WorldWideScience

Sample records for biomedical imaging systems

  1. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  2. A novel biomedical image indexing and retrieval system via deep preference learning.

    Science.gov (United States)

    Pang, Shuchao; Orgun, Mehmet A; Yu, Zhezhou

    2018-05-01

    The traditional biomedical image retrieval methods as well as content-based image retrieval (CBIR) methods originally designed for non-biomedical images either only consider using pixel and low-level features to describe an image or use deep features to describe images but still leave a lot of room for improving both accuracy and efficiency. In this work, we propose a new approach, which exploits deep learning technology to extract the high-level and compact features from biomedical images. The deep feature extraction process leverages multiple hidden layers to capture substantial feature structures of high-resolution images and represent them at different levels of abstraction, leading to an improved performance for indexing and retrieval of biomedical images. We exploit the current popular and multi-layered deep neural networks, namely, stacked denoising autoencoders (SDAE) and convolutional neural networks (CNN) to represent the discriminative features of biomedical images by transferring the feature representations and parameters of pre-trained deep neural networks from another domain. Moreover, in order to index all the images for finding the similarly referenced images, we also introduce preference learning technology to train and learn a kind of a preference model for the query image, which can output the similarity ranking list of images from a biomedical image database. To the best of our knowledge, this paper introduces preference learning technology for the first time into biomedical image retrieval. We evaluate the performance of two powerful algorithms based on our proposed system and compare them with those of popular biomedical image indexing approaches and existing regular image retrieval methods with detailed experiments over several well-known public biomedical image databases. Based on different criteria for the evaluation of retrieval performance, experimental results demonstrate that our proposed algorithms outperform the state

  3. Image BOSS: a biomedical object storage system

    Science.gov (United States)

    Stacy, Mahlon C.; Augustine, Kurt E.; Robb, Richard A.

    1997-05-01

    Researchers using biomedical images have data management needs which are oriented perpendicular to clinical PACS. The image BOSS system is designed to permit researchers to organize and select images based on research topic, image metadata, and a thumbnail of the image. Image information is captured from existing images in a Unix based filesystem, stored in an object oriented database, and presented to the user in a familiar laboratory notebook metaphor. In addition, the ImageBOSS is designed to provide an extensible infrastructure for future content-based queries directly on the images.

  4. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  5. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  6. Pattern recognition and expert image analysis systems in biomedical image processing (Invited Paper)

    Science.gov (United States)

    Oosterlinck, A.; Suetens, P.; Wu, Q.; Baird, M.; F. M., C.

    1987-09-01

    This paper gives an overview of pattern recoanition techniques (P.R.) used in biomedical image processing and problems related to the different P.R. solutions. Also the use of knowledge based systems to overcome P.R. difficulties, is described. This is illustrated by a common example ofabiomedical image processing application.

  7. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  8. BIG: a Grid Portal for Biomedical Data and Images

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-06-01

    Full Text Available Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc., advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid, a Web-based Grid portal for management of biomedical information (data and images in a distributed environment. BIG is an interactive environment that deals with complex user's requests, regarding the acquisition of biomedical data, the "processing" and "delivering" of biomedical images, using the power and security of Computational Grids.

  9. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  10. Compound image segmentation of published biomedical figures.

    Science.gov (United States)

    Li, Pengyuan; Jiang, Xiangying; Kambhamettu, Chandra; Shatkay, Hagit

    2018-04-01

    Images convey essential information in biomedical publications. As such, there is a growing interest within the bio-curation and the bio-databases communities, to store images within publications as evidence for biomedical processes and for experimental results. However, many of the images in biomedical publications are compound images consisting of multiple panels, where each individual panel potentially conveys a different type of information. Segmenting such images into constituent panels is an essential first step toward utilizing images. In this article, we develop a new compound image segmentation system, FigSplit, which is based on Connected Component Analysis. To overcome shortcomings typically manifested by existing methods, we develop a quality assessment step for evaluating and modifying segmentations. Two methods are proposed to re-segment the images if the initial segmentation is inaccurate. Experimental results show the effectiveness of our method compared with other methods. The system is publicly available for use at: https://www.eecis.udel.edu/~compbio/FigSplit. The code is available upon request. shatkay@udel.edu. Supplementary data are available online at Bioinformatics.

  11. Review of spectral imaging technology in biomedical engineering: achievements and challenges.

    Science.gov (United States)

    Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin

    2013-10-01

    Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.

  12. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  13. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  14. e-Science platform for translational biomedical imaging research: running, statistics, and analysis

    Science.gov (United States)

    Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo

    2015-03-01

    In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.

  15. An enhanced approach for biomedical image restoration using image fusion techniques

    Science.gov (United States)

    Karam, Ghada Sabah; Abbas, Fatma Ismail; Abood, Ziad M.; Kadhim, Kadhim K.; Karam, Nada S.

    2018-05-01

    Biomedical image is generally noisy and little blur due to the physical mechanisms of the acquisition process, so one of the common degradations in biomedical image is their noise and poor contrast. The idea of biomedical image enhancement is to improve the quality of the image for early diagnosis. In this paper we are using Wavelet Transformation to remove the Gaussian noise from biomedical images: Positron Emission Tomography (PET) image and Radiography (Radio) image, in different color spaces (RGB, HSV, YCbCr), and we perform the fusion of the denoised images resulting from the above denoising techniques using add image method. Then some quantive performance metrics such as signal -to -noise ratio (SNR), peak signal-to-noise ratio (PSNR), and Mean Square Error (MSE), etc. are computed. Since this statistical measurement helps in the assessment of fidelity and image quality. The results showed that our approach can be applied of Image types of color spaces for biomedical images.

  16. Visualization of biomedical image data and irradiation planning using a parallel computing system

    International Nuclear Information System (INIS)

    Lehrig, R.

    1991-01-01

    The contribution explains the development of a novel, low-cost workstation for the processing of biomedical tomographic data sequences. The workstation was to allow both graphical display of the data and implementation of modelling software for irradiation planning, especially for calculation of dose distributions on the basis of the measured tomogram data. The system developed according to these criteria is a parallel computing system which performs secondary, two-dimensional image reconstructions irrespective of the imaging direction of the original tomographic scans. Three-dimensional image reconstructions can be generated from any direction of view, with random selection of sections of the scanned object. (orig./MM) With 69 figs., 2 tabs [de

  17. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  18. Analyser-based x-ray imaging for biomedical research

    International Nuclear Information System (INIS)

    Suortti, Pekka; Keyriläinen, Jani; Thomlinson, William

    2013-01-01

    Analyser-based imaging (ABI) is one of the several phase-contrast x-ray imaging techniques being pursued at synchrotron radiation facilities. With advancements in compact source technology, there is a possibility that ABI will become a clinical imaging modality. This paper presents the history of ABI as it has developed from its laboratory source to synchrotron imaging. The fundamental physics of phase-contrast imaging is presented both in a general sense and specifically for ABI. The technology is dependent on the use of perfect crystal monochromator optics. The theory of the x-ray optics is developed and presented in a way that will allow optimization of the imaging for specific biomedical systems. The advancement of analytical algorithms to produce separate images of the sample absorption, refraction angle map and small-angle x-ray scattering is detailed. Several detailed applications to biomedical imaging are presented to illustrate the broad range of systems and body sites studied preclinically to date: breast, cartilage and bone, soft tissue and organs. Ultimately, the application of ABI in clinical imaging will depend partly on the availability of compact sources with sufficient x-ray intensity comparable with that of the current synchrotron environment. (paper)

  19. IEEE International Symposium on Biomedical Imaging.

    Science.gov (United States)

    2017-01-01

    The IEEE International Symposium on Biomedical Imaging (ISBI) is a scientific conference dedicated to mathematical, algorithmic, and computational aspects of biological and biomedical imaging, across all scales of observation. It fosters knowledge transfer among different imaging communities and contributes to an integrative approach to biomedical imaging. ISBI is a joint initiative from the IEEE Signal Processing Society (SPS) and the IEEE Engineering in Medicine and Biology Society (EMBS). The 2018 meeting will include tutorials, and a scientific program composed of plenary talks, invited special sessions, challenges, as well as oral and poster presentations of peer-reviewed papers. High-quality papers are requested containing original contributions to the topics of interest including image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological, and statistical modeling. Accepted 4-page regular papers will be published in the symposium proceedings published by IEEE and included in IEEE Xplore. To encourage attendance by a broader audience of imaging scientists and offer additional presentation opportunities, ISBI 2018 will continue to have a second track featuring posters selected from 1-page abstract submissions without subsequent archival publication.

  20. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  1. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  2. Biomedical Image Registration

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 8th International Workshop on Biomedical Image Registration, WBIR 2018, held in Leiden, The Netherlands, in June 2018. The 11 full and poster papers included in this volume were carefully reviewed and selected from 17 submitted papers. The pap...

  3. An optimal big data workflow for biomedical image analysis

    Directory of Open Access Journals (Sweden)

    Aurelle Tchagna Kouanou

    Full Text Available Background and objective: In the medical field, data volume is increasingly growing, and traditional methods cannot manage it efficiently. In biomedical computation, the continuous challenges are: management, analysis, and storage of the biomedical data. Nowadays, big data technology plays a significant role in the management, organization, and analysis of data, using machine learning and artificial intelligence techniques. It also allows a quick access to data using the NoSQL database. Thus, big data technologies include new frameworks to process medical data in a manner similar to biomedical images. It becomes very important to develop methods and/or architectures based on big data technologies, for a complete processing of biomedical image data. Method: This paper describes big data analytics for biomedical images, shows examples reported in the literature, briefly discusses new methods used in processing, and offers conclusions. We argue for adapting and extending related work methods in the field of big data software, using Hadoop and Spark frameworks. These provide an optimal and efficient architecture for biomedical image analysis. This paper thus gives a broad overview of big data analytics to automate biomedical image diagnosis. A workflow with optimal methods and algorithm for each step is proposed. Results: Two architectures for image classification are suggested. We use the Hadoop framework to design the first, and the Spark framework for the second. The proposed Spark architecture allows us to develop appropriate and efficient methods to leverage a large number of images for classification, which can be customized with respect to each other. Conclusions: The proposed architectures are more complete, easier, and are adaptable in all of the steps from conception. The obtained Spark architecture is the most complete, because it facilitates the implementation of algorithms with its embedded libraries. Keywords: Biomedical images, Big

  4. Bio-medical X-ray imaging with spectroscopic pixel detectors

    CERN Document Server

    Butler, A P H; Tipples, R; Cook, N; Watts, R; Meyer, J; Bell, A J; Melzer, T R; Butler, P H

    2008-01-01

    The aim of this study is to review the clinical potential of spectroscopic X-ray detectors and to undertake a feasibility study using a novel detector in a clinical hospital setting. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allowing for routine use of spectroscopic bio-medical imaging. We have coined the term MARS (Medipix All Resolution System) for bio-medical images that provide spatial, temporal, and energy information. The full clinical significance of spectroscopic X-ray imaging is difficult to predict but insights can be gained by examining both image reconstruction artifacts and the current uses of dual-energy techniques. This paper reviews the known uses of energy information in vascular imaging and mammography, clinically important fields. It then presents initial results from using Medipix-2, to image human tissues within a clinical radiology department. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allo...

  5. Advances in biomedical signal and image processing – A systematic review

    Directory of Open Access Journals (Sweden)

    J. Rajeswari

    Full Text Available Biomedical signal and image processing establish a dynamic area of specialization in both academic as well as research aspects of biomedical engineering. The concepts of signal and image processing have been widely used for extracting the physiological information in implementing many clinical procedures for sophisticated medical practices and applications. In this paper, the relationship between electrophysiological signals, i.e., electrocardiogram (ECG, electromyogram (EMG, electroencephalogram (EEG and functional image processing and their derived interactions have been discussed. Examples have been investigated in various case studies such as neurosciences, functional imaging, and cardiovascular system, by using different algorithms and methods. The interaction between the extracted information obtained from multiple signals and modalities seems to be very promising. The advanced algorithms and methods in the area of information retrieval based on time-frequency representation have been investigated. Finally, some examples of algorithms have been discussed in which the electrophysiological signals and functional images have been properly extracted and have a significant impact on various biomedical applications. Keywords: Biomedical signals and images, Processing, Analysis

  6. Biomedical signal and image processing.

    Science.gov (United States)

    Cerutti, Sergio; Baselli, Giuseppe; Bianchi, Anna; Caiani, Enrico; Contini, Davide; Cubeddu, Rinaldo; Dercole, Fabio; Rienzo, Luca; Liberati, Diego; Mainardi, Luca; Ravazzani, Paolo; Rinaldi, Sergio; Signorini, Maria; Torricelli, Alessandro

    2011-01-01

    Generally, physiological modeling and biomedical signal processing constitute two important paradigms of biomedical engineering (BME): their fundamental concepts are taught starting from undergraduate studies and are more completely dealt with in the last years of graduate curricula, as well as in Ph.D. courses. Traditionally, these two cultural aspects were separated, with the first one more oriented to physiological issues and how to model them and the second one more dedicated to the development of processing tools or algorithms to enhance useful information from clinical data. A practical consequence was that those who did models did not do signal processing and vice versa. However, in recent years,the need for closer integration between signal processing and modeling of the relevant biological systems emerged very clearly [1], [2]. This is not only true for training purposes(i.e., to properly prepare the new professional members of BME) but also for the development of newly conceived research projects in which the integration between biomedical signal and image processing (BSIP) and modeling plays a crucial role. Just to give simple examples, topics such as brain–computer machine or interfaces,neuroengineering, nonlinear dynamical analysis of the cardiovascular (CV) system,integration of sensory-motor characteristics aimed at the building of advanced prostheses and rehabilitation tools, and wearable devices for vital sign monitoring and others do require an intelligent fusion of modeling and signal processing competences that are certainly peculiar of our discipline of BME.

  7. Proceedings of the international society for optical engineering biomedical image processing 2

    International Nuclear Information System (INIS)

    Bovik, A.G.; Howard, V.

    1991-01-01

    This book contains the proceedings of biomedical image processing. Topics covered include: Filtering and reconstruction of biomedical images; analysis, classification and recognition of biomedical images; and 3-D microscopy

  8. Double-compression method for biomedical images

    Science.gov (United States)

    Antonenko, Yevhenii A.; Mustetsov, Timofey N.; Hamdi, Rami R.; Małecka-Massalska, Teresa; Orshubekov, Nurbek; DzierŻak, RóŻa; Uvaysova, Svetlana

    2017-08-01

    This paper describes a double compression method (DCM) of biomedical images. A comparison of image compression factors in size JPEG, PNG and developed DCM was carried out. The main purpose of the DCM - compression of medical images while maintaining the key points that carry diagnostic information. To estimate the minimum compression factor an analysis of the coding of random noise image is presented.

  9. A robust pointer segmentation in biomedical images toward building a visual ontology for biomedical article retrieval

    Science.gov (United States)

    You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-01-01

    Pointers (arrows and symbols) are frequently used in biomedical images to highlight specific image regions of interest (ROIs) that are mentioned in figure captions and/or text discussion. Detection of pointers is the first step toward extracting relevant visual features from ROIs and combining them with textual descriptions for a multimodal (text and image) biomedical article retrieval system. Recently we developed a pointer recognition algorithm based on an edge-based pointer segmentation method, and subsequently reported improvements made on our initial approach involving the use of Active Shape Models (ASM) for pointer recognition and region growing-based method for pointer segmentation. These methods contributed to improving the recall of pointer recognition but not much to the precision. The method discussed in this article is our recent effort to improve the precision rate. Evaluation performed on two datasets and compared with other pointer segmentation methods show significantly improved precision and the highest F1 score.

  10. Multiplicative calculus in biomedical image analysis

    NARCIS (Netherlands)

    Florack, L.M.J.; Assen, van H.C.

    2011-01-01

    We advocate the use of an alternative calculus in biomedical image analysis, known as multiplicative (a.k.a. non-Newtonian) calculus. It provides a natural framework in problems in which positive images or positive definite matrix fields and positivity preserving operators are of interest. Indeed,

  11. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  12. Contributions on biomedical imaging, with a side-look at molecular imaging

    International Nuclear Information System (INIS)

    Winkler, G.

    2004-05-01

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.) [de

  13. All-optoelectronic continuous wave THz imaging for biomedical applications

    International Nuclear Information System (INIS)

    Siebert, Karsten J; Loeffler, Torsten; Quast, Holger; Thomson, Mark; Bauer, Tobias; Leonhardt, Rainer; Czasch, Stephanie; Roskos, Hartmut G

    2002-01-01

    We present an all-optoelectronic THz imaging system for ex vivo biomedical applications based on photomixing of two continuous-wave laser beams using photoconductive antennas. The application of hyperboloidal lenses is discussed. They allow for f-numbers less than 1/2 permitting better focusing and higher spatial resolution compared to off-axis paraboloidal mirrors whose f-numbers for practical reasons must be larger than 1/2. For a specific histological sample, an analysis of image noise is discussed

  14. Biomedical image retrieval using microscopic configuration with ...

    Indian Academy of Sciences (India)

    G DEEP

    2018-03-10

    Mar 10, 2018 ... The selection of feature descriptors affects the image .... Example of obtaining LBP for 3 9 3 neighbourhoods (adopted from Ojala et al [9]). 20 Page 2 of 13 ...... Directional binary wavelet patterns for biomedical image indexing ...

  15. High-Definition 3D Stereoscopic Microscope Display System for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yoo Kwan-Hee

    2010-01-01

    Full Text Available Biomedical research has been performed by using advanced information techniques, and micro-high-quality stereo images have been used by researchers and/or doctors for various aims in biomedical research and surgery. To visualize the stereo images, many related devices have been developed. However, the devices are difficult to learn for junior doctors and demanding to supervise for experienced surgeons. In this paper, we describe the development of a high-definition (HD three-dimensional (3D stereoscopic imaging display system for operating a microscope or experimenting on animals. The system consists of a stereoscopic camera part, image processing device for stereoscopic video recording, and stereoscopic display. In order to reduce eyestrain and viewer fatigue, we use a preexisting stereo microscope structure and polarized-light stereoscopic display method that does not reduce the quality of the stereo images. The developed system can overcome the discomfort of the eye piece and eyestrain caused by use over a long period of time.

  16. Rotation Covariant Image Processing for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Henrik Skibbe

    2013-01-01

    Full Text Available With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  17. A UNIX-based prototype biomedical virtual image processor

    International Nuclear Information System (INIS)

    Fahy, J.B.; Kim, Y.

    1987-01-01

    The authors have developed a multiprocess virtual image processor for the IBM PC/AT, in order to maximize image processing software portability for biomedical applications. An interprocess communication scheme, based on two-way metacode exchange, has been developed and verified for this purpose. Application programs call a device-independent image processing library, which transfers commands over a shared data bridge to one or more Autonomous Virtual Image Processors (AVIP). Each AVIP runs as a separate process in the UNIX operating system, and implements the device-independent functions on the image processor to which it corresponds. Application programs can control multiple image processors at a time, change the image processor configuration used at any time, and are completely portable among image processors for which an AVIP has been implemented. Run-time speeds have been found to be acceptable for higher level functions, although rather slow for lower level functions, owing to the overhead associated with sending commands and data over the shared data bridge

  18. Mathematics and physics of emerging biomedical imaging

    National Research Council Canada - National Science Library

    Committee on the Mathematics and Physics of Emerging Dynamic Biomedical Imaging, National Research Council

    .... Incorporating input from dozens of biomedical researchers who described what they perceived as key open problems of imaging that are amenable to attack by mathematical scientists and physicists...

  19. Biomedical imaging graduate curricula and courses: report from the 2005 Whitaker Biomedical Engineering Educational Summit.

    Science.gov (United States)

    Louie, Angelique; Izatt, Joseph; Ferrara, Katherine

    2006-02-01

    We present an overview of graduate programs in biomedical imaging that are currently available in the US. Special attention is given to the emerging technologies of molecular imaging and biophotonics. Discussions from the workshop on Graduate Imaging at the 2005 Whitaker Educational Summit meeting are summarized.

  20. University of Vermont Center for Biomedical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Dr. Ira [University of Vermont and State Agricultural College

    2013-08-02

    This grant was awarded in support of Phase 2 of the University of Vermont Center for Biomedical Imaging. Phase 2 outlined several specific aims including: The development of expertise in MRI and fMRI imaging and their applications The acquisition of peer reviewed extramural funding in support of the Center The development of a Core Imaging Advisory Board, fee structure and protocol review and approval process.

  1. Mathematics and physics of emerging biomedical imaging

    International Nuclear Information System (INIS)

    1996-01-01

    Although the mathematical sciences were used in a general way for image processing, they were of little importance in biomedical work until the development in the 1970s of computed tomography (CT) for the imaging of x-rays and isotope emission tomography. In the 1980s, MRI eclipsed the other modalities in many ways as the most informative medical imaging methodology. Besides these well-established techniques, computer-based mathematical methods are being explored in applications to other well-known methods, such as ultrasound and electroencephalography, as well as new techniques of optical imaging, impedance tomography, and magnetic source imaging. It is worth pointing out that, while the final images of many of these techniques bear many similarities to each other, the technologies involved in each are completely different and the parameters represented in the images are very different in character as well as in medical usefulness. In each case, rather different mathematical or statistical models are used, with different equations. One common thread is the paradigm of reconstruction from indirect measurements--this is the unifying theme of this report. The imaging methods used in biomedical applications that this report discusses include: (1) x-ray projection imaging; (2) x-ray computed tomography (CT); (3) magnetic resonance imaging (MRI) and magnetic resonance spectroscopy; (4) single photon emission computed tomography (SPECT); (5) positron emission tomography (PET); (6) ultrasonics; (7) electrical source imaging (ESI); (8) electrical impedance tomography (EIT); (9) magnetic source imaging (MSI); and (10) medical optical imaging

  2. Coherent fiber supercontinuum laser for nonlinear biomedical imaging

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin

    2012-01-01

    Nonlinear biomedical imaging has not benefited from the well-known techniques of fiber supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, low spectral power intensity, and inadequate portability. Fortunately, a few techniques involving...... nonlinear fiber optics and femtosecond fiber laser development have emerged to overcome these critical limitations. These techniques pave the way for conducting point-of-care nonlinear biomedical imaging by a low-maintenance cost-effective coherent fiber supercontinuum laser, which covers a broad emission...... wavelength of 350-1700 nm. A prototype of this laser has been demonstrated in label-free multimodal nonlinear imaging of cell and tissue samples.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  3. An image fiber based fluorescent probe with associated signal processing scheme for biomedical diagnostics

    International Nuclear Information System (INIS)

    Vaishakh, M; Murukeshan, V M; Seah, L K

    2008-01-01

    A dual-modality image fiber based fluorescent probe that can be used for depth sensitive imaging and suppression of fluorescent emissions with nanosecond lifetime difference is proposed and illustrated in this paper. The system can give high optical sectioning and employs an algorithm for obtaining phase sensitive images. The system can find main application in in vivo biomedical diagnostics for detecting biochemical changes for distinguishing malignant tissue from healthy tissue

  4. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  5. Computer vision for biomedical image applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanxi [Carnegie Mellon Univ., Pittsburgh, PA (United States). School of Computer Science, The Robotics Institute; Jiang, Tianzi [Chinese Academy of Sciences, Beijing (China). National Lab. of Pattern Recognition, Inst. of Automation; Zhang, Changshui (eds.) [Tsinghua Univ., Beijing, BJ (China). Dept. of Automation

    2005-07-01

    This book constitutes the refereed proceedings of the First International Workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, CVBIA 2005, held in Beijing, China, in October 2005 within the scope of ICCV 20. (orig.)

  6. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.

    Science.gov (United States)

    Pang, Shuchao; Yu, Zhezhou; Orgun, Mehmet A

    2017-03-01

    Highly accurate classification of biomedical images is an essential task in the clinical diagnosis of numerous medical diseases identified from those images. Traditional image classification methods combined with hand-crafted image feature descriptors and various classifiers are not able to effectively improve the accuracy rate and meet the high requirements of classification of biomedical images. The same also holds true for artificial neural network models directly trained with limited biomedical images used as training data or directly used as a black box to extract the deep features based on another distant dataset. In this study, we propose a highly reliable and accurate end-to-end classifier for all kinds of biomedical images via deep learning and transfer learning. We first apply domain transferred deep convolutional neural network for building a deep model; and then develop an overall deep learning architecture based on the raw pixels of original biomedical images using supervised training. In our model, we do not need the manual design of the feature space, seek an effective feature vector classifier or segment specific detection object and image patches, which are the main technological difficulties in the adoption of traditional image classification methods. Moreover, we do not need to be concerned with whether there are large training sets of annotated biomedical images, affordable parallel computing resources featuring GPUs or long times to wait for training a perfect deep model, which are the main problems to train deep neural networks for biomedical image classification as observed in recent works. With the utilization of a simple data augmentation method and fast convergence speed, our algorithm can achieve the best accuracy rate and outstanding classification ability for biomedical images. We have evaluated our classifier on several well-known public biomedical datasets and compared it with several state-of-the-art approaches. We propose a robust

  7. Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer

    Science.gov (United States)

    2014-01-01

    This review article is meant to help biomedical engineers and nonphysical scientists better understand the principles of, and the main trends in modern scanning and imaging modalities used in ophthalmology. It is intended to ease the communication between physicists, medical doctors and engineers, and hopefully encourage “classical” biomedical engineers to generate new ideas and to initiate projects in an area which has traditionally been dominated by optical physics. Most of the methods involved are applicable to other areas of biomedical optics and optoelectronics, such as microscopic imaging, spectroscopy, spectral imaging, opto-acoustic tomography, fluorescence imaging etc., all of which are with potential biomedical application. Although all described methods are novel and important, the emphasis of this review has been placed on three technologies introduced in the 1990’s and still undergoing vigorous development: Confocal Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and polarization-sensitive retinal scanning. PMID:24779618

  8. Acquisition and manipulation of computed tomography images of the maxillofacial region for biomedical prototyping

    International Nuclear Information System (INIS)

    Meurer, Maria Ines; Silva, Jorge Vicente Lopes da; Santa Barbara, Ailton; Nobre, Luiz Felipe; Oliveira, Marilia Gerhardt de; Silva, Daniela Nascimento

    2008-01-01

    Biomedical prototyping has resulted from a merger of rapid prototyping and imaging diagnosis technologies. However, this process is complex, considering the necessity of interaction between biomedical sciences and engineering. Good results are highly dependent on the acquisition of computed tomography images and their subsequent manipulation by means of specific software. The present study describes the experience of a multidisciplinary group of researchers in the acquisition and manipulation of computed tomography images of the maxillofacial region aiming at biomedical prototyping for surgical purposes. (author)

  9. Endovascular Device Testing with Particle Image Velocimetry Enhances Undergraduate Biomedical Engineering Education

    Science.gov (United States)

    Nair, Priya; Ankeny, Casey J.; Ryan, Justin; Okcay, Murat; Frakes, David H.

    2016-01-01

    We investigated the use of a new system, HemoFlow™, which utilizes state of the art technologies such as particle image velocimetry to test endovascular devices as part of an undergraduate biomedical engineering curriculum. Students deployed an endovascular stent into an anatomical model of a cerebral aneurysm and measured intra-aneurysmal flow…

  10. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    Pawar, S.H.; Khyalappa, R.J.; Yakhmi, J.V.

    2009-01-01

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  11. Multiscale integration of -omic, imaging, and clinical data in biomedical informatics.

    Science.gov (United States)

    Phan, John H; Quo, Chang F; Cheng, Chihwen; Wang, May Dongmei

    2012-01-01

    This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data.

  12. New software developments for quality mesh generation and optimization from biomedical imaging data.

    Science.gov (United States)

    Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko

    2014-01-01

    In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Molecular image in biomedical research. Molecular imaging unit of the National Cancer Research Center

    International Nuclear Information System (INIS)

    Perez Bruzon, J.; Mulero Anhiorte, F.

    2010-01-01

    This article has two basic objectives. firstly, it will review briefly the most important imaging techniques used in biomedical research indicting the most significant aspects related to their application in the preclinical stage. Secondly, it will present a practical application of these techniques in a pure biomedical research centre (not associated to a clinical facility). Practical aspects such as organisation, equipment, work norms, shielding of the Spanish National Cancer Research Centre (CNIO) Imaging Unit will be shown. This is a pioneering facility in the application of these techniques in research centres without any dependence or any direct relationship with other hospital Nuclear Medicine services. (Author) 7 refs.

  14. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval.

    Science.gov (United States)

    Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R

    2015-10-01

    This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.

  15. Ultrasmall lanthanide oxide nanoparticles for biomedical imaging and therapy

    CERN Document Server

    Lee, Gang Ho

    2014-01-01

    Most books discuss general and broad topics regarding molecular imagings. However, Ultrasmall Lanthanide Oxide Nanoparticles for Biomedical Imaging and Therapy, will mainly focus on lanthanide oxide nanoparticles for molecular imaging and therapeutics. Multi-modal imaging capabilities will discussed, along with up-converting FI by using lanthanide oxide nanoparticles. The synthesis will cover polyol synthesis of lanthanide oxide nanoparticles, Surface coatings with biocompatible and hydrophilic ligands will be discussed and TEM images and dynamic light scattering (DLS) patterns will be

  16. Development of biosensor based on imaging ellipsometry and biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Jin, G., E-mail: gajin@imech.ac.c [NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-si-huan west Rd., Beijing 100190 (China); Meng, Y.H.; Liu, L.; Niu, Y.; Chen, S. [NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-si-huan west Rd., Beijing 100190 (China); Cai, Q.; Jiang, T.J. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2011-02-28

    So far, combined with a microfluidic reactor array system, an engineering system of biosensor based on imaging ellipsometry is installed for biomedical applications, such as antibody screen, hepatitis B markers detection, cancer markers spectrum and virus recognition, etc. Furthermore, the biosensor in total internal reflection (TIR) mode has be improved by a spectroscopic light, optimization settings of polarization and low noise CCD which brings an obvious improvement of 10 time increase in the sensitivity and SNR, and 50 times lower concentration in the detection limit with a throughput of 48 independent channels and the time resolution of 0.04 S.

  17. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  18. Review of Biomedical Image Processing

    Directory of Open Access Journals (Sweden)

    Ciaccio Edward J

    2011-11-01

    Full Text Available Abstract This article is a review of the book: 'Biomedical Image Processing', by Thomas M. Deserno, which is published by Springer-Verlag. Salient information that will be useful to decide whether the book is relevant to topics of interest to the reader, and whether it might be suitable as a course textbook, are presented in the review. This includes information about the book details, a summary, the suitability of the text in course and research work, the framework of the book, its specific content, and conclusions.

  19. Biomedical image analysis recipes in Matlab for life scientists and engineers

    CERN Document Server

    Reyes-Aldasoro, Constantino Carlos

    2015-01-01

    As its title suggests, this innovative book has been written for life scientists needing to analyse their data sets, and programmers, wanting a better understanding of the types of experimental images life scientists investigate on a regular basis. Each chapter presents one self-contained biomedical experiment to be analysed. Part I of the book presents its two basic ingredients: essential concepts of image analysis and Matlab. In Part II, algorithms and techniques are shown as series of 'recipes' or solved examples that show how specific techniques are applied to a biomedical experiments like

  20. Annotating image ROIs with text descriptions for multimodal biomedical document retrieval

    Science.gov (United States)

    You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-01-01

    Regions of interest (ROIs) that are pointed to by overlaid markers (arrows, asterisks, etc.) in biomedical images are expected to contain more important and relevant information than other regions for biomedical article indexing and retrieval. We have developed several algorithms that localize and extract the ROIs by recognizing markers on images. Cropped ROIs then need to be annotated with contents describing them best. In most cases accurate textual descriptions of the ROIs can be found from figure captions, and these need to be combined with image ROIs for annotation. The annotated ROIs can then be used to, for example, train classifiers that separate ROIs into known categories (medical concepts), or to build visual ontologies, for indexing and retrieval of biomedical articles. We propose an algorithm that pairs visual and textual ROIs that are extracted from images and figure captions, respectively. This algorithm based on dynamic time warping (DTW) clusters recognized pointers into groups, each of which contains pointers with identical visual properties (shape, size, color, etc.). Then a rule-based matching algorithm finds the best matching group for each textual ROI mention. Our method yields a precision and recall of 96% and 79%, respectively, when ground truth textual ROI data is used.

  1. Biochemical imaging of tissues by SIMS for biomedical applications

    International Nuclear Information System (INIS)

    Lee, Tae Geol; Park, Ji-Won; Shon, Hyun Kyong; Moon, Dae Won; Choi, Won Woo; Li, Kapsok; Chung, Jin Ho

    2008-01-01

    With the development of optimal surface cleaning techniques by cluster ion beam sputtering, certain applications of SIMS for analyzing cells and tissues have been actively investigated. For this report, we collaborated with bio-medical scientists to study bio-SIMS analyses of skin and cancer tissues for biomedical diagnostics. We pay close attention to the setting up of a routine procedure for preparing tissue specimens and treating the surface before obtaining the bio-SIMS data. Bio-SIMS was used to study two biosystems, skin tissues for understanding the effects of photoaging and colon cancer tissues for insight into the development of new cancer diagnostics for cancer. Time-of-flight SIMS imaging measurements were taken after surface cleaning with cluster ion bombardment by Bi n or C 60 under varying conditions. The imaging capability of bio-SIMS with a spatial resolution of a few microns combined with principal component analysis reveal biologically meaningful information, but the lack of high molecular weight peaks even with cluster ion bombardment was a problem. This, among other problems, shows that discourse with biologists and medical doctors are critical to glean any meaningful information from SIMS mass spectrometric and imaging data. For SIMS to be accepted as a routine, daily analysis tool in biomedical laboratories, various practical sample handling methodology such as surface matrix treatment, including nano-metal particles and metal coating, in addition to cluster sputtering, should be studied

  2. A theoretical-experimental methodology for assessing the sensitivity of biomedical spectral imaging platforms, assays, and analysis methods.

    Science.gov (United States)

    Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C

    2018-01-01

    Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Visualization and classification in biomedical terahertz pulsed imaging

    International Nuclear Information System (INIS)

    Loeffler, Torsten; Siebert, Karsten; Czasch, Stephanie; Bauer, Tobias; Roskos, Hartmut G

    2002-01-01

    'Visualization' in imaging is the process of extracting useful information from raw data in such a way that meaningful physical contrasts are developed. 'Classification' is the subsequent process of defining parameter ranges which allow us to identify elements of images such as different tissues or different objects. In this paper, we explore techniques for visualization and classification in terahertz pulsed imaging (TPI) for biomedical applications. For archived (formalin-fixed, alcohol-dehydrated and paraffin-mounted) test samples, we investigate both time- and frequency-domain methods based on bright- and dark-field TPI. Successful tissue classification is demonstrated

  4. Investigation of biomedical inner microstructures with hard X-ray phase-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Graduate University of the Chinese Academy of Sciences, 100864 Beijing (China); Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Chen Bo [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Liu Bo; Yin Hongxia [Capital University of Medical Sciences, 100054 Beijing (China); Li Enrong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Graduate University of the Chinese Academy of Sciences, 100864 Beijing (China); Liu Yijin [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Wang Junyue [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Graduate University of the Chinese Academy of Sciences, 100864 Beijing (China); Yuan Qingxi; Huang Wanxia; Fang Shouxian [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); National Center for NanoScience and Technology, 100080 Beijing (China)], E-mail: wuzy@ihep.ac.cn

    2007-09-21

    Hard X-ray Phase-Contrast Imaging (HX-PCI) is a new and valuable method that may provide information of the inner parts of an opaque object. Previous reports demonstrated its applicability in soft and hard tissue imaging. Here we provide further evidence for improved image quality and the effective capability to distinguish inner microstructures in real biomedical systems such as cochlea. Experiments performed both at the 4W1A beamline of the Beijing Synchrotron Radiation Facility (BSRF) and at the Taiwan National Synchrotron Radiation Research Center (NSRRC) clearly show details of samples' inner microstructure with a resolution of a few microns. The improved spatial resolution is a relevant achievement for future improved understanding and clinical trials.

  5. Integrating systems biology models and biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V

    2011-08-11

    Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  6. Phase-preserving beam expander for biomedical X-ray imaging

    International Nuclear Information System (INIS)

    Martinson, Mercedes; Samadi, Nazanin; Bassey, Bassey; Gomez, Ariel; Chapman, Dean

    2015-01-01

    Building on previous work, a phase-preserving bent Laue beam-expanding monochromator was developed with the capability of performing live animal phase contrast dynamic imaging at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called ‘magic condition’ that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used

  7. Scientific Programs and Funding Opportunities at the National Institute of Biomedical Imaging and Bioengineering

    Science.gov (United States)

    Baird, Richard

    2006-03-01

    The mission of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) is to improve human health by promoting the development and translation of emerging technologies in biomedical imaging and bioengineering. To this end, NIBIB supports a coordinated agenda of research programs in advanced imaging technologies and engineering methods that enable fundamental biomedical discoveries across a broad spectrum of biological processes, disorders, and diseases and have significant potential for direct medical application. These research programs dramatically advance the Nation's healthcare by improving the detection, management and, ultimately, the prevention of disease. The research promoted and supported by NIBIB also is strongly synergistic with other NIH Institutes and Centers as well as across government agencies. This presentation will provide an overview of the scientific programs and funding opportunities supported by NIBIB, highlighting those that are of particular important to the field of medical physics.

  8. Medical imaging education in biomedical engineering curriculum: courseware development and application through a hybrid teaching model.

    Science.gov (United States)

    Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice

    2012-01-01

    Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings.

  9. Morphological image processing for quantitative shape analysis of biomedical structures: effective contrast enhancement

    International Nuclear Information System (INIS)

    Kimori, Yoshitaka

    2013-01-01

    A contrast enhancement approach utilizing a new type of mathematical morphology called rotational morphological processing is introduced. The method is quantitatively evaluated and then applied to some medical images. Image processing methods significantly contribute to visualization of images captured by biomedical modalities (such as mammography, X-ray computed tomography, magnetic resonance imaging, and light and electron microscopy). Quantitative interpretation of the deluge of complicated biomedical images, however, poses many research challenges, one of which is to enhance structural features that are scarcely perceptible to the human eye. This study introduces a contrast enhancement approach based on a new type of mathematical morphology called rotational morphological processing. The proposed method is applied to medical images for the enhancement of structural features. The effectiveness of the method is evaluated quantitatively by the contrast improvement ratio (CIR). The CIR of the proposed method is 12.1, versus 4.7 and 0.1 for two conventional contrast enhancement methods, clearly indicating the high contrasting capability of the method

  10. Joseph F. Keithley Award For Advances in Measurement Science Lecture: Thermophotonic and Photoacoustic Radar Imaging Methods for Biomedical and Dental Imaging

    Science.gov (United States)

    Mandelis, Andreas

    2012-02-01

    In the first part of this presentation I will introduce thermophotonic radar imaging principles and techniques using chirped or binary-phase-coded modulation, methods which can break through the maximum detection depth/depth resolution limitations of conventional photothermal waves. Using matched-filter principles, a methodology enabling parabolic diffusion-wave energy fields to exhibit energy localization akin to propagating hyperbolic wave-fields has been developed. It allows for deconvolution of individual responses of superposed axially discrete sources, opening a new field: depth-resolved thermal coherence tomography. Several examples from dental enamel caries diagnostic imaging to metal subsurface defect thermographic imaging will be discussed. The second part will introduce the field of photoacoustic radar (or sonar) biomedical imaging. I will report the development of a novel biomedical imaging system that utilizes a continuous-wave laser source with a custom intensity modulation pattern, ultrasonic phased array for signal detection and processing coupled with a beamforming algorithm for reconstruction of photoacoustic correlation images. Utilization of specific chirped modulation waveforms (``waveform engineering'') achieves dramatic signal-to-noise-ratio increase and improved axial resolution over pulsed laser photoacoustics. The talk will conclude with aspects of instrumental sensitivity of the PA Radar to optical contrast using cancerous breast tissue-mimicking phantoms, super paramagnetic iron oxide nanoparticles as contrast enhancement agents and in-vivo tissue samples.

  11. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  12. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  13. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  14. Design of e-Science platform for biomedical imaging research cross multiple academic institutions and hospitals

    Science.gov (United States)

    Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin

    2012-02-01

    More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.

  15. Grating-based X-ray phase contrast for biomedical imaging applications

    International Nuclear Information System (INIS)

    Pfeiffer, Franz; Willner, Marian; Chabior, Michael; Herzen, Julia; Helmholtz-Zentrum Geesthacht, Geesthacht; Auweter, Sigrid; Reiser, Maximilian; Bamberg, Fabian

    2013-01-01

    In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography. (orig.)

  16. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications.

    Science.gov (United States)

    Repenko, Tatjana; Rix, Anne; Ludwanowski, Simon; Go, Dennis; Kiessling, Fabian; Lederle, Wiltrud; Kuehne, Alexander J C

    2017-09-07

    Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.

  17. Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging

    Directory of Open Access Journals (Sweden)

    Yong Taik Lim

    2003-01-01

    Full Text Available Fluorescent semiconductor nanocrystals (quantum dots [QDs] are hypothesized to be excellent contrast agents for biomedical assays and imaging. A unique property of QDs is that their absorbance increases with increasing separation between excitation and emission wavelengths. Much of the enthusiasm for using QDs in vivo stems from this property, since photon yield should be proportional to the integral of the broadband absorption. In this study, we demonstrate that tissue scatter and absorbance can sometimes offset increasing QD absorption at bluer wavelengths, and counteract this potential advantage. By using a previously validated mathematical model, we explored the effects of tissue absorbance, tissue scatter, wavelength dependence of the scatter, water-to- hemoglobin ratio, and tissue thickness on QD performance. We conclude that when embedded in biological fluids and tissues, QD excitation wavelengths will often be quite constrained, and that excitation and emission wavelengths should be selected carefully based on the particular application. Based on our results, we produced near-infrared QDs optimized for imaging surface vasculature with white light excitation and a silicon CCD camera, and used them to image the coronary vasculature in vivo. Taken together, our data should prove useful in designing fluorescent QD contrast agents optimized for specific biomedical applications.

  18. Diode laser based light sources for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André; Marschall, Sebastian; Jensen, Ole Bjarlin

    2013-01-01

    Diode lasers are by far the most efficient lasers currently available. With the ever-continuing improvement in diode laser technology, this type of laser has become increasingly attractive for a wide range of biomedical applications. Compared to the characteristics of competing laser systems, diode...... imaging. This review provides an overview of the latest development of diode laser technology and systems and their use within selected biomedical applications....

  19. Army medical imaging system: ARMIS

    International Nuclear Information System (INIS)

    Siedband, M.P.; Kramp, D.C.

    1987-01-01

    Recent advances of stimulable phosphor screens, data cards using optical storage means, and new personal computers with image processing capability have made possible the design of economical filmless medical imaging systems. The addition of communication links means that remote interpretation of images is also possible. The Army Medical Imaging System uses stimulable phosphor screens, digital readout, a small computer, an optical digital data card device, and a DIN/PACS link. Up to 200 images can be stored in the computer hard disk for rapid recall and reading by the radiologist. The computer permits image processing, annotation, insertion of text, and control of the system. Each device contains an image storage RAM and communicates with the computer via the small computer systems interface. Data compression is used to reduce the required storage capacity and transmission times of the 1-mB images. The credit card-size optical data cards replace film and can store 12 or more images. The data cards can be read on an independent viewer. The research is supported by the U.S. Army Biomedical Research and Development Laboratory

  20. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga de Moura Meneses, Anderson, E-mail: ameneses@ieee.org [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Pereira de Almeida, Andre; Parreira Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro, RJ (Brazil); Cely Barroso, Regina [Laboratory of Applied Physics on Biomedical Sciences, Physics Department, Rio de Janeiro State University, RJ (Brazil); Almeida, Carlos Eduardo de [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil)

    2011-12-21

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography ({mu}CT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-{mu}CT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-{mu}CT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-{mu}CT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  1. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    International Nuclear Information System (INIS)

    Alvarenga de Moura Meneses, Anderson; Giusti, Alessandro; Pereira de Almeida, André; Parreira Nogueira, Liebert; Braz, Delson; Cely Barroso, Regina; Almeida, Carlos Eduardo de

    2011-01-01

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  2. Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems.

    Science.gov (United States)

    Hinchet, Ronan; Kim, Sang-Woo

    2015-08-25

    In this issue of ACS Nano, Tang et al. investigate the ability of a triboelectric nanogenerator (TENG) to self-power a low-level laser cure system for osteogenesis by studying the efficiency of a bone remodeling laser treatment that is powered by a skin-patch-like TENG instead of a battery. We outline this field by highlighting the motivations for self-powered biomedical systems and by discussing recent progress in nanogenerators. We note the overlap between biomedical devices and TENGs and their dawning synergy, and we highlight key prospects for future developments. Biomedical systems should be more autonomous. This advance could improve their body integration and fields of action, leading to new medical diagnostics and treatments. However, future self-powered biomedical systems will need to be more flexible, biocompatible, and biodegradable. These advances hold the promise of enabling new smart autonomous biomedical systems and contributing significantly to the Internet of Things.

  3. The ImageJ ecosystem: An open platform for biomedical image analysis.

    Science.gov (United States)

    Schindelin, Johannes; Rueden, Curtis T; Hiner, Mark C; Eliceiri, Kevin W

    2015-01-01

    Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available-from commercial to academic, special-purpose to Swiss army knife, small to large-but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. © 2015 Wiley Periodicals, Inc.

  4. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  5. Personalized biomedical devices & systems for healthcare applications

    Science.gov (United States)

    Chen, I.-Ming; Phee, Soo Jay; Luo, Zhiqiang; Lim, Chee Kian

    2011-03-01

    With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

  6. Contributions on biomedical imaging, with a side-look at molecular imaging; Beitraege zur biomedizinischen Bildgebung mit einem Seitenblick auf Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, G. (ed.)

    2004-05-01

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.) [German] In diesem Bericht sind einige Beitraege zum Gebiet 'Bildgebende Verfahren in Biologie und Medizin' zusammengestellt. Sie stammen saemtlich aus dem Institut fuer Biomathematik und Biometrie, IBB, am Forschungszentrum fuer Umwelt und Gesundheit, GSF, in Muenchen/Neuherberg, und seinem engeren Umfeld. Ziel war es, zu sichten, was in und um diesen Themenkreis herum an Wissen und sonstiger Kompetenz hier vorhanden ist. Einige am IBB etablierte Gebiete wie Roentgen-Mammographie oder funktionelle Magnetresonanztherapie wurden ausgeblendet. Der Grund ist die Fokussierung auf ein nicht exakt definierbares, neues Gebiet der Bildgebung, das unter dem Namen 'Molecular Imaging' kursiert und derzeit Furore macht macht. (orig.)

  7. Contributions on biomedical imaging, with a side-look at molecular imaging; Beitraege zur biomedizinischen Bildgebung mit einem Seitenblick auf Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, G [ed.

    2004-05-01

    This report is intended as a brief introduction to the emerging scientific field of biomedical imaging. The breadth of the subject is shown and future fields of research are indicated, which hopefully will serve as a guide to the identification of starting points for the research in 'Biomedical and/or Molecular Imaging' at the GSF-National Research Center for Environment and Health. The report starts with a brief sketch of the history. Then a - necessarily incomplete - list of research topics is presented. It is organized in two parts: the first one addresses medical imaging, and the second one is concerned with biological point aspects of the matter. (orig.) [German] In diesem Bericht sind einige Beitraege zum Gebiet 'Bildgebende Verfahren in Biologie und Medizin' zusammengestellt. Sie stammen saemtlich aus dem Institut fuer Biomathematik und Biometrie, IBB, am Forschungszentrum fuer Umwelt und Gesundheit, GSF, in Muenchen/Neuherberg, und seinem engeren Umfeld. Ziel war es, zu sichten, was in und um diesen Themenkreis herum an Wissen und sonstiger Kompetenz hier vorhanden ist. Einige am IBB etablierte Gebiete wie Roentgen-Mammographie oder funktionelle Magnetresonanztherapie wurden ausgeblendet. Der Grund ist die Fokussierung auf ein nicht exakt definierbares, neues Gebiet der Bildgebung, das unter dem Namen 'Molecular Imaging' kursiert und derzeit Furore macht macht. (orig.)

  8. Remote powering and data communication for implanted biomedical systems

    CERN Document Server

    Kilinc, Enver Gurhan; Maloberti, Franco

    2016-01-01

    This book describes new circuits and systems for implantable biomedical applications and explains the design of a batteryless, remotely-powered implantable micro-system, designed for long-term patient monitoring.  Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient, remote powering and reliable data communication.  Novel architecture and design methodologies are used to transfer power with a low-power, optimized inductive link and data is transmitted by a reliable communication link.  Additionally, an electro-mechanical solution is presented for tracking and monitoring the implantable system, while the patient is mobile.  ·         Describes practical example of an implantable batteryless biomedical system; ·         Analyzes and compares various energy harvesting and power transfer methods; ·         Describes design of remote powering link and data communication of the implantable system, comparing differe...

  9. Beamlines of the biomedical imaging and therapy facility at the Canadian light source-Part 1

    International Nuclear Information System (INIS)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2007-01-01

    The BioMedical Imaging and Therapy (BMIT) Facility will provide synchrotron-specific imaging and therapy capabilities. This paper describes one of the BMIT beamlines: the bend magnet (BM) beamline 05B1-1. It plays a complementary role to the insertion device (ID) beamline 051D-2 and allows either monochromatic or filtered white beam to be used in the experimental hutch. The monochromatic spectral range will span 8-40 keV, and the beam is more than 200 mm wide in the experimental hutch for imaging studies of small and medium-size animals (up to sheep size). The experimental hutch will have a positioning system that will allow imaging (computed tomography and planar imaging) as well as radiation therapy applications with both filtered white and monochromatic X-ray beams and will handle subjects up to 120 kg. Several different focal plane detectors (cameras) will be available with resolutions ranging from 10 to 150 μm

  10. An unsupervised strategy for biomedical image segmentation

    Directory of Open Access Journals (Sweden)

    Roberto Rodríguez

    2010-09-01

    Full Text Available Roberto Rodríguez1, Rubén Hernández21Digital Signal Processing Group, Institute of Cybernetics, Mathematics, and Physics, Havana, Cuba; 2Interdisciplinary Professional Unit of Engineering and Advanced Technology, IPN, MexicoAbstract: Many segmentation techniques have been published, and some of them have been widely used in different application problems. Most of these segmentation techniques have been motivated by specific application purposes. Unsupervised methods, which do not assume any prior scene knowledge can be learned to help the segmentation process, and are obviously more challenging than the supervised ones. In this paper, we present an unsupervised strategy for biomedical image segmentation using an algorithm based on recursively applying mean shift filtering, where entropy is used as a stopping criterion. This strategy is proven with many real images, and a comparison is carried out with manual segmentation. With the proposed strategy, errors less than 20% for false positives and 0% for false negatives are obtained.Keywords: segmentation, mean shift, unsupervised segmentation, entropy

  11. Parallel scan hyperspectral fluorescence imaging system and biomedical application for microarrays

    International Nuclear Information System (INIS)

    Liu Zhiyi; Ma Suihua; Liu Le; Guo Jihua; He Yonghong; Ji Yanhong

    2011-01-01

    Microarray research offers great potential for analysis of gene expression profile and leads to greatly improved experimental throughput. A number of instruments have been reported for microarray detection, such as chemiluminescence, surface plasmon resonance, and fluorescence markers. Fluorescence imaging is popular for the readout of microarrays. In this paper we develop a quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging system for microarray research. Hyperspectral imaging records the entire emission spectrum for every voxel within the imaged area in contrast to recording only fluorescence intensities of filter-based scanners. Coupled with data analysis, the recorded spectral information allows for quantitative identification of the contributions of multiple, spectrally overlapping fluorescent dyes and elimination of unwanted artifacts. The mechanism of quasi-confocal imaging provides a high signal-to-noise ratio, and parallel scan makes this approach a high throughput technique for microarray analysis. This system is improved with a specifically designed spectrometer which can offer a spectral resolution of 0.2 nm, and operates with spatial resolutions ranging from 2 to 30 μm . Finally, the application of the system is demonstrated by reading out microarrays for identification of bacteria.

  12. K-edge subtraction synchrotron X-ray imaging in bio-medical research.

    Science.gov (United States)

    Thomlinson, W; Elleaume, H; Porra, L; Suortti, P

    2018-05-01

    High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Biomedical image acquisition system using a gamma camera

    International Nuclear Information System (INIS)

    Jara B, A.T.; Sevillano, J.; Del Carpio S, J.A.

    2003-01-01

    A gamma camera images PC acquisition board has been developed. The digital system has been described using VHDL and has been synthesized and implemented in a Altera Max7128S CPLD and two PALs 16L8. The use of programmable-logic technologies has afforded a higher scale integration and a reduction of the digital delays and also has allowed us to modify and bring up to date the entire digital design easily. (orig.)

  14. Networked Biomedical System for Ubiquitous Health Monitoring

    Directory of Open Access Journals (Sweden)

    Arjan Durresi

    2008-01-01

    Full Text Available We propose a distributed system that enables global and ubiquitous health monitoring of patients. The biomedical data will be collected by wearable health diagnostic devices, which will include various types of sensors and will be transmitted towards the corresponding Health Monitoring Centers. The permanent medical data of patients will be kept in the corresponding Home Data Bases, while the measured biomedical data will be sent to the Visitor Health Monitor Center and Visitor Data Base that serves the area of present location of the patient. By combining the measured biomedical data and the permanent medical data, Health Medical Centers will be able to coordinate the needed actions and help the local medical teams to make quickly the best decisions that could be crucial for the patient health, and that can reduce the cost of health service.

  15. Optimizing Ti:Sapphire laser for quantitative biomedical imaging

    Science.gov (United States)

    James, Jeemol; Thomsen, Hanna; Hanstorp, Dag; Alemán Hérnandez, Felipe Ademir; Rothe, Sebastian; Enger, Jonas; Ericson, Marica B.

    2018-02-01

    Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker&Hickl) which will give a novel dimension in quantitative biomedical imaging.

  16. Multi-scale biomedical systems: measurement challenges

    International Nuclear Information System (INIS)

    Summers, R

    2016-01-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper. (paper)

  17. Stimuli-responsive magnetic particles for biomedical applications.

    Science.gov (United States)

    Medeiros, S F; Santos, A M; Fessi, H; Elaissari, A

    2011-01-17

    In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Micro/Nanostructured Films and Adhesives for Biomedical Applications.

    Science.gov (United States)

    Lee, Jungkyu K; Kang, Sung Min; Yang, Sung Ho; Cho, Woo Kyung

    2015-12-01

    The advanced technologies available for micro/nanofabrication have opened new avenues for interdisciplinary approaches to solve the unmet medical needs of regenerative medicine and biomedical devices. This review highlights the recent developments in micro/nanostructured adhesives and films for biomedical applications, including waterproof seals for wounds or surgery sites, drug delivery, sensing human body signals, and optical imaging of human tissues. We describe in detail the fabrication processes required to prepare the adhesives and films, such as tape-based adhesives, nanofilms, and flexible and stretchable film-based electronic devices. We also discuss their biomedical functions, performance in vitro and in vivo, and the future research needed to improve the current systems.

  19. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John D; Blanchard, Susan M

    2005-01-01

    Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering * New chapters o...

  20. BiOSS: A system for biomedical ontology selection.

    Science.gov (United States)

    Martínez-Romero, Marcos; Vázquez-Naya, José M; Pereira, Javier; Pazos, Alejandro

    2014-04-01

    In biomedical informatics, ontologies are considered a key technology for annotating, retrieving and sharing the huge volume of publicly available data. Due to the increasing amount, complexity and variety of existing biomedical ontologies, choosing the ones to be used in a semantic annotation problem or to design a specific application is a difficult task. As a consequence, the design of approaches and tools addressed to facilitate the selection of biomedical ontologies is becoming a priority. In this paper we present BiOSS, a novel system for the selection of biomedical ontologies. BiOSS evaluates the adequacy of an ontology to a given domain according to three different criteria: (1) the extent to which the ontology covers the domain; (2) the semantic richness of the ontology in the domain; (3) the popularity of the ontology in the biomedical community. BiOSS has been applied to 5 representative problems of ontology selection. It also has been compared to existing methods and tools. Results are promising and show the usefulness of BiOSS to solve real-world ontology selection problems. BiOSS is openly available both as a web tool and a web service. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. The Multiscale Bowler-Hat Transform for Vessel Enhancement in 3D Biomedical Images

    OpenAIRE

    Sazak, Cigdem; Nelson, Carl J.; Obara, Boguslaw

    2018-01-01

    Enhancement and detection of 3D vessel-like structures has long been an open problem as most existing image processing methods fail in many aspects, including a lack of uniform enhancement between vessels of different radii and a lack of enhancement at the junctions. Here, we propose a method based on mathematical morphology to enhance 3D vessel-like structures in biomedical images. The proposed method, 3D bowler-hat transform, combines sphere and line structuring elements to enhance vessel-l...

  2. [The system of biomedical scientific information of Serbia].

    Science.gov (United States)

    Dacić, M

    1995-09-01

    Building of the System of biomedical scientific information of Yugoslavia (SBMSI YU) began, by the end of 1980, and the system became operative officially in 1986. After the political disintegration of former Yugoslavia SBMSI of Serbia was formed. SBMSI is developed according to the policy of developing of the System of scientific technologic information of Serbia (SSTI S), and with technical support of SSTI S. Reconstruction of the System is done by using former SBMSI YU as a model. Unlike the former SBMSI YU, SBMSI S owns besides the database Biomedicina Serbica, three important databases: database of doctoral dissertations promoted at University Medical School in Belgrade in the period from 1955-1993, database of Master's theses promoted at the University School of Medicine in Belgrade from 1965-1993; A database of foreign biomedical periodicals in libraries of Serbia.

  3. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  4. A photoacoustic tomography system for imaging of biological tissues

    International Nuclear Information System (INIS)

    Su Yixiong; Zhang Fan; Xu Kexin; Yao Jianquan; Wang, Ruikang K

    2005-01-01

    Non-invasive laser-induced photoacoustic tomography (PAT) is a promising imaging modality in the biomedical optical imaging field. This technology, based on the intrinsic optical properties of tissue and ultrasonic detection, overcomes the resolution disadvantage of pure-optical imaging caused by strong light scattering and the contrast and speckle disadvantages of pure ultrasonic imaging. Here, we report a PAT experimental system constructed in our laboratory. In our system, a Q-switched Nd : YAG pulse laser operated at 532 nm with a 8 ns pulse width is used to generate a photoacoustic signal. By using this system, the two-dimensional distribution of optical absorption in the tissue-mimicking phantom is reconstructed and has an excellent agreement with the original ones. The spatial resolution of the imaging system approaches 100 μm through about 4 cm of highly scattering medium

  5. The development of biomedical engineering as experienced by one biomedical engineer.

    Science.gov (United States)

    Newell, Jonathan C

    2012-12-12

    This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field.

  6. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  7. Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17

    International Nuclear Information System (INIS)

    Donzelli, Mattia; Bräuer-Krisch, Elke; Nemoz, Christian; Brochard, Thierry; Oelfke, Uwe

    2016-01-01

    Purpose: Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target. Methods: This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF). The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles. Results: Using four external fiducial markers of 1.7  mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2  mm can be achieved with an angular deviation of less than 2 ∘ . Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1  mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam. Conclusions: The ESRF biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.

  8. Conformal image-guided microbeam radiation therapy at the ESRF biomedical beamline ID17

    Energy Technology Data Exchange (ETDEWEB)

    Donzelli, Mattia, E-mail: donzelli@esrf.fr [European Synchrotron Radiation Facility, 71, Avenue des Martyrs, Grenoble 38000, France and The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG (United Kingdom); Bräuer-Krisch, Elke; Nemoz, Christian; Brochard, Thierry [European Synchrotron Radiation Facility, 71, Avenue des Martyrs, Grenoble 38000 (France); Oelfke, Uwe [The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG (United Kingdom)

    2016-06-15

    Purpose: Upcoming veterinary trials in microbeam radiation therapy (MRT) demand for more advanced irradiation techniques than in preclinical research with small animals. The treatment of deep-seated tumors in cats and dogs with MRT requires sophisticated irradiation geometries from multiple ports, which impose further efforts to spare the normal tissue surrounding the target. Methods: This work presents the development and benchmarking of a precise patient alignment protocol for MRT at the biomedical beamline ID17 of the European Synchrotron Radiation Facility (ESRF). The positioning of the patient prior to irradiation is verified by taking x-ray projection images from different angles. Results: Using four external fiducial markers of 1.7  mm diameter and computed tomography-based treatment planning, a target alignment error of less than 2  mm can be achieved with an angular deviation of less than 2{sup ∘}. Minor improvements on the protocol and the use of smaller markers indicate that even a precision better than 1  mm is technically feasible. Detailed investigations concerning the imaging dose lead to the conclusion that doses for skull radiographs lie in the same range as dose reference levels for human head radiographs. A currently used online dose monitor for MRT has been proven to give reliable results for the imaging beam. Conclusions: The ESRF biomedical beamline ID17 is technically ready to apply conformal image-guided MRT from multiple ports to large animals during future veterinary trials.

  9. An exploration of the biomedical optics course construction of undergraduate biomedical engineering program in medical colleges

    Science.gov (United States)

    Guo, Shijun; Lyu, Jie; Zhang, Peiming

    2017-08-01

    In this paper, the teaching goals, teaching contents and teaching methods in biomedical optics course construction are discussed. From the dimension of teaching goals, students should master the principle of optical inspection on the human body, diagnosis and treatment of methodology and instruments, through the study of the theory and practice of this course, and can utilize biomedical optics methods to solve practical problems in the clinical medical engineering practice. From the dimension of teaching contents, based on the characteristics of biomedical engineering in medical colleges, the organic integration of engineering aspects, medical optical instruments, and biomedical aspects dispersed in human anatomy, human physiology, clinical medicine fundamental related to the biomedical optics is build. Noninvasive measurement of the human body composition and noninvasive optical imaging of the human body were taken as actual problems in biomedical optics fields. Typical medical applications such as eye optics and laser medicine were also integrated into the theory and practice teaching. From the dimension of teaching methods, referencing to organ-system based medical teaching mode, optical principle and instrument principle were taught by teachers from school of medical instruments, and the histological characteristics and clinical actual need in areas such as digestive diseases and urinary surgery were taught by teachers from school of basic medicine or clinical medicine of medical colleges. Furthermore, clinical application guidance would be provided by physician and surgeons in hospitals.

  10. MOLIERE: Automatic Biomedical Hypothesis Generation System.

    Science.gov (United States)

    Sybrandt, Justin; Shtutman, Michael; Safro, Ilya

    2017-08-01

    Hypothesis generation is becoming a crucial time-saving technique which allows biomedical researchers to quickly discover implicit connections between important concepts. Typically, these systems operate on domain-specific fractions of public medical data. MOLIERE, in contrast, utilizes information from over 24.5 million documents. At the heart of our approach lies a multi-modal and multi-relational network of biomedical objects extracted from several heterogeneous datasets from the National Center for Biotechnology Information (NCBI). These objects include but are not limited to scientific papers, keywords, genes, proteins, diseases, and diagnoses. We model hypotheses using Latent Dirichlet Allocation applied on abstracts found near shortest paths discovered within this network, and demonstrate the effectiveness of MOLIERE by performing hypothesis generation on historical data. Our network, implementation, and resulting data are all publicly available for the broad scientific community.

  11. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  12. Development of a bent Laue beam-expanding double-crystal monochromator for biomedical X-ray imaging

    International Nuclear Information System (INIS)

    Martinson, Mercedes; Samadi, Nazanin; Belev, George; Bassey, Bassey; Lewis, Rob; Aulakh, Gurpreet; Chapman, Dean

    2014-01-01

    A bent Laue beam-expanding double-crystal monochromator was developed and tested at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The expander will reduce scanning time for micro-computed tomography and allow dynamic imaging that has not previously been possible at this beamline. The Biomedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source has produced some excellent biological imaging data. However, the disadvantage of a small vertical beam limits its usability in some applications. Micro-computed tomography (micro-CT) imaging requires multiple scans to produce a full projection, and certain dynamic imaging experiments are not possible. A larger vertical beam is desirable. It was cost-prohibitive to build a longer beamline that would have produced a large vertical beam. Instead, it was proposed to develop a beam expander that would create a beam appearing to originate at a source much farther away. This was accomplished using a bent Laue double-crystal monochromator in a non-dispersive divergent geometry. The design and implementation of this beam expander is presented along with results from the micro-CT and dynamic imaging tests conducted with this beam. Flux (photons per unit area per unit time) has been measured and found to be comparable with the existing flat Bragg double-crystal monochromator in use at BMIT. This increase in overall photon count is due to the enhanced bandwidth of the bent Laue configuration. Whilst the expanded beam quality is suitable for dynamic imaging and micro-CT, further work is required to improve its phase and coherence properties

  13. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    Science.gov (United States)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  14. Synthesis and Ligand-Exchange Reactions of a Tri-Tungsten Cluster with Applications in Biomedical Imaging

    Science.gov (United States)

    Noey, Elizabeth; Curtis, Jeff C.; Tam, Sylvia; Pham, David M.; Jones, Ella F.

    2011-01-01

    In this experiment students are exposed to concepts in inorganic synthesis and various spectroscopies as applied to a tri-tungsten cluster with applications in biomedical imaging. The tungsten-acetate cluster, Na[W[superscript 3](mu-O)[subscript 2](CH[superscript 3]COO)[superscript 9

  15. ICNBME-2011: International Conference on Nanotechnologies and Biomedical Engineering; German-Moldovan Workshop on Novel Nanomaterials for Electronic, Photonic and Biomedical Applications. Proceedings

    International Nuclear Information System (INIS)

    Tiginyanu, Ion; Sontea, Victor

    2011-01-01

    This book includes articles which cover a vast range of subjects, such as: nano technologies and nano materials, micro- and nano-objects, nanostructured and highly integrated systems, biophysics, biomedical instrumentation and devices, biomaterials, medical imaging, information technologies for health care, tele medicine, etc.

  16. [Big data, medical language and biomedical terminology systems].

    Science.gov (United States)

    Schulz, Stefan; López-García, Pablo

    2015-08-01

    A variety of rich terminology systems, such as thesauri, classifications, nomenclatures and ontologies support information and knowledge processing in health care and biomedical research. Nevertheless, human language, manifested as individually written texts, persists as the primary carrier of information, in the description of disease courses or treatment episodes in electronic medical records, and in the description of biomedical research in scientific publications. In the context of the discussion about big data in biomedicine, we hypothesize that the abstraction of the individuality of natural language utterances into structured and semantically normalized information facilitates the use of statistical data analytics to distil new knowledge out of textual data from biomedical research and clinical routine. Computerized human language technologies are constantly evolving and are increasingly ready to annotate narratives with codes from biomedical terminology. However, this depends heavily on linguistic and terminological resources. The creation and maintenance of such resources is labor-intensive. Nevertheless, it is sensible to assume that big data methods can be used to support this process. Examples include the learning of hierarchical relationships, the grouping of synonymous terms into concepts and the disambiguation of homonyms. Although clear evidence is still lacking, the combination of natural language technologies, semantic resources, and big data analytics is promising.

  17. [Biomedical informatics].

    Science.gov (United States)

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  18. Strict integrity control of biomedical images

    Science.gov (United States)

    Coatrieux, Gouenou; Maitre, Henri; Sankur, Bulent

    2001-08-01

    The control of the integrity and authentication of medical images is becoming ever more important within the Medical Information Systems (MIS). The intra- and interhospital exchange of images, such as in the PACS (Picture Archiving and Communication Systems), and the ease of copying, manipulation and distribution of images have brought forth the security aspects. In this paper we focus on the role of watermarking for MIS security and address the problem of integrity control of medical images. We discuss alternative schemes to extract verification signatures and compare their tamper detection performance.

  19. Challenges and opportunities in clinical translation of biomedical optical spectroscopy and imaging

    Science.gov (United States)

    Wilson, Brian C.; Jermyn, Michael; Leblond, Frederic

    2018-03-01

    Medical devices face many hurdles before they enter routine clinical practice to address unmet clinical needs. This is also the case for biomedical optical spectroscopy and imaging systems that are used here to illustrate the opportunities and challenges involved. Following initial concept, stages in clinical translation include instrument development, preclinical testing, clinical prototyping, clinical trials, prototype-to-product conversion, regulatory approval, commercialization, and finally clinical adoption and dissemination, all in the face of potentially competing technologies. Optical technologies face additional challenges from their being extremely diverse, often targeting entirely different diseases and having orders-of-magnitude differences in resolution and tissue penetration. However, these technologies can potentially address a wide variety of unmet clinical needs since they provide rich intrinsic biochemical and structural information, have high sensitivity and specificity for disease detection and localization, and are practical, safe (minimally invasive, nonionizing), and relatively affordable.

  20. Quantitative imaging of magnetic nanoparticles by magneto-relaxometric tomography for biomedical applications

    International Nuclear Information System (INIS)

    Liebl, Maik

    2016-01-01

    Current biomedical research focuses on the development of novel biomedical applications based on magnetic nanoparticles (MNPs), e.g. for local cancer treatment. These therapy approaches employ MNPs as remotely controlled drug carriers or local heat generators. Since location and quantity of MNPs determine drug enrichment and heat production, quantitative knowledge of the MNP distribution inside a body is essential for the development and success of these therapies. Magnetorelaxometry (MRX) is capable to provide such quantitative information based on the specific response of the MNPs after switching-off an applied magnetic field. Applying a uniform (homogeneous) magnetic field to a MNP distribution and measuring the MNP response by multiple sensors at different locations allows for spatially resolved MNP quantification. However, to reconstruct the MNP distribution from this spatially resolved MRX data, an ill posed inverse problem has to be solved. So far, the solution of this problem was stabilized incorporating a-priori knowledge in the forward model, e.g. by setting priors on the vertical position of the distribution using a 2D reconstruction grid or setting priors on the number and geometry of the MNP sources inside the body. MRX tomography represents a novel approach for quantitative 3D imaging of MNPs, where the inverse solution is stabilized by a series of MRX measurements. In MRX tomography, only parts of the MNP distribution are sequentially magnetized by the use of inhomogeneous magnetic fields. Each magnetizing is followed by detection of the response of the corresponding part of the distribution by multiple sensors. The 3D reconstruction of the MNP distribution is then accomplished by a common evaluation of the distinct MRX measurement series. In this thesis the first experimental setup for MRX tomography was developed for quantitative 3D imaging of biomedical MNP distributions. It is based on a multi-channel magnetizing unit which has been engineered to

  1. Molecular imaging in biomedical research

    International Nuclear Information System (INIS)

    Jagannathan, N.R.

    2007-01-01

    Molecular imaging (MI) is a diverse technology that revolutionized preclinical, clinical and drug-discovery research. It integrates biology and medicine, and the technique presents a unique opportunity to examine living systems in vivo as a dynamic biological system. It is a hybrid technology that combines PET, SPECT, ultrasound, optical imaging and MR. Several MI methodologies are developed to examine the integrative functions of molecules, cells, organ systems and whole organisms. MI is superior to conventional diagnostic techniques in allowing better staging as well as to monitor the response of cancer/tumour to treatment. In addition, it helps visualization of specific molecular targets or pathways and cells in living systems and ultimately in the clinic. (author)

  2. Fabrication of a small animal restraint for synchrotron biomedical imaging using a rapid prototyper

    International Nuclear Information System (INIS)

    Zhu Ying; Zhang Honglin; McCrea, Richard; Bewer, Brian; Wiebe, Sheldon; Nichol, Helen; Ryan, Christopher; Wysokinski, Tomasz; Chapman, Dean

    2007-01-01

    Biomedical research at synchrotron facilities may involve imaging live animals that must remain motionless for extended periods of time to obtain quality images. Even breathing movements reduce image quality but on the other hand excessive restraint of animals increases morbidity and mortality. We describe a humane animal restraint designed to eliminate head movements while promoting animal survival. This paper describes how an animal restraint that conforms to the shape of an animal's head was fabricated by a 3D prototyper. The method used to translate medical computed tomography (CT) data to a 3D stereolithography format is described and images of its use at the Canadian Light Source (CLS) are shown. This type of restraint holds great promise in improving image quality and repeatability while reducing stress on experimental animals

  3. ICNBME-2013: 2. international conference on nanotechnologies and biomedical engineering; German-Moldovan workshop on novel nanomaterials for electronic, photonic and biomedical applications. Proceedings

    International Nuclear Information System (INIS)

    Tiginyanu, Ion; Sontea, Victor

    2013-01-01

    This book includes articles which cover a vast range of subjects, such as: nano technologies and nano materials, micro- and nano-objects, nanostructured and highly integrated systems, biophysics, biomedical instrumentation and devices, biomaterials, medical imaging, information technologies for health care, tele medicine, etc.

  4. Radioanalytical and imaging techniques. Challenges and opportunities in biomedical applications

    International Nuclear Information System (INIS)

    Spyrou, N.M.

    2008-01-01

    Where human health worldwide is under threat, radioanalytical and imaging scientists are expected to make significant difference and contribution. Diabetes, malnutrition, Alzheimer's and cardiovascular diseases can be better understood by probing elemental distributions to nano-scales and quantifying elemental compositions to ultratrace levels. As we aim towards personalized medicine, cancer management awaits new diagnostic and therapy methods which account, for example, for tissue oxygenation. In the context of such biomedical issues, recent trends and future developments are presented taking into consideration the availability of research reactors and ion beam facilities, as well as alternative and emerging techniques such as PIXE tomography (PIXE-T) and two- and three-gamma PET. (author)

  5. Application of infrared to biomedical sciences

    CERN Document Server

    Etehadtavakol, Mahnaz

    2017-01-01

    The book covers the latest updates in the application of infrared to biomedical sciences, a non-invasive, contactless, safe and easy approach imaging of skin and tissue temperatures. Its diagnostic procedure allows practitioners to identify the locations of abnormal chemical and blood vessel activity such as angiogenesis in body tissue. Its non-invasive approach works by applying the technology of the infrared camera and state-of-the-art software, where high-resolution digital infrared imaging technology benefits highly from enhanced image production, standardized image interpretation protocols, computerized comparison and storage, and sophisticated image enhancement and analysis. The book contains contributions from global prominent scientists in the area of infrared applications in biomedical studies. The target audience includes academics, practitioners, clinicians and students working in the area of infrared imaging in biomedicine.

  6. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  7. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  8. Dynamic Nuclear Polarization at low temperature and high magnetic eld for biomedical applications in Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Goutailler, Florent

    2011-01-01

    The aim of this thesis work was to design, build and optimize a large volume multi-samples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35 T) in which takes place a cryogenic system with a pumped bath of liquid helium ("4He) allowing temperatures lower than 1,2 K. A set of inserts is used for the different steps of DNP: irradiation of the sample by a microwave field (f=94 GHz and P=50 mW), polarization measurement by Nuclear Magnetic Resonance... With this system, up to three samples of 1 mL volume can be polarized to a rate of few per-cents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasi-simultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging. (author) [fr

  9. MBA: a literature mining system for extracting biomedical abbreviations.

    Science.gov (United States)

    Xu, Yun; Wang, ZhiHao; Lei, YiMing; Zhao, YuZhong; Xue, Yu

    2009-01-09

    The exploding growth of the biomedical literature presents many challenges for biological researchers. One such challenge is from the use of a great deal of abbreviations. Extracting abbreviations and their definitions accurately is very helpful to biologists and also facilitates biomedical text analysis. Existing approaches fall into four broad categories: rule based, machine learning based, text alignment based and statistically based. State of the art methods either focus exclusively on acronym-type abbreviations, or could not recognize rare abbreviations. We propose a systematic method to extract abbreviations effectively. At first a scoring method is used to classify the abbreviations into acronym-type and non-acronym-type abbreviations, and then their corresponding definitions are identified by two different methods: text alignment algorithm for the former, statistical method for the latter. A literature mining system MBA was constructed to extract both acronym-type and non-acronym-type abbreviations. An abbreviation-tagged literature corpus, called Medstract gold standard corpus, was used to evaluate the system. MBA achieved a recall of 88% at the precision of 91% on the Medstract gold-standard EVALUATION Corpus. We present a new literature mining system MBA for extracting biomedical abbreviations. Our evaluation demonstrates that the MBA system performs better than the others. It can identify the definition of not only acronym-type abbreviations including a little irregular acronym-type abbreviations (e.g., ), but also non-acronym-type abbreviations (e.g., ).

  10. Modality prediction of biomedical literature images using multimodal feature representation

    Directory of Open Access Journals (Sweden)

    Pelka, Obioma

    2016-08-01

    Full Text Available This paper presents the modelling approaches performed to automatically predict the modality of images found in biomedical literature. Various state-of-the-art visual features such as Bag-of-Keypoints computed with dense SIFT descriptors, texture features and Joint Composite Descriptors were used for visual image representation. Text representation was obtained by vector quantisation on a Bag-of-Words dictionary generated using attribute importance derived from a χ-test. Computing the principal components separately on each feature, dimension reduction as well as computational load reduction was achieved. Various multiple feature fusions were adopted to supplement visual image information with corresponding text information. The improvement obtained when using multimodal features vs. visual or text features was detected, analysed and evaluated. Random Forest models with 100 to 500 deep trees grown by resampling, a multi class linear kernel SVM with C=0.05 and a late fusion of the two classifiers were used for modality prediction. A Random Forest classifier achieved a higher accuracy and computed Bag-of-Keypoints with dense SIFT descriptors proved to be a better approach than with Lowe SIFT.

  11. An integrated multimodality image-guided robot system for small-animal imaging research

    International Nuclear Information System (INIS)

    Hsu, Wen-Lin; Hsin Wu, Tung; Hsu, Shih-Ming; Chen, Chia-Lin; Lee, Jason J.S.; Huang, Yung-Hui

    2011-01-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO 2 probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153±0.042 mm of desired placement; the phantom simulation errors were within 0.693±0.128 mm. In small-animal studies, the pO 2 probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  12. Development of an ESR/MR dual-imaging system as a tool to detect bioradicals

    International Nuclear Information System (INIS)

    Fujii, Hirotada; Aoki, Masaaki; Haishi, Tomoyuki; Itoh, Kouichi; Sakata, Motomichi

    2006-01-01

    A system combining electron spin resonance imaging (ESRI) with another imaging modality capable of enabling visualization of the distribution of bioradicals on an anatomical map of the specimens would be a superior biomedical imaging system. We describe the development of an electron spin resonance ESR/MR dual-imaging system with one permanent magnet and the biomedical applications of this system. The magnetic circuit developed for the ESR/MR dual-imaging system consisted of the permanent magnet made of Fe-Nd-B, pole pieces, and poke. The permanent magnet was installed on the MR side only, and the ESR side was made of pole pieces only. The magnetic field was adjusted to 0.5T at MR and to 0.042T at ESR. The overall dimensions of the magnet developed for the ESR/MR imaging system were 460 (W) x 440 (D) x 460 (H) mm, and it weighed 220 kg. The distance of each center for the magnet for ESR and MR imaging could be set as close as 200 mm. The entire ESR/MR imaging system can be installed in a common laboratory without magnetic shielding. MR images of plants (myoga) and small animals (mice and rats) were successfully acquired with or without ESR operation. ESR spectra of nitroxyl spin probes were also measured, even with MRI operation. ESR signals of triarylmethyl derivatives with narrow line-width (0.026 mT) were observed in living mice while MRI was operating. The ESR/MR imaging dual functions work properly with no electric or magnetic interference. The ESR/MR dual images demonstrate that this system enables visualization of the distribution of bioradicals on the anatomical map of the object. (author)

  13. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2004-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  14. The importance of Zebrafish in biomedical research.

    Science.gov (United States)

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.

  15. LINNAEUS: A species name identification system for biomedical literature

    Directory of Open Access Journals (Sweden)

    Nenadic Goran

    2010-02-01

    Full Text Available Abstract Background The task of recognizing and identifying species names in biomedical literature has recently been regarded as critical for a number of applications in text and data mining, including gene name recognition, species-specific document retrieval, and semantic enrichment of biomedical articles. Results In this paper we describe an open-source species name recognition and normalization software system, LINNAEUS, and evaluate its performance relative to several automatically generated biomedical corpora, as well as a novel corpus of full-text documents manually annotated for species mentions. LINNAEUS uses a dictionary-based approach (implemented as an efficient deterministic finite-state automaton to identify species names and a set of heuristics to resolve ambiguous mentions. When compared against our manually annotated corpus, LINNAEUS performs with 94% recall and 97% precision at the mention level, and 98% recall and 90% precision at the document level. Our system successfully solves the problem of disambiguating uncertain species mentions, with 97% of all mentions in PubMed Central full-text documents resolved to unambiguous NCBI taxonomy identifiers. Conclusions LINNAEUS is an open source, stand-alone software system capable of recognizing and normalizing species name mentions with speed and accuracy, and can therefore be integrated into a range of bioinformatics and text-mining applications. The software and manually annotated corpus can be downloaded freely at http://linnaeus.sourceforge.net/.

  16. Biomedical nanotechnology for molecular imaging, diagnostics, and targeted therapy.

    Science.gov (United States)

    Nie, Shuming

    2009-01-01

    Biomedical nanotechnology is a cross-disciplinary area of research in science, engineering and medicine with broad applications for molecular imaging, molecular diagnosis, and targeted therapy. The basic rationale is that nanometer-sized particles such as semiconductor quantum dots and iron oxide nanocrystals have optical, magnetic or structural properties that are not available from either molecules or bulk solids. When linked with biotargeting ligands such as monoclonal antibodies, peptides or small molecules, these nanoparticles can be used to target diseased cells and organs (such as malignant tumors and cardiovascular plaques) with high affinity and specificity. In the "mesoscopic" size range of 5-100 nm diameter, nanoparticles also have large surface areas and functional groups for conjugating to multiple diagnostic (e.g., optical, radioisotopic, or magnetic) and therapeutic (e.g., anticancer) agents.

  17. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  18. Finding and accessing diagrams in biomedical publications.

    Science.gov (United States)

    Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael

    2012-01-01

    Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar and line charts by the shape and relative location of the different image elements that make up the charts. With recall and precisions of close to 90% for the detection of relevant figures, we discuss the use of this technology in an existing biomedical image search engine, and outline how it enables new forms of literature queries over biomedical relationships that are represented in these charts.

  19. Cloud Based Metalearning System for Predictive Modeling of Biomedical Data

    Directory of Open Access Journals (Sweden)

    Milan Vukićević

    2014-01-01

    Full Text Available Rapid growth and storage of biomedical data enabled many opportunities for predictive modeling and improvement of healthcare processes. On the other side analysis of such large amounts of data is a difficult and computationally intensive task for most existing data mining algorithms. This problem is addressed by proposing a cloud based system that integrates metalearning framework for ranking and selection of best predictive algorithms for data at hand and open source big data technologies for analysis of biomedical data.

  20. Biomedical informatics and translational medicine

    Directory of Open Access Journals (Sweden)

    Sarkar Indra

    2010-02-01

    Full Text Available Abstract Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians" can be essential members of translational medicine teams.

  1. Magnetic nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Krustev, P.; Ruskov, T.

    2007-01-01

    In this paper we describe different biomedical application using magnetic nanoparticles. Over the past decade, a number of biomedical applications have begun to emerge for magnetic nanoparticles of differing sizes, shapes, and compositions. Areas under investigation include targeted drug delivery, ultra-sensitive disease detection, gene therapy, high throughput genetic screening, biochemical sensing, and rapid toxicity cleansing. Magnetic nanoparticles exhibit ferromagnetic or superparamagnetic behavior, magnetizing strongly under an applied field. In the second case (superparamagnetic nanoparticles) there is no permanent magnetism once the field is removed. The superparamagnetic nanoparticles are highly attractive as in vivo probes or in vitro tools to extract information on biochemical systems. The optical properties of magnetic metal nanoparticles are spectacular and, therefore, have promoted a great deal of excitement during the last few decades. Many applications as MRI imaging and hyperthermia rely on the use of iron oxide particles. Moreover magnetic nanoparticles conjugated with antibodies are also applied to hyperthermia and have enabled tumor specific contrast enhancement in MRI. Other promising biomedical applications are connected with tumor cells treated with magnetic nanoparticles with X-ray ionizing radiation, which employs magnetic nanoparticles as a complementary radiate source inside the tumor. (authors)

  2. MARS Spectral Imaging: From High-Energy Physics to a Biomedical Business

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Abstract MARS spectral scanners provide colour X-Ray images. Current MARS pre-clinical scanners enable researchers and clinicians to measure biochemical and physiological processes in specimens, and animal models of disease. The scanners have developed from a 10 year scientific collaboration between New Zealand and CERN. In parallel a company, MARS Bioimaging Ltd, was founded to commercialise the technology by productising the scanner and selling it to biomedical users around the world. The New Zealand team is now more than 30 people including staff and students from the fields of physics, engineering, computing, maths, radiology, cardiology, biochemistry, oncology, and orthopaedics. Current work with pre-clinical scanners has concluded that the technology will be  useful in heart disease, stroke, arthritis, joint replacements, and cancer. In late 2014, the government announced funding for NZ to build a MARS scanner capable of imaging humans. Bio Professor Anthony Butler is a radiologist wit...

  3. Preliminary results for X-ray phase contrast micro-tomography on the biomedical imaging beamline at SSRF

    International Nuclear Information System (INIS)

    Chen Rongchang; Du Guohao; Xie Honglan; Deng Biao; Tong Yajun; Hu Wen; Xue Yanling; Chen Can; Ren Yuqi; Zhou Guangzhao; Wang Yudan; Xiao Tiqiao; Xu Hongjie; Zhu Peiping

    2009-01-01

    With X-ray phase contrast micro-tomography(CT), one is able to obtain edge-enhanced image of internal structure of the samples. This allows visualization of the fine internal features for biology tissues, which is not able to resolve by conventional absorption CT. After preliminary modulation, monochromatic X-rays (8-72.5 keV) are available for experiments on the experimental station of the biomedical imaging beamline at Shanghai Synchrotron Radiation Facility(SSRF). In this paper, we report the in line phase contrast micro-tomography(IL-XPCT) of biology sample (locust) on the beamline. The reconstruct slice images and three dimensional rendering images of the locust were obtained, with clearly visible images of locus's wing, surface texture and internal tissue distribution. (authors)

  4. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Tobias [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Institute of Materials, Swiss Federal Institute of Technology, EPFL, 1015 Lausanne (Switzerland); Hofmann, Margarete [MatSearch Pully, Chemin Jean Pavillard, 14, CH-1009 Pully (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed.

  5. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    International Nuclear Information System (INIS)

    Neuberger, Tobias; Schoepf, Bernhard; Hofmann, Heinrich; Hofmann, Margarete; Rechenberg, Brigitte von

    2005-01-01

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed

  6. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  7. PASSIM – an open source software system for managing information in biomedical studies

    Directory of Open Access Journals (Sweden)

    Neogi Sudeshna

    2007-02-01

    Full Text Available Abstract Background One of the crucial aspects of day-to-day laboratory information management is collection, storage and retrieval of information about research subjects and biomedical samples. An efficient link between sample data and experiment results is absolutely imperative for a successful outcome of a biomedical study. Currently available software solutions are largely limited to large-scale, expensive commercial Laboratory Information Management Systems (LIMS. Acquiring such LIMS indeed can bring laboratory information management to a higher level, but often implies sufficient investment of time, effort and funds, which are not always available. There is a clear need for lightweight open source systems for patient and sample information management. Results We present a web-based tool for submission, management and retrieval of sample and research subject data. The system secures confidentiality by separating anonymized sample information from individuals' records. It is simple and generic, and can be customised for various biomedical studies. Information can be both entered and accessed using the same web interface. User groups and their privileges can be defined. The system is open-source and is supplied with an on-line tutorial and necessary documentation. It has proven to be successful in a large international collaborative project. Conclusion The presented system closes the gap between the need and the availability of lightweight software solutions for managing information in biomedical studies involving human research subjects.

  8. Time-Resolved Synchronous Fluorescence for Biomedical Diagnosis

    Science.gov (United States)

    Zhang, Xiaofeng; Fales, Andrew; Vo-Dinh, Tuan

    2015-01-01

    This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics. PMID:26404289

  9. Architecture for biomedical multimedia information delivery on the World Wide Web

    Science.gov (United States)

    Long, L. Rodney; Goh, Gin-Hua; Neve, Leif; Thoma, George R.

    1997-10-01

    Research engineers at the National Library of Medicine are building a prototype system for the delivery of multimedia biomedical information on the World Wide Web. This paper discuses the architecture and design considerations for the system, which will be used initially to make images and text from the third National Health and Nutrition Examination Survey (NHANES) publicly available. We categorized our analysis as follows: (1) fundamental software tools: we analyzed trade-offs among use of conventional HTML/CGI, X Window Broadway, and Java; (2) image delivery: we examined the use of unconventional TCP transmission methods; (3) database manager and database design: we discuss the capabilities and planned use of the Informix object-relational database manager and the planned schema for the HNANES database; (4) storage requirements for our Sun server; (5) user interface considerations; (6) the compatibility of the system with other standard research and analysis tools; (7) image display: we discuss considerations for consistent image display for end users. Finally, we discuss the scalability of the system in terms of incorporating larger or more databases of similar data, and the extendibility of the system for supporting content-based retrieval of biomedical images. The system prototype is called the Web-based Medical Information Retrieval System. An early version was built as a Java applet and tested on Unix, PC, and Macintosh platforms. This prototype used the MiniSQL database manager to do text queries on a small database of records of participants in the second NHANES survey. The full records and associated x-ray images were retrievable and displayable on a standard Web browser. A second version has now been built, also a Java applet, using the MySQL database manager.

  10. A low-cost biomedical signal transceiver based on a Bluetooth wireless system.

    Science.gov (United States)

    Fazel-Rezai, Reza; Pauls, Mark; Slawinski, David

    2007-01-01

    Most current wireless biomedical signal transceivers use range-limiting communication. This work presents a low-cost biomedical signal transceiver that uses Bluetooth wireless technology. The design is implemented in a modular form to be adaptable to different types of biomedical signals. The signal front end obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless module. Near real-time receive software in LabVIEW was developed to demonstrate the system capability. The completed transmitter prototype successfully transmits ECG signals, and is able to simultaneously send multiple signals. The sampling rate of the transmitter is fast enough to send up to thirteen ECG signals simultaneously, with an error rate below 0.1% for transmission exceeding 65 meters. A low-cost wireless biomedical transceiver has many applications, such as real-time monitoring of patients with a known condition in non-clinical settings.

  11. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L

    2010-06-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers' time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment.

  12. Molecular Imaging with Activatable Reporter Systems

    Directory of Open Access Journals (Sweden)

    Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Molecular imaging is a newly emerged multiple disciplinary field that aims to visualize, characterize and quantitatively measure biological processes at cellular and molecular levels in humans and other living systems. A reporter gene is a piece of DNA encoding reporter protein, which presents as a readily measurable phenotype that can be distinguished easily from the background of endogenous protein. After being transferred into cells of organ systems (transgenes, the reporter gene can be utilized to visualize transcriptional and posttranscriptional regulation of gene expression, protein-protein interactions, or trafficking of proteins or cells in living subjects. Herein, we review previous classification of reporter genes and regroup the reporter gene based imaging as basic, inducible and activatable, based on the regulation of reporter gene transcription and post-translational modification of reporter proteins. We then focus on activatable reporters, in which the signal can be activated at the posttranslational level for visualizing protein-protein interactions, protein phosphorylation or tertiary structure changes. The applications of several types of activatable reporters will also be summarized. We conclude that activatable reporter imaging can benefit both basic biomedical research and drug development.

  13. From Mars to man - Biomedical research at the Jet Propulsion Laboratory

    Science.gov (United States)

    Beckenbach, E. S.

    1984-01-01

    In the course of the unmanned exploration of the solar system, which the California Institute of Technology's Jet Propulsion Laboratory has managed for NASA, major advances in computerized image processing, materials research, and miniature electronics design have been accomplished. This presentation shows some of the imaging results from space exploration missions, as well as biomedical research tasks based in these technologies. Among other topics, the use of polymeric microspheres in cancer therapy is discussed. Also included are ceramic applications to prosthesis development, laser applications in the treatment of coronary artery disease, multispectral imaging as used in the diagnosis of thermal burn injury, and some examples of telemetry systems as they can be involved in biological systems.

  14. Biomedical photoacoustics: fundamentals, instrumentation and perspectives on nanomedicine.

    Science.gov (United States)

    Zou, Chunpeng; Wu, Beibei; Dong, Yanyan; Song, Zhangwei; Zhao, Yaping; Ni, Xianwei; Yang, Yan; Liu, Zhe

    Photoacoustic imaging (PAI) is an integrated biomedical imaging modality which combines the advantages of acoustic deep penetration and optical high sensitivity. It can provide functional and structural images with satisfactory resolution and contrast which could provide abundant pathological information for disease-oriented diagnosis. Therefore, it has found vast applications so far and become a powerful tool of precision nanomedicine. However, the investigation of PAI-based imaging nanomaterials is still in its infancy. This perspective article aims to summarize the developments in photoacoustic technologies and instrumentations in the past years, and more importantly, present a bright outlook for advanced PAI-based imaging nanomaterials as well as their emerging biomedical applications in nanomedicine. Current challenges and bottleneck issues have also been discussed and elucidated in this article to bring them to the attention of the readership.

  15. From molecular imaging to systems diagnostics: Time for another paradigm shift?

    Energy Technology Data Exchange (ETDEWEB)

    Li, King C.P. [Department of Radiology, Methodist Hospital, Weill Cornell Medical College, 6565 Fannin Street, D280 Houston, TX 77030 (United States)], E-mail: kli@tmhs.org

    2009-05-15

    The term 'Molecular Imaging' has hit the consciousness of radiologists only in the past decade although many of the concepts that molecular imaging encompasses has been practiced in biomedical imaging, especially in nuclear medicine, for many decades. Many new imaging techniques have allowed us to interrogate biologic events at the cellular and molecular level in vivo in four dimensions but the challenge now is to translate these techniques into clinical practice in a way that will enable us to revolutionize healthcare delivery. The purpose of this article is to introduce the term 'Systems Diagnostics' and examine how radiologists can become translators of disparate sources of information into medical decisions and therapeutic actions.

  16. From molecular imaging to systems diagnostics: Time for another paradigm shift?

    International Nuclear Information System (INIS)

    Li, King C.P.

    2009-01-01

    The term 'Molecular Imaging' has hit the consciousness of radiologists only in the past decade although many of the concepts that molecular imaging encompasses has been practiced in biomedical imaging, especially in nuclear medicine, for many decades. Many new imaging techniques have allowed us to interrogate biologic events at the cellular and molecular level in vivo in four dimensions but the challenge now is to translate these techniques into clinical practice in a way that will enable us to revolutionize healthcare delivery. The purpose of this article is to introduce the term 'Systems Diagnostics' and examine how radiologists can become translators of disparate sources of information into medical decisions and therapeutic actions.

  17. A new visual navigation system for exploring biomedical Open Educational Resource (OER) videos.

    Science.gov (United States)

    Zhao, Baoquan; Xu, Songhua; Lin, Shujin; Luo, Xiaonan; Duan, Lian

    2016-04-01

    Biomedical videos as open educational resources (OERs) are increasingly proliferating on the Internet. Unfortunately, seeking personally valuable content from among the vast corpus of quality yet diverse OER videos is nontrivial due to limitations of today's keyword- and content-based video retrieval techniques. To address this need, this study introduces a novel visual navigation system that facilitates users' information seeking from biomedical OER videos in mass quantity by interactively offering visual and textual navigational clues that are both semantically revealing and user-friendly. The authors collected and processed around 25 000 YouTube videos, which collectively last for a total length of about 4000 h, in the broad field of biomedical sciences for our experiment. For each video, its semantic clues are first extracted automatically through computationally analyzing audio and visual signals, as well as text either accompanying or embedded in the video. These extracted clues are subsequently stored in a metadata database and indexed by a high-performance text search engine. During the online retrieval stage, the system renders video search results as dynamic web pages using a JavaScript library that allows users to interactively and intuitively explore video content both efficiently and effectively.ResultsThe authors produced a prototype implementation of the proposed system, which is publicly accessible athttps://patentq.njit.edu/oer To examine the overall advantage of the proposed system for exploring biomedical OER videos, the authors further conducted a user study of a modest scale. The study results encouragingly demonstrate the functional effectiveness and user-friendliness of the new system for facilitating information seeking from and content exploration among massive biomedical OER videos. Using the proposed tool, users can efficiently and effectively find videos of interest, precisely locate video segments delivering personally valuable

  18. The preparation of metal–organic frameworks and their biomedical application

    Directory of Open Access Journals (Sweden)

    Liu R

    2016-03-01

    Full Text Available Rong Liu,1,2 Tian Yu,1 Zheng Shi,1 Zhiyong Wang3 1School of Medicine and Nursing, Chengdu University, Chengdu, 2Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 3Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China Abstract: The development of a safe and targetable drug carrier is a major challenge. An efficient delivery system should protect cargo from degradation and cleanup, and control of drug release in the target site. Metal–organic frameworks (MOFs, consisting of metal ions and a variety of organic ligands, have been applied for drug delivery due to their distinct structure. In this review, we summarized the synthesis strategies of MOFs, especially emphasizing the methods of pore creation in frameworks, which were based on recent literatures. Subsequently, the controlled size, biocompatibility, drug releasing performances, and imaging of MOFs were discussed, which would pave the road for the application in drug-delivery systems. Keywords: metal-organic frameworks, pore creation, the controlled size, biocompatibility, drug releasing performances, imaging

  19. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations.

    Science.gov (United States)

    Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen

    2016-11-09

    Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.

  20. [The system of protection of scientific biomedical research participants in France and in Poland].

    Science.gov (United States)

    Czarkowski, Marek; Sieczych, Alicja

    2013-07-01

    Realizing scientific biomedical research conducted on human-beings demands obeying ample ethical rules. However, states keep independence in the means of implementing deontological guidelines to legislative acts. The aim of the article is to compare rules of law relative to protection of scientific biomedical research participants in two European Union member states--France and Poland. French regulations cover more types of scientific biomedical research than those in Poland. In France almost all types of interventional scientific biomedical research including research on human biological samples and research on cosmetics are covered by the rules of law. Polish regulations are limited to interventional research conducted by doctors and dentists. In both states projects of clinical trials of medicinal products demands double acceptance - from bioethics committee and from competent state authority. In protection of scientific biomedical research participants the role of state authority competent for personal data is more vital in France than it is in Poland. In France there is also National Ethics Advisory Committee whereas in Poland there is no such institution. The systems protecting scientific biomedical research participants differs therefore in both states in many vital aspects and French measures cover more types of scientific biomedical research, hence the level of participants protection in various types of research is more equitable.

  1. Biomedical applications of magnetic particles

    CERN Document Server

    Mefford, Thompson

    2018-01-01

    Magnetic particles are increasingly being used in a wide variety of biomedical applications. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, and detailing methods to characterize magnetic particles. The second section describes biomedical applications, including chemical sensors and cellular actuators, and diagnostic applications such as drug delivery, hyperthermia cancer treatment, and magnetic resonance imaging contrast.

  2. Figure text extraction in biomedical literature.

    Directory of Open Access Journals (Sweden)

    Daehyun Kim

    2011-01-01

    Full Text Available Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures.We first evaluated an off-the-shelf Optical Character Recognition (OCR tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons.The evaluation on 382 figures (9,643 figure texts in total randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for

  3. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  4. New frontiers in biomedical science and engineering during 2014-2015.

    Science.gov (United States)

    Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep

    2015-01-01

    The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.

  5. Filled carbon nanotubes in biomedical imaging and drug delivery.

    Science.gov (United States)

    Martincic, Markus; Tobias, Gerard

    2015-04-01

    Carbon nanotubes have been advocated as promising candidates in the biomedical field in the areas of diagnosis and therapy. In terms of drug delivery, the use of carbon nanotubes can overcome some limitations of 'free' drugs by improving the formulation of poorly water-soluble drugs, allowing targeted delivery and even enabling the co-delivery of two or more drugs for combination therapy. Two different approaches are currently being explored for the delivery of diagnostic and therapeutic agents by carbon nanotubes, namely attachment of the payload to the external sidewalls or encapsulation into the inner cavities. Although less explored, the latter confers additional stability to the chosen diagnostic or therapeutic agents, and leaves the backbone structure of the nanotubes available for its functionalization with dispersing and targeting moieties. Several drug delivery systems and diagnostic agents have been developed in the last years employing the inner tubular cavities of carbon nanotubes. The research discussed in this review focuses on the use of carbon nanotubes that contain in their interior drug molecules and diagnosis-related compounds. The approaches employed for the development of such nanoscale vehicles along with targeting and releasing strategies are discussed. The encapsulation of both biomedical contrast agents and drugs inside carbon nanotubes is further expanding the possibilities to allow an early diagnosis and treatment of diseases.

  6. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  7. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    International Nuclear Information System (INIS)

    Esposito, M; Evans, P M; Wells, K; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Allinson, N M

    2014-01-01

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  8. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.

    Science.gov (United States)

    Esposito, M; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Evans, P M; Allinson, N M; Wells, K

    2014-07-07

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  9. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  10. Infrared laser transillumination CT imaging system using parallel fiber arrays and optical switches for finger joint imaging

    Science.gov (United States)

    Sasaki, Yoshiaki; Emori, Ryota; Inage, Hiroki; Goto, Masaki; Takahashi, Ryo; Yuasa, Tetsuya; Taniguchi, Hiroshi; Devaraj, Balasigamani; Akatsuka, Takao

    2004-05-01

    The heterodyne detection technique, on which the coherent detection imaging (CDI) method founds, can discriminate and select very weak, highly directional forward scattered, and coherence retaining photons that emerge from scattering media in spite of their complex and highly scattering nature. That property enables us to reconstruct tomographic images using the same reconstruction technique as that of X-Ray CT, i.e., the filtered backprojection method. Our group had so far developed a transillumination laser CT imaging method based on the CDI method in the visible and near-infrared regions and reconstruction from projections, and reported a variety of tomographic images both in vitro and in vivo of biological objects to demonstrate the effectiveness to biomedical use. Since the previous system was not optimized, it took several hours to obtain a single image. For a practical use, we developed a prototype CDI-based imaging system using parallel fiber array and optical switches to reduce the measurement time significantly. Here, we describe a prototype transillumination laser CT imaging system using fiber-optic based on optical heterodyne detection for early diagnosis of rheumatoid arthritis (RA), by demonstrating the tomographic imaging of acrylic phantom as well as the fundamental imaging properties. We expect that further refinements of the fiber-optic-based laser CT imaging system could lead to a novel and practical diagnostic tool for rheumatoid arthritis and other joint- and bone-related diseases in human finger.

  11. Nuclear medicine imaging instrumentations for molecular imaging

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Song, Tae Yong; Choi, Yong

    2004-01-01

    Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging

  12. 5th International Conference on Biomedical Engineering in Vietnam

    CERN Document Server

    Phuong, Tran

    2015-01-01

    This volume presents the proceedings of the Fifth International Conference on the Development of Biomedical Engineering in Vietnam which was held from June 16-18, 2014 in Ho Chi Minh City. The volume reflects the progress of Biomedical Engineering and discusses problems and solutions. I aims identifying new challenges, and shaping future directions for research in biomedical engineering fields including medical instrumentation, bioinformatics, biomechanics, medical imaging, drug delivery therapy, regenerative medicine and entrepreneurship in medical devices.

  13. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  14. A novel and compact spectral imaging system based on two curved prisms

    Science.gov (United States)

    Nie, Yunfeng; Bin, Xiangli; Zhou, Jinsong; Li, Yang

    2013-09-01

    As a novel detection approach which simultaneously acquires two-dimensional visual picture and one-dimensional spectral information, spectral imaging offers promising applications on biomedical imaging, conservation and identification of artworks, surveillance of food safety, and so forth. A novel moderate-resolution spectral imaging system consisting of merely two optical elements is illustrated in this paper. It can realize the function of a relay imaging system as well as a 10nm spectral resolution spectroscopy. Compared to conventional prismatic imaging spectrometers, this design is compact and concise with only two special curved prisms by utilizing two reflective surfaces. In contrast to spectral imagers based on diffractive grating, the usage of compound-prism possesses characteristics of higher energy utilization and wider free spectral range. The seidel aberration theory and dispersive principle of this special prism are analyzed at first. According to the results, the optical system of this design is simulated, and the performance evaluation including spot diagram, MTF and distortion, is presented. In the end, considering the difficulty and particularity of manufacture and alignment, an available method for fabrication and measurement is proposed.

  15. A System for Information Management in BioMedical Studies—SIMBioMS

    Science.gov (United States)

    Krestyaninova, Maria; Zarins, Andris; Viksna, Juris; Kurbatova, Natalja; Rucevskis, Peteris; Neogi, Sudeshna Guha; Gostev, Mike; Perheentupa, Teemu; Knuuttila, Juha; Barrett, Amy; Lappalainen, Ilkka; Rung, Johan; Podnieks, Karlis; Sarkans, Ugis; McCarthy, Mark I; Brazma, Alvis

    2009-01-01

    Summary: SIMBioMS is a web-based open source software system for managing data and information in biomedical studies. It provides a solution for the collection, storage, management and retrieval of information about research subjects and biomedical samples, as well as experimental data obtained using a range of high-throughput technologies, including gene expression, genotyping, proteomics and metabonomics. The system can easily be customized and has proven to be successful in several large-scale multi-site collaborative projects. It is compatible with emerging functional genomics data standards and provides data import and export in accepted standard formats. Protocols for transferring data to durable archives at the European Bioinformatics Institute have been implemented. Availability: The source code, documentation and initialization scripts are available at http://simbioms.org. Contact: support@simbioms.org; mariak@ebi.ac.uk PMID:19633095

  16. An inventory of biomedical imaging physics elements-of-competence for diagnostic radiography education in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Caruana, Carmel J. [University of Malta, Institute of Health Care, St Lukes Hospital, Gwardamangia (Malta)]. E-mail: carmel.j.caruana@um.edu.mt; Plasek, Jaromir [Charles University, Faculty of Mathematics and Physics, Institute of Physics, Division of Biophysics, Prague (Czech Republic)

    2006-08-15

    Purpose: To develop an inventory of biomedical physics elements-of-competence for diagnostic radiography education in Europe. Method: Research articles in the English literature and UK documentation pertinent to radiography education, competences and role development were subjected to a rigorous analysis of content from a functional and competence analysis perspective. Translations of radiography curricula from across Europe and relevant EU legislation were likewise analysed to ensure a pan-European perspective. Broad Subject Specific Competences for diagnostic radiography that included major biomedical physics components were singled out. These competences were in turn carefully deconstructed into specific elements-of-competence and those elements falling within the biomedical physics learning domain inventorised. A pilot version of the inventory was evaluated by participants during a meeting of the Higher Education Network for Radiography in Europe (HENRE), held in Marsascala, Malta, in November 2004. The inventory was further refined taking into consideration suggestions by HENRE members and scientific, professional and educational developments. Findings: The evaluation of the pilot inventory was very positive and indicated that the overall structure of the inventory was sensible, easily understood and acceptable - hence a good foundation for further development. Conclusions: Use of the inventory by radiography programme leaders and biomedical physics educators would guarantee that all necessary physics elements-of-competence underpinning the safe, effective and economical use of imaging devices are included within radiography curricula. It will also ensure the relevancy of physics content within radiography education. The inventory is designed to be a pragmatic tool for curriculum development across the entire range of radiography education up to doctorate level and irrespective of whether curriculum delivery is discipline-based or integrated, presentation

  17. An inventory of biomedical imaging physics elements-of-competence for diagnostic radiography education in Europe

    International Nuclear Information System (INIS)

    Caruana, Carmel J.; Plasek, Jaromir

    2006-01-01

    Purpose: To develop an inventory of biomedical physics elements-of-competence for diagnostic radiography education in Europe. Method: Research articles in the English literature and UK documentation pertinent to radiography education, competences and role development were subjected to a rigorous analysis of content from a functional and competence analysis perspective. Translations of radiography curricula from across Europe and relevant EU legislation were likewise analysed to ensure a pan-European perspective. Broad Subject Specific Competences for diagnostic radiography that included major biomedical physics components were singled out. These competences were in turn carefully deconstructed into specific elements-of-competence and those elements falling within the biomedical physics learning domain inventorised. A pilot version of the inventory was evaluated by participants during a meeting of the Higher Education Network for Radiography in Europe (HENRE), held in Marsascala, Malta, in November 2004. The inventory was further refined taking into consideration suggestions by HENRE members and scientific, professional and educational developments. Findings: The evaluation of the pilot inventory was very positive and indicated that the overall structure of the inventory was sensible, easily understood and acceptable - hence a good foundation for further development. Conclusions: Use of the inventory by radiography programme leaders and biomedical physics educators would guarantee that all necessary physics elements-of-competence underpinning the safe, effective and economical use of imaging devices are included within radiography curricula. It will also ensure the relevancy of physics content within radiography education. The inventory is designed to be a pragmatic tool for curriculum development across the entire range of radiography education up to doctorate level and irrespective of whether curriculum delivery is discipline-based or integrated, presentation

  18. Biomedical Image Processing

    CERN Document Server

    Deserno, Thomas Martin

    2011-01-01

    In modern medicine, imaging is the most effective tool for diagnostics, treatment planning and therapy. Almost all modalities have went to directly digital acquisition techniques and processing of this image data have become an important option for health care in future. This book is written by a team of internationally recognized experts from all over the world. It provides a brief but complete overview on medical image processing and analysis highlighting recent advances that have been made in academics. Color figures are used extensively to illustrate the methods and help the reader to understand the complex topics.

  19. Biomedical Applications of Nanodiamonds: An Overview.

    Science.gov (United States)

    Passeri, D; Rinaldi, F; Ingallina, C; Carafa, M; Rossi, M; Terranova, M L; Marianecci, C

    2015-02-01

    Nanodiamonds are a novel class of nanomaterials which have raised much attention for application in biomedical field, as they combine the possibility of being produced on large scale using relatively inexpensive synthetic processes, of being fluorescent as a consequence of the presence of nitrogen vacancies, of having their surfaces functionalized, and of having good biocompatibility. Among other applications, we mainly focus on drug delivery, including cell interaction, targeting, cancer therapy, gene and protein delivery. In addition, nanodiamonds for bone and dental implants and for antibacterial use is discussed. Techniques for detection and imaging of nanodiamonds in biological tissues are also reviewed, including electron microscopy, fluorescence microscopy, Raman mapping, atomic force microscopy, thermal imaging, magnetic resonance imaging, and positron emission tomography, either in vitro, in vivo, or ex vivo. Toxicological aspects related to the use of nanodiamonds are also discussed. Finally, patents, preclinical and clinical trials based on the use of nanodiamonds for biomedical applications are reviewed.

  20. Collaborative Initiative in Biomedical Imaging to Study Complex Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Weili [The University of North Carolina at Chapel Hill; Fiddy, Michael A. [The University of North Carolina at Charlotte

    2012-03-31

    The work reported addressed these topics: Fluorescence imaging; Optical coherence tomography; X-ray interferometer/phase imaging system; Quantitative imaging from scattered fields, Terahertz imaging and spectroscopy; and Multiphoton and Raman microscopy.

  1. Anatomy for Biomedical Engineers

    Science.gov (United States)

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  2. Computational Phase Imaging for Biomedical Applications

    Science.gov (United States)

    Nguyen, Tan Huu

    When a sample is illuminated by an imaging field, its fingerprints are left on the amplitude and the phase of the emerging wave. Capturing the information of the wavefront grants us a deeper understanding of the optical properties of the sample, and of the light-matter interaction. While the amplitude information has been intensively studied, the use of the phase information has been less common. Because all detectors are sensitive to intensity, not phase, wavefront measurements are significantly more challenging. Deploying optical interferometry to measure phase through phase-intensity conversion, quantitative phase imaging (QPI) has recently gained tremendous success in material and life sciences. The first topic of this dissertation describes our effort to develop a new QPI setup, named transmission Spatial Light Interference Microscopy (tSLIM), that uses the twisted nematic liquid-crystal (TNLC) modulators. Compared to the established SLIM technique, tSLIM is much less expensive to build than its predecessor (SLIM) while maintaining significant performance. The tSLIM system uses parallel aligned liquid-crystal (PANLC) modulators, has a slightly smaller signal-to-noise Ratio (SNR), and a more complicated model for the image formation. However, such complexity is well addressed by computing. Most importantly, tSLIM uses TNLC modulators that are popular in display LCDs. Therefore, the total cost of the system is significantly reduced. Alongside developing new imaging modalities, we also improved current QPI imaging systems. In practice, an incident field to the sample is rarely perfectly spatially coherent, i.e., plane wave. It is generally partially coherent; i.e., it comprises of many incoherent plane waves coming from multiple directions. This illumination yields artifacts in the phase measurement results, e.g., halo and phase-underestimation. One solution is using a very bright source, e.g., a laser, which can be spatially filtered very well. However, the

  3. Biomedical Applications of Zinc Oxide Nanomaterials

    Science.gov (United States)

    Zhang, Yin; Nayak, Tapas R.; Hong, Hao; Cai, Weibo

    2013-01-01

    Nanotechnology has witnessed tremendous advancement over the last several decades. Zinc oxide (ZnO), which can exhibit a wide variety of nanostructures, possesses unique semiconducting, optical, and piezoelectric properties hence has been investigated for a wide variety of applications. One of the most important features of ZnO nanomaterials is low toxicity and biodegradability. Zn2+ is an indispensable trace element for adults (~10 mg of Zn2+ per day is recommended) and it is involved in various aspects of metabolism. Chemically, the surface of ZnO is rich in -OH groups, which can be readily functionalized by various surface decorating molecules. In this review article, we summarized the current status of the use of ZnO nanomaterials for biomedical applications, such as biomedical imaging (which includes fluorescence, magnetic resonance, positron emission tomography, as well as dual-modality imaging), drug delivery, gene delivery, and biosensing of a wide array of molecules of interest. Research in biomedical applications of ZnO nanomaterials will continue to flourish over the next decade, and much research effort will be needed to develop biocompatible/biodegradable ZnO nanoplatforms for potential clinical translation. PMID:24206130

  4. Frequency-Division Multiplexing for Electrical Impedance Tomography in Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yair Granot

    2007-01-01

    Full Text Available Electrical impedance tomography (EIT produces an image of the electrical impedance distribution of tissues in the body, using electrodes that are placed on the periphery of the imaged area. These electrodes inject currents and measure voltages and from these data, the impedance can be computed. Traditional EIT systems usually inject current patterns in a serial manner which means that the impedance is computed from data collected at slightly different times. It is usually also a time-consuming process. In this paper, we propose a method for collecting data concurrently from all of the current patterns in biomedical applications of EIT. This is achieved by injecting current through all of the current injecting electrodes simultaneously, and measuring all of the resulting voltages at once. The signals from various current injecting electrodes are separated by injecting different frequencies through each electrode. This is called frequency-division multiplexing (FDM. At the voltage measurement electrodes, the voltage related to each current injecting electrode is isolated by using Fourier decomposition. In biomedical applications, using different frequencies has important implications due to dispersions as the tissue's electrical properties change with frequency. Another significant issue arises when we are recording data in a dynamic environment where the properties change very fast. This method allows simultaneous measurements of all the current patterns, which may be important in applications where the tissue changes occur in the same time scale as the measurement. We discuss the FDM EIT method from the biomedical point of view and show results obtained with a simple experimental system.

  5. Digital fabrication of multi-material biomedical objects

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, H H; Choi, S H, E-mail: shchoi@hku.h [Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)

    2009-12-15

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  6. Digital fabrication of multi-material biomedical objects

    International Nuclear Information System (INIS)

    Cheung, H H; Choi, S H

    2009-01-01

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  7. Method for detecting core malware sites related to biomedical information systems.

    Science.gov (United States)

    Kim, Dohoon; Choi, Donghee; Jin, Jonghyun

    2015-01-01

    Most advanced persistent threat attacks target web users through malicious code within landing (exploit) or distribution sites. There is an urgent need to block the affected websites. Attacks on biomedical information systems are no exception to this issue. In this paper, we present a method for locating malicious websites that attempt to attack biomedical information systems. Our approach uses malicious code crawling to rearrange websites in the order of their risk index by analyzing the centrality between malware sites and proactively eliminates the root of these sites by finding the core-hub node, thereby reducing unnecessary security policies. In particular, we dynamically estimate the risk index of the affected websites by analyzing various centrality measures and converting them into a single quantified vector. On average, the proactive elimination of core malicious websites results in an average improvement in zero-day attack detection of more than 20%.

  8. Method for Detecting Core Malware Sites Related to Biomedical Information Systems

    Directory of Open Access Journals (Sweden)

    Dohoon Kim

    2015-01-01

    Full Text Available Most advanced persistent threat attacks target web users through malicious code within landing (exploit or distribution sites. There is an urgent need to block the affected websites. Attacks on biomedical information systems are no exception to this issue. In this paper, we present a method for locating malicious websites that attempt to attack biomedical information systems. Our approach uses malicious code crawling to rearrange websites in the order of their risk index by analyzing the centrality between malware sites and proactively eliminates the root of these sites by finding the core-hub node, thereby reducing unnecessary security policies. In particular, we dynamically estimate the risk index of the affected websites by analyzing various centrality measures and converting them into a single quantified vector. On average, the proactive elimination of core malicious websites results in an average improvement in zero-day attack detection of more than 20%.

  9. High-resolution imaging of the central nervous system: how novel imaging methods combined with navigation strategies will advance patient care.

    Science.gov (United States)

    Farooq, Hamza; Genis, Helen; Alarcon, Joseph; Vuong, Barry; Jivraj, Jamil; Yang, Victor X D; Cohen-Adad, Julien; Fehlings, Michael G; Cadotte, David W

    2015-01-01

    This narrative review captures a subset of recent advances in imaging of the central nervous system. First, we focus on improvements in the spatial and temporal profile afforded by optical coherence tomography, fluorescence-guided surgery, and Coherent Anti-Stokes Raman Scattering Microscopy. Next, we highlight advances in the generation and uses of imaging-based atlases and discuss how this will be applied to specific clinical situations. To conclude, we discuss how these and other imaging tools will be combined with neuronavigation techniques to guide surgeons in the operating room. Collectively, this work aims to highlight emerging biomedical imaging strategies that hold potential to be a valuable tool for both clinicians and researchers in the years to come. © 2015 Elsevier B.V. All rights reserved.

  10. Nanodiamond-Based Composite Structures for Biomedical Imaging and Drug Delivery.

    Science.gov (United States)

    Rosenholm, Jessica M; Vlasov, Igor I; Burikov, Sergey A; Dolenko, Tatiana A; Shenderova, Olga A

    2015-02-01

    Nanodiamond particles are widely recognized candidates for biomedical applications due to their excellent biocompatibility, bright photoluminescence based on color centers and outstanding photostability. Recently, more complex architectures with a nanodiamond core and an external shell or nanostructure which provides synergistic benefits have been developed, and their feasibility for biomedical applications has been demonstrated. This review is aimed at summarizing recent achievements in the fabrication and functional demonstrations of nanodiamond-based composite structures, along with critical considerations that should be taken into account in the design of such structures from a biomedical point of view. A particular focus of the review is core/shell structures of nanodiamond surrounded by porous silica shells, which demonstrate a remarkable increase in drug loading efficiency; as well as nanodiamonds decorated with carbon dots, which have excellent potential as bioimaging probes. Other combinations are also considered, relying on the discussed inherent properties of the inorganic materials being integrated in a way to advance inorganic nanomedicine in the quest for better health-related nanotechnology.

  11. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  12. Views on the peer review system of biomedical journals: an online survey of academics from high-ranking universities

    Science.gov (United States)

    2013-01-01

    Background Peer review is the major method used by biomedical journals for making the decision of publishing an article. This cross-sectional survey assesses views concerning the review system of biomedical journals among academics globally. Methods A total of 28,009 biomedical academics from high-ranking universities listed by the 2009 Times Higher Education Quacquarelli Symonds (THE-QS) World University Rankings were contacted by email between March 2010 and August 2010. 1,340 completed an online survey which focused on their academic background, negative experiences and views on biomedical journal peer review and the results were compared among basic scientists, clinicians and clinician scientists. Results Fewer than half of the respondents agreed that the peer review systems of biomedical journals were fair (48.4%), scientific (47.5%), or transparent (25.1%). Nevertheless, 58.2% of the respondents agreed that authors should remain anonymous and 64.4% agreed that reviewers should not be disclosed. Most, (67.7%) agreed to the establishment of an appeal system. The proportion of native English-speaking respondents who agreed that the “peer review system is fair” was significantly higher than for non-native respondents (p = 0.02). Similarly, the proportion of clinicians stating that the “peer review system is fair” was significantly higher than that for basic scientists and clinician-scientists (p = 0.004). For females, (β = −0.1, p = 0.03), the frequency of encountering personal attacks in reviewers’ comments (β = −0.1, p = 0.002) and the frequency of imposition of unnecessary references by reviewers (β = −0.06, p = 0.04) were independently and inversely associated with agreement that “the peer review system is fair”. Conclusion Academics are divided on the issue of whether the biomedical journal peer review system is fair, scientific and transparent. A majority of academics agreed with the double-blind peer

  13. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    Science.gov (United States)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey

  14. Technology for 3D System Integration for Flexible Wireless Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Kuo

    2018-05-01

    Full Text Available This paper presents a new 3D bottom-up packing technology for integrating a chip, an induction coil, and interconnections for flexible wireless biomedical applications. Parylene was used as a flexible substrate for the bottom-up embedding of the chip, insulation layer, interconnection, and inductors to form a flexible wireless biomedical microsystem. The system can be implanted on or inside the human body. A 50-μm gold foil deposited through laser micromachining by using a picosecond laser was used as an inductor to yield a higher quality factor than that yielded by thickness-increasing methods such as the fold-and-bond method or thick-metal electroplating method at the operation frequency of 1 MHz. For system integration, parylene was used as a flexible substrate, and the contact pads and connections between the coil and chip were generated using gold deposition. The advantage of the proposed process can integrate the chip and coil vertically to generate a single biocompatible system in order to reduce required area. The proposed system entails the use of 3D integrated circuit packaging concepts to integrate the chip and coil. The results validated the feasibility of this technology.

  15. Time of flight imaging through scattering environments (Conference Presentation)

    Science.gov (United States)

    Le, Toan H.; Breitbach, Eric C.; Jackson, Jonathan A.; Velten, Andreas

    2017-02-01

    Light scattering is a primary obstacle to imaging in many environments. On small scales in biomedical microscopy and diffuse tomography scenarios scattering is caused by tissue. On larger scales scattering from dust and fog provide challenges to vision systems for self driving cars and naval remote imaging systems. We are developing scale models for scattering environments and investigation methods for improved imaging particularly using time of flight transient information. With the emergence of Single Photon Avalanche Diode detectors and fast semiconductor lasers, illumination and capture on picosecond timescales are becoming possible in inexpensive, compact, and robust devices. This opens up opportunities for new computational imaging techniques that make use of photon time of flight. Time of flight or range information is used in remote imaging scenarios in gated viewing and in biomedical imaging in time resolved diffuse tomography. In addition spatial filtering is popular in biomedical scenarios with structured illumination and confocal microscopy. We are presenting a combination analytical, computational, and experimental models that allow us develop and test imaging methods across scattering scenarios and scales. This framework will be used for proof of concept experiments to evaluate new computational imaging methods.

  16. Distributed System for Spaceflight Biomedical Support

    Data.gov (United States)

    National Aeronautics and Space Administration — Our project investigated whether a software platform could integrate as wide a variety of devices and data types as needed for spaceflight biomedical support. The...

  17. Functionalized carbon nanotubes: biomedical applications

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  18. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  19. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  20. CNN-based ranking for biomedical entity normalization.

    Science.gov (United States)

    Li, Haodi; Chen, Qingcai; Tang, Buzhou; Wang, Xiaolong; Xu, Hua; Wang, Baohua; Huang, Dong

    2017-10-03

    Most state-of-the-art biomedical entity normalization systems, such as rule-based systems, merely rely on morphological information of entity mentions, but rarely consider their semantic information. In this paper, we introduce a novel convolutional neural network (CNN) architecture that regards biomedical entity normalization as a ranking problem and benefits from semantic information of biomedical entities. The CNN-based ranking method first generates candidates using handcrafted rules, and then ranks the candidates according to their semantic information modeled by CNN as well as their morphological information. Experiments on two benchmark datasets for biomedical entity normalization show that our proposed CNN-based ranking method outperforms traditional rule-based method with state-of-the-art performance. We propose a CNN architecture that regards biomedical entity normalization as a ranking problem. Comparison results show that semantic information is beneficial to biomedical entity normalization and can be well combined with morphological information in our CNN architecture for further improvement.

  1. Human emotions detection based on a smart-thermal system of thermographic images

    Science.gov (United States)

    Cruz-Albarran, Irving A.; Benitez-Rangel, Juan P.; Osornio-Rios, Roque A.; Morales-Hernandez, Luis A.

    2017-03-01

    This work presents a noninvasive methodology to obtain biomedical thermal imaging which provide relevant information that may assist in the diagnosis of emotions. Biomedical thermal images of the facial expressions of 44 subjects were captured experiencing joy, disgust, anger, fear and sadness. The analysis of these thermograms was carried out through its thermal value not with its intensity value. Regions of interest were obtained through image processing techniques that allow to differentiate between the subject and the background, having only the subject, the centers of each region of interest were obtained in order to get the same region of the face for each subject. Through the thermal analysis a biomarker for each region of interest was obtained, these biomarkers can diagnose when an emotion takes place. Because each subject tends to react differently to the same stimuli, a self-calibration phase is proposed, its function is to have the same thermal trend for each subject in order to make a decision so that the five emotions can be correctly diagnosed through a top-down hierarchical classifier. As a final result, a smart-thermal system that diagnose emotions was obtained and it was tested on twenty-five subjects (625 thermograms). The results of this test were 89.9% successful.

  2. Beamlines of the biomedical imaging and therapy facility at the Canadian light source - part 3

    Science.gov (United States)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1-4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6-9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20-100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to -7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT, described

  3. Implementation and management of a biomedical observation dictionary in a large healthcare information system.

    Science.gov (United States)

    Vandenbussche, Pierre-Yves; Cormont, Sylvie; André, Christophe; Daniel, Christel; Delahousse, Jean; Charlet, Jean; Lepage, Eric

    2013-01-01

    This study shows the evolution of a biomedical observation dictionary within the Assistance Publique Hôpitaux Paris (AP-HP), the largest European university hospital group. The different steps are detailed as follows: the dictionary creation, the mapping to logical observation identifier names and codes (LOINC), the integration into a multiterminological management platform and, finally, the implementation in the health information system. AP-HP decided to create a biomedical observation dictionary named AnaBio, to map it to LOINC and to maintain the mapping. A management platform based on methods used for knowledge engineering has been put in place. It aims at integrating AnaBio within the health information system and improving both the quality and stability of the dictionary. This new management platform is now active in AP-HP. The AnaBio dictionary is shared by 120 laboratories and currently includes 50 000 codes. The mapping implementation to LOINC reaches 40% of the AnaBio entries and uses 26% of LOINC records. The results of our work validate the choice made to develop a local dictionary aligned with LOINC. This work constitutes a first step towards a wider use of the platform. The next step will support the entire biomedical production chain, from the clinician prescription, through laboratory tests tracking in the laboratory information system to the communication of results and the use for decision support and biomedical research. In addition, the increase in the mapping implementation to LOINC ensures the interoperability allowing communication with other international health institutions.

  4. Design and implementation of a biomedical image database (BDIM).

    Science.gov (United States)

    Aubry, F; Badaoui, S; Kaplan, H; Di Paola, R

    1988-01-01

    We developed a biomedical image database (BDIM) which proposes a standardized representation of value arrays such as images and curves, and of their associated parameters, independently of their acquisition mode to make their transmission and processing easier. It includes three kinds of interactions, oriented to the users. The network concept was kept as a constraint to incorporate the BDIM in a distributed structure and we maintained compatibility with the ACR/NEMA communication protocol. The management of arrays and their associated parameters includes two distinct bases of objects, linked together via a gateway. The first one manages arrays according to their storage mode: long term storage on optionally on-line mass storage devices, and, for consultations, partial copies of long term stored arrays on hard disk. The second one manages the associated parameters and the gateway by means of the relational DBMS ORACLE. Parameters are grouped into relations. Some of them are in agreement with groups defined by the ACR/NEMA. The other relations describe objects resulting from processed initial objects. These new objects are not described by the ACR/NEMA but they can be inserted as shadow groups of ACR/NEMA description. The relations describing the storage and their pathname constitute the gateway. ORACLE distributed tools and the two-level storage technique will allow the integration of the BDIM into a distributed structure, Queries and array (alone or in sequences) retrieval module has access to the relations via a level in which a dictionary managed by ORACLE is included. This dictionary translates ACR/NEMA objects into objects that can be handled by the DBMS.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  6. An ultra low energy biomedical signal processing system operating at near-threshold

    NARCIS (Netherlands)

    Hulzink, J.; Konijnenburg, M.; Ashouei, M.; Breeschoten, A.; Berset, T.; Huisken, J.; Stuyt, J.; Groot, H. de; Barat, F.; David, J.; Ginderdeuren, J. van

    2011-01-01

    This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signals. To fulfill the requirements of ambulatory monitoring, power consumption, which directly translates to the WSN battery lifetime

  7. DyKOSMap: A framework for mapping adaptation between biomedical knowledge organization systems.

    Science.gov (United States)

    Dos Reis, Julio Cesar; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal

    2015-06-01

    Knowledge Organization Systems (KOS) and their associated mappings play a central role in several decision support systems. However, by virtue of knowledge evolution, KOS entities are modified over time, impacting mappings and potentially turning them invalid. This requires semi-automatic methods to maintain such semantic correspondences up-to-date at KOS evolution time. We define a complete and original framework based on formal heuristics that drives the adaptation of KOS mappings. Our approach takes into account the definition of established mappings, the evolution of KOS and the possible changes that can be applied to mappings. This study experimentally evaluates the proposed heuristics and the entire framework on realistic case studies borrowed from the biomedical domain, using official mappings between several biomedical KOSs. We demonstrate the overall performance of the approach over biomedical datasets of different characteristics and sizes. Our findings reveal the effectiveness in terms of precision, recall and F-measure of the suggested heuristics and methods defining the framework to adapt mappings affected by KOS evolution. The obtained results contribute and improve the quality of mappings over time. The proposed framework can adapt mappings largely automatically, facilitating thus the maintenance task. The implemented algorithms and tools support and minimize the work of users in charge of KOS mapping maintenance. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A general system for automatic biomedical image segmentation using intensity neighborhoods.

    Science.gov (United States)

    Chen, Cheng; Ozolek, John A; Wang, Wei; Rohde, Gustavo K

    2011-01-01

    Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.

  9. A General System for Automatic Biomedical Image Segmentation Using Intensity Neighborhoods

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2011-01-01

    Full Text Available Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.

  10. Integration of instrumentation and processing software of a laser speckle contrast imaging system

    Science.gov (United States)

    Carrick, Jacob J.

    Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.

  11. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering.

    Science.gov (United States)

    Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid

    2014-01-01

    Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.

  12. Ultra-wideband and 60 GHz communications for biomedical applications

    CERN Document Server

    Yuce, Mehmet R

    2013-01-01

    This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The r

  13. Surface engineering of graphene-based nanomaterials for biomedical applications.

    Science.gov (United States)

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  14. Discrete-Time Biomedical Signal Encryption

    Directory of Open Access Journals (Sweden)

    Victor Grigoraş

    2017-12-01

    Full Text Available Chaotic modulation is a strong method of improving communication security. Analog and discrete chaotic systems are presented in actual literature. Due to the expansion of digital communication, discrete-time systems become more efficient and closer to actual technology. The present contribution offers an in-depth analysis of the effects chaos encryption produce on 1D and 2D biomedical signals. The performed simulations show that modulating signals are precisely recovered by the synchronizing receiver if discrete systems are digitally implemented and the coefficients precisely correspond. Channel noise is also applied and its effects on biomedical signal demodulation are highlighted.

  15. Suitability of customer relationship management systems for the management of study participants in biomedical research.

    Science.gov (United States)

    Schwanke, J; Rienhoff, O; Schulze, T G; Nussbeck, S Y

    2013-01-01

    Longitudinal biomedical research projects study patients or participants over a course of time. No IT solution is known that can manage study participants, enhance quality of data, support re-contacting of participants, plan study visits, and keep track of informed consent procedures and recruitments that may be subject to change over time. In business settings management of personal is one of the major aspects of customer relationship management systems (CRMS). To evaluate whether CRMS are suitable IT solutions for study participant management in biomedical research. Three boards of experts in the field of biomedical research were consulted to get an insight into recent IT developments regarding study participant management systems (SPMS). Subsequently, a requirements analysis was performed with stakeholders of a major biomedical research project. The successive suitability evaluation was based on the comparison of the identified requirements with the features of six CRMS. Independently of each other, the interviewed expert boards confirmed that there is no generic IT solution for the management of participants. Sixty-four requirements were identified and prioritized in a requirements analysis. The best CRMS was able to fulfill forty-two of these requirements. The non-fulfilled requirements demand an adaption of the CRMS, consuming time and resources, reducing the update compatibility, the system's suitability, and the security of the CRMS. A specific solution for the SPMS is favored instead of a generic and commercially-oriented CRMS. Therefore, the development of a small and specific SPMS solution was commenced and is currently on the way to completion.

  16. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    International Nuclear Information System (INIS)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2015-01-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  17. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Tomasz W., E-mail: bmit@lightsource.ca [Canadian Light Source, Saskatoon, SK (Canada); Chapman, Dean [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Adams, Gregg [Western College of Veterinary Medicine, Saskatoon, SK (Canada); Renier, Michel [European Synchrotron Radiation Facility, Grenoble (France); Suortti, Pekka [Department of Physics, University of Helsinki (Finland); Thomlinson, William [Department of Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  18. Knowledge-based analysis and understanding of 3D medical images

    International Nuclear Information System (INIS)

    Dhawan, A.P.; Juvvadi, S.

    1988-01-01

    The anatomical three-dimensional (3D) medical imaging modalities, such as X-ray CT and MRI, have been well recognized in the diagnostic radiology for several years while the nuclear medicine modalities, such as PET, have just started making a strong impact through functional imaging. Though PET images provide the functional information about the human organs, they are hard to interpret because of the lack of anatomical information. The authors objective is to develop a knowledge-based biomedical image analysis system which can interpret the anatomical images (such as CT). The anatomical information thus obtained can then be used in analyzing PET images of the same patient. This will not only help in interpreting PET images but it will also provide a means of studying the correlation between the anatomical and functional imaging. This paper presents the preliminary results of the knowledge based biomedical image analysis system for interpreting CT images of the chest

  19. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems.

    Science.gov (United States)

    Kaur, Randeep; Badea, Ildiko

    2013-01-01

    Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.

  20. Low cost open data acquisition system for biomedical applications

    Science.gov (United States)

    Zabolotny, Wojciech M.; Laniewski-Wollk, Przemyslaw; Zaworski, Wojciech

    2005-09-01

    In the biomedical applications it is often necessary to collect measurement data from different devices. It is relatively easy, if the devices are equipped with a MIB or Ethernet interface, however often they feature only the asynchronous serial link, and sometimes the measured values are available only as the analog signals. The system presented in the paper is a low cost alternative to commercially available data acquisition systems. The hardware and software architecture of the system is fully open, so it is possible to customize it for particular needs. The presented system offers various possibilities to connect it to the computer based data processing unit - e.g. using the USB or Ethernet ports. Both interfaces allow also to use many such systems in parallel to increase amount of serial and analog inputs. The open source software used in the system makes possible to process the acquired data with standard tools like MATLAB, Scilab or Octave, or with a dedicated, user supplied application.

  1. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  2. 30th International Acoustical Imaging Symposium

    CERN Document Server

    Jones, Joie; Lee, Hua

    2011-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place every two years since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2009 the 30th International Symposium on Acoustical Imaging was held in Monterey, CA, USA, March 1-4. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 30 in the Series contains an excellent collection of forty three papers presented in five major categories: Biomedical Imaging Acoustic Microscopy Non-Destructive Evaluation Systems Analysis Signal Analysis and Image Processing Audience Researchers in medical imaging and biomedical instrumentation experts.

  3. Exploring subdomain variation in biomedical language

    Directory of Open Access Journals (Sweden)

    Séaghdha Diarmuid Ó

    2011-05-01

    Full Text Available Abstract Background Applications of Natural Language Processing (NLP technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. Results Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. Conclusions We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers.

  4. Human factors design for the BMIT biomedical beamlines

    International Nuclear Information System (INIS)

    Miller, C Denise; Wysokinski, Tomasz W; Belev, George; Chapman, L Dean

    2013-01-01

    Operation of a biomedical beamline poses a unique set of operational and instrumentation challenges for a synchrotron facility. From proper handling and care of live animals and animal tissues, to a user community drawn primarily from the medical and veterinary realms, the work of a biomedical beamline is unique when compared to other beamlines. At the Biomedical Imaging and Therapy (BMIT) beamlines at Canadian Light Source (CLS), operation of the beamlines is geared towards our user community of medical personnel, in addition to basic science researchers. Human factors considerations have been incorporated wherever possible on BMIT, including in the design of software and hardware, as well as ease-of-use features of beamline control stations and experiment hutches. Feedback from users continues to drive usability improvements to beamline operations.

  5. Potential of luminescence based molecular animal imaging in research areas pertaining to cancer biology and therapy

    International Nuclear Information System (INIS)

    Yadav, Hansa D.; Shetake, Neena G.; Balla Murali, M.S.; Kumar, Amit; Pandey, B.N.

    2017-01-01

    Animal imaging is getting tremendous importance in biomedical research areas including drug delivery, radiobiology and cancer research. Even though, imaging techniques like CT, PET, SPECT, MRI are available for experimental animals, luminescence-based molecular imaging is still considered as crucial and common tool for biomedical laboratories due to easy handling/maintenance, cost effectiveness and various strategies available to manipulate the molecules/cells employed for imaging purposes. The Molecular Animal Imaging System available in our laboratory is being utilized for various cancer research activities including measurement of tumor growth kinetics, angiogenesis, therapeutic efficacy evaluation and metastasis studies. Moreover, the imaging system is also been used for radio-luminescence imaging based on Cherenkov radiation of radio-pharmaceuticals. (author)

  6. Filtered Backprojection using Algebraic Filters; Application to Biomedical Micro-CT Data

    NARCIS (Netherlands)

    L. Plantagie (Linda); W. van Aarle (Wim); J. Sijbers (Jan); K.J. Batenburg (Joost)

    2015-01-01

    htmlabstractFor computerized tomography (CT) imaging in (bio)medical applications, radiation dose reduction is extremely important. This can be achieved simply by reducing the number of projection images taken. In order to obtain accurate reconstructions from few projections, however, common

  7. A software package for biomedical image processing and analysis

    International Nuclear Information System (INIS)

    Goncalves, J.G.M.; Mealha, O.

    1988-01-01

    The decreasing cost of computing power and the introduction of low cost imaging boards justifies the increasing number of applications of digital image processing techniques in the area of biomedicine. There is however a large software gap to be fulfilled, between the application and the equipment. The requirements to bridge this gap are twofold: good knowledge of the hardware provided and its interface to the host computer, and expertise in digital image processing and analysis techniques. A software package incorporating these two requirements was developed using the C programming language, in order to create a user friendly image processing programming environment. The software package can be considered in two different ways: as a data structure adapted to image processing and analysis, which acts as the backbone and the standard of communication for all the software; and as a set of routines implementing the basic algorithms used in image processing and analysis. Hardware dependency is restricted to a single module upon which all hardware calls are based. The data structure that was built has four main features: hierchical, open, object oriented, and object dependent dimensions. Considering the vast amount of memory needed by imaging applications and the memory available in small imaging systems, an effective image memory management scheme was implemented. This software package is being used for more than one and a half years by users with different applications. It proved to be an excellent tool for helping people to get adapted into the system, and for standardizing and exchanging software, yet preserving flexibility allowing for users' specific implementations. The philosophy of the software package is discussed and the data structure that was built is described in detail

  8. Handbook on advanced design and manufacturing technologies for biomedical devices

    CERN Document Server

    2013-01-01

    The last decades have seen remarkable advances in computer-aided design, engineering and manufacturing technologies, multi-variable simulation tools, medical imaging, biomimetic design, rapid prototyping, micro and nanomanufacturing methods and information management resources, all of which provide new horizons for the Biomedical Engineering fields and the Medical Device Industry. Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices covers such topics in depth, with an applied perspective and providing several case studies that help to analyze and understand the key factors of the different stages linked to the development of a novel biomedical device, from the conceptual and design steps, to the prototyping and industrialization phases. Main research challenges and future potentials are also discussed, taking into account relevant social demands and a growing market already exceeding billions of dollars. In time, advanced biomedical devices will decisively change methods and resu...

  9. Informatics in radiology: An open-source and open-access cancer biomedical informatics grid annotation and image markup template builder.

    Science.gov (United States)

    Mongkolwat, Pattanasak; Channin, David S; Kleper, Vladimir; Rubin, Daniel L

    2012-01-01

    In a routine clinical environment or clinical trial, a case report form or structured reporting template can be used to quickly generate uniform and consistent reports. Annotation and image markup (AIM), a project supported by the National Cancer Institute's cancer biomedical informatics grid, can be used to collect information for a case report form or structured reporting template. AIM is designed to store, in a single information source, (a) the description of pixel data with use of markups or graphical drawings placed on the image, (b) calculation results (which may or may not be directly related to the markups), and (c) supplemental information. To facilitate the creation of AIM annotations with data entry templates, an AIM template schema and an open-source template creation application were developed to assist clinicians, image researchers, and designers of clinical trials to quickly create a set of data collection items, thereby ultimately making image information more readily accessible.

  10. Signals and Systems in Biomedical Engineering Signal Processing and Physiological Systems Modeling

    CERN Document Server

    Devasahayam, Suresh R

    2013-01-01

    The use of digital signal processing is ubiquitous in the field of physiology and biomedical engineering. The application of such mathematical and computational tools requires a formal or explicit understanding of physiology. Formal models and analytical techniques are interlinked in physiology as in any other field. This book takes a unitary approach to physiological systems, beginning with signal measurement and acquisition, followed by signal processing, linear systems modelling, and computer simulations. The signal processing techniques range across filtering, spectral analysis and wavelet analysis. Emphasis is placed on fundamental understanding of the concepts as well as solving numerical problems. Graphs and analogies are used extensively to supplement the mathematics. Detailed models of nerve and muscle at the cellular and systemic levels provide examples for the mathematical methods and computer simulations. Several of the models are sufficiently sophisticated to be of value in understanding real wor...

  11. Biomedical sensor design using analog compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    The main drawback of current healthcare systems is the location-specific nature of the system due to the use of fixed/wired biomedical sensors. Since biomedical sensors are usually driven by a battery, power consumption is the most important factor determining the life of a biomedical sensor. They are also restricted by size, cost, and transmission capacity. Therefore, it is important to reduce the load of sampling by merging the sampling and compression steps to reduce the storage usage, transmission times, and power consumption in order to expand the current healthcare systems to Wireless Healthcare Systems (WHSs). In this work, we present an implementation of a low-power biomedical sensor using analog Compressed Sensing (CS) framework for sparse biomedical signals that addresses both the energy and telemetry bandwidth constraints of wearable and wireless Body-Area Networks (BANs). This architecture enables continuous data acquisition and compression of biomedical signals that are suitable for a variety of diagnostic and treatment purposes. At the transmitter side, an analog-CS framework is applied at the sensing step before Analog to Digital Converter (ADC) in order to generate the compressed version of the input analog bio-signal. At the receiver side, a reconstruction algorithm based on Restricted Isometry Property (RIP) condition is applied in order to reconstruct the original bio-signals form the compressed bio-signals with high probability and enough accuracy. We examine the proposed algorithm with healthy and neuropathy surface Electromyography (sEMG) signals. The proposed algorithm achieves a good level for Average Recognition Rate (ARR) at 93% and reconstruction accuracy at 98.9%. In addition, The proposed architecture reduces total computation time from 32 to 11.5 seconds at sampling-rate=29 % of Nyquist rate, Percentage Residual Difference (PRD)=26 %, Root Mean Squared Error (RMSE)=3 %.

  12. A Multilayer Secure Biomedical Data Management System for Remotely Managing a Very Large Number of Diverse Personal Healthcare Devices

    Directory of Open Access Journals (Sweden)

    KeeHyun Park

    2015-01-01

    Full Text Available In this paper, a multilayer secure biomedical data management system for managing a very large number of diverse personal health devices is proposed. The system has the following characteristics: the system supports international standard communication protocols to achieve interoperability. The system is integrated in the sense that both a PHD communication system and a remote PHD management system work together as a single system. Finally, the system proposed in this paper provides user/message authentication processes to securely transmit biomedical data measured by PHDs based on the concept of a biomedical signature. Some experiments, including the stress test, have been conducted to show that the system proposed/constructed in this study performs very well even when a very large number of PHDs are used. For a stress test, up to 1,200 threads are made to represent the same number of PHD agents. The loss ratio of the ISO/IEEE 11073 messages in the normal system is as high as 14% when 1,200 PHD agents are connected. On the other hand, no message loss occurs in the multilayered system proposed in this study, which demonstrates the superiority of the multilayered system to the normal system with regard to heavy traffic.

  13. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    International Nuclear Information System (INIS)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-01-01

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα 1 line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample

  14. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    Science.gov (United States)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-08-01

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα1 line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  15. Biomedical engineering education--status and perspectives.

    Science.gov (United States)

    Magjarevic, Ratko; Zequera Diaz, Martha L

    2014-01-01

    Biomedical Engineering programs are present at a large number of universities all over the world with an increasing trend. New generations of biomedical engineers have to face the challenges of health care systems round the world which need a large number of professionals not only to support the present technology in the health care system but to develop new devices and services. Health care stakeholders would like to have innovative solutions directed towards solving problems of the world growing incidence of chronic disease and ageing population. These new solutions have to meet the requirements for continuous monitoring, support or care outside clinical settlements. Presence of these needs can be tracked through data from the Labor Organization in the U.S. showing that biomedical engineering jobs have the largest growth at the engineering labor market with expected 72% growth rate in the period from 2008-2018. In European Union the number of patents (i.e. innovation) is the highest in the category of biomedical technology. Biomedical engineering curricula have to adopt to the new needs and for expectations of the future. In this paper we want to give an overview of engineering professions in related to engineering in medicine and biology and the current status of BME education in some regions, as a base for further discussions.

  16. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems

    Directory of Open Access Journals (Sweden)

    Kaur R

    2013-01-01

    Full Text Available Randeep Kaur, Ildiko BadeaDrug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaAbstract: Detonation nanodiamonds (NDs are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.Keywords: dispersion, surface functionalization, toxicity, carriers, fluorescence, light scattering

  17. Imaging tissues for biomedical research using the high-resolution micro-tomography system nanotom® m

    Science.gov (United States)

    Deyhle, Hans; Schulz, Georg; Khimchenko, Anna; Bikis, Christos; Hieber, Simone E.; Jaquiery, Claude; Kunz, Christoph; Müller-Gerbl, Magdalena; Höchel, Sebastian; Saxer, Till; Stalder, Anja K.; Ilgenstein, Bernd; Beckmann, Felix; Thalmann, Peter; Buscema, Marzia; Rohr, Nadja; Holme, Margaret N.; Müller, Bert

    2016-10-01

    Micro computed tomography (mCT) is well established in virtually all fields of biomedical research, allowing for the non-destructive volumetric visualization of tissue morphology. A variety of specimens can be investigated, ranging from soft to hard tissue to engineered structures like scaffolds. Similarly, the size of the objects of interest ranges from a fraction of a millimeter to several tens of centimeters. While synchrotron radiation-based μCT still offers unrivaled data quality, the ever-improving technology of cathodic tube-based machines offers a valuable and more accessible alternative. The Biomaterials Science Center of the University of Basel operates a nanotomOR m (phoenix|x-ray, GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany), with a 180 kV source and a minimal spot size of about 0.9 μm. Through the adjustable focus-specimen and focus-detector distances, the effective pixel size can be adjusted from below 500 nm to about 80 μm. On the high-resolution side, it is for example possible to visualize the tubular network in sub-millimeter thin dentin specimens. It is then possible to locally extract parameters such as tubule diameter, density, or alignment, giving information on cell movements during tooth formation. On the other side, with a horizontal shift of the 3,072 pixels x 2,400 pixels detector, specimens up to 35 cm in diameter can be scanned. It is possible, for example, to scan an entire human knee, albeit with inferior resolution. Lab source μCT machines are thus a powerful and flexible tool for the advancement of biomedical research, and a valuable and more accessible alternative to synchrotron radiation facilities.

  18. Liquid Crystals, PIV and IR-Photography in Selected Technical and Biomedical Applications

    Science.gov (United States)

    Stasiek, Jan; Jewartowski, Marcin

    2017-10-01

    Thermochromic liquid crystals (TLC), Particle Image Velocimetry (PIV), Infrared Imaging Themography (IR) and True-Colour Digital Image Processing (TDIP) have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. These four tools (based on the desktop computers) have come together during the past two decades to produce a powerful advanced experimental technique as a judgment of quality of information that cannot be obtained from any other imaging procedure. The brief summary of the history of this technique is reviewed, principal methods and tools are described and some examples are presented. With this objective, a new experimental technique have been developed and applied to the study of heat and mass transfer and for biomedical diagnosis. Automated evaluation allows determining the heat and flow visualisation and locate the area of suspicious tissue of human body.

  19. Design, Microfabrication and Characterization of a Power Delivery System for new Biomedical Applications

    Directory of Open Access Journals (Sweden)

    CARUSO Massimo

    2017-05-01

    Full Text Available This paper presents the design, microfabrication and characterization of a wireless power delivery system capable of driving a surface acoustic wave sensor (SAW for biomedical applications. The system consists of two planar, spiral-square microcoils, which have been geometrically optimized in order to maximize the quality factor Q. The integration of the SAW - microcoil system into artificial implant sites will allow a real-time biofilm growth monitoring and treatment, providing countless advantages to the related medical applications.

  20. Optical methods and integrated systems for brain imaging in awake, untethered animals

    Science.gov (United States)

    Murari, Kartikeya

    Imaging is a powerful tool for biomedical research offering non-contact and minimally or non-invasive means of investigating at multiple scales---from single molecules to large populations of cells. Imaging in awake, behaving animals is an emerging field that offers the additional advantage of being able to study physiological processes and structures in a more natural state than what is possible in tissue slices or even in anesthetized animals. To date, most imaging in awake animals has used optical fiber bundles or electrical cables to transfer signals to traditional imaging-system components. However, the fibers or cables tether the animal and greatly limit the kind and duration of animal behavior that can be studied using imaging methods. This work involves three distinct yet related approaches to fulfill the goal of imaging in unanesthetized, unrestrained animals---optical techniques for functional and structural imaging, development of novel photodetectors and the design of miniaturized imaging systems. I hypothesized that the flow within vessels might act as a contrast-enhancing agent and improve the visualization of vascular architecture using laser speckle imaging. When imaging rodent cerebral vasculature I saw a two to four fold increase in the contrast-to-noise ratios and was able to visualize 10--30% more vascular features over reflectance techniques. I designed a complementary metal oxide semiconductor (CMOS) photodetector array that was comparable in sensitivity and noise performance to cooled CCD sensors, able to image fluorescence from a single cell, while running at faster frame rates. Next, I designed an imaging system weighing under 6 grams and occupying less than 4 cm3. The system incorporated multispectral illumination, adjustable focusing optics and the high-sensitivity CMOS imager. I was able to implement a variety of optical modalities with the system and performed reflectance, fluorescence, spectroscopic and laser speckle imaging with my

  1. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it's also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  2. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2016-06-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules . Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist . Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes , are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: ( i ) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and ( ii ) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is

  3. Cardiovascular system simulation in biomedical engineering education.

    Science.gov (United States)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  4. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    International Nuclear Information System (INIS)

    Ratti, L.; Gaioni, L.; Manghisoni, M.; Re, V.; Traversi, G.

    2011-01-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12μm to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6μm) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  5. Vertically integrated monolithic pixel sensors for charged particle tracking and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, L., E-mail: lodovico.ratti@unipv.it [Universita di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Gaioni, L. [INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Universita di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2011-10-01

    Three-dimensional monolithic pixel sensors have been designed following the same approach that was exploited for the development of the so-called deep N-well (DNW) MAPS in planar CMOS process. The new 3D design relies upon stacking two homogeneous layers fabricated in a 130 nm CMOS technology. One of the two tiers, which are face-to-face bonded, has to be thinned down to about 12{mu}m to expose the through silicon vias connecting the circuits to the back-metal bond pads. As a consequence of the way the two parts of each single chip are designed and fabricated, the prototypes of the 3D monolithic detector will include both samples with a thick substrate underneath the collecting DNW electrode, suitable for charged particle tracking, and samples with a very thin (about 6{mu}m) sensitive volume, which may be used to detect low energy particles in biomedical imaging applications. Device physics simulations have been performed to evaluate the collection properties and detection efficiency of the proposed vertically integrated structures.

  6. Figure mining for biomedical research.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Iossifov, Ivan

    2009-08-15

    Figures from biomedical articles contain valuable information difficult to reach without specialized tools. Currently, there is no search engine that can retrieve specific figure types. This study describes a retrieval method that takes advantage of principles in image understanding, text mining and optical character recognition (OCR) to retrieve figure types defined conceptually. A search engine was developed to retrieve tables and figure types to aid computational and experimental research. http://iossifovlab.cshl.edu/figurome/.

  7. Biomedical data integration in computational drug design and bioinformatics.

    Science.gov (United States)

    Seoane, Jose A; Aguiar-Pulido, Vanessa; Munteanu, Cristian R; Rivero, Daniel; Rabunal, Juan R; Dorado, Julian; Pazos, Alejandro

    2013-03-01

    In recent years, in the post genomic era, more and more data is being generated by biological high throughput technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as well as the solutions developed using these approaches in the past few years.

  8. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  9. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it\\'s also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  10. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  11. A comparative analysis of biomedical research ethics regulation systems in Europe and Latin America with regard to the protection of human subjects.

    Science.gov (United States)

    Lamas, Eugenia; Ferrer, Marcela; Molina, Alberto; Salinas, Rodrigo; Hevia, Adriana; Bota, Alexandre; Feinholz, Dafna; Fuchs, Michael; Schramm, Roland; Tealdi, Juan-Carlos; Zorrilla, Sergio

    2010-12-01

    The European project European and Latin American Systems of Ethics Regulation of Biomedical Research Project (EULABOR) has carried out the first comparative analysis of ethics regulation systems for biomedical research in seven countries in Europe and Latin America, evaluating their roles in the protection of human subjects. We developed a conceptual and methodological framework defining 'ethics regulation system for biomedical research' as a set of actors, institutions, codes and laws involved in overseeing the ethics of biomedical research on humans. This framework allowed us to develop comprehensive national reports by conducting semi-structured interviews to key informants. These reports were summarised and analysed in a comparative analysis. The study showed that the regulatory framework for clinical research in these countries differ in scope. It showed that despite the different political contexts, actors involved and motivations for creating the regulation, in most of the studied countries it was the government who took the lead in setting up the system. The study also showed that Europe and Latin America are similar regarding national bodies and research ethics committees, but the Brazilian system has strong and noteworthy specificities.

  12. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  13. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [BME Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Majidi, Keivan; Brankov, Jovan G., E-mail: brankov@iit.edu [ECE Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  14. Object-oriented biomedical system modelling--the language.

    Science.gov (United States)

    Hakman, M; Groth, T

    1999-11-01

    The paper describes a new object-oriented biomedical continuous system modelling language (OOBSML). It is fully object-oriented and supports model inheritance, encapsulation, and model component instantiation and behaviour polymorphism. Besides the traditional differential and algebraic equation expressions the language includes also formal expressions for documenting models and defining model quantity types and quantity units. It supports explicit definition of model input-, output- and state quantities, model components and component connections. The OOBSML model compiler produces self-contained, independent, executable model components that can be instantiated and used within other OOBSML models and/or stored within model and model component libraries. In this way complex models can be structured as multilevel, multi-component model hierarchies. Technically the model components produced by the OOBSML compiler are executable computer code objects based on distributed object and object request broker technology. This paper includes both the language tutorial and the formal language syntax and semantic description.

  15. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications

    Science.gov (United States)

    Kalomiraki, Marina; Thermos, Kyriaki; Chaniotakis, Nikos A

    2016-01-01

    Dendrimers are large polymeric structures with nanosize dimensions (1–10 nm) and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific “architecture” and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases. PMID:26730187

  16. Use of dextran nanoparticle: A paradigm shift in bacterial exopolysaccharide based biomedical applications.

    Science.gov (United States)

    Banerjee, Aparna; Bandopadhyay, Rajib

    2016-06-01

    This review is a concise compilation of all the major researches on dextran nanoparticle based biomedical applications. Dextran is a highly biocompatible and biodegradable neutral bacterial exopolysaccharide with simple repeating glucose subunits. It's simple yet unique biopolymeric nature made it highly suitable as nanomedicine, nanodrug carrier, and cell imaging system or nanobiosensor. Most importantly, it is extremely water soluble and shows no post drug delivery cellular toxicity. Complete metabolism of dextran is possible inside body thus possibility of renal failure is minimum. Dextran based nanoparticles have superior aqueous solubility, high cargo capacity and intrinsic viscosity, and short storage period. The main focus area of this review is- past and present of major biomedical applications of dextran based nanomaterials thus showing a paradigm shift in bacterial exopolysaccharide based nanobiotechnology. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. BIOMedical Search Engine Framework: Lightweight and customized implementation of domain-specific biomedical search engines.

    Science.gov (United States)

    Jácome, Alberto G; Fdez-Riverola, Florentino; Lourenço, Anália

    2016-07-01

    Text mining and semantic analysis approaches can be applied to the construction of biomedical domain-specific search engines and provide an attractive alternative to create personalized and enhanced search experiences. Therefore, this work introduces the new open-source BIOMedical Search Engine Framework for the fast and lightweight development of domain-specific search engines. The rationale behind this framework is to incorporate core features typically available in search engine frameworks with flexible and extensible technologies to retrieve biomedical documents, annotate meaningful domain concepts, and develop highly customized Web search interfaces. The BIOMedical Search Engine Framework integrates taggers for major biomedical concepts, such as diseases, drugs, genes, proteins, compounds and organisms, and enables the use of domain-specific controlled vocabulary. Technologies from the Typesafe Reactive Platform, the AngularJS JavaScript framework and the Bootstrap HTML/CSS framework support the customization of the domain-oriented search application. Moreover, the RESTful API of the BIOMedical Search Engine Framework allows the integration of the search engine into existing systems or a complete web interface personalization. The construction of the Smart Drug Search is described as proof-of-concept of the BIOMedical Search Engine Framework. This public search engine catalogs scientific literature about antimicrobial resistance, microbial virulence and topics alike. The keyword-based queries of the users are transformed into concepts and search results are presented and ranked accordingly. The semantic graph view portraits all the concepts found in the results, and the researcher may look into the relevance of different concepts, the strength of direct relations, and non-trivial, indirect relations. The number of occurrences of the concept shows its importance to the query, and the frequency of concept co-occurrence is indicative of biological relations

  18. A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging

    Science.gov (United States)

    Yang, Yunjie; Jia, Jiabin

    2017-08-01

    This paper presents the design and evaluation of a configurable, fast multi-frequency Electrical Impedance Tomography (mfEIT) system for real-time 2D and 3D imaging, particularly for biomedical imaging. The system integrates 32 electrode interfaces and the current frequency ranges from 10 kHz to 1 MHz. The system incorporates the following novel features. First, a fully adjustable multi-frequency current source with current monitoring function is designed. Second, a flexible switching scheme is developed for arbitrary sensing configuration and a semi-parallel data acquisition architecture is implemented for high-frame-rate data acquisition. Furthermore, multi-frequency digital quadrature demodulation is accomplished in a high-capacity Field Programmable Gate Array. At last, a 3D imaging software, visual tomography, is developed for real-time 2D and 3D image reconstruction, data analysis, and visualization. The mfEIT system is systematically tested and evaluated from the aspects of signal to noise ratio (SNR), frame rate, and 2D and 3D multi-frequency phantom imaging. The highest SNR is 82.82 dB on a 16-electrode sensor. The frame rate is up to 546 fps at serial mode and 1014 fps at semi-parallel mode. The evaluation results indicate that the presented mfEIT system is a powerful tool for real-time 2D and 3D imaging.

  19. 75 FR 3948 - Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc...

    Science.gov (United States)

    2010-01-25

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc., Biosys, Inc., Bolder Technologies Corp., Boyds Wheels, Inc... securities of Biometrics Security Technology, Inc. because it has not filed any periodic reports since...

  20. Bio-medical CMOS ICs

    CERN Document Server

    Yoo, Hoi-Jun

    2011-01-01

    This book is based on a graduate course entitled, Ubiquitous Healthcare Circuits and Systems, that was given by one of the editors. It includes an introduction and overview to biomedical ICs and provides information on the current trends in research.

  1. Selected Topics in MicroNano-robotics for Biomedical Applications

    CERN Document Server

    2013-01-01

    Selected Topics in Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials and cutting-edge research results in micro/nanorobotics for biomedical applications. The book presents new sensing technology on nanofibers, new power supply techniques including miniature fuel cells and energy harvesting devices, and manipulation techniques including AFM-based nano-robotic manipulation, robot-aided optical tweezers, and robot-assisted catheter surgery systems. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Each chapter covers a different topic of the highly interdisciplinary area. Bring together the selected topics into ...

  2. Medical Imaging System

    Science.gov (United States)

    1991-01-01

    The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.

  3. Design of biomedical devices and systems

    CERN Document Server

    King, Paul H

    2008-01-01

    Introduction to Biomedical Engineering Design. Fundamental Design Tools. Design Team Management, Reporting, and Documentation. Product Definition. Product Documentation. Product Development. Hardware Development Methods and Tools. Software Development Methods and Tools. Human Factors. Industrial Design. Biomaterials and Material Testing. Safety Engineering: Devices and Processes. Testing. Analysis of Test Data. Reliability and Liability. Food and Drug Administration. Regulations and Standards. Licensing, Patents, Copyrights, and Trade Secrets. Manufacturing and Quality Control. Miscellaneous Issues. Product Issues. Professional Issues. Design Case Studies. Future Design Issues.

  4. Biomedical wellness monitoring system based upon molecular markers

    Science.gov (United States)

    Ingram, Whitney

    2012-06-01

    We wish to assist caretakers with a sensor monitoring systems for tracking the physiological changes of homealone patients. One goal is seeking biomarkers and modern imaging sensors like stochastic optical reconstruction microscopy (STORM), which has achieved visible imaging at the nano-scale range. Imaging techniques like STORM can be combined with a fluorescent functional marker in a system to capture the early transformation signs from wellness to illness. By exploiting both microscopic knowledge of genetic pre-disposition and the macroscopic influence of epigenetic factors we hope to target these changes remotely. We adopt dual spectral infrared imaging for blind source separation (BSS) to detect angiogenesis changes and use laser speckle imaging for hypertension blood flow monitoring. Our design hypothesis for the monitoring system is guided by the user-friendly, veteran-preferred "4-Non" principles (noninvasive, non-contact, non-tethered, non-stop-to-measure) and by the NIH's "4Ps" initiatives (predictive, personalized, preemptive, and participatory). We augment the potential storage system with the recent know-how of video Compressive Sampling (CSp) from surveillance cameras. In CSp only major changes are saved, which reduces the manpower cost of caretakers and medical analysts. This CSp algorithm is based on smart associative memory (AM) matrix storage: change features and detailed scenes are written by the outer-product and read by the inner product without the usual Harsh index for image searching. From this approach, we attempt to design an effective household monitoring approach to save healthcare costs and maintain the quality of life of seniors.

  5. Imaging Mass Spectrometry in Neuroscience

    Science.gov (United States)

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  6. Preliminary design of the beam transport system for the Milan biomedical cyclotron

    International Nuclear Information System (INIS)

    Silari, M.

    1988-01-01

    This report illustrates the preliminary design of the beam transport system for the Scanditronix MC40 cyclotron to be installed in Milan. The Cyclotron will be dedicated to biomedical research and the different experimental conditions that could occur will require a beam transport system flexible enough so as to deliver beams with the specified characteristics. The report describes the computer codes used, the calculations performed and the results obtained. The complete configuration of the beam lines serving the first two target rooms is given, together with typical beam profiles and the emittance ellipse variation along the transfer channels

  7. Are we studying what matters? Health priorities and NIH-funded biomedical engineering research.

    Science.gov (United States)

    Rubin, Jessica B; Paltiel, A David; Saltzman, W Mark

    2010-07-01

    With the founding of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in 1999, the National Institutes of Health (NIH) made explicit its dedication to expanding research in biomedical engineering. Ten years later, we sought to examine how closely federal funding for biomedical engineering aligns with U.S. health priorities. Using a publicly accessible database of research projects funded by the NIH in 2008, we identified 641 grants focused on biomedical engineering, 48% of which targeted specific diseases. Overall, we found that these disease-specific NIH-funded biomedical engineering research projects align with national health priorities, as quantified by three commonly utilized measures of disease burden: cause of death, disability-adjusted survival losses, and expenditures. However, we also found some illnesses (e.g., cancer and heart disease) for which the number of research projects funded deviated from our expectations, given their disease burden. Our findings suggest several possibilities for future studies that would serve to further inform the allocation of limited research dollars within the field of biomedical engineering.

  8. An information technology emphasis in biomedical informatics education.

    Science.gov (United States)

    Kane, Michael D; Brewer, Jeffrey L

    2007-02-01

    Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.

  9. Multispectral photoacoustic characterization of ICG and porcine blood using an LED-based photoacoustic imaging system

    Science.gov (United States)

    Shigeta, Yusuke; Sato, Naoto; Kuniyil Ajith Singh, Mithun; Agano, Toshitaka

    2018-02-01

    Photoacoustic imaging is a hybrid biomedical imaging modality that has emerged over the last decade. In photoacoustic imaging, pulsed-light absorbed by the target emits ultrasound that can be detected using a conventional ultrasound array. This ultrasound data can be used to reconstruct the location and spatial details of the intrinsic/extrinsic light absorbers in the tissue. Recently we reported on the development of a multi-wavelength high frame-rate LED-based photoacoustic/ultrasound imaging system (AcousticX). In this work, we photoacoustically characterize the absorption spectrum of ICG and porcine blood using LED arrays with multiple wavelengths (405, 420, 470, 520, 620, 660, 690, 750, 810, 850, 925, 980 nm). Measurements were performed in a simple reflection mode configuration in which LED arrays where fixed on both sides of the linear array ultrasound probe. Phantom used consisted of micro-test tubes filled with ICG and porcine blood, which were placed in a tank filled with water. The photoacoustic spectrum obtained from our measurements matches well with the reference absorption spectrum. These results demonstrate the potential capability of our system in performing clinical/pre-clinical multispectral photoacoustic imaging.

  10. Functional supramolecular polymers for biomedical applications.

    Science.gov (United States)

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

    International Nuclear Information System (INIS)

    Huang, Shih-Hung; Juang, Ruey-Shin

    2011-01-01

    Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

  12. Industry careers for the biomedical engineer.

    Science.gov (United States)

    Munzner, Robert F

    2004-01-01

    This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.

  13. Parallel Processing and Bio-inspired Computing for Biomedical Image Registration

    Directory of Open Access Journals (Sweden)

    Silviu Ioan Bejinariu

    2014-07-01

    Full Text Available Image Registration (IR is an optimization problem computing optimal parameters of a geometric transform used to overlay one or more source images to a given model by maximizing a similarity measure. In this paper the use of bio-inspired optimization algorithms in image registration is analyzed. Results obtained by means of three different algorithms are compared: Bacterial Foraging Optimization Algorithm (BFOA, Genetic Algorithm (GA and Clonal Selection Algorithm (CSA. Depending on the images type, the registration may be: area based, which is slow but more precise, and features based, which is faster. In this paper a feature based approach based on the Scale Invariant Feature Transform (SIFT is proposed. Finally, results obtained using sequential and parallel implementations on multi-core systems for area based and features based image registration are compared.

  14. Iron/iron oxide core-shell nanoclusters for biomedical applications

    International Nuclear Information System (INIS)

    Qiang You; Antony, Jiji; Sharma, Amit; Nutting, Joseph; Sikes, Daniel; Meyer, Daniel

    2006-01-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. Most magnetic particles or beads currently used in biomedical applications are based on ferromagnetic iron oxides with very low specific magnetic moments of about 20-30 emu/g. Here we report a new approach to synthesize monodispersed core-shell nanostructured clusters with high specific magnetic moments above 200 emu/g. Iron nanoclusters with monodispersive size of diameters from 2 nm to 100 nm are produced by our newly developed nanocluster source and go to a deposition chamber, where a chemical reaction starts, and the nanoclusters are coated with iron oxides. HRTEM Images show the coatings are very uniform and stable. The core-shell nanoclusters are superparamagnetic at room temperature for sizes less than 15 nm, and then become ferromagnetic when the cluster size increases. The specific magnetic moment of core-shell nanoclusters is size dependent, and increases rapidly from about 80 emu/g at the cluster size of around 3 nm to over 200 emu/g up to the size of 100 nm. The use of high magnetic moment nanoclusters for biomedical applications could dramatically enhance the contrast for MRI, reduce the concentration of magnetic particle needs for cell separation, or make drug delivery possible with much lower magnetic field gradients

  15. Random laser illumination: an ideal source for biomedical polarization imaging?

    Science.gov (United States)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  16. Some imaging characteristics of the dynamic spatial reconstructor X-ray scanner system

    International Nuclear Information System (INIS)

    Behrenbeck, T.; Sinak, L.J.; Robb, R.A.; Kinsey, J.H.; Ritman, E.L.

    1984-01-01

    In late 1979, the Dynamic Spatial Reconstructor (DSR), a multiple X-ray source, stop action, volume scanning imaging device was installed. At present, the operational characteristics and biomedical utility of the DSR are being evaluated. This research project involves scanning experimental animals and carefully selected patients with cardiovascular and pulmonary pathology. The DSR scanner utilizes a computerized transaxial tomography principle to generate images of transverse slices of the body. (Auth.)

  17. Quantitative imaging of magnetic nanoparticles by magneto-relaxometric tomography for biomedical applications; Quantitative Bildgebung magnetischer Nanopartikel mittels magnetrelaxometrischer Tomographie fuer biomedizinische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, Maik

    2016-11-18

    Current biomedical research focuses on the development of novel biomedical applications based on magnetic nanoparticles (MNPs), e.g. for local cancer treatment. These therapy approaches employ MNPs as remotely controlled drug carriers or local heat generators. Since location and quantity of MNPs determine drug enrichment and heat production, quantitative knowledge of the MNP distribution inside a body is essential for the development and success of these therapies. Magnetorelaxometry (MRX) is capable to provide such quantitative information based on the specific response of the MNPs after switching-off an applied magnetic field. Applying a uniform (homogeneous) magnetic field to a MNP distribution and measuring the MNP response by multiple sensors at different locations allows for spatially resolved MNP quantification. However, to reconstruct the MNP distribution from this spatially resolved MRX data, an ill posed inverse problem has to be solved. So far, the solution of this problem was stabilized incorporating a-priori knowledge in the forward model, e.g. by setting priors on the vertical position of the distribution using a 2D reconstruction grid or setting priors on the number and geometry of the MNP sources inside the body. MRX tomography represents a novel approach for quantitative 3D imaging of MNPs, where the inverse solution is stabilized by a series of MRX measurements. In MRX tomography, only parts of the MNP distribution are sequentially magnetized by the use of inhomogeneous magnetic fields. Each magnetizing is followed by detection of the response of the corresponding part of the distribution by multiple sensors. The 3D reconstruction of the MNP distribution is then accomplished by a common evaluation of the distinct MRX measurement series. In this thesis the first experimental setup for MRX tomography was developed for quantitative 3D imaging of biomedical MNP distributions. It is based on a multi-channel magnetizing unit which has been engineered to

  18. A robust approach to extract biomedical events from literature.

    Science.gov (United States)

    Bui, Quoc-Chinh; Sloot, Peter M A

    2012-10-15

    The abundance of biomedical literature has attracted significant interest in novel methods to automatically extract biomedical relations from the literature. Until recently, most research was focused on extracting binary relations such as protein-protein interactions and drug-disease relations. However, these binary relations cannot fully represent the original biomedical data. Therefore, there is a need for methods that can extract fine-grained and complex relations known as biomedical events. In this article we propose a novel method to extract biomedical events from text. Our method consists of two phases. In the first phase, training data are mapped into structured representations. Based on that, templates are used to extract rules automatically. In the second phase, extraction methods are developed to process the obtained rules. When evaluated against the Genia event extraction abstract and full-text test datasets (Task 1), we obtain results with F-scores of 52.34 and 53.34, respectively, which are comparable to the state-of-the-art systems. Furthermore, our system achieves superior performance in terms of computational efficiency. Our source code is available for academic use at http://dl.dropbox.com/u/10256952/BioEvent.zip.

  19. Semantic reasoning with XML-based biomedical information models.

    Science.gov (United States)

    O'Connor, Martin J; Das, Amar

    2010-01-01

    The Extensible Markup Language (XML) is increasingly being used for biomedical data exchange. The parallel growth in the use of ontologies in biomedicine presents opportunities for combining the two technologies to leverage the semantic reasoning services provided by ontology-based tools. There are currently no standardized approaches for taking XML-encoded biomedical information models and representing and reasoning with them using ontologies. To address this shortcoming, we have developed a workflow and a suite of tools for transforming XML-based information models into domain ontologies encoded using OWL. In this study, we applied semantics reasoning methods to these ontologies to automatically generate domain-level inferences. We successfully used these methods to develop semantic reasoning methods for information models in the HIV and radiological image domains.

  20. Proceedings of the 10th international symposium on biomedical engineering '94

    International Nuclear Information System (INIS)

    1994-11-01

    Main topics of the Symposium were presented and discussed through eight sessions: 1) biomedical instrumentation, 2) biomedical signal measurements and processing, 3) biomechanics, 4) medical imaging, 5) medical informatics, 6) bioelectrical measurements, 7) bioengineering in dentistry and 8) modelling and simulation. The most of the participants were electrical and electronics engineers, physicists and physicians. All submitted papers were reviewed by international reviewers and 48 of the papers were accepted and presented on the symposium. Papers were mainly from Croatia, but there was also a number of papers from Austria, Slovenia, Germany, Italy, France, USA etc

  1. Proceedings of the 10th international symposium on biomedical engineering `94

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    Main topics of the Symposium were presented and discussed through eight sessions: (1) biomedical instrumentation, (2) biomedical signal measurements and processing, (3) biomechanics, (4) medical imaging, (5) medical informatics, (6) bioelectrical measurements, (7) bioengineering in dentistry and (8) modelling and simulation. The most of the participants were electrical and electronics engineers, physicists and physicians. All submitted papers were reviewed by international reviewers and 48 of the papers were accepted and presented on the symposium. Papers were mainly from Croatia, but there was also a number of papers from Austria, Slovenia, Germany, Italy, France, USA etc.

  2. From biomedical-engineering research to clinical application and industrialization

    Science.gov (United States)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  3. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2015-06-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Science.gov (United States)

    Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon

    2016-01-01

    Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916

  5. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-01-01

    Progress is reported on biomedical studies using cyclotron-produced 18 F, 15 O, 11 C, 13 N, 52 Fe, 38 K, 206 Bi, 73 Se, 53 Co, and 43 K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; 38 K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments

  6. Summer Biomedical Engineering Institute 1972

    Science.gov (United States)

    Deloatch, E. M.

    1973-01-01

    The five problems studied for biomedical applications of NASA technology are reported. The studies reported are: design modification of electrophoretic equipment, operating room environment control, hematological viscometry, handling system for iridium, and indirect blood pressure measuring device.

  7. Optical coherence tomography: technology and applications (biological and medical physics, biomedical engineering)

    CERN Document Server

    2013-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is emerging as a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue. This book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from biomedical and clinical perspectives. The chapters are written by leading research groups, in a style comprehensible to a broad audience.

  8. Visualization and simulation of complex flows in biomedical engineering

    CERN Document Server

    Imai, Yohsuke; Ishikawa, Takuji; Oliveira, Mónica

    2014-01-01

    This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.

  9. A game-based platform for crowd-sourcing biomedical image diagnosis and standardized remote training and education of diagnosticians

    Science.gov (United States)

    Feng, Steve; Woo, Minjae; Chandramouli, Krithika; Ozcan, Aydogan

    2015-03-01

    Over the past decade, crowd-sourcing complex image analysis tasks to a human crowd has emerged as an alternative to energy-inefficient and difficult-to-implement computational approaches. Following this trend, we have developed a mathematical framework for statistically combining human crowd-sourcing of biomedical image analysis and diagnosis through games. Using a web-based smart game (BioGames), we demonstrated this platform's effectiveness for telediagnosis of malaria from microscopic images of individual red blood cells (RBCs). After public release in early 2012 (http://biogames.ee.ucla.edu), more than 3000 gamers (experts and non-experts) used this BioGames platform to diagnose over 2800 distinct RBC images, marking them as positive (infected) or negative (non-infected). Furthermore, we asked expert diagnosticians to tag the same set of cells with labels of positive, negative, or questionable (insufficient information for a reliable diagnosis) and statistically combined their decisions to generate a gold standard malaria image library. Our framework utilized minimally trained gamers' diagnoses to generate a set of statistical labels with an accuracy that is within 98% of our gold standard image library, demonstrating the "wisdom of the crowd". Using the same image library, we have recently launched a web-based malaria training and educational game allowing diagnosticians to compare their performance with their peers. After diagnosing a set of ~500 cells per game, diagnosticians can compare their quantified scores against a leaderboard and view their misdiagnosed cells. Using this platform, we aim to expand our gold standard library with new RBC images and provide a quantified digital tool for measuring and improving diagnostician training globally.

  10. Biomedical applications of nanodiamonds in imaging and therapy.

    Science.gov (United States)

    Perevedentseva, Elena; Lin, Yu-Chung; Jani, Mona; Cheng, Chia-Liang

    2013-12-01

    Nanodiamonds have attracted remarkable scientific attention for bioimaging and therapeutic applications owing to their low toxicity with many cell lines, convenient surface properties and stable fluorescence without photobleaching. Newer techniques are being applied to enhance fluorescence. Interest is also growing in exploring the possibilities for modifying the nanodiamond surface and functionalities by attaching various biomolecules of interest for interaction with the targets. The potential of Raman spectroscopy and fluorescence properties of nanodiamonds has been explored for bioimaging and drug delivery tracing. The interest in nanodiamonds' biological/medical application appears to be continuing with enhanced focus. In this review an attempt is made to capture the scope, spirit and recent developments in the field of nanodiamonds for biomedical applications.

  11. Biomedical hydrogels biochemistry, manufacture and medical applications

    CERN Document Server

    Rimmer, Steve

    2011-01-01

    Hydrogels are very important for biomedical applications because they can be chemically manipulated to alter and control the hydrogel's interaction with cells and tissues. Their flexibility and high water content is similar to that of natural tissue, making them extremely suitable for biomaterials applications. Biomedical hydrogels explores the diverse range and use of hydrogels, focusing on processing methods and novel applications in the field of implants and prostheses. Part one of this book concentrates on the processing of hydrogels, covering hydrogel swelling behaviour, superabsorbent cellulose-based hydrogels and regulation of novel hydrogel products, as well as chapters focusing on the structure and properties of hydrogels and different fabrication technologies. Part two covers existing and novel applications of hydrogels, including chapters on spinal disc and cartilage replacement implants, hydrogels for ophthalmic prostheses and hydrogels for wound healing applications. The role of hydrogels in imag...

  12. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications.

    Science.gov (United States)

    Han, Ya-Hui; Kankala, Ranjith Kumar; Wang, Shi-Bin; Chen, Ai-Zheng

    2018-05-24

    In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.

  13. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging.

    Science.gov (United States)

    Mishra, Sushanta Kumar; Kumar, B S Hemanth; Khushu, Subash; Tripathi, Rajendra P; Gangenahalli, Gurudutta

    2016-09-01

    Synthesis of a contrast agent for biomedical imaging is of great interest where magnetic nanoparticles are concerned, because of the strong influence of particle size on transverse relaxivity. In the present study, biocompatible magnetic iron oxide nanoparticles were synthesized by co-precipitation of Fe 2+ and Fe 3+ salts, followed by surface adsorption with reduced dextran. The synthesized nanoparticles were spherical in shape, and 12 ± 2 nm in size as measured using transmission electron microscopy; this was corroborated with results from X-ray diffraction and dynamic light scattering studies. The nanoparticles exhibited superparamagnetic behavior, superior T 2 relaxation rate and high relaxivities (r 1  = 18.4 ± 0.3, r 2  = 90.5 ± 0.8 s -1 mM -1 , at 7 T). MR image analysis of animals before and after magnetic nanoparticle administration revealed that the signal intensity of tumor imaging, specific organ imaging and whole body imaging can be clearly distinguished, due to the strong relaxation properties of these nanoparticles. Very low concentrations (3.0 mg Fe/kg body weight) of iron oxides are sufficient for early detection of tumors, and also have a clear distinction in pre- and post-enhancement of contrast in organs and body imaging. Many investigators have demonstrated high relaxivities of magnetic nanoparticles at superparamagnetic iron oxide level above 50 nm, but this investigation presents a satisfactory, ultrasmall, superparamagnetic and high transverse relaxivity negative contrast agent for diagnosis in pre-clinical studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    Science.gov (United States)

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  15. FPGA-Based HD Camera System for the Micropositioning of Biomedical Micro-Objects Using a Contactless Micro-Conveyor

    Directory of Open Access Journals (Sweden)

    Elmar Yusifli

    2017-03-01

    Full Text Available With recent advancements, micro-object contactless conveyers are becoming an essential part of the biomedical sector. They help avoid any infection and damage that can occur due to external contact. In this context, a smart micro-conveyor is devised. It is a Field Programmable Gate Array (FPGA-based system that employs a smart surface for conveyance along with an OmniVision complementary metal-oxide-semiconductor (CMOS HD camera for micro-object position detection and tracking. A specific FPGA-based hardware design and VHSIC (Very High Speed Integrated Circuit Hardware Description Language (VHDL implementation are realized. It is done without employing any Nios processor or System on a Programmable Chip (SOPC builder based Central Processing Unit (CPU core. It keeps the system efficient in terms of resource utilization and power consumption. The micro-object positioning status is captured with an embedded FPGA-based camera driver and it is communicated to the Image Processing, Decision Making and Command (IPDC module. The IPDC is programmed in C++ and can run on a Personal Computer (PC or on any appropriate embedded system. The IPDC decisions are sent back to the FPGA, which pilots the smart surface accordingly. In this way, an automated closed-loop system is employed to convey the micro-object towards a desired location. The devised system architecture and implementation principle is described. Its functionality is also verified. Results have confirmed the proper functionality of the developed system, along with its outperformance compared to other solutions.

  16. 1st European Biomedical Engineering Conference for Young Investigators

    CERN Document Server

    2015-01-01

     This volume presents the proceedings of the first European Biomedical Engineering Conference for Young Investigators ENCY2015. It was in Budapest, from 28th to 30th May, 2015. The papers were assembled under the motto "Understanding complex living systems” and cover the topics sensors, image processing, bioinformatics, biomechanics, and modeling.

  17. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V [Wayland, MA

    2012-07-24

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remains in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may also employ dyes or other fluorescent substances associated with antibodies, antibody fragments, or ligands that accumulate within a region of diagnostic significance. In one embodiment, the system provides an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide that is used to capture images. In another embodiment, the system is configured for use in open surgical procedures by providing an operating area that is closed to ambient light. More broadly, the systems described herein may be used in imaging applications where a visible light image may be usefully supplemented by an image formed from fluorescent emissions from a fluorescent substance that marks areas of functional interest.

  18. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  19. Rewriting and suppressing UMLS terms for improved biomedical term identification

    NARCIS (Netherlands)

    K.M. Hettne (Kristina); E.M. van Mulligen (Erik); M.J. Schuemie (Martijn); R.J.A. Schijvenaars (Bob); J.A. Kors (Jan)

    2010-01-01

    textabstractBackground: Identification of terms is essential for biomedical text mining. We concentrate here on the use of vocabularies for term identification, specifically the Unified Medical Language System (UMLS). To make the UMLS more suitable for biomedical text mining we implemented and

  20. Publication ethics in biomedical journals from countries in Central and Eastern Europe.

    Science.gov (United States)

    Broga, Mindaugas; Mijaljica, Goran; Waligora, Marcin; Keis, Aime; Marusic, Ana

    2014-03-01

    Publication ethics is an important aspect of both the research and publication enterprises. It is particularly important in the field of biomedical science because published data may directly affect human health. In this article, we examine publication ethics policies in biomedical journals published in Central and Eastern Europe. We were interested in possible differences between East European countries that are members of the European Union (Eastern EU) and South-East European countries (South-East Europe) that are not members of the European Union. The most common ethical issues addressed by all journals in the region were redundant publication, peer review process, and copyright or licensing details. Image manipulation, editors' conflicts of interest and registration of clinical trials were the least common ethical policies. Three aspects were significantly more common in journals published outside the EU: statements on the endorsement of international editorial standards, contributorship policy, and image manipulation. On the other hand, copyright or licensing information were more prevalent in journals published in the Eastern EU. The existence of significant differences among biomedical journals' ethical policies calls for further research and active measures to harmonize policies across journals.

  1. The biomedical disciplines and the structure of biomedical and clinical knowledge.

    Science.gov (United States)

    Nederbragt, H

    2000-11-01

    The relation between biomedical knowledge and clinical knowledge is discussed by comparing their respective structures. The knowledge of a disease as a biological phenomenon is constructed by the interaction of facts and theories from the main biomedical disciplines: epidemiology, diagnostics, clinical trial, therapy development and pathogenesis. Although these facts and theories are based on probabilities and extrapolations, the interaction provides a reliable and coherent structure, comparable to a Kuhnian paradigma. In the structure of clinical knowledge, i.e. knowledge of the patient with the disease, not only biomedical knowledge contributes to the structure but also economic and social relations, ethics and personal experience. However, the interaction between each of the participating "knowledges" in clinical knowledge is not based on mutual dependency and accumulation of different arguments from each, as in biomedical knowledge, but on competition and partial exclusion. Therefore, the structure of biomedical knowledge is different from that of clinical knowledge. This difference is used as the basis for a discussion in which the place of technology, evidence-based medicine and the gap between scientific and clinical knowledge are evaluated.

  2. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  3. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  4. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases

    Science.gov (United States)

    Lasker, Joseph M.

    Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing

  5. Imaging sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  6. BioCause: Annotating and analysing causality in the biomedical domain.

    Science.gov (United States)

    Mihăilă, Claudiu; Ohta, Tomoko; Pyysalo, Sampo; Ananiadou, Sophia

    2013-01-16

    Biomedical corpora annotated with event-level information represent an important resource for domain-specific information extraction (IE) systems. However, bio-event annotation alone cannot cater for all the needs of biologists. Unlike work on relation and event extraction, most of which focusses on specific events and named entities, we aim to build a comprehensive resource, covering all statements of causal association present in discourse. Causality lies at the heart of biomedical knowledge, such as diagnosis, pathology or systems biology, and, thus, automatic causality recognition can greatly reduce the human workload by suggesting possible causal connections and aiding in the curation of pathway models. A biomedical text corpus annotated with such relations is, hence, crucial for developing and evaluating biomedical text mining. We have defined an annotation scheme for enriching biomedical domain corpora with causality relations. This schema has subsequently been used to annotate 851 causal relations to form BioCause, a collection of 19 open-access full-text biomedical journal articles belonging to the subdomain of infectious diseases. These documents have been pre-annotated with named entity and event information in the context of previous shared tasks. We report an inter-annotator agreement rate of over 60% for triggers and of over 80% for arguments using an exact match constraint. These increase significantly using a relaxed match setting. Moreover, we analyse and describe the causality relations in BioCause from various points of view. This information can then be leveraged for the training of automatic causality detection systems. Augmenting named entity and event annotations with information about causal discourse relations could benefit the development of more sophisticated IE systems. These will further influence the development of multiple tasks, such as enabling textual inference to detect entailments, discovering new facts and providing new

  7. Imaging, scattering, and spectroscopic systems for biomedical optics: Tools for bench top and clinical applications

    Science.gov (United States)

    Cottrell, William J.

    Optical advances have had a profound impact on biology and medicine. The capabilities range from sensing biological analytes to whole animal and subcellular imaging and clinical therapies. The work presented in this thesis describes three independent and multifunctional optical systems, which explore clinical therapy at the tissue level, biological structure at the cell/organelle level, and the function of underlying fundamental cellular processes. First, we present a portable clinical instrument for delivering delta-aminolevulinic acid photodynamic therapy (ALA-PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivered the treatment beam to a user-defined field on the skin and performed reflectance and fluorescence spectroscopies at two regions within this field. The instrument was used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, and blood oxygen saturation during a clinical ALA-PDT trial on superficial basal cell carcinoma (sBCC). Protoporphyrin IX and photoproduct fluorescence excited by the 632.8 nm PDT treatment laser was collected between 665 and 775 nm. During a series of brief treatment interruptions at programmable time points, white-light reflectance spectra between 475 and 775 nm were acquired. Fluorescence spectra were corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular-value decomposition fitting routine. Reflectance spectra additionally provided information on hemoglobin oxygen saturation. We next describe the incorporation of this instrument into clinical trials at Roswell Park Cancer Institute (Buffalo, NY). In this trial we examined the effects of light irradiance on photodynamic efficiency and pain. The rate of singlet-oxygen production depends on the product of irradiance and photosensitizer and oxygen

  8. BioSTEC 2017: 10th International Joint Conference on Biomedical Engineering Systems and Technologies : Proceedings Volume 5: HealthInf

    NARCIS (Netherlands)

    2017-01-01

    This book contains the proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017). This conference is sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC), in cooperation with the ACM

  9. [Integration of fundamental and applied medical and technical research made at the department of the biomedical systems, Moscow State Institute of Electronic Engineering].

    Science.gov (United States)

    Selishchev, S V

    2004-01-01

    The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.

  10. Web tools for large-scale 3D biological images and atlases

    Directory of Open Access Journals (Sweden)

    Husz Zsolt L

    2012-06-01

    Full Text Available Abstract Background Large-scale volumetric biomedical image data of three or more dimensions are a significant challenge for distributed browsing and visualisation. Many images now exceed 10GB which for most users is too large to handle in terms of computer RAM and network bandwidth. This is aggravated when users need to access tens or hundreds of such images from an archive. Here we solve the problem for 2D section views through archive data delivering compressed tiled images enabling users to browse through very-large volume data in the context of a standard web-browser. The system provides an interactive visualisation for grey-level and colour 3D images including multiple image layers and spatial-data overlay. Results The standard Internet Imaging Protocol (IIP has been extended to enable arbitrary 2D sectioning of 3D data as well a multi-layered images and indexed overlays. The extended protocol is termed IIP3D and we have implemented a matching server to deliver the protocol and a series of Ajax/Javascript client codes that will run in an Internet browser. We have tested the server software on a low-cost linux-based server for image volumes up to 135GB and 64 simultaneous users. The section views are delivered with response times independent of scale and orientation. The exemplar client provided multi-layer image views with user-controlled colour-filtering and overlays. Conclusions Interactive browsing of arbitrary sections through large biomedical-image volumes is made possible by use of an extended internet protocol and efficient server-based image tiling. The tools open the possibility of enabling fast access to large image archives without the requirement of whole image download and client computers with very large memory configurations. The system was demonstrated using a range of medical and biomedical image data extending up to 135GB for a single image volume.

  11. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  12. Near-infrared (NIR) emitting conjugated polymers for biomedical applications (Presentation Recording)

    Science.gov (United States)

    Repenko, Tatjana; Kuehne, Alexander J. C.

    2015-10-01

    Fluorescent biomedical markers of today such as dye-infiltrated colloids, microgels and quantum dots suffer from fast bleaching, lack surface functionality (for targets or pharmaceutical agents) and potentially leach heavy metals in case of quantum dots (e.g. Cd). By contrast, conjugated polymer particles are non-cytotoxic, exhibit reduced bleaching, as the entire particle consists of fluorophore, they are hydrophobic and show high quantum yields. Consequently, conjugated polymer particles represent ideal materials for biological applications and imaging. However currently, conjugated polymer particles for biomedical imaging usually lack near-infrared (NIR) emission and are polydisperse. Fluorescent agents with emission in the NIR spectrum are interesting for biomedical applications due to their low photo-damage towards biological species and the ability of NIR radiation to penetrate deep into biological tissue.. I will present the development and synthesis of new conjugated polymers particles with fluorescence in the NIR spectral region for bio-imaging and clinical diagnosis. The particle synthesis proceeds in a one-step Pd or Ni-catalyzed dispersion polymerization of functional NIR emitters. The resulting monodisperse conjugated polymer particles are obtained as a dispersion in a non-hazardous solvent. Different sizes in the sub-micrometer range with a narrow size distribution can be produced. Furthermore biological recognition motifs can be easily attached to the conjugated polymers via thiol-yne click-chemistry providing specific tumor targeting without quenching of the fluorescence. References [1] Kuehne AJC, Gather MC, Sprakel J., Nature Commun. 2012, 3, 1088. [2] Repenko T, Fokong S, De Laporte L, Go D, Kiessling F, Lammers T, Kuehne AJC.,Chem Commun 2015, accepted.

  13. Engineered magnetic nanoparticles for biomedical applications.

    Science.gov (United States)

    Canfarotta, Francesco; Piletsky, Sergey A

    2014-02-01

    In the past decades, magnetic nanoparticles (MNPs) have been used in wide range of diverse applications, ranging from separation to sensing. Here, synthesis and applications of functionalized MNPs in the biomedical field are discussed, in particular in drug delivery, imaging, and cancer therapy, highlighting also recent progresses in the development of multifunctional and stimuli-responsive MNPs. The role of their size, composition, and surface functionalization is analyzed, together with their biocompatibility issues. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Wireless plataforms for the monitoring of biomedical variables

    International Nuclear Information System (INIS)

    Bianco, Roman; Laprovitta, AgustIn; Misa, Alberto; Toselli, Eduardo; Castagnola, Juan Luis

    2007-01-01

    The present paper aims to analyze and to compare two wireless platforms for the monitoring of biomedical variables. They must obtain the vital signals of the patients, transmit them through a radio frequency bond and centralize them for their process, storage and monitoring in real time. The implementation of this system permit us to obtain two important benefits; The patient will enjoy greater comfort during the internment, and the doctors will be able to know the state of the biomedical variables of each patient, in simultaneous form. In order to achieve the objective of this work, two communication systems for wireless transmissions data were developed and implemented. The CC1000 transceiver was used in the first system and the Bluetooth module was used in the other system

  15. Wireless plataforms for the monitoring of biomedical variables

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Roman; Laprovitta, AgustIn; Misa, Alberto; Toselli, Eduardo; Castagnola, Juan Luis [Laboratory of Communications and Electronics, Catholic University of Cordoba (Argentina)

    2007-11-15

    The present paper aims to analyze and to compare two wireless platforms for the monitoring of biomedical variables. They must obtain the vital signals of the patients, transmit them through a radio frequency bond and centralize them for their process, storage and monitoring in real time. The implementation of this system permit us to obtain two important benefits; The patient will enjoy greater comfort during the internment, and the doctors will be able to know the state of the biomedical variables of each patient, in simultaneous form. In order to achieve the objective of this work, two communication systems for wireless transmissions data were developed and implemented. The CC1000 transceiver was used in the first system and the Bluetooth module was used in the other system.

  16. Wireless plataforms for the monitoring of biomedical variables

    Science.gov (United States)

    Bianco, Román; Laprovitta, Agustín; Misa, Alberto; Toselli, Eduardo; Castagnola, Juan Luis

    2007-11-01

    The present paper aims to analyze and to compare two wireless platforms for the monitoring of biomedical variables. They must obtain the vital signals of the patients, transmit them through a radio frequency bond and centralize them for their process, storage and monitoring in real time. The implementation of this system permit us to obtain two important benefits; The patient will enjoy greater comfort during the internment, and the doctors will be able to know the state of the biomedical variables of each patient, in simultaneous form. In order to achieve the objective of this work, two communication systems for wireless transmissions data were developed and implemented. The CC1000 transceiver was used in the first system and the Bluetooth module was used in the other system.

  17. A Novel Approach to Physiology Education for Biomedical Engineering Students

    Science.gov (United States)

    DiCecco, J.; Wu, J.; Kuwasawa, K.; Sun, Y.

    2007-01-01

    It is challenging for biomedical engineering programs to incorporate an indepth study of the systemic interdependence of cells, tissues, and organs into the rigorous mathematical curriculum that is the cornerstone of engineering education. To be sure, many biomedical engineering programs require their students to enroll in anatomy and physiology…

  18. Development of a High-Throughput Microwave Imaging System for Concealed Weapons Detection

    Science.gov (United States)

    2016-07-15

    hardware. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field microwave imaging is a non- ionizing ...real-time microwave camera at 24 ghz,” IEEE Transactions on Antennas and Propagation , vol. 60, no. 2, pp. 1114– 1125, 2012. [2] E. C. Fear, X. Li, S. C...on Biomedical Engineering, vol. 49, no. 8, pp. 812–822, 2002. [3] D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter- wave

  19. Character-level neural network for biomedical named entity recognition.

    Science.gov (United States)

    Gridach, Mourad

    2017-06-01

    Biomedical named entity recognition (BNER), which extracts important named entities such as genes and proteins, is a challenging task in automated systems that mine knowledge in biomedical texts. The previous state-of-the-art systems required large amounts of task-specific knowledge in the form of feature engineering, lexicons and data pre-processing to achieve high performance. In this paper, we introduce a novel neural network architecture that benefits from both word- and character-level representations automatically, by using a combination of bidirectional long short-term memory (LSTM) and conditional random field (CRF) eliminating the need for most feature engineering tasks. We evaluate our system on two datasets: JNLPBA corpus and the BioCreAtIvE II Gene Mention (GM) corpus. We obtained state-of-the-art performance by outperforming the previous systems. To the best of our knowledge, we are the first to investigate the combination of deep neural networks, CRF, word embeddings and character-level representation in recognizing biomedical named entities. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Biomedical research with cyclotron produced radionuclides. Progress report, October 1, 1977--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, J.S.; Benua, R.S.; Tilbury, R.S.; Bigler, R.E.

    1978-09-30

    Progress is reported on biomedical studies using cyclotron-produced /sup 18/F, /sup 15/O, /sup 11/C, /sup 13/N, /sup 52/Fe, /sup 38/K, /sup 206/Bi, /sup 73/Se, /sup 53/Co, and /sup 43/K. The following research projects are described: tumor detection and diagnosis; neurological studies; radiopharmaceutical development; /sup 38/K as an indicator of blood flow to the myocardium; dosimetry for internally deposited isotopes in animals and man; cyclotron development; positron tomographic imaging with the TOKIM System; and review of positron emission transaxial tomograph instruments. (HLW)

  1. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined

  2. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined.

  3. Biomedical Imaging and Computational Modeling in Biomechanics

    CERN Document Server

    Iacoviello, Daniela

    2013-01-01

    This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and iomedical imaging and computational modeling in cardiovascular disease.   The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis.

  4. Taxonomy of multi-focal nematode image stacks by a CNN based image fusion approach.

    Science.gov (United States)

    Liu, Min; Wang, Xueping; Zhang, Hongzhong

    2018-03-01

    In the biomedical field, digital multi-focal images are very important for documentation and communication of specimen data, because the morphological information for a transparent specimen can be captured in form of a stack of high-quality images. Given biomedical image stacks containing multi-focal images, how to efficiently extract effective features from all layers to classify the image stacks is still an open question. We present to use a deep convolutional neural network (CNN) image fusion based multilinear approach for the taxonomy of multi-focal image stacks. A deep CNN based image fusion technique is used to combine relevant information of multi-focal images within a given image stack into a single image, which is more informative and complete than any single image in the given stack. Besides, multi-focal images within a stack are fused along 3 orthogonal directions, and multiple features extracted from the fused images along different directions are combined by canonical correlation analysis (CCA). Because multi-focal image stacks represent the effect of different factors - texture, shape, different instances within the same class and different classes of objects, we embed the deep CNN based image fusion method within a multilinear framework to propose an image fusion based multilinear classifier. The experimental results on nematode multi-focal image stacks demonstrated that the deep CNN image fusion based multilinear classifier can reach a higher classification rate (95.7%) than that by the previous multilinear based approach (88.7%), even we only use the texture feature instead of the combination of texture and shape features as in the previous work. The proposed deep CNN image fusion based multilinear approach shows great potential in building an automated nematode taxonomy system for nematologists. It is effective to classify multi-focal image stacks. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Finding and Accessing Diagrams in Biomedical Publications

    OpenAIRE

    Kuhn, Tobias; Luong, ThaiBinh; Krauthammer, Michael

    2012-01-01

    Complex relationships in biomedical publications are often communicated by diagrams such as bar and line charts, which are a very effective way of summarizing and communicating multi-faceted data sets. Given the ever-increasing amount of published data, we argue that the precise retrieval of such diagrams is of great value for answering specific and otherwise hard-to-meet information needs. To this end, we demonstrate the use of advanced image processing and classification for identifying bar...

  6. Nanodiamonds of Laser Synthesis for Biomedical Applications.

    Science.gov (United States)

    Perevedentseva, E; Peer, D; Uvarov, V; Zousman, B; Levinson, O

    2015-02-01

    In recent decade detonation nanodiamonds (DND), discovered 50 years ago and used in diverse technological processes, have been actively applied in biomedical research as a drug and gene delivery carrier, a contrast agent for bio-imaging and diagnostics and an adsorbent for protein separation and purification. In this work we report about nanodiamonds of high purity produced by laser assisted technique, compare them with DND and consider the prospect and advantages of their use in the said applications.

  7. Biomedical ontologies: toward scientific debate.

    Science.gov (United States)

    Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C

    2011-01-01

    Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.

  8. Assessing the practice of biomedical ontology evaluation: Gaps and opportunities.

    Science.gov (United States)

    Amith, Muhammad; He, Zhe; Bian, Jiang; Lossio-Ventura, Juan Antonio; Tao, Cui

    2018-04-01

    With the proliferation of heterogeneous health care data in the last three decades, biomedical ontologies and controlled biomedical terminologies play a more and more important role in knowledge representation and management, data integration, natural language processing, as well as decision support for health information systems and biomedical research. Biomedical ontologies and controlled terminologies are intended to assure interoperability. Nevertheless, the quality of biomedical ontologies has hindered their applicability and subsequent adoption in real-world applications. Ontology evaluation is an integral part of ontology development and maintenance. In the biomedicine domain, ontology evaluation is often conducted by third parties as a quality assurance (or auditing) effort that focuses on identifying modeling errors and inconsistencies. In this work, we first organized four categorical schemes of ontology evaluation methods in the existing literature to create an integrated taxonomy. Further, to understand the ontology evaluation practice in the biomedicine domain, we reviewed a sample of 200 ontologies from the National Center for Biomedical Ontology (NCBO) BioPortal-the largest repository for biomedical ontologies-and observed that only 15 of these ontologies have documented evaluation in their corresponding inception papers. We then surveyed the recent quality assurance approaches for biomedical ontologies and their use. We also mapped these quality assurance approaches to the ontology evaluation criteria. It is our anticipation that ontology evaluation and quality assurance approaches will be more widely adopted in the development life cycle of biomedical ontologies. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Introducing Anisotropic Minkowski Functionals and Quantitative Anisotropy Measures for Local Structure Analysis in Biomedical Imaging

    Science.gov (United States)

    Wismüller, Axel; De, Titas; Lochmüller, Eva; Eckstein, Felix; Nagarajan, Mahesh B.

    2017-01-01

    The ability of Minkowski Functionals to characterize local structure in different biological tissue types has been demonstrated in a variety of medical image processing tasks. We introduce anisotropic Minkowski Functionals (AMFs) as a novel variant that captures the inherent anisotropy of the underlying gray-level structures. To quantify the anisotropy characterized by our approach, we further introduce a method to compute a quantitative measure motivated by a technique utilized in MR diffusion tensor imaging, namely fractional anisotropy. We showcase the applicability of our method in the research context of characterizing the local structure properties of trabecular bone micro-architecture in the proximal femur as visualized on multi-detector CT. To this end, AMFs were computed locally for each pixel of ROIs extracted from the head, neck and trochanter regions. Fractional anisotropy was then used to quantify the local anisotropy of the trabecular structures found in these ROIs and to compare its distribution in different anatomical regions. Our results suggest a significantly greater concentration of anisotropic trabecular structures in the head and neck regions when compared to the trochanter region (p < 10−4). We also evaluated the ability of such AMFs to predict bone strength in the femoral head of proximal femur specimens obtained from 50 donors. Our results suggest that such AMFs, when used in conjunction with multi-regression models, can outperform more conventional features such as BMD in predicting failure load. We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding directional attributes of local structure, which may be useful in a wide scope of biomedical imaging applications. PMID:29170580

  10. Medical imaging systems

    Science.gov (United States)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  11. Carbon nanotubes from synthesis to in vivo biomedical applications.

    Science.gov (United States)

    Sajid, Muhammad Imran; Jamshaid, Usama; Jamshaid, Talha; Zafar, Nadiah; Fessi, H; Elaissari, Abdelhamid

    2016-03-30

    Owing to their unique and interesting properties, extensive research round the globe has been carried out on carbon nanotubes and carbon nanotubes based systems to investigate their practical usefulness in biomedical applications. The results from these studies demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Although, carbon nanotubes possess quite interesting properties, which make them potential candidates in the biomedical science, but they also have some inherent properties which arise great concern regarding their biosafety. In this comprehensive review, we have discussed different aspects of carbon nanotubes and carbon nanotube based systems related to biomedical applications. In the beginning, a short historical account of these tiny yet powerful particles is given followed by discussion regarding their types, properties, methods of synthesis, large scale production method, purification techniques and characterization aspects of carbon nanotubes. In the second part of the review, the functionalization of carbon nanotubes is reviewed in detail, which is not only important to make them biocompatible and stable in biological systems but also render them a great property of loading various biomolecules, diagnostic and therapeutic moieties resulting in diversified applications. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A Versatile High Speed 250 MHz Pulse Imager for Biomedical Applications

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2009-01-01

    A versatile 250 MHz pulse electron paramagnetic resonance (EPR) instrument for imaging of small animals is presented. Flexible design of the imager hardware and software makes it possible to use virtually any pulse EPR imaging modality. A fast pulse generation and data acquisition system based on general purpose PCI boards performs measurements with minimal additional delays. Careful design of receiver protection circuitry allowed us to achieve very high sensitivity of the instrument. In this article we demonstrate the ability of the instrument to obtain three dimensional images using the electron spin echo (ESE) and single point imaging (SPI) methods. In a phantom that contains a 1 mM solution of narrow line (16 μT, peak-to-peak) paramagnetic spin probe we achieved an acquisition time of 32 seconds per image with a fast 3D ESE imaging protocol. Using an 18 minute 3D phase relaxation (T2e) ESE imaging protocol in a homogeneous sample a spatial resolution of 1.4 mm and a standard deviation of T2e of 8.5% were achieved. When applied to in vivo imaging this precision of T2e determination would be equivalent to 2 torr resolution of oxygen partial pressure in animal tissues. PMID:19924261

  13. Biomedical waste management in Ayurveda hospitals - current practices & future prospectives.

    Science.gov (United States)

    Rajan, Renju; Robin, Delvin T; M, Vandanarani

    2018-03-16

    Biomedical waste management is an integral part of traditional and contemporary system of health care. The paper focuses on the identification and classification of biomedical wastes in Ayurvedic hospitals, current practices of its management in Ayurveda hospitals and its future prospective. Databases like PubMed (1975-2017 Feb), Scopus (1960-2017), AYUSH Portal, DOAJ, DHARA and Google scholar were searched. We used the medical subject headings 'biomedical waste' and 'health care waste' for identification and classification. The terms 'biomedical waste management', 'health care waste management' alone and combined with 'Ayurveda' or 'Ayurvedic' for current practices and recent advances in the treatment of these wastes were used. We made a humble attempt to categorize the biomedical wastes from Ayurvedic hospitals as the available data about its grouping is very scarce. Proper biomedical waste management is the mainstay of hospital cleanliness, hospital hygiene and maintenance activities. Current disposal techniques adopted for Ayurveda biomedical wastes are - sewage/drains, incineration and land fill. But these methods are having some merits as well as demerits. Our review has identified a number of interesting areas for future research such as the logical application of bioremediation techniques in biomedical waste management and the usage of effective micro-organisms and solar energy in waste disposal. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  14. Data Analysis in Experimental Biomedical Research

    DEFF Research Database (Denmark)

    Markovich, Dmitriy

    This thesis covers two non-related topics in experimental biomedical research: data analysis in thrombin generation experiments (collaboration with Novo Nordisk A/S), and analysis of images and physiological signals in the context of neurovascular signalling and blood flow regulation in the brain...... to critically assess and compare obtained results. We reverse engineered the data analysis performed by CAT, a de facto standard assay in the field. This revealed a number of possibilities to improve its methods of data analysis. We found that experimental calibration data is described well with textbook...

  15. Compensatory neurofuzzy model for discrete data classification in biomedical

    Science.gov (United States)

    Ceylan, Rahime

    2015-03-01

    Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.

  16. Biomedical text mining and its applications in cancer research.

    Science.gov (United States)

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    Science.gov (United States)

    Silva, A. L. M.; Figueroa, R.; Jaramillo, A.; Carvalho, M. L.; Veloso, J. F. C. A.

    2013-08-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues.

  18. Biomedical sensor technologies on the platform of mobile phones

    Science.gov (United States)

    Liu, Lin; Liu, Jing

    2011-06-01

    Biomedical sensors have been widely used in various areas of biomedical practices, which play an important role in disease detection, diagnosis, monitoring, treatment, health management, and so on. However, most of them and their related platforms are generally not easily accessible or just too expensive or complicated to be kept at home. As an alternative, new technologies enabled from the mobile phones are gradually changing such situations. As can be freely available to almost everyone, mobile phone offers a unique way to improve the conventional medical care through combining with various biomedical sensors. Moreover, the established systems will be both convenient and low cost. In this paper, we present an overview on the state-of-art biomedical sensors, giving a brief introduction of the fundamental principles and showing several new examples or concepts in the area. The focus was particularly put on interpreting the technical strategies to innovate the biomedical sensor technologies based on the platform of mobile phones. Some challenging issues, including feasibility, usability, security, and effectiveness, were discussed. With the help of electrical and mechanical technologies, it is expected that a full combination between the biomedical sensors and mobile phones will bring a bright future for the coming pervasive medical care.

  19. A combined positron emission tomography (PET)- electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner.

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V; Guggilapu, Priyaankadevi; Bobko, Andrey A; Khramtsov, Valery V; Tseytlin, Oxana; Raylman, Raymond R

    2018-04-20

    The advent of hybrid scanners, combining complementary modalities, has revolutionized imaging; enhancing clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). The PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring parameters such as oxygenation and pH, for example. A combined PET/EPRI scanner has the promise to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. In this investigation, a prototype system was created by combing two existing scanners, modified for simultaneous imaging. Specifically, a silicon photomultiplier (SiPM) based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both PET and EPR tracers. The resulting images demonstrated the ability to obtain contemporaneous PET and ERP images without cross-modality interference. The next step in this project is the construction of pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically important parameters of tissue microenvironments. . © 2018 Institute of Physics and Engineering in Medicine.

  20. A combined positron emission tomography (PET)-electron paramagnetic resonance imaging (EPRI) system: initial evaluation of a prototype scanner

    Science.gov (United States)

    Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.

    2018-05-01

    The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.

  1. Building a biomedical cyberinfrastructure for collaborative research.

    Science.gov (United States)

    Schad, Peter A; Mobley, Lee Rivers; Hamilton, Carol M

    2011-05-01

    For the potential power of genome-wide association studies (GWAS) and translational medicine to be realized, the biomedical research community must adopt standard measures, vocabularies, and systems to establish an extensible biomedical cyberinfrastructure. Incorporating standard measures will greatly facilitate combining and comparing studies via meta-analysis. Incorporating consensus-based and well-established measures into various studies should reduce the variability across studies due to attributes of measurement, making findings across studies more comparable. This article describes two well-established consensus-based approaches to identifying standard measures and systems: PhenX (consensus measures for phenotypes and eXposures), and the Open Geospatial Consortium (OGC). NIH support for these efforts has produced the PhenX Toolkit, an assembled catalog of standard measures for use in GWAS and other large-scale genomic research efforts, and the RTI Spatial Impact Factor Database (SIFD), a comprehensive repository of geo-referenced variables and extensive meta-data that conforms to OGC standards. The need for coordinated development of cyberinfrastructure to support measures and systems that enhance collaboration and data interoperability is clear; this paper includes a discussion of standard protocols for ensuring data compatibility and interoperability. Adopting a cyberinfrastructure that includes standard measures and vocabularies, and open-source systems architecture, such as the two well-established systems discussed here, will enhance the potential of future biomedical and translational research. Establishing and maintaining the cyberinfrastructure will require a fundamental change in the way researchers think about study design, collaboration, and data storage and analysis. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  2. 15th International Conference on Biomedical Engineering

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organisations working i...

  3. BEST: Next-Generation Biomedical Entity Search Tool for Knowledge Discovery from Biomedical Literature.

    Directory of Open Access Journals (Sweden)

    Sunwon Lee

    Full Text Available As the volume of publications rapidly increases, searching for relevant information from the literature becomes more challenging. To complement standard search engines such as PubMed, it is desirable to have an advanced search tool that directly returns relevant biomedical entities such as targets, drugs, and mutations rather than a long list of articles. Some existing tools submit a query to PubMed and process retrieved abstracts to extract information at query time, resulting in a slow response time and limited coverage of only a fraction of the PubMed corpus. Other tools preprocess the PubMed corpus to speed up the response time; however, they are not constantly updated, and thus produce outdated results. Further, most existing tools cannot process sophisticated queries such as searches for mutations that co-occur with query terms in the literature. To address these problems, we introduce BEST, a biomedical entity search tool. BEST returns, as a result, a list of 10 different types of biomedical entities including genes, diseases, drugs, targets, transcription factors, miRNAs, and mutations that are relevant to a user's query. To the best of our knowledge, BEST is the only system that processes free text queries and returns up-to-date results in real time including mutation information in the results. BEST is freely accessible at http://best.korea.ac.kr.

  4. Multipurpose Hyperspectral Imaging System

    Science.gov (United States)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  5. Misconduct Policies in High-Impact Biomedical Journals

    Science.gov (United States)

    Bosch, Xavier; Hernández, Cristina; Pericas, Juan M.; Doti, Pamela; Marušić, Ana

    2012-01-01

    Background It is not clear which research misconduct policies are adopted by biomedical journals. This study assessed the prevalence and content policies of the most influential biomedical journals on misconduct and procedures for handling and responding to allegations of misconduct. Methods We conducted a cross-sectional study of misconduct policies of 399 high-impact biomedical journals in 27 biomedical categories of the Journal Citation Reports in December 2011. Journal websites were reviewed for information relevant to misconduct policies. Results Of 399 journals, 140 (35.1%) provided explicit definitions of misconduct. Falsification was explicitly mentioned by 113 (28.3%) journals, fabrication by 104 (26.1%), plagiarism by 224 (56.1%), duplication by 242 (60.7%) and image manipulation by 154 (38.6%). Procedures for responding to misconduct were described in 179 (44.9%) websites, including retraction, (30.8%) and expression of concern (16.3%). Plagiarism-checking services were used by 112 (28.1%) journals. The prevalences of all types of misconduct policies were higher in journals that endorsed any policy from editors’ associations, Office of Research Integrity or professional societies compared to those that did not state adherence to these policy-producing bodies. Elsevier and Wiley-Blackwell had the most journals included (22.6% and 14.8%, respectively), with Wiley journals having greater a prevalence of misconduct definition and policies on falsification, fabrication and expression of concern and Elsevier of plagiarism-checking services. Conclusions Only a third of top-ranking peer-reviewed journals had publicly-available definitions of misconduct and less than a half described procedures for handling allegations of misconduct. As endorsement of international policies from policy-producing bodies was positively associated with implementation of policies and procedures, journals and their publishers should standardize their policies globally in order to

  6. Misconduct policies in high-impact biomedical journals.

    Directory of Open Access Journals (Sweden)

    Xavier Bosch

    Full Text Available It is not clear which research misconduct policies are adopted by biomedical journals. This study assessed the prevalence and content policies of the most influential biomedical journals on misconduct and procedures for handling and responding to allegations of misconduct.We conducted a cross-sectional study of misconduct policies of 399 high-impact biomedical journals in 27 biomedical categories of the Journal Citation Reports in December 2011. Journal websites were reviewed for information relevant to misconduct policies.Of 399 journals, 140 (35.1% provided explicit definitions of misconduct. Falsification was explicitly mentioned by 113 (28.3% journals, fabrication by 104 (26.1%, plagiarism by 224 (56.1%, duplication by 242 (60.7% and image manipulation by 154 (38.6%. Procedures for responding to misconduct were described in 179 (44.9% websites, including retraction, (30.8% and expression of concern (16.3%. Plagiarism-checking services were used by 112 (28.1% journals. The prevalences of all types of misconduct policies were higher in journals that endorsed any policy from editors' associations, Office of Research Integrity or professional societies compared to those that did not state adherence to these policy-producing bodies. Elsevier and Wiley-Blackwell had the most journals included (22.6% and 14.8%, respectively, with Wiley journals having greater a prevalence of misconduct definition and policies on falsification, fabrication and expression of concern and Elsevier of plagiarism-checking services.Only a third of top-ranking peer-reviewed journals had publicly-available definitions of misconduct and less than a half described procedures for handling allegations of misconduct. As endorsement of international policies from policy-producing bodies was positively associated with implementation of policies and procedures, journals and their publishers should standardize their policies globally in order to increase public trust in the

  7. Rules and management of biomedical waste at Vivekananda Polyclinic: A case study

    International Nuclear Information System (INIS)

    Gupta, Saurabh; Boojh, Ram; Mishra, Ajai; Chandra, Hem

    2009-01-01

    Hospitals and other healthcare establishments have a 'duty of care' for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedical waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state

  8. Status of Research in Biomedical Engineering 1968.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…

  9. Medical Image Registration by means of a Bio-Inspired Optimization Strategy

    Directory of Open Access Journals (Sweden)

    Hariton Costin

    2012-07-01

    Full Text Available Medical imaging mainly treats and processes missing, ambiguous, complementary, redundant and distorted data. Biomedical image registration is the process of geometric overlaying or alignment of two or more 2D/3D images of the same scene, taken at different time slots, from different angles, and/or by different acquisition systems. In medical practice, it is becoming increasingly important in diagnosis, treatment planning, functional studies, computer-guided therapies, and in biomedical research. Technically, image registration implies a complex optimization of different parameters, performed at local or/and global levels. Local optimization methods frequently fail because functions of the involved metrics with respect to transformation parameters are generally nonconvex and irregular. Therefore, global methods are often required, at least at the beginning of the procedure. In this paper, a new evolutionary and bio-inspired approach -- bacterial foraging optimization -- is adapted for single-slice to 3-D PET and CT multimodal image registration. Preliminary results of optimizing the normalized mutual information similarity metric validated the efficacy of the proposed method by using a freely available medical image database.

  10. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  11. Biomedical semantics in the Semantic Web.

    Science.gov (United States)

    Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott

    2011-03-07

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.

  12. Lessons Learned from Development of De-identification System for Biomedical Research in a Korean Tertiary Hospital.

    Science.gov (United States)

    Shin, Soo-Yong; Lyu, Yongman; Shin, Yongdon; Choi, Hyo Joung; Park, Jihyun; Kim, Woo-Sung; Lee, Jae Ho

    2013-06-01

    The Korean government has enacted two laws, namely, the Personal Information Protection Act and the Bioethics and Safety Act to prevent the unauthorized use of medical information. To protect patients' privacy by complying with governmental regulations and improve the convenience of research, Asan Medical Center has been developing a de-identification system for biomedical research. We reviewed Korean regulations to define the scope of the de-identification methods and well-known previous biomedical research platforms to extract the functionalities of the systems. Based on these review results, we implemented necessary programs based on the Asan Medical Center Information System framework which was built using the Microsoft. NET Framework and C#. The developed de-identification system comprises three main components: a de-identification tool, a search tool, and a chart review tool. The de-identification tool can substitute a randomly assigned research ID for a hospital patient ID, remove the identifiers in the structured format, and mask them in the unstructured format, i.e., texts. This tool achieved 98.14% precision and 97.39% recall for 6,520 clinical notes. The search tool can find the number of patients which satisfies given search criteria. The chart review tool can provide de-identified patient's clinical data for review purposes. We found that a clinical data warehouse was essential for successful implementation of the de-identification system, and this system should be tightly linked to an electronic Institutional Review Board system for easy operation of honest brokers. Additionally, we found that a secure cloud environment could be adopted to protect patients' privacy more thoroughly.

  13. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A phase-contrast X-ray imaging system--with a 60x30 mm field of view--based on a skew-symmetric two-crystal X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio E-mail: a-yoneya@rd.hitachi.co.jp; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu Jin; Lwin, T.-T.; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    A phase-contrast X-ray imaging system - with a 60x30 mm field of view - for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60x30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples.

  15. A phase-contrast X-ray imaging system--with a 60x30 mm field of view--based on a skew-symmetric two-crystal X-ray interferometer

    International Nuclear Information System (INIS)

    Yoneyama, Akio; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu Jin; Lwin, T.-T.; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-01-01

    A phase-contrast X-ray imaging system - with a 60x30 mm field of view - for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60x30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples

  16. Nano-biotechnology for biomedical and diagnostic research

    CERN Document Server

    Zahavy, Eran; Yitzhaki, Shmuel

    2011-01-01

    The title ""Nano Biotechnology for Biomedical and Diagnostics Research"" will address research aspects related to nanomaterial in imaging and biological research, nanomaterials as a biosensing tool, DNA nanotechnology, nanomaterials for drug delivery, medicinal and therapeutic application and cytotoxicity of nanomaterials. These topics will be covered by 16 different manuscripts. Amongst the authors that will contribute to the book are major scientific leaders such as S. Weiss - UCLA, I. Willner, and G. Golomb -- HUJI, S. Esener - UCSD, E.C. Simmel - Tech. Univ. Munchen, I. Medintz -- NRL, N.

  17. Optical coherence tomography—current technology and applications in clinical and biomedical research

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Sander, Birgit; Mogensen, Mette

    2011-01-01

    such as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal...

  18. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  19. Optical coherence tomography-current technology and applications in clinical and biomedical research.

    Science.gov (United States)

    Marschall, Sebastian; Sander, Birgit; Mogensen, Mette; Jørgensen, Thomas M; Andersen, Peter E

    2011-07-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties such as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal diseases, and OCT is becoming an important instrument for clinical cardiology. New applications are emerging in various medical fields, such as early-stage cancer detection, surgical guidance, and the early diagnosis of musculoskeletal diseases. OCT has also proven its value as a tool for developmental biology. The number of companies involved in manufacturing OCT systems has increased substantially during the last few years (especially due to its success in opthalmology), and this technology can be expected to continue to spread into various fields of application.

  20. Comparatively Studied Color Correction Methods for Color Calibration of Automated Microscopy Complex of Biomedical Specimens

    Directory of Open Access Journals (Sweden)

    T. A. Kravtsova

    2016-01-01

    Full Text Available The paper considers a task of generating the requirements and creating a calibration target for automated microscopy systems (AMS of biomedical specimens to provide the invariance of algorithms and software to the hardware configuration. The required number of color fields of the calibration target and their color coordinates are mostly determined by the color correction method, for which coefficients of the equations are estimated during the calibration process. The paper analyses existing color calibration techniques for digital imaging systems using an optical microscope and shows that there is a lack of published results of comparative studies to demonstrate a particular useful color correction method for microscopic images. A comparative study of ten image color correction methods in RGB space using polynomials and combinations of color coordinate of different orders was carried out. The method of conditioned least squares to estimate the coefficients in the color correction equations using captured images of 217 color fields of the calibration target Kodak Q60-E3 was applied. The regularization parameter in this method was chosen experimentally. It was demonstrated that the best color correction quality characteristics are provided by the method that uses a combination of color coordinates of the 3rd order. The study of the influence of the number and the set of color fields included in calibration target on color correction quality for microscopic images was performed. Six train sets containing 30, 35, 40, 50, 60 and 80 color fields, and test set of 47 color fields not included in any of the train sets were formed. It was found out that the train set of 60 color fields minimizes the color correction error values for both operating modes of digital camera: using "default" color settings and with automatic white balance. At the same time it was established that the use of color fields from the widely used now Kodak Q60-E3 target does not

  1. Journal of Biomedical Investigation: Editorial Policies

    African Journals Online (AJOL)

    Journal of Biomedical Investigation: Editorial Policies. Journal Home ... The focus of the Journal of Biomedical Research is to promote interdisciplinary research across all Biomedical Sciences. It publishes ... Business editor – Sam Meludu.

  2. DynAMITe: a wafer scale sensor for biomedical applications

    International Nuclear Information System (INIS)

    Esposito, M; Wells, K; Anaxagoras, T; Fant, A; Allinson, N M; Konstantinidis, A; Speller, R D; Osmond, J P F; Evans, P M

    2011-01-01

    In many biomedical imaging applications Flat Panel Imagers (FPIs) are currently the most common option. However, FPIs possess several key drawbacks such as large pixels, high noise, low frame rates, and excessive image artefacts. Recently Active Pixel Sensors (APS) have gained popularity overcoming such issues and are now scalable up to wafer size by appropriate reticule stitching. Detectors for biomedical imaging applications require high spatial resolution, low noise and high dynamic range. These figures of merit are related to pixel size and as the pixel size is fixed at the time of the design, spatial resolution, noise and dynamic range cannot be further optimized. The authors report on a new rad-hard monolithic APS, named DynAMITe (Dynamic range Adjustable for Medical Imaging Technology), developed by the UK MI-3 Plus consortium. This large area detector (12.8 cm × 12.8 cm) is based on the use of two different diode geometries within the same pixel array with different size pixels (50 μm and 100 μm). Hence the resulting device can possess two inherently different resolutions each with different noise and saturation performance. The small and the large pixel cameras can be reset at different voltages, resulting in different depletion widths. The larger depletion width for the small pixels allows the initial generated photo-charge to be promptly collected, which ensures an intrinsically lower noise and higher spatial resolution. After these pixels reach near saturation, the larger pixels start collecting so offering a higher dynamic range whereas the higher noise floor is not important as at higher signal levels performance is governed by the Poisson noise of the incident radiation beam. The overall architecture and detailed characterization of DynAMITe will be presented in this paper.

  3. Design of Biomedical Robots for Phenotype Prediction Problems.

    Science.gov (United States)

    deAndrés-Galiana, Enrique J; Fernández-Martínez, Juan Luis; Sonis, Stephen T

    2016-08-01

    Genomics has been used with varying degrees of success in the context of drug discovery and in defining mechanisms of action for diseases like cancer and neurodegenerative and rare diseases in the quest for orphan drugs. To improve its utility, accuracy, and cost-effectiveness optimization of analytical methods, especially those that translate to clinically relevant outcomes, is critical. Here we define a novel tool for genomic analysis termed a biomedical robot in order to improve phenotype prediction, identifying disease pathogenesis and significantly defining therapeutic targets. Biomedical robot analytics differ from historical methods in that they are based on melding feature selection methods and ensemble learning techniques. The biomedical robot mathematically exploits the structure of the uncertainty space of any classification problem conceived as an ill-posed optimization problem. Given a classifier, there exist different equivalent small-scale genetic signatures that provide similar predictive accuracies. We perform the sensitivity analysis to noise of the biomedical robot concept using synthetic microarrays perturbed by different kinds of noises in expression and class assignment. Finally, we show the application of this concept to the analysis of different diseases, inferring the pathways and the correlation networks. The final aim of a biomedical robot is to improve knowledge discovery and provide decision systems to optimize diagnosis, treatment, and prognosis. This analysis shows that the biomedical robots are robust against different kinds of noises and particularly to a wrong class assignment of the samples. Assessing the uncertainty that is inherent to any phenotype prediction problem is the right way to address this kind of problem.

  4. Small animal PET and its applications in biomedical research

    International Nuclear Information System (INIS)

    Qiu Feichan

    2004-01-01

    Positron emission tomography (PET) is a nuclear medical imaging technique that permits the use of positron-labeled molecular imaging probes for non-invasive assays of biochemical processes. As the leading technology in nuclear medicine, PET has extended its applications from the clinical field to the study of small laboratory animals. In recent years, the development of new detector technology has dramatically improved the spatial resolution and image quality of small animal PET scanner, which is being used increasingly as a basic tool in modern biomedical research. In particular, small animal PET will play an important role in drug discovery and development, in the study of small animal models of human diseases, in characterizing gene expression and in many other ways. (authors)

  5. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  6. Three-dimensional imaging and scanning: Current and future applications for pathology

    Directory of Open Access Journals (Sweden)

    Navid Farahani

    2017-01-01

    Full Text Available Imaging is vital for the assessment of physiologic and phenotypic details. In the past, biomedical imaging was heavily reliant on analog, low-throughput methods, which would produce two-dimensional images. However, newer, digital, and high-throughput three-dimensional (3D imaging methods, which rely on computer vision and computer graphics, are transforming the way biomedical professionals practice. 3D imaging has been useful in diagnostic, prognostic, and therapeutic decision-making for the medical and biomedical professions. Herein, we summarize current imaging methods that enable optimal 3D histopathologic reconstruction: Scanning, 3D scanning, and whole slide imaging. Briefly mentioned are emerging platforms, which combine robotics, sectioning, and imaging in their pursuit to digitize and automate the entire microscopy workflow. Finally, both current and emerging 3D imaging methods are discussed in relation to current and future applications within the context of pathology.

  7. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications

    Directory of Open Access Journals (Sweden)

    Kalomiraki M

    2015-12-01

    Full Text Available Marina Kalomiraki,1 Kyriaki Thermos,2 Nikos A Chaniotakis1 1Laboratory of Analytical Chemistry, Department of Chemistry, 2Department of Pharmacology, School of Medicine, University of Crete Voutes, Heraklion, Greece Abstract: Dendrimers are large polymeric structures with nanosize dimensions (1–10 nm and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific “architecture” and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases. Keywords: nanoparticles, ocular diseases, encapsulation, macromolecule, diagnostic agent

  8. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  9. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.

    Science.gov (United States)

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R

    2008-03-11

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.

  10. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  11. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  12. Portable blood extraction device integrated with biomedical monitoring system

    Science.gov (United States)

    Khumpuang, S.; Horade, M.; Fujioka, K.; Sugiyama, S.

    2006-01-01

    Painless and portable blood extraction device has been immersed in the world of miniaturization on bio-medical research particularly in manufacturing point-of-care systems. The fabrication of a blood extraction device integrated with an electrolyte-monitoring system is reported in this paper. The device has advantages in precise controlled dosage of blood extracted including the slightly damaged blood vessels and nervous system. The in-house blood diagnostic will become simple for the patients. Main components of the portable system are; the blood extraction device and electrolyte-monitoring system. The monitoring system consists of ISFET (Ion Selective Field Effect Transistor) for measuring the concentration level of minerals in blood. In this work, we measured the level of 3 ions; Na+, K+ and Cl-. The mentioned ions are frequently required the measurement since their concentration levels in the blood can indicate whether the kidney, pancreas, liver or heart is being malfunction. The fabrication of the whole system and experimentation on each ISM (Ion Sensitive Membrane) will be provided. Taking the advantages of LIGA technology, the 100 hollow microneedles fabricated by Synchrotron Radiation deep X-ray lithography through PCT (Plane-pattern to Cross-section Transfer) technique have been consisted in 5x5 mm2 area. The microneedle is 300 μm in base-diameter, 500 μm-pitch, 800 μm-height and 50 μm hole-diameter. The total size of the blood extraction device is 2x2x2 cm 3. The package is made from a plastic socket including slots for inserting microneedle array and ISFET connecting to an electrical circuit for the monitoring. Through the dimensional design for simply handling and selection of disposable material, the patients can self-evaluate the critical level of the body minerals in anywhere and anytime.

  13. Proceedings of the international conference on medical physics and biomedical engineering. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Spyrou, S; Christofides, S; Pattichis, C S; Keravnou, E; Schizas, C N; Christodoulides, G [eds.

    1994-12-31

    This is the first of two volumes of the proceedings of the International Conference on Medical Physics and Biomedical Engineering, held in Nicosia, Cyprus, between 3-7 May, 1994. It contains 47 papers. Nine of these fall within the scope of INIS and are dealing with stereolithography, computer tomography, scintigraphy, positron emission tomography, medical imaging, non linear spectral estimation techniques, image compression techniques and x-ray phosphor screens.

  14. Proceedings of the international conference on medical physics and biomedical engineering. Vol. 1

    International Nuclear Information System (INIS)

    Spyrou, S.; Christofides, S.; Pattichis, C.S.; Keravnou, E.; Schizas, C.N.; Christodoulides, G.

    1994-01-01

    This is the first of two volumes of the proceedings of the International Conference on Medical Physics and Biomedical Engineering, held in Nicosia, Cyprus, between 3-7 May, 1994. It contains 47 papers. Nine of these fall within the scope of INIS and are dealing with stereolithography, computer tomography, scintigraphy, positron emission tomography, medical imaging, non linear spectral estimation techniques, image compression techniques and x-ray phosphor screens

  15. Acoustic methods for cavitation mapping in biomedical applications

    Science.gov (United States)

    Wan, M.; Xu, S.; Ding, T.; Hu, H.; Liu, R.; Bai, C.; Lu, S.

    2015-12-01

    In recent years, cavitation is increasingly utilized in a wide range of applications in biomedical field. Monitoring the spatial-temporal evolution of cavitation bubbles is of great significance for efficiency and safety in biomedical applications. In this paper, several acoustic methods for cavitation mapping proposed or modified on the basis of existing work will be presented. The proposed novel ultrasound line-by-line/plane-by-plane method can depict cavitation bubbles distribution with high spatial and temporal resolution and may be developed as a potential standard 2D/3D cavitation field mapping method. The modified ultrafast active cavitation mapping based upon plane wave transmission and reception as well as bubble wavelet and pulse inversion technique can apparently enhance the cavitation to tissue ratio in tissue and further assist in monitoring the cavitation mediated therapy with good spatial and temporal resolution. The methods presented in this paper will be a foundation to promote the research and development of cavitation imaging in non-transparent medium.

  16. SERS microscopy: plasmonic nanoparticle probes and biomedical applications

    Science.gov (United States)

    Gellner, M.; Schütz, M.; Salehi, M.; Packeisen, J.; Ströbel, P.; Marx, A.; Schmuck, C.; Schlücker, S.

    2010-08-01

    Nanoparticle probes for use in targeted detection schemes and readout by surface-enhanced Raman scattering (SERS) comprise a metal core, Raman reporter molecules and a protective shell. One design of SERS labels specifically optimized for biomedical applications in conjunction with red laser excitation is based on tunable gold/silver nanoshells, which are completely covered by a self-assembled monolayer (SAM) of Raman reporters. A shell around the SAM-coated metal core stabilizes the colloid and prevents particle aggregation. The optical properties and SERS efficiencies of these plasmonic nanostructures are characterized both experimentally and theoretically. Subsequent bioconjugation of SERS probes to ligands such as antibodies is a prerequisite for the selective detection of the corresponding target molecule via the characteristic Raman signature of the label. Biomedical imaging applications of SERS-labeled antibodies for tumor diagnostics by SERS microscopy are presented, using the localization of the tumor suppressor p63 in prostate tissue sections as an example.

  17. Biomedical research applications

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The biomedical research Panel believes that the Calutron facility at Oak Ridge is a national and international resource of immense scientific value and of fundamental importance to continued biomedical research. This resource is essential to the development of new isotope uses in biology and medicine. It should therefore be nurtured by adequate support and operated in a way that optimizes its services to the scientific and technological community. The Panel sees a continuing need for a reliable supply of a wide variety of enriched stable isotopes. The past and present utilization of stable isotopes in biomedical research is documented in Appendix 7. Future requirements for stable isotopes are impossible to document, however, because of the unpredictability of research itself. Nonetheless we expect the demand for isotopes to increase in parallel with the continuing expansion of biomedical research as a whole. There are a number of promising research projects at the present time, and these are expected to lead to an increase in production requirements. The Panel also believes that a high degree of priority should be given to replacing the supplies of the 65 isotopes (out of the 224 previously available enriched isotopes) no longer available from ORNL

  18. An overview of biomedical literature search on the World Wide Web in the third millennium.

    Science.gov (United States)

    Kumar, Prince; Goel, Roshni; Jain, Chandni; Kumar, Ashish; Parashar, Abhishek; Gond, Ajay Ratan

    2012-06-01

    Complete access to the existing pool of biomedical literature and the ability to "hit" upon the exact information of the relevant specialty are becoming essential elements of academic and clinical expertise. With the rapid expansion of the literature database, it is almost impossible to keep up to date with every innovation. Using the Internet, however, most people can freely access this literature at any time, from almost anywhere. This paper highlights the use of the Internet in obtaining valuable biomedical research information, which is mostly available from journals, databases, textbooks and e-journals in the form of web pages, text materials, images, and so on. The authors present an overview of web-based resources for biomedical researchers, providing information about Internet search engines (e.g., Google), web-based bibliographic databases (e.g., PubMed, IndMed) and how to use them, and other online biomedical resources that can assist clinicians in reaching well-informed clinical decisions.

  19. Pathophysiologic mechanisms of biomedical nanomaterials

    International Nuclear Information System (INIS)

    Wang, Liming; Chen, Chunying

    2016-01-01

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs

  20. Pathophysiologic mechanisms of biomedical nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.

  1. Advances in polymeric systems for tissue engineering and biomedical applications.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  3. Translational research of optical molecular imaging for personalized medicine.

    Science.gov (United States)

    Qin, C; Ma, X; Tian, J

    2013-12-01

    In the medical imaging field, molecular imaging is a rapidly developing discipline and forms many imaging modalities, providing us effective tools to visualize, characterize, and measure molecular and cellular mechanisms in complex biological processes of living organisms, which can deepen our understanding of biology and accelerate preclinical research including cancer study and medicine discovery. Among many molecular imaging modalities, although the penetration depth of optical imaging and the approved optical probes used for clinics are limited, it has evolved considerably and has seen spectacular advances in basic biomedical research and new drug development. With the completion of human genome sequencing and the emergence of personalized medicine, the specific drug should be matched to not only the right disease but also to the right person, and optical molecular imaging should serve as a strong adjunct to develop personalized medicine by finding the optimal drug based on an individual's proteome and genome. In this process, the computational methodology and imaging system as well as the biomedical application regarding optical molecular imaging will play a crucial role. This review will focus on recent typical translational studies of optical molecular imaging for personalized medicine followed by a concise introduction. Finally, the current challenges and the future development of optical molecular imaging are given according to the understanding of the authors, and the review is then concluded.

  4. Imaging systems in nuclear medicine and image evaluation

    International Nuclear Information System (INIS)

    Beck, R.; Charleston, D.; Metz, C.

    1980-01-01

    This project deals with imaging systems in nuclear medicine and image evaluation and is presented as four subprojects. The goal of the first subproject is to improve diagnositc image quality by development of a general computer code for optimizing collimator design. The second subproject deals with a secondary emission and fluorescence technique for thyroid scanning while the third subproject emphasizes the need for more sophisticated image processing systems such as coherent optical spatial filtering systems and digital image processing. The fourth subproject presents a new approach for processing image data by taking into account the energy of each detected gamma-ray photon

  5. Protein-gold nanoparticle interactions and their possible impact on biomedical applications

    DEFF Research Database (Denmark)

    Liu, Jingying; Peng, Qiang

    2017-01-01

    ) have critically affected physiological to therapeutic responses. The complexity and uncontrollability of AuNP-PC formation limited the clinical applications of AuNP, e.g. AuNP-based drug delivery systems or imaging agent. Thus, even intensive attempts have been made for in vitro characterizations of PC...... a detailed description of protein-AuNP interaction and launch an interesting discussion on how to use such interaction for smart and controlled AuNPs delivery, which would be a topic of widespread interest.......In the past few years, concerns of protein-gold nanoparticles (AuNP) interaction have been continuously growing in numerous potential biomedical applications. Despite the advances in tunable size, shape and excellent biocompatibility, unpredictable adverse effects related with protein corona (PC...

  6. The BioIntelligence Framework: a new computational platform for biomedical knowledge computing.

    Science.gov (United States)

    Farley, Toni; Kiefer, Jeff; Lee, Preston; Von Hoff, Daniel; Trent, Jeffrey M; Colbourn, Charles; Mousses, Spyro

    2013-01-01

    Breakthroughs in molecular profiling technologies are enabling a new data-intensive approach to biomedical research, with the potential to revolutionize how we study, manage, and treat complex diseases. The next great challenge for clinical applications of these innovations will be to create scalable computational solutions for intelligently linking complex biomedical patient data to clinically actionable knowledge. Traditional database management systems (DBMS) are not well suited to representing complex syntactic and semantic relationships in unstructured biomedical information, introducing barriers to realizing such solutions. We propose a scalable computational framework for addressing this need, which leverages a hypergraph-based data model and query language that may be better suited for representing complex multi-lateral, multi-scalar, and multi-dimensional relationships. We also discuss how this framework can be used to create rapid learning knowledge base systems to intelligently capture and relate complex patient data to biomedical knowledge in order to automate the recovery of clinically actionable information.

  7. Thermoacoustic emission induced by deeply-penetrating radiation and its application to biomedical imaging

    International Nuclear Information System (INIS)

    Liew, Soo Chin.

    1989-01-01

    Thermoacoustic emissions induced by 2450 MHz microwave pulses in water, tissue-simulating phantoms and dog kidneys have been detected. The analytic signal magnitude has been employed in generating A-mode images with excellent depth resolution. Thermoacoustic emissions have also been detected from the dose-gradient at the beam edges of a 4 MeV x-ray beam in water. These results establish the feasibility of employing thermoacoustic signals in generating diagnostic images, and in locating x-ray beam edges during radiation therapy. A theoretical model for thermoacoustic imaging using a directional transducer has been developed, which may be used in the design of future thermoacoustic imaging system, and in facilitating comparisons with other types of imaging systems. A method of characterizing biological tissues has been proposed, which relates the power spectrum of the detected thermoacoustic signals to the autocorrelation function of the thermoacoustic source distribution in the tissues. The temperature dependence of acoustic signals induced by microwave pulses in water has been investigated. A microwave-induced thermoacoustic source capable of launching large aperture, unipolar ultrasonic plane wave pulses in water has been constructed

  8. Elemental and isotopic imaging of biological samples using NanoSIMS.

    Science.gov (United States)

    Kilburn, Matt R; Clode, Peta L

    2014-01-01

    With its low detection limits and the ability to analyze most of the elements in the periodic table, secondary ion mass spectrometry (SIMS) represents one of the most versatile in situ analytical techniques available, and recent developments have resulted in significant advantages for the use of imaging mass spectrometry in biological and biomedical research. Increases in spatial resolution and sensitivity allow detailed interrogation of samples at relevant scales and chemical concentrations. Advances in dynamic SIMS, specifically with the advent of NanoSIMS, now allow the tracking of stable isotopes within biological systems at subcellular length scales, while static SIMS combines subcellular imaging with molecular identification. In this chapter, we present an introduction to the SIMS technique, with particular reference to NanoSIMS, and discuss its application in biological and biomedical research.

  9. Use of systematic review to inform the infection risk for biomedical engineers and technicians servicing biomedical devices

    International Nuclear Information System (INIS)

    Smith, Anne-Louise

    2011-01-01

    Full text: Many microorganisms responsible for hospital acquired infections are able to stay viable on surfaces with no visible sign of contamination, in dry conditions and on non-porous surfaces. The infection risk to biomedical staff when servicing biomedical devices is not documented. An indirect approach has been used to examine the different aspects that will affect the risk of infection including a systematic review of microbial contamination and transmission relating to biomedical devices. A systematic review found 58% of biomedical devices have microbial contamination with 13% having at least one pathogenic organism. These microbes can persist for some months. Occupational-infections of biomedical service staff are low compared to other healthcare workers. A biomedical device with contaminated surface or dust was identified as the source of patient outbreaks in 13 papers. The cleaning agent most tested for removal of micro-organisms from devices was alcohol swabs, but sterile water swabs were also effective. However, manufacturers mainly recommend (74%) cleaning devices with water and detergent. Biomedical engineers and technicians have a small risk of being exposed to dangerous micro-organisms on most biomedical devices, but without skin breakage, this exposure is unlikely to cause ill-health. It is recommended that biomedical staff follow good infection control practices, wipe devices with detergent, sterile water or alcohol swabs as recommended by the manufacturer before working on them, and keep alcohol hand rubs accessible at all benches. (author)

  10. 1st International Conference on Computational and Experimental Biomedical Sciences

    CERN Document Server

    Jorge, RM

    2015-01-01

    This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...

  11. Enhancing biomedical text summarization using semantic relation extraction.

    Directory of Open Access Journals (Sweden)

    Yue Shang

    Full Text Available Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1 We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2 We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3 For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.

  12. Enhancing biomedical text summarization using semantic relation extraction.

    Science.gov (United States)

    Shang, Yue; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao

    2011-01-01

    Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.

  13. Biomedical Image Analysis: Rapid prototyping with Mathematica

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Almsick, van M.A.

    2004-01-01

    Digital acquisition techniques have caused an explosion in the production of medical images, especially with the advent of multi-slice CT and volume MRI. One third of the financial investments in a modern hospital's equipment are dedicated to imaging. Emerging screening programs add to this flood of

  14. Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data

    Directory of Open Access Journals (Sweden)

    Viswanath Satish

    2012-02-01

    Full Text Available Abstract Background Dimensionality reduction (DR enables the construction of a lower dimensional space (embedding from a higher dimensional feature space while preserving object-class discriminability. However several popular DR approaches suffer from sensitivity to choice of parameters and/or presence of noise in the data. In this paper, we present a novel DR technique known as consensus embedding that aims to overcome these problems by generating and combining multiple low-dimensional embeddings, hence exploiting the variance among them in a manner similar to ensemble classifier schemes such as Bagging. We demonstrate theoretical properties of consensus embedding which show that it will result in a single stable embedding solution that preserves information more accurately as compared to any individual embedding (generated via DR schemes such as Principal Component Analysis, Graph Embedding, or Locally Linear Embedding. Intelligent sub-sampling (via mean-shift and code parallelization are utilized to provide for an efficient implementation of the scheme. Results Applications of consensus embedding are shown in the context of classification and clustering as applied to: (1 image partitioning of white matter and gray matter on 10 different synthetic brain MRI images corrupted with 18 different combinations of noise and bias field inhomogeneity, (2 classification of 4 high-dimensional gene-expression datasets, (3 cancer detection (at a pixel-level on 16 image slices obtained from 2 different high-resolution prostate MRI datasets. In over 200 different experiments concerning classification and segmentation of biomedical data, consensus embedding was found to consistently outperform both linear and non-linear DR methods within all applications considered. Conclusions We have presented a novel framework termed consensus embedding which leverages ensemble classification theory within dimensionality reduction, allowing for application to a wide range

  15. Radiological considerations for POE-1 photon shutters, collimators and beam stops of the Biomedical Imaging and Therapy beamline at the Canadian Light Source

    International Nuclear Information System (INIS)

    Asai, Juhachi; Wysokinski, Tomasz W.; Smith, Sheldon; Chapman, Dean

    2008-01-01

    A study of radiation levels due to primary and secondary gas bremsstrahlung is carried out for the BioMedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source (CLS). The BMIT beamline, being built at present, is a major research and diagnostic tool for X-ray imaging and X-ray radiation therapy for animals and humans. For the BMIT beamline to be as flexible as possible, a movable tungsten collimator is designed. This can move vertically and assumes two positions; up and down. The BMIT beamline is, thus, able to perform two modes of operation: one white beam, the other monochromatic. Gas bremsstrahlung produced in the vacuum chamber propagates with synchrotron radiation and may enter the imaging or therapy hutch. In this study, the dose behind the collimator is investigated in each mode by assessing the energy deposition in a water phantom that surrounds the entire copper shutter-tungsten collimator unit. When estimating the dose, particular attention is given to the opening area of the collimator, since this passage leads to the imaging or therapy hutch. Also examined are the doses when a tungsten safety shutter is closed

  16. Imaging system design and image interpolation based on CMOS image sensor

    Science.gov (United States)

    Li, Yu-feng; Liang, Fei; Guo, Rui

    2009-11-01

    An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.

  17. Fully automated rodent brain MR image processing pipeline on a Midas server: from acquired images to region-based statistics.

    Science.gov (United States)

    Budin, Francois; Hoogstoel, Marion; Reynolds, Patrick; Grauer, Michael; O'Leary-Moore, Shonagh K; Oguz, Ipek

    2013-01-01

    Magnetic resonance imaging (MRI) of rodent brains enables study of the development and the integrity of the brain under certain conditions (alcohol, drugs etc.). However, these images are difficult to analyze for biomedical researchers with limited image processing experience. In this paper we present an image processing pipeline running on a Midas server, a web-based data storage system. It is composed of the following steps: rigid registration, skull-stripping, average computation, average parcellation, parcellation propagation to individual subjects, and computation of region-based statistics on each image. The pipeline is easy to configure and requires very little image processing knowledge. We present results obtained by processing a data set using this pipeline and demonstrate how this pipeline can be used to find differences between populations.

  18. A game-based crowdsourcing platform for rapidly training middle and high school students to perform biomedical image analysis

    Science.gov (United States)

    Feng, Steve; Woo, Min-jae; Kim, Hannah; Kim, Eunso; Ki, Sojung; Shao, Lei; Ozcan, Aydogan

    2016-03-01

    We developed an easy-to-use and widely accessible crowd-sourcing tool for rapidly training humans to perform biomedical image diagnostic tasks and demonstrated this platform's ability on middle and high school students in South Korea to diagnose malaria infected red-blood-cells (RBCs) using Giemsa-stained thin blood smears imaged under light microscopes. We previously used the same platform (i.e., BioGames) to crowd-source diagnostics of individual RBC images, marking them as malaria positive (infected), negative (uninfected), or questionable (insufficient information for a reliable diagnosis). Using a custom-developed statistical framework, we combined the diagnoses from both expert diagnosticians and the minimally trained human crowd to generate a gold standard library of malaria-infection labels for RBCs. Using this library of labels, we developed a web-based training and educational toolset that provides a quantified score for diagnosticians/users to compare their performance against their peers and view misdiagnosed cells. We have since demonstrated the ability of this platform to quickly train humans without prior training to reach high diagnostic accuracy as compared to expert diagnosticians. Our initial trial group of 55 middle and high school students has collectively played more than 170 hours, each demonstrating significant improvements after only 3 hours of training games, with diagnostic scores that match expert diagnosticians'. Next, through a national-scale educational outreach program in South Korea we recruited >1660 students who demonstrated a similar performance level after 5 hours of training. We plan to further demonstrate this tool's effectiveness for other diagnostic tasks involving image labeling and aim to provide an easily-accessible and quickly adaptable framework for online training of new diagnosticians.

  19. Multi-channel medical imaging system

    Science.gov (United States)

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  20. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  1. Mutual-Information-Based Incremental Relaying Communications for Wireless Biomedical Implant Systems

    Directory of Open Access Journals (Sweden)

    Yangzhe Liao

    2018-02-01

    Full Text Available Network lifetime maximization of wireless biomedical implant systems is one of the major research challenges of wireless body area networks (WBANs. In this paper, a mutual information (MI-based incremental relaying communication protocol is presented where several on-body relay nodes and one coordinator are attached to the clothes of a patient. Firstly, a comprehensive analysis of a system model is investigated in terms of channel path loss, energy consumption, and the outage probability from the network perspective. Secondly, only when the MI value becomes smaller than the predetermined threshold is data transmission allowed. The communication path selection can be either from the implanted sensor to the on-body relay then forwards to the coordinator or from the implanted sensor to the coordinator directly, depending on the communication distance. Moreover, mathematical models of quality of service (QoS metrics are derived along with the related subjective functions. The results show that the MI-based incremental relaying technique achieves better performance in comparison to our previous proposed protocol techniques regarding several selected performance metrics. The outcome of this paper can be applied to intra-body continuous physiological signal monitoring, artificial biofeedback-oriented WBANs, and telemedicine system design.

  2. Functional requirements for a central research imaging data repository.

    Science.gov (United States)

    Franke, Thomas; Gruetz, Romanus; Dickmann, Frank

    2013-01-01

    The current situation at many university medical centers regarding the management of biomedical research imaging data leaves much to be desired. In contrast to the recommendations of the German Research Foundation (DFG) and the German Council of Sciences and Humanities regarding the professional management of research data, there are commonly many individual data pools for research data in each institute and the management remains the responsibility of the researcher. A possible solution for this situation would be to install local central repositories for biomedical research imaging data. In this paper, we developed a scenario based on abstracted use-cases for institutional research undertakings as well as collaborative biomedical research projects and analyzed the functional requirements that a local repository would have to fulfill. We determined eight generic categories of functional requirements, which can be viewed as a basic guideline for the minimum functionality of a central repository for biomedical research imaging data.

  3. Building a biomedical ontology recommender web service

    Directory of Open Access Journals (Sweden)

    Jonquet Clement

    2010-06-01

    Full Text Available Abstract Background Researchers in biomedical informatics use ontologies and terminologies to annotate their data in order to facilitate data integration and translational discoveries. As the use of ontologies for annotation of biomedical datasets has risen, a common challenge is to identify ontologies that are best suited to annotating specific datasets. The number and variety of biomedical ontologies is large, and it is cumbersome for a researcher to figure out which ontology to use. Methods We present the Biomedical Ontology Recommender web service. The system uses textual metadata or a set of keywords describing a domain of interest and suggests appropriate ontologies for annotating or representing the data. The service makes a decision based on three criteria. The first one is coverage, or the ontologies that provide most terms covering the input text. The second is connectivity, or the ontologies that are most often mapped to by other ontologies. The final criterion is size, or the number of concepts in the ontologies. The service scores the ontologies as a function of scores of the annotations created using the National Center for Biomedical Ontology (NCBO Annotator web service. We used all the ontologies from the UMLS Metathesaurus and the NCBO BioPortal. Results We compare and contrast our Recommender by an exhaustive functional comparison to previously published efforts. We evaluate and discuss the results of several recommendation heuristics in the context of three real world use cases. The best recommendations heuristics, rated ‘very relevant’ by expert evaluators, are the ones based on coverage and connectivity criteria. The Recommender service (alpha version is available to the community and is embedded into BioPortal.

  4. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  5. Spacesuit Sensing Data Display and Management System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZIN Technologies, Inc will breadboard an integrated electronic system for space suit application to acquire images, biomedical sensor signals and suit health &...

  6. Biomedical applications engineering tasks

    Science.gov (United States)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  7. Comparison of concept recognizers for building the Open Biomedical Annotator

    Directory of Open Access Journals (Sweden)

    Rubin Daniel

    2009-09-01

    Full Text Available Abstract The National Center for Biomedical Ontology (NCBO is developing a system for automated, ontology-based access to online biomedical resources (Shah NH, et al.: Ontology-driven indexing of public datasets for translational bioinformatics. BMC Bioinformatics 2009, 10(Suppl 2:S1. The system's indexing workflow processes the text metadata of diverse resources such as datasets from GEO and ArrayExpress to annotate and index them with concepts from appropriate ontologies. This indexing requires the use of a concept-recognition tool to identify ontology concepts in the resource's textual metadata. In this paper, we present a comparison of two concept recognizers – NLM's MetaMap and the University of Michigan's Mgrep. We utilize a number of data sources and dictionaries to evaluate the concept recognizers in terms of precision, recall, speed of execution, scalability and customizability. Our evaluations demonstrate that Mgrep has a clear edge over MetaMap for large-scale service oriented applications. Based on our analysis we also suggest areas of potential improvements for Mgrep. We have subsequently used Mgrep to build the Open Biomedical Annotator service. The Annotator service has access to a large dictionary of biomedical terms derived from the United Medical Language System (UMLS and NCBO ontologies. The Annotator also leverages the hierarchical structure of the ontologies and their mappings to expand annotations. The Annotator service is available to the community as a REST Web service for creating ontology-based annotations of their data.

  8. A cost-effective fluorescence mini-microscope for biomedical applications.

    Science.gov (United States)

    Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali

    2015-01-01

    We have designed and fabricated a miniature microscope from off-the-shelf components and a webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters, such as cell/tissue viability (e.g. live/dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60×, achieves a resolution as high as microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including, but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread application in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required.

  9. Contemporary issues for experimental design in assessment of medical imaging and computer-assist systems

    Science.gov (United States)

    Wagner, Robert F.; Beiden, Sergey V.; Campbell, Gregory; Metz, Charles E.; Sacks, William M.

    2003-05-01

    The dialog among investigators in academia, industry, NIH, and the FDA has grown in recent years on topics of historic interest to attendees of these SPIE sub-conferences on Image Perception, Observer Performance, and Technology Assessment. Several of the most visible issues in this regard have been the emergence of digital mammography and modalities for computer-assisted detection and diagnosis in breast and lung imaging. These issues appear to be only the "tip of the iceberg" foreshadowing a number of emerging advances in imaging technology. So it is timely to make some general remarks looking back and looking ahead at the landscape (or seascape). The advances have been facilitated and documented in several forums. The major role of the SPIE Medical Imaging Conferences i well-known to all of us. Many of us were also present at the Medical Image Perception Society and co-sponsored by CDRH and NCI in September of 2001 at Airlie House, VA. The workshops and discussions held at that conference addressed some critical contemporary issues related to how society - and in particular industry and FDA - approach the general assessment problem. A great deal of inspiration for these discussions was also drawn from several workshops in recent years sponsored by the Biomedical Imaging Program of the National Cancer Institute on these issues, in particular the problem of "The Moving Target" of imaging technology. Another critical phenomenon deserving our attention is the fact that the Fourth National Forum on Biomedical Imaging in Oncology was recently held in Bethesda, MD., February 6-7, 2003. These forums are presented by the National Cancer Institute (NCI), the Food and Drug Administration (FDA), the Centers for Medicare and Medicaid Services (CMS), and the National Electrical Manufacturers Association (NEMA). They are sponsored by the National Institutes of Health/Foundation for Advanced Education in the Sciences (NIH/FAES). These forums led to the development of the NCI

  10. Enabling Large-Scale Biomedical Analysis in the Cloud

    Directory of Open Access Journals (Sweden)

    Ying-Chih Lin

    2013-01-01

    Full Text Available Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable.

  11. Combined X-ray CT and mass spectrometry for biomedical imaging applications

    Science.gov (United States)

    Schioppa, E., Jr.; Ellis, S.; Bruinen, A. L.; Visser, J.; Heeren, R. M. A.; Uher, J.; Koffeman, E.

    2014-04-01

    Imaging technologies play a key role in many branches of science, especially in biology and medicine. They provide an invaluable insight into both internal structure and processes within a broad range of samples. There are many techniques that allow one to obtain images of an object. Different techniques are based on the analysis of a particular sample property by means of a dedicated imaging system, and as such, each imaging modality provides the researcher with different information. The use of multimodal imaging (imaging with several different techniques) can provide additional and complementary information that is not possible when employing a single imaging technique alone. In this study, we present for the first time a multi-modal imaging technique where X-ray computerized tomography (CT) is combined with mass spectrometry imaging (MSI). While X-ray CT provides 3-dimensional information regarding the internal structure of the sample based on X-ray absorption coefficients, MSI of thin sections acquired from the same sample allows the spatial distribution of many elements/molecules, each distinguished by its unique mass-to-charge ratio (m/z), to be determined within a single measurement and with a spatial resolution as low as 1 μm or even less. The aim of the work is to demonstrate how molecular information from MSI can be spatially correlated with 3D structural information acquired from X-ray CT. In these experiments, frozen samples are imaged in an X-ray CT setup using Medipix based detectors equipped with a CO2 cooled sample holder. Single projections are pre-processed before tomographic reconstruction using a signal-to-thickness calibration. In the second step, the object is sliced into thin sections (circa 20 μm) that are then imaged using both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and secondary ion (SIMS) mass spectrometry, where the spatial distribution of specific molecules within the sample is determined. The

  12. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube

    Directory of Open Access Journals (Sweden)

    Hai Huy Nguyen Pham

    2017-05-01

    Full Text Available The terahertz (THz, 0.1–10 THz region has been attracting tremendous research interest owing to its potential in practical applications such as biomedical, material inspection, and nondestructive imaging. Those applications require enhancing the spatial resolution at a specific frequency of interest. A variety of resolution-enhancement techniques have been proposed, such as near-field scanning probes, surface plasmons, and aspheric lenses. Here, we demonstrate for the first time that a mesoscale dielectric cube can be exploited as a novel resolution enhancer by simply placing it at the focused imaging point of a continuous wave THz imaging system. The operating principle of this enhancer is based on the generation—by the dielectric cuboid—of the so-called terajet, a photonic jet in the THz region. A subwavelength hotspot is obtained by placing a Teflon cube, with a 1.46 refractive index, at the imaging point of the imaging system, regardless of the numerical aperture (NA. The generated terajet at 125 GHz is experimentally characterized, using our unique THz-wave visualization system. The full width at half maximum (FWHM of the hotspot obtained by placing the enhancer at the focal point of a mirror with a measured NA of 0.55 is approximately 0.55λ, which is even better than the FWHM obtained by a conventional focusing device with the ideal maximum numerical aperture (NA = 1 in air. Nondestructive subwavelength-resolution imaging demonstrations of a Suica integrated circuit card, which is used as a common fare card for trains in Japan, and an aluminum plate with 0.63λ trenches are presented. The amplitude and phase images obtained with the enhancer at 125 GHz can clearly resolve both the air-trenches on the aluminum plate and the card’s inner electronic circuitry, whereas the images obtained without the enhancer are blurred because of insufficient resolution. An increase of the image contrast by a factor of 4.4 was also obtained using

  13. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  14. [Master course in biomedical engineering].

    Science.gov (United States)

    Jobbágy, Akos; Benyó, Zoltán; Monos, Emil

    2009-11-22

    The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.

  15. Operational results for the raster scanning power supply system constructed at the Bevalac Biomedical Facility

    International Nuclear Information System (INIS)

    Stover, G.; Halliwell, J.; Nyman, M.; Dwinell, R.

    1989-03-01

    A raster scanning power supply for controlling an 8.0 Tesla-meter relativistic heavy-ion beam at the Biomedical Facility has been recently completed and is undergoing electrical testing before on- line operation in 1989. The scanner system will provide tightly controlled beam uniformity and off-axis treatment profiles with large aspect ratios and unusual dimensions. This article will discuss original specifications, agreement with measured results and special device performance (i.e. GTOs, FET actuator assembly, etc.). 5 refs., 4 figs

  16. SPECT imaging with resolution recovery

    International Nuclear Information System (INIS)

    Bronnikov, A. V.

    2011-01-01

    Single-photon emission computed tomography (SPECT) is a method of choice for imaging spatial distributions of radioisotopes. Many applications of this method are found in nuclear industry, medicine, and biomedical research. We study mathematical modeling of a micro-SPECT system by using a point-spread function (PSF) and implement an OSEM-based iterative algorithm for image reconstruction with resolution recovery. Unlike other known implementations of the OSEM algorithm, we apply en efficient computation scheme based on a useful approximation of the PSF, which ensures relatively fast computations. The proposed approach can be applied with the data acquired with any type of collimators, including parallel-beam fan-beam, cone-beam and pinhole collimators. Experimental results obtained with a micro SPECT system demonstrate high efficiency of resolution recovery. (authors)

  17. Big Data Application in Biomedical Research and Health Care: A Literature Review.

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care.

  18. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    International Nuclear Information System (INIS)

    Silva, A.L.M.; Figueroa, R.; Jaramillo, A.; Carvalho, M.L.; Veloso, J.F.C.A.

    2013-01-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm 2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues. - Highlights: • Demonstration of an EDXRF imaging system based on a 2D-MHSP detector for biological analysis • Evaluation of the drift of the dental amalgam constituents, throughout the teeth • Observation of Hg diffusion, due to hydroxyapatite crystal defects that compose the teeth tissues

  19. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.L.M. [I3N, Physics Dept, University of Aveiro, 3810-193 Aveiro (Portugal); Figueroa, R.; Jaramillo, A. [Physics Department, Universidad de La Frontera, Temuco (Chile); Carvalho, M.L. [Atomic Physics Centre, University of Lisbon, 1649-03 Lisboa (Portugal); Veloso, J.F.C.A., E-mail: joao.veloso@ua.pt [I3N, Physics Dept, University of Aveiro, 3810-193 Aveiro (Portugal)

    2013-08-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm{sup 2} presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues. - Highlights: • Demonstration of an EDXRF imaging system based on a 2D-MHSP detector for biological analysis • Evaluation of the drift of the dental amalgam constituents, throughout the teeth • Observation of Hg diffusion, due to hydroxyapatite crystal defects that compose the teeth tissues.

  20. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  1. Natural immunoglobulins (contribution to a debate on biomedical education

    Directory of Open Access Journals (Sweden)

    Vaz Nelson M

    2000-01-01

    Full Text Available Immunology has contributed to biomedical education in many important ways since the creation of scientific medicine in the last quarter of the 19th century. Today, immunology is a major area of biomedical research. Nevertheless, there are many basic problems unresolved in immunological activities and phenomena. Solving these problems is probably necessary to devise predictable and safe ways to produce new vaccines, treat allergy and autoimmune diseases and perform safe transplants. This challenge involves not only technical developments but also changes in attitude, of which the most fundamental is to abandon the traditional stimulus-response perspective in favor of more "systemic" views. Describing immunological activities as the operation of a complex multiconnected network, raises biological and epistemological issues not usually dealt with in biomedical education. Here we point to one example of systemic approaches. A new form of immunoblot (Panama blot, by which the reaction of natural immunoglobulins with complex protein mixtures may be analyzed by a special software and multivariate statistics, has been recently used to characterize human autoimmune diseases. Our preliminary data show that Panama blots can also be used to characterize global (systemic immunogical changes in chronic human parasitic diseases, such as malaria and schistosomiasis mansoni, that correlate with the clinical status.

  2. A study on a portable fluorescence imaging system

    Science.gov (United States)

    Chang, Han-Chao; Wu, Wen-Hong; Chang, Chun-Li; Huang, Kuo-Cheng; Chang, Chung-Hsing; Chiu, Shang-Chen

    2011-09-01

    The fluorescent reaction is that an organism or dye, excited by UV light (200-405 nm), emits a specific frequency of light; the light is usually a visible or near infrared light (405-900 nm). During the UV light irradiation, the photosensitive agent will be induced to start the photochemical reaction. In addition, the fluorescence image can be used for fluorescence diagnosis and then photodynamic therapy can be given to dental diseases and skin cancer, which has become a useful tool to provide scientific evidence in many biomedical researches. However, most of the methods on acquiring fluorescence biology traces are still stay in primitive stage, catching by naked eyes and researcher's subjective judgment. This article presents a portable camera to obtain the fluorescence image and to make up a deficit from observer competence and subjective judgment. Furthermore, the portable camera offers the 375nm UV-LED exciting light source for user to record fluorescence image and makes the recorded image become persuasive scientific evidence. In addition, when the raising the rate between signal and noise, the signal processing module will not only amplify the fluorescence signal up to 70 %, but also decrease the noise significantly from environmental light on bill and nude mouse testing.

  3. [Biomedical waste management in five hospitals in Dakar, Senegal].

    Science.gov (United States)

    Ndiaye, M; El Metghari, L; Soumah, M M; Sow, M L

    2012-10-01

    Biomedical waste is currently a real health and environmental concern. In this regard, a study was conducted in 5 hospitals in Dakar to review their management of biomedical waste and to formulate recommendations. This is a descriptive cross-sectional study conducted from 1 April to 31 July 2010 in five major hospitals of Dakar. A questionnaire administered to hospital managers, heads of departments, residents and heads of hospital hygiene departments as well as interviews conducted with healthcare personnel and operators of waste incinerators made it possible to assess mechanisms and knowledge on biomedical waste management. Content analysis of interviews, observations and a data sheet allowed processing the data thus gathered. Of the 150 questionnaires distributed, 98 responses were obtained representing a response rate of 65.3%. An interview was conducted with 75 employees directly involved in the management of biomedical waste and observations were made on biomedical waste management in 86 hospital services. Sharps as well as blood and liquid waste were found in all services except in pharmacies, pharmaceutical waste in 66 services, infectious waste in 49 services and anatomical waste in 11 services. Sorting of biomedical waste was ill-adapted in 53.5% (N = 46) of services and the use of the colour-coding system effective in 31.4% (N = 27) of services. Containers for the safe disposal of sharps were available in 82.5% (N = 71) of services and were effectively utilized in 51.1% (N = 44) of these services. In most services, an illadapted packaging was observed with the use of plastic bottles and bins for waste collection and overfilled containers. With the exception of Hôpital Principal, the main storage area was in open air, unsecured, with biomedical waste littered on the floor and often mixed with waste similar to household refuse. The transfer of biomedical waste to the main storage area was done using trolleys or carts in 67.4% (N = 58) of services and

  4. CONAN : Text Mining in the Biomedical Domain

    NARCIS (Netherlands)

    Malik, R.

    2006-01-01

    This thesis is about Text Mining. Extracting important information from literature. In the last years, the number of biomedical articles and journals is growing exponentially. Scientists might not find the information they want because of the large number of publications. Therefore a system was

  5. Environmental/Biomedical Terminology Index

    International Nuclear Information System (INIS)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index

  6. Localization and Tracking of Implantable Biomedical Sensors

    Directory of Open Access Journals (Sweden)

    Ilknur Umay

    2017-03-01

    Full Text Available Implantable sensor systems are effective tools for biomedical diagnosis, visualization and treatment of various health conditions, attracting the interest of researchers, as well as healthcare practitioners. These systems efficiently and conveniently provide essential data of the body part being diagnosed, such as gastrointestinal (temperature, pH, pressure parameter values, blood glucose and pressure levels and electrocardiogram data. Such data are first transmitted from the implantable sensor units to an external receiver node or network and then to a central monitoring and control (computer unit for analysis, diagnosis and/or treatment. Implantable sensor units are typically in the form of mobile microrobotic capsules or implanted stationary (body-fixed units. In particular, capsule-based systems have attracted significant research interest recently, with a variety of applications, including endoscopy, microsurgery, drug delivery and biopsy. In such implantable sensor systems, one of the most challenging problems is the accurate localization and tracking of the microrobotic sensor unit (e.g., robotic capsule inside the human body. This article presents a literature review of the existing localization and tracking techniques for robotic implantable sensor systems with their merits and limitations and possible solutions of the proposed localization methods. The article also provides a brief discussion on the connection and cooperation of such techniques with wearable biomedical sensor systems.

  7. Evolving technologies drive the new roles of Biomedical Engineering.

    Science.gov (United States)

    Frisch, P H; St Germain, J; Lui, W

    2008-01-01

    Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.

  8. A Relation Extraction Framework for Biomedical Text Using Hybrid Feature Set

    Directory of Open Access Journals (Sweden)

    Abdul Wahab Muzaffar

    2015-01-01

    Full Text Available The information extraction from unstructured text segments is a complex task. Although manual information extraction often produces the best results, it is harder to manage biomedical data extraction manually because of the exponential increase in data size. Thus, there is a need for automatic tools and techniques for information extraction in biomedical text mining. Relation extraction is a significant area under biomedical information extraction that has gained much importance in the last two decades. A lot of work has been done on biomedical relation extraction focusing on rule-based and machine learning techniques. In the last decade, the focus has changed to hybrid approaches showing better results. This research presents a hybrid feature set for classification of relations between biomedical entities. The main contribution of this research is done in the semantic feature set where verb phrases are ranked using Unified Medical Language System (UMLS and a ranking algorithm. Support Vector Machine and Naïve Bayes, the two effective machine learning techniques, are used to classify these relations. Our approach has been validated on the standard biomedical text corpus obtained from MEDLINE 2001. Conclusively, it can be articulated that our framework outperforms all state-of-the-art approaches used for relation extraction on the same corpus.

  9. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu

    2014-01-01

    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.

  10. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  11. Comparing a rule based vs. statistical system for automatic categorization of MEDLINE documents according to biomedical specialty

    OpenAIRE

    Humphrey, Susanne M.; Névéol, Aurélie; Browne, Allen; Gobeill, Julien; Ruch, Patrick; Darmoni, Stéfan J.

    2010-01-01

    Automatic document categorization is an important research problem in Information Science and Natural Language Processing. Many applications, including Word Sense Disambiguation and Information Retrieval in large collections, can benefit from such categorization. This paper focuses on automatic categorization of documents from the biomedical literature into broad discipline-based categories. Two different systems are described and contrasted: CISMeF, which uses rules based on human indexing o...

  12. Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems.

    Science.gov (United States)

    Chai, Rifai; Naik, Ganesh R; Ling, Sai Ho; Nguyen, Hung T

    2017-01-07

    One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.

  13. Customizable Electronic Laboratory Online (CELO): A Web-based Data Management System Builder for Biomedical Research Laboratories

    Science.gov (United States)

    Fong, Christine; Brinkley, James F.

    2006-01-01

    A common challenge among today’s biomedical research labs is managing growing amounts of research data. In order to reduce the time and resource costs of building data management tools, we designed the Customizable Electronic Laboratory Online (CELO) system. CELO automatically creates a generic database and web interface for laboratories that submit a simple web registration form. Laboratories can then use a collection of predefined XML templates to assist with the design of a database schema. Users can immediately utilize the web-based system to query data, manage multimedia files, and securely share data remotely over the internet. PMID:17238541

  14. Noise analysis of grating-based x-ray differential phase-contrast imaging with angular signal radiography

    International Nuclear Information System (INIS)

    Faiz, Wali; Gao Kun; Wu Zhao; Wei Chen-Xi; Zan Gui-Bin; Tian Yang-Chao; Bao Yuan; Zhu Pei-Ping

    2017-01-01

    X-ray phase-contrast imaging is one of the novel techniques, and has potential to enhance image quality and provide the details of inner structures nondestructively. In this work, we investigate quantitatively signal-to-noise ratio (SNR) of grating-based x-ray phase contrast imaging (GBPCI) system by employing angular signal radiography (ASR). Moreover, photon statistics and mechanical error that is a major source of noise are investigated in detail. Results show the dependence of SNR on the system parameters and the effects on the extracted absorption, refraction and scattering images. Our conclusions can be used to optimize the system design for upcoming practical applications in the areas such as material science and biomedical imaging. (paper)

  15. A Literature Survey on Wireless Power Transfer for Biomedical Devices

    Directory of Open Access Journals (Sweden)

    Reem Shadid

    2018-01-01

    Full Text Available This paper provides a review and survey of research on power transfer for biomedical applications based on inductive coupling. There is interest in wireless power transfer (WPT for implantable and wearable biomedical devices, for example, heart pacemaker or implantable electrocardiogram (ECG recorders. This paper concentrates on the applications based on near-field power transfer methods, summarizes the main design features in the recent literature, and provides some information about the system model and coil optimization.

  16. Improved Interactive Medical-Imaging System

    Science.gov (United States)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  17. Biomedical signal acquisition, processing and transmission using smartphone

    International Nuclear Information System (INIS)

    Roncagliolo, Pablo; Arredondo, Luis; Gonzalez, AgustIn

    2007-01-01

    This article describes technical aspects involved in the programming of a system of acquisition, processing and transmission of biomedical signals by using mobile devices. This task is aligned with the permanent development of new technologies for the diagnosis and sickness treatment, based on the feasibility of measuring continuously different variables as electrocardiographic signals, blood pressure, oxygen concentration, pulse or simply temperature. The contribution of this technology is settled on its portability and low cost, which allows its massive use. Specifically this work analyzes the feasibility of acquisition and the processing of signals from a standard smartphone. Work results allow to state that nowadays these equipments have enough processing capacity to execute signals acquisition systems. These systems along with external servers make it possible to imagine a near future where the possibility of making continuous measures of biomedical variables will not be restricted only to hospitals but will also begin to be more frequently used in the daily life and at home

  18. Biomedical signal acquisition, processing and transmission using smartphone

    Energy Technology Data Exchange (ETDEWEB)

    Roncagliolo, Pablo [Department of Electronics, Universidad Tecnica Federico Santa Maria, Casilla 110-V, ValparaIso (Chile); Arredondo, Luis [Department of Biomedical Engineering, Universidad de ValparaIso, Casilla 123-V, ValparaIso (Chile); Gonzalez, AgustIn [Department of Electronics, Universidad Tecnica Federico Santa MarIa, Casilla 110-V, ValparaIso (Chile)

    2007-11-15

    This article describes technical aspects involved in the programming of a system of acquisition, processing and transmission of biomedical signals by using mobile devices. This task is aligned with the permanent development of new technologies for the diagnosis and sickness treatment, based on the feasibility of measuring continuously different variables as electrocardiographic signals, blood pressure, oxygen concentration, pulse or simply temperature. The contribution of this technology is settled on its portability and low cost, which allows its massive use. Specifically this work analyzes the feasibility of acquisition and the processing of signals from a standard smartphone. Work results allow to state that nowadays these equipments have enough processing capacity to execute signals acquisition systems. These systems along with external servers make it possible to imagine a near future where the possibility of making continuous measures of biomedical variables will not be restricted only to hospitals but will also begin to be more frequently used in the daily life and at home.

  19. Biomedical signal acquisition, processing and transmission using smartphone

    Science.gov (United States)

    Roncagliolo, Pablo; Arredondo, Luis; González, Agustín

    2007-11-01

    This article describes technical aspects involved in the programming of a system of acquisition, processing and transmission of biomedical signals by using mobile devices. This task is aligned with the permanent development of new technologies for the diagnosis and sickness treatment, based on the feasibility of measuring continuously different variables as electrocardiographic signals, blood pressure, oxygen concentration, pulse or simply temperature. The contribution of this technology is settled on its portability and low cost, which allows its massive use. Specifically this work analyzes the feasibility of acquisition and the processing of signals from a standard smartphone. Work results allow to state that nowadays these equipments have enough processing capacity to execute signals acquisition systems. These systems along with external servers make it possible to imagine a near future where the possibility of making continuous measures of biomedical variables will not be restricted only to hospitals but will also begin to be more frequently used in the daily life and at home.

  20. DotLens smartphone microscopy for biological and biomedical applications (Conference Presentation)

    Science.gov (United States)

    Sung, Yu-Lung; Zhao, Fusheng; Shih, Wei-Chuan

    2017-02-01

    Recent advances in inkjet-printed optics have created a new class of lens fabrication technique. Lenses with a tunable geometry, magnification, and focal length can be fabricated by dispensing controlled amounts of liquid polymer onto a heated surface. This fabrication technique is highly cost-effective, and can achieve optically smooth surface finish. Dubbed DotLens, a single of which weighs less than 50 mg and occupies a volume less than 50 μL. DotLens can be attached onto any smartphone camera akin to a contact lens, and enable smartphones to obtain image resolution as fine as 1 µm. The surface curvature modifies the optical path of light to the image sensor, and enables the camera to focus as close as 2 mm. This enables microscopic imaging on a smartphone without any additional attachments, and has shown great potential in mobile point-of-care diagnostic systems, particularly for histology of tissue sections and cytology of blood cells. DotLens Smartphone Microscopy represents an innovative approach fundamentally different from other smartphone microscopes. In this paper, we describe the application and performance of DotLens smartphone microscopy in biological and biomedical research. In particular, we show recent results from images collected from pathology tissue slides with cancer features. In addition, we show performance in cytological analysis of blood smear. This tool has empowered Citizen Science investigators to collect microscopic images from various interesting objects.

  1. Some Numerical Characteristics of Image Texture

    Directory of Open Access Journals (Sweden)

    O. Samarina

    2012-05-01

    Full Text Available Texture classification is one of the basic images processing tasks. In this paper we present some numerical characteristics to the images analysis and processing. It can be used at the solving of images classification problems, their recognition, problems of remote sounding, biomedical images analysis, geological researches.

  2. The biomedical discourse relation bank

    Directory of Open Access Journals (Sweden)

    Joshi Aravind

    2011-05-01

    Full Text Available Abstract Background Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource. Results We have developed the Biomedical Discourse Relation Bank (BioDRB, in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB, which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89. These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28, mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57. Conclusion Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more

  3. Biomedical Science Technologists in Lagos Universities: Meeting ...

    African Journals Online (AJOL)

    Biomedical Science Technologists in Lagos Universities: Meeting Modern Standards ... like to see in biomedical science in Nigeria; 5) their knowledge of ten state-of-the-arts ... KEY WORDS: biomedical science, state-of-the-arts, technical staff ...

  4. ETHICAL REVIEW OF BIOMEDICAL RESEARCH IN BELARUS: CURRENT STATUS, PROBLEMS AND PERSPECTIVES.

    Science.gov (United States)

    Famenka, Andrei

    2011-04-01

    The paper provides description of the system of ethical review for biomedical research in Belarus, with special emphasis on its historical background, legal and regulatory framework, structure and functioning. It concludes that the situation with research ethics in Belarus corresponds to the tendency of bureaucratic approach to establishment of systems of ethical review for biomedical research, observed in a number of countries of Central and Eastern Europe. Different social, economical and political factors of transition have major impact on capacities of the Belarusian RECs to ensure adequate protection of human subjects. Among the main problems identified are non-equivalent stringency of ethical review for different types of biomedical research; lack of independence, multidisciplinarity, pluralism and lay representation experienced by RECs; low level of research ethics education and transparency of RECs activities. Recommendations are made to raise the issue of research ethics on the national agenda in order to develop and maintain the research ethics system capable to effectively protect research participants and promote ethical conduct in research.

  5. Design of a normal incidence multilayer imaging X-ray microscope

    Science.gov (United States)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  6. The Mathematical Foundations of 3D Compton Scatter Emission Imaging

    Directory of Open Access Journals (Sweden)

    T. T. Truong

    2007-01-01

    Full Text Available The mathematical principles of tomographic imaging using detected (unscattered X- or gamma-rays are based on the two-dimensional Radon transform and many of its variants. In this paper, we show that two new generalizations, called conical Radon transforms, are related to three-dimensional imaging processes based on detected Compton scattered radiation. The first class of conical Radon transform has been introduced recently to support imaging principles of collimated detector systems. The second class is new and is closely related to the Compton camera imaging principles and invertible under special conditions. As they are poised to play a major role in future designs of biomedical imaging systems, we present an account of their most important properties which may be relevant for active researchers in the field.

  7. Defining Compensable Injury in Biomedical Research.

    Science.gov (United States)

    Larkin, Megan E

    2015-01-01

    Biomedical research provides a core social good by enabling medical progress. In the twenty-first century alone, this includes reducing transmission of HIV/AIDS, developing innovative therapies for cancer patients, and exploring the possibilities of personalized medicine. In order to continue to advance medical science, research relies on the voluntary participation of human subjects. Because research is inherently uncertain, unintended harm is an inevitable part of the research enterprise. Currently, injured research participants in the United States must turn to the “litigation lottery” of the tort system in search of compensation. This state of affairs fails research participants, who are too often left uncompensated for devastating losses, and makes the United States an outlier in the international community. In spite of forty years’ worth of Presidential Commissions and other respected voices calling for the development of a no-fault compensation system, no progress has been made to date. One of the reasons for this lack of progress is the failure to develop a coherent ethical basis for an obligation to provide compensation for research related injuries. This problem is exacerbated by the lack of a clear definition of “compensable injury” in the biomedical research context. This article makes a number of important contributions to the scholarship in this growing field. To begin, it examines compensation systems already in existence and concludes that there are four main definitional elements that must be used to define “compensable injury.” Next, it examines the justifications that have been put forth as the basis for an ethical obligation to provide compensation, and settles on retrospective nonmaleficence and distributive and compensatory justice as the most salient and persuasive. Finally, it uses the regulatory elements and the justifications discussed in the first two sections to develop a well-rounded definition of “compensable injury

  8. Large area, label-free imaging of extracellular matrix using telecentricity

    Science.gov (United States)

    Visbal Onufrak, Michelle A.; Konger, Raymond L.; Kim, Young L.

    2017-02-01

    Subtle alterations in stromal tissue structures and organizations within the extracellular matrix (ECM) have been observed in several types of tissue abnormalities, including early skin cancer and wounds. Current microscopic imaging methods often lack the ability to accurately determine the extent of malignancy over a large area, due to their limited field of view. In this research we focus on the development of simple mesoscopic (i.e. between microscopic and macroscopic) biomedical imaging device for non-invasive assessment of ECM alterations over a large, heterogeneous area. In our technology development, a telecentric lens, commonly used in machine vision systems but rarely used in biomedical imaging, serves as a key platform to visualize alterations in tissue microenvironments in a label-free manner over a clinically relevant area. In general, telecentric imaging represents a simple, alternative method for reducing unwanted scattering or diffuse light caused by the highly anisotropic scattering properties of biological tissue. In particular, under telecentric imaging the light intensity backscattered from biological tissue is mainly sensitive to the scattering anisotropy factor, possibly associated with the ECM. We demonstrate the inherent advantages of combining telecentric lens systems with hyperspectral imaging for providing optical information of tissue scattering in biological tissue of murine models, as well as light absorption of hemoglobin in blood vessel tissue phantoms. Thus, we envision that telecentric imaging could potentially serve for simple site-specific, tissue-based assessment of stromal alterations over a clinically relevant field of view in a label-free manner, for studying diseases associated with disruption of homeostasis in ECM.

  9. Characteristics desired in clinical data warehouse for biomedical research.

    Science.gov (United States)

    Shin, Soo-Yong; Kim, Woo Sung; Lee, Jae-Ho

    2014-04-01

    Due to the unique characteristics of clinical data, clinical data warehouses (CDWs) have not been successful so far. Specifically, the use of CDWs for biomedical research has been relatively unsuccessful thus far. The characteristics necessary for the successful implementation and operation of a CDW for biomedical research have not clearly defined yet. THREE EXAMPLES OF CDWS WERE REVIEWED: a multipurpose CDW in a hospital, a CDW for independent multi-institutional research, and a CDW for research use in an institution. After reviewing the three CDW examples, we propose some key characteristics needed in a CDW for biomedical research. A CDW for research should include an honest broker system and an Institutional Review Board approval interface to comply with governmental regulations. It should also include a simple query interface, an anonymized data review tool, and a data extraction tool. Also, it should be a biomedical research platform for data repository use as well as data analysis. The proposed characteristics desired in a CDW may have limited transfer value to organizations in other countries. However, these analysis results are still valid in Korea, and we have developed clinical research data warehouse based on these desiderata.

  10. Self-assembled nanomaterials for photoacoustic imaging

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  11. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  12. Publishing priorities of biomedical research funders

    Science.gov (United States)

    Collins, Ellen

    2013-01-01

    Objectives To understand the publishing priorities, especially in relation to open access, of 10 UK biomedical research funders. Design Semistructured interviews. Setting 10 UK biomedical research funders. Participants 12 employees with responsibility for research management at 10 UK biomedical research funders; a purposive sample to represent a range of backgrounds and organisation types. Conclusions Publicly funded and large biomedical research funders are committed to open access publishing and are pleased with recent developments which have stimulated growth in this area. Smaller charitable funders are supportive of the aims of open access, but are concerned about the practical implications for their budgets and their funded researchers. Across the board, biomedical research funders are turning their attention to other priorities for sharing research outputs, including data, protocols and negative results. Further work is required to understand how smaller funders, including charitable funders, can support open access. PMID:24154520

  13. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2016-05-01

    Full Text Available Sangiliyandi Gurunathan, Jin-Hoi Kim Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. Keywords: biomedical applications, cancer therapy, drug delivery, graphene, graphene-related materials, tissue engineering, toxicity 

  14. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  15. Bridging the gap between clinicians and systems biologists: from network biology to translational biomedical research.

    Science.gov (United States)

    Jinawath, Natini; Bunbanjerdsuk, Sacarin; Chayanupatkul, Maneerat; Ngamphaiboon, Nuttapong; Asavapanumas, Nithi; Svasti, Jisnuson; Charoensawan, Varodom

    2016-11-22

    With the wealth of data accumulated from completely sequenced genomes and other high-throughput experiments, global studies of biological systems, by simultaneously investigating multiple biological entities (e.g. genes, transcripts, proteins), has become a routine. Network representation is frequently used to capture the presence of these molecules as well as their relationship. Network biology has been widely used in molecular biology and genetics, where several network properties have been shown to be functionally important. Here, we discuss how such methodology can be useful to translational biomedical research, where scientists traditionally focus on one or a small set of genes, diseases, and drug candidates at any one time. We first give an overview of network representation frequently used in biology: what nodes and edges represent, and review its application in preclinical research to date. Using cancer as an example, we review how network biology can facilitate system-wide approaches to identify targeted small molecule inhibitors. These types of inhibitors have the potential to be more specific, resulting in high efficacy treatments with less side effects, compared to the conventional treatments such as chemotherapy. Global analysis may provide better insight into the overall picture of human diseases, as well as identify previously overlooked problems, leading to rapid advances in medicine. From the clinicians' point of view, it is necessary to bridge the gap between theoretical network biology and practical biomedical research, in order to improve the diagnosis, prevention, and treatment of the world's major diseases.

  16. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  17. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  18. Modeling & imaging of bioelectrical activity principles and applications

    CERN Document Server

    He, Bin

    2010-01-01

    Over the past several decades, much progress has been made in understanding the mechanisms of electrical activity in biological tissues and systems, and for developing non-invasive functional imaging technologies to aid clinical diagnosis of dysfunction in the human body. The book will provide full basic coverage of the fundamentals of modeling of electrical activity in various human organs, such as heart and brain. It will include details of bioelectromagnetic measurements and source imaging technologies, as well as biomedical applications. The book will review the latest trends in

  19. OSPACS: Ultrasound image management system

    Directory of Open Access Journals (Sweden)

    Bessant Conrad

    2008-06-01

    Full Text Available Abstract Background Ultrasound scanning uses the medical imaging format, DICOM, for electronically storing the images and data associated with a particular scan. Large health care facilities typically use a picture archiving and communication system (PACS for storing and retrieving such images. However, these systems are usually not suitable for managing large collections of anonymized ultrasound images gathered during a clinical screening trial. Results We have developed a system enabling the accurate archiving and management of ultrasound images gathered during a clinical screening trial. It is based upon a Windows application utilizing an open-source DICOM image viewer and a relational database. The system automates the bulk import of DICOM files from removable media by cross-validating the patient information against an external database, anonymizing the data as well as the image, and then storing the contents of the file as a field in a database record. These image records may then be retrieved from the database and presented in a tree-view control so that the user can select particular images for display in a DICOM viewer or export them to external media. Conclusion This system provides error-free automation of ultrasound image archiving and management, suitable for use in a clinical trial. An open-source project has been established to promote continued development of the system.

  20. New image-stabilizing system

    Science.gov (United States)

    Zhao, Yuejin

    1996-06-01

    In this paper, a new method for image stabilization with a three-axis image- stabilizing reflecting prism assembly is presented, and the principle of image stabilization in this prism assembly, formulae for image stabilization and working formulae with an approximation up to the third power are given in detail. In this image-stabilizing system, a single chip microcomputer is used to calculate value of compensating angles and thus to control the prism assembly. Two gyroscopes act as sensors from which information of angular perturbation is obtained, three stepping motors drive the prism assembly to compensate for the movement of image produced by angular perturbation. The image-stabilizing device so established is a multifold system which involves optics, mechanics, electronics and computer.

  1. International symposium on Biomedical Data Infrastructure (BDI 2013)

    CERN Document Server

    Dhillon, Sarinder; Advances in biomedical infrastructure 2013

    2013-01-01

    Current Biomedical Databases are independently administered in geographically distinct locations, lending them almost ideally to adoption of intelligent data management approaches. This book focuses on research issues, problems and opportunities in Biomedical Data Infrastructure identifying new issues and directions for future research in Biomedical Data and Information Retrieval, Semantics in Biomedicine, and Biomedical Data Modeling and Analysis. The book will be a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development in biomedical data management.

  2. Time-Resolved Microfluorescence In Biomedical Diagnosis

    Science.gov (United States)

    Schneckenburger, Herbert

    1985-02-01

    A measuring system combining subnanosecond laser-induced fluorescence with microscopic signal detection was installed and used for diverse projects in the biomedical and environmental field. These projects are ranging from tumor diagnosis and enzymatic analysis to measurements of the activity of methanogenic bacteria which effect biogas production and waste water cleaning. The advantages of this method and its practical applicability are discussed.

  3. Time Resolved Microfluorescence In Biomedical Diagnosis

    Science.gov (United States)

    Schneckenburger, Herbert

    1985-12-01

    A measuring system combining subnanosecond laser-induced fluorescence with microscopic signal detection was installed and used for diverse projects in the biomedical and environmental fields. These projects range from tumor diagnosis and enzymatic analysis to measurements of the activity of methanogenic bacteria, which affect biogas production and waste water cleaning. The advantages of this method and its practical applicability are discussed.

  4. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    Science.gov (United States)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  5. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  6. Egyptian Journal of Biomedical Sciences

    African Journals Online (AJOL)

    The Egyptian Journal of Biomedical Sciences publishes in all aspects of biomedical research sciences. Both basic and clinical research papers are welcomed. Vol 23 (2007). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Table of Contents. Articles. Phytochemical And ...

  7. Desiderata for ontologies to be used in semantic annotation of biomedical documents.

    Science.gov (United States)

    Bada, Michael; Hunter, Lawrence

    2011-02-01

    A wealth of knowledge valuable to the translational research scientist is contained within the vast biomedical literature, but this knowledge is typically in the form of natural language. Sophisticated natural-language-processing systems are needed to translate text into unambiguous formal representations grounded in high-quality consensus ontologies, and these systems in turn rely on gold-standard corpora of annotated documents for training and testing. To this end, we are constructing the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-text biomedical journal articles that are being manually annotated with the entire sets of terms from select vocabularies, predominantly from the Open Biomedical Ontologies (OBO) library. Our efforts in building this corpus has illuminated infelicities of these ontologies with respect to the semantic annotation of biomedical documents, and we propose desiderata whose implementation could substantially improve their utility in this task; these include the integration of overlapping terms across OBOs, the resolution of OBO-specific ambiguities, the integration of the BFO with the OBOs and the use of mid-level ontologies, the inclusion of noncanonical instances, and the expansion of relations and realizable entities. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. A roadmap for caGrid, an enterprise Grid architecture for biomedical research.

    Science.gov (United States)

    Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil

    2008-01-01

    caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.

  9. BOSS: context-enhanced search for biomedical objects

    Directory of Open Access Journals (Sweden)

    Choi Jaehoon

    2012-04-01

    Full Text Available Abstract Background There exist many academic search solutions and most of them can be put on either ends of spectrum: general-purpose search and domain-specific "deep" search systems. The general-purpose search systems, such as PubMed, offer flexible query interface, but churn out a list of matching documents that users have to go through the results in order to find the answers to their queries. On the other hand, the "deep" search systems, such as PPI Finder and iHOP, return the precompiled results in a structured way. Their results, however, are often found only within some predefined contexts. In order to alleviate these problems, we introduce a new search engine, BOSS, Biomedical Object Search System. Methods Unlike the conventional search systems, BOSS indexes segments, rather than documents. A segment refers to a Maximal Coherent Semantic Unit (MCSU such as phrase, clause or sentence that is semantically coherent in the given context (e.g., biomedical objects or their relations. For a user query, BOSS finds all matching segments, identifies the objects appearing in those segments, and aggregates the segments for each object. Finally, it returns the ranked list of the objects along with their matching segments. Results The working prototype of BOSS is available at http://boss.korea.ac.kr. The current version of BOSS has indexed abstracts of more than 20 million articles published during last 16 years from 1996 to 2011 across all science disciplines. Conclusion BOSS fills the gap between either ends of the spectrum by allowing users to pose context-free queries and by returning a structured set of results. Furthermore, BOSS exhibits the characteristic of good scalability, just as with conventional document search engines, because it is designed to use a standard document-indexing model with minimal modifications. Considering the features, BOSS notches up the technological level of traditional solutions for search on biomedical information.

  10. Functional mesoporous silica nanoparticles for bio-imaging applications.

    Science.gov (United States)

    Cha, Bong Geun; Kim, Jaeyun

    2018-03-22

    Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.

  11. Design of low noise imaging system

    Science.gov (United States)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for low noise imaging system under the mode of global shutter, a complete imaging system is designed based on the SCMOS (Scientific CMOS) image sensor CIS2521F. The paper introduces hardware circuit and software system design. Based on the analysis of key indexes and technologies about the imaging system, the paper makes chips selection and decides SCMOS + FPGA+ DDRII+ Camera Link as processing architecture. Then it introduces the entire system workflow and power supply and distribution unit design. As for the software system, which consists of the SCMOS control module, image acquisition module, data cache control module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The imaging experimental results show that the imaging system exhibits a 2560*2160 pixel resolution, has a maximum frame frequency of 50 fps. The imaging quality of the system satisfies the requirement of the index.

  12. Semantic relatedness and similarity of biomedical terms: examining the effects of recency, size, and section of biomedical publications on the performance of word2vec.

    Science.gov (United States)

    Zhu, Yongjun; Yan, Erjia; Wang, Fei

    2017-07-03

    Understanding semantic relatedness and similarity between biomedical terms has a great impact on a variety of applications such as biomedical information retrieval, information extraction, and recommender systems. The objective of this study is to examine word2vec's ability in deriving semantic relatedness and similarity between biomedical terms from large publication data. Specifically, we focus on the effects of recency, size, and section of biomedical publication data on the performance of word2vec. We download abstracts of 18,777,129 articles from PubMed and 766,326 full-text articles from PubMed Central (PMC). The datasets are preprocessed and grouped into subsets by recency, size, and section. Word2vec models are trained on these subtests. Cosine similarities between biomedical terms obtained from the word2vec models are compared against reference standards. Performance of models trained on different subsets are compared to examine recency, size, and section effects. Models trained on recent datasets did not boost the performance. Models trained on larger datasets identified more pairs of biomedical terms than models trained on smaller datasets in relatedness task (from 368 at the 10% level to 494 at the 100% level) and similarity task (from 374 at the 10% level to 491 at the 100% level). The model trained on abstracts produced results that have higher correlations with the reference standards than the one trained on article bodies (i.e., 0.65 vs. 0.62 in the similarity task and 0.66 vs. 0.59 in the relatedness task). However, the latter identified more pairs of biomedical terms than the former (i.e., 344 vs. 498 in the similarity task and 339 vs. 503 in the relatedness task). Increasing the size of dataset does not always enhance the performance. Increasing the size of datasets can result in the identification of more relations of biomedical terms even though it does not guarantee better precision. As summaries of research articles, compared with article

  13. Microcontroller-based wireless recorder for biomedical signals.

    Science.gov (United States)

    Chien, C-N; Hsu, H-W; Jang, J-K; Rau, C-L; Jaw, F-S

    2005-01-01

    A portable multichannel system is described for the recording of biomedical signals wirelessly. Instead of using the conversional time-division analog-modulation method, the technique of digital multiplexing was applied to increase the number of signal channels to 4. Detailed design considerations and functional allocation of the system is discussed. The frontend unit was modularly designed to condition the input signal in an optimal manner. Then, the microcontroller handled the tasks of data conversion, wireless transmission, as well as providing the ability of simple preprocessing such as waveform averaging or rectification. The low-power nature of this microcontroller affords the benefit of battery operation and hence, patient isolation of the system. Finally, a single-chip receiver, which compatible with the RF transmitter of the microcontroller, was used to implement a compact interface with the host computer. An application of this portable recorder for low-back pain studies is shown. This device can simultaneously record one ECG and two surface EMG wirelessly, thus, is helpful in relieving patients' anxiety devising clinical measurement. Such an approach, microcontroller-based wireless measurement, could be an important trend for biomedical instrumentation and we help that this paper could be useful for other colleagues.

  14. Artificial intelligence and medical imaging. Expert systems and image analysis

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zoellner, G.; Horviller, S.; Jacqmain, T.

    1987-01-01

    This paper gives an overview on the existing systems for automated image analysis and interpretation in medical imaging, especially in radiology. The example of ORFEVRE, the system for the analysis of CAT-scan images of the cervical triplet (c3-c5) by image analysis and subsequent expert-system is given and discussed in detail. Possible extensions are described [fr

  15. [Biomedical engineering today : An overview from the viewpoint of the German Biomedical Engineering Society].

    Science.gov (United States)

    Schlötelburg, C; Becks, T; Stieglitz, T

    2010-08-01

    Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.

  16. Real-time biochemical sensor based on Raman scattering with CMOS contact imaging.

    Science.gov (United States)

    Muyun Cao; Yuhua Li; Yadid-Pecht, Orly

    2015-08-01

    This work presents a biochemical sensor based on Raman scattering with Complementary metal-oxide-semiconductor (CMOS) contact imaging. This biochemical optical sensor is designed for detecting the concentration of solutions. The system is built with a laser diode, an optical filter, a sample holder and a commercial CMOS sensor. The output of the system is analyzed by an image processing program. The system provides instant measurements with a resolution of 0.2 to 0.4 Mol. This low cost and easy-operated small scale system is useful in chemical, biomedical and environmental labs for quantitative bio-chemical concentration detection with results reported comparable to a highly cost commercial spectrometer.

  17. Highly integrated image sensors enable low-cost imaging systems

    Science.gov (United States)

    Gallagher, Paul K.; Lake, Don; Chalmers, David; Hurwitz, J. E. D.

    1997-09-01

    The highest barriers to wide scale implementation of vision systems have been cost. This is closely followed by the level of difficulty of putting a complete imaging system together. As anyone who has every been in the position of creating a vision system knows, the various bits and pieces supplied by the many vendors are not under any type of standardization control. In short, unless you are an expert in imaging, electrical interfacing, computers, digital signal processing, and high speed storage techniques, you will likely spend more money trying to do it yourself rather than to buy the exceedingly expensive systems available. Another alternative is making headway into the imaging market however. The growing investment in highly integrated CMOS based imagers is addressing both the cost and the system integration difficulties. This paper discusses the benefits gained from CMOS based imaging, and how these benefits are already being applied.

  18. Nanoparticle-Based Delivery System for Biomedical Applications of RNAi

    DEFF Research Database (Denmark)

    Yang, Chuanxu

    RNA interference (RNAi) is a post-transcriptional gene silencing process triggered by double-strand RNA, including synthetic short interfering RNA (siRNA) and endogenous microRNA (miRNA). RNAi has attracted great attention for developing a new class of therapeutics, due to its capability to speci......RNA/miRNA and transport them to the action site in the target cells. This thesis describes the development of various nanocarriers for siRNA/miRNA delivery and investigate their potential biomedical applications including: anti-inflammation, tissue engineering and cancer...

  19. African Journal of Biomedical Research

    African Journals Online (AJOL)

    The African Journal of biomedical Research was founded in 1998 as a joint project ... of the journal led to the formation of a group (Biomedical Communications Group, ... analysis of multidrug resistant aerobic gram-negative clinical isolates from a ... Dental formula and dental abnormalities observed in the Eidolon helvum ...

  20. Image Analysis

    DEFF Research Database (Denmark)

    The 19th Scandinavian Conference on Image Analysis was held at the IT University of Copenhagen in Denmark during June 15-17, 2015. The SCIA conference series has been an ongoing biannual event for more than 30 years and over the years it has nurtured a world-class regional research and development...... area within the four participating Nordic countries. It is a regional meeting of the International Association for Pattern Recognition (IAPR). We would like to thank all authors who submitted works to this year’s SCIA, the invited speakers, and our Program Committee. In total 67 papers were submitted....... The topics of the accepted papers range from novel applications of vision systems, pattern recognition, machine learning, feature extraction, segmentation, 3D vision, to medical and biomedical image analysis. The papers originate from all the Scandinavian countries and several other European countries...

  1. Special Issue: 3D Printing for Biomedical Engineering.

    Science.gov (United States)

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2017-02-28

    Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  2. Combinatorial nanodiamond in pharmaceutical and biomedical applications.

    Science.gov (United States)

    Lim, Dae Gon; Prim, Racelly Ena; Kim, Ki Hyun; Kang, Eunah; Park, Kinam; Jeong, Seong Hoon

    2016-11-30

    One of the newly emerging carbon materials, nanodiamond (ND), has been exploited for use in traditional electric materials and this has extended into biomedical and pharmaceutical applications. Recently, NDs have attained significant interests as a multifunctional and combinational drug delivery system. ND studies have provided insights into granting new potentials with their wide ranging surface chemistry, complex formation with biopolymers, and combination with biomolecules. The studies that have proved ND inertness, biocompatibility, and low toxicity have made NDs much more feasible for use in real in vivo applications. This review gives an understanding of NDs in biomedical engineering and pharmaceuticals, focusing on the classified introduction of ND/drug complexes. In addition, the diverse potential applications that can be obtained with chemical modification are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  4. Imaging system

    International Nuclear Information System (INIS)

    Rushbrooke, J.G.; Ansorge, R.E.

    1987-01-01

    A moving object such as a container on a conveyor belt is imaged by an optical system onto a charge coupled device array in which the lines of the array are arranged perpendicular to the direction of motion of the object. The speed of movement of the object is sensed to generate electrical signals which are processed to provide shift signals enabling the shifting of data row to row in the array in synchronism with the movement of the container. The electrical charge associated with a given point on the array is transferred from one line to the other until it appears at the last line of the array, from which it is read out in known manner in conjunction with all other electrical charges associated with the row of charge coupled devices in the last line of the array. Due to the integrating effect achieved, the aperture of the imaging system can be much smaller than otherwise would be required, and/or the level of light illumination can be reduced. The imaging system can be applied to X-ray inspection devices, aerial surveillance or scanning of moving documents in copying processes. (author)

  5. Realistic tissue visualization using photoacoustic image

    Science.gov (United States)

    Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

    2018-02-01

    Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  6. Text Mining in Biomedical Domain with Emphasis on Document Clustering.

    Science.gov (United States)

    Renganathan, Vinaitheerthan

    2017-07-01

    With the exponential increase in the number of articles published every year in the biomedical domain, there is a need to build automated systems to extract unknown information from the articles published. Text mining techniques enable the extraction of unknown knowledge from unstructured documents. This paper reviews text mining processes in detail and the software tools available to carry out text mining. It also reviews the roles and applications of text mining in the biomedical domain. Text mining processes, such as search and retrieval of documents, pre-processing of documents, natural language processing, methods for text clustering, and methods for text classification are described in detail. Text mining techniques can facilitate the mining of vast amounts of knowledge on a given topic from published biomedical research articles and draw meaningful conclusions that are not possible otherwise.

  7. An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications.

    Science.gov (United States)

    Kiani, Mehdi; Ghovanloo, Maysam

    2010-04-01

    This brief presents a standalone closed-loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader (TRF7960) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either a malfunction or excessive heat dissipation. RFID circuits are often used in an open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 11.2 mW over a range of 0.5 to 2 cm, while the transmitter power consumption changed from 78 mW to 1.1 W. The closed-loop system can also oppose voltage variations as a result of sudden changes in the load current.

  8. Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics

    Science.gov (United States)

    Goel, Shreya; Chen, Feng; Cai, Weibo

    2013-01-01

    Copper sulfide (CuS) nanoparticles have attracted increasing attention from biomedical researchers across the globe, because of their intriguing properties which have been mainly explored for energy- and catalysis-related applications to date. This focused review article aims to summarize the recent progress made in the synthesis and biomedical applications of various CuS nanoparticles. After a brief introduction to CuS nanoparticles in the first section, we will provide a concise outline of the various synthetic routes to obtain different morphologies of CuS nanoparticles, which can influence their properties and potential applications. CuS nanoparticles have found broad applications in vitro, especially in the detection of biomolecules, chemicals, and pathogens which will be illustrated in detail. The in vivo uses of CuS nanoparticles have also been investigated in preclinical studies, including molecular imaging with various techniques, cancer therapy based on the photothermal properties of CuS, as well as drug delivery and theranostic applications. Research on CuS nanoparticles will continue to thrive over the next decade, and tremendous opportunities lie ahead for potential biomedical/clinical applications of CuS nanoparticles. PMID:24106015

  9. Biomedical applications of nano-titania in theranostics and photodynamic therapy.

    Science.gov (United States)

    Rehman, F U; Zhao, C; Jiang, H; Wang, X

    2016-01-01

    Titanium dioxide (TiO2) is one of the most abundantly used nanomaterials for human life. It is used in sunscreen, photovoltaic devices, biomedical applications and as a food additive and environmental scavenger. Nano-TiO2 in biomedical applications is well documented. It is used in endoprosthetic implants and early theranostics of neoplastic and non-neoplastic maladies as a photodynamic therapeutic agent and as vehicles in nano-drug delivery systems. Herein, we focus on the recent advancements and applications of nano-TiO2 in bio-nanotechnology, nanomedicine and photodynamic therapy (PDT).

  10. Special Issue: 3D Printing for Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2017-02-01

    Full Text Available Three-dimensional (3D printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  11. Handheld microwave bomb-detecting imaging system

    Science.gov (United States)

    Gorwara, Ashok; Molchanov, Pavlo

    2017-05-01

    Proposed novel imaging technique will provide all weather high-resolution imaging and recognition capability for RF/Microwave signals with good penetration through highly scattered media: fog, snow, dust, smoke, even foliage, camouflage, walls and ground. Image resolution in proposed imaging system is not limited by diffraction and will be determined by processor and sampling frequency. Proposed imaging system can simultaneously cover wide field of view, detect multiple targets and can be multi-frequency, multi-function. Directional antennas in imaging system can be close positioned and installed in cell phone size handheld device, on small aircraft or distributed around protected border or object. Non-scanning monopulse system allows dramatically decrease in transmitting power and at the same time provides increased imaging range by integrating 2-3 orders more signals than regular scanning imaging systems.

  12. Medical Physics and Biomedical Engineering in Clinical Environment and Legal Surrounding

    International Nuclear Information System (INIS)

    Medvedec, M.

    2013-01-01

    An application of radiation in medicine is essentially associated with medical physics and biomedical engineering. The purpose of this study is to analyze the perception and the status of clinical medical physicists and biomedical engineers within the current international and Croatian legal framework. The International Labour Organization (ILO) in its International Standard Classification of Occupations (ISCO-08) notes that medical physicists and biomedical engineers are an integral part of the health workforce, alongside those occupations classified as health professionals. International Atomic Energy Agency (IAEA) in its basic safety standards for radiation protection and safety of radiation sources also defines medical physicists as health professional. The World Health Organization (WHO) urges member states to include biomedical engineers in assessment, planning, procurement, implementation and management of health technologies, in particular biomedical devices. The Council of the European Union (EU) in its directives defines qualified professionals, especially experts in medical physics, as workers who carry out physical, technical and radiochemical work in regard to dosimetry, radiation protection, quality assurance and quality control, equipment management, etc. According to the U.S. Office of Labor Statistics, biomedical engineer is an occupation with the third-fastest growth rate in the economy, as projected for the period 2010-2020. It is expected that the role and the importance of medical physics and biomedical engineering profession in Croatia, a member state of ILO, WHO, IAEA and EU, will be soon fully regulated in a way comparable to the career paths of other health professionals within a clinical environment, primarily for the benefit of patients and hospital staff, healthcare facilities and healthcare system in general.(author)

  13. Biomedical device prototype based on small scale hydrodynamic cavitation

    Science.gov (United States)

    Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali

    2018-03-01

    This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  14. Biomedical device prototype based on small scale hydrodynamic cavitation

    Directory of Open Access Journals (Sweden)

    Morteza Ghorbani

    2018-03-01

    Full Text Available This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH. The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  15. Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging

    International Nuclear Information System (INIS)

    Them, Kolja; Szwargulski, P; Knopp, Tobias; Salamon, J; Kaul, M G; Ittrich, H; Sequeira, S; Lange, C

    2016-01-01

    The use of superparamagnetic iron oxide nanoparticles (SPIONs) has provided new possibilities in biophysics and biomedical imaging technologies. The magnetization dynamics of SPIONs, which can be influenced by the environment, are of central interest. In this work, different biological SPION environments are used to investigate three different calibration methods for stem cell monitoring in magnetic particle imaging. It is shown that calibrating using SPIONs immobilized via agarose gel or intracellular uptake results in superior stem cell image quality compared to mobile SPIONs in saline. This superior image quality enables more sensitive localization and identification of a significantly smaller number of magnetically labeled stem cells. The results are important for cell tracking and monitoring of future SPION based therapies such as hyperthermia based cancer therapies, targeted drug delivery, or tissue regeneration approaches where it is crucial to image a sufficiently small number of SPIONs interacting with biological matter. (paper)

  16. Modeling and Optimization of Class-E Amplifier at Subnominal Condition in a Wireless Power Transfer System for Biomedical Implants.

    Science.gov (United States)

    Liu, Hao; Shao, Qi; Fang, Xuelin

    2017-02-01

    For the class-E amplifier in a wireless power transfer (WPT) system, the design parameters are always determined by the nominal model. However, this model neglects the conduction loss and voltage stress of MOSFET and cannot guarantee the highest efficiency in the WPT system for biomedical implants. To solve this problem, this paper proposes a novel circuit model of the subnominal class-E amplifier. On a WPT platform for capsule endoscope, the proposed model was validated to be effective and the relationship between the amplifier's design parameters and its characteristics was analyzed. At a given duty ratio, the design parameters with the highest efficiency and safe voltage stress are derived and the condition is called 'optimal subnominal condition.' The amplifier's efficiency can reach the highest of 99.3% at the 0.097 duty ratio. Furthermore, at the 0.5 duty ratio, the measured efficiency of the optimal subnominal condition can reach 90.8%, which is 15.2% higher than that of the nominal condition. Then, a WPT experiment with a receiving unit was carried out to validate the feasibility of the optimized amplifier. In general, the design parameters of class-E amplifier in a WPT system for biomedical implants can be determined with the proposed optimization method in this paper.

  17. Optical nanoparticles: synthesis and biomedical application

    International Nuclear Information System (INIS)

    Nhung Tran, Hong; Lien Nghiem, Thi Ha; Duong Vu, Thi Thuy; Ha Chu, Viet; Hoa Do, Quang; Vu, Duong; Nghia Nguyen, Trong; Tan Pham, Minh; Son Vu, Van; Nguyen, Thi Thuy; Ngoc Nguyen, Thi Bich; Duc Tran, Anh; Trinh, Thi Thuong; Huan Le, Quang; Thuan Tong, Kim; Thuy Tran, Thanh; Hoang, Thi My Nhung; Thanh Nguyen, Lai; Nguyen Duong, Cao; Minh Pham, Duc

    2015-01-01

    This paper presents a summary of our results on studies of synthesis and biomedical application of optical nanoparticles. Gold, dye-doped silica based and core–shell multifunctional multilayer (SiO_2/Au, Fe_3O_4/SiO_2, Fe_3O_4/SiO_2/Au) water-monodispersed nanoparticles were synthesized by chemical route and surface modified with proteins and biocompatible chemical reagents. The particles were conjugated with antibody or aptamer for specific detecting and imaging bacteria and cancer cells. The photothermal effects of gold nanoshells (SiO_2/Au and Fe_3O_4/SiO_2/Au) on cells and tissues were investigated. The nano silver substrates were developed for surface enhanced Raman scattering (SERS) spectroscopy to detect melamine. (review)

  18. Laser ablation ICP-MS for quantitative biomedical applications

    International Nuclear Information System (INIS)

    Konz, Ioana; Fernandez, Beatriz; Fernandez, M.L.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2012-01-01

    LA-ICP-MS allows precise, relatively fast, and spatially resolved measurements of elements and isotope ratios at trace and ultratrace concentration levels with minimal sample preparation. Over the past few years this technique has undergone rapid development, and it has been increasingly applied in many different fields, including biological and medical research. The analysis of essential, toxic, and therapeutic metals, metalloids, and nonmetals in biomedical tissues is a key task in the life sciences today, and LA-ICP-MS has proven to be an excellent complement to the organic MS techniques that are much more commonly employed in the biomedical field. In order to provide an appraisal of the fast progress that is occurring in this field, this review critically describes new developments for LA-ICP-MS as well as the most important applications of LA-ICP-MS, with particular emphasis placed on the quantitative imaging of elements in biological tissues, the analysis of heteroatom-tagged proteins after their separation and purification by gel electrophoresis, and the analysis of proteins that do not naturally have ICP-MS-detectable elements in their structures, thus necessitating the use of labelling strategies. (orig.)

  19. Research evaluation support services in biomedical libraries

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Gutzman

    2018-01-01

    Conclusions: Libraries can leverage a variety of evaluation support services as an opportunity to successfully meet an array of challenges confronting the biomedical research community, including robust efforts to report and demonstrate tangible and meaningful outcomes of biomedical research and clinical care. These services represent a transformative direction that can be emulated by other biomedical and research libraries.

  20. IJ-OpenCV: Combining ImageJ and OpenCV for processing images in biomedicine.

    Science.gov (United States)

    Domínguez, César; Heras, Jónathan; Pascual, Vico

    2017-05-01

    The effective processing of biomedical images usually requires the interoperability of diverse software tools that have different aims but are complementary. The goal of this work is to develop a bridge to connect two of those tools: ImageJ, a program for image analysis in life sciences, and OpenCV, a computer vision and machine learning library. Based on a thorough analysis of ImageJ and OpenCV, we detected the features of these systems that could be enhanced, and developed a library to combine both tools, taking advantage of the strengths of each system. The library was implemented on top of the SciJava converter framework. We also provide a methodology to use this library. We have developed the publicly available library IJ-OpenCV that can be employed to create applications combining features from both ImageJ and OpenCV. From the perspective of ImageJ developers, they can use IJ-OpenCV to easily create plugins that use any functionality provided by the OpenCV library and explore different alternatives. From the perspective of OpenCV developers, this library provides a link to the ImageJ graphical user interface and all its features to handle regions of interest. The IJ-OpenCV library bridges the gap between ImageJ and OpenCV, allowing the connection and the cooperation of these two systems. Copyright © 2017 Elsevier Ltd. All rights reserved.