sector; and medical informatics and work.......What kind of knowledges, skills and competences may be required by Techno-Anthropology engaging with health informatics? If we understand Techno-Anthropology to mean conducting anthropological analyses of the interwoven and mutually shaping relationship between organizing, technologies and actors...... and determine social development, whereas detailed studies reveal that determinants and causes are both technical and social. The challenges include the one of making one's knowledge and skills legitimate and relevant to health informatics. Having a degree from arts or social sciences is not necessarily...

  12. Rural Logistics System Based on Rural Informatization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Current status of rural informatization construction in China,including the relatively weak rural informatization,asymmetric market information,low level of information sharing,dispersedly allocated resources and no cross point among each other are analyzed.The importance of informatization in rural logistic system is introduced:firstly,decision making of logistics system plan is based on information.Secondly,improvement of the overall efficiency of logistics system is based on information.Thirdly,logistics transmission takes the Internet as the carrier.Necessity of rural logistics system is discussed from five aspects of increasing the employment of farmers,enhancing the income of farmers,reducing the blindness of agricultural production and circulation,sharing the risks of agricultural management,and promoting the rural economic restructuring.According to the above five steps,five countermeasures are posed in order to improve the rural logistics system.The countermeasures cover the aspects of deepening the information awareness of government,establishing a rural informatization system suited to the national condition of China,strengthening the information infrastructure in rural areas,promoting the integration of rural information resources and establishing the training system for agricultural information talents.

  13. Implementing Clinical Guidelines: How Can Informatics Help?

    OpenAIRE

    Duff, Lesley; Casey, Anne

    1998-01-01

    Clinical guidelines are heralded as a positive contribution to improving quality of care and ensuring the effectiveness of care. From the perspective of the health services researcher, the authors propose a model of how informatics can support the implementation of clinical guidelines and their integration into systems for decision support and clinical audit. Each element of the model is discussed in turn.

  14. Imaging Informatics: 25 Years of Progress.

    Science.gov (United States)

    Agrawal, J P; Erickson, B J; Kahn, C E

    2016-01-01

    The science and applications of informatics in medical imaging have advanced dramatically in the past 25 years. This article provides a selective overview of key developments in medical imaging informatics. Advances in standards and technologies for compression and transmission of digital images have enabled Picture Archiving and Communications Systems (PACS) and teleradiology. Research in speech recognition, structured reporting, ontologies, and natural language processing has improved the ability to generate and analyze the reports of imaging procedures. Informatics has provided tools to address workflow and ergonomic issues engendered by the growing volume of medical image information. Research in computeraided detection and diagnosis of abnormalities in medical images has opened new avenues to improve patient care. The growing number of medical-imaging examinations and their large volumes of information create a natural platform for "big data" analytics, particularly when joined with high-dimensional genomic data. Radiogenomics investigates relationships between a disease's genetic and gene-expression characteristics and its imaging phenotype; this emerging field promises to help us better understand disease biology, prognosis, and treatment options. The next 25 years offer remarkable opportunities for informatics and medical imaging together to lead to further advances in both disciplines and to improve health. PMID:27362590

  15. Geo-Engineering through Internet Informatics (GEMINI)

    Energy Technology Data Exchange (ETDEWEB)

    Doveton, John H.; Watney, W. Lynn

    2003-03-06

    The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.

  16. Informatization of Power Plant and Its Implementation

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhenghai

    2006-01-01

    @@ This paper presents the working procedure of power generating enterprises and explains the framework of an e-power-plant and its information system, puts forward the guideline and the general goal of informatization construction while focusing on the construction goal in the applied system, the implementing strategy, the project management and organization.

  17. EDUCATION IN INFORMATICS AT SOFIA UNIVERSITY

    NARCIS (Netherlands)

    Ilieva, Sylvia; Nikolov, Roumen

    2007-01-01

    The paper presents some real experiences, emerging models and lessons learnt based on the case of Sofia University - Faculty of Mathematics and Informatics (FMI), and its partners. Some experience in developing a layer of MSc programs as a live link to the professional ICT society and ICT industry i

  18. 10th International Conference on Health Informatics

    CERN Document Server

    2017-01-01

    The purpose of the International Conference on Health Informatics is to bring together researchers and practitioners interested in the application of information and communication technologies (ICT) to healthcare and medicine in general and to the support of persons with special needs in particular.

  19. The BioGRID interaction database: 2013 update

    OpenAIRE

    Chatr-aryamontri, Andrew; Breitkreutz, Bobby-Joe; Heinicke, Sven; Boucher, Lorrie; Winter, Andrew; Stark, Chris; Nixon, Julie; Ramage, Lindsay; Kolas, Nadine; O’Donnell, Lara; Reguly, Teresa; Breitkreutz, Ashton; Sellam, Adnane; Chen, Daici; Chang, Christie

    2012-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http//thebiogrid.org) is an open access archive of genetic and protein interactions that are curated from the primary biomedical literature for all major model organism species. As of September 2012, BioGRID houses more than 500 000 manually annotated interactions from more than 30 model organisms. BioGRID maintains complete curation coverage of the literature for the budding yeast Saccharomyces cerevisiae, the fission yeast...

  20. The BioGRID interaction database:2013 update

    OpenAIRE

    Chatr-aryamontri, Andrew; Breitkreutz, Bobby-Joe; Heinicke, Sven; Boucher, Lorrie; Winter, Andrew; Stark, Chris; Nixon, Julie; Ramage, Lindsay; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Breitkreutz, Ashton; Sellam, Adnane; Chen, Daici; Chang, Christie

    2013-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access archive of genetic and protein interactions that are curated from the primary biomedical literature for all major model organism species. As of September 2012, BioGRID houses more than 500 000 manually annotated interactions from more than 30 model organisms. BioGRID maintains complete curation coverage of the literature for the budding yeast Saccharomyces cerevisiae, the fission yeas...

  1. Nursing informatics and nursing ethics: addressing their disconnect through an enhanced TIGER-vision.

    Science.gov (United States)

    Kaltoft, Mette Kjer

    2013-01-01

    All healthcare visions, including that of The TIGER (Technology-Informatics-Guiding-Educational-Reform) Initiative envisage a crucial role for nursing. However, its 7 descriptive pillars do not address the disconnect between Nursing Informatics and Nursing Ethics and their distinct communities in the clinical-disciplinary landscape. Each sees itself as providing decision support by way of information inputs and ethical insights, respectively. Both have reasons - ideological, professional, institutional - for their task construction, but this simultaneously disables each from engaging fully in the point-of-(care)-decision. Increased pressure for translating 'evidence-based' research findings into 'ethically-sound', 'value-based' and 'patient-centered' practice requires rethinking the model implicit in conventional knowledge translation and informatics practice in all disciplines, including nursing. The aim is to aid 'how nurses and other health care scientists more clearly identify clinical and other relevant data that can be captured to inform future comparative effectiveness research. 'A prescriptive, theory-based discipline of '(Nursing) Decisionics' expands the Grid for Volunteer Development of TIGER's newly launched virtual learning environment (VLE). This provides an enhanced TIGER-vision for educational reform to deliver ethically coherent, person-centered care transparently.

  2. Sensors for biomedical applications

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.

  3. Pathology informatics essentials for residents: A flexible informatics curriculum linked to accreditation council for graduate medical education milestones

    Directory of Open Access Journals (Sweden)

    Walter H Henricks

    2016-01-01

    Full Text Available Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016. Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time.

  4. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  5. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  6. Sharing big biomedical data

    OpenAIRE

    Toga, Arthur W.; Dinov, Ivo D.

    2015-01-01

    Background The promise of Big Biomedical Data may be offset by the enormous challenges in handling, analyzing, and sharing it. In this paper, we provide a framework for developing practical and reasonable data sharing policies that incorporate the sociological, financial, technical and scientific requirements of a sustainable Big Data dependent scientific community. Findings Many biomedical and healthcare studies may be significantly impacted by using large, heterogeneous and incongruent data...

  7. Biomedical Accelerator Mass Spectrometry

    Data.gov (United States)

    Federal Laboratory Consortium — Industrial partner projects focus on big, complex challenges and opportunities like smart grid, weather forecasting for renewable energy sources, alternative energy...

  8. Grid reliability

    Science.gov (United States)

    Saiz, P.; Andreeva, J.; Cirstoiu, C.; Gaidioz, B.; Herrala, J.; Maguire, E. J.; Maier, G.; Rocha, R.

    2008-07-01

    Thanks to the Grid, users have access to computing resources distributed all over the world. The Grid hides the complexity and the differences of its heterogeneous components. In such a distributed system, it is clearly very important that errors are detected as soon as possible, and that the procedure to solve them is well established. We focused on two of its main elements: the workload and the data management systems. We developed an application to investigate the efficiency of the different centres. Furthermore, our system can be used to categorize the most common error messages, and control their time evolution.

  9. Information science for the future: an innovative nursing informatics curriculum.

    Science.gov (United States)

    Travis, L; Flatley Brennan, P

    1998-04-01

    Health care is increasingly driven by information, and consequently, patient care will demand effective management of information. The report of the Priority Expert Panel E: Nursing Informatics and Enhancing Clinical Care Through Nursing Informatics challenges faculty to produce baccalaureate graduates who use information technologies to improve the patient care process and change health care. The challenge is to construct an evolving nursing informatics curriculum to provide nursing professionals with the foundation for affecting health care delivery. This article discusses the design, implementation, and evaluation of an innovative nursing informatics curriculum incorporated into a baccalaureate nursing program. The basic components of the curriculum framework are information, technology, and clinical care process. The presented integrated curriculum is effective in familiarizing students with informatics and encouraging them to think critically about using informatics in practice. The two groups of students who completed the four-course sequence will be discussed.

  10. The Construction of the Informatization of Food Consumption Service and Operating MechanismThe Construction of the Informatization of Food Consumption Service and Operating Mechanism

    OpenAIRE

    Si Zheng

    2015-01-01

    This study takes the overview of the informatization of food consumption service as the cutting point, through analyzing the necessity of constructing Chinese informatization of food consumption service, discussing the conception of constructing the informatization of food consumption service. The informatization of food consumption service is directly related to public welfares.

  11. Medical image informatics infrastructure design and applications.

    Science.gov (United States)

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII. PMID:9509399

  12. Realistic Multimedia Simulations for Informatics Students

    Directory of Open Access Journals (Sweden)

    Ioannis Pachoulaki

    2012-08-01

    Full Text Available Realistic multimedia simulations are effective in helping students overcome their fear of physics and gain fundamental knowledge of physical processes. An elective course has been designed in the Applied Informatics and Multimedia Department at TEI of Crete to help informatics students overcome their physics shyness by hands-on experience on scientific multimedia simulations. The approach is justified in terms of the rich employment opportunities in the game and multimedia industries where a sound basis in physics, mathematics and numerical analysis is a necessity. Student feedback shows that they embrace the adopted approach, which uses open source tools to minimize programming so as to allow both instructor and students to focus on the science and complete a greater number of simulations.

  13. 2012 International Conference on Cybernetics and Informatics

    CERN Document Server

    2014-01-01

    Cybernetics and informatics being a high-profile and fast-moving fields, the papers included in this proceedings will command a wide professional and academic readership. This book covers the very latest developments in the field of cybernetics and informatics. The 2012 conference in Chongqing, China, combined a focus on innovative technologies with an emphasis on sustainable solutions and strategies. Attended by leading figures from academia and industry whose work is represented here, the conference allowed effective cross-pollination between the theoretical and applied sectors of the field. Conference organizers received more than 1,000 papers, of which only ten percent were chosen to be featured in this publication. All of the papers are at the leading edge of developments, and so this book will not only ensure that the very best current work is disseminated, but that it also acts as a spur to future research.

  14. Open source bioimage informatics for cell biology.

    Science.gov (United States)

    Swedlow, Jason R; Eliceiri, Kevin W

    2009-11-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery.

  15. The Current Situation of Informatics Education in Mongolia

    OpenAIRE

    Sambuu UYANGA

    2006-01-01

    Mongolia started using Information and Communication Technology (ICT) in secondary education relatively late. The computer training and informatics has been included as a subject in the secondary school curriculum in Mongolia since 1988 and in the university curriculum since 1982. This paper presents current situation of informatics education in Mongolia. SWOT (Strength, Weakness, Opportunity, and Threat) analysis of Informatics Education in Mongolia, conclusions and future recommendations ar...

  16. Supporting collaboration through a nursing informatics curriculum stage II.

    OpenAIRE

    Travis, L. L.; Hoehn, B.; Spees, C.; Hribar, K.; Youngblut, J.

    1992-01-01

    Collaboration is at the center of the process used to design, implement and evaluate an integrated informatics curriculum in a baccalaureate nursing program. This paper describes the second stage of a process to design the informatics nursing courses. The challenges to foster faculty collaborative relationships as well as to enhance the course content of all nursing informatics curriculum. A number of strategies were used to develop the collaborative efforts between the faculty and nursing st...

  17. A Short History of Medical Informatics in Bosnia and Herzegovina

    OpenAIRE

    Masic, Izet

    2014-01-01

    The health informatics profession in Bosnia and Herzegovina has relatively long history. Thirty five years from the introduction of the first automatic manipulation of data, thirty years from the establishment of Society for Medical Informatics BiH, twenty years from the establishment of the Scientific journal “Acta Informatica Medica (Acta Inform Med”, indexed in PubMed, PubMed Central Scopus, Embase, etc.), twenty years on from the establishment of the first Cathedra for Medical Informatics...

  18. The Current Situation of Informatics Education in Mongolia

    Directory of Open Access Journals (Sweden)

    Sambuu UYANGA

    2006-04-01

    Full Text Available Mongolia started using Information and Communication Technology (ICT in secondary education relatively late. The computer training and informatics has been included as a subject in the secondary school curriculum in Mongolia since 1988 and in the university curriculum since 1982. This paper presents current situation of informatics education in Mongolia. SWOT (Strength, Weakness, Opportunity, and Threat analysis of Informatics Education in Mongolia, conclusions and future recommendations are also presented.

  19. Root Cause Analysis and Health Informatics.

    Science.gov (United States)

    Jones, Richard W; Despotou, George

    2016-01-01

    Root Cause Analysis (RCA) is the most widely used system analysis tool for investigating safety related incidents in healthcare. This contribution reviews RCA techniques, using a Health Informatics example, and discusses barriers to their successful uptake by healthcare organisations. It is concluded that a critical assessment to examine the uptake and evaluate the success of RCA, and other safety related techniques, within healthcare is long overdue. PMID:27350485

  20. INFORMATICS SYSTEMS FOR FINANCIAL AUDIT AND REVISION

    OpenAIRE

    Popeanga Vasile Nicolae; Vatuiu Teodora

    2009-01-01

    The activity of the financial auditors is regulated by International Standards of Revision for financial situations and information, through which the fundamental procedures and principles for this kind of missions are established. CIEL Audit and Revision application has been conceived as a support for financial auditors and expert accountants in Romania, offering help in the domain of informatics for the audit and accounting revision activities, since it is adapted both to the legal requ...

  1. R and D project and informatization

    International Nuclear Information System (INIS)

    This book deals with present situation and view of research and development project by industry, which includes general machinery industry, the steel industry, non ferrous metal industry, petrochemistry industry, auto industry, shipbuilding industry, aerospace engineering industry, daily supplies industry, fine chemistry industry, the ceramic industry, plate glass industry, biology life industry, electron industry, information industry, and semiconductor industry. It also describes project management of R and D and informatization of industry.367

  2. The Renewed Promise of Medical Informatics.

    Science.gov (United States)

    van Bemmel, J H; McCray, A T

    2016-05-20

    The promise of the field of Medical Informatics has been great and its impact has been significant. In 1999, the Yearbook editors of the International Medical Informatics Association (IMIA) - also the authors of the present paper - sought to assess this impact by selecting a number of seminal papers in the field, and asking experts to comment on these articles. In particular, it was requested whether and how the expectations, represented by these papers, had been fulfilled since their publication several decades earlier. Each expert was also invited to comment on what might be expected in the future. In the present paper, these areas are briefly reviewed again. Where did these early papers have an impact and where were they not as successful as originally expected? It should be noted that the extraordinary developments in computer technology observed in the last two decades could not have been foreseen by these early researchers. In closing, some of the possibilities and limitations of research in medical informatics are outlined in the context of a framework that considers six levels of computer applications in medicine and health care. For each level, some predictions are made for the future, concluded with thoughts on fruitful areas for ongoing research in the field.

  3. Health informatics competencies - underpinning e-health.

    Science.gov (United States)

    Grain, Heather; Hovenga, Evelyn

    2011-01-01

    There is a widespread consensus that we have an urgent need to improve our workforce capacity in all aspects associated with the skills and knowledge required for successful e-health and health informatics developments, associated change management and systems implementation strategies. Such activities aim to support various health reform policy initiatives. This paper considers the work being undertaken by many researchers around the globe to define the range of skills and knowledge requirements to suit this purpose. A number of requirements and areas of specialisation are detailed. This is followed by descriptions for competencies in general and more specifically descriptions of a set of high level agreed Health Informatics competencies. Collectively these competencies provide a suitable framework useful for the formal recognition of Health Informatics, including e-health, as a nationally recognised study discipline. Nationally agreed competencies for this discipline enables all education and training efforts to be consistently implemented and to fit with the Australian Qualifications Framework covering both the Vocational Education and Training (VET) and Higher Education sectors.

  4. Green Informatics: ICT for Green and Sustainability

    Directory of Open Access Journals (Sweden)

    Zacharoula S. Andreopoulou

    2012-12-01

    Full Text Available Green Informatics constitute a new term in the science of information that describes the utilization of informatics in the interest of the natural environment and the natural resources regarding sustainability and sustainable development. Nowadays, ICT has introduced the convergence of e-services with broadband network infrastructure, wireless technologies and mobile devices. The revolution of ICTs introduction in daily average life has also resulted in the increase of GHG, since the ’’carbon footprint’’ is continually increasing. The dimensions of Green Informatics contribution are: the reduction of energy consumption, the rise of environmental awareness, the effective communication for environmental issues and the environmental monitoring and surveillance systems, as a means to protect and restore natural ecosystems potential. EU has reinforced the environmental sector with focus on high level of protection and improvement of the quality of environment through the enacting of strategies, initiatives and measures. Future EU strategy aims to a low carbon European society by 2050 and to green/sustainable development, ICTs can play a key role in the environmental protection and sustainability, however, green behavior is still critical.

  5. Centralisation of informatics (more effective processes via using new technologies)

    International Nuclear Information System (INIS)

    In this presentation author deals with next problems of Slovenske elektrarne, Plc (SE): - Centralisation and optimisation of informatics management; - New technologies within Integrated Informatics System IIS-SE: presentation of preliminary Project of 2nd generation IIS-SE; - Centralisation of the selected data processing. At the present the intensive process of restructuring is taking place in SE, Plc, focused on increasing of the effectiveness of the pursued activities. In connection with this the Informatics section solves two projects: More effective self-management and human resources; Change of Informatics system architecture from decentralised to the centralised ones with an aim to consolidate all information and to make new conditions for higher mobility

  6. Multidisciplinary education in medical informatics--a course for medical and informatics students.

    Science.gov (United States)

    Breil, Bernhard; Fritz, Fleur; Thiemann, Volker; Dugas, Martin

    2010-01-01

    Design and implementation of healthcare information systems affect both computer scientists and health care professionals. In this paper we present our approach to integrate the management of information systems in the education of healthcare professionals and computer scientists alike. We designed a multidisciplinary course for medical and informatics students to provide them with practical experience concerning the design and implementation of medical information systems. This course was implemented in the curriculum of the University of Münster in 2009. The key element is a case study that is performed by small teams of medical and informatics students. A practical course on management of information systems can be useful for medical students who want to enhance their knowledge in information systems as well as for informatics students with particular interests in medicine.

  7. Establishing a national resource: a health informatics collection to maintain the legacy of health informatics development.

    Science.gov (United States)

    Ellis, Beverley; Roberts, Jean; Cooper, Helen

    2007-01-01

    This case study report of the establishment of a national repository of multi-media materials describes the creation process, the challenges faced in putting it into operation and the opportunities for the future. The initial resource has been incorporated under standard library and knowledge management practices. A collaborative action research method was used with active experts in the domain to determine the requirements and priorities for further development. The National Health Informatics Collection (NatHIC) is now accessible and the further issues are being addressed by inclusion in future University and NHS strategic plans. Ultimately the Collection will link with other facilities that contribute to the description and maintenance of effective informatics in support of health globally. The issues raised about the National Health Informatics Collection as established in the UK have resonance with the challenges of capturing the overall historic development of an emerging discipline in any country.

  8. Nimble Protein Sequence Alignment in Grid (NPSAG

    Directory of Open Access Journals (Sweden)

    K. Somasundaram

    2008-01-01

    Full Text Available In Bio-Informatics application, the analysis of protein sequence is a kind of computation driven science which has rapidly and quickly growing biological data. Also databases used in these applications are heterogeneous in nature and alignment of protein sequence using physical techniques is expensive, slow and results are not always guaranteed/accurate. So this application requires cross-platform, cost-effective and more computing power algorithm for sequence matching and searching a sequence in database. Grid is one of the most emerging technologies of cost effective computing paradigm for large class of data and compute intensive application which enables large-scale aggregation and sharing of computational data and other resources across institutional boundaries. We proposed the Grid architecture for searching of distributed, heterogeneous genomic databases which contained protein sequences to speed up the analysis of large scale sequence data and performed sequence alignment for residues match.

  9. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  10. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  11. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society.

  12. Biomedical cloud computing with Amazon Web Services.

    Science.gov (United States)

    Fusaro, Vincent A; Patil, Prasad; Gafni, Erik; Wall, Dennis P; Tonellato, Peter J

    2011-08-01

    In this overview to biomedical computing in the cloud, we discussed two primary ways to use the cloud (a single instance or cluster), provided a detailed example using NGS mapping, and highlighted the associated costs. While many users new to the cloud may assume that entry is as straightforward as uploading an application and selecting an instance type and storage options, we illustrated that there is substantial up-front effort required before an application can make full use of the cloud's vast resources. Our intention was to provide a set of best practices and to illustrate how those apply to a typical application pipeline for biomedical informatics, but also general enough for extrapolation to other types of computational problems. Our mapping example was intended to illustrate how to develop a scalable project and not to compare and contrast alignment algorithms for read mapping and genome assembly. Indeed, with a newer aligner such as Bowtie, it is possible to map the entire African genome using one m2.2xlarge instance in 48 hours for a total cost of approximately $48 in computation time. In our example, we were not concerned with data transfer rates, which are heavily influenced by the amount of available bandwidth, connection latency, and network availability. When transferring large amounts of data to the cloud, bandwidth limitations can be a major bottleneck, and in some cases it is more efficient to simply mail a storage device containing the data to AWS (http://aws.amazon.com/importexport/). More information about cloud computing, detailed cost analysis, and security can be found in references.

  13. Biomedical cloud computing with Amazon Web Services.

    Directory of Open Access Journals (Sweden)

    Vincent A Fusaro

    2011-08-01

    Full Text Available In this overview to biomedical computing in the cloud, we discussed two primary ways to use the cloud (a single instance or cluster, provided a detailed example using NGS mapping, and highlighted the associated costs. While many users new to the cloud may assume that entry is as straightforward as uploading an application and selecting an instance type and storage options, we illustrated that there is substantial up-front effort required before an application can make full use of the cloud's vast resources. Our intention was to provide a set of best practices and to illustrate how those apply to a typical application pipeline for biomedical informatics, but also general enough for extrapolation to other types of computational problems. Our mapping example was intended to illustrate how to develop a scalable project and not to compare and contrast alignment algorithms for read mapping and genome assembly. Indeed, with a newer aligner such as Bowtie, it is possible to map the entire African genome using one m2.2xlarge instance in 48 hours for a total cost of approximately $48 in computation time. In our example, we were not concerned with data transfer rates, which are heavily influenced by the amount of available bandwidth, connection latency, and network availability. When transferring large amounts of data to the cloud, bandwidth limitations can be a major bottleneck, and in some cases it is more efficient to simply mail a storage device containing the data to AWS (http://aws.amazon.com/importexport/. More information about cloud computing, detailed cost analysis, and security can be found in references.

  14. Virtual biomedical universities and e-learning.

    Science.gov (United States)

    Beux, P Le; Fieschi, M

    2007-01-01

    In this special issue on virtual biomedical universities and e-learning we will make a survey on the principal existing teaching applications of ICT used in medical Schools around the world. In the following we identify five types of research and experiments in this field of medical e-learning and virtual medical universities. The topics of this special issue goes from educational computer program to create and simulate virtual patients with a wide variety of medical conditions in different clinical settings and over different time frames to using distance learning in developed and developing countries program training medical informatics of clinicians. We also present the necessity of good indexing and research tools for training resources together with workflows to manage the multiple source content of virtual campus or universities and the virtual digital video resources. A special attention is given to training new generations of clinicians in ICT tools and methods to be used in clinical settings as well as in medical schools.

  15. HIRENASD NLR grid

    Data.gov (United States)

    National Aeronautics and Space Administration — Structured multiblock grid of HIRENASD wing with medium grid density, about 10 mill grid points, 9.5 mill cells. Starting from coarse AIAA AEPW structured grid,...

  16. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  17. Biomedical applications of photochemistry

    OpenAIRE

    Chan, BP

    2010-01-01

    Photochemistry is the study of photochemical reactions between light and molecules. Recently, there have been increasing interests in using photochemical reactions in the fields of biomaterials and tissue engineering. This work revisits the components and mechanisms of photochemistry and reviews biomedical applications of photochemistry in various disciplines, including oncology, molecular biology, and biosurgery, with particular emphasis on tissue engineering. Finally, potential toxicities a...

  18. Anatomy for Biomedical Engineers

    Science.gov (United States)

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  19. Implantable CMOS Biomedical Devices

    Directory of Open Access Journals (Sweden)

    Toshihiko Noda

    2009-11-01

    Full Text Available The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented.

  20. Bevalac biomedical facility

    International Nuclear Information System (INIS)

    This paper describes the physical layout of the Bevalac Facility and the research programs carried out at the facility. Beam time on the Bevalac is divided between two disciplines: one-third for biomedical research and two-thirds for nuclear science studies. The remainder of the paper discusses the beam delivery system including dosimetry, beam sharing and beam scanning

  1. Health-e-Child a grid platform for european paediatrics

    CERN Document Server

    Skaburskas, K; Shade, J; Manset, D; Revillard, J; Rios, A; Anjum, A; Branson, A; Bloodsworth, P; Hauer, T; McClatchey, R; Rogulin, D

    2008-01-01

    The Health-e-Child (HeC) project [1], [2] is an EC Framework Programme 6 Integrated Project that aims to develop a grid-based integrated healthcare platform for paediatrics. Using this platform biomedical informaticians will integrate heterogeneous data and perform epidemiological studies across Europe. The resulting Grid enabled biomedical information platform will be supported by robust search, optimization and matching techniques for information collected in hospitals across Europe. In particular, paediatricians will be provided with decision support, knowledge discovery and disease modelling applications that will access data in hospitals in the UK, Italy and France, integrated via the Grid. For economy of scale, reusability, extensibility, and maintainability, HeC is being developed on top of an EGEE/gLite [3] based infrastructure that provides all the common data and computation management services required by the applications. This paper discusses some of the major challenges in bio-medical data integr...

  2. Experiences of Engineering Grid-Based Medical Software

    CERN Document Server

    Estrella, F; McClatchey, R; Odeh, M; Rogulin, D; Solomonides, T

    2007-01-01

    Objectives: Grid-based technologies are emerging as potential solutions for managing and collaborating distributed resources in the biomedical domain. Few examples exist, however, of successful implementations of Grid-enabled medical systems and even fewer have been deployed for evaluation in practice. The objective of this paper is to evaluate the use in clinical practice of a Grid-based imaging prototype and to establish directions for engineering future medical Grid developments and their subsequent deployment. Method: The MammoGrid project has deployed a prototype system for clinicians using the Grid as its information infrastructure. To assist in the specification of the system requirements (and for the first time in healthgrid applications), use-case modelling has been carried out in close collaboration with clinicians and radiologists who had no prior experience of this modelling technique. A critical qualitative and, where possible, quantitative analysis of the MammoGrid prototype is presented leading...

  3. Developing a grid infrastructure in Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Aldama, D.; Dominguez, M.; Ricardo, H.; Gonzalez, A.; Nolasco, E.; Fernandez, E.; Fernandez, M.; Sanchez, M.; Suarez, F.; Nodarse, F.; Moreno, N.; Aguilera, L.

    2007-07-01

    A grid infrastructure was deployed at Centro de Gestion de la Informacion y Desarrollo de la Energia (CUBAENERGIA) in the frame of EELA project and of a national initiative for developing a Cuban Network for Science. A stand-alone model was adopted to overcome connectivity limitations. The e-infrastructure is based on gLite-3.0 middleware and is fully compatible with EELA-infrastructure. Afterwards, the work was focused on grid applications. The application GATE was deployed from the early beginning for biomedical users. Further, two applications were deployed on the local grid infrastructure: MOODLE for e-learning and AERMOD for assessment of local dispersion of atmospheric pollutants. Additionally, our local grid infrastructure was made interoperable with a Java based distributed system for bioinformatics calculations. This experience could be considered as a suitable approach for national networks with weak Internet connections. (Author)

  4. Grid reliability

    CERN Document Server

    Saiz, P; Rocha, R; Andreeva, J

    2007-01-01

    We are offering a system to track the efficiency of different components of the GRID. We can study the performance of both the WMS and the data transfers At the moment, we have set different parts of the system for ALICE, ATLAS, CMS and LHCb. None of the components that we have developed are VO specific, therefore it would be very easy to deploy them for any other VO. Our main goal is basically to improve the reliability of the GRID. The main idea is to discover as soon as possible the different problems that have happened, and inform the responsible. Since we study the jobs and transfers issued by real users, we see the same problems that users see. As a matter of fact, we see even more problems than the end user does, since we are also interested in following up the errors that GRID components can overcome by themselves (like for instance, in case of a job failure, resubmitting the job to a different site). This kind of information is very useful to site and VO administrators. They can find out the efficien...

  5. Building Comprehensive and Sustainable Health Informatics Institutions in Developing Countries: Moi University Experience.

    Science.gov (United States)

    Were, Martin C; Siika, Abraham; Ayuo, Paul O; Atwoli, Lukoye; Esamai, Fabian

    2015-01-01

    Current approaches for capacity building in Health Informatics (HI) in developing countries mostly focus on training, and often rely on support from foreign entities. In this paper, we describe a comprehensive and multidimensional capacity-building framework by Lansang & Dennis, and its application for HI capacity building as implemented in a higher-education institution in Kenya. This framework incorporates training, learning-by-doing, partnerships, and centers of excellence. At Moi University (Kenya), the training dimensions include an accredited Masters in HI Program, PhD in HI, and HI short courses. Learning-by-doing occurs through work within MOH facilities at the AMPATH care and treatment program serving 3 million people. Moi University has formed strategic HI partnerships with Regenstrief Institute, Inc. (USA), University of Bergen (Norway), and Makerere University (Uganda), among others. The University has also created an Institute of Biomedical Informatics to serve as an HI Center of Excellence in the region. This Institute has divisions in Training, Research, Service and Administration. The HI capacity-building approach by Moi provides a model for adoption by other institutions in resource-limited settings.

  6. Research Traceability using Provenance Services for Biomedical Analysis

    CERN Document Server

    Anjum, Ashiq; Branson, Andrew; Habib, Irfan; McClatchey, Richard; Solomonides, Tony

    2012-01-01

    We outline the approach being developed in the neuGRID project to use provenance management techniques for the purposes of capturing and preserving the provenance data that emerges in the specification and execution of workflows in biomedical analyses. In the neuGRID project a provenance service has been designed and implemented that is intended to capture, store, retrieve and reconstruct the workflow information needed to facilitate users in conducting user analyses. We describe the architecture of the neuGRID provenance service and discuss how the CRISTAL system from CERN is being adapted to address the requirements of the project and then consider how a generalised approach for provenance management could emerge for more generic application to the (Health)Grid community.

  7. Characteristics of Information Systems and Business Informatics Study Programs

    Science.gov (United States)

    Helfert, Markus

    2011-01-01

    Over the last decade there is an intensive discussion within the Information Systems (IS) and Informatics community about the characteristics and identity of the discipline. Simultaneously with the discussion, there is an ongoing debate on essential skills and capabilities of IS and Business Informatics graduates as well as the profile of IS…

  8. Personal Informatics in the Wild: Hacking Habits for Health & Happiness

    DEFF Research Database (Denmark)

    Li, Ian; Froehlich, Jon; Larsen, Jakob Eg;

    2013-01-01

    Personal informatics is a class of systems that help people collect personal information to improve selfknowledge. Improving self-knowledge can foster selfinsight and promote positive behaviors, such as healthy living and energy conservation. The development of personal informatics applications p...

  9. The Recurrence Relations in Teaching Students of Informatics

    Science.gov (United States)

    Bakoev, Valentin P.

    2010-01-01

    The topic "Recurrence relations" and its place in teaching students of Informatics is discussed in this paper. We represent many arguments about the importance, the necessity and the benefit of studying this subject by Informatics students. They are based on investigation of some fundamental books and textbooks on Discrete Mathematics,…

  10. Analysis on New Paradigms of Informatization in the Countryside

    Institute of Scientific and Technical Information of China (English)

    Fei; XUE; Lina; WANG

    2014-01-01

    Through the analyses of several typical paradigms of informatization in the countryside,the status of informatization in the countryside and some unresolved issues were studied. A new way was proposed to develop rural information with embedded mobile phone terminal,and to explore an inexpensive and efficient information services paradigm for the future development in the countryside.

  11. Clinical informatics: a workforce priority for 21st century healthcare.

    Science.gov (United States)

    Smith, Susan E; Drake, Lesley E; Harris, Julie-Gai B; Watson, Kay; Pohlner, Peter G

    2011-05-01

    This paper identifies the contribution of health and clinical informatics in the support of healthcare in the 21st century. Although little is known about the health and clinical informatics workforce, there is widespread recognition that the health informatics workforce will require significant expansion to support national eHealth work agendas. Workforce issues including discipline definition and self-identification, formal professionalisation, weaknesses in training and education, multidisciplinarity and interprofessional tensions, career structure, managerial support, and financial allocation play a critical role in facilitating or hindering the development of a workforce that is capable of realising the benefits to be gained from eHealth in general and clinical informatics in particular. As well as the national coordination of higher level policies, local support of training and allocation of sufficient position hours in appropriately defined roles by executive and clinical managers is essential to develop the health and clinical informatics workforce and achieve the anticipated results from evolving eHealth initiatives.

  12. The Impact of Imaging Informatics Fellowships.

    Science.gov (United States)

    Liao, Geraldine J; Nagy, Paul G; Cook, Tessa S

    2016-08-01

    Imaging informatics (II) is an area within clinical informatics that is particularly important in the field of radiology. Provider groups have begun employing dedicated radiologist-informaticists to bridge medical, information technology and administrative functions, and academic institutions are meeting this demand through formal II fellowships. However, little is known about how these programs influence graduates' careers and perceptions about professional development. We electronically surveyed 26 graduates from US II fellowships and consensus leaders in the II community-many of whom were subspecialty diagnostic radiologists (68%) employed within academic institutions (48%)-about the perceived impact of II fellowships on career development and advancement. All graduates felt that II fellowship made them more valuable to employers, with the majority of reporting ongoing II roles (78%) and continued used of competencies (61%) and skills (56%) gained during fellowship in their current jobs. Other key benefits included access to mentors, protected time for academic work, networking opportunities, and positive impacts of annual compensation. Of respondents without II fellowship training, all would recommend fellowships to current trainees given the ability to gain a "still rare" but "essential skill set" that is "critical for future leaders in radiology" and "better job opportunities." While some respondents felt that II fellowships needed further formalization and standardization, most (85%) disagreed with requiring a 2-year II fellowship in order to qualify for board certification in clinical informatics. Instead, most believed that fellowships should be integrated with clinical residency or fellowship training while preserving formal didactics and unstructured project time. More work is needed to understand existing variations in II fellowship training structure and identify the optimal format for programs targeted at radiologists. PMID:26831474

  13. Mining social networks and security informatics

    CERN Document Server

    Özyer, Tansel; Rokne, Jon; Khoury, Suheil

    2013-01-01

    Crime, terrorism and security are in the forefront of current societal concerns. This edited volume presents research based on social network techniques showing how data from crime and terror networks can be analyzed and how information can be extracted. The topics covered include crime data mining and visualization; organized crime detection; crime network visualization; computational criminology; aspects of terror network analyses and threat prediction including cyberterrorism and the related area of dark web; privacy issues in social networks; security informatics; graph algorithms for soci

  14. User oriented access to secure biomedical resources through the grid

    OpenAIRE

    Sinnott, R.O.; Ajayi, O.; J. Jiang; Stell, A.J.; Watt, J

    2006-01-01

    The life science domain is typified by heterogeneous data sets that are evolving at an exponential rate. Numerous post-genomic databases and areas of post-genomic life science research have been established and are being actively explored. Whilst many of these databases are public and freely accessible, it is often the case that researchers have data that is not so freely available and access to this data needs to be strictly controlled when distributed collaborative research is undertaken. G...

  15. Clinical fellowship training in pathology informatics: A program description

    Directory of Open Access Journals (Sweden)

    John R Gilbertson

    2012-01-01

    Full Text Available Background: In 2007, our healthcare system established a clinical fellowship program in pathology informatics. In 2011, the program benchmarked its structure and operations against a 2009 white paper "Program requirements for fellowship education in the subspecialty of clinical informatics," endorsed by the Board of the American Medical Informatics Association (AMIA that described a proposal for a general clinical informatics fellowship program. Methods: A group of program faculty members and fellows compared each of the proposed requirements in the white paper with the fellowship program′s written charter and operations. The majority of white paper proposals aligned closely with the rules and activities in our program and comparison was straightforward. In some proposals, however, differences in terminology, approach, and philosophy made comparison less direct, and in those cases, the thinking of the group was recorded. After the initial evaluation, the remainder of the faculty reviewed the results and any disagreements were resolved. Results: The most important finding of the study was how closely the white paper proposals for a general clinical informatics fellowship program aligned with the reality of our existing pathology informatics fellowship. The program charter and operations of the program were judged to be concordant with the great majority of specific white paper proposals. However, there were some areas of discrepancy and the reasons for the discrepancies are discussed in the manuscript. Conclusions: After the comparison, we conclude that the existing pathology informatics fellowship could easily meet all substantive proposals put forth in the 2009 clinical informatics program requirements white paper. There was also agreement on a number of philosophical issues, such as the advantages of multiple fellows, the need for core knowledge and skill sets, and the need to maintain clinical skills during informatics training. However

  16. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  17. Toxicology of Biomedical Polymers

    Directory of Open Access Journals (Sweden)

    P. V. Vedanarayanan

    1987-04-01

    Full Text Available This paper deals with the various types of polymers, used in the fabrication of medical devices, their diversity of applications and toxic hazards which may arise out of their application. The potential toxicity of monomers and the various additives used in the manufacture of biomedical polymers have been discussed along with hazards which may arise out of processing of devices such as sterilization. The importance of quality control and stringent toxicity evaluation methods have been emphasised since in our country, at present, there are no regulations covering the manufacturing and marketing of medical devices. Finally the question of the general and subtle long term systemic toxicity of biomedical polymers have been brought to attention with the suggestion that this question needs to be resolved permanently by appropriate studies.

  18. Multilingual Biomedical Dictionary

    OpenAIRE

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical inform...

  19. Multilingual biomedical dictionary.

    Science.gov (United States)

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical information from a domain-specific, multilingual corpus.

  20. Toxicology of Biomedical Polymers

    OpenAIRE

    P. V. Vedanarayanan; A. C. Fernandez

    1987-01-01

    This paper deals with the various types of polymers, used in the fabrication of medical devices, their diversity of applications and toxic hazards which may arise out of their application. The potential toxicity of monomers and the various additives used in the manufacture of biomedical polymers have been discussed along with hazards which may arise out of processing of devices such as sterilization. The importance of quality control and stringent toxicity evaluation methods have been emphasi...

  1. Qualitative methods used in medical informatics research: a 12-year review.

    Science.gov (United States)

    Li, Jingyi; Finkelstein, Joseph

    2008-11-06

    Qualitative methodology is gaining popularity in medical informatics research. We performed a systematic review of published studies, between 1994 and 2005, in two major medical informatics journals: JAMIA and International Journal of Medical Informatics (IJMI). The goal is to describe the emerging trends of using qualitative methodology in medical informatics research and to access the methodological quality of these qualitative studies.

  2. Advances in the Biomedical Applications of the EELA Project

    CERN Document Server

    Hernández, Vicente; Aparicio, Gabriel; Isea, Raul; Chavés, Juan Luis; Hernández, Álvaro; Mora, Henry Ricardo; Fernández, Manuel; Acero, Alicia; Montes, Esther; Mayo, Rafael

    2010-01-01

    In the last years an increasing demand for Grid Infrastructures has resulted in several international collaborations. This is the case of the EELA Project, which has brought together collaborating groups of Latin America and Europe. One year ago we presented this e-infrastructure used, among others, by the Biomedical groups for the studies of oncological analysis, neglected diseases, sequence alignments and computation phylogenetics. After this period, the achieved advances are summarised in this paper.

  3. Advances in the biomedical applications of the EELA Project.

    Science.gov (United States)

    Hernández, Vicente; Blanquer, Ignacio; Aparicio, Gabriel; Isea, Raúl; Chaves, Juan Luis; Hernández, Alvaro; Mora, Henry Ricardo; Fernández, Manuel; Acero, Alicia; Montes, Esther; Mayo, Rafael

    2007-01-01

    In the last years an increasing demand for Grid Infrastructures has resulted in several international collaborations. This is the case of the EELA Project, which has brought together collaborating groups of Latin America and Europe. One year ago we presented this e-infrastructure used, among others, by the biomedical groups for the studies of oncological analysis, neglected diseases, sequence alignments and computational phylogenetics. After this period, the achieved advances are summarised in this paper. PMID:17476045

  4. Advances in the Biomedical Applications of the EELA Project

    OpenAIRE

    Hernández, Vicente; Blanquer, Ignacio; Aparicio, Gabriel; Isea, Raul; Chavés, Juan Luis; Hernández, Álvaro; Mora, Henry Ricardo; Fernández, Manuel; Acero, Alicia; Montes, Esther; Mayo, Rafael

    2010-01-01

    In the last years an increasing demand for Grid Infrastructures has resulted in several international collaborations. This is the case of the EELA Project, which has brought together collaborating groups of Latin America and Europe. One year ago we presented this e-infrastructure used, among others, by the Biomedical groups for the studies of oncological analysis, neglected diseases, sequence alignments and computation phylogenetics. After this period, the achieved advances are summarised in ...

  5. Biomedical informatics as support to individual healthcare in hereditary colon cancer: the Danish HNPCC system

    DEFF Research Database (Denmark)

    Bernstein, Inge T; Lindorff-Larsen, Karen; Timshel, Susanne;

    2011-01-01

    The Danish HNPCC register is a publically financed national database. The register gathers epidemiological and genomic data in HNPCC families to improve prognosis by screening and identifying family members at risk. Diagnostic data are generated throughout the country and collected over several d...

  6. Next generation sequencing in clinical medicine: Challenges and lessons for pathology and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Rama R Gullapalli

    2012-01-01

    Full Text Available The Human Genome Project (HGP provided the initial draft of mankind′s DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized. [7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it′s hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future.

  7. Biomedical informatics as support to individual healthcare in hereditary colon cancer: the Danish HNPCC system

    DEFF Research Database (Denmark)

    Bernstein, Inge Thomsen; Larsen, K.L.; Timshel, Susanne;

    2011-01-01

    The Danish HNPCC register is a publically financed national database. The register gathers epidemiological and genomic data in HNPCC families to improve prognosis by screening and identifying family members at risk. Diagnostic data are generated throughout the country and collected over several...... decades. Until recently, paper-based reports were sent to the register and typed into the database. In the EC cofunded-INFOBIOMED network of excellence, the register was a model for electronic exchange of epidemiological and genomic data between diagnosing/treating departments and the central database...... of heterogeneous data, elaboration, and dissemination of classification systems and development of communication standards. At the conclusion of the EU project in 2007 the system was implemented in 12 pilot departments. In the surgical departments this resulted in a 192% increase of reports to the database...

  8. A Practical Lab Exercise for Teaching Medical Informatics in a Biomedical Engineering Graduate Program

    OpenAIRE

    Lober, WB; Lau, C; Chang, H; Kim, Y.

    2001-01-01

    We have developed a lab exercise, which we have made available under open source license, designed to accompany a ten-hour “introduction to medical informatics” lecture module. The goal of this lab is to teach the students some basic Web application programming, to illustrate the challenges of building clinical systems, and to reinforce systems engineering material presented in a basic methodology course.

  9. New Trend of Medical Imaging Informatics

    Directory of Open Access Journals (Sweden)

    Jimmy Han

    2007-08-01

    Full Text Available This presentation offers an understanding of the rapidly changing medical market and devices, and provides ways for Medical Informatics Systems to keep up with this rapidly changing environment. The Infinitt Company of South Korea as one of the pioneers in the field of imaging informatics will present its three major solutions to meet these new trends. The Infinitt G3 will be presented as fully web-based RIS/PACS solution with advanced 3D capabilities all operating on a single platform, i.e. a solution for simultaneous fusion of RIS, PACS and 3D functions."nThe Infinitt Star PACS is presented as an on-demand PACS solution, which can operate in a web-based environment for easier image distribution, remote conferencing and Teleradiology practices. Infinitt Rapidia, which is a 3D imaging technology, that visualizes 3D images out of a large quantity of 2D images is presented as a tool to support diagnostic and surgery demands.

  10. Contemporary issues in transfusion medicine informatics

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma

    2011-01-01

    Full Text Available The Transfusion Medicine Service (TMS covers diverse clinical and laboratory-based services that must be delivered with accuracy, efficiency and reliability. TMS oversight is shared by multiple regulatory agencies that cover product manufacturing and validation standards geared toward patient safety. These demands present significant informatics challenges. Over the past few decades, TMS information systems have improved to better handle blood product manufacturing, inventory, delivery, tracking and documentation. Audit trails and access to electronic databases have greatly facilitated product traceability and biovigilance efforts. Modern blood bank computing has enabled novel applications such as the electronic crossmatch, kiosk-based blood product delivery systems, and self-administered computerized blood donor interview and eligibility determination. With increasing use of barcoding technology, there has been a marked improvement in patient and specimen identification. Moreover, the emergence of national and international labeling standards such as ISBT 128 have facilitated the availability, movement and tracking of blood products across national and international boundaries. TMS has only recently begun to leverage the electronic medical record to address quality issues in transfusion practice and promote standardized documentation within institutions. With improved technology, future growth is expected in blood bank automation and product labeling with applications such as radio frequency identification devices. This article reviews several of these key informatics issues relevant to the contemporary practice of TMS.

  11. GEO-ENGINEERING MODELING THROUGH INTERNET INFORMATICS (GEMINI)

    Energy Technology Data Exchange (ETDEWEB)

    W. Lynn Watney; John H. Doveton

    2004-05-13

    GEMINI (Geo-Engineering Modeling through Internet Informatics) is a public-domain web application focused on analysis and modeling of petroleum reservoirs and plays (http://www.kgs.ukans.edu/Gemini/index.html). GEMINI creates a virtual project by ''on-the-fly'' assembly and analysis of on-line data either from the Kansas Geological Survey or uploaded from the user. GEMINI's suite of geological and engineering web applications for reservoir analysis include: (1) petrofacies-based core and log modeling using an interactive relational rock catalog and log analysis modules; (2) a well profile module; (3) interactive cross sections to display ''marked'' wireline logs; (4) deterministic gridding and mapping of petrophysical data; (5) calculation and mapping of layer volumetrics; (6) material balance calculations; (7) PVT calculator; (8) DST analyst, (9) automated hydrocarbon association navigator (KHAN) for database mining, and (10) tutorial and help functions. The Kansas Hydrocarbon Association Navigator (KHAN) utilizes petrophysical databases to estimate hydrocarbon pay or other constituent at a play- or field-scale. Databases analyzed and displayed include digital logs, core analysis and photos, DST, and production data. GEMINI accommodates distant collaborations using secure password protection and authorized access. Assembled data, analyses, charts, and maps can readily be moved to other applications. GEMINI's target audience includes small independents and consultants seeking to find, quantitatively characterize, and develop subtle and bypassed pays by leveraging the growing base of digital data resources. Participating companies involved in the testing and evaluation of GEMINI included Anadarko, BP, Conoco-Phillips, Lario, Mull, Murfin, and Pioneer Resources.

  12. The history of pathology informatics: A global perspective

    Science.gov (United States)

    Park, Seung; Parwani, Anil V.; Aller, Raymond D.; Banach, Lech; Becich, Michael J.; Borkenfeld, Stephan; Carter, Alexis B.; Friedman, Bruce A.; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  13. The history of pathology informatics: A global perspective

    Directory of Open Access Journals (Sweden)

    Seung Park

    2013-01-01

    Full Text Available Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold.

  14. Enhancing informatics competency under uncertainty at the point of decision

    DEFF Research Database (Denmark)

    Kaltoft, Mette Kjer; Nielsen, Jesper Bo; Salkeld, Glenn;

    2014-01-01

    or lacking. This final stage in 'translation to the bedside' has received relatively little attention in the medical, nursing, or health informatics literature, until the recent appearance of 'cognitive informatics'. Positive experience and feed-back from several thousand students who have experienced......Most informatics activity is aimed at reducing unnecessary errors, mistakes and misjudgements at the point of decision, insofar as these arise from inappropriate accessing and processing of data and information. Healthcare professionals use the results of scientific research, when available...

  15. Nursing Informatics Competencies for Emerging Professionals: International Leaders Panel.

    Science.gov (United States)

    Pruinelli, Lisiane

    2016-01-01

    To achieve a cursory review of the competencies necessary for acquire a successful career in a competitive job market, the panel will bring together leaders from renowned academic, successful health corporations, and international leaders in nursing informatics to the table for discussion, dialogue, and make recommendations. Panelists will reflect on their experiences within the different types of informatics organizations and present some of the current challenges when educating skillful professionals. The panel will provide personal experiences, thoughts, and advice on the competencies development in nursing informatics from their lens.

  16. The twenty first century informatization and artificial intelligence system

    International Nuclear Information System (INIS)

    The contents of this book are competition of mental weakness and visually handicapped people, barbarian about the knowledge of commodity, we are living in notion of time of the agricultural age, parade of informatization of fool. Is there a successful case of informatization when it is done as others do?, what is technology of informatization?, there is mistake in traditional information technology from a system of thought, information system, and analysis of improvement of industrial structure case of development for program case of system installation, and a thief free society.

  17. Nursing Informatics Competencies for Emerging Professionals: International Leaders Panel.

    Science.gov (United States)

    Pruinelli, Lisiane

    2016-01-01

    To achieve a cursory review of the competencies necessary for acquire a successful career in a competitive job market, the panel will bring together leaders from renowned academic, successful health corporations, and international leaders in nursing informatics to the table for discussion, dialogue, and make recommendations. Panelists will reflect on their experiences within the different types of informatics organizations and present some of the current challenges when educating skillful professionals. The panel will provide personal experiences, thoughts, and advice on the competencies development in nursing informatics from their lens. PMID:27332337

  18. Consumer health informatics: a consensus description and commentary from American Medical Informatics Association members.

    OpenAIRE

    Houston, T. K.; Chang, B. L.; Brown, S; Kukafka, R.

    2001-01-01

    BACKGROUND: Although interest in Consumer Health Informatics (CHI) has increased, a consensus definition of CHI does not yet exist. PURPOSE: To conduct a hypothesis-generating survey of AMIA members regarding definition and research agenda for CHI. METHODS: We solicited participation among AMIA members in an Internet-based survey focusing on issues related to a definition of CHI. RESULTS: One hundred thirty-five AMIA members responded. Participants indicated a broad spectrum of topics importa...

  19. The Ontology for Biomedical Investigations

    OpenAIRE

    Anita Bandrowski; Ryan Brinkman; Mathias Brochhausen; Brush, Matthew H.; Bill Bug; Chibucos, Marcus C.; Kevin Clancy; Mélanie Courtot; Dirk Derom; Michel Dumontier; Liju Fan; Jennifer Fostel; Gilberto Fragoso; Frank Gibson; Alejandra Gonzalez-Beltran

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using i...

  20. Generating Explanations for Biomedical Queries

    OpenAIRE

    Erdem, Esra; Oztok, Umut

    2013-01-01

    We introduce novel mathematical models and algorithms to generate (shortest or k different) explanations for biomedical queries, using answer set programming. We implement these algorithms and integrate them in BIOQUERY-ASP. We illustrate the usefulness of these methods with some complex biomedical queries related to drug discovery, over the biomedical knowledge resources PHARMGKB, DRUGBANK, BIOGRID, CTD, SIDER, DISEASE ONTOLOGY and ORPHADATA. To appear in Theory and Practice of Logic Program...

  1. BIMS: Biomedical Information Management System

    OpenAIRE

    Mora, Oscar; Bisbal, Jesús

    2013-01-01

    In this paper, we present BIMS (Biomedical Information Management System). BIMS is a software architecture designed to provide a flexible computational framework to manage the information needs of a wide range of biomedical research projects. The main goal is to facilitate the clinicians' job in data entry, and researcher's tasks in data management, in high data quality biomedical research projects. The BIMS architecture has been designed following the two-level modeling paradigm, a promising...

  2. PigGIS: Pig Genomic Informatics System

    DEFF Research Database (Denmark)

    Ruan, Jue; Guo, Yiran; Li, Heng;

    2007-01-01

    Pig Genomic Information System (PigGIS) is a web-based depository of pig (Sus scrofa) genomic learning mainly engineered for biomedical research to locate pig genes from their human homologs and position single nucleotide polymorphisms (SNPs) in different pig populations. It utilizes a variety of...

  3. Principles of Biomedical Engineering

    CERN Document Server

    Madihally, Sundararajan V

    2010-01-01

    Describing the role of engineering in medicine today, this comprehensive volume covers a wide range of the most important topics in this burgeoning field. Supported with over 145 illustrations, the book discusses bioelectrical systems, mechanical analysis of biological tissues and organs, biomaterial selection, compartmental modeling, and biomedical instrumentation. Moreover, you find a thorough treatment of the concept of using living cells in various therapeutics and diagnostics.Structured as a complete text for students with some engineering background, the book also makes a valuable refere

  4. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  5. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1974-01-01

    Advances in Biomedical Engineering, Volume 4, is a collection of papers that deals with gas chromatography, mass spectroscopy and the analysis of minute samples, as well as the role of the government in regulating the production, usage, safety, and efficacy of medical devices. One paper reviews the use of mass spectrometry and computer technology in relation to gas-phase analytical methods based on gas chromatograph-mass spectrometer instruments and gas chromatograph-mass spectrometer-computer analytical systems. Many health practitioners, government and private health agencies, the legal prof

  6. Biomedical Sensors and Instruments

    CERN Document Server

    Tagawa, Tatsuo

    2011-01-01

    The living body is a difficult object to measure: accurate measurements of physiological signals require sensors and instruments capable of high specificity and selectivity that do not interfere with the systems under study. As a result, detailed knowledge of sensor and instrument properties is required to be able to select the "best" sensor from one of the many designed to meet these challenges. From the underlying principles to practical applications, this updated edition of Biomedical Sensors and Instruments provides an easy-to-understand introduction to the various kinds of biome

  7. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  8. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  9. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  10. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  11. The MammoGrid Project Grids Architecture

    CERN Document Server

    McClatchey, R; Manset, D; Hauer, T; Estrella, F; Saiz, P; Rogulin, D; Clatchey, Richard Mc; Buncic, Predrag; Manset, David; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri

    2003-01-01

    The aim of the recently EU-funded MammoGrid project is, in the light of emerging Grid technology, to develop a European-wide database of mammograms that will be used to develop a set of important healthcare applications and investigate the potential of this Grid to support effective co-working between healthcare professionals throughout the EU. The MammoGrid consortium intends to use a Grid model to enable distributed computing that spans national borders. This Grid infrastructure will be used for deploying novel algorithms as software directly developed or enhanced within the project. Using the MammoGrid clinicians will be able to harness the use of massive amounts of medical image data to perform epidemiological studies, advanced image processing, radiographic education and ultimately, tele-diagnosis over communities of medical "virtual organisations". This is achieved through the use of Grid-compliant services [1] for managing (versions of) massively distributed files of mammograms, for handling the distri...

  12. [Looking for evidence-based medical informatics].

    Science.gov (United States)

    Coiera, Enrico

    2016-03-01

    e-Health is experiencing a difficult time. On the one side, the forecast is for a bright digital health future created by precision medicine and smart devices. On the other hand, most large scale e-health projects struggle to make a difference and are often controversial. Both futures fail because they are not evidence-based. Medical informatics should follow the example of evidence-based medicine, i.e. conduct rigorous research that gives us evidence to solve real world problems, synthesise that evidence and then apply it strictly. We already have the tools for creating a different universe. What we need is evidence, will, a culture of learning, and hard work. PMID:27030221

  13. Tourism informatics towards novel knowledge based approaches

    CERN Document Server

    Hashimoto, Kiyota; Iwamoto, Hidekazu

    2015-01-01

    This book introduces new trends of theory and practice of information technologies in tourism. The book does not handle only the fundamental contribution, but also discusses innovative and emerging technologies to promote and develop new generation tourism informatics theory and their applications. Some chapters are concerned with data analysis, web technologies, social media, and their case studies. Travel information on the web provided by travelers is very useful for other travelers make their travel plan. A chapter in this book proposes a method for interactive retrieval of information on accommodation facilities to support travelling customers in their travel preparations. Also an adaptive user interface for personalized transportation guidance system is proposed. Another chapter in this book shows a novel support system for the collaborative tourism planning by using the case reports that are collected via Internet. Also, a system for recommending hotels for the users is proposed and evaluated. Other ch...

  14. Nursing informatics competences still challenging nurse educators.

    Science.gov (United States)

    Rajalahti, Elina; Saranto, Kaija

    2012-01-01

    In recent years nursing documentation has been one of the most important development areas of nursing informatics (NI) in Finland. The purpose of this study is to describe the development of the nurse educators' competences in nursing documentation during a project called eNNI. The eNNI project (2008-2010) was a cooperative project by nurse educators and working life experts. The goal of the project was to implement the national documentation model and thereby improve operational processes at workplaces. The study includes pre- and post-test questioning of NI applications with a web-based questionnaire (n=136). The data were analyzed with distribution, cross-tabulations and average tests and descriptive statistic multivariate method. According to the results, the ICT skills of the nurse educators were good at the end of the project, and they had good information literacy competence. On the other hand, their advanced NI skills left room for improvement. PMID:22874332

  15. Biomedical applications of nisin.

    Science.gov (United States)

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications.

  16. Introduction to grid computing

    CERN Document Server

    Magoules, Frederic; Tan, Kiat-An; Kumar, Abhinit

    2009-01-01

    A Thorough Overview of the Next Generation in ComputingPoised to follow in the footsteps of the Internet, grid computing is on the verge of becoming more robust and accessible to the public in the near future. Focusing on this novel, yet already powerful, technology, Introduction to Grid Computing explores state-of-the-art grid projects, core grid technologies, and applications of the grid.After comparing the grid with other distributed systems, the book covers two important aspects of a grid system: scheduling of jobs and resource discovery and monitoring in grid. It then discusses existing a

  17. Data Grid Management Systems

    Science.gov (United States)

    Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne

    2004-01-01

    The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.

  18. Eco-informatics and natural resource management

    Science.gov (United States)

    Cushing, J.B.; Wilson, T.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Schnase, J.; Sonntag, W.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schweik, C.; Brandt, L.; Gregg, V.; Spengler, S.

    2006-01-01

    This project highlight reports on the 2004 workshop [1], as well as follow-up activities in 2005 and 2006, regarding how informatics tools can help manage natural resources and decide policy. The workshop was sponsored jointly by sponsored by the NSF, NBII, NASA, and EPA, and attended by practitioners from government and non-government agencies, and university researchers from the computer, social, and ecological sciences. The workshop presented the significant information technology (IT) problems that resource managers face when integrating ecological or environmental information to make decisions. These IT problems fall into five categories: data presentation, data gaps, tools, indicators, and policy making and implementation. To alleviate such problems, we recommend informatics research in four IT areas, as defined in this abstract and our final report: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, we recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. Follow-on activities to the workshop subsequent to dg.o 2005 included: an invited talk presenting workshop results at DILS 2005, publication of the workshop final report by the NBII [1], and a poster at the NBII All Hands Meeting (Oct. 2005). We also expect a special issue of the JIIS to appear in 2006 that addresses some of these questions. As we go to press, no solicitation by funding agencies has as yet been published, but various NASA and NBII, and NSF cyber-infrastructure and DG research efforts now underway address the above issues.

  19. SWOT Analysis on Medical Informatics and Development Strategies

    Science.gov (United States)

    Ma, Xiaoyan; Han, Zhongdong; Ma, Hua

    2015-01-01

    This article aims at clarifying the strategic significance of developing medical informatics, conducting SWOT analysis on this discipline and hence establishing the strategic objectives and focal points for its development.

  20. New study program: Interdisciplinary Postgraduate Specialist Study in Medical Informatics.

    Science.gov (United States)

    Hercigonja-Szekeres, Mira; Simić, Diana; Božikov, Jadranka; Vondra, Petra

    2014-01-01

    Paper presents an overview of the EU funded Project of Curriculum Development for Interdisciplinary Postgraduate Specialist Study in Medical Informatics named MEDINFO to be introduced in Croatia. The target group for the program is formed by professionals in any of the areas of medicine, IT professionals working on applications of IT for health and researchers and teachers in medical informatics. In addition to Croatian students, the program will also provide opportunity for enrolling students from a wider region of Southeast Europe. Project partners are two faculties of the University of Zagreb - Faculty of Organization and Informatics from Varaždin and School of Medicine, Andrija Štampar School of Public Health from Zagreb with the Croatian Society for Medical Informatics, Croatian Chamber of Economy, and Ericsson Nikola Tesla Company as associates.

  1. New study program: Interdisciplinary Postgraduate Specialist Study in Medical Informatics.

    Science.gov (United States)

    Hercigonja-Szekeres, Mira; Simić, Diana; Božikov, Jadranka; Vondra, Petra

    2014-01-01

    Paper presents an overview of the EU funded Project of Curriculum Development for Interdisciplinary Postgraduate Specialist Study in Medical Informatics named MEDINFO to be introduced in Croatia. The target group for the program is formed by professionals in any of the areas of medicine, IT professionals working on applications of IT for health and researchers and teachers in medical informatics. In addition to Croatian students, the program will also provide opportunity for enrolling students from a wider region of Southeast Europe. Project partners are two faculties of the University of Zagreb - Faculty of Organization and Informatics from Varaždin and School of Medicine, Andrija Štampar School of Public Health from Zagreb with the Croatian Society for Medical Informatics, Croatian Chamber of Economy, and Ericsson Nikola Tesla Company as associates. PMID:24743088

  2. Agricultural and Environmental Informatics, Governance and Management: Emerging Research Applications

    NARCIS (Netherlands)

    Andreopoulou, Z.; Manos, B.; Polman, N.B.P.; Viaggi, D.

    2011-01-01

    Agricultural and Environmental Informatics, Governance and Management: Emerging Research Applications is a state-of-the-art reference book which explores how rural policymakers and stakeholders can use information and communication technologies to sustainably manage agricultural and natural resource

  3. Excellence in Computational Biology and Informatics — EDRN Public Portal

    Science.gov (United States)

    9th Early Detection Research Network (EDRN) Scientific Workshop. Excellence in Computational Biology and Informatics: Sponsored by the EDRN Data Sharing Subcommittee Moderator: Daniel Crichton, M.S., NASA Jet Propulsion Laboratory

  4. Centralisation of informatics (more effective processes via using new technologies)

    International Nuclear Information System (INIS)

    In this paper author deals with next problems of Slovenske elektrarne, Plc (SE): - Centralisation and optimisation of informatics management; - New technologies within Integrated Informatics System IIS-SE: presentation of preliminary Project of 2nd generation IIS-SE; - Centralisation of the selected data processing. At the present the intensive process of restructuring is taking place in SE, Plc, focused on increasing of the effectiveness of the pursued activities. In connection with this the Informatics section solves two projects: More effective self-management and human resources; Change of Informatics system architecture from decentralised to the centralised ones with an aim to consolidate all information and to make new conditions for higher mobility. (author)

  5. Modeling Context, Collaboration, and Civilization in End-User Informatics

    CERN Document Server

    Maney, George A

    2007-01-01

    End-user informatics applications are Internet data web management automation solutions. These are mass modeling and mass management collaborative communal consensus solutions. They are made and maintained by managerial, professional, technical and specialist end-users. In end-user informatics the end-users are always right. So it becomes necessary for information technology professionals to understand information and informatics from the end-user perspective. End-user informatics starts with the observation that practical prose is a mass consensus communal modeling technology. This high technology is the mechanistic modeling medium we all use every day in all of our practical pursuits. Practical information flows are the lifeblood of modern capitalist communities. But what exactly is practical information? It's ultimately physical information, but the physics is highly emergent rather than elementary. So practical reality is just physical reality in deep disguise. Practical prose is the medium that we all us...

  6. Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    Science.gov (United States)

    Monteleoni, Claire; Schmidt, Gavin A.; McQuade, Scott

    2014-01-01

    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges.

  7. Second International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Konar, Amit; Chakraborty, Aruna

    2014-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two-volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 148 scholarly papers, which have been accepted for presentation from over 640 submissions in the second International Conference on Advanced Computing, Networking and Informatics, 2014, held in Kolkata, India during June 24-26, 2014. The first volume includes innovative computing techniques and relevant research results in informatics with selective applications in pattern recognition, signal/image process...

  8. Health-e-Child: a grid platform for european paediatrics

    International Nuclear Information System (INIS)

    The Health-e-Child (HeC) project [1], [2] is an EC Framework Programme 6 Integrated Project that aims to develop a grid-based integrated healthcare platform for paediatrics. Using this platform biomedical informaticians will integrate heterogeneous data and perform epidemiological studies across Europe. The resulting Grid enabled biomedical information platform will be supported by robust search, optimization and matching techniques for information collected in hospitals across Europe. In particular, paediatricians will be provided with decision support, knowledge discovery and disease modelling applications that will access data in hospitals in the UK, Italy and France, integrated via the Grid. For economy of scale, reusability, extensibility, and maintainability, HeC is being developed on top of an EGEE/gLite [3] based infrastructure that provides all the common data and computation management services required by the applications. This paper discusses some of the major challenges in bio-medical data integration and indicates how these will be resolved in the HeC system. HeC is presented as an example of how computer science (and, in particular Grid infrastructures) originating from high energy physics can be adapted for use by biomedical informaticians to deliver tangible real-world benefits

  9. Formation of the portfolio of projects for informatization programs

    Directory of Open Access Journals (Sweden)

    Ion Bolun

    2009-12-01

    Full Text Available in informatization programs are approached: criteria of efficiency, general problem, aggregate problem in continuous form, general problem in discrete form and solving of problems. As criterion of informatization projects' economic efficiency, the total profit maximization due to investments is used. In preliminary calculations, the opportunity of considering continuous dependences of profit on the volume of investments by domain activities is grounded. Eleven classes of such dependences are investigated and analytical solutions and algorithms for solving formulated problems are described.

  10. Knowledge, Skills, and Resources for Pharmacy Informatics Education

    OpenAIRE

    Fox, Brent I.; Flynn, Allen J.; Fortier, Christopher R.; Clauson, Kevin A.

    2011-01-01

    Pharmacy has an established history of technology use to support business processes. Pharmacy informatics education within doctor of pharmacy programs, however, is inconsistent, despite its inclusion as a requirement in the 2007 Accreditation Council for Pharmacy Education Standards and Guidelines. This manuscript describes pharmacy informatics knowledge and skills that all graduating pharmacy students should possess, conceptualized within the framework of the medication use process. Addition...

  11. Proposal for the Creation of a Subdiscipline: Education Informatics

    OpenAIRE

    Collins, John William; Weiner, Sharon A.

    2010-01-01

    “Education Informatics” is the name for an emerging new sub-discipline of education. We define “Education Informatics” as the application of technology to discovering and communicating education information. This article will provide an historical and theoretical foundation for the emergence of this new sub-discipline. Existing definitions of informatics, the literature on education informatics, and the evolution of academic disciplines will be examined. The authors will explore commonali...

  12. Extended Informatics Paradigm in Biological and Psychological Education

    OpenAIRE

    Dobilas KIRVELIS; Kastytis BEITAS

    2003-01-01

    The aim of this work is to present extended informatics paradigm (EIP). This paradigm expands concept of informatics from traditional information and communication technologies (ICT) to a wide use of informational thinking, databases and related technologies in biology and psychology. The essential difference of EIP is an especial attention to nature and purpose of information in organized biological and/or psychological systems. Information as a phenomenon appeared on the Earth 3-4 billion y...

  13. Construction informatics - Issues in engineering, computer science and ontology

    OpenAIRE

    Eir, Asger; Bjørner, Dines; Galle, Per

    2004-01-01

    This Ph.D. thesis studies issues in the area of construction informatics. Construction informatics is the theoretical study of formal and conceptual aspects in the domain of civil engineering and design. The thesis is a collection of papers which each treat a specific subject within domain analysis and conceptual modelling of civil engineering and design. Due to the interdisciplinary content, the first half of the study has been carried out at Department of Civil Engineering (BYG"DTU), The Te...

  14. E-LOGISTICS: INFORMATIZATION OF SLOVENIAN TRANSPORT LOGISTICS CLUSTER

    OpenAIRE

    Groznik, Aleš

    2005-01-01

    In search of higher competitiveness, organizations are in search of innovative business models in order to foster economic benefits. In Slovenia, several clusters are being formed, including the Slovenian Transport Logistics Cluster (STLC) as one of the most important cluster. Currently, STLC is in the stage of dynamic growth, demanding business model formation and adequate informatization. The main goal of the paper is to present the informatization of STLC, bridging the gap between Supply C...

  15. Exploration of Rural Informatization and Urban-rural Information Fusion

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Based on the status quo of rural informatization and information service,this article conducts analysis and discussion of problems in rural informatization and urban-rural information fusion,using statistics. And corresponding countermeasures are put forward as follows: building rural information platform; strengthening information literacy training in rural areas and cultivating new farmers; making information network serve production and operation to increase jobs and income for farmers; developing rural e-commerce; enhancing network information security and prevention.

  16. 信息化指数模型及上海信息化水平的测定%The Model of Informatization Index & the Determination of the Informatization level of Shanghai

    Institute of Scientific and Technical Information of China (English)

    夏磊

    2001-01-01

    The paper gives an improved model of informatization index. With this model, the social informatization indices of Shanghai from 1995 to 1999 are measured. The social informatization level of Shanghai in those 5 years is analyzed.

  17. Professional development of health informatics in Northern Ireland.

    Science.gov (United States)

    McCullagh, Paul; McAllister, Gerry; Hanna, Paul; Finlay, Dewar; Comac, Paul

    2011-01-01

    This paper addresses the assessment and verification of health informatics professional competencies. Postgraduate provision in Health Informatics was targeted at informatics professionals working full-time in the National Health Service, in Northern Ireland, United Kingdom. Many informatics health service positions do not require a formal informatics background, and as we strive for professionalism, a recognized qualification provides important underpinning. The course, delivered from a computing perspective, builds upon work-based achievement and provides insight into emerging technologies associated with the 'connected health' paradigm. The curriculum was designed with collaboration from the Northern Ireland Health and Social Care ICT Training Group. Material was delivered by blended learning using a virtual learning environment and face-to-face sessions. Professional accreditation was of high importance. The aim was to provide concurrent qualifications: a postgraduate certificate, awarded by the University of Ulster and a professional certificate validated and accredited by a professional body comprising experienced health informatics professionals. Providing both qualifications puts significant demands upon part-time students, and a balance must be achieved for successful completion. PMID:21893745

  18. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  19. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update.

    Science.gov (United States)

    Afgan, Enis; Baker, Dannon; van den Beek, Marius; Blankenberg, Daniel; Bouvier, Dave; Čech, Martin; Chilton, John; Clements, Dave; Coraor, Nate; Eberhard, Carl; Grüning, Björn; Guerler, Aysam; Hillman-Jackson, Jennifer; Von Kuster, Greg; Rasche, Eric; Soranzo, Nicola; Turaga, Nitesh; Taylor, James; Nekrutenko, Anton; Goecks, Jeremy

    2016-07-01

    High-throughput data production technologies, particularly 'next-generation' DNA sequencing, have ushered in widespread and disruptive changes to biomedical research. Making sense of the large datasets produced by these technologies requires sophisticated statistical and computational methods, as well as substantial computational power. This has led to an acute crisis in life sciences, as researchers without informatics training attempt to perform computation-dependent analyses. Since 2005, the Galaxy project has worked to address this problem by providing a framework that makes advanced computational tools usable by non experts. Galaxy seeks to make data-intensive research more accessible, transparent and reproducible by providing a Web-based environment in which users can perform computational analyses and have all of the details automatically tracked for later inspection, publication, or reuse. In this report we highlight recently added features enabling biomedical analyses on a large scale. PMID:27137889

  20. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  1. The BioGRID interaction database: 2015 update.

    Science.gov (United States)

    Chatr-Aryamontri, Andrew; Breitkreutz, Bobby-Joe; Oughtred, Rose; Boucher, Lorrie; Heinicke, Sven; Chen, Daici; Stark, Chris; Breitkreutz, Ashton; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Nixon, Julie; Ramage, Lindsay; Winter, Andrew; Sellam, Adnane; Chang, Christie; Hirschman, Jodi; Theesfeld, Chandra; Rust, Jennifer; Livstone, Michael S; Dolinski, Kara; Tyers, Mike

    2015-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein interactions curated from the primary biomedical literature for all major model organism species and humans. As of September 2014, the BioGRID contains 749,912 interactions as drawn from 43,149 publications that represent 30 model organisms. This interaction count represents a 50% increase compared to our previous 2013 BioGRID update. BioGRID data are freely distributed through partner model organism databases and meta-databases and are directly downloadable in a variety of formats. In addition to general curation of the published literature for the major model species, BioGRID undertakes themed curation projects in areas of particular relevance for biomedical sciences, such as the ubiquitin-proteasome system and various human disease-associated interaction networks. BioGRID curation is coordinated through an Interaction Management System (IMS) that facilitates the compilation interaction records through structured evidence codes, phenotype ontologies, and gene annotation. The BioGRID architecture has been improved in order to support a broader range of interaction and post-translational modification types, to allow the representation of more complex multi-gene/protein interactions, to account for cellular phenotypes through structured ontologies, to expedite curation through semi-automated text-mining approaches, and to enhance curation quality control. PMID:25428363

  2. The BioGRID interaction database: 2013 update.

    Science.gov (United States)

    Chatr-Aryamontri, Andrew; Breitkreutz, Bobby-Joe; Heinicke, Sven; Boucher, Lorrie; Winter, Andrew; Stark, Chris; Nixon, Julie; Ramage, Lindsay; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Breitkreutz, Ashton; Sellam, Adnane; Chen, Daici; Chang, Christie; Rust, Jennifer; Livstone, Michael; Oughtred, Rose; Dolinski, Kara; Tyers, Mike

    2013-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http//thebiogrid.org) is an open access archive of genetic and protein interactions that are curated from the primary biomedical literature for all major model organism species. As of September 2012, BioGRID houses more than 500 000 manually annotated interactions from more than 30 model organisms. BioGRID maintains complete curation coverage of the literature for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the model plant Arabidopsis thaliana. A number of themed curation projects in areas of biomedical importance are also supported. BioGRID has established collaborations and/or shares data records for the annotation of interactions and phenotypes with most major model organism databases, including Saccharomyces Genome Database, PomBase, WormBase, FlyBase and The Arabidopsis Information Resource. BioGRID also actively engages with the text-mining community to benchmark and deploy automated tools to expedite curation workflows. BioGRID data are freely accessible through both a user-defined interactive interface and in batch downloads in a wide variety of formats, including PSI-MI2.5 and tab-delimited files. BioGRID records can also be interrogated and analyzed with a series of new bioinformatics tools, which include a post-translational modification viewer, a graphical viewer, a REST service and a Cytoscape plugin. PMID:23203989

  3. MEMS biomedical implants

    Institute of Scientific and Technical Information of China (English)

    Tai Yuchong

    2012-01-01

    The field of micro-electro-mechanical systems (MEMS) has advanced tremendously for the last 20 years. Most commercially noticeably, the field has successfully advanced from pressure sensors to micro physical sensors, such as accelerometers and gyros, for handheld electronics application. In parallel, MEMS has also advanced into micro total analysis system(TAS) and/or lab-on-a-chip applications. This article would discuss a relatively new but promising future direction towards MEMS biomedical implants. Specifically, Parylene C has been explored to be used as a good MEMS implant material and will be discussed in detail. Demonstrated implant devices, such as retinal and spinal cord implants, are presented in this article.

  4. Checklists in biomedical publications

    Directory of Open Access Journals (Sweden)

    Pardal-Refoyo JL

    2013-12-01

    Full Text Available Introduction and objectives: the authors, reviewers, editors and readers must have specific tools that help them in the process of drafting, review, or reading the articles. Objective: to offer a summary of the major checklists for different types of biomedical research articles. Material and method: review literature and resources of the EQUATOR Network and adaptations in Spanish published by Medicina Clínica and Evidencias en Pediatría journals. Results: are the checklists elaborated by various working groups. (CONSORT and TREND, experimental studies for observational studies (STROBE, accuracy (STARD diagnostic studies, systematic reviews and meta-analyses (PRISMA and for studies to improve the quality (SQUIRE. Conclusions: the use of checklists help to improve the quality of articles and help to authors, reviewers, to the editor and readers in the development and understanding of the content.

  5. Biomedical applications of nisin.

    Science.gov (United States)

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications. PMID:26678028

  6. Merging Grid Technologies

    NARCIS (Netherlands)

    Begeman, K. G.; Belikov, A. N.; Boxhoorn, D. R.; Dijkstra, F.; Valentijn, E. A.; Vriend, W. -J.; Zhao, Z.

    2010-01-01

    This paper reports the integration of the astronomical Grid solution realised in the Astro-WISE information system with the EGEE Grid and the porting of Astro-WISE applications on EGEE. We review the architecture of the Astro-WISE Grid, define the problems for the integration of the Grid infrastruct

  7. Parallel grid population

    Science.gov (United States)

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  8. Capacity building in e-health and health informatics: a review of the global vision and informatics educational initiatives of the American Medical Informatics Association.

    Science.gov (United States)

    Detmer, D E

    2010-01-01

    Substantial global and national commitment will be required for current healthcare systems and health professional practices to become learning care systems utilizing information and communications technology (ICT) empowered by informatics. To engage this multifaceted challenge, a vision is required that shifts the emphasis from silos of activities toward integrated systems. Successful systems will include a set of essential elements, e.g., a sufficient ICT infrastructure, evolving health care processes based on evidence and harmonized to local cultures, a fresh view toward educational preparation, sound and sustained policy support, and ongoing applied research and development. Increasingly, leaders are aware that ICT empowered by informatics must be an integral part of their national and regional visions. This paper sketches out the elements of what is needed in terms of objectives and some steps toward achieving them. It summarizes some of the progress that has been made to date by the American and International Medical Informatics Associations working separately as well as collaborating to conceptualize informatics capacity building in order to bring this vision to reality in low resource nations in particular.

  9. People, organizational, and leadership factors impacting informatics support for clinical and translational research

    Directory of Open Access Journals (Sweden)

    Payne Philip RO

    2013-02-01

    Full Text Available Abstract Background In recent years, there have been numerous initiatives undertaken to describe critical information needs related to the collection, management, analysis, and dissemination of data in support of biomedical research (J Investig Med 54:327-333, 2006; (J Am Med Inform Assoc 16:316–327, 2009; (Physiol Genomics 39:131-140, 2009; (J Am Med Inform Assoc 18:354–357, 2011. A common theme spanning such reports has been the importance of understanding and optimizing people, organizational, and leadership factors in order to achieve the promise of efficient and timely research (J Am Med Inform Assoc 15:283–289, 2008. With the emergence of clinical and translational science (CTS as a national priority in the United States, and the corresponding growth in the scale and scope of CTS research programs, the acuity of such information needs continues to increase (JAMA 289:1278–1287, 2003; (N Engl J Med 353:1621–1623, 2005; (Sci Transl Med 3:90, 2011. At the same time, systematic evaluations of optimal people, organizational, and leadership factors that influence the provision of data, information, and knowledge management technologies and methods are notably lacking. Methods In response to the preceding gap in knowledge, we have conducted both: 1 a structured survey of domain experts at Academic Health Centers (AHCs; and 2 a subsequent thematic analysis of public-domain documentation provided by those same organizations. The results of these approaches were then used to identify critical factors that may influence access to informatics expertise and resources relevant to the CTS domain. Results A total of 31 domain experts, spanning the Biomedical Informatics (BMI, Computer Science (CS, Information Science (IS, and Information Technology (IT disciplines participated in a structured surveyprocess. At a high level, respondents identified notable differences in theaccess to BMI, CS, and IT expertise and services depending on the

  10. Health Professionals' Views of Informatics Education: Findings from the AMIA 1999 Spring Conference

    OpenAIRE

    Staggers, Nancy; Gassert, Carole A.; Skiba, Diane J.

    2000-01-01

    Health care leaders emphasize the need to include information technology and informatics concepts in formal education programs, yet integration of informatics into health educational programs has progressed slowly. The AMIA 1999 Spring Congress was held to address informatics educational issues across health professions, including the educational needs in the various health professions, goals for health informatics education, and implementation strategies to achieve these goals. This paper pr...

  11. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  12. New Directions for Biomedical Engineering

    Science.gov (United States)

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  13. Smart grid security

    CERN Document Server

    Goel, Sanjay; Papakonstantinou, Vagelis; Kloza, Dariusz

    2015-01-01

    This book on smart grid security is meant for a broad audience from managers to technical experts. It highlights security challenges that are faced in the smart grid as we widely deploy it across the landscape. It starts with a brief overview of the smart grid and then discusses some of the reported attacks on the grid. It covers network threats, cyber physical threats, smart metering threats, as well as privacy issues in the smart grid. Along with the threats the book discusses the means to improve smart grid security and the standards that are emerging in the field. The second part of the b

  14. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  15. Modified chitosans for biomedical applications

    OpenAIRE

    Yalınca, Zülal

    2013-01-01

    ABSTRACT: The subject of this thesis is the exploration of the suitability of chitosan and some of its derivatives for some chosen biomedical applications. Chitosan-graft-poly (N-vinyl imidazole), Chitosan-tripolyphosphate and ascorbyl chitosan were synthesized and characterized for specific biomedical applications in line with their chemical functionalities. Chitosan-graft-poly (N-vinyl imidazole), Chi-graft-PNVI, was synthesized by two methods; via an N-protection route and without N-pr...

  16. Biomedical engineer: an international job.

    Science.gov (United States)

    Crolet, Jean-Marie

    2007-01-01

    Biomedical engineer is an international job for several reasons and it means that the knowledge of at least one foreign language is a necessity. A geographical and structural analysis of the biomedical sector concludes to the teaching of a second foreign language. But in spite of the presence of adequate means, it is not possible for us for the moment to set up such a teaching. This paper presents the solution we have chosen in the framework of Erasmus exchanges.

  17. BIMS: Biomedical Information Management System

    OpenAIRE

    Mora Pérez, Oscar

    2009-01-01

    This final year project presents the design principles and prototype implementation of BIMS (Biomedical Information Management System), a flexible software system which provides an infrastructure to manage all information required by biomedical research projects.The BIMS project was initiated with the motivation to solve several limitations in medical data acquisition of some research projects, in which Universitat Pompeu Fabra takes part. These limitations,based on the lack of control mechan...

  18. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  19. 77 FR 38294 - Patient Safety Organizations: Delisting for Cause for Medical Informatics

    Science.gov (United States)

    2012-06-27

    ... Cause for Medical Informatics AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS. ACTION: Notice of Delisting. SUMMARY: AHRQ has delisted Medical Informatics as a Patient Safety Organization (PSO...(a)(3)(iii)(C) which found that Medical Informatics failed to have, within every 24-month...

  20. Programmatic Role of Education Libraries in Informatics to Support Preservice Teacher Preparation Programs

    Science.gov (United States)

    Farmer, Lesley S. J.

    2010-01-01

    Background/Context: The management, processing, and transformation of information constitute central tasks in education. Education informatics intersects the theories and practices of both informatics and education. In particular, informatics aids in the systematic incorporation of technology as educational stakeholders represent, process, and…

  1. Enhancing "Mathematics for Informatics" and its Correlation with Student Pass Rates

    Science.gov (United States)

    Divjak, B.; Erjavec, Z.

    2008-01-01

    In this article, changes in "Mathematics for Informatics" at the Faculty of Organisation and Informatics in the University of Zagreb are described, and correlated with students pass rates. Students at the Faculty work in an interdisciplinary field, studying Informatics within a business context. The main reason for introducing the changes in the…

  2. Topical directions of informatics in memory of V. M. Glushkov

    CERN Document Server

    Sergienko, Ivan V

    2014-01-01

    This work is devoted to the late Ukrainian computer scientist V. M. Glushkov  on the 90th anniversary of his birthday. Dr. Glushkov is known for his contribution to the world computer science and technology, and this volume analyzes the ideas and paths of development of informatics formulated by him, and demonstrates their important role in constructing computer technologies of basic research in the fields of applied mathematics, theories of computer programming, and computing systems.   A significant portion of the monograph is devoted to the elucidation of new results obtained  in the field of mathematical modeling of complicated processes, creation of new methods for solving and investigating optimization problems in different statements, and development of computer technologies for investigations in the field of economy, biology, medicine, and information security in systems.   The monograph will be of particular interest to informatics specialists and experts using methods of informatics and computer...

  3. 1st International Conference on Advanced Intelligent System and Informatics

    CERN Document Server

    Hassanien, Aboul; El-Bendary, Nashwa; Dey, Nilanjan

    2016-01-01

    The conference topics address different theoretical and practical aspects, and implementing solutions for intelligent systems and informatics disciplines including bioinformatics, computer science, medical informatics, biology, social studies, as well as robotics research. The conference also discuss and present solutions to the cloud computing and big data mining which are considered hot research topics. The conference papers discussed different topics – techniques, models, methods, architectures, as well as multi aspect, domain-specific, and new solutions for the above disciplines. The accepted papers have been grouped into five parts: Part I—Intelligent Systems and Informatics, addressing topics including, but not limited to, medical application, predicting student performance, action classification, and detection of dead stained microscopic cells, optical character recognition, plant identification, rehabilitation of disabled people. Part II—Hybrid Intelligent Systems, addressing topics including, b...

  4. A Prelude Stride in Praxis and Usages of Healthcare Informatics

    Directory of Open Access Journals (Sweden)

    Murtaza Hussain Shaikh

    2012-11-01

    Full Text Available The Healthcare informatics is essential to bridge the research-practice gap that keeps widening with exploding medical knowledge; human brain power cannot keep pace with these explosions. Every developed nation is facing grim difficulties in the delivery of healthcare to its citizens. The causes are causes are universal (rising proportion of elderly requiring care, expensive medical technology, good expectations of services and quality and government`s poor ability to fund healthcare. These factors drive up cost and reduce equity of access. In this article we have tried to explore some challenges to highlight the importance of healthcare informatics as an emerging field and have given commendations for this profession to cope the coming trials and hurdles. We have has also tried to highlight some developed countries economic percentage on healthcare and medical field and proper usage of ICT as a good source of accessing information to be an updated tool in healthcare informatics.

  5. Personal informatics in practice: Improving quality of life through data

    DEFF Research Database (Denmark)

    Li, Ian; Medynskiy, Yevgeniy; Froehlich, Jon;

    2012-01-01

    2010 and CHI 2011 workshops on personal informatics [6][7]. The focal themes for this workshop are: (1) practical lessons from previous research and development experiences that can guide interface design for systems that allow users to collect and reflect on personal data; (2) requirements......Personal informatics refers to a class of software and hardware systems that help individuals collect personal information to improve self-understanding. Improving self-understanding can foster self-insight and promote positive behaviors: healthy living, energy conservation, etc. The development...... of personal informatics applications poses new challenges for human-computer interaction and creates opportunities for applications in various domains related to quality of life, such as fitness, nutrition, wellness, mental health, and sustainability. This workshop will continue the conversations from the CHI...

  6. Dental Informatics in India: Time to Embrace the Change.

    Science.gov (United States)

    Chhabra, Kumar Gaurav; Mulla, Salma H; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-03-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area.

  7. Computer, Informatics, Cybernetics and Applications : Proceedings of the CICA 2011

    CERN Document Server

    Hua, Ertian; Lin, Yun; Liu, Xiaozhu

    2012-01-01

    Computer Informatics Cybernetics and Applications offers 91 papers chosen for publication from among 184 papers accepted for presentation to the International Conference on Computer, Informatics, Cybernetics and Applications 2011 (CICA 2011), held in Hangzhou, China, September 13-16, 2011. The CICA 2011 conference provided a forum for engineers and scientists in academia, industry, and government to address the most innovative research and development including technical challenges and social, legal, political, and economic issues, and to present and discuss their ideas, results, work in progress and experience on all aspects of Computer, Informatics, Cybernetics and Applications. Reflecting the broad scope of the conference, the contents are organized in these topical categories: Communication Technologies and Applications Intelligence and Biometrics Technologies Networks Systems and Web Technologies Data Modeling and Programming Languages Digital Image Processing Optimization and Scheduling Education and In...

  8. Dental Informatics in India: Time to Embrace the Change

    Science.gov (United States)

    Mulla, Salma H.; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-01-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area. PMID:27135022

  9. 3rd International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Chaki, Nabendu

    2016-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 132 scholarly articles, which have been accepted for presentation from over 550 submissions in the Third International Conference on Advanced Computing, Networking and Informatics, 2015, held in Bhubaneswar, India during June 23–25, 2015.

  10. Dental Informatics in India: Time to Embrace the Change.

    Science.gov (United States)

    Chhabra, Kumar Gaurav; Mulla, Salma H; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-03-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area. PMID:27135022

  11. RPCs in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Belli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); De Vecchi, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Giroletti, E. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Guida, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Musitelli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Nardo, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Necchi, M.M. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Pagano, D. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Ratti, S.P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Sani, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vicini, A. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vitulo, P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Viviani, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy)

    2006-08-15

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 {mu}m and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi{sub 2}O{sub 3} and Tl{sub 2}O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C{sub 2}H{sub 2}F{sub 4} 92.5%, SF{sub 6} 2.5%, C{sub 4}H{sub 10} 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  12. RPCs in biomedical applications

    Science.gov (United States)

    Belli, G.; De Vecchi, C.; Giroletti, E.; Guida, R.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Sani, G.; Vicini, A.; Vitulo, P.; Viviani, C.

    2006-08-01

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 μm and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi 2O 3 and Tl 2O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C 2H 2F 4 92.5%, SF 6 2.5%, C 4H 10 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  13. Biomedicine and Informatics Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Kang Cheng

    2007-01-01

    Full Text Available In a perspective of biomedicine and informatics, the mechanism of Alzheimer's, senile amnesia, or other aging-associated and cognitive impairment related diseases involve four important informative processing procedures: propagation, consolidation, retrieval and cognition, In this study, we systematically model the four procedures based on published experimental data. When modeling the propagation, we develop an equivalent circuit of biological membrane to describe how the neuron signals are propagated, attenuated, compensated, transferred, oscillated and filtered; and how wrong signals are related to the diseases. Our circuit involves complex admittances, resonance angular frequencies, propagating constants, active pump currents, transfer functions in frequency domain and memory functions in time domain. Our circuit explains recurrent of brain neurons and clinical EEG frequencies as well as represents an encoding of current or electric field intensity (EFI. When modeling the consolidation and the retrieval of long term memory (LTM, we emphasize the EFI consists of a non conservative electric field intensity (NCEFI and a conservative electric field intensity (CEFI. It is mostly a NCEFI of acquired information to evoke an informative flow: from the inherited or mutant DNA to the transcribed RNA, from the transcribed RNA to the translated proteins. Some new synthesized proteins relate to the memory functions. The charges of the proteins and the memory functions mostly store the LTM and play an important role during the LTM retrieval. When modeling the cognition in working memory (WM, our model demonstrates: if a sum of two sets of EFI signals is enhanced positively (or negatively, at a sub-cellular level (especially at the axon hillock, the sum supports a positive (or negative cognition; otherwise, the sum tends to be no cognition. A set of related brain neurons in WM work organically to vote, by EFI signal outputs through their axons, if they

  14. RSW hexahedral grids

    Data.gov (United States)

    National Aeronautics and Space Administration — RSW hexahedral grids in CGNS (unstructured) and Plot3d (structured) formats generated by ANSYS Germany. Please see AePW_RSW_Grids.pptx below for full description of...

  15. RSW Modified Inflow Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — After discussions by the organizing committee, and some research using the RSW grids, a modification has been made on the RSW grids. The inflow boundary has now...

  16. Business in the Grid

    OpenAIRE

    Schikuta, Erich; Weishaeupl, Thomas; Donno, Flavia; Stockinger, Heinz; Vinek, Elisabeth; Wanek, Helmut; Witzany, Christoph; Haq, Irfan Ul

    2009-01-01

    From 2004 to 2007 the Business In the Grid (BIG) project took place and was driven by the following goals: Firstly, make business aware of Grid technology and, secondly, try to explore new business models. We disseminated Grid computing by mainly concentrating on the central European market and interviewed several companies in order to gain insights into the Grid acceptance in industrial environments. In this article we present the results of the project, elaborate on a critical discussion on...

  17. GRID infrastructure sustainability guidelines

    OpenAIRE

    Ray, Nicolas; Gorgan, Dorian; Giuliani, Gregory

    2010-01-01

    A grid computing infrastructure can be defined as a cluster of loosely coupled, networked computers acting in concert to perform very large tasks. Grid computing is an important part of the enviroGRIDS project, because it will allow one to perform computationally-intensive simulations of the hydrological balance of the Black Sea Catchment and will permit to analyze large quantity of high resolution data sets. It is therefore important that the ability to use grid computing is maintained throu...

  18. Theoretical Foundations for Evidence-Based Health Informatics: Why? How?

    Science.gov (United States)

    Scott, Philip J; Georgiou, Andrew; Hyppönen, Hannele; Craven, Catherine K; Rigby, Michael; Brender McNair, Jytte

    2016-01-01

    A scientific approach to health informatics requires sound theoretical foundations. Health informatics implementation would be more effective if evidence-based and guided by theories about what is likely to work in what circumstances. We report on a Medinfo 2015 workshop on this topic jointly organized by the EFMI Working Group on Assessment of Health Information Systems and the IMIA Working Group on Technology Assessment and Quality Development. We discuss the findings of the workshop and propose an approach to consolidate empirical knowledge into testable middle-range theories. PMID:27577457

  19. The informatics teaching with the use of networks.

    Directory of Open Access Journals (Sweden)

    Eduardo Hernández Martín

    2013-09-01

    Full Text Available To achieve a differentiated teaching learning process in informatics, in which each student should be able to keep his/her own rhythm, is one of the most complex themes to deal with at any educational level. The present work is the result of the scientific methodological work in the Educative Informatics discipline, it is pretended to reflect about the way of using the UCP LAN in the teaching learning process. To carry out the article some documents such as the disciplines and subjects study syllabuses were revised, the information obtained from an updated bibliography was analyzed – synthesized and itwas exemplified with a theory practical lesson.

  20. A core curriculum for clinical fellowship training in pathology informatics

    Directory of Open Access Journals (Sweden)

    David S McClintock

    2012-01-01

    Full Text Available Background: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. Materials and Methods: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Results: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1 Information Fundamentals, (2 Information Systems, (3 Workflow and Process, and (4 Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012. Discussion: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world

  1. Medical informatics: A boon to the healthcare industry

    Directory of Open Access Journals (Sweden)

    Dinesh Bhatia

    2010-01-01

    Full Text Available Newer healthcare technologies and treatment procedures are being developed rapidly, and clinicians are incorporating them into their daily practice. They are integrating the past and the present knowledge for better patient healthcare. Previously, it had been difficult to organize, store and retrieve medical and patient information. But, today, with the advent of computers and, moreover, information technology has led to the development of medical informatics that is helping physicians to overcome these challenges. Medical informatics deals with all aspects of understanding and promoting the effective organization analysis, management and use of information in healthcare, which are being highlighted in this review paper.

  2. Smart grid in China

    DEFF Research Database (Denmark)

    Sommer, Simon; Ma, Zheng; Jørgensen, Bo Nørregaard

    2015-01-01

    China is planning to transform its traditional power grid in favour of a smart grid, since it allows a more economically efficient and a more environmentally friendly transmission and distribution of electricity. Thus, a nationwide smart grid is likely to save tremendous amounts of resources...

  3. Chimera Grid Tools

    Science.gov (United States)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  4. Grid Enabled Remote Instrumentation

    CERN Document Server

    Meyer, Norbert

    2008-01-01

    Focuses on a number of aspects related to the exploitation of remote instrumentation on the grid. This book includes middleware architecture, high speed networking in support of grid applications, wireless grid for acquisition devices and sensor networks, quality of service provisioning for real time control, and measurement instrumentation.

  5. Bayesian grid matching

    DEFF Research Database (Denmark)

    Hartelius, Karsten; Carstensen, Jens Michael

    2003-01-01

    A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which...

  6. Grid welding fixture for a spacer grid

    International Nuclear Information System (INIS)

    A modular grid welding fixture for a spacer grid that facilitates full grid laser welding of a spacer grid in one setup is disclosed. The modular design allows for partial implementation of each weld type. A base plate is used for mounting to the positioning/rotational plate of the welding system. A removable sub-plate received in the base plate is used to position the grid strips for proper location for welding. A top fixture plate is aligned with the base plate and provides for mounting of a second sub-plate if required. Side plates with spring loaded pressure pads that are hinged to the top fixture plate apply uniform pressure to the outer grid strips during processing. The base plate, top plate, side plate, and pressure pads are provided with a plurality of through holes to allow access of the laser beam for welding. Corner clips are used to insure contact of the overlapping sections of the outer grid strips for proper corner welding. 4 figs

  7. The Theory of Biomedical Knowledge Integration (Ⅶ)——The Non-Euclid Macro-Micro Transform Law

    Institute of Scientific and Technical Information of China (English)

    Hanfei Bao

    2007-01-01

    This article continued to do the scholastic pursuits on some profound mechanisms in the life systems, which are believed to be related to the further development of Medical Informatics. It discussed at first the structural nature of things, then probed a principle which is a basis for both of the fractal theory and the wavelet analysis, being called the shape-constancy law of the basic constructors at the different scale levels. And the paper also ventured the equivalency between the shape of wave and matrix, thus presented a new concept "shaped-number", being expected to work in the operations of some bio-medical functions or shapes.

  8. The biomedical discourse relation bank

    Directory of Open Access Journals (Sweden)

    Joshi Aravind

    2011-05-01

    Full Text Available Abstract Background Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource. Results We have developed the Biomedical Discourse Relation Bank (BioDRB, in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB, which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89. These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28, mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57. Conclusion Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more

  9. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  10. Spintronic platforms for biomedical applications.

    Science.gov (United States)

    Freitas, P P; Cardoso, F A; Martins, V C; Martins, S A M; Loureiro, J; Amaral, J; Chaves, R C; Cardoso, S; Fonseca, L P; Sebastião, A M; Pannetier-Lecoeur, M; Fermon, C

    2012-02-01

    Since the fundamental discovery of the giant magnetoresistance many spintronic devices have been developed and implemented in our daily life (e.g. information storage and automotive industry). Lately, advances in the sensors technology (higher sensitivity, smaller size) have potentiated other applications, namely in the biological area, leading to the emergence of novel biomedical platforms. In particular the investigation of spintronics and its application to the development of magnetoresistive (MR) biomolecular and biomedical platforms are giving rise to a new class of biomedical diagnostic devices, suitable for bench top bioassays as well as point-of-care and point-of-use devices. Herein, integrated spintronic biochip platforms for diagnostic and cytometric applications, hybrid systems incorporating magnetoresistive sensors applied to neuroelectronic studies and biomedical imaging, namely magneto-encephalography and magneto-cardiography, are reviewed. Also lab-on-a-chip MR-based platforms to perform biological studies at the single molecule level are discussed. Overall the potential and main characteristics of such MR-based biomedical devices, comparing to the existing technologies while giving particular examples of targeted applications, are addressed. PMID:22146898

  11. Grid Architecture 2

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  12. Business in the Grid

    CERN Document Server

    Schikuta, Erich; Donno, Flavia; Stockinger, Heinz; Vinek, Elisabeth; Wanek, Helmut; Witzany, Christoph; Haq, Irfan Ul

    2009-01-01

    From 2004 to 2007 the Business In the Grid (BIG) project took place and was driven by the following goals: Firstly, make business aware of Grid technology and, secondly, try to explore new business models. We disseminated Grid computing by mainly concentrating on the central European market and interviewed several companies in order to gain insights into the Grid acceptance in industrial environments. In this article we present the results of the project, elaborate on a critical discussion on business adaptations, and describe a novel dynamic authorization workflow for business processes in the Grid.

  13. Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical andTranslational Science Award programs.

    Science.gov (United States)

    Bernstam, Elmer V; Hersh, William R; Johnson, Stephen B; Chute, Christopher G; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark G; Miller, Perry; DiLaura, Robert P; Overcash, Marc; Lehmann, Harold P; Eichmann, David; Athey, Brian D; Scheuermann, Richard H; Anderson, Nick; Starren, Justin; Harris, Paul A; Smith, Jack W; Barbour, Ed; Silverstein, Jonathan C; Krusch, David A; Nagarajan, Rakesh; Becich, Michael J

    2009-07-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally oriented groups including information technology (IT) professionals, computer scientists, and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays, and suboptimal results. Although written from the perspective of Clinical and Translational Science Award (CTSA) programs within academic medical centers, this article addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science, and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information, and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers.

  14. Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical andTranslational Science Award programs.

    Science.gov (United States)

    Bernstam, Elmer V; Hersh, William R; Johnson, Stephen B; Chute, Christopher G; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark G; Miller, Perry; DiLaura, Robert P; Overcash, Marc; Lehmann, Harold P; Eichmann, David; Athey, Brian D; Scheuermann, Richard H; Anderson, Nick; Starren, Justin; Harris, Paul A; Smith, Jack W; Barbour, Ed; Silverstein, Jonathan C; Krusch, David A; Nagarajan, Rakesh; Becich, Michael J

    2009-07-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally oriented groups including information technology (IT) professionals, computer scientists, and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays, and suboptimal results. Although written from the perspective of Clinical and Translational Science Award (CTSA) programs within academic medical centers, this article addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science, and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information, and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198

  15. Resolving complex research data management issues in biomedical laboratories: Qualitative study of an industry-academia collaboration.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L; Bova, G Steven; Wang, Jian; Ackerman, Christopher F; Berlinicke, Cynthia A; Chen, Steve H; Lindvall, Mikael; Zack, Donald J

    2016-04-01

    This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to (1) characterize specific problems faced by biomedical researchers with traditional information management practices, (2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to (3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity.

  16. Development of an informatics infrastructure for data exchange of biomolecular simulations: Architecture, data models and ontology.

    Science.gov (United States)

    Thibault, J C; Roe, D R; Eilbeck, K; Cheatham Iii, T E; Facelli, J C

    2015-01-01

    Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data - both within the same organization and among different ones - remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations. PMID:26387907

  17. Framework for Grid Manufacturing

    Institute of Scientific and Technical Information of China (English)

    陈笠; 邓宏; 邓倩妮; 吴振宇

    2004-01-01

    With the development of networked manufacturing, it is more and more imminent to solve problems caused by inherent limitations of network technology, such as heterogeneity, collaboration collision, and decentralized control.This paper presents a framework for grid manufacturing, which neatly combines grid technology with the infrastructure of advanced manufacturing technology.The paper studies grid-oriented knowledge description and acquisition, and constructs a distributed knowledge grid model.The paper also deals with the protocol of node description in collaborative design, and describes a distributed collaborative design model.The protocol and node technology leads to a collaborative production model for grid manufacturing.The framework for grid manufacturing offers an effective and feasible solution for the problems of networked manufacturing.The grid manufacturing will become an advanced distributed manufacturing model and promote the development of advanced manufacturing technologies.

  18. Pathophysiologic mechanisms of biomedical nanomaterials.

    Science.gov (United States)

    Wang, Liming; Chen, Chunying

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell-cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future.

  19. The Integration of Nursing Informatics in Delaware Nursing Education Programs

    Science.gov (United States)

    Wheeler, Bernadette

    2016-01-01

    Over the past decade, there has been a conversion to electronic health records (EHRs) in an effort to improve patient care, access, and efficiency. The goal, which has been supported by federal initiatives, is to meaningfully use informatics to improve the safety and quality of patient care as a major force in improving healthcare. How nurses…

  20. A Review of Medical Education and Medical Informatics.

    Science.gov (United States)

    Haynes, R. Brian; And Others

    1989-01-01

    Information technology may help physicians to manage information more effectively through more accessible clinical indexes, databases of diagnostic test characteristics, computerized audits of clinical activities, on-line access to medical literature, etc. Medical informatics, a new discipline dedicated to the solution of information problems in…

  1. A Needs Assessment for Graduate Specialization in Nursing Informatics

    OpenAIRE

    Heller, B R; Romano, C.A.; Damrosch, S.P.; McCarthy, M.R.

    1988-01-01

    Indicators of need and rationale for developing Nursing Informatics as a new area of graduate level specialization are discussed including results of research conducted to determine employment opportunities for graduates of such a program of study as well as the potential student applicant pool. The projected impact of this educational breakthrough is also addressed.

  2. Improving the Evaluation Model for the Lithuanian Informatics Olympiads

    Science.gov (United States)

    Skupiene, Jurate

    2010-01-01

    The Lithuanian Informatics Olympiads (LitIO) is a problem solving programming contest for students in secondary education. The work of the student to be evaluated is an algorithm designed by the student and implemented as a working program. The current evaluation process involves both automated (for correctness and performance of programs with the…

  3. ICTEI-2015: International Conference on Telecommunications, Electronics and Informatics. Proceedings

    International Nuclear Information System (INIS)

    This book includes articles which cover a vast range of subjects, such as: telecommunications networks and technologies; electronic, optoelectronic, photonic and information systems and devices; materials, components and equipment in electronics and communications; informatics and computer science; software development and testing etc.

  4. Applying cognitive informatics to improve communication in geographically distributed environments

    OpenAIRE

    Aranda, Gabriela N.; Cechich, Alejandra; Vizcaíno, Aurora

    2004-01-01

    When stakeholders are geographically distributed, elicitation process becomes more difficult and communication between all the participants presents new challenges for software engineering community. Considering characteristics of interpersonal communication and the virtual area where it is carried out, we aim at improving the quality of elicitation results by applying concepts from a new transdisciplinary science called Cognitive Informatics.

  5. A decadal view of biodiversity informatics: challenges and priorities

    NARCIS (Netherlands)

    A. Hardisty; D. Roberts; W. Addink; B Aelterman; D. Agosti; L. Amaral-Zettler; A.H. Ariño; C. Arvanitidis; T. Backeljau; N. Bailly; L. Belbin; W. Berendsohn; N. Bertrand; N. Caithness; D. Campbell; G. Cochrane; N. Conruyt; A. Culham; C. Damgaard; N. Davies; B. Fady; S. Faulwetter; A. Feest; D. Field; E. Garnier; G. Geser; J. Gilbert; B. Grosche; D. Grosser; B. Herbinet; D. Hobern; A. Jones; Y. de Jong; D. King; S. Knapp; H. Koivula; W. Los; C Meyer; R.A. Morris; N. Morrison; D. Morse; M. Obst; E. Pafilis; L.M. Page; R. Page; T. Pape; C. Parr; A. Paton; D. Patterson; E. Paymal; L. Penev; M. Pollet; R. Pyle; E. von Raab-Straube; V. Robert; T. Robertson; O. Rovellotti; H. Saarenmaa; P. Schalk; J. Schaminee; P. Schofield; A. Sier; S. Sierra; V. Smith; E. van Spronsen; S. Thornton-Wood; P. van Tienderen; J. van Tol; É.Ó. Tuama; P. Uetz; L. Vaas; R. Vignes Lebbe; T. Vision; D. Vu; A. De Wever; R. White; K. Willis; F. Young

    2013-01-01

    Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the

  6. A decadal view of biodiversity informatics : challenges and priorities

    NARCIS (Netherlands)

    Hardisty, Alex; Roberts, Dave; Addink, Wouter; Aelterman, Bart; Agosti, Donat; Amaral-Zettler, Linda; Ariño, Arturo H; Arvanitidis, Christos; Backeljau, Thierry; Bailly, Nicolas; Belbin, Lee; Berendsohn, Walter; Bertrand, Nic; Caithness, Neil; Campbell, David; Cochrane, Guy; Conruyt, Noël; Culham, Alastair; Damgaard, Christian; Davies, Neil; Fady, Bruno; Faulwetter, Sarah; Feest, Alan; Field, Dawn; Garnier, Eric; Geser, Guntram; Gilbert, Jack; Grosche, [No Value; Grosser, David; Hardisty, Alex; Herbinet, Bénédicte; Hobern, Donald; Jones, Andrew; de Jong, Yde; King, David; Knapp, Sandra; Koivula, Hanna; Los, Wouter; Meyer, Chris; Morris, Robert A; Morrison, Norman; Morse, David; Obst, Matthias; Pafilis, Evagelos; Page, Larry M; Page, Roderic; Pape, Thomas; Parr, Cynthia; Paton, Alan; Patterson, David; Paymal, Elisabeth; Penev, Lyubomir; Pollet, Marc; Pyle, Richard; von Raab-Straube, Eckhard; Robert, Vincent; Roberts, Dave; Robertson, Tim; Rovellotti, Olivier; Saarenmaa, Hannu; Schalk, Peter; Schaminee, Joop; Schofield, Paul; Sier, Andy; Sierra, Soraya; Smith, Vince; van Spronsen, Edwin; Thornton-Wood, Simon; van Tienderen, Peter; van Tol, Jan; Tuama, Éamonn Ó; Uetz, Peter; Vaas, Lea; Vignes Lebbe, Régine; Vision, Todd; Vu, Duong; De Wever, Aaike; White, Richard; Willis, Kathy; Young, Fiona

    2013-01-01

    Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the

  7. Developing a framework for teaching nursing informatics internationally

    DEFF Research Database (Denmark)

    Madsen, Inge; Cummings, Elizabeth; Borycki, Elizabeth M;

    2016-01-01

    for common core content, teaching methodologies and program structures in the integration of nursing informatics in undergraduate programs. The workshop format will provide a forum for international discussion on this serious challenge faced by nursing schools everywhere. The outcome of this workshop...

  8. Mapping nursing program activities to nursing informatics competencies.

    Science.gov (United States)

    Jones, Kamas; Kapsandoy, Seraphine; Macintosh, Christopher; Wyckoff, Anastasis

    2008-11-06

    In order to facilitate the incorporation of Informatics competencies into nursing curricula, this group analyzed the course content of three BSN level nursing classes and correlated appropriate competencies to the course content. The two main areas of focus were competencies already used and competencies easily incorporated.

  9. Score Calculation in Informatics Contests Using Multiple Criteria Decision Methods

    Science.gov (United States)

    Skupiene, Jurate

    2011-01-01

    The Lithuanian Informatics Olympiad is a problem solving contest for high school students. The work of each contestant is evaluated in terms of several criteria, where each criterion is measured according to its own scale (but the same scale for each contestant). Several jury members are involved in the evaluation. This paper analyses the problem…

  10. School Subject Informatics (Computer Science) in Russia: Educational Relevant Areas

    Science.gov (United States)

    Khenner, Evgeniy; Semakin, Igor

    2014-01-01

    This article deals with some aspects of studying Informatics in Russian schools. Those aspects are part of the "third dimension" of the Darmstadt model (they are also projected on the other two dimensions of this model) and include evolution of the subject, regulatory norms conforming to the Federal Educational Standards, the learning…

  11. Informatics Teaching from the Students' Point of View

    Science.gov (United States)

    Zahorec, Jan; Haskova, Alena

    2013-01-01

    Branches of science and technical/engineering study have for a long time been the less favoured disciplines and students have not been interested in studying them. Informatics/computer education, based on its character, belongs to these disciplines, but on the contrary it belongs rather to the group of popular school subjects. The paper presents…

  12. An Informatics Approach to Establishing a Sustainable Public Health Community

    Science.gov (United States)

    Kriseman, Jeffrey Michael

    2012-01-01

    This work involved the analysis of a public health system, and the design, development and deployment of enterprise informatics architecture, and sustainable community methods to address problems with the current public health system. Specifically, assessment of the Nationally Notifiable Disease Surveillance System (NNDSS) was instrumental in…

  13. Is medical Informatics an art or a science?

    NARCIS (Netherlands)

    R. Haux; A. Hasman; A.T. McCray; J. van der Lei

    2006-01-01

    Objective: To give an introduction to the special topic on 'Medical Informatics: Art or Sciene?' in honor of Prof. Dr. Jan Hendrik van Bemmel. Method: Retrospective, personal review on his work. Results and Conclusions: Jan H. van Bemmel contributed exceptionally to research and education as well as

  14. Building blocks for a clinical imaging informatics environment.

    Science.gov (United States)

    Kohli, Marc D; Warnock, Max; Daly, Mark; Toland, Christopher; Meenan, Chris; Nagy, Paul G

    2014-04-01

    Over the past 20 years, imaging informatics has been driven by the widespread adoption of radiology information and picture archiving and communication and speech recognition systems. These three clinical information systems are commonplace and are intuitive to most radiologists as they replicate familiar paper and film workflow. So what is next? There is a surge of innovation in imaging informatics around advanced workflow, search, electronic medical record aggregation, dashboarding, and analytics tools for quality measures (Nance et al., AJR Am J Roentgenol 200:1064-1070, 2013). The challenge lies in not having to rebuild the technological wheel for each of these new applications but instead attempt to share common components through open standards and modern development techniques. The next generation of applications will be built with moving parts that work together to satisfy advanced use cases without replicating databases and without requiring fragile, intense synchronization from clinical systems. The purpose of this paper is to identify building blocks that can position a practice to be able to quickly innovate when addressing clinical, educational, and research-related problems. This paper is the result of identifying common components in the construction of over two dozen clinical informatics projects developed at the University of Maryland Radiology Informatics Research Laboratory. The systems outlined are intended as a mere foundation rather than an exhaustive list of possible extensions.

  15. Evaluating consumer informatics: learning from health campaign research.

    Science.gov (United States)

    Logan, Robert A

    2004-01-01

    This paper suggests that some conceptual models used in health communication campaigns as well as the "uses and gratifications" approach might be successfully integrated into the evaluation of consumer informatics. These models and tools are especially pertinent when the desired outcomes of media health interventions are therapeutic changes in public knowledge, motivations, attitudes and patient behavior PMID:15360992

  16. Q-methodology: Definition and Application in Health Care Informatics

    OpenAIRE

    Valenta, Annette L.; Wigger, Ulrike

    1997-01-01

    Objective: To introduce the Q-methodology research technique to the field of health informatics. Q-methodology—the systematic study of subjectivity—was used to identify and categorize the opinions of primary care physicians and medical students that contributed to our understanding of their reasons for acceptance of and/or resistance to adapting information technologies in the health care workplace.

  17. The Early History of European Federation of Medical Informatics

    OpenAIRE

    E. Peterson, Hans

    2014-01-01

    The story of the European Federation of Medical Informatics (EFMI) can be looked upon as one of the followers from the early days of the development of Societies and federations for persons interested in Information Technology and in cooperation and exchange of information and technology, not only in countries but also between countries.

  18. Informatization barriers of logistics process management in production company

    OpenAIRE

    Joanna WALASEK

    2015-01-01

    This article is an attempt to characterize informatization barriers of logistics processes management in a production company which provides automotive parts. Threats of successful implementation of Enterprise Resource Planning Systems include: community barriers; organizational barriers; communication barriers; formal barriers; legal barriers; not prepared implementation team barrier; substantive barrier. Proper identification of barriers and solving them are the right way to implement Enter...

  19. Implantable biomedical devices on bioresorbable substrates

    Science.gov (United States)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  20. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  1. Flexible sensors for biomedical technology.

    Science.gov (United States)

    Vilela, Diana; Romeo, Agostino; Sánchez, Samuel

    2016-02-01

    Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes. PMID:26675174

  2. Flexible sensors for biomedical technology.

    Science.gov (United States)

    Vilela, Diana; Romeo, Agostino; Sánchez, Samuel

    2016-02-01

    Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes.

  3. Automatic diagnosis of pathological myopia from heterogeneous biomedical data.

    Directory of Open Access Journals (Sweden)

    Zhuo Zhang

    Full Text Available Pathological myopia is one of the leading causes of blindness worldwide. The condition is particularly prevalent in Asia. Unlike myopia, pathological myopia is accompanied by degenerative changes in the retina, which if left untreated can lead to irrecoverable vision loss. The accurate diagnosis of pathological myopia will enable timely intervention and facilitate better disease management to slow down the progression of the disease. Current methods of assessment typically consider only one type of data, such as that from retinal imaging. However, different kinds of data, including that of genetic, demographic and clinical information, may contain different and independent information, which can provide different perspectives on the visually observable, genetic or environmental mechanisms for the disease. The combination of these potentially complementary pieces of information can enhance the understanding of the disease, providing a holistic appreciation of the multiple risks factors as well as improving the detection outcomes. In this study, we propose a computer-aided diagnosis framework for Pathological Myopia diagnosis through Biomedical and Image Informatics(PM-BMII. Through the use of multiple kernel learning (MKL methods, PM-BMII intelligently fuses heterogeneous biomedical information to improve the accuracy of disease diagnosis. Data from 2,258 subjects of a population-based study, in which demographic and clinical information, retinal fundus imaging data and genotyping data were collected, are used to evaluate the proposed framework. The experimental results show that PM-BMII achieves an AUC of 0.888, outperforming the detection results from the use of demographic and clinical information 0.607 (increase 46.3%, p<0.005, genotyping data 0.774 (increase 14.7%, P<0.005 or imaging data 0.852 (increase 4.2%, p=0.19 alone. The accuracy of the results obtained demonstrates the feasibility of using heterogeneous data for improved disease

  4. Securing smart grid technology

    Science.gov (United States)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  5. Pathology informatics fellowship retreats: The use of interactive scenarios and case studies as pathology informatics teaching tools

    Directory of Open Access Journals (Sweden)

    Roy E Lee

    2012-01-01

    Full Text Available Background: Last year, our pathology informatics fellowship added informatics-based interactive case studies to its existing educational platform of operational and research rotations, clinical conferences, a common core curriculum with an accompanying didactic course, and national meetings. Methods: The structure of the informatics case studies was based on the traditional business school case study format. Three different formats were used, varying in length from short, 15-minute scenarios to more formal multiple hour-long case studies. Case studies were presented over the course of three retreats (Fall 2011, Winter 2012, and Spring 2012 and involved both local and visiting faculty and fellows. Results: Both faculty and fellows found the case studies and the retreats educational, valuable, and enjoyable. From this positive feedback, we plan to incorporate the retreats in future academic years as an educational component of our fellowship program. Conclusions: Interactive case studies appear to be valuable in teaching several aspects of pathology informatics that are difficult to teach in more traditional venues (rotations and didactic class sessions. Case studies have become an important component of our fellowship′s educational platform.

  6. Impact of Informatics on School Education Systems: National Strategies for the Introduction of Informatics into Schools: Nonsystematic, but Still Systematic.

    Science.gov (United States)

    Sakamoto, Takashi

    1992-01-01

    The introduction of informatics into the national school curriculum in Japan requires changes to educational policy, curricula, methods, facilities, etc. Although the basic functions of the school--i.e., to transmit the culture and to cultivate competencies that will allow a future society to develop--remain unchanged, new technologies change the…

  7. Proceedings of the 1. National Forum of Science and Technology on Health; 13. Brazilian Congress on Biomedical Engineering; 4. Brazilian Congress of Physicists on Medicine; Brazilian Meeting on Biology and Nuclear Medicine; Brazilian Meeting on Radiological Protection

    International Nuclear Information System (INIS)

    This 1. National Forum of Science and Technology on Health presents works of several scientific institutions, including topics on bioengineering; modelling and simulation; sensors and transducers; ultrasonic on medicine; instrumentation processing of signs and medical images; biomedical informatics and clinical software; engineering of rehabilitation; bio-materials and bio-mechanical; clinical engineering; in vivo and in vitro nuclear medicine; radioisotope production and utilization; radiology; radiology protection and dosimetry; radiotherapy; evaluation of technology on health and education. (C.G.C.)

  8. Science gateways for biomedical big data analysis

    NARCIS (Netherlands)

    S. Shahand

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists fr

  9. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  10. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  11. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  12. Mathematical modeling in biomedical imaging

    CERN Document Server

    2009-01-01

    This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

  13. Mathematical modeling in biomedical imaging

    CERN Document Server

    2012-01-01

    This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools.  It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.

  14. Biomedical applications of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bormann, D.

    2012-01-01

    This chapter deals with the emerging field of biomedical applications for magnesium-based materials, envisioning degradable implants that dissolve in the human body after having cured a particular medical condition. After outlining the background of this interest, some major aspects concerning degra

  15. Environmental/Biomedical Terminology Index

    International Nuclear Information System (INIS)

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index

  16. A statistical feature of anomalous seismic activities prior to large shallow earthquakes in Japan revealed by the Pattern Informatics method

    Directory of Open Access Journals (Sweden)

    M. Kawamura

    2013-03-01

    Full Text Available For revealing the preparatory processes of large inland earthquakes, we systematically applied the Pattern Informatics method (PI method to the earthquake data of Japan. We focused on 12 large earthquakes with magnitudes larger than M = 6.4 (an official magnitude of the Japan Meteorological Agency that occurred at depths shallower than 30 km between 2000 and 2010. We examined the relation between the spatiotemporal locations of such large shallow earthquakes and those of PI hotspots, which correspond to the grid cells of anomalous seismic activities in a designated time span. Based on a statistical test using Molchan's error diagram, we inquired into the existence of precursory anomalous seismic activities of the large earthquakes and, if any, their characteristic time span. The test indicated that the Japanese M ≧ 6.4 inland earthquakes tend to be preceded by anomalous seismic activities of 8-to-10-yr time scales.

  17. PearlTrees web-based interface for teaching informatics in the radiology residency

    Science.gov (United States)

    Licurse, Mindy Y.; Cook, Tessa S.

    2014-03-01

    Radiology and imaging informatics education have rapidly evolved over the past few decades. With the increasing recognition that future growth and maintenance of radiology practices will rely heavily on radiologists with fundamentally sound informatics skills, the onus falls on radiology residency programs to properly implement and execute an informatics curriculum. In addition, the American Board of Radiology may choose to include even more informatics on the new board examinations. However, the resources available for didactic teaching and guidance most especially at the introductory level are widespread and varied. Given the breadth of informatics, a centralized web-based interface designed to serve as an adjunct to standardized informatics curriculums as well as a stand-alone for other interested audiences is desirable. We present the development of a curriculum using PearlTrees, an existing web-interface based on the concept of a visual interest graph that allows users to collect, organize, and share any URL they find online as well as to upload photos and other documents. For our purpose, the group of "pearls" includes informatics concepts linked by appropriate hierarchal relationships. The curriculum was developed using a combination of our institution's current informatics fellowship curriculum, the Practical Imaging Informatics textbook1 and other useful online resources. After development of the initial interface and curriculum has been publicized, we anticipate that involvement by the informatics community will help promote collaborations and foster mentorships at all career levels.

  18. Postcards from the imaging informatics road. Despite policy complexities, diagnostic imaging informatics makes progress on multiple fronts.

    Science.gov (United States)

    Hagland, Mark

    2011-11-01

    The current strategic landscape for imaging informatics is one filled with great contrasts and paradoxes. On the one hand, because imaging informatics was not explicitly addressed in Stage 1 of the meaningful use requirements under the American Recovery and Reinvestment Act/Health Information Technology for Economic and Clinical Health Act (ARRA-HITECH) legislation, it instantly lost some of the environment of turbo-charged energy characterized by areas that were directly addressed by the HITECH Act, such as quality data reporting, care management, and of course, core electronic health record (EHR) development. On the other hand, an interesting combination of factors--rapidly advancing technology, the expansion of the image archiving concept across different medical specialties, and the inclusion of diagnostic image-sharing as one element in the development of health information exchange (HIE) arrangements nationwide--is nonetheless pushing imaging informatics forward towards new innovations. The five articles below provide readers with different glimpses of the path ahead for imaging informatics. The first presents a look at the current policy and reimbursement landscape. Each of the four subsequent articles delve into different aspects of innovation, from a process developed at a public hospital to improve and speed up the diagnostic process for trauma patients, to a radiology-specific financial analytics solution in the group practice setting, to an advance in cardiology information systems, to a self-developed federated image viewing platform at one of the nation's largest integrated health systems. Each of those initiatives is very different; yet it is clear that a great deal of innovation is taking place across the US. healthcare system when it comes to imaging informatics. With a landscape filled with uncertainties and potential policy, reimbursement, and industry shifts in the offing, CIOs, CMIOs, and other healthcare IT leaders will need to think very

  19. The Grid : english version

    CERN Multimedia

    Rosy Mondardini Producer

    2003-01-01

    The Grid : . Sharing resources owned by many different organizations to access remote computers, software, and data efficiently and automatically . Secure access to establish the identity of a user or resource, after defining conditions under which sharing occurs . Bridging distance using high-speed connections between computers to create a global Grid . Open standards to allow applications designed for one Grid to run on all others

  20. Measuring Computer Science Knowledge Level of Hungarian Students Specialized in Informatics with Romanian Students Attending a Science Course or a Mathematics-Informatics Course

    Science.gov (United States)

    Kiss, Gabor

    2012-01-01

    An analysis of Information Technology knowledge of Hungarian and Romanian students was made with the help of a self developed web based Informatics Test. The goal of this research is an analysis of the Computer Science knowledge level of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was…

  1. Advanced Biomedical Computing Center (ABCC) | DSITP

    Science.gov (United States)

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  2. GRID Activities in ALICE

    Institute of Scientific and Technical Information of China (English)

    P.Cerello; T.Anticic; 等

    2001-01-01

    The challenge of LHC computing,with data rates in the range of several PB/year,requires the development of GRID technologies,to optimize the exploitation of distributed computing power and the authomatic access to distributed data storage.In the framework of the EU-DataGrid project,the ALICE experiment is one of the selected test applications for the early development and implementation of GRID Services.Presently,about 15 ALICE sites are makin use of available GRID tools and a large scale test production involving 9 of them was carried out with our simulation program.Results are discussed in detail,as well as future plans.

  3. The scintillating grid illusion.

    Science.gov (United States)

    Schrauf, M; Lingelbach, B; Wist, E R

    1997-04-01

    Disk-shaped luminance increments were added to the intersections of a Hermann grid consisting of medium grey bars on a black background. Illusory spots, darker than the background, were perceived as flashing within the white disks with each flick of the eye. This striking phenomenon may be referred to as the scintillating grid illusion. We determined the conditions necessary for cancelling the Hermann grid illusion, as well as the luminance requirements and the size ratio between disks and bars that elicits the scintillation effect. The fact that scanning eye movements are necessary to produce the scintillation effect sets it apart from the Hermann grid illusion.

  4. Challenges facing production grids

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  5. Biomedical ethics and the biomedical engineer: a review.

    Science.gov (United States)

    Saha, S; Saha, P S

    1997-01-01

    Biomedical engineering is responsible for many of the dramatic advances in modern medicine. This has resulted in improved medical care and better quality of life for patients. However, biomedical technology has also contributed to new ethical dilemmas and has challenged some of our moral values. Bioengineers often lack adequate training in facing these moral and ethical problems. These include conflicts of interest, allocation of scarce resources, research misconduct, animal experimentation, and clinical trials for new medical devices. This paper is a compilation of our previous published papers on these topics, and it summarizes many complex ethical issues that a bioengineer may face during his or her research career or professional practice. The need for ethics training in the education of a bioengineering student is emphasized. We also advocate the adoption of a code of ethics for bioengineers.

  6. Reducing Health Cost: Health Informatics and Knowledge Management as a Business and Communication Tool

    Science.gov (United States)

    Gyampoh-Vidogah, Regina; Moreton, Robert; Sallah, David

    Health informatics has the potential to improve the quality and provision of care while reducing the cost of health care delivery. However, health informatics is often falsely regarded as synonymous with information management (IM). This chapter (i) provides a clear definition and characteristic benefits of health informatics and information management in the context of health care delivery, (ii) identifies and explains the difference between health informatics (HI) and managing knowledge (KM) in relation to informatics business strategy and (iii) elaborates the role of information communication technology (ICT) KM environment. This Chapter further examines how KM can be used to improve health service informatics costs, and identifies the factors that could affect its implementation and explains some of the reasons driving the development of electronic health record systems. This will assist in avoiding higher costs and errors, while promoting the continued industrialisation of KM delivery across health care communities.

  7. Development and implementation of a multitiered health informatics curriculum in a college of pharmacy.

    Science.gov (United States)

    Breeden, Elizabeth A; Clauson, Kevin A

    2016-07-01

    Standards requiring education in informatics in pharmacy curricula were introduced in the last 10 years by the Accreditation Council for Pharmacy Education. Mirroring difficulties faced by other health professions educators, implementation of these requirements remains fragmented and somewhat limited across colleges of pharmacy in the US. Clinical practice and workforce metrics underline a pronounced need for clinicians with varying competencies in health informatics. In response to these challenges, a multitiered health informatics curriculum was developed and implemented at a college of pharmacy in the Southeast. The multitiered approach is structured to ensure that graduating pharmacists possess core competencies in health informatics, while providing specialized and advanced training opportunities for pharmacy students, health professions students, and working professionals interested in a career path in informatics. The approach described herein offers institutions, administrators, faculty, residents, and students an adaptable model for selected or comprehensive adoption and integration of a multitiered health informatics curriculum. PMID:27121611

  8. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  9. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  10. The LHCb Grid Simulation

    CERN Multimedia

    Baranov, Alexander

    2016-01-01

    The LHCb Grid access if based on the LHCbDirac system. It provides access to data and computational resources to researchers with different geographical locations. The Grid has a hierarchical topology with multiple sites distributed over the world. The sites differ from each other by their number of CPUs, amount of disk storage and connection bandwidth. These parameters are essential for the Grid work. Moreover, job scheduling and data distribution strategy have a great impact on the grid performance. However, it is hard to choose an appropriate algorithm and strategies as they need a lot of time to be tested on the real grid. In this study, we describe the LHCb Grid simulator. The simulator reproduces the LHCb Grid structure with its sites and their number of CPUs, amount of disk storage and bandwidth connection. We demonstrate how well the simulator reproduces the grid work, show its advantages and limitations. We show how well the simulator reproduces job scheduling and network anomalies, consider methods ...

  11. Planning in smart grids

    NARCIS (Netherlands)

    Bosman, Maurice Gerardus Clemens

    2012-01-01

    Thee electricity supply chain is changing, due to increasing awareness for sustainability and an improved energy efficiency. The traditional infrastructure where demand is supplied by centralized generation is subject to a transition towards a Smart Grid. In this Smart Grid, sustainable generation f

  12. Security for grids

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  13. The play grid

    DEFF Research Database (Denmark)

    Fogh, Rune; Johansen, Asger

    2013-01-01

    In this paper we propose The Play Grid, a model for systemizing different play types. The approach is psychological by nature and the actual Play Grid is based, therefore, on two pairs of fundamental and widely acknowledged distinguishing characteristics of the ego, namely: extraversion vs. intro...

  14. Case report medical eponyms: an applied clinical informatics opportunity.

    Science.gov (United States)

    Baskaran, L N Guptha Munugoor; Greco, P J; Kaelber, D C

    2012-01-01

    Medical eponyms are medical words derived from people's names. Eponyms, especially similar sounding eponyms, may be confusing to people trying to use them because the terms themselves do not contain physiologically descriptive words about the condition they refer to. Through the use of electronic health records (EHRs), embedded applied clinical informatics tools including synonyms and pick lists that include physiologically descriptive terms associated with any eponym appearing in the EHR can significantly enhance the correct use of medical eponyms. Here we describe a case example of two similar sounding medical eponyms--Wegener's disease and Wegner's disease-- which were confused in our EHR. We describe our solution to address this specific example and our suggestions and accomplishments developing more generalized approaches to dealing with medical eponyms in EHRs. Integrating brief physiologically descriptive terms with medical eponyms provides an applied clinical informatics opportunity to improve patient care.

  15. Using RSS feeds to track open source radiology informatics projects

    Science.gov (United States)

    Nagy, Paul; Daly, Mark; Warnock, Michael; Siddiqui, Khan; Siegel, Eliot

    2005-04-01

    There are over 40 open source projects in the field of radiology informatics. Because these are organized and written by volunteers, the development speed varies greatly from one project to the next. To keep track of updates, users must constantly check in on each project's Web page. Many projects remain dormant for years, and ad hoc checking becomes both an inefficient and unreliable means of determining when new versions are available. The result is that most end users track only a few projects and are unaware when others that may be more germane to their interests leapfrog in development. RSS feeds provide a machine readable XML format to track software project updates. Currently only 8 of the 40 projects provide RSS feeds for automatic propagation of news updates. We have a built a news aggregation engine around open source projects in radiology informatics.

  16. Interdisciplinary training to build an informatics workforce for precision medicine

    Directory of Open Access Journals (Sweden)

    Marc S. Williams

    2015-09-01

    Full Text Available The proposed Precision Medicine Initiative has the potential to transform medical care in the future through a shift from interventions based on evidence from population studies and empiric response to ones that account for a range of individual factors that more reliably predict response and outcomes for the patient. Many things are needed to realize this vision, but one of the most critical is an informatics workforce that has broad interdisciplinary training in basic science, applied research and clinical implementation. Current approaches to informatics training do not support this requirement. We present a collaborative model of training that has the potential to produce a workforce prepared for the challenges of implementing precision medicine.

  17. Optimizing Digital Health Informatics Interventions Through Unobtrusive Quantitative Process Evaluations.

    Science.gov (United States)

    Gude, Wouter T; van der Veer, Sabine N; de Keizer, Nicolette F; Coiera, Enrico; Peek, Niels

    2016-01-01

    Health informatics interventions such as clinical decision support (CDS) and audit and feedback (A&F) are variably effective at improving care because the underlying mechanisms through which these interventions bring about change are poorly understood. This limits our possibilities to design better interventions. Process evaluations can be used to improve this understanding by assessing fidelity and quality of implementation, clarifying causal mechanisms, and identifying contextual factors associated with variation in outcomes. Coiera describes the intervention process as a series of stages extending from interactions to outcomes: the "information value chain". However, past process evaluations often did not assess the relationships between those stages. In this paper we argue that the chain can be measured quantitatively and unobtrusively in digital interventions thanks to the availability of electronic data that are a by-product of their use. This provides novel possibilities to study the mechanisms of informatics interventions in detail and inform essential design choices to optimize their efficacy. PMID:27577453

  18. Four Data Visualization Heuristics to Facilitate Reflection in Personal Informatics

    DEFF Research Database (Denmark)

    Cuttone, Andrea; Petersen, Michael Kai; Larsen, Jakob Eg

    2014-01-01

    In this paper we discuss how to facilitate the process of reflection in Personal Informatics and Quantified Self systems through interactive data visualizations. Four heuristics for the design and evaluation of such systems have been identified through analysis of self-tracking devices and apps....... Dashboard interface paradigms in specific self-tracking devices (Fitbit and Basis) are discussed as representative examples of state of the art in feedback and reflection support. By relating to existing work in other domains, such as event related representation of time series multivariate data...... in financial analytics, it is discussed how the heuristics could guide designs that would further facilitate reflection in self-tracking personal informatics systems....

  19. Uzņēmuma informatīvais stends

    OpenAIRE

    Krišāne, Ieva Elīza

    2016-01-01

    “Uzņēmuma informatīvais stends” ir tīmekļa lietojumprogrammatūra, kas nodrošina uzņēmuma SIA TestDevLab reprezentāciju dažādās izstādēs un prezentācijās, kā, piemēram, universitāšu rīkotās karjeras dienās. “Uzņēmuma informatīvais stends” sniedz iespēju pārvaldīt noteiktu stenda sadaļu saturu, izmantojot TDL Stenda pārvaldības vietni, kā arī nodrošina šī satura attēlošanu TDL Stenda prezentācijas skatos.

  20. Evolving National Strategy Driving Nursing Informatics in New Zealand.

    Science.gov (United States)

    Honey, Michelle; Westbrooke, Lucy

    2016-01-01

    An update to the New Zealand Health Strategy identifying direction and priorities for health services is underway. Three specific areas have implications for nursing informatics and link to education and practice: best use of technology and information, fostering and spreading innovation and quality improvements, and building leaders and capability for the future. An emphasis on prevention and wellness means nursing needs to focus on health promotion and the role of consumers is changing with access to their on-line information a major focus. As the modes of delivery for services such as telehealth and telenursing changes, nurses are increasingly working independently and utilizing information and communication technologies to collaborate with the health team. New Zealand, and other countries, need strong nursing leadership to sustain the nursing voice in policy and planning and ensure nurses develop the required informatics skills. PMID:27332187

  1. ASHP statement on the pharmacy technician's role in pharmacy informatics.

    Science.gov (United States)

    2014-02-01

    The American Society of Health- System Pharmacists (ASHP) believes that specially trained pharmacy technicians can assume important supportive roles in pharmacy informatics. These roles include automation and technology systems management, management of projects, training and education, policy and governance, customer service, charge integrity, and reporting. Such roles require pharmacy technicians to gain expertise in information technology (IT) systems, including knowledge of interfaces, computer management techniques, problem resolution, and database maintenance. This knowledge could be acquired through specialized training or experience in a health science or allied scientific field (e.g., health informatics). With appropriate safeguards and supervision, pharmacy technician informaticists (PTIs) will manage IT processes in health-system pharmacy services, ensuring a safe and efficient medication-use process.

  2. Nursing informatics, ethics and decisions: implications for translational research

    DEFF Research Database (Denmark)

    Kaltoft, Mette Kjer; Nielsen, Jesper Bo; Dowie, Jack

    Nursing informatics, ethics and decisions: implications for translational research Objective: To introduce, in the multi-disciplinary contexts of clinical decision making and policy formation, a theory-based decision-analytic framework for the transparent forward translation of research......-calculation with evidence-based ratings for option performance on those criteria to produce a preference-sensitive assessment or opinion. Results: The first example shows the framework connecting nursing informatics and nursing ethics in the clinical context of a nurse’s decision to disclose or not disclose information......, satisfaction, Quality of Life), organization-related (staff and work environment, internal and external communication and relationships) and economics-related (start-up costs, financial implications and externalities)). Conclusion: Web-based decision support can provide nursing with a template, technique...

  3. Eco-informatics for decision makers advancing a research agenda

    Science.gov (United States)

    Cushing, J.B.; Wilson, T.; Brandt, L.; Gregg, V.; Spengler, S.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schnase, J.L.; Schweik, C.; Sonntag, W.

    2005-01-01

    Resource managers often face significant information technology (IT) problems when integrating ecological or environmental information to make decisions. At a workshop sponsored by the NSF and USGS in December 2004, university researchers, natural resource managers, and information managers met to articulate IT problems facing ecology and environmental decision makers. Decision making IT problems were identified in five areas: 1) policy, 2) data presentation, 3) data gaps, 4) tools, and 5) indicators. To alleviate those problems, workshop participants recommended specific informatics research in modeling and simulation, data quality, information integration and ontologies, and social and human aspects. This paper reports the workshop findings, and briefly compares these with research that traditionally falls under the emerging eco-informatics rubric. ?? Springer-Verlag Berlin Heidelberg 2005.

  4. Introducing guidelines for good evaluation practice in health informatics.

    Science.gov (United States)

    Nykänen, Pirkko; Brender, Jytte; Ammenwerth, Elske; Talmon, Jan; de Keizer, Nicolette; Rigby, Michael

    2009-01-01

    Good evaluation practice guidelines have been developed through a consensus making process by a core team and the health informatics community. A set of 60 issues has been identified that is relevant for planning, implementation and execution of an evaluation study in the health informatics domain. These issues cover all phases of an evaluation study: Study exploration, first study design, operationalization of methods, detailed study design, execution and finalization of an evaluation study. Issues of risk management and project control are also addressed in the guidelines. Through application of these guidelines the general validity and generalization of evaluation studies are likely to be increased, since these guidelines aim at avoiding a number of omissions, pitfalls and risks. PMID:19745455

  5. Annual Report 1991. Institute for systems engineering and informatics

    International Nuclear Information System (INIS)

    The report presents the achievements of the Institute for Systems Engineering and Informatics (ISEI) of the Joint Research Centre (JRC) of the Commission of the European Communities (CEC) for 1991. The JRC is a European scientific and technical research centre established by the member states of the CEC. Its four sites in Belgium (Geel), Germany (Karlsruhe), the Netherland (Petten) and Italy (Ispra) house 8 institutes, each with its own focus of expertise. ISEI, based at Ispra, was created in 1990 by the merger of the Institute for Systems Engineering (ISE) and the Centre for Information Technologies and Electronics (CITE). The main areas of activity of the Institute are: - Industrial and Environmental Risk, - Nuclear Safeguards, -Fusion Reactor Systems Integration and Safety, - Solar Energy Systems and Energy Management, - Advanced Computing, - Informatic services

  6. Challenge: Advancing Energy Informatics to Enable Assessable Improvements of Energy Performance in Buildings

    DEFF Research Database (Denmark)

    Jørgensen, Bo Nørregaard; Kjærgaard, Mikkel Baun; Lazarova-Molnar, Sanja;

    2015-01-01

    Within the emerging discipline of Energy Informatics people are researching, developing and applying information and communication technologies, energy engineering and computer science to address energy challenges. In this paper we discuss the challenge of advancing energy informatics to enable...... assessable improvements of energy performance in buildings. This challenge follows a long-standing goal within the built environment to develop processes that enable predictable outcomes. Implementing this goal in the research framework of energy informatics creates a need for establishing a new underlying...

  7. RTMI ’14 - Proceedings of the 6th Seminar on Research Trends in Media Informatics

    OpenAIRE

    2014-01-01

    RTMI ´14 is the sixth incarnation of the annual seminar Research Trends in Media Informatics hosted by the Institute of Media Informatics at Ulm University. The RTMI seminar series aims to motivate students to delve deeper into the vast and diverse research in the area of media informatics, human computer interaction, and ubiquitious computing. The authors presented their papers at the RTMI conference in February 2014, which was held in the Hall of Knights at the Villa Eberhardt in Ulm. This ...

  8. The pathology informatics curriculum wiki: Harnessing the power of user-generated content

    Directory of Open Access Journals (Sweden)

    Ji Yeon Kim

    2010-01-01

    Full Text Available Background: The need for informatics training as part of pathology training has never been so critical, but pathology informatics is a wide and complex field and very few programs currently have the resources to provide comprehensive educational pathology informatics experiences to their residents. In this article, we present the "pathology informatics curriculum wiki", an open, on-line wiki that indexes the pathology informatics content in a larger public wiki, Wikipedia, (and other online content and organizes it into educational modules based on the 2003 standard curriculum approved by the Association for Pathology Informatics (API. Methods and Results: In addition to implementing the curriculum wiki at http://pathinformatics.wikispaces.com, we have evaluated pathology informatics content in Wikipedia. Of the 199 non-duplicate terms in the API curriculum, 90% have at least one associated Wikipedia article. Furthermore, evaluation of articles on a five-point Likert scale showed high scores for comprehensiveness (4.05, quality (4.08, currency (4.18, and utility for the beginner (3.85 and advanced (3.93 learners. These results are compelling and support the thesis that Wikipedia articles can be used as the foundation for a basic curriculum in pathology informatics. Conclusions: The pathology informatics community now has the infrastructure needed to collaboratively and openly create, maintain and distribute the pathology informatics content worldwide (Wikipedia and also the environment (the curriculum wiki to draw upon its own resources to index and organize this content as a sustainable basic pathology informatics educational resource. The remaining challenges are numerous, but largest by far will be to convince the pathologists to take the time and effort required to build pathology informatics content in Wikipedia and to index and organize this content for education in the curriculum wiki.

  9. Research on the Model of E-commerce of China’s Urban Informatization Community

    OpenAIRE

    Yu Han; Hongyun Li; Yunxia Ning; Yu Hou

    2014-01-01

    Urban informatization e-commerce is a business model of the combination of e-commerce operators and organizational forms of community property management, and the import of people management and property management into e-commerce. This paper analyzes the current situation of Chinese urban community e-commerce and informatization community building. It puts forward the model of community e-commerce based on informatization, and its feasibility was verified by PIECE method. Finally, focusing o...

  10. The Use and Interpretation of Quasi-Experimental Studies in Medical Informatics

    OpenAIRE

    Harris, Anthony D; McGregor, Jessina C.; Perencevich, Eli N.; Furuno, Jon P; Zhu, Jingkun; Peterson, Dan E.; Finkelstein, Joseph

    2006-01-01

    Quasi-experimental study designs, often described as nonrandomized, pre-post intervention studies, are common in the medical informatics literature. Yet little has been written about the benefits and limitations of the quasi-experimental approach as applied to informatics studies. This paper outlines a relative hierarchy and nomenclature of quasi-experimental study designs that is applicable to medical informatics intervention studies. In addition, the authors performed a systematic review of...

  11. Selected Topics on Business Informatics Research: Editorial Introduction to Issue 6 of CSIMQ

    OpenAIRE

    Fabrizio Maria Maggi; Raimundas Matulevičius

    2016-01-01

    Business informatics research bridges management and engineering domains and facilitates communication between scientific and practical applications. The sixth issue of the journal of Complex Systems Informatics and Modeling Quarterly contains four publications that present the extended papers from the workshops of the 14th International Conference on Perspectives in Business Informatics Research (BIR 2015) that was organized in Tartu, Estonia, 26-28 August, 2015. The BIR 2015 workshops captu...

  12. Legal informatics- a personal appraisal of context and progress

    OpenAIRE

    Susskind, Richard

    2010-01-01

    This chapter is an account of the prospects and progress of information technologies in the legal professions as seen through the author’s own journey in the field. In an edited extract from the author’s book, The End of Lawyers?, the chapter suggests that lawyers have insufficiently adapted to the opportunities presented by legal informatics and by the information society.Their challenge is to identify their distinctive skills and talents, the capabilities that they possess that cannot, crud...

  13. Mobile Connectivity and Security Issues for Cloud Informatic Systems

    Directory of Open Access Journals (Sweden)

    Cosmin Cătălin Olteanu

    2015-05-01

    Full Text Available The main purpose of the paper is to illustrate the importance of new software tools that can be used with mobile devices to make them more secure for the use of day to day business software. Many companies are using mobile applications to access some components to ERP’s or CRM’s remotely. Even the new come, cloud Informatic Systems are using more remote devices than ever. This is why we need to secure somehow these mobile applications.

  14. Integrating medical informatics into the medical undergraduate curriculum.

    Science.gov (United States)

    Khonsari, L S; Fabri, P J

    1997-01-01

    The advent of healthcare reform and the rapid application of new technologies have resulted in a paradigm shift in medical practice. Integrating medical Informatics into the full spectrum of medical education is a viral step toward implementing this new instructional model, a step required for the understanding and practice of modern medicine. We have developed an informatics curriculum, a new educational paradigm, and an intranet-based teaching module which are designed to enhance adult-learning principles, life-long self education, and evidence-based critical thinking. Thirty two, fourth year medical students have participated in a one month, full time, independent study focused on but not limited to four topics: mastering the windows-based environment, understanding hospital based information management systems, developing competence in using the internet/intranet and world wide web/HTML, and experiencing distance communication and TeleVideo networks. Each student has completed a clinically relevant independent study project utilizing technology mastered during the course. This initial curriculum offering was developed in conjunction with faculty from the College of Medicine, College of Engineering, College of Education, College of Business, College of Public Health. Florida Center of Instructional Technology, James A. Haley Veterans Hospital, Moffitt Cancer Center, Tampa General Hospital, GTE, Westshore Walk-in Clinic (paperless office), and the Florida Engineering Education Delivery System. Our second step toward the distributive integration process was the introduction of Medical Informatics to first, second and third year medical students. To date, these efforts have focused on undergraduate medical education. Our next step is to offer workshops in Informatics to college of medicine faculty, to residents in post graduate training programs (GME), and ultimately as a method of distance learning in continuing medical education (CME).

  15. Nursing informatics, ethics and decisions: implications for translational research

    OpenAIRE

    Kaltoft, Mette Kjer; Nielsen, Jesper Bo; Dowie, Jack

    2014-01-01

    Nursing informatics, ethics and decisions: implications for translational research Objective: To introduce, in the multi-disciplinary contexts of clinical decision making and policy formation, a theory-based decision-analytic framework for the transparent forward translation of research into practice which can simultaneously identify and communicate the needs for backward translation from practice to research.Method:Web-based decision analytic software is used to demonstrate how the weights f...

  16. Particularities of Verification Processes for Distributed Informatics Applications

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2013-01-01

    Full Text Available This paper presents distributed informatics applications and characteristics of their development cycle. It defines the concept of verification and there are identified the differences from software testing. Particularities of the software testing and software verification processes are described. The verification steps and necessary conditions are presented and there are established influence factors of quality verification. Software optimality verification is analyzed and some metrics are defined for the verification process.

  17. Particularities of Verification Processes for Distributed Informatics Applications

    OpenAIRE

    IVAN, ION; Cristian CIUREA; Bogdan VINTILA; Gheorghe NOSCA

    2013-01-01

    This paper presents distributed informatics applications and characteristics of their development cycle. It defines the concept of verification and there are identified the differences from software testing. Particularities of the software testing and software verification processes are described. The verification steps and necessary conditions are presented and there are established influence factors of quality verification. Software optimality verification is analyzed and some metrics are d...

  18. Changes in education in the context of informatization

    OpenAIRE

    Coufal, Libor

    2012-01-01

    Upcoming implementation of information and communication technologies in social processes causes not only the change of society but within the implementation of ICT in education also causes changes in education and learning process. Computer technology is becoming a part of everyday life, the concept of the word "information" is also changing. The process of informatization and a proper understanding of the word "information" causes raising of new requirements, mainly in education, more exact...

  19. Geo-Informatics in India: Major Milestones and Present Scenario

    OpenAIRE

    S Gupta; Karnatak, H.; P L N RAJU

    2016-01-01

    Geo-informatics has emerged globally as a useful tool to address spatial problems with significant societal implications that require integrative and innovative approaches for analysis, modelling, managing, and archiving of extensive and diverse data sets. Breakneck technological development and availability of satellite based data and information services in public domain along with real time geo-data n through participatory approaches, in the two last decades have led to a sea-change in our...

  20. A Nursing Informatics Curriculum Within a Health Systems Environment

    OpenAIRE

    Heermann, Judith A.; Warren, Judith J.

    2001-01-01

    Challenged with the need to provide graduate education in nursing informatics across the state of Nebraska, an innovative curriculum was developed. This curriculum is integrated with other system-focused specialties (community health nursing and nursing administration) to form a Health Systems Nurse Specialist (HSNS) Program. The delivery of this curriculum was designed to be as independent of time and place as possible. Nurses especially in rural areas, have embraced this program as they can...