WorldWideScience

Sample records for biomedical engineering university

  1. Biomedical Engineering at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Andersen, Ole Trier; Wilhjelm, Jens Erik

    1998-01-01

    The paper gives a brief overview of the biomedical engineering research and education at the Technical University of Denmark. An account of the research activities since the 1950?s is given, and examples of major efforts within ultrasound, biomagnetism, and neuroimaging are described. The evolution...... of the teaching activities since the late 1960?s along with an account of the recent initiatives to make a biomedical engineering profile at the university is described....

  2. Education and research in biomedical engineering of the Budapest University of Technology and Economics.

    Science.gov (United States)

    Benyó, Z

    2006-03-01

    Biomedical Engineering is a relatively new interdisciplinary science. This review paper presents the biomedical engineering activity, which is carried out at the Budapest University of Technology and Economics (BUTE) and its partner institutions. In the first parts the main goals and the curriculum of the Biomedical Engineering Education Program is presented. The second part of the paper summarizes the most important biomedical engineering researches most of them carried out in the Biomedical Engineering Laboratory of BUTE.

  3. [Comparison of biomedical engineering education between Southeast University (China) and American universities].

    Science.gov (United States)

    Wang, Xi; Huang Ningping; Sun Xiao; Gu Ning

    2011-06-01

    Taking Duke University as an example, this article makes a comparison between the major of biomedical engineering in the Southeast University and that in American universities in term of subject direction, faculty, teaching principle and status of publishing academic papers. Through the comparison and analysis, the problems we face were explored. From the comparison and summary the future improvements in four aspects, such as strengthening the interdisciplinary among different majors, etc. so as to provide an inspiration on the future perspectives of research and teaching in biomedical engineering in China.

  4. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  5. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O' Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving

  6. Building a more diverse biomedical engineering workforce: Biomedical engineering at the university of the district of Columbia, a historically black college & university.

    Science.gov (United States)

    Thompson, Lara A; Adebayo, A Segun; Nian Zhang; Haghani, Sasan; Dowell, Kathleen; Shetty, Devdas

    2016-08-01

    Biomedical Engineering (BME) is a new, multidisciplinary, and rapidly growing field, however, the BME Workforce suffers from limited ethnic and gender diversity. Despite the demand and growth of this new field due to its public health importance, only 4 out of the 107 Historically Black Colleges and Universities (HBCUs) nationwide offers a Bachelor's of Science (B.S.) in Bio-Engineering related fields. In order to contribute to a growing BME Workforce, HBCUs need to react and offer more degree-programs relevant to BME. At the University of the District of Columbia (UDC), an HBCU and the District's only public institution for higher learning, we have recently established a new, degree program: Bachelor of Science in Biomedical Engineering (B.S. in BME) full-board approved in Fall 2014, with program activities initiated in Fall 2015. The educational goal of this program is to enhance the quality and diversity of the BME Workforce via student professional development, new and relevant BME courses, and BME scholarly activities (e.g., guest lectures and journal club sessions), ultimately to increase the number of ethnic minorities pursuing careers and degrees in BME. Through our program activities, we are aiming to meet the nation's demand to contribute to a diverse BME workforce, directed towards solving problems in human health. A secondary, but related goal, is to increase the diversity of STEM-related fields. This paper summarizes our initial, but encouraging, BME activity-related findings. However, this study will be longitudinal (on a multiple year time period) to observe the true outcomes of our initiative.

  7. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    Pawar, S.H.; Khyalappa, R.J.; Yakhmi, J.V.

    2009-01-01

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  8. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  9. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  10. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John D; Blanchard, Susan M

    2005-01-01

    Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering * New chapters o...

  11. Engineering excellence in breakthrough biomedical technologies: bioengineering at the University of California, Riverside.

    Science.gov (United States)

    Schultz, Jane S; Rodgers, V G J

    2012-07-01

    The Department of Bioengineering at the University of California, Riverside (UCR), was established in 2006 and is the youngest department in the Bourns College of Engineering. It is an interdisciplinary research engine that builds strength from highly recognized experts in biochemistry, biophysics, biology, and engineering, focusing on common critical themes. The range of faculty research interests is notable for its diversity, from the basic cell biology through cell function to the physiology of the whole organism, each directed at breakthroughs in biomedical devices for measurement and therapy. The department forges future leaders in bioengineering, mirroring the field in being energetic, interdisciplinary, and fast moving at the frontiers of biomedical discoveries. Our educational programs combine a solid foundation in bio logical sciences and engineering, diverse communication skills, and training in the most advanced quantitative bioengineering research. Bioengineering at UCR also includes the Bioengineering Interdepartmental Graduate (BIG) program. With its slogan Start-Grow-Be-BIG, it is already recognized for its many accomplishments, including being third in the nation in 2011 for bioengineering students receiving National Science Foundation graduate research fellowships as well as being one of the most ethnically inclusive programs in the nation.

  12. NDE in biomedical engineering

    International Nuclear Information System (INIS)

    Bhagwat, Aditya; Kumar, Pradeep

    2015-01-01

    Biomedical Engineering (BME) is an interdisciplinary field, marking the conjunction of Medical and Engineering disciplines. It combines the design and problem solving skills of engineering with medical and biological sciences to advance health care treatment, including diagnosis, monitoring, and therapy

  13. The fully integrated biomedical engineering programme at Eindhoven University of Technology

    NARCIS (Netherlands)

    Slaaf, D.W.; Genderen, van M.H.P.

    2009-01-01

    The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a

  14. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  15. [Master course in biomedical engineering].

    Science.gov (United States)

    Jobbágy, Akos; Benyó, Zoltán; Monos, Emil

    2009-11-22

    The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.

  16. The fully integrated biomedical engineering programme at Eindhoven University of Technology.

    Science.gov (United States)

    Slaaf, D W; van Genderen, M H P

    2009-05-01

    The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.

  17. Biomedical applications engineering tasks

    Science.gov (United States)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  18. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  19. Biomedical engineering education through global engineering teams.

    Science.gov (United States)

    Scheffer, C; Blanckenberg, M; Garth-Davis, B; Eisenberg, M

    2012-01-01

    Most industrial projects require a team of engineers from a variety of disciplines. The team members are often culturally diverse and geographically dispersed. Many students do not acquire sufficient skills from typical university courses to function efficiently in such an environment. The Global Engineering Teams (GET) programme was designed to prepare students such a scenario in industry. This paper discusses five biomedical engineering themed projects completed by GET students. The benefits and success of the programme in educating students in the field of biomedical engineering are discussed.

  20. Biomedical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  1. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  2. A new educational program on biomedical engineering

    NARCIS (Netherlands)

    van Alste, Jan A.

    2000-01-01

    At the University of Twente together with the Free University of Amsterdam a new educational program on Biomedical Engineering will be developed. The academic program with a five-year duration will start in September 2001. After a general, broad education in Biomedical Engineering in the first three

  3. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  4. Careers in biomedical engineering.

    Science.gov (United States)

    Madrid, R E; Rotger, V I; Herrera, M C

    2010-01-01

    Although biomedical engineering was started in Argentina about 35 years ago, it has had a sustained growth for the last 25 years in human resources, with the emergence of new undergraduate and postgraduate careers, as well as in research, knowledge, technological development, and health care.

  5. Anatomy for Biomedical Engineers

    Science.gov (United States)

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  6. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  7. European virtual campus for biomedical engineering EVICAB.

    Science.gov (United States)

    Malmivuo, Jaakko A; Nousiainen, Juha O; Lindroos, Kari V

    2007-01-01

    European Commission has funded building a curriculum on Biomedical Engineering to the Internet for European universities under the project EVICAB. EVICAB forms a curriculum which will be free access and available free of charge. Therefore, in addition to the European universities, it will be available worldwide. EVICAB will make high quality education available for everyone, not only for the university students, and facilitate the development of the discipline of Biomedical Engineering.

  8. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  9. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  10. International Symposium on Biomedical Engineering and Medical Physics

    CERN Document Server

    Katashev, Alexei; Lancere, Linda

    2013-01-01

    This volume presents the proceedings of the International Symposium on Biomedical Engineering and Medical Physics and is dedicated to the 150 anniversary of the Riga Technical University, Latvia. The content includes various hot topics in biomedical engineering and medical physics.

  11. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  12. New Directions for Biomedical Engineering

    Science.gov (United States)

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  13. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  14. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  15. VII Latin American Congress on Biomedical Engineering

    CERN Document Server

    Bustamante, John; Sierra, Daniel

    2017-01-01

    This volume presents the proceedings of the CLAIB 2016, held in Bucaramanga, Santander, Colombia, 26, 27 & 28 October 2016. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL), offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies to bring together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth.

  16. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  17. Accreditation of Biomedical Engineering Programs in Europe - Challenge and Opportunity

    National Research Council Canada - National Science Library

    Nagel, Joachim

    2001-01-01

    Today, more than 100 universities and polytechnic schools in Europe offer educational programs in Biomedical Engineering at all academic levels, but without any international coordination of contents...

  18. Biomedical engineering education--status and perspectives.

    Science.gov (United States)

    Magjarevic, Ratko; Zequera Diaz, Martha L

    2014-01-01

    Biomedical Engineering programs are present at a large number of universities all over the world with an increasing trend. New generations of biomedical engineers have to face the challenges of health care systems round the world which need a large number of professionals not only to support the present technology in the health care system but to develop new devices and services. Health care stakeholders would like to have innovative solutions directed towards solving problems of the world growing incidence of chronic disease and ageing population. These new solutions have to meet the requirements for continuous monitoring, support or care outside clinical settlements. Presence of these needs can be tracked through data from the Labor Organization in the U.S. showing that biomedical engineering jobs have the largest growth at the engineering labor market with expected 72% growth rate in the period from 2008-2018. In European Union the number of patents (i.e. innovation) is the highest in the category of biomedical technology. Biomedical engineering curricula have to adopt to the new needs and for expectations of the future. In this paper we want to give an overview of engineering professions in related to engineering in medicine and biology and the current status of BME education in some regions, as a base for further discussions.

  19. Innovations in Biomedical Engineering 2016

    CERN Document Server

    Tkacz, Ewaryst; Paszenda, Zbigniew; Piętka, Ewa

    2017-01-01

    This book presents the proceedings of the “Innovations in Biomedical Engineering IBE’2016” Conference held on October 16–18, 2016 in Poland, discussing recent research on innovations in biomedical engineering. The past decade has seen the dynamic development of more and more sophisticated technologies, including biotechnologies, and more general technologies applied in the area of life sciences. As such the book covers the broadest possible spectrum of subjects related to biomedical engineering innovations. Divided into four parts, it presents state-of-the-art achievements in: • engineering of biomaterials, • modelling and simulations in biomechanics, • informatics in medicine • signal analysis The book helps bridge the gap between technological and methodological engineering achievements on the one hand and clinical requirements in the three major areas diagnosis, therapy and rehabilitation on the other.

  20. Biomedical engineering and society: policy and ethics.

    Science.gov (United States)

    Flexman, J A; Lazareck, L

    2007-01-01

    Biomedical engineering impacts health care and contributes to fundamental knowledge in medicine and biology. Policy, such as through regulation and research funding, has the potential to dramatically affect biomedical engineering research and commercialization. New developments, in turn, may affect society in new ways. The intersection of biomedical engineering and society and related policy issues must be discussed between scientists and engineers, policy-makers and the public. As a student, there are many ways to become engaged in the issues surrounding science and technology policy. At the University of Washington in Seattle, the Forum on Science Ethics and Policy (FOSEP, www.fosep.org) was started by graduate students and post-doctoral fellows interested in improving the dialogue between scientists, policymakers and the public and has received support from upper-level administration. This is just one example of how students can start thinking about science policy and ethics early in their careers.

  1. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  2. Biomedical engineering at UCT - challenges and opportunities.

    Science.gov (United States)

    Douglas, Tania S

    2012-03-02

    The biomedical engineering programme at the University of Cape Town has the potential to address some of South Africa's unique public health challenges and to contribute to growth of the local medical device industry, directly and indirectly, through research activities and postgraduate education. Full realisation of this potential requires engagement with the clinical practice environment and with industry.

  3. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  4. Biomedical Science Technologists in Lagos Universities: Meeting ...

    African Journals Online (AJOL)

    Biomedical Science Technologists in Lagos Universities: Meeting Modern Standards ... like to see in biomedical science in Nigeria; 5) their knowledge of ten state-of-the-arts ... KEY WORDS: biomedical science, state-of-the-arts, technical staff ...

  5. Conference on medical physics and biomedical engineering

    International Nuclear Information System (INIS)

    2013-01-01

    Due to the rapid technological development in the world today, the role of physics in modern medicine is of great importance. The frequent use of equipment that produces ionizing radiation further increases the need for radiation protection, complicated equipment requires technical support, the diagnostic and therapeutic methods impose the highest professionals in the field of medical physics. Thus, medical physics and biomedical engineering have become an inseparable part of everyday medical practice. There are a certain number of highly qualified and dedicated professionals in medical physics in Macedonia who committed themselves to work towards resolving medical physics issues. In 2000 they established the first and still only professional Association for Medical Physics and Biomedical Engineering (AMPBE) in Macedonia; a one competent to cope with problems in the fields of medicine, which applies methods of physics and biomedical engineering to medical procedures in order to develop tools essential to the physicians that will ultimately lead to improve the quality of medical practice in general. The First National Conference on Medical Physics and Biomedical Engineering was organized by the AMPBE in 2007. The idea was to gather all the professionals working in medical physics and biomedical engineering in one place in order to present their work and increase the collaboration among them. Other involved professions such as medical doctors, radiation technologists, engineers and professors of physics at the University also took part and contributed to the success of the conference. As a result, the Proceedings were published in Macedonian, with summaries in English. In order to further promote the medical physics amongst the scientific community in Macedonia, our society decided to organize The Second Conference on Medical Physics and Biomedical Engineering in November 2010. Unlike the first, this one was with international participation. This was very suitable

  6. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  7. [Projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo].

    Science.gov (United States)

    Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji

    2014-01-01

    Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.

  8. Biomedical applications of control engineering

    CERN Document Server

    Hacısalihzade, Selim S

    2013-01-01

    Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engin­eering and biomedical engineering students as well as for medical prac­ti­tioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice.   The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like ·         Different models for the human operator, ·         Dosage and timing optimization in oral drug administration, ·         Measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, ·         Measure­ment and control of blood glucose le­vels both naturally and by means of external controllers in diabetes, and ·         Control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers....

  9. Introduction to Statistics for Biomedical Engineers

    CERN Document Server

    Ropella, Kristina

    2007-01-01

    There are many books written about statistics, some brief, some detailed, some humorous, some colorful, and some quite dry. Each of these texts is designed for a specific audience. Too often, texts about statistics have been rather theoretical and intimidating for those not practicing statistical analysis on a routine basis. Thus, many engineers and scientists, who need to use statistics much more frequently than calculus or differential equations, lack sufficient knowledge of the use of statistics. The audience that is addressed in this text is the university-level biomedical engineering stud

  10. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  11. The Washington Academy of Biomedical Engineering (WABME) Quarterly Workshops: Clinical Problems and Engineering Solutions

    National Research Council Canada - National Science Library

    Wong, Kenneth

    2005-01-01

    ... University and Howard University. A prime component of WABME activities is a quarterly series of research workshops, which bring together problem-rich biomedical disciplines and solution-rich engineering and scientific disciplines...

  12. Selective laser sintering in biomedical engineering.

    Science.gov (United States)

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  13. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  14. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  15. Handbook of photonics for biomedical engineering

    CERN Document Server

    Kim, Donghyun; Somekh, Michael

    2017-01-01

    Nanophotonics has emerged rapidly into technological mainstream with the advent and maturity of nanotechnology available in photonics and enabled many new exciting applications in the area of biomedical science and engineering that were unimagined even a few years ago with conventional photonic engineering techniques. Handbook of Nanophotonics in Biomedical Engineering is intended to be a reliable resource to a wealth of information on nanophotonics that can inspire readers by detailing emerging and established possibilities of nanophotonics in biomedical science and engineering applications. This comprehensive reference presents not only the basics of nanophotonics but also explores recent experimental and clinical methods used in biomedical and bioengineering research. Each peer-reviewed chapter of this book discusses fundamental aspects and materials/fabrication issues of nanophotonics, as well as applications in interfaces, cell, tissue, animal studies, and clinical engineering. The organization provides ...

  16. Biomedical engineering undergraduate education in Latin America

    International Nuclear Information System (INIS)

    Allende, R; Morales, D; Avendano, G; Chabert, S

    2007-01-01

    As in other parts of the World, in recent times there has been an increasing interest on Biomedical Engineering (BME) in Latin America (LA). This interest grows from the need for a larger number of such specialists, originated in a spreading use of health technologies. Indeed, at many universities, biomedical engineering departments have been created, which also brought along discussions on strategies to achieve the best education possible for both undergraduate and graduate programs. In these settings, different positions were taken as regards which subject to emphasize. In such a context, this work aimed to make a survey on the 'state-of-the-art' of undergraduate BME education in LA, and to analyze the observed differences. Broadly speaking, similar education profiles are perceived in the entire continent, with main emphasis on electronics and bioinstrumentation, biology and informatics respectively. Much less relevance is given to biomechanics and biomaterials. This tendency is similar in Departments with many decades of experience or in newly opened ones

  17. 15th International Conference on Biomedical Engineering

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organisations working i...

  18. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  19. Summer Biomedical Engineering Institute 1972

    Science.gov (United States)

    Deloatch, E. M.

    1973-01-01

    The five problems studied for biomedical applications of NASA technology are reported. The studies reported are: design modification of electrophoretic equipment, operating room environment control, hematological viscometry, handling system for iridium, and indirect blood pressure measuring device.

  20. Academic program models for undergraduate biomedical engineering.

    Science.gov (United States)

    Krishnan, Shankar M

    2014-01-01

    There is a proliferation of medical devices across the globe for the diagnosis and therapy of diseases. Biomedical engineering (BME) plays a significant role in healthcare and advancing medical technologies thus creating a substantial demand for biomedical engineers at undergraduate and graduate levels. There has been a surge in undergraduate programs due to increasing demands from the biomedical industries to cover many of their segments from bench to bedside. With the requirement of multidisciplinary training within allottable duration, it is indeed a challenge to design a comprehensive standardized undergraduate BME program to suit the needs of educators across the globe. This paper's objective is to describe three major models of undergraduate BME programs and their curricular requirements, with relevant recommendations to be applicable in institutions of higher education located in varied resource settings. Model 1 is based on programs to be offered in large research-intensive universities with multiple focus areas. The focus areas depend on the institution's research expertise and training mission. Model 2 has basic segments similar to those of Model 1, but the focus areas are limited due to resource constraints. In this model, co-op/internship in hospitals or medical companies is included which prepares the graduates for the work place. In Model 3, students are trained to earn an Associate Degree in the initial two years and they are trained for two more years to be BME's or BME Technologists. This model is well suited for the resource-poor countries. All three models must be designed to meet applicable accreditation requirements. The challenges in designing undergraduate BME programs include manpower, facility and funding resource requirements and time constraints. Each academic institution has to carefully analyze its short term and long term requirements. In conclusion, three models for BME programs are described based on large universities, colleges, and

  1. Biomedical Engineering 2008. New methods for cancer treatment

    International Nuclear Information System (INIS)

    Vanninen, J.; Koskelainen, A.; Ilmoniemi, R.J.

    2008-01-01

    The report consists of 11 student papers presented in 2008 at the Seminar on Biomedical Engineering at Helsinki University of Technology (Finland). The topics of the seminar included: cancer risk factors and diagnosis, radiation therapy, boron neutron capture treatment (BNCT), chemotherapy, cooling and heating therapy, immunotherapy, angiogenesis inhibition approaches, gene therapy and ablation therapy of liver cancer

  2. ChE Undergraduate Research Projects in Biomedical Engineering.

    Science.gov (United States)

    Stroeve, Pieter

    1981-01-01

    Describes an undergraduate research program in biomedical engineering at the State University of New York at Buffalo. Includes goals and faculty comments on the program. Indicates that 58 percent of projects conducted between 1976 and 1980 have been presented at meetings or published. (SK)

  3. Biomedical Engineering: A Compendium of Research Training Programs.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This document was prepared to provide a comprehensive view of the programs in biomedical engineering in existence in 1969. These programs are supported by the National Institute of General Medical Sciences and are located at 18 universities. This compendium provides information as to the intent and content of these programs from data provided by…

  4. Industry careers for the biomedical engineer.

    Science.gov (United States)

    Munzner, Robert F

    2004-01-01

    This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.

  5. All India Seminar on Biomedical Engineering 2012

    CERN Document Server

    Bhatele, Mukta

    2013-01-01

    This book is a collection of articles presented by researchers and practitioners, including engineers, biologists, health professionals and informatics/computer scientists, interested in both theoretical advances and applications of information systems, artificial intelligence, signal processing, electronics and other engineering tools in areas related to biology and medicine in the All India Seminar on Biomedical Engineering 2012 (AISOBE 2012), organized by The Institution of Engineers (India), Jabalpur Local Centre, Jabalpur, India during November 3-4, 2012. The content of the book is useful to doctors, engineers, researchers and academicians as well as industry professionals.

  6. Open Biomedical Engineering education in Africa.

    Science.gov (United States)

    Ahluwalia, Arti; Atwine, Daniel; De Maria, Carmelo; Ibingira, Charles; Kipkorir, Emmauel; Kiros, Fasil; Madete, June; Mazzei, Daniele; Molyneux, Elisabeth; Moonga, Kando; Moshi, Mainen; Nzomo, Martin; Oduol, Vitalice; Okuonzi, John

    2015-08-01

    Despite the virtual revolution, the mainstream academic community in most countries remains largely ignorant of the potential of web-based teaching resources and of the expansion of open source software, hardware and rapid prototyping. In the context of Biomedical Engineering (BME), where human safety and wellbeing is paramount, a high level of supervision and quality control is required before open source concepts can be embraced by universities and integrated into the curriculum. In the meantime, students, more than their teachers, have become attuned to continuous streams of digital information, and teaching methods need to adapt rapidly by giving them the skills to filter meaningful information and by supporting collaboration and co-construction of knowledge using open, cloud and crowd based technology. In this paper we present our experience in bringing these concepts to university education in Africa, as a way of enabling rapid development and self-sufficiency in health care. We describe the three summer schools held in sub-Saharan Africa where both students and teachers embraced the philosophy of open BME education with enthusiasm, and discuss the advantages and disadvantages of opening education in this way in the developing and developed world.

  7. A Student Team in a University of Michigan Biomedical Engineering Design Course Constructs a Microfluidic Bioreactor for Studies of Zebrafish Development

    Science.gov (United States)

    Shen, Yu-chi; Li, David; Al-Shoaibi, Ali; Bersano-Begey, Tom; Chen, Hao; Ali, Shahid; Flak, Betsy; Perrin, Catherine; Winslow, Max; Shah, Harsh; Ramamurthy, Poornapriya; Schmedlen, Rachael H.; Takayama, Shuichi

    2009-01-01

    Abstract The zebrafish is a valuable model for teaching developmental, molecular, and cell biology; aquatic sciences; comparative anatomy; physiology; and genetics. Here we demonstrate that zebrafish provide an excellent model system to teach engineering principles. A seven-member undergraduate team in a biomedical engineering class designed, built, and tested a zebrafish microfluidic bioreactor applying microfluidics, an emerging engineering technology, to study zebrafish development. During the semester, students learned engineering and biology experimental design, chip microfabrication, mathematical modeling, zebrafish husbandry, principles of developmental biology, fluid dynamics, microscopy, and basic molecular biology theory and techniques. The team worked to maximize each person's contribution and presented weekly written and oral reports. Two postdoctoral fellows, a graduate student, and three faculty instructors coordinated and directed the team in an optimal blending of engineering, molecular, and developmental biology skill sets. The students presented two posters, including one at the Zebrafish meetings in Madison, Wisconsin (June 2008). PMID:19292670

  8. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  9. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  10. Biomedical Engineering Education: A Conservative Approach

    Science.gov (United States)

    Niemi, Eugene E., Jr.

    1973-01-01

    Describes the demand for graduates from biomedical engineering programs as being not yet fully able to absorb the supply. Suggests small schools interested in entering the field consider offering their programs at the undergraduate level via a minor or an option. Examples of such options and student projects are included. (CC)

  11. Status of Research in Biomedical Engineering 1968.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…

  12. BIOMedical Search Engine Framework: Lightweight and customized implementation of domain-specific biomedical search engines.

    Science.gov (United States)

    Jácome, Alberto G; Fdez-Riverola, Florentino; Lourenço, Anália

    2016-07-01

    Text mining and semantic analysis approaches can be applied to the construction of biomedical domain-specific search engines and provide an attractive alternative to create personalized and enhanced search experiences. Therefore, this work introduces the new open-source BIOMedical Search Engine Framework for the fast and lightweight development of domain-specific search engines. The rationale behind this framework is to incorporate core features typically available in search engine frameworks with flexible and extensible technologies to retrieve biomedical documents, annotate meaningful domain concepts, and develop highly customized Web search interfaces. The BIOMedical Search Engine Framework integrates taggers for major biomedical concepts, such as diseases, drugs, genes, proteins, compounds and organisms, and enables the use of domain-specific controlled vocabulary. Technologies from the Typesafe Reactive Platform, the AngularJS JavaScript framework and the Bootstrap HTML/CSS framework support the customization of the domain-oriented search application. Moreover, the RESTful API of the BIOMedical Search Engine Framework allows the integration of the search engine into existing systems or a complete web interface personalization. The construction of the Smart Drug Search is described as proof-of-concept of the BIOMedical Search Engine Framework. This public search engine catalogs scientific literature about antimicrobial resistance, microbial virulence and topics alike. The keyword-based queries of the users are transformed into concepts and search results are presented and ranked accordingly. The semantic graph view portraits all the concepts found in the results, and the researcher may look into the relevance of different concepts, the strength of direct relations, and non-trivial, indirect relations. The number of occurrences of the concept shows its importance to the query, and the frequency of concept co-occurrence is indicative of biological relations

  13. University of Vermont Center for Biomedical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Dr. Ira [University of Vermont and State Agricultural College

    2013-08-02

    This grant was awarded in support of Phase 2 of the University of Vermont Center for Biomedical Imaging. Phase 2 outlined several specific aims including: The development of expertise in MRI and fMRI imaging and their applications The acquisition of peer reviewed extramural funding in support of the Center The development of a Core Imaging Advisory Board, fee structure and protocol review and approval process.

  14. High-Fidelity Simulation in Biomedical and Aerospace Engineering

    Science.gov (United States)

    Kwak, Dochan

    2005-01-01

    Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.

  15. Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research: scientific and cultural exchange in undergraduate engineering.

    Science.gov (United States)

    Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin

    2011-01-01

    A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.

  16. Special Issue: 3D Printing for Biomedical Engineering.

    Science.gov (United States)

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2017-02-28

    Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  17. Engineering Stem Cells for Biomedical Applications

    Science.gov (United States)

    Yin, Perry T.; Han, Edward

    2018-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134

  18. Engineering Stem Cells for Biomedical Applications.

    Science.gov (United States)

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. [Biomedical engineering today : An overview from the viewpoint of the German Biomedical Engineering Society].

    Science.gov (United States)

    Schlötelburg, C; Becks, T; Stieglitz, T

    2010-08-01

    Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.

  20. The development of biomedical engineering as experienced by one biomedical engineer.

    Science.gov (United States)

    Newell, Jonathan C

    2012-12-12

    This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field.

  1. New roles & responsibilities of hospital biomedical engineering.

    Science.gov (United States)

    Frisch, P H; Stone, B; Booth, P; Lui, W

    2014-01-01

    Over the last decade the changing healthcare environment has required hospitals and specifically Biomedical Engineering to critically evaluate, optimize and adapt their operations. The focus is now on new technologies, changes to the environment of care, support requirements and financial constraints. Memorial Sloan Kettering Cancer Center (MSKCC), an NIH-designated comprehensive cancer center, has been transitioning to an increasing outpatient care environment. This transition is driving an increase in-patient acuity coupled with the need for added urgency of support and response time. New technologies, regulatory requirements and financial constraints have impacted operating budgets and in some cases, resulted in a reduction in staffing. Specific initiatives, such as the Joint Commission's National Patient Safety Goals, requirements for an electronic medical record, meaningful use and ICD10 have caused institutions to reevaluate their operations and processes including requiring Biomedical Engineering to manage new technologies, integrations and changes in the electromagnetic environment, while optimizing operational workflow and resource utilization. This paper addresses the new and expanding responsibilities and approach of Biomedical Engineering organizations, specifically at MSKCC. It is suggested that our experience may be a template for other organizations facing similar problems. Increasing support is necessary for Medical Software - Medical Device Data Systems in the evolving wireless environment, including RTLS and RFID. It will be necessary to evaluate the potential impact on the growing electromagnetic environment, on connectivity resulting in the need for dynamic and interactive testing and the growing demand to establish new and needed operational synergies with Information Technology operations and other operational groups within the institution, such as nursing, facilities management, central supply, and the user departments.

  2. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  3. A Novel Approach to Physiology Education for Biomedical Engineering Students

    Science.gov (United States)

    DiCecco, J.; Wu, J.; Kuwasawa, K.; Sun, Y.

    2007-01-01

    It is challenging for biomedical engineering programs to incorporate an indepth study of the systemic interdependence of cells, tissues, and organs into the rigorous mathematical curriculum that is the cornerstone of engineering education. To be sure, many biomedical engineering programs require their students to enroll in anatomy and physiology…

  4. 5th International Conference on Biomedical Engineering in Vietnam

    CERN Document Server

    Phuong, Tran

    2015-01-01

    This volume presents the proceedings of the Fifth International Conference on the Development of Biomedical Engineering in Vietnam which was held from June 16-18, 2014 in Ho Chi Minh City. The volume reflects the progress of Biomedical Engineering and discusses problems and solutions. I aims identifying new challenges, and shaping future directions for research in biomedical engineering fields including medical instrumentation, bioinformatics, biomechanics, medical imaging, drug delivery therapy, regenerative medicine and entrepreneurship in medical devices.

  5. Cardiovascular system simulation in biomedical engineering education.

    Science.gov (United States)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  6. World Congress on Medical Physics and Biomedical Engineering

    CERN Document Server

    2015-01-01

    This book presents the proceedings of the IUPESM World Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand, and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.

  7. Engineering β-sheet peptide assemblies for biomedical applications.

    Science.gov (United States)

    Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen

    2016-03-01

    Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.

  8. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  9. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2004-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  10. Special Issue: 3D Printing for Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2017-02-01

    Full Text Available Three-dimensional (3D printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  11. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  12. Biomedical engineering continues to make the future.

    Science.gov (United States)

    Fantini, Sergio; Bennis, Caoimhe; Kaplan, David

    2011-01-01

    Biomedical engineering (BME) continues to make the future, not just respond to the present, by anticipating the needs of interface engineering and clinical medicine. In many respects, BME is the educational mode of the future, fostering collaboration among disciplines at its core by building on basic concepts in engineering and biology. We strive to educate where the needs, opportunities, and jobs are and will be in the future. The bridge between engineering, biology, and medicine is a growing link, and there is no sign that this interface will slow. With an aging population, dynamic changes in health care, as well as global economies and related themes upon us, we are only at the very beginning of the impact that BME will have on medicine and the quality of life. Those of us in BME are excited to be setting this agenda and welcome your participation. In part, this is why we have designed our BME major to cover both the depth and breadth, always a challenge, but one that we are committed to. The depth of the design projects, research experience, coursework, study abroad options, and internships all convenes to establish a solid foundation for our students as they embark on their career paths.

  13. The AIBS In Yugoslavia: Programs in Biomedical Engineering

    Science.gov (United States)

    Thompson, Mary-Frances

    1978-01-01

    Programs in biomedical engineering have been developing worldwide since World War II. This article describes a multidisciplinary program which operates in Yugoslavia through a cooperative effort between that county and the AIBS. A major problem has been the slowness with which hospitals accept the concept of biomedical engineering. (MA)

  14. Professional ethics in biomedical engineering practice and research.

    Science.gov (United States)

    Monzon, Jorge E; Monzon-Wyngaard, Alvaro

    2008-01-01

    This paper discusses some guidelines for use with the accepted fundamental canons of ethics for engineers. We present some rules of practice and professional obligations emerging from these canons. Basic recommendations for engineers dissenting on ethical grounds are also presented. Ethical issues relating to Biomedical Engineering research are illustrated. We mention some cases that could be used to further understanding the ethical implications of biomedical engineering practice.

  15. The role of a creative "joint assignment" project in biomedical engineering bachelor degree education.

    Science.gov (United States)

    Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.

  16. Project Alexander the Great: a study on the world proliferation of bioengineering/biomedical engineering education.

    Science.gov (United States)

    Abu-Faraj, Ziad O

    2008-01-01

    Bioengineering/Biomedical Engineering is considered amongst the most reputable fields within the global arena, and will likely be the primer for any future breakthroughs in Medicine and Biology. Bioengineering/biomedical engineering education has evolved since late 1950s and is undergoing advancement in leading academic institutions worldwide. This paper delineates an original study on the world proliferation of bioengineering/biomedical engineering education and bears the name 'Project Alexander the Great'. The initial step of the project was to survey all 10448 universities, recognized by the International Association of Universities, spread among the 193 member states of the United Nations within the six continents. The project aims at identifying, disseminating, and networking, through the world-wide-web, those institutions of higher learning that provide bioengineering/biomedical engineering education. The significance of this project is multifold: i) the inception of a web-based 'world-map' in bioengineering/biomedical engineering education for the potential international student desiring to pursue a career in this field; ii) the global networking of bioengineering/biomedical engineering academic/research programs; iii) the promotion of first-class bioengineering/biomedical engineering education and the catalysis of global proliferation of this field; iv) the erection of bridges among educational institutions, industry, and professional societies or organizations involved in Bioengineering/Biomedical Engineering; and v) the catalysis in the establishment of framework agreements for cooperation among the identified institutions offering curricula in this field. This paper presents the results obtained from Africa and North America. The whole project is due to be completed by 2009.

  17. Artificial Sight Basic Research, Biomedical Engineering, and Clinical Advances

    CERN Document Server

    Humayun, Mark S; Chader, Gerald; Greenbaum, Elias

    2008-01-01

    Artificial sight is a frontier area of modern ophthalmology combining the multidisciplinary skills of surgical ophthalmology, biomedical engineering, biological physics, and psychophysical testing. Many scientific, engineering, and surgical challenges must be surmounted before widespread practical applications can be realized. The goal of Artificial Sight is to summarize the state-of-the-art research in this exciting area, and to describe some of the current approaches and initiatives that may help patients in a clinical setting. The Editors are active researchers in the fields of artificial sight, biomedical engineering and biological physics. They have received numerous professional awards and recognition for their work. The artificial sight team at the Doheny Eye Institute, led by Dr. Mark Humayun, is a world leader in this area of biomedical engineering and clinical research. Key Features Introduces and assesses the state of the art for a broad audience of biomedical engineers, biophysicists, and clinical...

  18. Clinical Immersion and Biomedical Engineering Design Education: "Engineering Grand Rounds".

    Science.gov (United States)

    Walker, Matthew; Churchwell, André L

    2016-03-01

    Grand Rounds is a ritual of medical education and inpatient care comprised of presenting the medical problems and treatment of a patient to an audience of physicians, residents, and medical students. Traditionally, the patient would be in attendance for the presentation and would answer questions. Grand Rounds has evolved considerably over the years with most sessions being didactic-rarely having a patient present (although, in some instances, an actor will portray the patient). Other members of the team, such as nurses, nurse practitioners, and biomedical engineers, are not traditionally involved in the formal teaching process. In this study we examine the rapid ideation in a clinical setting to forge a system of cross talk between engineers and physicians as a steady state at the praxis of ideation and implementation.

  19. Biomedical Engineering and its Relevance to Total Health Care ...

    African Journals Online (AJOL)

    Aim: To highlight the importance of biomedical engineering, with respect to the many basic amenities including adequate water supply, electricity, drugs and medical equipment necessary for the proper functioning of medical doctors which are totally lacking in most developing countries. Method: Review of biomedical ...

  20. Visualization and simulation of complex flows in biomedical engineering

    CERN Document Server

    Imai, Yohsuke; Ishikawa, Takuji; Oliveira, Mónica

    2014-01-01

    This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.

  1. Electrical circuits in biomedical engineering problems with solutions

    CERN Document Server

    Keskin, Ali Ümit

    2017-01-01

    This authored monograph presents a comprehensive and in-depth analysis of electrical circuit theory in biomedical engineering, ideally suited as textbook for a course program. The book contains methods and theory, but the topical focus is placed on practical applications of circuit theory, including problems, solutions and case studies. The target audience primarily comprises researchers and experts in electrical engineering who intend to embark on biomedical applications. The book is also very well suited for graduate students in the field. .

  2. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  3. Sharing best practices in teaching biomedical engineering design.

    Science.gov (United States)

    Allen, R H; Acharya, S; Jancuk, C; Shoukas, A A

    2013-09-01

    In an effort to share best practices in undergraduate engineering design education, we describe the origin, evolution and the current status of the undergraduate biomedical engineering design team program at Johns Hopkins University. Specifically, we describe the program and judge the quality of the pedagogy by relating it to sponsor feedback, project outcomes, external recognition and student satisfaction. The general pedagogic practices, some of which are unique to Hopkins, that have worked best include: (1) having a hierarchical team structure, selecting team leaders the Spring semester prior to the academic year, and empowering them to develop and manage their teams, (2) incorporating a longitudinal component that incudes freshmen as part of the team, (3) having each team choose from among pre-screened clinical problems, (4) developing relationships and fostering medical faculty, industry and government to allow students access to engineers, clinicians and clinical environments as needed, (5) providing didactic sessions on topics related to requirements for the next presentation, (6) employing judges from engineering, medicine, industry and government to evaluate designs and provide constructive criticisms approximately once every 3-4 weeks and (7) requiring students to test the efficacy of their designs. Institutional support and resources are crucial for the design program to flourish. Most importantly, our willingness and flexibility to change the program each year based on feedback from students, sponsors, outcomes and judges provides a mechanism for us to test new approaches and continue or modify those that work well, and eliminate those that did not.

  4. Evolving technologies drive the new roles of Biomedical Engineering.

    Science.gov (United States)

    Frisch, P H; St Germain, J; Lui, W

    2008-01-01

    Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.

  5. An exploration of the biomedical optics course construction of undergraduate biomedical engineering program in medical colleges

    Science.gov (United States)

    Guo, Shijun; Lyu, Jie; Zhang, Peiming

    2017-08-01

    In this paper, the teaching goals, teaching contents and teaching methods in biomedical optics course construction are discussed. From the dimension of teaching goals, students should master the principle of optical inspection on the human body, diagnosis and treatment of methodology and instruments, through the study of the theory and practice of this course, and can utilize biomedical optics methods to solve practical problems in the clinical medical engineering practice. From the dimension of teaching contents, based on the characteristics of biomedical engineering in medical colleges, the organic integration of engineering aspects, medical optical instruments, and biomedical aspects dispersed in human anatomy, human physiology, clinical medicine fundamental related to the biomedical optics is build. Noninvasive measurement of the human body composition and noninvasive optical imaging of the human body were taken as actual problems in biomedical optics fields. Typical medical applications such as eye optics and laser medicine were also integrated into the theory and practice teaching. From the dimension of teaching methods, referencing to organ-system based medical teaching mode, optical principle and instrument principle were taught by teachers from school of medical instruments, and the histological characteristics and clinical actual need in areas such as digestive diseases and urinary surgery were taught by teachers from school of basic medicine or clinical medicine of medical colleges. Furthermore, clinical application guidance would be provided by physician and surgeons in hospitals.

  6. A Case Study: Data Management in Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Glenn R. Gaudette

    2012-01-01

    Full Text Available In a biomedical engineering lab at Worcester Polytechnic Institute, co-author Dr. Glenn R. Gaudette and his research team are investigating the effects of stem cell therapy on the regeneration of function in damaged cardiac tissue in laboratory rats. Each instance of stem cell experimentation on a rat yields hundreds of data sets that must be carefully captured, documented and securely stored so that the data will be easily accessed and retrieved for papers, reports, further research, and validation of findings, while meeting NIH guidelines for data sharing. After a brief introduction to the bioengineering field and stem cell research, this paper focuses on the experimental workflow and the data generated in one instance of stem cell experimentation; the lab’s data management practices; and how Dr. Gaudette teaches data management to the lab’s incoming graduate students each semester. The co-authors discuss the haphazard manner by which engineering and science students typically learn data management practices, and advocate for the integration of formal data management instruction in higher education STEM curricula. The paper concludes with a discussion of the Frameworks for a Data Management Curriculum developed collaboratively by the co-authors’ institutions -- the University of Massachusetts Medical School and Worcester Polytechnic Institute -- to teach data management best practices to students in the sciences, health sciences, and engineering.

  7. Career development in Bioengineering/Biomedical Engineering: a student's roadmap.

    Science.gov (United States)

    Abu-Faraj, Ziad O

    2008-01-01

    Bioengineering/biomedical engineering education has progressed since the late 1950s and is still evolving in leading academic institutions worldwide. Today, Bioengineering/Biomedical Engineering is acclaimed as one of the most reputable fields within the global arena, and will likely be the catalyst for any future breakthroughs in Medicine and Biology. This paper provides a set of strategies and recommendations to be pursued by individuals aiming at planning and developing careers in this field. The paper targets the international student contemplating bioengineering/biomedical engineering as a career, with an underlying emphasis on the student within developing and transitional countries where career guidance is found deficient. The paper also provides a comprehensive definition of the field and an enumeration of its subdivisions.

  8. Engineered magnetic nanoparticles for biomedical applications.

    Science.gov (United States)

    Canfarotta, Francesco; Piletsky, Sergey A

    2014-02-01

    In the past decades, magnetic nanoparticles (MNPs) have been used in wide range of diverse applications, ranging from separation to sensing. Here, synthesis and applications of functionalized MNPs in the biomedical field are discussed, in particular in drug delivery, imaging, and cancer therapy, highlighting also recent progresses in the development of multifunctional and stimuli-responsive MNPs. The role of their size, composition, and surface functionalization is analyzed, together with their biocompatibility issues. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Reengineering Biomedical Translational Research with Engineering Ethics.

    Science.gov (United States)

    Sunderland, Mary E; Nayak, Rahul Uday

    2015-08-01

    It is widely accepted that translational research practitioners need to acquire special skills and knowledge that will enable them to anticipate, analyze, and manage a range of ethical issues. While there is a small but growing literature that addresses the ethics of translational research, there is a dearth of scholarship regarding how this might apply to engineers. In this paper we examine engineers as key translators and argue that they are well positioned to ask transformative ethical questions. Asking engineers to both broaden and deepen their consideration of ethics in their work, however, requires a shift in the way ethics is often portrayed and perceived in science and engineering communities. Rather than interpreting ethics as a roadblock to the success of translational research, we suggest that engineers should be encouraged to ask questions about the socio-ethical dimensions of their work. This requires expanding the conceptual framework of engineering beyond its traditional focus on "how" and "what" questions to also include "why" and "who" questions to facilitate the gathering of normative, socially-situated information. Empowering engineers to ask "why" and "who" questions should spur the development of technologies and practices that contribute to improving health outcomes.

  10. 4th International Conference on Biomedical Engineering in Vietnam

    CERN Document Server

    Toan, Nguyen; Khoa, Truong; Phuong, Tran; Development of Biomedical Engineering

    2013-01-01

    This volume presents the proceedings of the Fourth International Conference on the Development of Biomedical Engineering in Vietnam which was held in Ho Chi Minh City as a Mega-conference. It is kicked off by the Regenerative Medicine Conference with the theme “BUILDING A FACE” USING A REGENERATIVE MEDICINE APPROACH”, endorsed mainly by the Tissue Engineering and Regenerative Medicine International Society (TERMIS). It is followed by the Computational Medicine Conference, endorsed mainly by the Computational Surgery International Network (COSINE) and the Computational Molecular Medicine of German National Funding Agency; and the General Biomedical Engineering Conference, endorsed mainly by the International Federation for Medical and Biological Engineering (IFMBE). It featured the contributions of 435 scientists from 30 countries, including: Australia, Austria, Belgium, Canada, China, Finland, France, Germany, Hungary, India, Iran, Italy, Japan, Jordan, Korea, Malaysia, Netherlands, Pakistan, Poland, Ru...

  11. 1st European Biomedical Engineering Conference for Young Investigators

    CERN Document Server

    2015-01-01

     This volume presents the proceedings of the first European Biomedical Engineering Conference for Young Investigators ENCY2015. It was in Budapest, from 28th to 30th May, 2015. The papers were assembled under the motto "Understanding complex living systems” and cover the topics sensors, image processing, bioinformatics, biomechanics, and modeling.

  12. From biomedical-engineering research to clinical application and industrialization

    Science.gov (United States)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  13. 16th Nordic-Baltic Conference on Biomedical Engineering

    CERN Document Server

    Persson, Mikael

    2015-01-01

    This volume presents the proceedings of the joint 16th Nordic-Baltic Conference on Biomedical Engineering & Medical Physics and Medicinteknikdagarna 2014!  The conference theme is Strategic Innovation. It aims at inspiring increased triple helix collaborations between health care providers, academia and the medtech industry.

  14. Engineering artificial machines from designable DNA materials for biomedical applications.

    Science.gov (United States)

    Qi, Hao; Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng; Wang, Lin

    2015-06-01

    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.

  15. Proceedings of the second conference on medical physics and biomedical engineering of R. Macedonia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    In the 21st century many branches in medicine can not exist without physicists. Most recent methods in medicine, especially new technologies in cancer diagnostic and treatments, have resulted in a great need for medical physicists in growing number of institutions and hospitals. I There are a certain number of highly qualified and dedicated professionals in medical physics in Macedonia whose work is mainly performed in governmental institutions committed towards medical physics issues. The Association for Medical Physics and Biomedical Engineering (AMPBE) was established in 2000 as the first professional association in Macedonia competent to cope with problems in the fields of medicine, applying methods of physics and biomedical engineering to medical procedures in order to develop tools essential to the physicians that will improve medical care in general. Three years ago the First National Conference on Medical Physics and Biomedical Engineering was organized by the Association. The idea was to gather all the professionals working in medical physics and biomedical engineering on one place in order to present their work and increase the collaboration among them. Other involved professions such as medical doctors, radiation technologists, engineers and physics professors from the University also took part and contributed to the success of the conference. As a result the Proceedings were published in Macedonian, with summaries in English.

  16. Proceedings of the second conference on medical physics and biomedical engineering of R. Macedonia

    International Nuclear Information System (INIS)

    2010-01-01

    In the 21st century many branches in medicine can not exist without physicists. Most recent methods in medicine, especially new technologies in cancer diagnostic and treatments, have resulted in a great need for medical physicists in growing number of institutions and hospitals. I There are a certain number of highly qualified and dedicated professionals in medical physics in Macedonia whose work is mainly performed in governmental institutions committed towards medical physics issues. The Association for Medical Physics and Biomedical Engineering (AMPBE) was established in 2000 as the first professional association in Macedonia competent to cope with problems in the fields of medicine, applying methods of physics and biomedical engineering to medical procedures in order to develop tools essential to the physicians that will improve medical care in general. Three years ago the First National Conference on Medical Physics and Biomedical Engineering was organized by the Association. The idea was to gather all the professionals working in medical physics and biomedical engineering on one place in order to present their work and increase the collaboration among them. Other involved professions such as medical doctors, radiation technologists, engineers and physics professors from the University also took part and contributed to the success of the conference. As a result the Proceedings were published in Macedonian, with summaries in English.

  17. Engineered cell manipulation for biomedical application

    CERN Document Server

    Akashi, Misturu; Matsusaki, Michiya

    2014-01-01

    This book is the first to summarize new technologies for engineered cell manipulation. The contents focus on control of cellular functions by nanomaterials and control of three-dimensional cell-cell interactions. Control of cellular functions is important for cell differentiation, maturation, and activation, which generally are controlled by the addition of soluble cytokines or growth factors into cell culture dishes. Target antigen molecules can be efficiently delivered to the cytosol of the dendritic cells using the nanoparticle technique described here, and cellular functions such as dendritic cell maturation can be controlled easily and with precision. This book describes basic preparation of the nanoparticles, activation control of dendritic cells, immune function control, and in vivo application for various vaccination systems. The second type of control,that of cell-cell interaction, is important for tissue engineering in order to develop three-dimensional cellular constructs. To achieve in vitro engin...

  18. Sol-gel technology for biomedical engineering

    International Nuclear Information System (INIS)

    Podbielska, H.; Ulatowska-Jarza, A.

    2005-01-01

    Sol-gel derived silica possess many promising features, including low-temperature preparation procedure, porosity, chemical and physical stability. Applications exploiting porous materials to encapsulate sensor molecules, enzymes and many other compounds, are developing rapidly. In this paper some potential applications, with emphasis on biomedical and environmental ones, are reviewed. The material preparation procedure is described and practical remarks on silica-based sol-gels are included. It is reported that sol-gels with entrapped various molecules may be used in construction of implants and coatings with bioactive properties. It is shown how to exploit the sol-gel production route for construction of sol-gel coated fiberoptic applicators for laser therapy. The applications of bioactive materials are discussed, as well. It is demonstrated that it is possible to immobilize photosensitive compounds in sol-gel matrix without loosing their photoactivity. Some examples of sol-gel based biosensors are demonstrated, as well, showing their potential for detecting various gases, toxic substances, acidity, humidity, enzymes and biologically active agents. (authors)

  19. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  20. Robot-aided electrospinning toward intelligent biomedical engineering.

    Science.gov (United States)

    Tan, Rong; Yang, Xiong; Shen, Yajing

    2017-01-01

    The rapid development of robotics offers new opportunities for the traditional biofabrication in higher accuracy and controllability, which provides great potentials for the intelligent biomedical engineering. This paper reviews the state of the art of robotics in a widely used biomaterial fabrication process, i.e., electrospinning, including its working principle, main applications, challenges, and prospects. First, the principle and technique of electrospinning are introduced by categorizing it to melt electrospinning, solution electrospinning, and near-field electrospinning. Then, the applications of electrospinning in biomedical engineering are introduced briefly from the aspects of drug delivery, tissue engineering, and wound dressing. After that, we conclude the existing problems in traditional electrospinning such as low production, rough nanofibers, and uncontrolled morphology, and then discuss how those problems are addressed by robotics via four case studies. Lastly, the challenges and outlooks of robotics in electrospinning are discussed and prospected.

  1. Engineering mechanical microenvironment of macrophage and its biomedical applications.

    Science.gov (United States)

    Li, Jing; Li, Yuhui; Gao, Bin; Qin, Chuanguang; He, Yining; Xu, Feng; Yang, Hui; Lin, Min

    2018-03-01

    Macrophages are the most plastic cells in the hematopoietic system and can be widely found in almost all tissues. Recently studies have shown that mechanical cues (e.g., matrix stiffness and stress/strain) can significantly affect macrophage behaviors. Although existing reviews on the physical and mechanical cues that regulate the macrophage's phenotype are available, engineering mechanical microenvironment of macrophages in vitro as well as a comprehensive overview and prospects for their biomedical applications (e.g., tissue engineering and immunotherapy) has yet to be summarized. Thus, this review provides an overview on the existing methods for engineering mechanical microenvironment of macrophages in vitro and then a section on their biomedical applications and further perspectives are presented.

  2. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    Science.gov (United States)

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  3. [Flexible print circuit technology application in biomedical engineering].

    Science.gov (United States)

    Jiang, Lihua; Cao, Yi; Zheng, Xiaolin

    2013-06-01

    Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.

  4. The Annals of Biomedical Engineering: inception to signature journal.

    Science.gov (United States)

    Fagette, Paul

    2012-03-01

    The Annals of Biomedical Engineering, the flagship journal of the Biomedical Engineering Society, developed through four distinct stages. Once an editorial infrastructure was in place and a publisher was secured, a long-lived struggle for sufficient manuscripts and financial stability ensued. The journal achieved a degree of stableness by the mid-1980s. Electronic communication and on-line publishing in the 1990s allowed more rapid turn around but the increased acceptance of quality manuscripts created pressures from insufficient available pages. The journal finally turned to self-publication. The Board of Directors and the Publications Board carefully nurtured the journal over the years with financial support and policy. Still, the bulk of the effort was carried by the editors. They dealt with an ever increasing complex publishing process that now supports three Society journals.

  5. Biomedical engineering education in developing countries: research synthesis.

    Science.gov (United States)

    Douglas, Tania S

    2011-01-01

    Biomedical engineering (BME) contributes to development through improving human health. This paper examines BME education to address the needs of developing countries. Components of different BME programs described in the literature are synthesized to represent what has been proposed or implemented for the production of graduates able to address health problems in a manner suited to the local environment in which they occur. Published research on BME education is reviewed with reference to problem context, interventions and their mechanisms, and intended outcomes.

  6. A natural fit: home healthcare and biomedical engineering.

    Science.gov (United States)

    Damasco, Nestor; Abe, Chris

    2010-01-01

    The involvement of Biomed in management of home care equipment has become a natural fit for Rady Children's Hospital. Managing all aspects of home care equipment through an in-house biomedical engineering department is cost-effective, efficient, provides excellent customer service, and enhances the relationship with the clinical staff and patients. It develops a sense of security for patients and staff that home care equipment is tested and maintained in a stringent manner that promotes safety.

  7. Chitosan nanoparticles as drug delivery carriers for biomedical engineering

    International Nuclear Information System (INIS)

    Shi, L.E.S.; Chen, M.; XINF, L.Y.; Guo, X.F.; Zhao, L.M.

    2011-01-01

    Chitosan is a rather abundant material, which has been widely used in food industrial and bioengineering aspects, including in encapsulating active food ingredients, in enzyme immobilization, and as a carrier for drug delivery, due to its significant biological and chemical properties such as biodegradable, biocompatible, bioactive and polycationic. This review discussed preparation and applications of chitosan nanoparticles in the biomedical engineering field, namely as a drug delivery carrier for biopharmaceuticals. (author)

  8. Surface engineering of graphene-based nanomaterials for biomedical applications.

    Science.gov (United States)

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  9. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  10. [Biomedical information on the internet using search engines. A one-year trial].

    Science.gov (United States)

    Corrao, Salvatore; Leone, Francesco; Arnone, Sabrina

    2004-01-01

    The internet is a communication medium and content distributor that provide information in the general sense but it could be of great utility regarding as the search and retrieval of biomedical information. Search engines represent a great deal to rapidly find information on the net. However, we do not know whether general search engines and meta-search ones are reliable in order to find useful and validated biomedical information. The aim of our study was to verify the reproducibility of a search by key-words (pediatric or evidence) using 9 international search engines and 1 meta-search engine at the baseline and after a one year period. We analysed the first 20 citations as output of each searching. We evaluated the formal quality of Web-sites and their domain extensions. Moreover, we compared the output of each search at the start of this study and after a one year period and we considered as a criterion of reliability the number of Web-sites cited again. We found some interesting results that are reported throughout the text. Our findings point out an extreme dynamicity of the information on the Web and, for this reason, we advice a great caution when someone want to use search and meta-search engines as a tool for searching and retrieve reliable biomedical information. On the other hand, some search and meta-search engines could be very useful as a first step searching for defining better a search and, moreover, for finding institutional Web-sites too. This paper allows to know a more conscious approach to the internet biomedical information universe.

  11. How to Learn Multidisciplinary Design: Biomedical Engineering in Cross Cultural Seminar

    OpenAIRE

    Shigehiro Hashimoto

    2016-01-01

    The way to learn multidisciplinary design has been discussed. "Biomedical engineering" is exemplified for multidisciplinary field. "Biomedical Engineering" makes the multidisciplinary research area, which includes biology, medicine, engineering, and others. The cross-cultural student seminars on biomedical engineering have been exemplified as the case studies. In the group work, students are divided into the small cross cultural groups. Each group finds a problem, methods to solve the problem...

  12. Application of ionizing radiation processing in biomedical engineering and microelectronics

    International Nuclear Information System (INIS)

    Hongfej, H.; Jilan, W.

    1988-01-01

    The applied radiation chemistry has made great contributions to the development of polymeric industrial materials by the characteristics reaction means such as crosslinking, graft copolymerization and low-temperature or solid-phase polymerization, and become a important field on peaceful use of atomic energy. A brief review on the applications of ionizing radiation processing in biomedical engineering and microelectronics is presented. The examples of this technique were the studies on biocompatible and biofunctional polymers for medical use and on resists of lithography in microelectronics

  13. Effective communication and supervision in the biomedical engineering department.

    Science.gov (United States)

    Xu, Y; Wald, A; Cappiello, J

    1997-01-01

    It is important for biomedical engineering supervisors to master the art of effective communication. Supervisors who have effective communication skills can successfully initiate creative programs and generate a harmonious working atmosphere. Using effective communication, they can promote good working conditions, such as high morale, worker initiative and loyalty to the department, which are almost impossible to measure but imperative for a successful department. However, effective communication tends to be neglected by supervisors who are either functional specialists or managerial generalists. This paper presents several cases of what effective communication truly is and discusses some potential factors that may lead to ineffective communication.

  14. Applications of ionizing radiation processing in biomedical engineering and microelectronics

    International Nuclear Information System (INIS)

    Ha Hongfei; Wu Jilan

    1987-01-01

    The applied radiation chemistry has made great contributions to the development of polymeric industrial materials by the characteristic reaction means such as corsslinking, graft copolymerization and low-temperature or solid-phase polymerization, and become an important field on peaceful use of atomic energy. A brief review on the applications of ionizing radiation processing in biomedical engineering and microelectronics is presented. The examples of this techique were the studies on biocompatible and biofunctional polymers for medical use and on resists of lithography in microelectronics. (author)

  15. Advances in polymeric systems for tissue engineering and biomedical applications.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Use of systematic review to inform the infection risk for biomedical engineers and technicians servicing biomedical devices

    International Nuclear Information System (INIS)

    Smith, Anne-Louise

    2011-01-01

    Full text: Many microorganisms responsible for hospital acquired infections are able to stay viable on surfaces with no visible sign of contamination, in dry conditions and on non-porous surfaces. The infection risk to biomedical staff when servicing biomedical devices is not documented. An indirect approach has been used to examine the different aspects that will affect the risk of infection including a systematic review of microbial contamination and transmission relating to biomedical devices. A systematic review found 58% of biomedical devices have microbial contamination with 13% having at least one pathogenic organism. These microbes can persist for some months. Occupational-infections of biomedical service staff are low compared to other healthcare workers. A biomedical device with contaminated surface or dust was identified as the source of patient outbreaks in 13 papers. The cleaning agent most tested for removal of micro-organisms from devices was alcohol swabs, but sterile water swabs were also effective. However, manufacturers mainly recommend (74%) cleaning devices with water and detergent. Biomedical engineers and technicians have a small risk of being exposed to dangerous micro-organisms on most biomedical devices, but without skin breakage, this exposure is unlikely to cause ill-health. It is recommended that biomedical staff follow good infection control practices, wipe devices with detergent, sterile water or alcohol swabs as recommended by the manufacturer before working on them, and keep alcohol hand rubs accessible at all benches. (author)

  17. Collaboration for cooperative work experience programs in biomedical engineering education.

    Science.gov (United States)

    Krishnan, Shankar

    2010-01-01

    Incorporating cooperative education modules as a segment of the undergraduate educational program is aimed to assist students in gaining real-life experience in the field of their choice. The cooperative work modules facilitate the students in exploring different realistic aspects of work processes in the field. The track records for cooperative learning modules are very positive. However, it is indeed a challenge for the faculty developing Biomedical Engineering (BME) curriculum to include cooperative work experience or internship requirements coupled with a heavy course load through the entire program. The objective of the present work is to develop a scheme for collaborative co-op work experience for the undergraduate training in the fast-growing BME programs. A few co-op/internship models are developed for the students pursuing undergraduate BME degree. The salient features of one co-op model are described. The results obtained support the proposed scheme. In conclusion, the cooperative work experience will be an invaluable segment in biomedical engineering education and an appropriate model has to be selected to blend with the overall training program.

  18. New frontiers in biomedical science and engineering during 2014-2015.

    Science.gov (United States)

    Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep

    2015-01-01

    The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.

  19. Pharmaceutical and biomedical potential of surface engineered dendrimers.

    Science.gov (United States)

    Satija, Jitendra; Gupta, Umesh; Jain, Narendra Kumar

    2007-01-01

    Dendrimers are hyperbranched, globular, monodisperse, nanometric polymeric architecture, having definite molecular weight, shape, and size (which make these an inimitable and optimum carrier molecule in pharmaceutical field). Dendritic architecture is having immense potential over the other carrier systems, particularly in the field of drug delivery because of their unique properties, such as structural uniformity, high purity, efficient membrane transport, high drug pay load, targeting potential, and good colloidal, biological, and shelf stability. Despite their enormous applicability in different areas, the inherent cytotoxicity, reticuloendothelial system (RES) uptake, drug leakage, immunogenicity, and hemolytic toxicity restricted their use in clinical applications, which is primarily associated with cationic charge present on the periphery due to amine groups. To overcome this toxic nature of dendrimers, some new types of nontoxic, biocompatible, and biodegradable dendrimers have been developed (e.g., polyester dendrimer, citric acid dendrimer, arginine dendrimer, carbohydrate dendrimers, etc.). The surface engineering of parent dendrimers is graceful and convenient strategy, which not only shields the positive charge to make this carrier more biomimetic but also improves the physicochemical and biological behavior of parent dendrimers. Thus, surface modification chemistry of parent dendrimers holds promise in pharmaceutical applications (such as solubilization, improved drug encapsulation, enhanced gene transfection, sustained and controlled drug release, intracellular targeting) and in the diagnostic field. Development of multifunctional dendrimer holds greater promise toward the biomedical applications because a number of targeting ligands determine specificity in the same manner as another type of group would secure stability in biological milieu and prolonged circulation, whereas others facilitate their transport through cell membranes. Therefore, as a

  20. Updating the biomedical engineering curriculum: Inclusion of Health Technology Assessment subjects.

    Science.gov (United States)

    Martinez Licona, Fabiola; Urbina, Edmundo Gerardo; Azpiroz-Leehan, Joaquin

    2010-01-01

    This paper describes the work being carried out at Metropolitan Autonomous University (UAM) in Mexico City with regard to the continuous evaluation and updating of the Biomedical Engineering (BME) curriculum. In particular the courses regarded as part of the BME basic branch are reduced and new sets of elective subjects are proposed in order to bring closer the research work at UAM with the subjects in the BME curriculum. Special emphasis is placed on subjects dealing with Health Technology Assessment (HTA) and Health economics, as this branch of the BME discipline is quite promising in Mexico, but there are very few professionals in the field with adequate qualifications.

  1. Polyacrylamide ferrogels with embedded maghemite nanoparticles for biomedical engineering

    Science.gov (United States)

    Blyakhman, Felix A.; Safronov, Alexander P.; Zubarev, Andrey Yu.; Shklyar, Tatyana F.; Makeyev, Oleg G.; Makarova, Emilia B.; Melekhin, Vsevolod V.; Larrañaga, Aitor; Kurlyandskaya, Galina V.

    This study addresses the development of gel-based magnetic material in the purposes of biomedical applications in the fields of tissue engineering, regenerative medicine, drugs delivery and magnetic biosensing. Ferrogels were synthesized by radical polymerization of acrylamide in a stable aqueous suspension of γ-Fe2.04O2.96 nanoparticles (NPs) fabricated by the laser target evaporation technique. Gel network density was set to 1:100, the concentrations of imbedded NPs (average mean diameter of about 11 nm) were fixed at 0.00, 0.25 or 0.75% by weight. Saturation magnetization of the gels showed a linear dependence on concentration of NPs. The main task of proposed investigation was to determine the contribution of the presence of NPs to the change of the physical properties of gels and their biocompatibility. We found that the gradual increase of NPs concentration in the gel network resulted in the significant increase of the gel's Young modulus, effective viscosity, negative value of electrical potential and adhesion index for both the human dermal fibroblasts and the human peripheral blood leucocytes. We concluded that from viewpoint of biomedical applications, the inclusion of small amount of NPs into the polymer network significantly enhances the mechanical and electrical properties of ferrogels, and improves biocompatibility of these systems.

  2. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  3. Biomedical Engineering curriculum at UAM-I: a critical review.

    Science.gov (United States)

    Martinez Licona, Fabiola; Azpiroz-Leehan, Joaquin; Urbina Medal, E Gerardo; Cadena Mendez, Miguel

    2014-01-01

    The Biomedical Engineering (BME) curriculum at Universidad Autónoma Metropolitana (UAM) has undergone at least four major transformations since the founding of the BME undergraduate program in 1974. This work is a critical assessment of the curriculum from the point of view of its results as derived from an analysis of, among other resources, institutional databases on students, graduates and their academic performance. The results of the evaluation can help us define admission policies as well as reasonable limits on the maximum duration of undergraduate studies. Other results linked to the faculty composition and the social environment can be used to define a methodology for the evaluation of teaching and the implementation of mentoring and tutoring programs. Changes resulting from this evaluation may be the only way to assure and maintain leadership and recognition from the BME community.

  4. Machine learning, medical diagnosis, and biomedical engineering research - commentary.

    Science.gov (United States)

    Foster, Kenneth R; Koprowski, Robert; Skufca, Joseph D

    2014-07-05

    A large number of papers are appearing in the biomedical engineering literature that describe the use of machine learning techniques to develop classifiers for detection or diagnosis of disease. However, the usefulness of this approach in developing clinically validated diagnostic techniques so far has been limited and the methods are prone to overfitting and other problems which may not be immediately apparent to the investigators. This commentary is intended to help sensitize investigators as well as readers and reviewers of papers to some potential pitfalls in the development of classifiers, and suggests steps that researchers can take to help avoid these problems. Building classifiers should be viewed not simply as an add-on statistical analysis, but as part and parcel of the experimental process. Validation of classifiers for diagnostic applications should be considered as part of a much larger process of establishing the clinical validity of the diagnostic technique.

  5. Rapid prototyping for biomedical engineering: current capabilities and challenges.

    Science.gov (United States)

    Lantada, Andrés Díaz; Morgado, Pilar Lafont

    2012-01-01

    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

  6. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  7. Challenges of the biomedical engineering education in Europe.

    Science.gov (United States)

    Magjarevic, Ratko; Lackovic, Igor; Bliznakov, Zhivko; Pallikarakis, Nicolas

    2010-01-01

    Higher education in Europe has passed through a very dynamic period of changes during the last ten years. Since the signing of the Bologna Declaration in 1999 by the Ministers of Education from the EU states, European higher education system has aimed toward establishing harmonized programs enabling students and teachers to extensively exchange knowledge, ideas and skills. Education in the field of Biomedical Engineering has experienced changes also because of the research and development in the field which was more intensive than in other fields. Besides research in new power sources, it is the most intensive and productive research field. Much of the development in BME education in Europe is influenced by the European research policy expressed through the 7th Framework Programme where health is the major theme. In order to foster and support the changes in the European Higher Education Area (EHEA) according to the needs of research sector and the labor market, the Tempus scheme of projects was established. Tempus scheme aims to support the modernization of higher education and create an area of co-operation in the countries surrounding the EU. Our Tempus project, CRH-BME "Curricula Reformation and Harmonization in the field of Biomedical Engineering" aims to create guidelines for updating existing curricula in the field of BME in Europe in order to meet recent and future developments in the area, address new emerging interdisciplinary domains that appear as the result of the R&D progress and respond to the BME job market demands. In this paper, some policy and economic factors affecting BME education in Europe are discussed and the results of a BME education survey we prepared within the Tempus CHR-BME project are presented. The number of BME programmes in Europe has in the last decade significantly increased and there are more BME specializations as the result of growing complexity of the research and production in the field.

  8. Review of spectral imaging technology in biomedical engineering: achievements and challenges.

    Science.gov (United States)

    Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin

    2013-10-01

    Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.

  9. Aerospace engineering training: universities experience

    Directory of Open Access Journals (Sweden)

    Mertins Kseniya

    2016-01-01

    Full Text Available Contemporary professional working in aerospace engineering must have a set of soft and hard skills. The experience gained in universities shows that training of a competent professional is impossible without an employer involved in this process. The paper provides an analysis of missions, tasks and experience of aerospace professionals and identifies the present and future roles, missions and required skills of a highly qualified specialist in aerospace engineering. This analysis can be used to design a master’s program aiming at providing students with the required knowledge, know-how and attitudes needed to succeed as professionals in industrial companies.

  10. Biomedical learning experiences for middle school girls sponsored by the Kansas State University Student Chapter of the IEEE EMBS.

    Science.gov (United States)

    Gruber, Lucinda; Griffith, Connor; Young, Ethan; Sullivan, Adriann; Schuler, Jeff; Arnold-Christian, Susan; Warren, Steve

    2009-01-01

    Learning experiences for middle school girls are an effective means to steer young women toward secondary engineering curricula that they might not have otherwise considered. Sponsorship of such experiences by a collegiate student group is worthwhile, as it gives the group common purpose and places college students in a position to mentor these young women. This paper addresses learning experiences in different areas of bio-medical engineering offered to middle school girls in November 2008 via a day-long workshop entitled "Engineering The Body." The Kansas State University (KSU) Student Chapter of the IEEE Engineering in Medicine and Biology Society (EMBS) worked with the KSU Women in Engineering and Science Program (WESP) to design and sponsor these experiences, which addressed the areas of joint mechanics, electrocardiograms, membrane transport, computer mouse design, and audio filters for cochlear implants. Fifty five middle-school girls participated in this event, affirming the notion that biomedical engineering appeals to young women and that early education and recruitment efforts have the potential to expand the biomedical engineering talent pool.

  11. The Brazilian research and teaching center in biomedicine and aerospace biomedical engineering.

    Science.gov (United States)

    Russomano, T; Falcao, P F; Dalmarco, G; Martinelli, L; Cardoso, R; Santos, M A; Sparenberg, A

    2008-08-01

    The recent engagement of Brazil in the construction and utilization of the International Space Station has motivated several Brazilian research institutions and universities to establish study centers related to Space Sciences. The Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) is no exception. The University initiated in 1993 the first degree course training students to operate commercial aircraft in South America (the School of Aeronautical Sciences. A further step was the decision to build the first Brazilian laboratory dedicated to the conduct of experiments in ground-based microgravity simulation. Established in 1998, the Microgravity Laboratory, which was located in the Instituto de Pesquisas Cientificas e Tecnologicas (IPCT), was supported by the Schools of Medicine, Aeronautical Sciences and Electrical Engineering/Biomedical Engineering. At the end of 2006, the Microgravity Laboratory became a Center and was transferred to the School of Engineering. The principal activities of the Microgravity Centre are the development of research projects related to human physiology before, during and after ground-based microgravity simulation and parabolic flights, to aviation medicine in the 21st century and to aerospace biomedical engineering. The history of Brazilian, and why not say worldwide, space science should unquestionably go through PUCRS. As time passes, the pioneering spirit of our University in the aerospace area has become undeniable. This is due to the group of professionals, students, technicians and staff in general that have once worked or are still working in the Center of Microgravity, a group of faculty and students that excel in their undeniable technical-scientific qualifications.

  12. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  13. Results From the John Glenn Biomedical Engineering Consortium. A Success Story for NASA and Northeast Ohio

    Science.gov (United States)

    Nall, Marsha M.; Barna, Gerald J.

    2009-01-01

    The John Glenn Biomedical Engineering Consortium was established by NASA in 2002 to formulate and implement an integrated, interdisciplinary research program to address risks faced by astronauts during long-duration space missions. The consortium is comprised of a preeminent team of Northeast Ohio institutions that include Case Western Reserve University, the Cleveland Clinic, University Hospitals Case Medical Center, The National Center for Space Exploration Research, and the NASA Glenn Research Center. The John Glenn Biomedical Engineering Consortium research is focused on fluid physics and sensor technology that addresses the critical risks to crew health, safety, and performance. Effectively utilizing the unique skills, capabilities and facilities of the consortium members is also of prime importance. Research efforts were initiated with a general call for proposals to the consortium members. The top proposals were selected for funding through a rigorous, peer review process. The review included participation from NASA's Johnson Space Center, which has programmatic responsibility for NASA's Human Research Program. The projects range in scope from delivery of prototype hardware to applied research that enables future development of advanced technology devices. All of the projects selected for funding have been completed and the results are summarized. Because of the success of the consortium, the member institutions have extended the original agreement to continue this highly effective research collaboration through 2011.

  14. [Integration of fundamental and applied medical and technical research made at the department of the biomedical systems, Moscow State Institute of Electronic Engineering].

    Science.gov (United States)

    Selishchev, S V

    2004-01-01

    The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.

  15. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    Science.gov (United States)

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. CDIO Experiences in Biomedical Engineering: Preparing Spanish Students for the Future of Medicine and Medical Device Technology

    OpenAIRE

    Díaz Lantada, Andrés; Serrano Olmedo, José Javier; Ros Felip, Antonio; Jiménez Fernández, Javier; Muñoz García, Julio; Claramunt Alonso, Rafael; Carpio Huertas, Jaime

    2016-01-01

    Biomedical engineering is one of the more recent fields of engineering, aimed at the application of engineering principles, methods and design concepts to medicine and biology for healthcare purposes, mainly as a support for preventive, diagnostic or therapeutic tasks. Biomedical engineering professionals are expected to achieve, during their studies and professional practice, considerable knowledge of both health sciences and engineering. Studying biomedical engineering programmes, or combin...

  17. Challenges and Opportunities: Building a Relationship Between a Department of Biomedical Engineering and a Medical School.

    Science.gov (United States)

    George, Steven C; Meyerand, M Elizabeth

    2017-03-01

    A department of biomedical engineering can significantly enhance the impact of their research and training programs if a productive relationship with a medical school can be established. In order to develop such a relationship, significant hurdles must be overcome. This editorial summarizes some of the major challenges and opportunities for a department of biomedical engineering as they seek to build or enhance a relationship with a medical school. The ideas were formulated by engaging the collective wisdom from the Council of Chairs of the biomedical engineering departments.

  18. Semantic similarity measure in biomedical domain leverage web search engine.

    Science.gov (United States)

    Chen, Chi-Huang; Hsieh, Sheau-Ling; Weng, Yung-Ching; Chang, Wen-Yung; Lai, Feipei

    2010-01-01

    Semantic similarity measure plays an essential role in Information Retrieval and Natural Language Processing. In this paper we propose a page-count-based semantic similarity measure and apply it in biomedical domains. Previous researches in semantic web related applications have deployed various semantic similarity measures. Despite the usefulness of the measurements in those applications, measuring semantic similarity between two terms remains a challenge task. The proposed method exploits page counts returned by the Web Search Engine. We define various similarity scores for two given terms P and Q, using the page counts for querying P, Q and P AND Q. Moreover, we propose a novel approach to compute semantic similarity using lexico-syntactic patterns with page counts. These different similarity scores are integrated adapting support vector machines, to leverage the robustness of semantic similarity measures. Experimental results on two datasets achieve correlation coefficients of 0.798 on the dataset provided by A. Hliaoutakis, 0.705 on the dataset provide by T. Pedersen with physician scores and 0.496 on the dataset provided by T. Pedersen et al. with expert scores.

  19. Fabrication of naturel pumice/hydroxyapatite composite for biomedical engineering.

    Science.gov (United States)

    Komur, Baran; Lohse, Tim; Can, Hatice Merve; Khalilova, Gulnar; Geçimli, Zeynep Nur; Aydoğdu, Mehmet Onur; Kalkandelen, Cevriye; Stan, George E; Sahin, Yesim Muge; Sengil, Ahmed Zeki; Suleymanoglu, Mediha; Kuruca, Serap Erdem; Oktar, Faik Nuzhet; Salman, Serdar; Ekren, Nazmi; Ficai, Anton; Gunduz, Oguzhan

    2016-07-07

    We evaluated the Bovine hydroxyapatite (BHA) structure. BHA powder was admixed with 5 and 10 wt% natural pumice (NP). Compression strength, Vickers micro hardness, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction studies were performed on the final NP-BHA composite products. The cells proliferation was investigated by MTT assay and SEM. Furthermore, the antimicrobial activity of NP-BHA samples was interrogated. Variances in the sintering temperature (for 5 wt% NP composites) between 1000 and 1300 °C, reveal about 700 % increase in the microhardness (~100 and 775 HV, respectively). Composites prepared at 1300 °C demonstrate the greatest compression strength with comparable result for 5 wt% NP content (87 MPa), which are significantly better than those for 10 wt% and those that do not include any NP (below 60 MPa, respectively). The results suggested the optimal parameters for the preparation of NP-BHA composites with increased mechanical properties and biocompatibility. Changes in micro-hardness and compression strength can be tailored by the tuning the NP concentration and sintering temperature. NP-BHA composites have demonstrated a remarkable potential for biomedical engineering applications such as bone graft and implant.

  20. Evaluating a Chat Reference Service at the University of South Alabama's Baugh Biomedical Library

    Science.gov (United States)

    Clanton, Clista C.; Staggs, Geneva B.; Williams, Thomas L.

    2006-01-01

    The University of South Alabama's Baugh Biomedical Library recently initiated a chat reference service targeted at distance education students in the biomedical sciences. After one year of service, the library conducted an evaluation of the chat reference to assess the success of this mode of reference service. Both traditional reference and…

  1. Development and Evaluation of Thesauri-Based Bibliographic Biomedical Search Engine

    Science.gov (United States)

    Alghoson, Abdullah

    2017-01-01

    Due to the large volume and exponential growth of biomedical documents (e.g., books, journal articles), it has become increasingly challenging for biomedical search engines to retrieve relevant documents based on users' search queries. Part of the challenge is the matching mechanism of free-text indexing that performs matching based on…

  2. Biomedical engineering - A means to add new dimension to medicine and research

    Science.gov (United States)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  3. Building integrated pathways to independence for diverse biomedical researchers: Project Pathways, the BUILD program at Xavier University of Louisiana.

    Science.gov (United States)

    Foroozesh, Maryam; Giguette, Marguerite; Morgan, Kathleen; Johanson, Kelly; D'Amour, Gene; Coston, Tiera; Wilkins-Green, Clair

    2017-01-01

    Xavier University of Louisiana is a historically Black and Catholic university that is nationally recognized for its science, technology, engineering and mathematics (STEM) curricula. Approximately 73% of Xavier's students are African American, and about 77% major in the biomedical sciences. Xavier is a national leader in the number of STEM majors who go on to receive M.D. degrees and Ph.D. degrees in science and engineering. Despite Xavier's advances in this area, African Americans still earn about 7.5% of the Bachelor's degrees, less than 8% of the Master's degrees, and less than 5% of the doctoral degrees conferred in STEM disciplines in the United States. Additionally, although many well-prepared, highly-motivated students are attracted by Xavier's reputation in the sciences, many of these students, though bright and capable, come from underperforming public school systems and receive substandard preparation in STEM disciplines. The purpose of this article is to describe how Xavier works to overcome unequal education backgrounds and socioeconomic challenges to develop student talent through expanding biomedical training opportunities and build on an established reputation in science education. The National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS)-funded BUILD (Building Infrastructure Leading to Diversity) Program at Xavier University of Louisiana, Project Pathways , is a highly-innovative program designed to broaden the career interests of students early on, and to engage them in activities that entice them to continue their education towards biomedical research careers. Project strategies involve a transformation of Xavier's academic and non-academic programs through the redesign, supplementation and integration of academic advising, tutoring, career services, personal counseling, undergraduate research training, faculty research mentoring, and development of new biomedical and research skills courses. The Program also

  4. Biomedical engineering support. Annual progress report, August 15, 1974--August 14, 1975

    International Nuclear Information System (INIS)

    Kolff, W.J.; Smith, L.M.; Sandquist, G.M.

    1975-01-01

    The major responsibility of the Institute for Biomedical Engineering at the University of Utah under the ERDA Artificial Heart Program has been to provide in vitro and in vivo experimental data and evaluation of the anatomical fitting, accommodation, performance and adequacy of the artificial heart system and its components as they are developed in the ERDA Program and provided to the Institute for study. The Institute also has the responsibility of designing, constructing and testing the blood handling components of the Blood Pump and insuring reliability, durability and satisfactory performance of these system components. During the reporting period, nine total heart replacement experiments were performed in calves using the ERDA Blood Pump powered by an electric motor implanted in the abdomen. Results of the experiments are given. Ultimately the mechanical heart will be powered by a radioisotope heat source

  5. First experience with a new biomedical engineering program in Slovenia established following the TEMPUS IV CRH-BME joint project guidelines.

    Science.gov (United States)

    Jarm, Tomaz; Miklavcic, Damijan

    2014-01-01

    A new study program of biomedical engineering was recently established at Faculty of Electrical Engineering, University of Ljubljana, Slovenia. It is based on the long-lasting tradition of education in the field of BME at the host institution and is built on the BME areas in which the research groups of the Faculty of Electrical Engineering have been traditionally successful. The program was prepared in accordance with the recommendations of the TEMPUS IV CRH-BME Project consortium.

  6. Analysis of Uncertainty and Variability in Finite Element Computational Models for Biomedical Engineering: Characterization and Propagation.

    Science.gov (United States)

    Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González

    2016-01-01

    Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.

  7. Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer

    Science.gov (United States)

    2014-01-01

    This review article is meant to help biomedical engineers and nonphysical scientists better understand the principles of, and the main trends in modern scanning and imaging modalities used in ophthalmology. It is intended to ease the communication between physicists, medical doctors and engineers, and hopefully encourage “classical” biomedical engineers to generate new ideas and to initiate projects in an area which has traditionally been dominated by optical physics. Most of the methods involved are applicable to other areas of biomedical optics and optoelectronics, such as microscopic imaging, spectroscopy, spectral imaging, opto-acoustic tomography, fluorescence imaging etc., all of which are with potential biomedical application. Although all described methods are novel and important, the emphasis of this review has been placed on three technologies introduced in the 1990’s and still undergoing vigorous development: Confocal Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and polarization-sensitive retinal scanning. PMID:24779618

  8. Are we studying what matters? Health priorities and NIH-funded biomedical engineering research.

    Science.gov (United States)

    Rubin, Jessica B; Paltiel, A David; Saltzman, W Mark

    2010-07-01

    With the founding of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in 1999, the National Institutes of Health (NIH) made explicit its dedication to expanding research in biomedical engineering. Ten years later, we sought to examine how closely federal funding for biomedical engineering aligns with U.S. health priorities. Using a publicly accessible database of research projects funded by the NIH in 2008, we identified 641 grants focused on biomedical engineering, 48% of which targeted specific diseases. Overall, we found that these disease-specific NIH-funded biomedical engineering research projects align with national health priorities, as quantified by three commonly utilized measures of disease burden: cause of death, disability-adjusted survival losses, and expenditures. However, we also found some illnesses (e.g., cancer and heart disease) for which the number of research projects funded deviated from our expectations, given their disease burden. Our findings suggest several possibilities for future studies that would serve to further inform the allocation of limited research dollars within the field of biomedical engineering.

  9. Biomedical imaging graduate curricula and courses: report from the 2005 Whitaker Biomedical Engineering Educational Summit.

    Science.gov (United States)

    Louie, Angelique; Izatt, Joseph; Ferrara, Katherine

    2006-02-01

    We present an overview of graduate programs in biomedical imaging that are currently available in the US. Special attention is given to the emerging technologies of molecular imaging and biophotonics. Discussions from the workshop on Graduate Imaging at the 2005 Whitaker Educational Summit meeting are summarized.

  10. Improvement of medical content in the curriculum of biomedical engineering based on assessment of students outcomes.

    Science.gov (United States)

    Abdulhay, Enas; Khnouf, Ruba; Haddad, Shireen; Al-Bashir, Areen

    2017-08-04

    Improvement of medical content in Biomedical Engineering curricula based on a qualitative assessment process or on a comparison with another high-standard program has been approached by a number of studies. However, the quantitative assessment tools have not been emphasized. The quantitative assessment tools can be more accurate and robust in cases of challenging multidisciplinary fields like that of Biomedical Engineering which includes biomedicine elements mixed with technology aspects. The major limitations of the previous research are the high dependence on surveys or pure qualitative approaches as well as the absence of strong focus on medical outcomes without implicit confusion with the technical ones. The proposed work presents the development and evaluation of an accurate/robust quantitative approach to the improvement of the medical content in the challenging multidisciplinary BME curriculum. The work presents quantitative assessment tools and subsequent improvement of curriculum medical content applied, as example for explanation, to the ABET (Accreditation Board for Engineering and Technology, USA) accredited biomedical engineering BME department at Jordan University of Science and Technology. The quantitative results of assessment of curriculum/course, capstone, exit exam, course assessment by student (CAS) as well as of surveys filled by alumni, seniors, employers and training supervisors were, first, mapped to the expected students' outcomes related to the medical field (SOsM). The collected data were then analyzed and discussed to find curriculum weakness points by tracking shortcomings in every outcome degree of achievement. Finally, actions were taken to fill in the gaps of the curriculum. Actions were also mapped to the students' medical outcomes (SOsM). Weighted averages of obtained quantitative values, mapped to SOsM, indicated accurately the achievement levels of all outcomes as well as the necessary improvements to be performed in curriculum

  11. Biomedical engineering support. Final report, June 15, 1971--June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Kolff, W.J.; Sandquist, G.; Olsen, D.B.; Smith, L.M.

    1979-01-01

    On June 15, 1971 the Institute for Biomedical Engineering at the University of Utah contracted with the USAEC to provide biomedical support for an Artificial Heart Program. The goal of the program was to conceive, design, construct and test a prototype artificial heart system powered by an implantable radioisotope heat source. The system would serve as a total artificial heart for animal experiments and for studies directed at developing a total heart replacement system for humans. The major responsibilities of the Institute during the eight year contract period were to design, construct and test all blood handling components of the system and prove in vivo accommodation, performance and adequacy of the system in experimental animals. Upon completion of development of the Implantable Version of the Bench Model Blood Pump, a long series of comprehensive in vitro and in vivo experiments were conducted. In vivo experiments with the system conducted in calves demonstrated the general accommodation, adequate performance and good capacity to sustain the calf as a heart model for up to 36 days. During the more successful in vivo experiments the implanted calves were able to eat, drink, stand, exercise on a treadmill, and exhibited normal blood chemistry and pulmonary function.

  12. Biomedical engineering support. Final report, June 15, 1971--June 30, 1979

    International Nuclear Information System (INIS)

    Kolff, W.J.; Sandquist, G.; Olsen, D.B.; Smith, L.M.

    1979-01-01

    On June 15, 1971 the Institute for Biomedical Engineering at the University of Utah contracted with the USAEC to provide biomedical support for an Artificial Heart Program. The goal of the program was to conceive, design, construct and test a prototype artificial heart system powered by an implantable radioisotope heat source. The system would serve as a total artificial heart for animal experiments and for studies directed at developing a total heart replacement system for humans. The major responsibilities of the Institute during the eight year contract period were to design, construct and test all blood handling components of the system and prove in vivo accommodation, performance and adequacy of the system in experimental animals. Upon completion of development of the Implantable Version of the Bench Model Blood Pump, a long series of comprehensive in vitro and in vivo experiments were conducted. In vivo experiments with the system conducted in calves demonstrated the general accommodation, adequate performance and good capacity to sustain the calf as a heart model for up to 36 days. During the more successful in vivo experiments the implanted calves were able to eat, drink, stand, exercise on a treadmill, and exhibited normal blood chemistry and pulmonary function

  13. Biomedical engineering and the whitaker foundation: a thirty-year partnership.

    Science.gov (United States)

    Katona, Peter G

    2006-06-01

    The Whitaker Foundation, established in 1976, will close in 2006. It will have made awards totaling 805 million US dollars, with over 710 million US dollars in biomedical engineering. Close to 1,500 faculty members received research grants to help them establish academic careers in biomedical engineering, and over 400 graduate students received fellowship support. The Foundation also supported the enhancement or establishment of educational programs in biomedical engineering, especially encouraging the formation of departments. The number of biomedical engineering departments almost tripled during the past 10 years, now numbering close to 75. Leveraging of grants enabled the construction of 13 new buildings. With the field firmly established, the grant program supporting new faculty members will be the one missed the most. New opportunities, however, are emerging as interdisciplinary research is being embraced by both public and private funding sources. The life sciences will be increasingly incorporated into all areas of engineering, and it is expected that such "biofication" will pose both opportunities and challenges to biomedical engineering.

  14. Crowdsourcing biomedical research: leveraging communities as innovation engines.

    Science.gov (United States)

    Saez-Rodriguez, Julio; Costello, James C; Friend, Stephen H; Kellen, Michael R; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo

    2016-07-15

    The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories.

  15. Facilities available for biomedical science research in the public universities in Lagos, Nigeria.

    Science.gov (United States)

    John, T A

    2010-03-01

    Across the world, basic medical scientists and physician scientists work on common platforms in state-of-the-arts laboratories doing translational research that occasionally results in bedside application. Biotechnology industries capitalise on useful findings for colossal profit.1 In Nigeria and the rest of Africa, biomedical science has not thrived and the contribution of publications to global high impact journals is low.2 This work investigated facilities available for modern biomedical research in Lagos public universities to extract culprit factors. The two public universities in Lagos, Nigeria were investigated by a cross sectional questionnaire survey of the technical staff manning biomedical science departments. They were asked about availability of 47 modern biomedical science research laboratory components such as cold room and microscopes and six research administration components such as director of research and grants administration. For convenient basic laboratory components such as autoclaves and balances, 50% responses indicated "well maintained and always functional" whereas for less convenient complex, high maintenance, state-of-the-arts equipment 19% responses indicated "well maintained and always functional." Respondents indicated that components of modern biomedical science research administration were 44% of expectation. The survey reveal a deficit in state-of the-arts research equipment and also a deficit in high maintenance, expensive equipment indicating that biomedical science in the investigated environment lacks the momentum of global trends and also lacks buoyant funding. In addition, administration supporting biomedical science is below expectation and may also account for the low contributions of research articles to global high impact journals.

  16. Critical assessment and outlook for the 50 biomedical engineering undergraduate programs in Mexico.

    Science.gov (United States)

    Azpiroz-Leehan, Joaquín; Martínez Licona, Fabiola; Urbina Medal, E Gerardo; Cadena Méndez, Miguel; Sacristán Rock, Emilio

    2015-01-01

    Biomedical Engineering (BME) has been taught in Mexico at the undergraduate level for over forty years. The rationale for the introduction of this profession was to help manage and maintain the growing technological infrastructure in the health care system during the seventies. Owing to this, it is not surprising that early versions of the BME curricula were oriented towards clinical engineering and medical instrumentation. In the last decade the number of programs has grown from three in the seventies and eighties to fifty at present. This work is the result of the analysis of the BME programs in all the institutions that offer this degree in Mexico. Three main issues were studied: the curricula, the sub-disciplines that were emphasized in the programs and the job market. Results have shown a striking resemblance in most of the programs, which are mostly dedicated to teaching aspects of medical instrumentation and clinical engineering. These results reflect an agreement with the requirements of the job market, but since most job offerings are for low-paying positions in sales, service and hospital maintenance, we question the wisdom of stressing these sub-specialties at research universities, where faculties and research labs offer a wide variety of options. An analysis of work at these centers shows that most of the results are publications, so the need to emphasize translational research and partnerships with industry are suggested.

  17. Development of concept-based physiology lessons for biomedical engineering undergraduate students.

    Science.gov (United States)

    Nelson, Regina K; Chesler, Naomi C; Strang, Kevin T

    2013-06-01

    Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.

  18. The pipeline still leaks and more than you think: a status report on gender diversity in biomedical engineering.

    Science.gov (United States)

    Chesler, Naomi C; Barabino, Gilda; Bhatia, Sangeeta N; Richards-Kortum, Rebecca

    2010-05-01

    While the percentage of women in biomedical engineering is higher than in many other technical fields, it is far from being in proportion to the US population. The decrease in the proportion of women and underrepresented minorities in biomedical engineering from the bachelors to the masters to the doctoral levels is evidence of a still leaky pipeline in our discipline. In addition, the percentage of women faculty members at the assistant, associate and full professor levels remain disappointingly low even after years of improved recruitment of women into biomedical engineering at the undergraduate level. Worse, the percentage of women graduating with undergraduate degrees in biomedical engineering has been decreasing nationwide for the most recent three year span for which national data are available. Increasing diversity in biomedical engineering is predicted to have significant research and educational benefits. The barriers to women's success in biomedical engineering and strategies for overcoming these obstacles-and fixing the leaks in the pipeline-are reviewed.

  19. Development of Hyaluronic Acid Derivatives for Applications in Biomedical Engineering

    NARCIS (Netherlands)

    Petta, D.

    2018-01-01

    Hyaluronic acid (HA) is a non-sulfated glycosaminoglycan. Ubiquitous in the human body, this natural polymer is widely used in the biomedical research thanks to its unique chemical, physical and biological properties [1-3]. Over forty years of use in clinics makes it one of the most successfully

  20. Medical Physics and Biomedical Engineering in Clinical Environment and Legal Surrounding

    International Nuclear Information System (INIS)

    Medvedec, M.

    2013-01-01

    An application of radiation in medicine is essentially associated with medical physics and biomedical engineering. The purpose of this study is to analyze the perception and the status of clinical medical physicists and biomedical engineers within the current international and Croatian legal framework. The International Labour Organization (ILO) in its International Standard Classification of Occupations (ISCO-08) notes that medical physicists and biomedical engineers are an integral part of the health workforce, alongside those occupations classified as health professionals. International Atomic Energy Agency (IAEA) in its basic safety standards for radiation protection and safety of radiation sources also defines medical physicists as health professional. The World Health Organization (WHO) urges member states to include biomedical engineers in assessment, planning, procurement, implementation and management of health technologies, in particular biomedical devices. The Council of the European Union (EU) in its directives defines qualified professionals, especially experts in medical physics, as workers who carry out physical, technical and radiochemical work in regard to dosimetry, radiation protection, quality assurance and quality control, equipment management, etc. According to the U.S. Office of Labor Statistics, biomedical engineer is an occupation with the third-fastest growth rate in the economy, as projected for the period 2010-2020. It is expected that the role and the importance of medical physics and biomedical engineering profession in Croatia, a member state of ILO, WHO, IAEA and EU, will be soon fully regulated in a way comparable to the career paths of other health professionals within a clinical environment, primarily for the benefit of patients and hospital staff, healthcare facilities and healthcare system in general.(author)

  1. An Undergraduate Two-Course Sequence in Biomedical Engineering Design: A Simulation of an Industrial Environment with Group and Individual Project Participation.

    Science.gov (United States)

    Jendrucko, Richard J.

    The first half of a Biomedical Engineering course at Texas A&M University is devoted to group projects that require design planning and a search of the literature. The second half requires each student to individually prepare a research proposal and conduct a research project. (MLH)

  2. 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering

    CERN Document Server

    Wang, Shyh-Hau; Yeh, Ming-Long

    2015-01-01

    This volume presents the proceedings of the 9th Asian-Pacific Conference on Medical and Biological Engineering (APCMBE 2014). The proceedings address a broad spectrum of topics from Bioengineering and Biomedicine, like Biomaterials, Artificial Organs, Tissue Engineering, Nanobiotechnology and Nanomedicine, Biomedical Imaging, Bio MEMS, Biosignal Processing, Digital Medicine, BME Education. It helps medical and biological engineering professionals to interact and exchange their ideas and experiences.

  3. Software for biomedical engineering signal processing laboratory experiments.

    Science.gov (United States)

    Tompkins, Willis J; Wilson, J

    2009-01-01

    In the early 1990's we developed a special computer program called UW DigiScope to provide a mechanism for anyone interested in biomedical digital signal processing to study the field without requiring any other instrument except a personal computer. There are many digital filtering and pattern recognition algorithms used in processing biomedical signals. In general, students have very limited opportunity to have hands-on access to the mechanisms of digital signal processing. In a typical course, the filters are designed non-interactively, which does not provide the student with significant understanding of the design constraints of such filters nor their actual performance characteristics. UW DigiScope 3.0 is the first major update since version 2.0 was released in 1994. This paper provides details on how the new version based on MATLAB! works with signals, including the filter design tool that is the programming interface between UW DigiScope and processing algorithms.

  4. [Metrology research on biomedical engineering publications from China in recent years].

    Science.gov (United States)

    Yu, Lu; Su, Juan; Wang, Ying; Sha, Xianzheng

    2014-12-01

    The present paper is to evaluate the scientific research level and development trends of biomedical engineering in China using metrology analysis on Chinese biomedical engineering scientific literatures. Pubmed is used to search the biomedical engineering publications in recent 5 years which are indexed by Science Citation Index, and the number and cited times of these publications and the impact factor of the journals are analyzed. The results show that comparing with the world, although the number of the publication in China has increased in recent 5 years, there is still much room for improvement. Among Chinese mainland, Hongkong and Taiwan, Chinese mainland maintains the obvious advantage in this subject, but Hongkong has the highest average cited number. Shanghai and Beijing have better research ability than other areas in Chinese mainland.

  5. Biomedical and Biochemical Engineering for K-12 Students

    Science.gov (United States)

    Madihally, Sundararajan V.; Maase, Eric L.

    2006-01-01

    REACH (Reaching Engineering and Architectural Career Heights) is a weeklong summer academy outreach program for high school students interested in engineering, architecture, or technology. Through module-­based instruction, students are introduced to various engineering fields. This report describes one of the modules focused on introducing…

  6. Influencing the job market by the quality of graduates--a biomedical engineering example.

    Science.gov (United States)

    Augustyniak, Ewa; Augustyniak, Piotr

    2015-01-01

    Academic teaching of a new discipline, besides its contents and formal issues, requires participation of the university in development of a target job market. This was the case of biomedical engineering in Poland ten years ago. This paper presents examples of activities, taken up by our university in cooperation with prospective employers, and evaluated with a help of our first alumni. The evaluation survey shows that despite the immature job market, the number of graduates employed accordingly to their education systematically raises each year from 72,5% in 2011 to 93,8% in 2013. Another interesting result is the distribution of job searching period: 19.2% of graduates were already employed before the graduation, further 23.1% found their job in less than one month after the diploma examination and another 28.8% in less than three months. The paper also highlights the role the former graduates play in motivating teachers and students to efforts towards a better educational outcome.

  7. Summer Institute in Biomedical Engineering for College Teachers

    Science.gov (United States)

    Cleaver, T. G.; And Others

    1973-01-01

    Discusses the objectives, curricula, and accomplishments of an interdisciplinary summer institute designed to prepare college teachers qualified in both the life sciences and engineering. Indicates that joint educational programs between engineering, science, and medical faculties are completely feasible if each group is interested in the other…

  8. ENGINEERING OF UNIVERSITY INTELLIGENT LEARNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Vasiliy M. Trembach

    2016-01-01

    Full Text Available In the article issues of engineering intelligent tutoring systems of University with adaptation are considered. The article also dwells on some modern approaches to engineering of information systems. It shows the role of engineering e-learning devices (systems in system engineering. The article describes the basic principles of system engineering and these principles are expanded regarding to intelligent information systems. The structure of intelligent learning systems with adaptation of the individual learning environments based on services is represented in the article.

  9. Behavior of Engineering Students in Kuwait University

    OpenAIRE

    M. A. Al-Ajmi; R. S. Al-Kandari

    2015-01-01

    This initial study is concerned with the behavior of engineering students in Kuwait University which became a concern due to the global issues of education in all levels. A survey has been conducted to identify academic and societal issues affecting the engineering student performance. The study is drawing major conclusions with regard to private tutoring and the online availability of textbooks’ solution manuals.

  10. University Engineering Education and Training in Nigeria ...

    African Journals Online (AJOL)

    The Nigerian University engineering education and training system is be-set by a number of inadequacies - low entry standards, non-uniformity in entry process for all engineering faculties in the country, moderate academic quality of entrants for the profession, low level knowledge of Mathematics and physical Sciences for ...

  11. Developing a search engine for pharmacotherapeutic information that is not published in biomedical journals.

    Science.gov (United States)

    Do Pazo-Oubiña, F; Calvo Pita, C; Puigventós Latorre, F; Periañez-Párraga, L; Ventayol Bosch, P

    2011-01-01

    To identify publishers of pharmacotherapeutic information not found in biomedical journals that focuses on evaluating and providing advice on medicines and to develop a search engine to access this information. Compiling web sites that publish information on the rational use of medicines and have no commercial interests. Free-access web sites in Spanish, Galician, Catalan or English. Designing a search engine using the Google "custom search" application. Overall 159 internet addresses were compiled and were classified into 9 labels. We were able to recover the information from the selected sources using a search engine, which is called "AlquimiA" and available from http://www.elcomprimido.com/FARHSD/AlquimiA.htm. The main sources of pharmacotherapeutic information not published in biomedical journals were identified. The search engine is a useful tool for searching and accessing "grey literature" on the internet. Copyright © 2010 SEFH. Published by Elsevier Espana. All rights reserved.

  12. Endovascular Device Testing with Particle Image Velocimetry Enhances Undergraduate Biomedical Engineering Education

    Science.gov (United States)

    Nair, Priya; Ankeny, Casey J.; Ryan, Justin; Okcay, Murat; Frakes, David H.

    2016-01-01

    We investigated the use of a new system, HemoFlow™, which utilizes state of the art technologies such as particle image velocimetry to test endovascular devices as part of an undergraduate biomedical engineering curriculum. Students deployed an endovascular stent into an anatomical model of a cerebral aneurysm and measured intra-aneurysmal flow…

  13. University Experiences and Women Engineering Student Persistence

    Science.gov (United States)

    Ayers, LoAnn Debra Gienger

    Riverside University (a pseudonym), like many universities, has not significantly increased the number of women who graduate with bachelor's degrees in engineering. The purpose of the study is to understand how the university experiences of women students influence the decision to persist in an undergraduate engineering degree and to understand the role of self-perception in how the students perceive experiences as supporting or hindering their persistence in the major. Archival data, documents and artifacts, observations, individual interviews, and a focus group with women engineering students provide insights into students' perceived barriers and supports of student success. Analysis of the data results in two major themes. First, students' self-confidence and self-efficacy influence how women assimilate university experiences as either supportive or diminishing of academic success. Second, university policies and practices shape the campus environment within which student experiences are formed and influence a student's level of institutional, academic, and social integration. The results of the study indicate opportunities for university leadership to enhance strategies that positively shape students' institutional, academic and social integration as precursors toward increasing the number of women students who successfully complete undergraduate engineering degrees at Riverside University. Future research is indicated to better understand how gender and gender identity intersects with other demographic factors, such as socio-economic status, immigration status, and life stage (e.g., traditional versus non-traditional students), to support or deter the persistence of engineering students to degree completion.

  14. Introduction to applied statistical signal analysis guide to biomedical and electrical engineering applications

    CERN Document Server

    Shiavi, Richard

    2007-01-01

    Introduction to Applied Statistical Signal Analysis is designed for the experienced individual with a basic background in mathematics, science, and computer. With this predisposed knowledge, the reader will coast through the practical introduction and move on to signal analysis techniques, commonly used in a broad range of engineering areas such as biomedical engineering, communications, geophysics, and speech.Introduction to Applied Statistical Signal Analysis intertwines theory and implementation with practical examples and exercises. Topics presented in detail include: mathematical

  15. Cross-Cultural Communication Training for Students in Multidisciplinary Research Area of Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2014-08-01

    Full Text Available Biomedical Engineering makes multidisciplinary research area, which includes biology, medicine, engineering and others. Communication training is important for students, who have a potential to develop Biomedical Engineering. Communication is not easy in a multidisciplinary research area, because each area has its own background of thinking. Because each nation has its own background of culture, on the other hand, international communication is not easy, either. A cross-cultural student program has been designed for communication training in the multidisciplinary research area. Students from a variety of backgrounds of research area and culture have joined in the program: mechanical engineering, material science, environmental engineering, science of nursing, dentist, pharmacy, electronics, and so on. The program works well for communication training in the multidisciplinary research area of biomedical engineering. Foreign language and digital data give students chance to study several things: how to make communication precisely, how to quote previous data. The experience in the program helps students not only understand new idea in the laboratory visit, but also make a presentation in the international research conference. The program relates to author's several experiences: the student internship abroad, the cross-cultural student camp, multi PhD theses, various affiliations, and the creation of the interdisciplinary department.

  16. Synthesis of Keratin-based Nanofiber for Biomedical Engineering.

    Science.gov (United States)

    Thompson, Zanshe S; Rijal, Nava P; Jarvis, David; Edwards, Angela; Bhattarai, Narayan

    2016-02-07

    Electrospinning, due to its versatility and potential for applications in various fields, is being frequently used to fabricate nanofibers. Production of these porous nanofibers is of great interest due to their unique physiochemical properties. Here we elaborate on the fabrication of keratin containing poly (ε-caprolactone) (PCL) nanofibers (i.e., PCL/keratin composite fiber). Water soluble keratin was first extracted from human hair and mixed with PCL in different ratios. The blended solution of PCL/keratin was transformed into nanofibrous membranes using a laboratory designed electrospinning set up. Fiber morphology and mechanical properties of the obtained nanofiber were observed and measured using scanning electron microscopy and tensile tester. Furthermore, degradability and chemical properties of the nanofiber were studied by FTIR. SEM images showed uniform surface morphology for PCL/keratin fibers of different compositions. These PCL/keratin fibers also showed excellent mechanical properties such as Young's modulus and failure point. Fibroblast cells were able to attach and proliferate thus proving good cell viability. Based on the characteristics discussed above, we can strongly argue that the blended nanofibers of natural and synthetic polymers can represent an excellent development of composite materials that can be used for different biomedical applications.

  17. Proceedings of the 10th international symposium on biomedical engineering '94

    International Nuclear Information System (INIS)

    1994-11-01

    Main topics of the Symposium were presented and discussed through eight sessions: 1) biomedical instrumentation, 2) biomedical signal measurements and processing, 3) biomechanics, 4) medical imaging, 5) medical informatics, 6) bioelectrical measurements, 7) bioengineering in dentistry and 8) modelling and simulation. The most of the participants were electrical and electronics engineers, physicists and physicians. All submitted papers were reviewed by international reviewers and 48 of the papers were accepted and presented on the symposium. Papers were mainly from Croatia, but there was also a number of papers from Austria, Slovenia, Germany, Italy, France, USA etc

  18. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    Science.gov (United States)

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  19. Proceedings of the 10th international symposium on biomedical engineering `94

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    Main topics of the Symposium were presented and discussed through eight sessions: (1) biomedical instrumentation, (2) biomedical signal measurements and processing, (3) biomechanics, (4) medical imaging, (5) medical informatics, (6) bioelectrical measurements, (7) bioengineering in dentistry and (8) modelling and simulation. The most of the participants were electrical and electronics engineers, physicists and physicians. All submitted papers were reviewed by international reviewers and 48 of the papers were accepted and presented on the symposium. Papers were mainly from Croatia, but there was also a number of papers from Austria, Slovenia, Germany, Italy, France, USA etc.

  20. Careers "Fact Sheets" for clinical engineering & biomedical technology.

    Science.gov (United States)

    Pacela, A F

    1991-01-01

    Three Careers "Fact Sheets" include information on CE and BMET job titles, job descriptions, and certification. These materials are intended to aid in furthering professional recognition for Clinical Engineers and BMETs, and may be useful in communicating with Administration or Human Resources departments.

  1. The 17th International Conference on Biomedical Engineering

    CERN Document Server

    Lim, Chwee; Leo, Hwa

    2017-01-01

    This volume presents the proceedings of the 16th ICMBE held from 4th to 7th December 2016, Singapore. Topics of the proceedings include 6 tracks: BioImaging and BioSignals, Bio-Micro/Nano Technologies BioRobotics and Medical Devices, Biomaterials and Regenerative Medicine.- BioMechanics and Mechanobiology., Engineering/Synthetic Biology.

  2. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.

    Science.gov (United States)

    Navya, P N; Daima, Hemant Kumar

    2016-01-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  3. World Congress on Medical Physics and Biomedical Engineering

    CERN Document Server

    Chen, Shan-Ben; Chen, Xiao-Qi

    2015-01-01

    The primary aim of this volume is to provide researchers and engineers from both academic and industry with up-to-date coverage of new results in the field of robotic welding, intelligent systems and automation. The book is mainly based on papers selected from the 2014 International Conference on Robotic Welding, Intelligence and Automation (RWIA’2014), held  Oct. 25-27, 2014, at Shanghai, China. The articles show that the intelligentized welding manufacturing (IWM) is becoming an inevitable trend with the intelligentized robotic welding as the key technology. The volume is divided into four logical parts: Intelligent Techniques for Robotic Welding, Sensing of Arc Welding Processing, Modeling and Intelligent Control of Welding Processing, as well as Intelligent Control and its Applications in Engineering.  .

  4. A unified architecture for biomedical search engines based on semantic web technologies.

    Science.gov (United States)

    Jalali, Vahid; Matash Borujerdi, Mohammad Reza

    2011-04-01

    There is a huge growth in the volume of published biomedical research in recent years. Many medical search engines are designed and developed to address the over growing information needs of biomedical experts and curators. Significant progress has been made in utilizing the knowledge embedded in medical ontologies and controlled vocabularies to assist these engines. However, the lack of common architecture for utilized ontologies and overall retrieval process, hampers evaluating different search engines and interoperability between them under unified conditions. In this paper, a unified architecture for medical search engines is introduced. Proposed model contains standard schemas declared in semantic web languages for ontologies and documents used by search engines. Unified models for annotation and retrieval processes are other parts of introduced architecture. A sample search engine is also designed and implemented based on the proposed architecture in this paper. The search engine is evaluated using two test collections and results are reported in terms of precision vs. recall and mean average precision for different approaches used by this search engine.

  5. Mammalian designer cells: Engineering principles and biomedical applications.

    Science.gov (United States)

    Xie, Mingqi; Fussenegger, Martin

    2015-07-01

    Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biomedical Engineering: A Challenge to Educators and the Professions.

    Science.gov (United States)

    Edmonson, Glenn V.

    The establishment and development of a graduate program in bioengineering at the University of Michigan is discussed. Included are the student entrance requirements, types of future employment for program graduates, and the philosophy underlying the choice of coursework and instructional methods for the program. (MLH)

  7. The Fu Foundation School of Engineering & Applied Science - Columbia

    Science.gov (United States)

    Engineering Mechanics Computer Science Earth and Environmental Engineering Electrical Engineering Industrial Engineering & Applied Science - Columbia University Admissions Undergraduates Graduates Distance Learning Physics and Applied Mathematics Biomedical Engineering Chemical Engineering Civil Engineering and

  8. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  9. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  10. Biomedical engineering tasks. [electrode development for electrocardiography and electroencephalography

    Science.gov (United States)

    1972-01-01

    Electrocardiographic and vectorcardiographic bioinstrumentation work centered on the development of a new electrode system harness for Project Skylab. Evaluation of several silver electrode configurations proved superior impedance voltage performance for silver/silver chloride electrodes mounted flush by using a paste adhesive. A portable ECG processor has been designed and a breadboard unit has been built to sample ECG input data at a rate of 500 samples per second for arrhythmia detection. A small real time display driver program has been developed for statistical analysis on selected QPS features. Engineering work on a sleep monitoring cap assembly continued.

  11. Nuclear engineering education initiative at Ibaraki University

    International Nuclear Information System (INIS)

    Matsumura, Kunihito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kurumada, Akira; Kikuchi, Kenji

    2015-01-01

    With the help of a grant from the Ministry of Education, Culture, Sports, Science and Technology, Ibaraki University has been engaging for six years in the development and preparation of educational environment on nuclear engineering for each of graduate and undergraduate. Core faculty conducts general services including the design and implementation of curriculum, operational improvement, and implementation of lectures. 'Beginner-friendly introduction for nuclear power education' is provided at the Faculty of Engineering, and 'nuclear engineering education program' at the Graduate School of Science and Engineering. All the students who have interest or concern in the accidents at nuclear power plants or the future of nuclear power engineering have opportunities to learn actively. This university participates in the alliance or association with other universities, builds industry - government - academia cooperation with neighboring institutions such as the Japan Atomic Energy Agency, and makes efforts to promote the learning and development of applied skills related to nuclear engineering through training and study tours at each facility. For example, it established the Frontier Applied Atomic Science Center to analyze the structure and function of materials using the strong neutron source of J-PARC. As the efforts after the earthquake accident, it carried out a radiation survey work in Fukushima Prefecture. In addition, it proposed and practiced the projects such as 'development of methods for the evaluation of transfer/fixation properties and decontamination of radioactive substances,' and 'structure analysis of radioactive substances remaining in soil, litter, and polluted water and its application to the decontamination.' (A.O.)

  12. Reconstruction of nuclear engineering education in universities

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Tomota, Yo; Tanaka, Shunichi

    2005-01-01

    Nuclear engineering has become the area gradually loosing appeal to the young for these twenty years taking all the circumstances into consideration. However nuclear power is predicted to be primary energy of greatest importance even in the future and this needs highly motivated and excellent personnel in nuclear industry and society so as to develop and maintain nuclear power to a high degree. Under these circumstances discussions on how should be nuclear engineering research and education in the new era were presented from various viewpoints and they led to the direction of reconstruction of nuclear engineering education in universities and relevant organizations to train and ensure personnel. (T. Tanaka)

  13. Nuclear engineering education in italian universities

    International Nuclear Information System (INIS)

    Dulla, S.; Panella, B.; Ravetto, P.

    2011-01-01

    The paper illustrates the evolution and the present situation of the university-level nuclear engineering education in Italy. The problems connected with the need of qualified faculty in view of a dramatic increase of students is pointed out. A short description of the programs at present available at Italian universities is also presented, together with some statistics referred to Politecnico di Torino. The mathematical and computation content of each programs is also analyzed. (author)

  14. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research.

    Science.gov (United States)

    Kim, Moon-Soo; Kini, Anu Ganesh

    2017-08-01

    Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

  15. A 2009 survey of the Australasian clinical medical physics and biomedical engineering workforce.

    Science.gov (United States)

    Round, W Howell

    2010-06-01

    A survey of the Australasian clinical medical physics and biomedical engineering workforce was carried out in 2009 following on from a similar survey in 2006. 621 positions (equivalent to 575 equivalent full time (EFT) positions) were captured by the survey. Of these 330 EFT were in radiation oncology physics, 45 EFT were in radiology physics, 42 EFT were in nuclear medicine physics, 159 EFT were in biomedical engineering and 29 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data shows the changes to the workforce over the preceding 3 years and identifies shortfalls in the workforce.

  16. A 2012 survey of the Australasian clinical medical physics and biomedical engineering workforce.

    Science.gov (United States)

    Round, W H

    2013-06-01

    A survey of the medical physics and biomedical engineering workforce in Australia and New Zealand was carried out in 2012 following on from similar surveys in 2009 and 2006. 761 positions (equivalent to 736 equivalent full time (EFT) positions) were captured by the survey. Of these, 428 EFT were in radiation oncology physics, 63 EFT were in radiology physics, 49 EFT were in nuclear medicine physics, 150 EFT were in biomedical engineering and 46 EFT were attributed to other activities. The survey reviewed the experience profile, the salary levels and the number of vacant positions in the workforce for the different disciplines in each Australian state and in New Zealand. Analysis of the data shows the changes to the workforce over the preceding 6 years and identifies shortfalls in the workforce.

  17. A special issue on reviews in biomedical applications of nanomaterials, tissue engineering, stem cells, bioimaging, and toxicity.

    Science.gov (United States)

    Nalwa, Hari Singh

    2014-10-01

    This second special issue of the Journal of Biomedical Nanotechnology in a series contains another 30 state-of-the-art reviews focused on the biomedical applications of nanomaterials, biosensors, bone tissue engineering, MRI and bioimaging, single-cell detection, stem cells, endothelial progenitor cells, toxicity and biosafety of nanodrugs, nanoparticle-based new therapeutic approaches for cancer, hepatic and cardiovascular disease.

  18. Bottom-Up Engineering of Well-Defined 3D Microtissues Using Microplatforms and Biomedical Applications.

    Science.gov (United States)

    Lee, Geon Hui; Lee, Jae Seo; Wang, Xiaohong; Lee, Sang Hoon

    2016-01-07

    During the last decades, the engineering of well-defined 3D tissues has attracted great attention because it provides in vivo mimicking environment and can be a building block for the engineering of bioartificial organs. In this Review, diverse engineering methods of 3D tissues using microscale devices are introduced. Recent progress of microtechnologies has enabled the development of microplatforms for bottom-up assembly of diverse shaped 3D tissues consisting of various cells. Micro hanging-drop plates, microfluidic chips, and arrayed microwells are the typical examples. The encapsulation of cells in hydrogel microspheres and microfibers allows the engineering of 3D microtissues with diverse shapes. Applications of 3D microtissues in biomedical fields are described, and the future direction of microplatform-based engineering of 3D micro-tissues is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications.

    Science.gov (United States)

    Choi, Andrew; Seo, Kyoung Duck; Kim, Do Wan; Kim, Bum Chang; Kim, Dong Sung

    2017-02-14

    Complex microparticles (MPs) bearing unique characteristics such as well-tailored sizes, various morphologies, and multi-compartments have been attempted to be produced by many researchers in the past decades. However, a conventionally used method of fabricating MPs, emulsion polymerization, has a limitation in achieving the aforementioned characteristics and several approaches such as the microfluidics-assisted (droplet-based microfluidics and flow lithography-based microfluidics), electrohydrodynamics (EHD)-based, centrifugation-based, and template-based methods have been recently suggested to overcome this limitation. The outstanding features of complex MPs engineered through these suggested methods have provided new opportunities for MPs to be applied in a wider range of applications including cell carriers, drug delivery agents, active pigments for display, microsensors, interface stabilizers, and catalyst substrates. Overall, the engineered MPs expose their potential particularly in the field of biomedical engineering as the increased complexity in the engineered MPs fulfills well the requirements of the high-end applications. This review outlines the current trends of newly developed techniques used for engineered MPs fabrication and focuses on the current state of engineered MPs in biomedical applications.

  20. Proceedings of the international conference on medical physics and biomedical engineering. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Spyrou, S; Christofides, S; Pattichis, C S; Keravnou, E; Schizas, C N; Christodoulides, G [eds.

    1994-12-31

    This is the first of two volumes of the proceedings of the International Conference on Medical Physics and Biomedical Engineering, held in Nicosia, Cyprus, between 3-7 May, 1994. It contains 47 papers. Nine of these fall within the scope of INIS and are dealing with stereolithography, computer tomography, scintigraphy, positron emission tomography, medical imaging, non linear spectral estimation techniques, image compression techniques and x-ray phosphor screens.

  1. Proceedings of the international conference on medical physics and biomedical engineering. Vol. 1

    International Nuclear Information System (INIS)

    Spyrou, S.; Christofides, S.; Pattichis, C.S.; Keravnou, E.; Schizas, C.N.; Christodoulides, G.

    1994-01-01

    This is the first of two volumes of the proceedings of the International Conference on Medical Physics and Biomedical Engineering, held in Nicosia, Cyprus, between 3-7 May, 1994. It contains 47 papers. Nine of these fall within the scope of INIS and are dealing with stereolithography, computer tomography, scintigraphy, positron emission tomography, medical imaging, non linear spectral estimation techniques, image compression techniques and x-ray phosphor screens

  2. Proceedings of the international conference on medical physics and biomedical engineering (MPBE `94). Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Spyrou, S; Christofides, S; Pattichis, C S; Keravnou, E; Schizas, C N; Christodoulides, G [eds.

    1994-12-31

    This is the second of two volumes of the proceedings of the International Conference on Medical Physics and Biomedical Engineering, held in Nicosia, Cyprus, between 3-7 May, 1994. It contains 50 papers. Eleven of these fall within the scope of INIS and are dealing with natural radioactivity, dose equivalents, nuclear medicine, quality control, positron emission tomography, computerized tomography, scintiscanning, medical examinations, x-ray radiography, radiotherapy, neural networks.

  3. Proceedings of the international conference on medical physics and biomedical engineering (MPBE '94). Vol. 2

    International Nuclear Information System (INIS)

    Spyrou, S.; Christofides, S.; Pattichis, C.S.; Keravnou, E.; Schizas, C.N.; Christodoulides, G.

    1994-01-01

    This is the second of two volumes of the proceedings of the International Conference on Medical Physics and Biomedical Engineering, held in Nicosia, Cyprus, between 3-7 May, 1994. It contains 50 papers. Eleven of these fall within the scope of INIS and are dealing with natural radioactivity, dose equivalents, nuclear medicine, quality control, positron emission tomography, computerized tomography, scintiscanning, medical examinations, x-ray radiography, radiotherapy, neural networks

  4. Educating nuclear engineers at German universities

    International Nuclear Information System (INIS)

    Knorr, J.

    1995-01-01

    Nuclear technology is a relatively young university discipline. Yet, as a consequence of the declining public acceptance of the peaceful use of nuclear power, its very existence is already being threatened at many universities. However, if Germany needs nuclear power, which undoubtedly is the case, highly qualified, committed experts are required above all. Nuclear technology develops internationally. Consequently, also university education must meet international standards. Generally, university education has been found to be the most effective way of increasing the number of scientific and engineering personnel. Nuclear techniques have meanwhile found acceptance in many other scientific disciplines, thus advancing those branches of science. Teaching needs research; like research in nucelar technology at the national research centers, also the universities are suffering massive financial disadvantages. Research is possible only if outside funds are solicited, which increase dependency and decreases basic research. (orig.) [de

  5. Forming engineers' sociocultural competence: Engineering ethics at tomsk polytechnic university

    Science.gov (United States)

    Galanina, E.; Dulzon, A.; Schwab, A.

    2015-10-01

    The aim of the present research is to discuss Tomsk Polytechnic University in respect of forming engineers’ sociocultural competence and teaching engineering ethics. Today international standards of training engineers cover efficient communication skills, ability to understand societal and environment context, professional and ethical responsibility. This article deals with the problem of contradiction between the need to form engineers’ sociocultural competence in Russian higher education institutions in order to meet the requirements of international accreditation organizations and the real capabilities of existing engineering curricula. We have described ethics teaching experience of TPU, studied the engineering master programs of TPU to see how the planned results are achieved. We have also given our recommendations to alter the structure of TPU educational curricula, which can also be applied in other higher education institutions.

  6. An Italian Education: IEEE Pulse talks with Riccardo Pietrabissa, president of Italy's National Bioengineering Group, about Italian progress and challenges in biomedical engineering education.

    Science.gov (United States)

    Pietrabissa, Riccardo; Reynolds, Pamela

    2015-01-01

    From Leonardo da Vinci's designs for ball bearings to the incredible engineering wizardry behind the Ferrari, the inventive, inquisitive, and ingenious spirit of the engineer has always lived--and thrived--in Italy. From education to research to product development, Italy has always been regarded as an engineering leader. But does this apply to biomedical engineering (BME)? Despite many successes, questions loom, as they do at engineering schools worldwide. Concerns such as whether BME programs are providing students with enough focused, practical, hands-on training remain at the forefront, as does the question of whether graduates will be able to find jobs in industry after university studies are over. Here, IEEE Pulse explores these topics with Riccardo Pietrabissa, president of the Gruppo Nazionale di Bioingegneria (National Bioengineering Group) and a full professor in the Department of Chemistry, Materials, and Chemical Engineering at Politecnico di Milano.

  7. Procedures | College of Engineering & Applied Science

    Science.gov (United States)

    Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil & . pirating software, music, movies or hacking) will be referred directly to the University Police. I feel I

  8. Semantic similarity measures in the biomedical domain by leveraging a web search engine.

    Science.gov (United States)

    Hsieh, Sheau-Ling; Chang, Wen-Yung; Chen, Chi-Huang; Weng, Yung-Ching

    2013-07-01

    Various researches in web related semantic similarity measures have been deployed. However, measuring semantic similarity between two terms remains a challenging task. The traditional ontology-based methodologies have a limitation that both concepts must be resided in the same ontology tree(s). Unfortunately, in practice, the assumption is not always applicable. On the other hand, if the corpus is sufficiently adequate, the corpus-based methodologies can overcome the limitation. Now, the web is a continuous and enormous growth corpus. Therefore, a method of estimating semantic similarity is proposed via exploiting the page counts of two biomedical concepts returned by Google AJAX web search engine. The features are extracted as the co-occurrence patterns of two given terms P and Q, by querying P, Q, as well as P AND Q, and the web search hit counts of the defined lexico-syntactic patterns. These similarity scores of different patterns are evaluated, by adapting support vector machines for classification, to leverage the robustness of semantic similarity measures. Experimental results validating against two datasets: dataset 1 provided by A. Hliaoutakis; dataset 2 provided by T. Pedersen, are presented and discussed. In dataset 1, the proposed approach achieves the best correlation coefficient (0.802) under SNOMED-CT. In dataset 2, the proposed method obtains the best correlation coefficient (SNOMED-CT: 0.705; MeSH: 0.723) with physician scores comparing with measures of other methods. However, the correlation coefficients (SNOMED-CT: 0.496; MeSH: 0.539) with coder scores received opposite outcomes. In conclusion, the semantic similarity findings of the proposed method are close to those of physicians' ratings. Furthermore, the study provides a cornerstone investigation for extracting fully relevant information from digitizing, free-text medical records in the National Taiwan University Hospital database.

  9. The University of Utah Nuclear Engineering Program

    International Nuclear Information System (INIS)

    Jevremovic, T.; McDonald, L. IV; Schow, R.

    2016-01-01

    As of 2014, the University of Utah Nuclear Engineering Program (UNEP) manages and maintains over 7,000 ft 2 (~650 m 2 ) nuclear engineering facilities that includes 100 kW TRIGA Mark I and numerous laboratories such as radiochemistry, microscopy, nuclear forensics, nuclear medicine, radiation detection and instrumentation laboratories. The UNEP offers prestigious educational and training programs in the field of faculty reserach: reactor physics, reactor design and operation, advanced numerical modeling and visualizations in radiation transport, radiochemistry, nuclear forensics, radiation detection and detector designs, signal processing, nuclear medicine, nuclear space and nuclear robotic’s engineering and radiological sciences. With the state-of-the-art nuclear instrumentation and state-of-the-art numerical modeling tools, reserach reactor and modernized educational and training programs, we positioned ourselves in the last five years as the fastest growing national nuclear engineering program attracting the students from many disciplines such as but not limited to: chemical engineering, civil engineering, environmental engineering, chemistry, physics, astronomy, medical sciences, and others. From 2012, we uniquely developed and implemented the nuclear power plants’ safety culture paradigm that we use for day-to-day operation, management and maintenance of our facilities, as well as train all our students at undergraduate and graduate levels of studies. We developed also a new distance-learning approaches in sharing knowledge about experiential learning based on no-cost internet-tools combined with the use of mobile technologies. (author)

  10. An Approach to Integrating Health Disparities within Undergraduate Biomedical Engineering Education.

    Science.gov (United States)

    Vazquez, Maribel; Marte, Otto; Barba, Joseph; Hubbard, Karen

    2017-11-01

    Health disparities are preventable differences in the incidence, prevalence and burden of disease among communities targeted by gender, geographic location, ethnicity and/or socio-economic status. While biomedical research has identified partial origin(s) of divergent burden and impact of disease, the innovation needed to eradicate health disparities in the United States requires unique engagement from biomedical engineers. Increasing awareness of the prevalence and consequences of health disparities is particularly attractive to today's undergraduates, who have undauntedly challenged paradigms believed to foster inequality. Here, the Department of Biomedical Engineering at The City College of New York (CCNY) has leveraged its historical mission of access-and-excellence to integrate the study of health disparities into undergraduate BME curricula. This article describes our novel approach in a multiyear study that: (i) Integrated health disparities modules at all levels of the required undergraduate BME curriculum; (ii) Developed opportunities to include impacts of health disparities into undergraduate BME research projects and mentored High School summer STEM training; and (iii) Established health disparities-based challenges as BME capstone design and/or independent entrepreneurship projects. Results illustrate the rising awareness of health disparities among the youngest BMEs-to-be, as well as abundant undergraduate desire to integrate health disparities within BME education and training.

  11. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering.

    Science.gov (United States)

    Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid

    2014-01-01

    Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.

  12. Analysis of uncertainty and variability in finite element computational models for biomedical engineering:characterization and propagation

    Directory of Open Access Journals (Sweden)

    Nerea Mangado

    2016-11-01

    Full Text Available Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.

  13. Design and implementation of a flipped classroom learning environment in the biomedical engineering context.

    Science.gov (United States)

    Corrias, Alberto; Cho Hong, James Goh

    2015-01-01

    The design and implementation of a learning environment that leverages on the use of various technologies is presented. The context is an undergraduate core engineering course within the biomedical engineering curriculum. The topic of the course is data analysis in biomedical engineering problems. One of the key ideas of this study is to confine the most mathematical and statistical aspects of data analysis in prerecorded video lectures. Students are asked to watch the video lectures before coming to class. Since the classroom session does not need to cover the mathematical theory, the time is spent on a selected real world scenario in the field of biomedical engineering that exposes students to an actual application of the theory. The weekly cycle is concluded with a hands-on tutorial session in the computer rooms. A potential problem would arise in such learning environment if the students do not follow the recommendation of watching the video lecture before coming to class. In an attempt to limit these occurrences, two key instruments were put in place: a set of online self-assessment questions that students are asked to take before the classroom session and a simple rewards system during the classroom session. Thanks to modern learning analytics tools, we were able to show that, on average, 57.9% of students followed the recommendation of watching the video lecture before class. The efficacy of the learning environment was assessed through various means. A survey was conducted among the students and the gathered data support the view that the learning environment was well received by the students. Attempts were made to quantify the impacts on learning of the proposed measures by taking into account the results of selected questions of the final examination of the course. Although the presence of confounding factors demands caution in the interpretation, these data seem to indicate a possible positive effect of the use of video lectures in this technologically

  14. Project-based learning with international collaboration for training biomedical engineers.

    Science.gov (United States)

    Krishnan, Shankar

    2011-01-01

    Training biomedical engineers while effectively keeping up with the fast paced scientific breakthroughs and the growth in technical innovations poses arduous challenges for educators. Traditional pedagogical methods are employed for coping with the increasing demands in biomedical engineering (BME) training and continuous improvements have been attempted with some success. Project-based learning (PBL) is an academic effort that challenges students by making them carry out interdisciplinary projects aimed at accomplishing a wide range of student learning outcomes. PBL has been shown to be effective in the medical field and has been adopted by other fields including engineering. The impact of globalization in healthcare appears to be steadily increasing which necessitates the inclusion of awareness of relevant international activities in the curriculum. Numerous difficulties are encountered when the formation of a collaborative team is tried, and additional difficulties occur as the collaboration team is extended to international partners. Understanding and agreement of responsibilities becomes somewhat complex and hence the collaborative project has to be planned and executed with clear understanding by all partners and participants. A model for training BME students by adopting PBL with international collaboration is proposed. The results of previous BME project work with international collaboration fit partially into the model. There were many logistic issues and constraints; however, the collaborative projects themselves greatly enhanced the student learning outcomes. This PBL type of learning experience tends to promote long term retention of multidisciplinary material and foster high-order cognitive activities such as analysis, synthesis and evaluation. In addition to introducing the students to experiences encountered in the real-life workforce, the proposed approach enhances developing professional contracts and global networking. In conclusion, despite

  15. Medical imaging education in biomedical engineering curriculum: courseware development and application through a hybrid teaching model.

    Science.gov (United States)

    Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice

    2012-01-01

    Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings.

  16. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications.

    Science.gov (United States)

    Bober, Josef R; Beisel, Chase L; Nair, Nikhil U

    2018-03-12

    An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies. 277 Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  17. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering.

    Science.gov (United States)

    Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui

    2016-02-01

    Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The community FabLab platform: applications and implications in biomedical engineering.

    Science.gov (United States)

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  19. Learning through projects in the training of biomedical engineers: an application experience

    Science.gov (United States)

    Gambi, José Antonio Li; Peme, Carmen

    2011-09-01

    Learning through Projects in the curriculum consists of both the identification and analysis of a problem, and the design of solution, execution and evaluation strategies, with teams of students. The project is conceived as the creation of a set of strategies articulated and developed during a certain amount of time to solve a problem contextualized in situations continually changing, where the constant evaluation provides feedback to make adjustments. In 2009, Learning through Projects was applied on the subject Hospital Facilities and three intervention projects were developed in health centers. This first stage is restricted to the analysis of the aspects that are considered to be basic to the professional training: a) Context knowledge: The future biomedical engineers must be familiarized with the complex health system where they will develop their profession; b) Team work: This is one of the essential skills in the training of students, since Biomedical Engineering connects the knowledge of sciences of life with the knowledge of exact sciences and technology; c) Regulations: The activities related to the profession require the implementation of regulations; therefore, to be aware of and to apply these regulations is a fundamental aspect to be analyzed in this stage; d) Project evaluation: It refers to the elaboration and studying of co-evaluation reports, which helps to find out if Learning through Projects contributes to the training. This new line of investigation has the purpose of discovering if the application of this learning strategy makes changes in the training of students in relation to their future professional career. The findings of this ongoing investigation will allow for the analysis of the possibility of extending its application. Key words: engineering, biomedical, learning, projects, strategies.

  20. The Application of Biomedical Engineering Techniques to the Diagnosis and Management of Tropical Diseases: A Review

    Directory of Open Access Journals (Sweden)

    Fatimah Ibrahim

    2015-03-01

    Full Text Available This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas. Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications.

  1. The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: a review.

    Science.gov (United States)

    Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Faisal, Tarig; Neuman, Michael

    2015-03-23

    This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas). Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications.

  2. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  3. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  4. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications.

    Science.gov (United States)

    Han, Ya-Hui; Kankala, Ranjith Kumar; Wang, Shi-Bin; Chen, Ai-Zheng

    2018-05-24

    In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.

  5. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.

    Science.gov (United States)

    Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang

    2017-09-18

    The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Sagace: A web-based search engine for biomedical databases in Japan

    Directory of Open Access Journals (Sweden)

    Morita Mizuki

    2012-10-01

    Full Text Available Abstract Background In the big data era, biomedical research continues to generate a large amount of data, and the generated information is often stored in a database and made publicly available. Although combining data from multiple databases should accelerate further studies, the current number of life sciences databases is too large to grasp features and contents of each database. Findings We have developed Sagace, a web-based search engine that enables users to retrieve information from a range of biological databases (such as gene expression profiles and proteomics data and biological resource banks (such as mouse models of disease and cell lines. With Sagace, users can search more than 300 databases in Japan. Sagace offers features tailored to biomedical research, including manually tuned ranking, a faceted navigation to refine search results, and rich snippets constructed with retrieved metadata for each database entry. Conclusions Sagace will be valuable for experts who are involved in biomedical research and drug development in both academia and industry. Sagace is freely available at http://sagace.nibio.go.jp/en/.

  7. A Ten-Year Assessment of a Biomedical Engineering Summer Research Internship within a Comprehensive Cancer Center

    Science.gov (United States)

    Wright, A. S.; Wu, X.; Frye, C. A.; Mathur, A. B.; Patrick, C. W., Jr.

    2007-01-01

    A Biomedical Engineering Internship Program conducted within a Comprehensive Cancer Center over a 10 year period was assessed and evaluated. Although this is a non-traditional location for an internship, it is an ideal site for a multidisciplinary training program for science, technology, engineering, and mathematics (STEM) students. We made a…

  8. Physiology and the Biomedical Engineering Curriculum: Utilizing Emerging Instructional Technologies to Promote Development of Adaptive Expertise in Undergraduate Students

    Science.gov (United States)

    Nelson, Regina K.

    2013-01-01

    A mixed-methods research study was designed to test whether undergraduate engineering students were better prepared to learn advanced topics in biomedical engineering if they learned physiology via a quantitative, concept-based approach rather than a qualitative, system-based approach. Experiments were conducted with undergraduate engineering…

  9. Proceedings of the international society for optical engineering biomedical image processing 2

    International Nuclear Information System (INIS)

    Bovik, A.G.; Howard, V.

    1991-01-01

    This book contains the proceedings of biomedical image processing. Topics covered include: Filtering and reconstruction of biomedical images; analysis, classification and recognition of biomedical images; and 3-D microscopy

  10. A pilot biomedical engineering course in rapid prototyping for mobile health.

    Science.gov (United States)

    Stokes, Todd H; Venugopalan, Janani; Hubbard, Elena N; Wang, May D

    2013-01-01

    Rapid prototyping of medically assistive mobile devices promises to fuel innovation and provides opportunity for hands-on engineering training in biomedical engineering curricula. This paper presents the design and outcomes of a course offered during a 16-week semester in Fall 2011 with 11 students enrolled. The syllabus covered a mobile health design process from end-to-end, including storyboarding, non-functional prototypes, integrated circuit programming, 3D modeling, 3D printing, cloud computing database programming, and developing patient engagement through animated videos describing the benefits of a new device. Most technologies presented in this class are open source and thus provide unlimited "hackability". They are also cost-effective and easily transferrable to other departments.

  11. Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology

    Directory of Open Access Journals (Sweden)

    Mario Ganau

    2018-02-01

    Full Text Available This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers in patients with traumatic brain injury (TBI, a critical worldwide health problem with an estimated 10 billion people affected annually worldwide. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials. Only experimental articles revolving around the management of TBI, in which the role of new devices based on innovative discoveries coming from the field of nanotechnology and biomedical engineering were highlighted, have been included and analyzed in this study. Based on theresults gathered from this research on innovative methods for genomics, epigenomics, and proteomics, their future application in this field seems promising. Despite the outstanding technical challenges of identifying reliable biosignatures for TBI and the mixed nature of studies herein described (single cells proteomics, biofilms, sensors, etc., the clinical implementation of those discoveries will allow us to gain confidence in the use of advanced neuromonitoring modalities with a potential dramatic improvement in the management of those patients.

  12. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.

    Science.gov (United States)

    Boon, Mieke

    2017-10-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges.

    Science.gov (United States)

    Pfister, Bryan J; Gordon, Tessa; Loverde, Joseph R; Kochar, Arshneel S; Mackinnon, Susan E; Cullen, D Kacy

    2011-01-01

    Damage to the peripheral nervous system is surprisingly common and occurs primarily from trauma or a complication of surgery. Although recovery of nerve function occurs in many mild injuries, outcomes are often unsatisfactory following severe trauma. Nerve repair and regeneration presents unique clinical challenges and opportunities, and substantial contributions can be made through the informed application of biomedical engineering strategies. This article reviews the clinical presentations and classification of nerve injuries, in addition to the state of the art for surgical decision-making and repair strategies. This discussion presents specific challenges that must be addressed to realistically improve the treatment of nerve injuries and promote widespread recovery. In particular, nerve defects a few centimeters in length use a sensory nerve autograft as the standard technique; however, this approach is limited by the availability of donor nerve and comorbidity associated with additional surgery. Moreover, we currently have an inadequate ability to noninvasively assess the degree of nerve injury and to track axonal regeneration. As a result, wait-and-see surgical decisions can lead to undesirable and less successful "delayed" repair procedures. In this fight for time, degeneration of the distal nerve support structure and target progresses, ultimately blunting complete functional recovery. Thus, the most pressing challenges in peripheral nerve repair include the development of tissue-engineered nerve grafts that match or exceed the performance of autografts, the ability to noninvasively assess nerve damage and track axonal regeneration, and approaches to maintain the efficacy of the distal pathway and targets during the regenerative process. Biomedical engineering strategies can address these issues to substantially contribute at both the basic and applied levels, improving surgical management and functional recovery following severe peripheral nerve injury.

  14. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  15. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University Reactor

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kanda, K.; Ujeno, Y.; Ishida, M.R.

    1990-01-01

    Physics studies related to radiation source, spectroscopy, beam quality, dosimetry, and biomedical applications using the Kyoto University Reactor Heavy Water Facility are described. Also, described are a Nickel Mirror Neutron Guide Tube and a Super Mirror Neutron Guide Tube that are used both for the measurement of boron concentration in phantom and living tissue and for precise measurements of neutron flux in phantom in the presence of both light and heavy water. Discussed are: (1) spectrum measurements using the time of flight technique, (2) the elimination of gamma rays and fast neutrons from a thermal neutron irradiation field, (3) neutron collimation without producing secondary gamma rays, (4) precise neutron flux measurements, dose estimation, and the measurement of boron concentration in tumor and its periphery using guide tubes, (5) the dose estimation of boron-10 for the first melanoma patient, and (6) special-purpose biological irradiation equipment. Other related subjects are also described

  16. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University reactor

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kanda, K.; Ujeno, Y.; Ishida, M.R.

    1990-01-01

    Physics studies related to radiation source, spectroscopy, beam quality, dosimetry, and biomedical applications using the Kyoto University Reactor Heavy Water Facility are described. Also, described are a Nickel Mirror Neutron Guide Tube and a Super Mirror Neutron Guide Tube that are used both for the measurement of boron concentration in phantom and living tissue and for precise measurements of neutron flux in phantom in the presence of both light and heavy water. Discussed are: (1) spectrum measurements using the time of flight technique, (2) the elimination of gamma rays and fast neutrons from a thermal neutron irradiation field, (3) neutron collimation without producing secondary gamma rays, (4) precise neutron flux measurements, dose estimation, and the measurement of boron concentration in tumor and its periphery using guide tubes, (5) the dose estimation of boron-10 for the first melanoma patient, and (6) special-purpose biological irradiation equipment. Other related subjects are also described

  17. Signals and Systems in Biomedical Engineering Signal Processing and Physiological Systems Modeling

    CERN Document Server

    Devasahayam, Suresh R

    2013-01-01

    The use of digital signal processing is ubiquitous in the field of physiology and biomedical engineering. The application of such mathematical and computational tools requires a formal or explicit understanding of physiology. Formal models and analytical techniques are interlinked in physiology as in any other field. This book takes a unitary approach to physiological systems, beginning with signal measurement and acquisition, followed by signal processing, linear systems modelling, and computer simulations. The signal processing techniques range across filtering, spectral analysis and wavelet analysis. Emphasis is placed on fundamental understanding of the concepts as well as solving numerical problems. Graphs and analogies are used extensively to supplement the mathematics. Detailed models of nerve and muscle at the cellular and systemic levels provide examples for the mathematical methods and computer simulations. Several of the models are sufficiently sophisticated to be of value in understanding real wor...

  18. Electrophysiology for biomedical engineering students: a practical and theoretical course in animal electrocorticography.

    Science.gov (United States)

    Albarracín, Ana L; Farfán, Fernando D; Coletti, Marcos A; Teruya, Pablo Y; Felice, Carmelo J

    2016-09-01

    The major challenge in laboratory teaching is the application of abstract concepts in simple and direct practical lessons. However, students rarely have the opportunity to participate in a laboratory that combines practical learning with a realistic research experience. In the Biomedical Engineering career, we offer short and optional courses to complement studies for students as they initiate their Graduation Project. The objective of these theoretical and practical courses is to introduce students to the topics of their projects. The present work describes an experience in electrophysiology to teach undergraduate students how to extract cortical information using electrocorticographic techniques. Students actively participate in some parts of the experience and then process and analyze the data obtained with different signal processing tools. In postlaboratory evaluations, students described the course as an exceptional opportunity for students interested in following a postgraduate science program and fully appreciated their contents. Copyright © 2016 The American Physiological Society.

  19. Hand-in-hand advances in biomedical engineering and sensorimotor restoration.

    Science.gov (United States)

    Pisotta, Iolanda; Perruchoud, David; Ionta, Silvio

    2015-05-15

    Living in a multisensory world entails the continuous sensory processing of environmental information in order to enact appropriate motor routines. The interaction between our body and our brain is the crucial factor for achieving such sensorimotor integration ability. Several clinical conditions dramatically affect the constant body-brain exchange, but the latest developments in biomedical engineering provide promising solutions for overcoming this communication breakdown. The ultimate technological developments succeeded in transforming neuronal electrical activity into computational input for robotic devices, giving birth to the era of the so-called brain-machine interfaces. Combining rehabilitation robotics and experimental neuroscience the rise of brain-machine interfaces into clinical protocols provided the technological solution for bypassing the neural disconnection and restore sensorimotor function. Based on these advances, the recovery of sensorimotor functionality is progressively becoming a concrete reality. However, despite the success of several recent techniques, some open issues still need to be addressed. Typical interventions for sensorimotor deficits include pharmaceutical treatments and manual/robotic assistance in passive movements. These procedures achieve symptoms relief but their applicability to more severe disconnection pathologies is limited (e.g. spinal cord injury or amputation). Here we review how state-of-the-art solutions in biomedical engineering are continuously increasing expectances in sensorimotor rehabilitation, as well as the current challenges especially with regards to the translation of the signals from brain-machine interfaces into sensory feedback and the incorporation of brain-machine interfaces into daily activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Distance Teaching of Environmental Engineering Courses at the Open University.

    Science.gov (United States)

    Porteous, Andrew; Nesaratnam, Suresh T.; Anderson, Judith

    1997-01-01

    Describes two integrated distance learning environmental engineering degree courses offered by the environmental engineering group of the Open University in Great Britain. Discusses admission requirements for courses, advantages offered by distance learning, professional accreditation, site visits, and tutors. (AIM)

  1. Report on the Results of the 1988 Survey of Former Biomedical Engineering Technology Students. Research Report Number 56.

    Science.gov (United States)

    Livieratos, Barbara B.

    In spring 1988, a telephone survey was conducted of students who had been enrolled in Howard Community College's (HCC's) Biomedical Engineering Technology (BMET) program between 1972 and 1987. The study sought to gather information for future student recruitment and program planning efforts. Responses were obtained from 43 (35%) of a potential…

  2. Objective and automated protocols for the evaluation of biomedical search engines using No Title Evaluation protocols.

    Science.gov (United States)

    Campagne, Fabien

    2008-02-29

    The evaluation of information retrieval techniques has traditionally relied on human judges to determine which documents are relevant to a query and which are not. This protocol is used in the Text Retrieval Evaluation Conference (TREC), organized annually for the past 15 years, to support the unbiased evaluation of novel information retrieval approaches. The TREC Genomics Track has recently been introduced to measure the performance of information retrieval for biomedical applications. We describe two protocols for evaluating biomedical information retrieval techniques without human relevance judgments. We call these protocols No Title Evaluation (NT Evaluation). The first protocol measures performance for focused searches, where only one relevant document exists for each query. The second protocol measures performance for queries expected to have potentially many relevant documents per query (high-recall searches). Both protocols take advantage of the clear separation of titles and abstracts found in Medline. We compare the performance obtained with these evaluation protocols to results obtained by reusing the relevance judgments produced in the 2004 and 2005 TREC Genomics Track and observe significant correlations between performance rankings generated by our approach and TREC. Spearman's correlation coefficients in the range of 0.79-0.92 are observed comparing bpref measured with NT Evaluation or with TREC evaluations. For comparison, coefficients in the range 0.86-0.94 can be observed when evaluating the same set of methods with data from two independent TREC Genomics Track evaluations. We discuss the advantages of NT Evaluation over the TRels and the data fusion evaluation protocols introduced recently. Our results suggest that the NT Evaluation protocols described here could be used to optimize some search engine parameters before human evaluation. Further research is needed to determine if NT Evaluation or variants of these protocols can fully substitute

  3. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  4. Examining the need & potential for biomedical engineering to strengthen health care delivery for displaced populations & victims of conflict.

    Science.gov (United States)

    Nadkarni, Devika; Elhajj, Imad; Dawy, Zaher; Ghattas, Hala; Zaman, Muhammad H

    2017-01-01

    Conflict and the subsequent displacement of populations creates unique challenges in the delivery of quality health care to the affected population. Equitable access to quality care demands a multi-pronged strategy with a growing need, and role, for technological innovation to address these challenges. While there have been significant contributions towards alleviating the burden of conflict via data informatics and analytics, communication technology, and geographic information systems, little has been done within biomedical engineering. This article elaborates on the causes for gaps in biomedical innovation for refugee populations affected by conflict, tackles preconceived notions, takes stock of recent developments in promising technologies to address these challenges, and identifies tangible action items to create a stronger and sustainable pipeline for biomedical technological innovation to improve the health and well-being of an increasing group of vulnerable people around the world.

  5. university engineering education and training in nigeria

    African Journals Online (AJOL)

    user

    entry process for all engineering faculties in the country, moderate academic ... chemical, civil, electrical, electronics, industrial, mechanical, metallurgical ..... and instructional methods improved to ... judiciously and economically applied.

  6. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications.

    Science.gov (United States)

    Telugu, Bhanu P; Park, Ki-Eun; Park, Chi-Hun

    2017-08-01

    Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.

  7. Biomedical engineering principles of modern cochlear implants and recent surgical innovations.

    Science.gov (United States)

    Eshraghi, Adrien A; Gupta, Chhavi; Ozdamar, Ozcan; Balkany, Thomas J; Truy, Eric; Nazarian, Ronen

    2012-11-01

    This review covers the most recent clinical and surgical advances made in the development and application of cochlear implants (CIs). In recent years, dramatic progress has been made in both clinical and basic science aspect of cochlear implantation. Today's modern CI uses multi-channel electrodes with highly miniaturized powerful digital processing chips. This review article describes the function of various components of the modern multi-channel CIs. A selection of the most recent clinical and surgical innovations is presented. This includes the preliminary results with electro-acoustic stimulation or hybrid devices and ongoing basic science research that is focused on the preservation of residual hearing post-implantation. The result of an original device that uses a binaural stimulation mode with a single implanted receiver/stimulator is also presented. The benefit and surgical design of a temporalis pocket technique for the implant's receiver stimulator is discussed. Advances in biomedical engineering and surgical innovations that lead to an increasingly favorable clinical outcome and to an expansion of the indication of CI surgery are presented and discussed. Copyright © 2012 Wiley Periodicals, Inc.

  8. A biomedical engineering approach to mitigate the errors of prostate biopsy.

    Science.gov (United States)

    Ahmed, Hashim Uddin; Emberton, Mark; Kepner, Gordon; Kepner, Jeremy

    2012-02-07

    The current protocol for detecting and ruling out prostate cancer involves serum PSA testing followed by sampling of the prostate using a transrectal ultrasonography (TRUS)-guided biopsy. Many specialists have discussed how PSA screening has contributed to underdetection of clinically significant prostate cancer, overdiagnosis of clinically insignificant disease and poor risk stratification; however, little consideration has been given to the role of TRUS-guided biopsy in these errors. The performance of TRUS-guided biopsy is constrained by the biomechanical attributes of the sampling strategy, resulting in suboptimal detection efficiency of each core. By using a biomedical engineering approach, a uniform grid sampling strategy could be used to improve the detection efficiency of prostate biopsy. Moreover, the calibration of the sampling can be adjusted by altering the distance between needle deployments. Our model shows that for any given number of needle trajectories, a uniform grid approach will be superior to a divergent, nonuniform strategy for the detection of clinically important disease. This is an important message that should result in a move away from divergent sampling to a uniform grid approach for prostate biopsy.

  9. How Nanotechnology and Biomedical Engineering Are Supporting the Identification of Predictive Biomarkers in Neuro-Oncology.

    Science.gov (United States)

    Ganau, Mario; Paris, Marco; Syrmos, Nikolaos; Ganau, Laura; Ligarotti, Gianfranco K I; Moghaddamjou, Ali; Prisco, Lara; Ambu, Rossano; Chibbaro, Salvatore

    2018-02-26

    The field of neuro-oncology is rapidly progressing and internalizing many of the recent discoveries coming from research conducted in basic science laboratories worldwide. This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers with a potential application in the management of patients with brain tumors. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials: all available basic science and clinical papers relevant to address the above-stated research question were included and analyzed in this study. Based on the results of this systematic review we can conclude that: (1) the advances in nanotechnology and bioengineering are supporting tremendous efforts in optimizing the methods for genomic, epigenomic and proteomic profiling; (2) a successful translational approach is attempting to identify a growing number of biomarkers, some of which appear to be promising candidates in many areas of neuro-oncology; (3) the designing of Randomized Controlled Trials will be warranted to better define the prognostic value of those biomarkers and biosignatures.

  10. How Nanotechnology and Biomedical Engineering Are Supporting the Identification of Predictive Biomarkers in Neuro-Oncology

    Directory of Open Access Journals (Sweden)

    Mario Ganau

    2018-02-01

    Full Text Available The field of neuro-oncology is rapidly progressing and internalizing many of the recent discoveries coming from research conducted in basic science laboratories worldwide. This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers with a potential application in the management of patients with brain tumors. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials: all available basic science and clinical papers relevant to address the above-stated research question were included and analyzed in this study. Based on the results of this systematic review we can conclude that: (1 the advances in nanotechnology and bioengineering are supporting tremendous efforts in optimizing the methods for genomic, epigenomic and proteomic profiling; (2 a successful translational approach is attempting to identify a growing number of biomarkers, some of which appear to be promising candidates in many areas of neuro-oncology; (3 the designing of Randomized Controlled Trials will be warranted to better define the prognostic value of those biomarkers and biosignatures.

  11. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-11-01

    Full Text Available Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.

  12. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications.

    Science.gov (United States)

    Gunduz, O; Gode, C; Ahmad, Z; Gökçe, H; Yetmez, M; Kalkandelen, C; Sahin, Y M; Oktar, F N

    2014-07-01

    The fabrication and characterization of bovine hydroxyapatite (BHA) and cerium oxide (CeO2) composites are presented. CeO2 (at varying concentrations 1, 5 and 10wt%) were added to calcinated BHA powder. The resulting mixtures were shaped into green cylindrical samples by powder pressing (350MPa) followed by sintering in air (1000-1300°C for 4h). Density, Vickers microhardness (HV), compression strength, scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies were performed on the products. The sintering behavior, microstructural characteristics and mechanical properties were evaluated. Differences in the sintering temperature (for 1wt% CeO2 composites) between 1200 and 1300°C, show a 3.3% increase in the microhardness (564 and 582.75HV, respectively). Composites prepared at 1300°C demonstrate the greatest compression strength with comparable results for 5 and 10wt% CeO2 content (106 and 107MPa) which are significantly better than those for 1wt% and those that do not include any CeO2 (90 and below 60MPa, respectively). The results obtained suggest optimal parameters to be used in preparation of BHA and CeO2 composites, while also highlighting the potential of such materials in several biomedical engineering applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications.

    Science.gov (United States)

    Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng

    2016-08-01

    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.

  14. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  15. Design and implementation of Metta, a metasearch engine for biomedical literature retrieval intended for systematic reviewers.

    Science.gov (United States)

    Smalheiser, Neil R; Lin, Can; Jia, Lifeng; Jiang, Yu; Cohen, Aaron M; Yu, Clement; Davis, John M; Adams, Clive E; McDonagh, Marian S; Meng, Weiyi

    2014-01-01

    Individuals and groups who write systematic reviews and meta-analyses in evidence-based medicine regularly carry out literature searches across multiple search engines linked to different bibliographic databases, and thus have an urgent need for a suitable metasearch engine to save time spent on repeated searches and to remove duplicate publications from initial consideration. Unlike general users who generally carry out searches to find a few highly relevant (or highly recent) articles, systematic reviewers seek to obtain a comprehensive set of articles on a given topic, satisfying specific criteria. This creates special requirements and challenges for metasearch engine design and implementation. We created a federated search tool that is connected to five databases: PubMed, EMBASE, CINAHL, PsycINFO, and the Cochrane Central Register of Controlled Trials. Retrieved bibliographic records were shown online; optionally, results could be de-duplicated and exported in both BibTex and XML format. The query interface was extensively modified in response to feedback from users within our team. Besides a general search track and one focused on human-related articles, we also added search tracks optimized to identify case reports and systematic reviews. Although users could modify preset search options, they were rarely if ever altered in practice. Up to several thousand retrieved records could be exported within a few minutes. De-duplication of records returned from multiple databases was carried out in a prioritized fashion that favored retaining citations returned from PubMed. Systematic reviewers are used to formulating complex queries using strategies and search tags that are specific for individual databases. Metta offers a different approach that may save substantial time but which requires modification of current search strategies and better indexing of randomized controlled trial articles. We envision Metta as one piece of a multi-tool pipeline that will assist

  16. Views on the peer review system of biomedical journals: an online survey of academics from high-ranking universities

    Science.gov (United States)

    2013-01-01

    Background Peer review is the major method used by biomedical journals for making the decision of publishing an article. This cross-sectional survey assesses views concerning the review system of biomedical journals among academics globally. Methods A total of 28,009 biomedical academics from high-ranking universities listed by the 2009 Times Higher Education Quacquarelli Symonds (THE-QS) World University Rankings were contacted by email between March 2010 and August 2010. 1,340 completed an online survey which focused on their academic background, negative experiences and views on biomedical journal peer review and the results were compared among basic scientists, clinicians and clinician scientists. Results Fewer than half of the respondents agreed that the peer review systems of biomedical journals were fair (48.4%), scientific (47.5%), or transparent (25.1%). Nevertheless, 58.2% of the respondents agreed that authors should remain anonymous and 64.4% agreed that reviewers should not be disclosed. Most, (67.7%) agreed to the establishment of an appeal system. The proportion of native English-speaking respondents who agreed that the “peer review system is fair” was significantly higher than for non-native respondents (p = 0.02). Similarly, the proportion of clinicians stating that the “peer review system is fair” was significantly higher than that for basic scientists and clinician-scientists (p = 0.004). For females, (β = −0.1, p = 0.03), the frequency of encountering personal attacks in reviewers’ comments (β = −0.1, p = 0.002) and the frequency of imposition of unnecessary references by reviewers (β = −0.06, p = 0.04) were independently and inversely associated with agreement that “the peer review system is fair”. Conclusion Academics are divided on the issue of whether the biomedical journal peer review system is fair, scientific and transparent. A majority of academics agreed with the double-blind peer

  17. Centre for nuclear engineering University of Toronto annual report 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The annual report of the Centre for Nuclear Engineering, University of Toronto covers the following subjects: message from the Dean; Chairman's message; origins of the centre; formation of the centre; new nuclear appointments; and activities of the centre, 1984

  18. Engineering Education at a New Public University in Brazil: First Students' Contact with Engineering Methods

    Science.gov (United States)

    Romero, Jesus Franklin A.; Leite, Patricia; Mantovani, Gerson L.; Lanfredi, Alexandre J. C.; Martins-Filho, Luiz S.

    2011-01-01

    This paper describes the experience of an introductory discipline to the engineering curricula at the Brazilian Federal University of ABC (UFABC). The university offers a common basic curriculum that must be accomplished by every student and can be followed by professionalising courses. The discipline "Introduction to Engineering"…

  19. Engineering Education in Research-Intensive Universities

    Science.gov (United States)

    Alpay, E.; Jones, M. E.

    2012-01-01

    The strengths and weaknesses of engineering education in research-intensive institutions are reported and key areas for developmental focus identified. The work is based on a questionnaire and session summaries used during a two-day international conference held at Imperial College London. The findings highlight several common concerns, such as…

  20. CALL FOR PAPERS: Special cluster in Biomedical Optics: honouring Professor Valery Tuchin, Saratov University

    Science.gov (United States)

    Wang, Ruikang K.; Priezzhev, Alexander; Fantini, Sergio

    2004-07-01

    To honour Professor Valery Tuchin, one of the pioneers in biomedical optics, Journal of Physics D: Applied Physics invites manuscript submissions on topics in biomedical optics, for publication in a Special section in May 2005. Papers may cover a variety of topics related to photon propagation in turbid media, spectroscopy and imaging. This Special cluster will reflect the diversity, breadth and impact of Professor Tuchin's contributions to the field of biomedical optics over the course of his distinguished career. Biomedical optics is a recently emerged discipline providing a broad variety of optical techniques and instruments for diagnostic, therapeutic and basic science applications. Together with contributions from other pioneers in the field, Professor Tuchin's work on fundamental and experimental aspects in tissue optics contributed enormously to the formation of this exciting field. Although general submissions in biomedical optics are invited, the Special cluster Editors especially encourage submissions in areas that are explicitly or implicitly influenced by Professor Tuchin's contributions to the field of biomedical optics. Manuscripts submitted to this Special cluster of Journal of Physics D: Applied Physics will be refereed according to the normal criteria and procedures of the journal, in accordance with the following schedule: Deadline for receipt of contributed papers: 31 November 2004 Deadline for acceptance and completion of refereeing process: 28 February 2005 Publication of special issue: May 2005 Please submit your manuscript electronically to jphysd@iop.org or via the Web site at www.iop.org/Journals. Otherwise, please send a copy of your typescript, a set of original figures and a cover letter to: The Publishing Administrator, Journal of Physics D: Applied Physics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, United Kingdom. Further information on how to submit may be obtained upon request by e-mailing the

  1. Cosmic Accelerators: Engines of the Extreme Universe

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Stefan

    2009-06-23

    The universe is home to numerous exotic and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. While the night sky appears calm, it is populated by colossal explosions, jets from supermassive black holes, rapidly rotating neutron stars, and shock waves of gas moving at supersonic speeds. These accelerators in the sky boost particles to energies far beyond those we can produce on earth. New types of telescopes, including the Fermi Gamma-ray Space Telescope orbiting in space, are now discovering a host of new and more powerful accelerators. Please come and see how these observations are revising our picture of the most energetic phenomena in the universe.

  2. Biomedical engineering support. Annual progress report, August 15, 1974--August 14, 1975. [/sup 238/PuO/sub 2/-powered mechanical heart

    Energy Technology Data Exchange (ETDEWEB)

    Kolff, W.J.; Smith, L.M.; Sandquist, G.M.

    1975-01-01

    The major responsibility of the Institute for Biomedical Engineering at the University of Utah under the ERDA Artificial Heart Program has been to provide in vitro and in vivo experimental data and evaluation of the anatomical fitting, accommodation, performance and adequacy of the artificial heart system and its components as they are developed in the ERDA Program and provided to the Institute for study. The Institute also has the responsibility of designing, constructing and testing the blood handling components of the Blood Pump and insuring reliability, durability and satisfactory performance of these system components. During the reporting period, nine total heart replacement experiments were performed in calves using the ERDA Blood Pump powered by an electric motor implanted in the abdomen. Results of the experiments are given. Ultimately the mechanical heart will be powered by a radioisotope heat source. (TFD)

  3. Capital Investment for the Future of Biomedical Research: A University Chief Financial Officer's View.

    Science.gov (United States)

    Massy, William F.

    1989-01-01

    Three principal aspects of capital needs in biomedical research are discussed: the significant and growing need for capital; sources; and the role of federal policy. Important assumptions, questions, and possible future trends are discussed. Consolidated thinking and effort are encouraged. (MSE)

  4. Materials Science & Engineering | Classification | College of Engineering &

    Science.gov (United States)

    Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  5. Women in biomedical engineering and health informatics and its impact on gender representation for accepted publications at IEEE EMBC 2007.

    Science.gov (United States)

    McGregor, Carolyn; Smith, Kathleen P; Percival, Jennifer

    2008-01-01

    The study of women within the professions of Engineering and Computer Science has consistently been found to demonstrate women as a minority within these professions. However none of that previous work has assessed publication behaviours based on gender. This paper presents research findings on gender distribution of authors of accepted papers for the IEEE Engineering and Medicine Society annual conference for 2007 (EMBC '07) held in Lyon, France. This information is used to present a position statement of the current state of gender representation for conference publication within the domain of biomedical engineering and health informatics. Issues in data preparation resulting from the lack of inclusion of gender in information gathered from accepted authors are presented and discussed.

  6. Efficient Techniques of Sparse Signal Analysis for Enhanced Recovery of Information in Biomedical Engineering and Geosciences

    KAUST Repository

    Sana, Furrukh

    2016-11-01

    Sparse signals are abundant among both natural and man-made signals. Sparsity implies that the signal essentially resides in a small dimensional subspace. The sparsity of the signal can be exploited to improve its recovery from limited and noisy observations. Traditional estimation algorithms generally lack the ability to take advantage of signal sparsity. This dissertation considers several problems in the areas of biomedical engineering and geosciences with the aim of enhancing the recovery of information by exploiting the underlying sparsity in the problem. The objective is to overcome the fundamental bottlenecks, both in terms of estimation accuracies and required computational resources. In the first part of dissertation, we present a high precision technique for the monitoring of human respiratory movements by exploiting the sparsity of wireless ultra-wideband signals. The proposed technique provides a novel methodology of overcoming the Nyquist sampling constraint and enables robust performance in the presence of noise and interferences. We also present a comprehensive framework for the important problem of extracting the fetal electrocardiogram (ECG) signals from abdominal ECG recordings of pregnant women. The multiple measurement vectors approach utilized for this purpose provides an efficient mechanism of exploiting the common structure of ECG signals, when represented in sparse transform domains, and allows leveraging information from multiple ECG electrodes under a joint estimation formulation. In the second part of dissertation, we adopt sparse signal processing principles for improved information recovery in large-scale subsurface reservoir characterization problems. We propose multiple new algorithms for sparse representation of the subsurface geological structures, incorporation of useful prior information in the estimation process, and for reducing computational complexities of the problem. The techniques presented here enable significantly

  7. Development and Experimental Study of Education Through the Synergetic Training for the Engineering Enhanced Medicine “ESTEEM” in Tohoku University

    Science.gov (United States)

    Yamano, Masahiro; Matsuki, Noriaki; Numayama, Keiko; Takeda, Motohiro; Hayasaka, Tomoaki; Ishikawa, Takuji; Yamaguchi, Takami

    We developed new bio-medical engineering curriculum for industrial engineers, and we confirmed that the engineer's needs and the educative effects by holding a trail program. This study in Tohoku University was supported by the Ministry of Economy, Trade and Industry (METI) . We named the curriculum as “ESTEEM” which is acronym of project title “Education through the Synergetic Training for the Engineering Enhanced Medicine” . In Tohoku University, the “REDEEM” curriculum which is an entry level course of bio-medical engineering for engineers has been already held. The positioning of “ESTEEM” program is an advanced course to enhance knowledge and experience in clinical point of view. The program is consisted of the problem based learning (PBL) style lectures, practical training, and observation learning in hospital. It is a unique opportunity to have instruction by doctors, from diagnosis to surgical operation, from traditional technique to front-line medical equipment. In this paper, we report and discuss on the progress of the new bio-medical engineering curriculum.

  8. Development of university-industry partnerships in railroad engineering education

    Science.gov (United States)

    Lautala, Pasi T.

    Rail transportation has been an important part of the North American transportation network since the 19th century and it continues to be a major contributor to the economic well-being and the global competitiveness of the U.S. The recent expansion in freight rail volumes and forecasts for continuous growth, together with more favorable attitudes for urban passenger rail present several challenges for the rail industry. One of the challenges is the availability of a well educated engineering workforce. The rail industry has recognized a need to attract new railroad professionals from various disciplines for management and technical positions, but most universities eliminated railroad engineering from their curricula after the recruitment levels faded several decades ago. Today, railroad expertise and related engineering courses exist at only a few universities and most students graduate without any exposure to rail topics. While industry representatives have expressed their concern about a future workforce, little data is available on the extent of the demand, on the characteristics and skills of preferred candidates, and on the role that universities can play. A benchmarking study was undertaken to investigate the demand for university engineering graduates and assess whether current methods are sufficient to attract, educate, recruit, train and retain engineering students in the railroad profession. Data was collected from industry human resources and training managers to define the quantitative and qualitative needs for railroad engineers. In addition, recently hired engineers working in the rail industry were surveyed to determine the extent of their university exposure in rail topics and how it affected their career choice. The surveys indicated an increase of over 300 percent in the annual recruitment for railroad engineers by the participating companies between 2002 and 2005. Recruitment levels are expected to remain high for the next five to ten years due

  9. Biomedical image analysis recipes in Matlab for life scientists and engineers

    CERN Document Server

    Reyes-Aldasoro, Constantino Carlos

    2015-01-01

    As its title suggests, this innovative book has been written for life scientists needing to analyse their data sets, and programmers, wanting a better understanding of the types of experimental images life scientists investigate on a regular basis. Each chapter presents one self-contained biomedical experiment to be analysed. Part I of the book presents its two basic ingredients: essential concepts of image analysis and Matlab. In Part II, algorithms and techniques are shown as series of 'recipes' or solved examples that show how specific techniques are applied to a biomedical experiments like

  10. The University, the Market, and the Geodetic Engineer or

    DEFF Research Database (Denmark)

    Stubkjær, Erik

    2002-01-01

    In Europe, universities have existed for more than 800 years. The university is the place in society for higher learning and related research. Through the ages, the universities have enjoyed a remarkably freedom relative to religious and secular powers. In recent years, the objectives and practises...... project, which concerned the education of geodetic engineers in Slovenia. The body of the paper presents a selection of ideas that shaped the university through the centuries, with a view to balance the present interest in advancing market-directed behaviour....

  11. CASEIB 2016: 34. annual congress of the Spanish Society of Biomedical Engineering, 23-25 November 2016, Valencia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    Nowadays SEIB has members of Spanish research groups in Bioelectronics, Physiological System Modelization, Telemedicine, Biomechanics, Biosignal Processing, Bioinformatics,…, besides other members froms Health institutions and companies. The main public activity of SEIB is the organization of a annual congress (CASEIB) that presents scientific papers in order to diseminate into research groups, students, companies and institutions the latest works and advances of Spanish researches that year. Together with this Conference, the Main Meeting of the Society and the Conference of the Thematic Network on Biomedical Engineering (REDINBIO) are hold, as a meeting point of the researchers belonging to this network.

  12. Importance of intellectual property generated by biomedical research at universities and academic hospitals.

    Science.gov (United States)

    Heus, Joris J; de Pauw, Elmar S; Leloux, Mirjam; Morpurgo, Margherita; Hamblin, Michael R; Heger, Michal

    2017-01-01

    Biomedical research has many different facets. Researchers and clinicians study disease biology and biochemistry to discover novel therapeutic targets, unravel biochemical pathways and identify biomarkers to improve diagnosis, or devise new approaches to clinically manage diseases more effectively. In all instances, the overall goal of biomedical research is to ensure that results thereof (such as a therapy, a device, or a method which may be broadly referred to as "inventions") are clinically implemented. Most of the researchers' efforts are centered on the advance of technical and scientific aspects of an invention. The development and implementation of an invention can be arduous and very costly. Historically, it has proven to be crucial to protect intellectual property rights (IPR) to an invention (i.e., a patent) to ensure that companies can obtain a fair return on their investment that is needed to develop an academic invention into a product for the benefit of patients. However, the importance of IPR is not generally acknowledged among researchers at academic institutions active in biomedical research. Therefore this paper aims to (1) raise IP awareness amongst clinical and translational researchers; (2) provide a concise overview of what the patenting trajectory entails; and (3) highlight the importance of patenting for research and the researcher. Adequate patent protection of inventions generated through biomedical research at academic institutions increases the probability that patients will benefit from these inventions, and indirectly enables the financing of clinical studies, mainly by opening up funding opportunities (e.g. specific grants aimed at start-ups, pre-seed and seed capital) that otherwise would not be accessible. As a consequence, patented inventions are more likely to become clinically tested and reach the market, providing patients with more treatment options.

  13. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, 'Yayoi', electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  14. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This is an annual report prepared on research education action, operation state of research instruments and others in FY 1995 at Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The laboratory has four large instruments such as high speed neutron source reactor, `Yayoi`, electron linac, fundamentally experimental equipment for blanket design of nuclear fusion reactor, and heavy radiation research equipment (HIT), of which former two are used for cooperative research with universities in Japan, and the next blanket and the last HIT are also presented for cooperative researches in Faculty of Engineering and in University of Tokyo, respectively. FY 1995 was the beginning year of earnest discussion on future planning of this facility with concentrated effort. These four large research instruments are all in their active use. And, their further improvement is under preparation. In this report, the progress in FY 1995 on operation and management of the four large instruments are described at first, and on next, research actions, contents of theses for degree and graduation of students as well as research results of laboratory stuffs are summarized. These researches are constituted mainly using these large instruments in the facility, aiming at development of advanced and new field of atomic energy engineering and relates to nuclear reactor first wall engineering, nuclear reactor fuel cycle engineering, electromagnetic structure engineering, thermal-liquid engineering, mathematical information engineering, quantum beam engineering, new type reactor design and so on. (G.K.)

  15. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.

    Science.gov (United States)

    Luo, Zhentao; Zheng, Kaiyuan; Xie, Jianping

    2014-05-25

    Gold and silver nanoclusters or Au/Ag NCs with core sizes smaller than 2 nm have been an attractive frontier of nanoparticle research because of their unique physicochemical properties such as well-defined molecular structure, discrete electronic transitions, quantized charging, and strong luminescence. As a result of these unique properties, ultrasmall size, and good biocompatibility, Au/Ag NCs have great potential for a variety of biomedical applications, such as bioimaging, biosensing, antimicrobial agents, and cancer therapy. In this feature article, we will first discuss some critical biological considerations, such as biocompatibility and renal clearance, of Au/Ag NCs that are applied for biomedical applications, leading to some design criteria for functional Au/Ag NCs in the biological settings. According to these biological considerations, we will then survey some efficient synthetic strategies for the preparation of protein- and peptide-protected Au/Ag NCs with an emphasis on our recent contributions in this fast-growing field. In the last part, we will highlight some potential biomedical applications of these protein- and peptide-protected Au/Ag NCs. It is believed that with continued efforts to understand the interactions of biomolecule-protected Au/Ag NCs with the biological systems, scientists can largely realize the great potential of Au/Ag NCs for biomedical applications, which could finally pave their way towards clinical use.

  16. Nuclear biomedical and hospital waste management at the University of Brussels (VUB): optimization in the Belgian context

    International Nuclear Information System (INIS)

    Eggermont, G.; Covens, P.

    2002-01-01

    Low level nuclear waste (LLW) from biomedical research laboratories and from hospitals has specific characteristics, requiring a different management than the LLW from nuclear energy. Biomedical waste generally does not contain emitters and essentially consists of short-lived β/γ-emitters and a range of pure β-emitters, which are difficult to measure. Except for 3 H and 1 4C , the radionuclides found in biomedical waste have half-lives less then 100 days and hence do not require nuclear disposal. Limited quantities of accelerator activation products (mainly 6 5Z n and 6 0C o) and compact sealed sources of 6 0C o, 1 37C s, 2 26R a and 1 92I r form the only exceptions. National nuclear waste agencies typically do not have a specific policy for treatment and disposal of this type of LLW. In 2001 new price increases were announced for specific categories of this waste. They were implemented by NIRAS/ONDRAF early 2002. The major universities and academic hospitals expressed concern. The Health Council has considered the problem and has recently recommended to the authorities a set of measures to prevent non authorised liberation of this waste. Moreover non-nuclear waste companies have noticed a considerable growing inventory of radioactivity in incoming waste transports before treatment. A variety of radionuclides and activities were found in a diversity of origins from municipal waste over medical waste to industrial waste. Dismantling of accelerators and their shielding could add considerable amounts of waste. Due to the escalating costs and the lack of acceptance of near-surface disposal facilities, the university of Brussels (VUB) and its hospital, have developed a successful on-site waste decay storage program in collaboration with Canberra Europe, which is discussed hereafter

  17. Proceedings of the Joint Conference of Australasian College of Physical Scientists and Engineers in Medicine and IEAust College of Biomedical Engineers; Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society

    International Nuclear Information System (INIS)

    1996-01-01

    This is a celebration of the centenary of Rontgen''s discovery of Xrays. It is also the 50th anniversary of the first hospital physicist appointment in New Zealand. The historical element of the programme will complement the emphasis on current applications of the physical and engineering sciences to medicine and an anticipation of future developments. For the first time the Australasian College of Physical Scientists and Engineers in Medicine, together with the IEAust College of Biomedical Engineers, are joined by the Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society to make this a truly international conference. The proceedings include many papers on radiology and radiotherapy

  18. Gender Writ Small: Gender Enactments and Gendered Narratives about Lab Organization and Knowledge Transmission in a Biomedical Engineering Research Setting

    Science.gov (United States)

    Malone, Kareen Ror; Nersessian, Nancy J.; Newstetter, Wendy

    This article presents qualitative data and offers some innovative theoretical approaches to frame the analysis of gender in science, technology, engineering, and mathematics (STEM) settings. It begins with a theoretical discussion of a discursive approach to gender that captures how gender is lived "on the ground." The authors argue for a less individualistic approach to gender. Data for this research project was gathered from intensive interviews with lab members and ethnographic observations in a biomedical engineering lab. Data analysis relied on a mixed methodology involving qualitative approaches and dialogues with findings from other research traditions. Three themes are highlighted: lab dynamics in relation to issues of critical mass, the division of labor, and knowledge transmission. The data illustrate how gender is created in interactions and is inflected through forms of social organization.

  19. Development of security engineering curricula at US universities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.L.

    1998-08-01

    The Southwest Surety Institute was formed in June 1996 by Arizona State University (ASU), New Mexico Institute of Mining and Technology (NM Tech), New Mexico State University (NMSU), and Sandia National Laboratories (SNL) to provide educational programs in Security Engineering, and to conduct research and development in security technologies. This is the first science-based program of its kind in the US, focused on educating Security Engineers to help government and industry address their security needs. Each member brings a unique educational capability to the Institute. NM Tech has a formidable explosives testing and evaluation facility. ASU is developing a Masters program in Security Engineering at their School of Technology located on a new campus in Mesa, Arizona. NMSU provides a Security Technology minor, merging programs in Criminal Justice and Engineering Technology. The Sandia National Laboratories security system design and evaluation process forms the basis for the Security Engineering curricula. In an effort to leverage the special capabilities of each university, distance education will be used to share courses among Institute members and eventually with other sites across the country.

  20. Environmental engineering at the University of Strathclyde in Glasgow

    NARCIS (Netherlands)

    Clarke, J.A.; Hensen, J.L.M.; Johnstone, C.M.; McLean, R.C.

    1994-01-01

    This paper describes the recently revised curriculum for the Environmental Engineering course at the University of Strathclyde in Glasgow. This is done in relation to course content and scope, design and research projects, the role of experimentation and the deployment of advanced computing in terms

  1. The University of Michigan's Computer-Aided Engineering Network.

    Science.gov (United States)

    Atkins, D. E.; Olsen, Leslie A.

    1986-01-01

    Presents an overview of the Computer-Aided Engineering Network (CAEN) of the University of Michigan. Describes its arrangement of workstations, communication networks, and servers. Outlines the factors considered in hardware and software decision making. Reviews the program's impact on students. (ML)

  2. What do job adverts tell Higher Education about the ‘shape’ of Biomedical Engineering graduates?

    OpenAIRE

    Baruah, Bidyut Jyoti; Ward, Anthony Edward; Gbadebo, Adeyosola Adekunle

    2016-01-01

    Higher Education Institutions are required, at least in some Countries, to design their curricula taking into account the needs of relevant industry. Use of Industrial Advisory Committees is a common way of demonstrating this input. This paper explores an additional window to industry needs through the textual analysis of job advertisements. 36 internet published adverts using the “Biomedical Engineering” search phrase were downloaded and textually analysed to identify the mentioned technical...

  3. Optical coherence tomography: technology and applications (biological and medical physics, biomedical engineering)

    CERN Document Server

    2013-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is emerging as a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue. This book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from biomedical and clinical perspectives. The chapters are written by leading research groups, in a style comprehensible to a broad audience.

  4. Biomedical devices engineered based on the control of the surface wettability

    OpenAIRE

    Oliveira, Nuno Miguel Ribeiro de

    2017-01-01

    Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais The wettability control has been showed as an important parameter for several systems and applications on the biomedical field. Once the surface wettability has crucial influence in protein adsorption and cell adhesion. Here, the focus was on the technology development based on the advanced control of wettability in surfaces, tuning directly the surface characteristics or modifying surface...

  5. Teaching WWERs at Hacettepe University Nuclear Engineering Department in Turkey

    International Nuclear Information System (INIS)

    Ergun, S.

    2011-01-01

    In this study, the challenges faced in the teaching WWER design for the reactor engineering course, which is taught in the Hcettepe University Nuclear Engineering Department are discussed. Since the course is designated taking a western reactor design into account, the computer programs and class projects prepared for the course include models and correlations suitable for these designs. The attempts for modifying the course and developing codes or programs for the course become a challenge especially in finding proper information sources on design in English. From finding proper material properties to exploring the design ideas, teaching WWER designs and using analysis tools for better teaching are very important to modify the reactor engineering course. With the study presented here, the reactor engineering course taught is described, the teaching tools are listed and attempts of modifying the course to teach and analyze WWER designs are explained

  6. Use of university research reactors to teach control engineering

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1991-01-01

    University research reactors (URRs) have provided generations of students with the opportunity to receive instruction and do hands-on work in reactor dynamics, neutron scattering, health physics, and neutron activation analysis. Given that many URRs are currently converting to programmable control systems, the opportunity now exists to provide a similar learning experience to those studying systems control engineering. That possibility is examined here with emphasis on the need for the inclusion of experiment in control engineering curricula, the type of activities that could be performed, and safety considerations

  7. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1990-01-01

    The research and teaching operations of the Nuclear Chemistry Division of the Dept. of Chemistry and the Dept. of Nuclear Engineering are housed at the Oregon State University Radiation Center. This facility which includes a 1.1 MW TRIGA reactor was used for 53 classes from a number of different academic departments last year. About one-half of these classes used the reactor and ∼25% of the reactor's 45 hour week was devoted to teaching. Descriptions will be given of reactor-oriented instructional programs in nuclear engineering, radiation health and nuclear chemistry. In nuclear chemistry, classes in (a) nuclear chemistry for nuclear engineers, (b) radiotracer methods, (c) elementary and advanced activation analysis, and (d) advanced nuclear instrumentation will be described in detail. The use of the facility to promote general nuclear literacy among college students, high school and grade school students and the general population will also be covered

  8. Preliminary comparison of the Essie and PubMed search engines for answering clinical questions using MD on Tap, a PDA-based program for accessing biomedical literature.

    Science.gov (United States)

    Sutton, Victoria R; Hauser, Susan E

    2005-01-01

    MD on Tap, a PDA application that searches and retrieves biomedical literature, is specifically designed for use by mobile healthcare professionals. With the goal of improving the usability of the application, a preliminary comparison was made of two search engines (PubMed and Essie) to determine which provided most efficient path to the desired clinically-relevant information.

  9. BioSTEC 2017: 10th International Joint Conference on Biomedical Engineering Systems and Technologies : Proceedings Volume 5: HealthInf

    NARCIS (Netherlands)

    2017-01-01

    This book contains the proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017). This conference is sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC), in cooperation with the ACM

  10. Annual report of Radiation Laboratory Department of Nuclear Engineering Faculty of Engineering, Kyoto University

    International Nuclear Information System (INIS)

    1993-07-01

    This publication is the collection of the papers presented research activities of Radiation laboratory, Department of Nuclear Engineering, Kyoto University during the 1992 academic/fiscal year (April, 1992 - March, 1993). The 48 of the presented papers are indexed individually. (J.P.N.)

  11. Software Engineering Education at Carnegie Mellon University: One University; Programs Taught in Two Places

    Directory of Open Access Journals (Sweden)

    Ray Bareiss

    2009-10-01

    Full Text Available Teaching Software Engineering to professional master‟s students is a challenging endeavor, and arguably for the past 20 years, Carnegie Mellon University has been quite successful. Although CMU teaches Software Engineering at sites world-wide and uses different pedagogies, the goal of the curriculum -- to produce world-class software engineers -- remains constant. This paper will discuss two of the most mature versions of Carnegie Mellon‟s Software Engineering program -- the main campus program and its "daughter program" at the Silicon Valley Campus. We discuss the programs with respect to the dimensions of curriculum, how students work and learn, how faculty teach, curricular materials, and how students are assessed to provide insight into how Carnegie Mellon continues to keep its programs fresh, to adapt them to local needs, and to meet its goal of excellence after 20 years.

  12. 2016 Milwaukee Engineering Research Conference | College of Engineering &

    Science.gov (United States)

    Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  13. ICNBME-2011: International Conference on Nanotechnologies and Biomedical Engineering; German-Moldovan Workshop on Novel Nanomaterials for Electronic, Photonic and Biomedical Applications. Proceedings

    International Nuclear Information System (INIS)

    Tiginyanu, Ion; Sontea, Victor

    2011-01-01

    This book includes articles which cover a vast range of subjects, such as: nano technologies and nano materials, micro- and nano-objects, nanostructured and highly integrated systems, biophysics, biomedical instrumentation and devices, biomaterials, medical imaging, information technologies for health care, tele medicine, etc.

  14. ICNBME-2013: 2. international conference on nanotechnologies and biomedical engineering; German-Moldovan workshop on novel nanomaterials for electronic, photonic and biomedical applications. Proceedings

    International Nuclear Information System (INIS)

    Tiginyanu, Ion; Sontea, Victor

    2013-01-01

    This book includes articles which cover a vast range of subjects, such as: nano technologies and nano materials, micro- and nano-objects, nanostructured and highly integrated systems, biophysics, biomedical instrumentation and devices, biomaterials, medical imaging, information technologies for health care, tele medicine, etc.

  15. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  16. Breaking out of the biomed box: an audit assessment and recommendations for an in-house biomedical engineering program.

    Science.gov (United States)

    Dickey, David M; Jagiela, Steven; Fetters, Dennis

    2003-01-01

    In order to assess the current performance and to identify future growth opportunities of an in-house biomedical engineering (BME) program, senior management of Lehigh Valley Hospital (Allentown, Penn) engaged (in July 2001) the services of a clinical engineering consultant. Although the current in-house program was both functionally and financially sound, an independent audit had not been performed in over 4 years, and there were growing concerns by the BME staff related to the department's future leadership and long-term support from senior management. After an initial 2-month audit of the existing program, the consultant presented 41 separate recommendations for management's consideration. In order to refine and implement these recommendations, 5 separate committees were established to further evaluate a consolidated version of them, with the consultant acting as the facilitator for each group. Outcomes from each of the committees were used in the development of a formal business plan, which, upon full implementation, would not only strengthen and refine the current in-house service model but could also result in a substantial 3-year cost savings for the organization ($1,100,000 from existing operations, $500,000 in cost avoidance by in-sourcing postwarranty support of future capital equipment acquisitions). Another key outcome of the project was related to the development of a new master policy, titled the "Medical Equipment Management Program," complete with a newly defined state-of-the-art equipment scheduled inspection frequency model.

  17. Development and evaluation of a biomedical search engine using a predicate-based vector space model.

    Science.gov (United States)

    Kwak, Myungjae; Leroy, Gondy; Martinez, Jesse D; Harwell, Jeffrey

    2013-10-01

    Although biomedical information available in articles and patents is increasing exponentially, we continue to rely on the same information retrieval methods and use very few keywords to search millions of documents. We are developing a fundamentally different approach for finding much more precise and complete information with a single query using predicates instead of keywords for both query and document representation. Predicates are triples that are more complex datastructures than keywords and contain more structured information. To make optimal use of them, we developed a new predicate-based vector space model and query-document similarity function with adjusted tf-idf and boost function. Using a test bed of 107,367 PubMed abstracts, we evaluated the first essential function: retrieving information. Cancer researchers provided 20 realistic queries, for which the top 15 abstracts were retrieved using a predicate-based (new) and keyword-based (baseline) approach. Each abstract was evaluated, double-blind, by cancer researchers on a 0-5 point scale to calculate precision (0 versus higher) and relevance (0-5 score). Precision was significantly higher (psearching than keywords, laying the foundation for rich and sophisticated information search. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. The Neurolab mission and biomedical engineering: a partnership for the future

    Science.gov (United States)

    Liskowsky, D. R.; Frey, M. A.; Sulzman, F. M.; White, R. J.; Likowsky, D. R.

    1996-01-01

    Over the last five years, with the advent of flights of U.S. Shuttle/Spacelab missions dedicated entirely to life sciences research, the opportunities for conducting serious studies that use a fully outfitted space laboratory to better understand basic biological processes have increased. The last of this series of Shuttle/Spacelab missions, currently scheduled for 1998, is dedicated entirely to neuroscience and behavioral research. The mission, named Neurolab, includes a broad range of experiments that build on previous research efforts, as well as studies related to less mature areas of space neuroscience. The Neurolab mission provides the global scientific community with the opportunity to use the space environment for investigations that exploit microgravity to increase our understanding of basic processes in neuroscience. The results from this premier mission should lead to a significant advancement in the field as a whole and to the opening of new lines of investigation for future research. Experiments under development for this mission will utilize human subjects as well as a variety of other species. The capacity to carry out detailed experiments on both human and animal subjects in space allows a diverse complement of studies that investigate functional changes and their underlying molecular, cellular, and physiological mechanisms. In order to conduct these experiments, a wide array of biomedical instrumentation will be used, including some instruments and devices being developed especially for the mission.

  19. Thermoelectric applications as related to biomedical engineering for NASA Johnson Space Center

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, C D

    1997-07-01

    This paper presents current NASA biomedical developments and applications using thermoelectrics. Discussion will include future technology enhancements that would be most beneficial to the application of thermoelectric technology. A great deal of thermoelectric applications have focused on electronic cooling. As with all technological developments within NASA, if the application cannot be related to the average consumer, the technology will not be mass-produced and widely available to the public (a key to research and development expenditures and thermoelectric companies). Included are discussions of thermoelectric applications to cool astronauts during launch and reentry. The earth-based applications, or spin-offs, include such innovations as tank and race car driver cooling, to cooling infants with high temperatures, as well as, the prevention of hair loss during chemotherapy. In order to preserve the scientific value of metabolic samples during long-term space missions, cooling is required to enable scientific studies. Results of one such study should provide a better understanding of osteoporosis and may lead to a possible cure for the disease. In the space environment, noise has to be kept to a minimum. In long-term space applications such as the International Space Station, thermoelectric technology provides the acoustic relief and the reliability for food, as well as, scientific refrigeration/freezers. Applications and future needs are discussed as NASA moves closer to a continued space presence in Mir, International Space Station, and Lunar-Mars Exploration.

  20. IUPESM: the international umbrella organisation for biomedical engineering and medical physics

    Science.gov (United States)

    2007-01-01

    An account of the development, aims and activities of the International Union for Physical and Engineering Sciences in Medicine (IUPESM) is presented. Associations with the International Council of Science (ICSU) and the World Health Organization (WHO) are leading to exciting new projects towards improving global health, healthcare, quality of life and support of health technologies in developing countries. PMID:21614293

  1. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering.

    Science.gov (United States)

    Rahmani Del Bakhshayesh, Azizeh; Annabi, Nasim; Khalilov, Rovshan; Akbarzadeh, Abolfazl; Samiei, Mohammad; Alizadeh, Effat; Alizadeh-Ghodsi, Mohammadreza; Davaran, Soodabeh; Montaseri, Azadeh

    2018-06-01

    The tissue engineering field has developed in response to the shortcomings related to the replacement of the tissues lost to disease or trauma: donor tissue rejection, chronic inflammation and donor tissue shortages. The driving force behind the tissue engineering is to avoid the mentioned issues by creating the biological substitutes capable of replacing the damaged tissue. This is done by combining the scaffolds, cells and signals in order to create the living, physiological, three-dimensional tissues. A wide variety of skin substitutes are used in the treatment of full-thickness injuries. Substitutes made from skin can harbour the latent viruses, and artificial skin grafts can heal with the extensive scarring, failing to regenerate structures such as glands, nerves and hair follicles. New and practical skin scaffold materials remain to be developed. The current article describes the important information about wound healing scaffolds. The scaffold types which were used in these fields were classified according to the accepted guideline of the biological medicine. Moreover, the present article gave the brief overview on the fundamentals of the tissue engineering, biodegradable polymer properties and their application in skin wound healing. Also, the present review discusses the type of the tissue engineered skin substitutes and modern wound dressings which promote the wound healing.

  2. Universities and national laboratory roles in nuclear engineering

    International Nuclear Information System (INIS)

    Sackett, J.I.

    1991-01-01

    Nuclear Engineering Education is being significantly challenged in the United States. The decline in enrollment generally and the reduction of the number of nuclear engineering departments has been well documented. These declines parallel a lack of new construction for nuclear power plants and a decline in research and development to support new plant design. Precisely at a time when innovation is is needed to deal with many issues facing nuclear power, the number of qualified people to do so is being reduced. It is important that the University and National Laboratory Communities cooperate to address these issues. The Universities must increasingly identify challenges facing nuclear power that demand innovative solutions and pursue them. To be drawn into the technology the best students must see a future, a need and identify challenges that they can meet. The University community can provide that vision with help from the National Laboratories. It has been a major goal within the reactor development program at Argonne National Laboratory to establish the kind of program that can help accomplish this

  3. Sustainability in engineering programs in a Portuguese Public University

    Directory of Open Access Journals (Sweden)

    Ciliana Regina Colombo

    Full Text Available Abstract Rethink the interventions, human practices and their effects on the natural environment, for the preservation of life and biodiversity, threatened by the capitalist model of production, consumption and disposal, becomes each day more indispensable. The role of universities as knowledge building space is fundamental for the insertion of the environmental approach (greening in its various fronts (education, research, extension, and management. Following the line of several types of researches about the subject, this paper aims to identify if and how the issue of sustainability (e.g. through Project-Based Learning use is taught in the various engineering programs of a Portuguese Public University. This study was carried out by a documental research based on the programs´ curricula published in the official website of the university. The engineering programs selected included integrated master, master (second cycle and doctorate (third cycle. In this study, it was identified programs that are more focused on sustainability concepts than others, so the programs were classified in three categories: strongest, medium and weakest focus.

  4. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1996

    International Nuclear Information System (INIS)

    1997-08-01

    This report summarizes research and educational activities, operation status of the research facilities of the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo on fiscal year 1996. This facility has four major research facilities such as fast neutron source reactor 'Yayoi', electron Linac, fundamental experiment facility for nuclear fusion reactor blanket design and high fluence irradiation facility(HIT). Education and research activities are conducted in a wide fields of nuclear engineering using these facilities. The former two facilities are available for various studies by universities all over Japan, facility for nuclear fusion reactor blanket design is utilized for research within the Faculty of Engineering and HIT is used for the research within the University of Tokyo. The facility established a plan to reorganized into a nation wide research collaboration center in fiscal year 1995 and after further discussion of a future program it is decided to hold 'Nuclear energy symposium' periodically after fiscal year 1997 as a part of the activity for appealing the research results to the public. (G.K.)

  5. Report of the 1st RCM on ''Nanoscale radiation engineering of advanced materials for potential biomedical applications''. Working document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions and radiation techniques are uniquely suited for such a task, due to their favorable characteristics, and in most cases, not possible by other methods of synthesis. Accordingly, many of the developing and developed Member States have an interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. The proposal for this CRP was formulated based on the requests and information received from the member states and the conclusions and recommendations of the Consultant’s meeting on “Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes”, held on 10-14 December 2007, in Vienna. Based on these conclusions, this CRP aims to support MS to develop methodologies for the use of radiation in the synthesis, modification, and characterization of nanomaterials - nanogels, nanoparticles, nanovehicles, nanoporous membranes, and surfaces with enhanced biocompatibility for potential biomedical applications, such as cell-sheet engineering and artificial tissue construction; diagnostics and imaging; and drug delivery. Additionally, this CRP facilitates networking between radiation technologists and biomedical scientists for the development of such applications. The CRP generated a huge interest, but due to funding constrains, many good proposals had to be rejected. The first RCM of the CRP was convened in Vienna on 30 March - 03 April 2009. It was attended by 14 representatives and two observers. The participants presented and discussed the status of the field, the needs for further research, and various application possibilities

  6. Report of the 1st RCM on ''Nanoscale radiation engineering of advanced materials for potential biomedical applications''. Working document

    International Nuclear Information System (INIS)

    2009-01-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions and radiation techniques are uniquely suited for such a task, due to their favorable characteristics, and in most cases, not possible by other methods of synthesis. Accordingly, many of the developing and developed Member States have an interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. The proposal for this CRP was formulated based on the requests and information received from the member states and the conclusions and recommendations of the Consultant’s meeting on “Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes”, held on 10-14 December 2007, in Vienna. Based on these conclusions, this CRP aims to support MS to develop methodologies for the use of radiation in the synthesis, modification, and characterization of nanomaterials - nanogels, nanoparticles, nanovehicles, nanoporous membranes, and surfaces with enhanced biocompatibility for potential biomedical applications, such as cell-sheet engineering and artificial tissue construction; diagnostics and imaging; and drug delivery. Additionally, this CRP facilitates networking between radiation technologists and biomedical scientists for the development of such applications. The CRP generated a huge interest, but due to funding constrains, many good proposals had to be rejected. The first RCM of the CRP was convened in Vienna on 30 March - 03 April 2009. It was attended by 14 representatives and two observers. The participants presented and discussed the status of the field, the needs for further research, and various application possibilities

  7. Coagulation sensors based on magnetostrictive delay lines for biomedical and chemical engineering applications

    International Nuclear Information System (INIS)

    Maliaritsi, E.; Zoumpoulakis, L.; Simitzis, J.; Vassiliou, P.; Hristoforou, E.

    2006-01-01

    Coagulation sensors based on the magnetostrictive delay line technique are presented in this paper. They are based on magnetostrictive ribbons and are used for measuring the coagulation, curing or solidification time of different liquids. Experimental results indicate that the presented sensing elements can determine the blood coagulation with remarkable repeatability, thus allowing their use as blood coagulation sensors. Additionally, results indicate that they can also measure curing time of resins, solidification of fluids and coagulation of chemical substances, therefore allowing their implementation in chemical engineering applications

  8. An assessment strategy for proposals of engineering projects in the Bachelor of Biomedical Engineering Curriculum at Universidad Autónoma Metropolitana-Iztapalapa.

    Science.gov (United States)

    Castañeda-Villa, N; Jiménez-González, A; Ortiz-Posadas, M R

    2015-08-01

    Since 1974, the Bachelor of Biomedical Engineering Program (BBME) is offered at Universidad Autónoma Metropolitana-Iztapalapa, in Mexico City. By design, it must be completed in four years (12 trimesters) and, in the latter three, the senior students work on a BME project, which is done by completing three modules: Project Seminar (PS), Project on BME I and Project on BME II. In the PS module, the student must find a problem of interest in the BME field and suggest a solution through the development of an Engineering Project Proposal (EPP). Currently, the module is being taught by two faculty members of the BBME, who instruct students on how to develop their EPPs and evaluate their progress by reviewing a number of EPPs during the trimester. This generates a huge workload for the module instructors, which makes it necessary to involve more faculty members trimester-to-trimester (i.e. every 12 weeks) and, therefore, to create a set of systematic guidelines that ease the evaluation process for new instructors. Hence, the purpose of this paper is to present an assessment strategy (in the form of an assessment matrix) for the PS module as well as some preliminary results after two trimesters of its implementation.

  9. Using biomedical engineering and "hidden capital" to provide educational outreach to disadvantaged populations.

    Science.gov (United States)

    Drazan, John F; Scott, John M; Hoke, Jahkeen I; Ledet, Eric H

    2014-01-01

    A hands-on learning module called "Science of the Slam" is created that taps into the passions and interests of an under-represented group in the fields of Science, Technology, Engineering and Mathematics (STEM). This is achieved by examining the use of the scientific method to quantify the biomechanics of basketball players who are good at performing the slam dunk. Students already have an intrinsic understanding of the biomechanics of basketball however this "hidden capital" has never translated into the underlying STEM concepts. The effectiveness of the program is rooted in the exploitation of "hidden capital" within the field of athletics to inform and enhance athletic performance. This translation of STEM concepts to athletic performance provides a context and a motivation for students to study the STEM fields who are traditionally disengaged from the classic engineering outreach programs. "Science of the Slam" has the potential to serve as a framework for other researchers to engage under-represented groups in novel ways by tapping into shared interests between the researcher and disadvantaged populations.

  10. Mechanical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  11. Electrical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  12. Hybrid rocket engine research program at Ryerson University

    Energy Technology Data Exchange (ETDEWEB)

    Karpynczyk, J.; Greatrix, D.R. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Aerospace Engineering

    2007-07-01

    Hybrid rocket engines (HREs) are a combination of solid and liquid propellant rocket engine designs. A solid fuel grain is located in the main combustion chamber and nozzle aft, while a stored liquid or gaseous oxidizer source supplies the required oxygen content through a throttle valve, for combustion downstream in the main chamber. HREs have drawn significant interest in certain flight applications, as they can be advantageous in terms of cost, ease and safety in storage, controllability in flight, and availability of propellant constituents. Key factors that will lead to further practical usage of HREs for flight applications are their predictability and reproducibility of operational performance. This paper presented information on studies being conducted at Ryerson University aimed at analyzing and testing the performance of HREs. It discussed and illustrated the conventional HRE and analyzed engine performance considerations such as the fuel regression rate, mass flux about the fuel surface, burning rate, and zero transformation parameter. Other factors relating to HRE performance that were presented included induced forward and aft oxidizer flow swirl effects as a means for augmenting the fuel regression rate, stoichiometric grain length issues, and feed system stability. Last, the paper presented a simplified schematic diagram of a proposed thrust/test stand for HRE test firings. 2 refs., 3 figs.

  13. Biomedical Ph.D. students enrolled in two elite universities in the United kingdom and the United States report adopting multiple learning relationships.

    Science.gov (United States)

    Kemp, Matthew W; Lazarus, Benjamin M; Perron, Gabriel G; Hanage, William P; Chapman, Elaine

    2014-01-01

    The ability to form multiple learning relationships is a key element of the doctoral learning environment in the biomedical sciences. Of these relationships, that between student and supervisor has long been viewed as key. There are, however, limited data to describe the student perspective on what makes this relationship valuable. In the present study, we discuss the findings of semi-structured interviews with biomedical Ph.D. students from the United Kingdom and the United States to: i) determine if the learning relationships identified in an Australian biomedical Ph.D. cohort are also important in a larger international student cohort; and ii) improve our understanding of student perceptions of value in their supervisory relationships. 32 students from two research intensive universities, one in the United Kingdom (n = 17), and one in the United States (n = 15) were recruited to participate in a semi-structured interview. Verbatim transcripts were transcribed, validated and analysed using a Miles and Huberman method for thematic analysis. Students reported that relationships with other Ph.D. students, post-doctoral scientists and supervisors were all essential to their learning. Effective supervisory relationships were perceived as the primary source of high-level project guidance, intellectual support and confidence. Relationships with fellow students were viewed as essential for the provision of empathetic emotional support. Technical learning was facilitated, almost exclusively, by relationships with postdoctoral staff. These data make two important contributions to the scholarship of doctoral education in the biomedical sciences. Firstly, they provide further evidence for the importance of multiple learning relationships in the biomedical doctorate. Secondly, they clarify the form of a 'valued' supervisory relationship from a student perspective. We conclude that biomedical doctoral programs should be designed to contain a minimum level of formalised

  14. Biomedical Ph.D. students enrolled in two elite universities in the United kingdom and the United States report adopting multiple learning relationships.

    Directory of Open Access Journals (Sweden)

    Matthew W Kemp

    Full Text Available The ability to form multiple learning relationships is a key element of the doctoral learning environment in the biomedical sciences. Of these relationships, that between student and supervisor has long been viewed as key. There are, however, limited data to describe the student perspective on what makes this relationship valuable. In the present study, we discuss the findings of semi-structured interviews with biomedical Ph.D. students from the United Kingdom and the United States to: i determine if the learning relationships identified in an Australian biomedical Ph.D. cohort are also important in a larger international student cohort; and ii improve our understanding of student perceptions of value in their supervisory relationships.32 students from two research intensive universities, one in the United Kingdom (n = 17, and one in the United States (n = 15 were recruited to participate in a semi-structured interview. Verbatim transcripts were transcribed, validated and analysed using a Miles and Huberman method for thematic analysis.Students reported that relationships with other Ph.D. students, post-doctoral scientists and supervisors were all essential to their learning. Effective supervisory relationships were perceived as the primary source of high-level project guidance, intellectual support and confidence. Relationships with fellow students were viewed as essential for the provision of empathetic emotional support. Technical learning was facilitated, almost exclusively, by relationships with postdoctoral staff.These data make two important contributions to the scholarship of doctoral education in the biomedical sciences. Firstly, they provide further evidence for the importance of multiple learning relationships in the biomedical doctorate. Secondly, they clarify the form of a 'valued' supervisory relationship from a student perspective. We conclude that biomedical doctoral programs should be designed to contain a minimum level

  15. Development of a Pilot Data Management Infrastructure for Biomedical Researchers at University of Manchester – Approach, Findings, Challenges and Outlook of the MaDAM Project

    Directory of Open Access Journals (Sweden)

    Meik Poschen

    2012-12-01

    Full Text Available Management and curation of digital data has been becoming ever more important in a higher education and research environment characterised by large and complex data, demand for more interdisciplinary and collaborative work, extended funder requirements and use of e-infrastructures to facilitate new research methods and paradigms. This paper presents the approach, technical infrastructure, findings, challenges and outlook (including future development within the successor project, MiSS of the ‘MaDAM: Pilot data management infrastructure for biomedical researchers at University of Manchester’ project funded under the infrastructure strand of the JISC Managing Research Data (JISCMRD programme. MaDAM developed a pilot research data management solution at the University of Manchester based on biomedical researchers’ requirements, which includes technical and governance components with the flexibility to meet future needs across multiple research groups and disciplines.

  16. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances

    Directory of Open Access Journals (Sweden)

    Soroosh Derakhshanfar

    2018-06-01

    Full Text Available 3D printing, an additive manufacturing based technology for precise 3D construction, is currently widely employed to enhance applicability and function of cell laden scaffolds. Research on novel compatible biomaterials for bioprinting exhibiting fast crosslinking properties is an essential prerequisite toward advancing 3D printing applications in tissue engineering. Printability to improve fabrication process and cell encapsulation are two of the main factors to be considered in development of 3D bioprinting. Other important factors include but are not limited to printing fidelity, stability, crosslinking time, biocompatibility, cell encapsulation and proliferation, shear-thinning properties, and mechanical properties such as mechanical strength and elasticity. In this review, we recite recent promising advances in bioink development as well as bioprinting methods. Also, an effort has been made to include studies with diverse types of crosslinking methods such as photo, chemical and ultraviolet (UV. We also propose the challenges and future outlook of 3D bioprinting application in medical sciences and discuss the high performance bioinks.

  17. Expose Mechanical Engineering Students to Biomechanics Topics

    Science.gov (United States)

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  18. Radiation engineered multi-functional nanogels as nanoscale building blocks of useful biomedical devices

    International Nuclear Information System (INIS)

    Dispenza, C.

    2011-01-01

    for mass fabrication of nanoscale hydrogel particles with the recourse to industrial-type accelerators will be discussed. Radiation engineered nanogels may become base building blocks of higher order structures with designed properties, through the integration of heterogeneous components of different sizes and compositions, including biomolecules.

  19. Development of multisubstituted hydroxyapatite nanopowders as biomedical materials for bone tissue engineering applications.

    Science.gov (United States)

    Baba Ismail, Yanny M; Wimpenny, Ian; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J

    2017-06-01

    Ionic substitutions have been proposed as a tool to control the functional behavior of synthetic hydroxyapatite (HA), particularly for Bone Tissue Engineering applications. The effect of simultaneous substitution of different levels of carbonate (CO 3 ) and silicon (Si) ions in the HA lattice was investigated. Furthermore, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on multi-substituted HA (SiCHA) to determine if biomimetic chemical compositions were osteoconductive. Of the four different compositions investigates, SiCHA-1 (0.58 wt % Si) and SiCHA-2 (0.45 wt % Si) showed missing bands for CO 3 and Si using FTIR analysis, indicating competition for occupation of the phosphate site in the HA lattice; 500°C was considered the most favorable calcination temperature as: (i) the powders produced possessed a similar amount of CO 3 (2-8 wt %) and Si (<1.0 wt %) as present in native bone; and (ii) there was a minimal loss of CO 3 and Si from the HA structure to the surroundings during calcination. Higher Si content in SiCHA-1 led to lower cell viability and at most hindered proliferation, but no toxicity effect occurred. While, lower Si content in SiCHA-2 showed the highest ALP/DNA ratio after 21 days culture with hMSCs, indicating that the powder may stimulate osteogenic behavior to a greater extent than other powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1775-1785, 2017. © 2017 Wiley Periodicals, Inc.

  20. First Year Experiences in School of Mechanical Engineering Kanazawa University

    Science.gov (United States)

    Kinari, Toshiyasu; Kanjin, Yuichi; Furuhata, Toru; Tada, Yukio

    This paper reports two lectures of the first year experience, ‧Lecture on Life in Campus and Society‧ and ‧Freshman Seminar‧ and discusses their effects. Both lectures have been given freshmen of the school of mechanical engineering, Kanazawa University in H20 spring term. The former lecture is aimed at freshmen to keep on a proper way in both social and college life. It consists of normal class and e-learning system lectures. E-learning system examination requires students to review the whole text book and that seems to have brought better results in the survey. The latter seminar is aimed at freshmen to get active and self-disciplined learning way through their investigation, discussion, presentation, writing work, and so on.

  1. Environmental Aspects of the Engineering Training at Technical University

    Directory of Open Access Journals (Sweden)

    V. V. Bushueva

    2015-01-01

    Full Text Available Problem relevance. The article gives a justification for a need to train professionally competent, ecologically oriented engineers capable to create new equipment taking into account the ecological characteristics. Such approach expresses a requirement coherence to develop technical systems and technologies taking into account, both technical reliability and human and environmental safety. Today, in conditions of modern industrial production it is an important point in engineer’s activity. So to train future engineers who meet these requirements new forms and methods are to be found.Objectives. To prove that involvement of creative student’s teams in training the future ecologically oriented engineers is of importance. The organisational structure and methods of activities along with the principles of revitalizing search for engineering ideas and solutions to develop environmentally safe technical systems and technologies allow us to solve more complicated problems. This is the important characteristic in activities of creative groups. The article considers a significance of the future engineer’s responsibility in terms of environment safety. It gives "Methodical advices to analyse the operational impacts of technical systems on the human and environment" to show that there is a need in development of reliable and environment-safe technical systems.Novelty of this work is a technique for the organization and forms of student creative team’s activities. It represents a revised and updated option of a technique of the creative teams working at the industrial enterprises in France. The revised technique takes into consideration both the specifics of student's audience at technical university and the environment-oriented tasks to be solved. Efficiency of search and solution of environment-oriented engineering tasks is enhanced owing to use of revitalizing methods for the creative team’s activities, which are widely used today in student

  2. Post University On-the-Job Training for Engineers

    Science.gov (United States)

    Manganiello, Eugene J.; Hlavin, Vincent F.

    1961-01-01

    Our national need for qualified scientists and engineers is greater now than at any other time in our history. Fortunately, we can point with pride to this need as a measure of the impact of science and technology on our way of life. In effect, we have made such rapid strides In advancing established sciences and in opening new technological fields that we have proved the value of the scientist and engineer to society, and, as a-result, have created an expanding demand for their services which we must now attempt to satisfy. This demand we face is also due to the changing skills and high degree of specialization required to perform in these new technological fields. The colleges and universities are doing their part to provide current graduates with a modern technical foundation, but we cannot afford to ignore the thousands of experienced engineers and scientists already employed by private industry and government. As employers, we have an obligation to these men and women to see that they are provided with an understanding of the latest advances that modern technology has to offer; that we develop them in particular specialty areas characteristic of a given field of work; and, equally important, that we assist them in the transition from one field to another as the technological emphasis shifts. Practically all technological industries have experienced and continue to experience rapid changes in their activities. The aerospace business, in particular, has been characterized by extremely rapid, in fact revolutionary, changes during the relatively short period of its existence0 At the National Aeronautics and Space Administration, successor to the National Advisory Committee for Aeronautics, for example, we have encountered the fun impact of a changing science and technology. Indeed, as a research organization, we have undoubtedly contributed, in some measure, to this change. Within the NASAs Lewis Research Center, we have approximately 800 research scientists and

  3. Nuclear Power Engineering Education Program, University of Illinois

    International Nuclear Information System (INIS)

    Jones, B.G.

    1993-01-01

    The DOE/CECo Nuclear Power Engineering Education Program at the University of Illinois in its first year has significantly impacted the quality of the power education which our students receive. It has contributed to: the recently completed upgrade of the console of our Advanced TRIGA reactor which increases the reactor's utility for training, the procurement of new equipment to upgrade and refurbish several of the undergraduate laboratory set-ups, and the procurement of computational workstations in support of the instructional computing laboratory. In addition, smaller amounts of funds were used for the recruitment and retention of top quality graduate students, the support of faculty to visit other institutions to attract top students into the discipline, and to provide funds for faculty to participate in short courses to improve their skills and background in the power area. These items and activities have helped elevate in the student's perspective the role of nuclear power in the discipline. We feel this is having a favorable impact on student career selection and on ensuring the continued supply of well educated nuclear engineering graduates

  4. Web of Science, Scopus, and Google Scholar citation rates: a case study of medical physics and biomedical engineering: what gets cited and what doesn't?

    Science.gov (United States)

    Trapp, Jamie

    2016-12-01

    There are often differences in a publication's citation count, depending on the database accessed. Here, aspects of citation counts for medical physics and biomedical engineering papers are studied using papers published in the journal Australasian physical and engineering sciences in medicine. Comparison is made between the Web of Science, Scopus, and Google Scholar. Papers are categorised into subject matter, and citation trends are examined. It is shown that review papers as a group tend to receive more citations on average; however the highest cited individual papers are more likely to be research papers.

  5. Gender in Engineering Studies at Brazilian Technical University

    Directory of Open Access Journals (Sweden)

    de Lima Sobreira, Josimeire

    2008-10-01

    Full Text Available The research on a Technological University of Brazil, among students in Engineering, revealed that women occupy no more than 12 % (in general of the places at the Institution. The university study that the girls most prefer is the Engineering of Buildings and the other one, where there are the least number of women, is Mechanics Engineering. The qualitative research with the students, made by interviews, showed that there is a gender discrimination among them. The boys do not consider their schoolmates competents for the exact sciences. The girls have to do a greater effort than the boys to success and to be respected by them. But even so they recognize that will not have the same opportunities of work that the men will. However, gender changes among the students are evidences that women have reached important places at the technological field.La investigación en una Universidad Tecnológica de Brasil entre estudiantes de los cursos de ingeniería ha mostrado que las mujeres no ocupan más que 12 % (en general de las plazas de la Institución. El curso con más estudiantes es el de Ingeniería Civil, mientras el curso con el más pequeño número de mujeres es el de Mecánica. La metodología de la investigación ha sido cualitativa. Las entrevistas con chicas-chicos de los cursos investigados revelaron que hay discriminación entre los estudiantes que no consideran a sus compañeras de curso competentes para los estudios de ciencias exactas. Para que sean respetadas ellas tienen que estudiar mucho más que ellos, pero, aunque logren muy buenas evaluaciones, reconocen que en el mercado laboral tendrán menos oportunidades de trabajo que sus colegas. Entretanto, los cambios de género entre los y las estudiantes evidencian que las mujeres están conquistando espacios importantes.

  6. EnQuest | College of Engineering & Applied Science

    Science.gov (United States)

    engineering camp, in which high school girls explore careers in engineering. It is held at the University of Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  7. The Electrical Engineering Curriculum at the Technical University of Denmark - Options in Microelectronics

    DEFF Research Database (Denmark)

    Bruun, Erik; Nielsen, Lars Drud

    1997-01-01

    This paper describes the modular structure of the engineering curriculum at the Technical University of Denmark. The basic requirements for an electrical engineering curriculum are presented and different possibilities for specialization in microelectronics and integrated circuit design...

  8. Using Sustainability Engineering to Gain Universal Sustainability Efficiency

    Directory of Open Access Journals (Sweden)

    Aleksandras Vytautas Rutkauskas

    2012-05-01

    Full Text Available The present article is an attempt to perceive the universal sustainability observable in an individual country or region, where the religious, political, social-demographic, economic, environmental, creative, technological and investment subsystems are revealed not only through the vitality of spiritual and material existence media, but rather through the signs of the development of these subsystems as self-assembled units through the erosion of their interaction. The problem of optimal allocation of investment resources among the separate sustainability’s subsystems was addressed by means of expert methods and techniques of portfolio methodology which will enable the achievement of the enshrined universal sustainability standards. A country-specific index composition of sustainability subsystems’ indices was chosen as the universal sustainability index for the specific country. The index in its dynamics is perceived as a random process. While projecting its state and evaluating its power, i.e., the impact of the subsystem efficiency in a particular moment, this power is measured by the level of the index and the reliability or guarantee of an appropriate level. To solve the problem of investment resources allocation, the idea of Markowitz Random Field was invoked in order to reach the maximum power of sustainability index while applying the technical solution—the so-called “GoldSim” system. Engineering is a methodology that aspires to reveal the core attributes of complex systems and instruments in order to manage the possibility to influence these properties for the systems. Experimental expert evaluation and case study is performed on Lithuanian data.

  9. The human factors engineering approach to biomedical informatics projects: state of the art, results, benefits and challenges.

    Science.gov (United States)

    Beuscart-Zéphir, M-C; Elkin, Peter; Pelayo, Sylvia; Beuscart, Regis

    2007-01-01

    The objective of this paper is to define a comprehensible overview of the Human Factors approach to biomedical informatics applications for healthcare. The overview starts with a presentation of the necessity of a proper management of Human factors for Healthcare IT projects to avoid unusable products and unsafe work situations. The first section is dedicated to definitions of the Human Factors Engineering (HFE) main concepts. The second section describes a functional model of an HFE lifecycle adapted for healthcare work situations. The third section provides an overview of existing HF and usability methods for healthcare products and presents a selection of interesting results. The last section discusses the benefits and limitations of the HFE approach. Literature review based on Pubmed and conference proceedings in the field of Medical Informatics coupled with a review of other databases and conference proceedings in the field of Ergonomics focused on papers addressing healthcare work and system design. Usability studies performed on healthcare applications have uncovered unacceptable usability flaws that make the systems error prone, thus endangering the patient safety. Moreover, in many cases, the procurement and the implementation process simply forget about human factors: following only technological considerations, they issue potentially dangerous and always unpleasant work situations. But when properly applied to IT projects, the HFE approach proves efficient when seeking to improve patient safety, users' satisfaction and adoption of the products. We recommend that the HFE methodology should be applied to most informatics and systems development projects, and the usability of the products should be systematically checked before permitting their release and implementation. This requires the development of Centers specialized in Human Factors for Healthcare and Patient safety in each Country/Region.

  10. Integration Mining Engineering, Faculty of Engineering, National University of San Juan

    International Nuclear Information System (INIS)

    Berenguer, T.; Salinas, L.; Cascon, R.

    2007-01-01

    This work presents proposals for the mud handling derived from mineralogical processes, trying to maintain a balance between the nature and the sustainable development of the region; it comprises of an investigation project that the authors carry out in the National University of San Juan.In this case particular aspects of problematic the environmental one are approached as the contamination of associated the superficial and underground water to the handling of the mineral remainders, specifically muds.To practices and procedures of engineering are described that offer protection against the faults of the deposits so that the remainders and the water of process are outside the hydrological river basins. (author)

  11. Perceptions of the use of intelligent information access systems in university level active learning activities among teachers of biomedical subjects.

    Science.gov (United States)

    Aparicio, Fernando; Morales-Botello, María Luz; Rubio, Margarita; Hernando, Asunción; Muñoz, Rafael; López-Fernández, Hugo; Glez-Peña, Daniel; Fdez-Riverola, Florentino; de la Villa, Manuel; Maña, Manuel; Gachet, Diego; Buenaga, Manuel de

    2018-04-01

    Student participation and the use of active methodologies in classroom learning are being increasingly emphasized. The use of intelligent systems can be of great help when designing and developing these types of activities. Recently, emerging disciplines such as 'educational data mining' and 'learning analytics and knowledge' have provided clear examples of the importance of the use of artificial intelligence techniques in education. The main objective of this study was to gather expert opinions regarding the benefits of using complementary methods that are supported by intelligent systems, specifically, by intelligent information access systems, when processing texts written in natural language and the benefits of using these methods as companion tools to the learning activities that are employed by biomedical and health sciences teachers. Eleven teachers of degree courses who belonged to the Faculties of Biomedical Sciences (BS) and Health Sciences (HS) of a Spanish university in Madrid were individually interviewed. These interviews were conducted using a mixed methods questionnaire that included 66 predefined close-ended and open-ended questions. In our study, three intelligent information access systems (i.e., BioAnnote, CLEiM and MedCMap) were successfully used to evaluate the teacher's perceptions regarding the utility of these systems and their different methods in learning activities. All teachers reported using active learning methods in the classroom, most of which were computer programs that were used for initially designing and later executing learning activities. All teachers used case-based learning methods in the classroom, with a specific emphasis on case reports written in Spanish and/or English. In general, few or none of the teachers were familiar with the technical terms related to the technologies used for these activities such as "intelligent systems" or "concept/mental maps". However, they clearly realized the potential applicability of such

  12. A Matrix Mentoring Model That Effectively Supports Clinical and Translational Scientists and Increases Inclusion in Biomedical Research: Lessons From the University of Utah.

    Science.gov (United States)

    Byington, Carrie L; Keenan, Heather; Phillips, John D; Childs, Rebecca; Wachs, Erin; Berzins, Mary Anne; Clark, Kim; Torres, Maria K; Abramson, Jan; Lee, Vivian; Clark, Edward B

    2016-04-01

    Physician-scientists and scientists in all the health professions are vital members of the U.S. biomedical workforce, but their numbers at academic health centers are declining. Mentorship has been identified as a key component in retention of faculty members at academic health centers. Effective mentoring may promote the retention of clinician-scientists in the biomedical workforce. The authors describe a holistic institutional mentoring program to support junior faculty members engaged in clinical and translational science at the University of Utah. The clinical and translational scholars (CATS) program leverages the resources of the institution, including the Center for Clinical and Translational Science, to augment departmental resources to support junior faculty investigators and uses a multilevel mentoring matrix that includes self, senior, scientific, peer, and staff mentorship. Begun in the Department of Pediatrics, the program was expanded in 2013 to include all departments in the school of medicine and the health sciences. During the two-year program, scholars learn management essentials and have leadership training designed to develop principal investigators. Of the 86 program participants since fiscal year 2008, 92% have received extramural awards, 99% remain in academic medicine, and 95% remain at the University of Utah. The CATS program has also been associated with increased inclusion of women and underrepresented minorities in the institutional research enterprise. The CATS program manifests institutional collaboration and coordination of resources, which have benefited faculty members and the institution. The model can be applied to other academic health centers to support and sustain the biomedical workforce.

  13. Collaborative Learning at Engineering Universities: Benefits and Challenges

    Directory of Open Access Journals (Sweden)

    Olga V. Sumtsova

    2018-01-01

    Full Text Available This paper concerns the cutting edge educational approaches incorporated into syllabuses of the most progressive Russian higher technical schools. The authors discuss one of the active methods in teaching foreign languages – collaborative learning implemented in e-courses. Theoretical and historical aspects of this approach are addressed, as are its suitability for engineering education and possible ways of introducing collaborative learning into e-courses. Collaborative learning technology offers wide prospects for teachers of foreign languages as it enables the use of various patterns of interaction, promotes discussion, opinion exchange, peer assessment and building an e-learning community, fosters the development of e-culture and netiquette, and prepares future specialists for work in their professional sphere under the new conditions imposed by society’s technological and cultural development. This paper describes real pedagogical experience of teaching English to students using the platform Moodle, focusing on the capacity of different Moodle instruments for designing group work tasks. Recommendations are given for their usage and the results of implementing a collaborative learning approach into certain e-courses offered at Tomsk Polytechnic University (TPU are presented.

  14. Understanding the Experience of Women in Undergraduate Engineering Programs at Public Universities

    Science.gov (United States)

    Perez, Jessica Ohanian

    2017-01-01

    Women earn bachelor's degrees in engineering at a rate of less than 17% at public universities in California. The purpose of this study was to understand how women experience undergraduate engineering programs at public universities. To understand this lack of attainment, a qualitative methodology and Feminist Poststructuralist perspective were…

  15. University Teachers' Perspectives on the Role of the Laplace Transform in Engineering Education

    Science.gov (United States)

    Holmberg, Margarita; Bernhard, Jonte

    2017-01-01

    The Laplace transform is an important tool in many branches of engineering, for example, electric and control engineering, but is also regarded as a difficult topic for students to master. We have interviewed 22 university teachers from five universities in three countries (Mexico, Spain and Sweden) about their views on relationships among…

  16. Re-engineering university services to manage ICT in education

    NARCIS (Netherlands)

    Fisser, Petra; van Geloven, M.P.; Franklin, Stephen D.; Strenski, Ellen

    2000-01-01

    Integrating ICT is a hot topic in higher education, in the Netherlands,especially at the University of Twente, the only residential university in the Netherlands. The University of Twente (UT) is profiling itself as a “Telematics University”, a university where telematics applications (or ICT)

  17. Biomedical nanomaterials from design to implementation

    CERN Document Server

    Webster, Thomas

    2016-01-01

    Biomedical Nanomaterials brings together the engineering applications and challenges of using nanostructured surfaces and nanomaterials in healthcare in a single source. Each chapter covers important and new information in the biomedical applications of nanomaterials.

  18. Preparing University Students to Lead K-12 Engineering Outreach Programmes: A Design Experiment

    Science.gov (United States)

    Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi

    2016-01-01

    This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year…

  19. Engineering Ethics at the Catholic University of Lille (France): Research and Teaching in a European Context.

    Science.gov (United States)

    Didier, Christelle

    2000-01-01

    Discusses the development of non-technical education and ethics in engineering curricula in Europe and particularly in France. Investigates two projects at the Catholic University of Lille. The first project is an engineering ethics course and the second has to do with writing a European handbook on engineering ethics as a discipline. (Contains 28…

  20. An Introduction of Finite Element Method in the Engineering Teaching at the University of Camaguey.

    Science.gov (United States)

    Napoles, Elsa; Blanco, Ramon; Jimenez, Rafael; Mc.Pherson, Yoanka

    This paper illuminates experiences related to introducing finite element methods (FEM) in mechanical and civil engineering courses at the University of Camaguey in Cuba and provides discussion on using FEM in postgraduate courses for industry engineers. Background information on the introduction of FEM in engineering teaching is focused on…

  1. Development of Nuclear Engineering Educational Program at Ibaraki University with Regional Collaboration

    Science.gov (United States)

    Matsumura, Kunihito; Kaminaga, Fumito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kikuchi, Kenji; Kurumada, Akira

    The College of Engineering, Ibaraki University is located at the Hitachi city, in the north part of Ibaraki prefecture. Hitachi and Tokai areas are well known as concentration of advanced technology center of nuclear power research organizations. By considering these regional advantages, we developed a new nuclear engineering educational program for students in the Collage of Engineering and The Graduate School of Science and Engineering of Ibaraki University. The program is consisted of the fundamental lectures of nuclear engineering and nuclear engineering experiments. In addition, several observation learning programs by visiting cooperative organizations are also included in the curriculum. In this paper, we report about the progress of the new educational program for nuclear engineering in Ibaraki University.

  2. Generic Competencies in the Education of Engineers: The Case of Engineering Program in a Public University in Mexico

    Science.gov (United States)

    Serna, Alejandra García; Vega, José Luis Arcos; García, Juan José Sevilla; Ruiz, María Amparo Oliveros

    2018-01-01

    We present an analysis regarding generic skills on engineering program offered in a public state university in Mexico (UABC). The university implemented a new educational model changing rigid programs to flexible programs based on competencies. The goal is to determine generic skills related to the four pillars of learning: learning to do,…

  3. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-08-01

    This annual report is the summary of the research and education activities, the state of operating research facilities and others in fiscal year 1994 in this Research Laboratory. In this Research Laboratory, there are four main installations, namely the fast neutron source reactor 'Yayoi', the electron linear accelerator, the basic experiment facility for the design of nuclear fusion reactor blanket and the heavy irradiation research facility. The former two are put to the joint utilization by all Japanese universities, the blanket is to that within Faculty of Engineering, and the HIT is to that within this university. The fast neutron science research facility, the installation of which was approved in 1993 as the ancillary equipment of the Yayoi, has been put to the joint utilization for all Japan, and achieved good results. In this report, the management and operation of these main installations, research activities, the publication of research papers,graduation and degree theses, the publication of research papers, graduation and degree theses, the events in the Laboratory for one year, the list of the visitors to the Laboratory, the list of the records of official trips to foreign countries and others, and the list of UTNL reports are described. (K.I.)

  4. Some observations in university participation in nuclear engineering research

    International Nuclear Information System (INIS)

    Eickhoff, K.G.; Hill, K.M.

    1980-01-01

    A general discussion is presented on the kinds of problem which with suitable co-ordination would form appropriate topics for university research. R and D work can be done in-house, or with an industrial contractor, or with a university or polytechnic. The criteria are examined. Involvement by universities and polytechnics, and topics and location, are considered further. (U.K.)

  5. Technical universities beyond marketization: Educating the virtuous engineer

    NARCIS (Netherlands)

    Reijers, Wessel Hubert Maria

    2015-01-01

    In this paper, I argue that marketization trends affecting universities in general are strongly present in the management and education of technical universities. Partly, this is due to the historical background of the technical university as such, but marketization can nonetheless negatively affect

  6. History of the biomedical studies PhD program: a joint graduate program of the Baylor Health Care system and Baylor University.

    Science.gov (United States)

    Morel, Christine R; Horton, Joshua M; Peng, Han; Xu, Kangling; Batra, Sushil K; Miles, Jonathan P; Kane, Robert R

    2008-10-01

    On a sweltering summer morning, throngs of people filed into Jones Theatre at Baylor University in Waco for the graduate student orientation. One could look around and notice the diversity of not only the student population, but also the disciplines being represented. Many students had stepped off planes only hours prior, but even those who had been traveling for days could not contain their excitement. As for me, I was nowhere near any of this. I was still 40 miles north of Waco in Waxahachie, having been pulled over for speeding. After 4 days of traveling with my life in my Volkswagon Jetta, all the way from San Francisco, on one of the most important days of my life, I was late. When I finally arrived at the Hooper Schafer Fine Arts Auditorium, out of breath from running all the way from the parking structure, all of the graduate students were quietly listening to the first introductory speech. I snuck into the back and sat down. My mind was racing, as I knew very little about Waco and Baylor University except for the growing accomplishments of the biomedical studies program. What little I did know about Baylor seemed so different from my very liberal upbringing in California. What would this experience be like for me? But, as I listened to the talks, met with other students, and finally met the entire biomedical studies entering class of 2007, I knew that I had made the right decision in coming to Baylor. This would be an experience unlike any other, and I was wholeheartedly open to embracing it. -Christine Morel, PhD candidate, Institute of Biomedical Studies.

  7. Protein engineering techniques gateways to synthetic protein universe

    CERN Document Server

    Poluri, Krishna Mohan

    2017-01-01

    This brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.

  8. NASA universities advanced space design program, focus on nuclear engineering

    International Nuclear Information System (INIS)

    Lyon, W.F. III; George, J.A.; Alred, J.W.; Peddicord, K.L.

    1987-01-01

    In January 1985, the National Aeronautics and Space Administration (NASA), in affiliation with the Universities Space Research Association (USRA), inaugurated the NASA Universities Advanced Space Design Program. The purpose of the program was to encourage participating universities to utilize design projects for the senior and graduate level design courses that would focus on topics relevant to the nation's space program. The activities and projects being carried out under the NASA Universities Advanced Space Design Program are excellent experiences for the participants. This program is a well-conceived, well-planned effort to achieve the maximum benefit out of not only the university design experience but also of the subsequent summer programs. The students in the university design classes have the opportunity to investigate dramatic and new concepts, which at the same time have a place in a program of national importance. This program could serve as a very useful model for the development of university interaction with other federal agencies

  9. Perm State University HPC-hardware and software services: capabilities for aircraft engine aeroacoustics problems solving

    Science.gov (United States)

    Demenev, A. G.

    2018-02-01

    The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.

  10. Training of engineering support personnel at North Carolina State University

    International Nuclear Information System (INIS)

    Bohannon, J.R. Jr.

    1975-01-01

    The sources of planning for the development of curricula for engineering support personnel for the nuclear industry in general and nuclear facilities in particular have included the deliberate acquisition of inputs from employers, feedback from past students, and the critique of curricula by the industry, students, and faculty. As a result, three principal courses were developed in the Department of Nuclear Engineering, namely, Reactor Systems which deals in terms of the design engineer's and owner's concerns with regard to functional requirements, design criteria, and objectives of reactor systems; Reactor Operations which applies the student's basic engineering education to the role of an engineer in nuclear facilities, with particular attention to power plant operations; and Quality Assurance which provides the student with the bases, engineering implications and engineer's role in quality assurance during the design, construction, delivery and operation of nuclear and other complex facilities. A summary of the results to date of this trinity of courses is presented, with particular attention to its acceptance by the industry

  11. [Biomedical informatics].

    Science.gov (United States)

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  12. BioSimplify: an open source sentence simplification engine to improve recall in automatic biomedical information extraction

    OpenAIRE

    Jonnalagadda, Siddhartha; Gonzalez, Graciela

    2011-01-01

    BioSimplify is an open source tool written in Java that introduces and facilitates the use of a novel model for sentence simplification tuned for automatic discourse analysis and information extraction (as opposed to sentence simplification for improving human readability). The model is based on a "shot-gun" approach that produces many different (simpler) versions of the original sentence by combining variants of its constituent elements. This tool is optimized for processing biomedical scien...

  13. Cognitive abilities of Emirati and German engineering university students.

    Science.gov (United States)

    Rindermann, Heiner; Baumeister, Antonia E E; Gröper, Anne

    2014-03-01

    According to human capital theory, individual competences and personality attributes are relevant for individual productivity and income. Within human capital, intelligence is crucial. To study engineering and work successfully as an engineer, high cognitive abilities are necessary, especially for work in research and development. In a study of 30 German and 30 Emirati engineering students (mean age: 22 years), both groups were tested with mathematical and figural intelligence scales (CogAT). German engineering students achieved a mean IQ of 116, and Emirati students 104 (in converted UK norms). In both groups male students achieved better results than females (2 to 4 IQ point difference). The results are compared with those from PISA and TIMSS. The possible causes of these results, their consequences and strategies for improvement are discussed.

  14. Educating Maritime Engineers for a Globalised Industry - Bridging the Gap Between Industry and Universities

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Nielsen, Ulrik Dam

    2012-01-01

    In Denmark, the maritime engineering competences requested by the industry have changed in the past one to two decades. The typical naval architects do no longer find themselves working in the ship-building industry but rather in the industry of ship operators, consultancies, class societies, etc....... This means that universities educating maritime engineers need to reflect the changes in the curricula for their maritime engineering students. Topics and issues regarding this matter have recently been addressed in a survey made in the Danish maritime industry. The survey concludes that the demand...... for maritime engineers in the industry is considerably larger than the output from the technical universities. Moreover, it sets forth a series of recommendations to the industry as well as to the universities to facilitate meeting the demand for maritime engineers in Denmark in the future. The recommendations...

  15. Overview of the CTR blanket engineering research program at the University of Tokyo

    International Nuclear Information System (INIS)

    Nakazawa, Masaharu; Madarame, Haruki; Takahashi, Yoichi; Takagi, Toshiyuki

    1989-01-01

    A small overview has been given on the fusion reactor blanket engineering research program at the University of Tokyo as an introduction to the following articles, especially in its history, organization, experimental facilities and ten years research activity. (orig.)

  16. Implementing lean in Malaysian universities: Lean awareness level in an engineering faculty of a local university

    Science.gov (United States)

    Azim Khairi, M.; Rahman, Mohamed Abd

    2018-01-01

    Many academic articles were published in Malaysia promoting the goodness of lean in manufacturing and industrial sectors but less attention was apparently given to the possibility of obtaining the same universal benefits when applying lean in non-manufacturing sectors especially higher education. This study aims to determine the level of lean awareness among a local university’s community taking its Faculty of Engineering (FoE) as the case study. It also seeks to identify typical FoE’s staff perception on lean regarding its benefits and the obstacles in implementing it. A web-based survey using questionnaires was carried out for 215 respondents consisting of academic and administrative staff of the faculty. Statistical Package for the Social Science (SPSS) was used to analyze the survey data collected. A total of 13.95% of respondents returned the forms. Slightly more than half of those responded (56.7%) have encountered some of the lean terms with mean 1.43 and standard deviation 0.504. However, the large amount of standard deviation somewhat indicates that the real level of lean awareness of FoE as a group was low. In terms of lean benefits, reduction of waste was favored (93.3%) by the respondents with mean 0.93 and standard deviation 0.254. For obstacles in implementing lean, lack of knowledge was selected by most respondents (86.7%) to be the major factor with mean 0.87 and standard deviation 0.346. Through the analysis done, the study may conclude that level of lean awareness among the university‘s community was low thus may hinder implementation of lean concept.

  17. On a New Approach to Education about Ethics for Engineers at Meijou University

    Science.gov (United States)

    Fukaya, Minoru; Morimoto, Tsukasa; Kimura, Noritsugu

    We propose a new approach to education of so called “engineering ethics”. This approach has two important elements in its teaching system. One is “problem-solving learning”, and the other is “discussion ability”. So far, engineering ethics started at the ethical standpoint. But we put the viewpoint of problem-solving learning at the educational base of engineering ethics. Because many problems have complicated structures, so if we want to solve them, we should discuss each other. Problem-solving ability and discussion ability, they help engineers to solve the complex problems in their social everyday life. Therefore, Meijo University names engineering ethics “ethics for engineers”. At Meijou University about 1300 students take classes in both ethics for engineers and environmental ethics for one year.

  18. Matching grant program for university nuclear engineering education

    International Nuclear Information System (INIS)

    Bajorek, Stephen M.

    2002-01-01

    The grant augmented funds from Westinghouse Electric Co. to enhance the Nuclear Engineering program at KSU. The program was designed to provide educational opportunities and to train engineers for careers in the nuclear industry. It provided funding and access to Westinghouse proprietary design codes for graduate and undergraduate studies on topics of current industrial importance. Students had the opportunity to use some of the most advanced nuclear design tools in the industry and to work on actual design problems. The WCOBRA/TRAC code was used to simulate loss of coolant accidents (LOCAs)

  19. A case for the revision of power engineering syllabi at Kenyan universities

    Energy Technology Data Exchange (ETDEWEB)

    Abungu, N.; Akumu, A. [Jomo Kenyatta Univ. of Agriculture and Technology, Nairobi (Kenya). Dept. of Electrical and Electronic Engineering; Munda, J. [Tshwane Univ. of Technology, Pretoria (South Africa). Dept. of Power Engineering

    2005-07-01

    A summary of electrical power engineering education in Kenyan universities was presented. Industry expectations for power systems graduates were discussed. Despite rapid changes in electrical power industries around the world, electrical power engineering in Kenya has remained the same for several years. Curriculum changes were last initiated in the 1980s. Universities have not promoted power engineering and its importance to society, and misunderstandings have led to a lack of employment opportunities for graduates and low enrolment levels. Recent advances in artificial neural networks, genetic algorithms, and fuzzy logic within power systems engineering are not currently taught at Kenyan universities. The deregulation of the power industry calls for a re-assessment of how power engineering is taught. Accidents related to poor engineering designs are relatively common in Kenya and have led to the loss of lives. Severe capacity shortfalls experienced in the country have led to a renewed interest in alternative sources of electricity generation. Environmental studies will help students appreciate the importance of using energy sources that do not degrade the environment. It was concluded that the introduction of new approaches to power engineering will result in increased interest from students. The establishment of industry-university collaborations was recommended, as well as active links with international universities. 12 refs.

  20. Between universalism and relativism: a conceptual exploration of problems in formulating and applying international biomedical ethical guidelines.

    Science.gov (United States)

    Tangwa, G B

    2004-02-01

    In this paper, the author attempts to explore some of the problems connected with the formulation and application of international biomedical ethical guidelines, with particular reference to Africa. Recent attempts at revising and updating some international medical ethical guidelines have been bedevilled by intractable controversies and wrangling regarding both the content and formulation. From the vantage position of relative familiarity with both African and Western contexts, and the privilege of having been involved in the revision and updating of one of the international ethical guidelines, the author reflects broadly on these issues and attempts prescribing an approach from both the theoretical and practical angles liable to mitigate, if not completely eliminate, some of the problems and difficulties.

  1. Howard University Engineers Success: Interdisciplinary Study Keeps Howard on the Cutting Edge

    Science.gov (United States)

    Chew, Cassie M.

    2004-01-01

    According to Engineering Workforce Commission annual reports, in 1999 Howard University graduated 108 students, 92 of whom were African American, in its chemical, civil, electrical, and mechanical engineering programs and computer science programs. After two more years of graduating approximately 100 students across programs, in 2002, according to…

  2. An Academic Survey of Engineering Student Athletes at a Division I University

    Science.gov (United States)

    Pierce, Charles E.

    2007-01-01

    This paper explores the academic success of NCAA Division I collegiate student athletes that enroll in engineering majors. At the University of South Carolina, which is a member of the NCAA Division I Southeastern Conference, nineteen engineering students were on an active athletic roster during the spring semester of 2005. The mean cumulative…

  3. Influence of an Environmental Studies Course on Attitudes of Undergraduates at an Engineering University

    Science.gov (United States)

    Kuo, Shih-Yun; Jackson, Nancy L.

    2014-01-01

    Studies suggest that at engineering universities, where the percentage of males and engineering majors is high, pro-environmental attitudes are likely to be weak and may not change. The 15-item New Ecological Paradigm (NEP) scale was used to measure differences in student attitudes before and after an environmental studies course. Results revealed…

  4. Creating the integral engineer : Combining development education, sustainability, entrepreneurship and technology at Delft University of Technology

    NARCIS (Netherlands)

    Zwarteveen, J.W.; Blom, E.M.; Vastbinder, B.; Brezet, J.C.

    2010-01-01

    A modern engineer is more than a technical specialist. Training an integral engineer requires education in non-technical skills, including social and ethical aspects. Therefore, Delft University of Technology (DUT) introduced sustainable development and entrepreneurship into its bachelor and master

  5. Mechanical Engineering at RWTH Aachen University: Professional Curriculum Development and Teacher Training

    Science.gov (United States)

    Henning, Klaus; Bornefeld, Gero; Brall, Stefan

    2007-01-01

    This paper offers a multi-perspective view on engineering education at RWTH Aachen University: curriculum design, examples of newly developed teaching methods for engineering curricula, and teaching competencies and teacher qualification. It is based on the theories of student-centred learning, project learning, social skills, etc., but the paper…

  6. Teaching Sustainable Entrepreneurship to Engineering Students: The Case of Delft University of Technology

    Science.gov (United States)

    Bonnet, Hans; Quist, Jaco; Hoogwater, Daan; Spaans, Johan; Wehrmann, Caroline

    2006-01-01

    Sustainability, enhancement of personal skills, social aspects of technology, management and entrepreneurship are of increasing concern for engineers and therefore for engineering education. In 1996 at Delft University of Technology this led to the introduction of a subject on sustainable entrepreneurship and technology in the course programmes of…

  7. Learning analytics for smart campus: Data on academic performances of engineering undergraduates in Nigerian private university

    Directory of Open Access Journals (Sweden)

    Segun I. Popoola

    2018-04-01

    Full Text Available Empirical measurement, monitoring, analysis, and reporting of learning outcomes in higher institutions of developing countries may lead to sustainable education in the region. In this data article, data about the academic performances of undergraduates that studied engineering programs at Covenant University, Nigeria are presented and analyzed. A total population sample of 1841 undergraduates that studied Chemical Engineering (CHE, Civil Engineering (CVE, Computer Engineering (CEN, Electrical and Electronics Engineering (EEE, Information and Communication Engineering (ICE, Mechanical Engineering (MEE, and Petroleum Engineering (PET within the year range of 2002–2014 are randomly selected. For the five-year study period of engineering program, Grade Point Average (GPA and its cumulative value of each of the sample were obtained from the Department of Student Records and Academic Affairs. In order to encourage evidence-based research in learning analytics, detailed datasets are made publicly available in a Microsoft Excel spreadsheet file attached to this article. Descriptive statistics and frequency distributions of the academic performance data are presented in tables and graphs for easy data interpretations. In addition, one-way Analysis of Variance (ANOVA and multiple comparison post-hoc tests are performed to determine whether the variations in the academic performances are significant across the seven engineering programs. The data provided in this article will assist the global educational research community and regional policy makers to understand and optimize the learning environment towards the realization of smart campuses and sustainable education. Keywords: Smart campus, Learning analytics, Sustainable education, Nigerian university, Education data mining, Engineering

  8. University Students' Knowledge and Attitude about Genetic Engineering

    Science.gov (United States)

    Bal, Senol; Samanci, Nilay Keskin; Bozkurt, Orçun

    2007-01-01

    Genetic engineering and biotechnology made possible of gene transfer without discriminating microorganism, plant, animal or human. However, although these scientific techniques have benefits, they cause arguments because of their ethical and social impacts. The arguments about ethical ad social impacts of biotechnology made clear that not only…

  9. Jackson State University (JSU)’s Center of Excellence in Science, Technology, Engineering, and Mathematics Education (CESTEME)

    Science.gov (United States)

    2016-01-08

    Actuarial Science Taylor, Triniti Lanier Alcorn State University Animal Science Tchounwou, Hervey Madison Central Jackson State University Computer...for Public Release; Distribution Unlimited Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering...Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering, and Mathematics Education (CESTEME) Report

  10. Research on the Mode of University-Enterprise Cooperation to Promote Engineering Students' Employment

    Science.gov (United States)

    Hui, Yan; Lihua, Sun

    2018-06-01

    The employment of university students has become a hot issue of concern to the whole society. Promoting the employment of university students is a top priority for higher education institutions. University-enterprise cooperation is an important trend in the development of modern higher education. It is also an important channel for promoting the employment of university students, especially for engineering students. Through an in-depth analysis of the status quo of employment of university graduates, this paper proposes four modes of university-enterprise cooperation to promote university graduates' employment: The post-employment cooperation model, the professional internship cooperation model, the second classroom expansion cooperation model and the enterprise-oriented recruitment model, and further proposed the countermeasures to strengthen the cooperation between university and enterprise in order to promote the employment of university students.

  11. Impact of Internet Search Engines on OPAC Users: A Study of Punjabi University, Patiala (India)

    Science.gov (United States)

    Kumar, Shiv

    2012-01-01

    Purpose: The aim of this paper is to study the impact of internet search engine usage with special reference to OPAC searches in the Punjabi University Library, Patiala, Punjab (India). Design/methodology/approach: The primary data were collected from 352 users comprising faculty, research scholars and postgraduate students of the university. A…

  12. Collaborative Learning at Engineering Universities: Benefits and Challenges

    OpenAIRE

    Olga V. Sumtsova; Tatiana Yu. Aikina; Liudmila M. Bolsunovskaya; Chris Phillips; Olga M. Zubkova; Peter J. Mitchell

    2018-01-01

    This paper concerns the cutting edge educational approaches incorporated into syllabuses of the most progressive Russian higher technical schools. The authors discuss one of the active methods in teaching foreign languages – collaborative learning implemented in e-courses. Theoretical and historical aspects of this approach are addressed, as are its suitability for engineering education and possible ways of introducing collaborative learning into e-courses. Collaborative learning technology o...

  13. Interdisciplinary Area of Research Offers Tool of Cross-Cultural Understanding: Cross-Cultural Student Seminar for Communication Training on Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-12-01

    Full Text Available Misunderstanding often occurs in a multidisciplinary field of study, because each field has its own background of thinking. Communication training is important for students, who have a potential to develop the multidisciplinary field of study. Because each nation has its own cultural background, communication in an international seminar is not easy, either. A cross-cultural student seminar has been designed for communication training in the multidisciplinary field of study. Students from a variety of back grounds have joined in the seminar. Both equations and figures are effective tools for communication in the field of science. The seminar works well for communication training in the multidisciplinary field of study of biomedical engineering. An interdisciplinary area of research offers the tool of cross-cultural understanding. The present study refers to author's several experiences: the student internship abroad, the cross-cultural student camp, multi PhD theses, various affiliations, and the creation of the interdisciplinary department.

  14. Development of Mechanical Engineering Curricula at the University of Minho

    Science.gov (United States)

    Teixeira, Jose Carlos Fernandes; da Silva, Jaime Ferreira; Flores, Paulo

    2007-01-01

    The implementation of the Bologna protocol in the European Union has set new goals for the whole higher education system as: (a) a quality assessment for university courses; (b) a framework for the exchange of students and academics; and (c) an opportunity for changing the teaching/learning procedures and methodologies. Within the context, the…

  15. Medical and biomedical applications of shock waves

    CERN Document Server

    Loske, Achim M

    2017-01-01

    This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...

  16. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    International Nuclear Information System (INIS)

    Ryu, Jun-hyung

    2013-01-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  17. University teachers' perspectives on the role of the Laplace transform in engineering education

    Science.gov (United States)

    Holmberg née González Sampayo, Margarita; Bernhard, Jonte

    2017-07-01

    The Laplace transform is an important tool in many branches of engineering, for example, electric and control engineering, but is also regarded as a difficult topic for students to master. We have interviewed 22 university teachers from five universities in three countries (Mexico, Spain and Sweden) about their views on relationships among mathematics, physics and technology/application aspects in the process of learning the Laplace transform in engineering education. Strikingly, the teachers held a spectrum of qualitatively differing views, ranging from seeing virtually no connection (e.g. some thought the Laplace transform has no relevance in engineering), through to regarding the aspects as intimately, almost inseparably linked. The lack of awareness of the widely differing views among teachers might lead to a lack of constructive alignment among different courses that is detrimental to the quality of engineering education.

  18. Medical engineering at Cardiff University. Part 2: Postgraduate programmes of study.

    Science.gov (United States)

    Theobald, P; O'Doherty, D M; Holt, C A; Evans, S L; Jones, M D

    2009-05-01

    The Medical Engineering team within the School of Engineering, Cardiff University, delivers two postgraduate programmes of study. Established over 10 years ago, the part-time MSc programmes in Orthopaedic Engineering and Clinical Engineering offer the opportunity of further study while remaining within full-time employment. Both programmes deliver 120 taught credits over two academic years via a series of residential weekends, with successful completion enabling the student to undertake and then defend a 60-credit research dissertation. Fulfilling a specific role on the career pathway for both student cohorts, the strength of each programme is indicated by the consistent number of applicants.

  19. BioSimplify: an open source sentence simplification engine to improve recall in automatic biomedical information extraction.

    Science.gov (United States)

    Jonnalagadda, Siddhartha; Gonzalez, Graciela

    2010-11-13

    BioSimplify is an open source tool written in Java that introduces and facilitates the use of a novel model for sentence simplification tuned for automatic discourse analysis and information extraction (as opposed to sentence simplification for improving human readability). The model is based on a "shot-gun" approach that produces many different (simpler) versions of the original sentence by combining variants of its constituent elements. This tool is optimized for processing biomedical scientific literature such as the abstracts indexed in PubMed. We tested our tool on its impact to the task of PPI extraction and it improved the f-score of the PPI tool by around 7%, with an improvement in recall of around 20%. The BioSimplify tool and test corpus can be downloaded from https://biosimplify.sourceforge.net.

  20. Polydimethylsiloxane films doped with NdFeB powder: magnetic characterization and potential applications in biomedical engineering and microrobotics.

    Science.gov (United States)

    Iacovacci, V; Lucarini, G; Innocenti, C; Comisso, N; Dario, P; Ricotti, L; Menciassi, A

    2015-12-01

    This work reports the fabrication, magnetic characterization and controlled navigation of film-shaped microrobots consisting of a polydimethylsiloxane-NdFeB powder composite material. The fabrication process relies on spin-coating deposition, powder orientation and permanent magnetization. Films with different powder concentrations (10 %, 30 %, 50 % and 70 % w/w) were fabricated and characterized in terms of magnetic properties and magnetic navigation performances (by exploiting an electromagnet-based platform). Standardized data are provided, thus enabling the exploitation of these composite materials in a wide range of applications, from MEMS/microrobot development to biomedical systems. Finally, the possibility to microfabricate free-standing polymeric structures and the biocompatibility of the proposed composite materials is demonstrated.

  1. University of Nevada Las Vegas LED Display Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-08-31

    The primary objective of this part of the project is to develop and implement a method that compensates for the inefficiency of the green LED. The proposed engineering solution which will be the backbone of this project will be to use RGBW combination in every pixel to save energy. Two different RGBW geometrical pixel configurations will be implemented and compared against traditional LED configurations. These configurations will be analyzed for energy efficiency while keeping the quality of the display the same. Cost of the addition of white LEDs to displays along with energy cost savings will be presented and analyzed.

  2. Engineering Education for Sustainable Development. The Contribution of University Curricula to Engineering Education for Sustainable Development.

    NARCIS (Netherlands)

    Kastenhofer, Karen; Lansu, Angelique; Van Dam-Mieras, Rietje; Sotoudeh, Mahshid

    2010-01-01

    Global failures to reach a sustainable development within present-day societies as well as recent breakthroughs within technoscience pose new challenges to engineering education. The list of competencies which engineers should have to rise to these challenges is long and diverse, and often

  3. Development of security engineering curricula at US universities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.L.

    1998-06-01

    The Southwest Surety Institute was formed in 1996 to create unique, science-based educational programs in security engineering. The programs will integrate business, technology, and criminal justice elements to educate a new generation of security professionals. Graduates of the programs will better understand basic security system design and evaluation and contribute to strengthening of the body of knowledge in the area of security. A systematic approach incorporating people, procedures, and equipment will be taught that will emphasize basic security principles and establish the science of security engineering. The use of performance measures in the analysis of designed systems will enable effective decisions by an enterprise and provide the rationale for investment in security systems. Along with educational programs, Institute members will conduct original research and development built on existing relationships with sponsors from government and industry in areas such as counterterroism, microelectronics, banking, aviation, and sensor development. Additional information and updates on the Southwest Surety Institute are available via the Institute home page at www.emrtc.nmt.edu/ssi.

  4. Proceedings of the 1. National Forum of Science and Technology on Health; 13. Brazilian Congress on Biomedical Engineering; 4. Brazilian Congress of Physicists on Medicine; Brazilian Meeting on Biology and Nuclear Medicine; Brazilian Meeting on Radiological Protection

    International Nuclear Information System (INIS)

    Costa, E.T.; Martins, H.L.; Muehlen, S.S.; Rockman, T.M.B.

    1992-01-01

    This 1. National Forum of Science and Technology on Health presents works of several scientific institutions, including topics on bioengineering; modelling and simulation; sensors and transducers; ultrasonic on medicine; instrumentation processing of signs and medical images; biomedical informatics and clinical software; engineering of rehabilitation; bio-materials and bio-mechanical; clinical engineering; in vivo and in vitro nuclear medicine; radioisotope production and utilization; radiology; radiology protection and dosimetry; radiotherapy; evaluation of technology on health and education. (C.G.C.)

  5. Ethics in psychosocial and biomedical research – A training experience at the Interdisciplinary Center for Bioethics (CIEB) of the University of Chile1

    Science.gov (United States)

    Lolas, Fernando; Rodriguez, Eduardo

    2012-01-01

    This paper reviews the experience in training Latin American professionals and scientists in the ethics of biomedical and psychosocial research at the Interdisciplinary Center for Studies in Bioethics (CIEB) of the University of Chile, aided by a grant from Fogarty International Center (FIC) – National Institutes of Health from 2002 to 2011. In these 10 years of experience, 50 trainees have completed a 12-month training combining on-line and in-person teaching and learning activities, with further support for maintaining contact via webmail and personal meetings. The network formed by faculty and former trainees has published extensively on issues relevant in the continent and has been instrumental in promoting new master level courses at different universities, drafting regulations and norms, and promoting the use of bioethical discourse in health care and research. Evaluation meetings have shown that while most trainees did benefit from the experience and contributed highly to developments at their home institutions and countries, some degree of structuring of demand for qualified personnel is needed in order to better utilize the human resources created by the program. Publications and other deliverables of trainees and faculty are presented. PMID:22754084

  6. Examining E-Learning Barriers as Perceived by Faculty Members of Engineering Colleges in the Jordanian Universities

    Science.gov (United States)

    Al-Alawneh, Muhammad K.

    2014-01-01

    Employing computer's technology that includes e-learning system in the field of Engineering is a vital issue which needs to be discussed. Therefore, this study purposed to examine e-learning barriers as perceived by faculty members of engineering in three major universities in Jordan (Yarmouk University, Jordan University of Science and…

  7. Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling.

    Science.gov (United States)

    Friedrich, O; Schneidereit, D; Nikolaev, Y A; Nikolova-Krstevski, V; Schürmann, S; Wirth-Hücking, A; Merten, A L; Fatkin, D; Martinac, B

    2017-11-01

    Hollow organs (e.g. heart) experience pressure-induced mechanical wall stress sensed by molecular mechano-biosensors, including mechanosensitive ion channels, to translate into intracellular signaling. For direct mechanistic studies, stretch devices to apply defined extensions to cells adhered to elastomeric membranes have stimulated mechanotransduction research. However, most engineered systems only exploit unilateral cellular stretch. In addition, it is often taken for granted that stretch applied by hardware translates 1:1 to the cell membrane. However, the latter crucially depends on the tightness of the cell-substrate junction by focal adhesion complexes and is often not calibrated for. In the heart, (increased) hemodynamic volume/pressure load is associated with (increased) multiaxial wall tension, stretching individual cardiomyocytes in multiple directions. To adequately study cellular models of chronic organ distension on a cellular level, biomedical engineering faces challenges to implement multiaxial cell stretch systems that allow observing cell reactions to stretch during live-cell imaging, and to calibrate for hardware-to-cell membrane stretch translation. Here, we review mechanotransduction, cell stretch technologies from uni-to multiaxial designs in cardio-vascular research, and the importance of the stretch substrate-cell membrane junction. We also present new results using our IsoStretcher to demonstrate mechanosensitivity of Piezo1 in HEK293 cells and stretch-induced Ca 2+ entry in 3D-hydrogel-embedded cardiomyocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The university hospital as centre of excellence for the production and dissemination of the advanced biomedical culture

    Directory of Open Access Journals (Sweden)

    Romano Del Nord

    2015-04-01

    Full Text Available University hospitals are characterized by the coexistence of care, research and training facilities and by the mission to achieve excellent results in the healthcare services provided. These activities, which are respectively subordinate to the Hospitals and University Institutions of Medicine, reach their maximum level of efficiency when programmed and managed with the principles of maximum integration and synergy in organizational, functional and, not least, physical and spatial terms. Based on this knowledge, a group of researchers from the Interuniversity Centre TESIS developed a PRIN research project – this article summarizes its contents and results – aimed at defining the design approach principles on the basis of which to work out innovative solutions to be tested in the creation of Cities of Health, IRCCSs (Scientific Institutes for Research, Hospitalization and Health Care and Hospitals of excellence.

  9. Learning analytics for smart campus: Data on academic performances of engineering undergraduates in Nigerian private university.

    Science.gov (United States)

    Popoola, Segun I; Atayero, Aderemi A; Badejo, Joke A; John, Temitope M; Odukoya, Jonathan A; Omole, David O

    2018-04-01

    Empirical measurement, monitoring, analysis, and reporting of learning outcomes in higher institutions of developing countries may lead to sustainable education in the region. In this data article, data about the academic performances of undergraduates that studied engineering programs at Covenant University, Nigeria are presented and analyzed. A total population sample of 1841 undergraduates that studied Chemical Engineering (CHE), Civil Engineering (CVE), Computer Engineering (CEN), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mechanical Engineering (MEE), and Petroleum Engineering (PET) within the year range of 2002-2014 are randomly selected. For the five-year study period of engineering program, Grade Point Average (GPA) and its cumulative value of each of the sample were obtained from the Department of Student Records and Academic Affairs. In order to encourage evidence-based research in learning analytics, detailed datasets are made publicly available in a Microsoft Excel spreadsheet file attached to this article. Descriptive statistics and frequency distributions of the academic performance data are presented in tables and graphs for easy data interpretations. In addition, one-way Analysis of Variance (ANOVA) and multiple comparison post-hoc tests are performed to determine whether the variations in the academic performances are significant across the seven engineering programs. The data provided in this article will assist the global educational research community and regional policy makers to understand and optimize the learning environment towards the realization of smart campuses and sustainable education.

  10. Current Status and Issues of Nuclear Engineering Research and Educational Facilities in Universities

    International Nuclear Information System (INIS)

    2004-01-01

    It is important to discuss about nuclear engineering research and educational facilities in universities after new educational foundation. 12 universities investigated issues and a countermeasure of them. The results of a questionnaire survey, issues and countermeasure are shown in this paper. The questionnaire on the future nuclear researches, development of education, project, maintenance of nuclear and radioactive facilities and accelerator, control of uranium in subcritical test facilities, use of new corporation facilities, the fixed number of student, number of graduate, student experiments, themes of experiments and researches, the state of educational facilities are carried out. The results of questionnaire were summarized as followings: the fixed number of student (B/M/D) on nuclear engineering, exercise of reactor, education, themes, educational and research facilities, significance of nuclear engineering education in university and proposal. (S.Y.)

  11. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  12. Proceedings of the World Congress on Medical Physics and Biomedical Engineering (San Antonio, Texas, August 6-12, 1988).

    Science.gov (United States)

    Clark, John W., Ed.; And Others

    1988-01-01

    This document contains the proceedings of a joint meeting of the International Federation for Medical and Biological Engineering and the International Organization for Medical Physics. Participants from over 50 countries were in attendance. The theme of the program, "Challenges for the Year 2000," was a reminder of the challenges which confront…

  13. Career Fairs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  14. Contributions of university nuclear engineering departments to the national research agenda

    International Nuclear Information System (INIS)

    Peddicord, K.L.

    1991-01-01

    The history and character of university nuclear engineering departments have enabled them to play unique roles in higher education and to make valuable contributions in numerous important research fields. Nuclear engineering programs have several distinguishing and noteworthy characteristics. These characteristics include quality, diversity, and effectiveness. However, the continued viability of these programs is in question, and the importance of these programs may only be recognized after the capability has been lost. To recover this capability may well prove to be an impossibility

  15. An Educational Program for Newcomers to Enhance their Engineering Motivation and Creativity in Faculty of Engineering at Shizuoka University

    Science.gov (United States)

    Azuma, Naoto; Fujima, Nobuhisa; Nakamura, Tamotsu; Yamada, Shinkichi; Makizawa, Hisamitsu; Nakamura, Takato

    In Faculty of Engineering at Shizuoka University, a new one-year educational program of mechatronics for newcomers will start at April in 2006. This program involves three stages designed to enhance their motivation and creativity in engineering. At the first and second stages, there are three activities; practicing digital circuits, controlling robots with Boe-Bot from Parallax Inc., and making their own microcontroller boards. At the third stage, each student cooperates with his team-mates to make a robot loaded his own board and through the game-type of competition the performance of each team-robot is scored. Through this program, we hope that our students enhance their engineering motivation and creativity.

  16. Transferring experience labs for production engineering students to universities in newly industrialized countries

    Science.gov (United States)

    Leiden, A.; Posselt, G.; Bhakar, V.; Singh, R.; Sangwan, K. S.; Herrmann, C.

    2018-01-01

    The Indian economy is one of the fastest growing economies in the world and the demand for the skilled engineers is increasing. Subsequently the Indian education sector is growing to provide the necessary number of skilled engineers. Current Indian engineering graduates have broad theoretical background but lack in methodological, soft and practical skills. To bridge this gap, the experience lab ideas from the engineering education at “Die Lernfabrik” (learning factory) of the Technische Universität Braunschweig (TU Braunschweig) is transferred to the Birla Institute of Technology and Science in Pilani (BITS Pilani), India. This Lernfabrik successfully strengthened the methodological, soft and practical skills of the TU Braunschweig production-engineering graduates. The target group is discrete manufacturing education with focusing on energy and resource efficiency as well as cyber physical production systems. As the requirements of industry and academia in India differs from Germany, the transfer of the experience lab to the Indian education system needs special attention to realize a successful transfer project. This publication provides a unique approach to systematically transfer the educational concept in Learning Factory from a specific university environment to a different environment in a newly industrialized country. The help of a bilateral university driven practice partnership between the two universities creates a lighthouse for the Indian university environment.

  17. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This report summerizes the research and educational activities at the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The Laboratory holds four main facilities, which are Yayoi reactor, an electron accelerator, fusion blanket research facility, and heavy ion irradiation research facility. And they are open to the researchers both inside and outside the University. The application of the facilities are described. The activities and achievements of the Laboratory staffs, and theses for graduate, master, and doctor degrees are also summerized. (J.P.N.)

  18. Job Satisfaction Analysis of Faculty Members in Public Sector Engineering Universities: An Empirical Investigation

    Directory of Open Access Journals (Sweden)

    AMEER ALI SHAHANI

    2017-07-01

    Full Text Available Most of the researchers have conducted study on the job satisfaction of the faculty members in Non? Engineering Universities only few have paid their attention in the Public Sector Engineering Universities. This study is the first attempt towards the research on faculty members? job satisfaction in public sector engineering universities of Sindh, Pakistan. The focus of this research is to assess the faculty members?job satisfaction on the perspectives of different factors i.e. compensation, research and technology, management style, recognition, working environment, in-service teaching training. The data was collected and analyzed using SPSS version 17.0 on five point likert scale. Regression, Correlation and ANOVAs (Analysis of Variance tests were conducted. Results showed that faculty members of the public sector engineering universities have lower job satisfaction. The finding suggested that, the study is useful for the management of universities in order to rectify the areas of dissatisfaction and to tackle the issues related to the faculty members regarding their job satisfaction.

  19. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  20. Datasets on demographic trends in enrollment into undergraduate engineering programs at Covenant University, Nigeria.

    Science.gov (United States)

    Popoola, Segun I; Atayero, Aderemi A; Badejo, Joke A; Odukoya, Jonathan A; Omole, David O; Ajayi, Priscilla

    2018-06-01

    In this data article, we present and analyze the demographic data of undergraduates admitted into engineering programs at Covenant University, Nigeria. The population distribution of 2649 candidates admitted into Chemical Engineering, Civil Engineering, Computer Engineering, Electrical and Electronics Engineering, Information and Communication Engineering, Mechanical Engineering, and Petroleum Engineering programs between 2002 and 2009 are analyzed by gender, age, and state of origin. The data provided in this data article were retrieved from the student bio-data submitted to the Department of Admissions and Student Records (DASR) and Center for Systems and Information Services (CSIS) by the candidates during the application process into the various engineering undergraduate programs. These vital information is made publicly available, after proper data anonymization, to facilitate empirical research in the emerging field of demographics analytics in higher education. A Microsoft Excel spreadsheet file is attached to this data article and the data is thoroughly described for easy reuse. Descriptive statistics and frequency distributions of the demographic data are presented in tables, plots, graphs, and charts. Unrestricted access to these demographic data will facilitate reliable and evidence-based research findings for sustainable education in developing countries.

  1. Reactor laboratory course for students majoring in nuclear engineering with the Kyoto University Critical Assembly (KUCA)

    International Nuclear Information System (INIS)

    Nishihara, H.; Shiroya, S.; Kanda, K.

    1996-01-01

    With the use of the Kyoto University Critical Assembly (KUCA), a joint reactor laboratory course of graduate level is offered every summer since 1975 by nine associated Japanese universities (Hokkaido University, Tohoku University, Tokyo Institute of Technology, Musashi Institute of Technology, Tokai University, Nagoya University, Osaka University, Kobe University of Mercantile Marine and Kyushu University) in addition to a reactor laboratory course of undergraduate level for Kyoto University. These courses are opened for three weeks (two weeks for the joint course and one week for the undergraduate course) to students majoring in nuclear engineering and a total of 1,360 students have taken the course in the last 21 years. The joint course has been institutionalized with the background that it is extremely difficult for a single university in Japan to have her own research or training reactor. By their effort, the united faculty team of the joint course have succeeded in giving an effective, unique one-week course, taking advantage of their collaboration. Last year, an enquete (questionnaire survey) was conducted to survey the needs for the educational experiments of graduate level and precious data have been obtained for promoting reactor laboratory courses. (author)

  2. A Comparison of the mechanical engineering and safety engineering student’s ICT attitudes at the Obuda University

    Directory of Open Access Journals (Sweden)

    Kiss Gabor

    2016-01-01

    Full Text Available Communication and technology are critical to education. However, using technology in education is not an easy task as communication barriers emerge. The aim of this research is to analyze the ICT attitudes from different faculties at the Obuda University that is between the mechanical engineering students and safety engineering students from the Donát Bánki Mechanical Safety Engineer Faculty. The students from these two groups will use different ICT tool at work after their graduation; the mechanical engineering students will work mostly with designer ICT tools, the safety engineering students will use security systems. It would be important to know whether instructors, when using ICT, have to follow different teaching methods and approaches in these two different groups or not. We measured the ICT attitude with a tool consisting of 23 items (Likert scaled. We worked with 361 students. The data analysis was performed with SPSS software using descriptive statistics and Mann-Whitney test. The results show both groups having the same positive ICT attitude however with one difference.

  3. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  4. Third cycle university studies in Europe in the field of agricultural engineering and in the emerging discipline of biosystems engineering.

    Science.gov (United States)

    Ayuga, F; Briassoulis, D; Aguado, P; Farkas, I; Griepentrog, H; Lorencowicz, E

    2010-01-01

    The main objectives of European Thematic Network entitled 'Education and Research in Agricultural for Biosystems Engineering in Europe (ERABEE-TN)' is to initiate and contribute to the structural development and the assurance of the quality assessment of the emerging discipline of Biosystems Engineering in Europe. ERABEE is co-financed by the European Community in the framework of the LLP Programme. The partnership consists of 35 participants from 27 Erasmus countries, out of which 33 are Higher Education Area Institutions (EDU) and 2 are Student Associations (ASS). 13 Erasmus participants (e.g. Thematic Networks, Professional Associations, and Institutions from Brazil, Croatia, Russia and Serbia) are also involved in the Thematic Network through synergies. To date, very few Biosystems Engineering programs exist in Europe and those that are initiated are at a very primitive stage of development. The innovative and novel goal of the Thematic Network is to promote this critical transition, which requires major restructuring in Europe, exploiting along this direction the outcomes accomplished by its predecessor; the USAEE-TN (University Studies in Agricultural Engineering in Europe). It also aims at enhancing the compatibility among the new programmes of Biosystems Engineering, aiding their recognition and accreditation at European and International level and facilitating greater mobility of skilled personnel, researchers and students. One of the technical objectives of ERABEE is dealing with mapping and promoting the third cycle studies (including European PhDs) and supporting the integration of research at the 1st and 2nd cycle regarding European Biosystems Engineering university studies. During the winter 2008 - spring 2009 period, members of ERABEE conducted a survey on the contemporary status of doctoral studies in Europe, and on a possible scheme for promotion of cooperation and synergies in the framework of the third cycle of studies and the European Doctorate

  5. Examining E-Learning Barriers As Perceived By Faculty 
Members Of Engineering Colleges In The Jordanian Universities

    OpenAIRE

    Muhammad K. AL-ALAWNEH,

    2014-01-01

    Employing computer's technology that includes e-learning system in the field of Engineering is a vital issue which needs to be discussed. Therefore, this study purposed to examine e-learning barriers as perceived by faculty members of engineering in three major universities in Jordan (Yarmouk University, Jordan University of Science and Technology, and Al-Balqaa Applied University) in the second semester of 2012. The study's instrument was distributed to collect the data from a sam...

  6. Embedding of ESD in Engineering Education: Experiences from Chalmers University of Technology

    Science.gov (United States)

    Svanstrom, Magdalena; Palme, Ulrika; Wedel, Maria Knutson; Carlson, Ola; Nystrom, Thomas; Eden, Michael

    2012-01-01

    Purpose: The purpose of this paper is to report on methods developed, within a three-year Education for Sustainable Development (ESD) project at Chalmers University of Technology in Gothenburg, Sweden, to achieve a higher degree of embedding of ESD in engineering programmes. The major emphasis is on methods used, results achieved and lessons…

  7. Mitigating the Mathematical Knowledge Gap between High School and First Year University Chemical Engineering Mathematics Course

    Science.gov (United States)

    Basitere, Moses; Ivala, Eunice

    2015-01-01

    This paper reports on a study carried out at a University of Technology, South Africa, aimed at identifying the existence of the mathematical knowledge gap and evaluating the intervention designed to bridge the knowledge gap amongst students studying first year mathematics at the Chemical Engineering Extended Curriculum Program (ECP). In this…

  8. Critical Thinking in the University Curriculum--The Impact on Engineering Education

    Science.gov (United States)

    Ahern, A.; O'Connor, T.; McRuairc, G.; McNamara, M.; O'Donnell, D.

    2012-01-01

    Critical thinking is a graduate attribute that many courses, including engineering courses, claim to produce in students. As a graduate attribute it is seen by academics as a particularly desirable outcome of student learning and is said by researchers to be a defining characteristic of university education. However, how critical thinking is…

  9. The Motivation to Study: An Analysis of Undergraduate Engineering Students at a Caribbean University

    Science.gov (United States)

    Maharaj, Chris; Blair, Erik; Chin Yuen Kee, Sarah

    2018-01-01

    The link between motivation and success is well documented; however, there is still room to problematise motivation in regards to the individual and contextual levels. This study looks at motivation in relation to students studying undergraduate engineering courses at a Caribbean university and seeks to discover the factors that motivate them to…

  10. Annual report of Radiation Laboratory Department of Nuclear Engineering Kyoto University for fiscal 1993

    International Nuclear Information System (INIS)

    1994-07-01

    This publication is the collection of the papers presented research activities of Radiation Laboratory, Department of Nuclear Engineering, Kyoto University during the 1993 academic/fiscal year (April, 1993 - March, 1994). The 47 of the presented papers are indexed individually. (J.P.N.)

  11. Continuous Improvement in the Industrial and Management Systems Engineering Programme at Kuwait University

    Science.gov (United States)

    Aldowaisan, Tariq; Allahverdi, Ali

    2016-01-01

    This paper describes the process employed by the Industrial and Management Systems Engineering programme at Kuwait University to continuously improve the programme. Using a continuous improvement framework, the paper demonstrates how various qualitative and quantitative analyses methods, such as hypothesis testing and control charts, have been…

  12. Improving Educational Objectives of the Industrial and Management Systems Engineering Programme at Kuwait University

    Science.gov (United States)

    Aldowaisan, Tariq; Allahverdi, Ali

    2016-01-01

    This paper describes the process of developing programme educational objectives (PEOs) for the Industrial and Management Systems Engineering programme at Kuwait University, and the process of deployment of these PEOs. Input of the four constituents of the programme, faculty, students, alumni, and employers, is incorporated in the development and…

  13. Assessment by Employers of Newly Graduated Civil Engineers from the Islamic University of Gaza

    Science.gov (United States)

    Enshassi, Adnan; Hassouna, Ahmed

    2005-01-01

    The evaluation process is very important to identify and recognize the strengths and the weaknesses of graduated students. The purpose of this paper is to evaluate the performance of the newly graduated civil engineers from the Islamic University of Gaza in Palestine. The methodology was based on questionnaires and informal interview. The…

  14. Experience in nuclear engineering distance education at the University of Tennessee

    International Nuclear Information System (INIS)

    Dodds, H.L.

    2011-01-01

    This paper describes the distance education programs in nuclear engineering at The University of Tennessee (UT), which includes several courses that are of interest to the mathematics and computation community such as reactor theory and design, shielding, statistics, health physics, and criticality safety. All of the courses needed for the MS degree in nuclear engineering and several of the courses needed for the PhD degree in nuclear engineering are delivered synchronously (i.e., interactive in real time) via the Internet to students located anywhere by instructors located anywhere. The paper will also describe the historical development of distance education programs at UT as well as the benefits of the programs to students and to the university. The oral presentation associated with this paper will include a short movie that demonstrates the technology used for distance delivery. (author)

  15. Bridging Water Resources Policy and Environmental Engineering in the Classroom at Cornell University

    Science.gov (United States)

    Walter, M. T.; Shaw, S. B.; Seifert, S.; Schwarz, T.

    2006-12-01

    Current university undergraduate students in environmental sciences and engineering are the next generation of environmental protection practitioners. Recognizing this, Cornell's Biological and Environmental Engineering department has developed a popular class, Watershed Engineering (BEE 473), specifically designed to bridge the too-common gap between water resources policy and state-of-art science and technology. Weekly homework assignments are to design real-life solutions to actual water resources problems, often with the objective of applying storm water policies to local situations. Where appropriate, usually in conjunction with recent amendments to the Federal Clean Water Act, this course introduces water resource protection tools and concepts developed in the Cornell Soil and Water Lab. Here we present several examples of how we build bridges between university classrooms and the complex world of water resources policy.

  16. Integrating Internet into Engineering Education: A Case Study of Students' Usage and Attitudes in Faculty of Engineering, Ahmadu Bello University

    Directory of Open Access Journals (Sweden)

    F.O. Anafi

    2015-12-01

    Full Text Available The attitude of students towards the integration of the internet as a study tool and communication channel in teaching and learning in engineering has been investigated. A study was carried out in the Faculty of Engineering, Ahmadu Bello University Zaria, Nigeria, aimed at investigating the effect of certain variables such as gender, course of study, computer experience, and the percentage of internet usage on teaching and learning processes. A well-structured questionnaire was administered to a randomly selected five hundred (500 male and female students across the seven (7 departments of the faculty and about 85% were filled and returned. The study also examines the university management's perspectives and strategies to incorporate internet usage in teaching and learning processes especially in engineering. Amazingly, responses received showed that experience in the use of the computer in surfing the internet for problem based activities mainly affects the level of internet usage across the faculty. This factor makes some students to misplace their priority in internet usage emphasizing on e-mail correspondence and social networking rather than sourcing for information and solving problems as it is done by a few students. Furthermore, findings support that internet cannot entirely substitute for traditional teaching and learning processes like text reading but can serve as a reasonable alternative when the latter is unavailable

  17. Advanced engineering design program at the University of Illinois for the 1987-1988 academic year

    Science.gov (United States)

    Sivier, Kenneth R.; Lembeck, Michael F.

    1988-01-01

    The participation of the University of Illinois at Urbana-Champaign in the NASA/USRA Universities Advanced Engineering Design Program (Space) is reviewed for the 1987 to 88 academic year. The University's design project was the Manned Marsplane and Delivery System. In the spring of 1988 semester, 107 students were enrolled in the Aeronautical and Astronautical Engineering Departments' undergraduate Aerospace Vehicle Design course. These students were divided into an aircraft section (responsible for the Marsplane design), and a spacecraft section (responsible for the Delivery System Design). The design results are presented in Final Design Reports, copies of which are attached. In addition, five students presented a summary of the design results at the Program's Summer Conference.

  18. Understanding the Pathological Basis of Neurological Diseases Through Diagnostic Platforms Based on Innovations in Biomedical Engineering: New Concepts and Theranostics Perspectives

    Directory of Open Access Journals (Sweden)

    Laura Ganau

    2018-02-01

    Full Text Available The pace of advancement of genomics and proteomics together with the recent understanding of the molecular basis behind rare diseases could lead in the near future to significant advances in the diagnosing and treating of many pathological conditions. Innovative diagnostic platforms based on biomedical engineering (microdialysis and proteomics, biochip analysis, non-invasive impedance spectroscopy, etc. are introduced at a rapid speed in clinical practice: this article primarily aims to highlight how such platforms will advance our understanding of the pathological basis of neurological diseases. An overview of the clinical challenges and regulatory hurdles facing the introduction of such platforms in clinical practice, as well as their potential impact on patient management, will complement the discussion on foreseeable theranostic perspectives. Indeed, the techniques outlined in this article are revolutionizing how we (1 identify biomarkers that better define the diagnostic criteria of any given disease, (2 develop research models, and (3 exploit the externalities coming from innovative pharmacological protocols (i.e., those based on monoclonal antibodies, nanodrugs, etc. meant to tackle the molecular cascade so far identified.

  19. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine.

    Science.gov (United States)

    Wu, Yu-Wen; Goubran, Hadi; Seghatchian, Jerard; Burnouf, Thierry

    2016-04-01

    Therapeutic and diagnostic applications of nanomedicine are playing increasingly important roles in human health. Various types of synthetic nanoparticles, including liposomes, micelles, and other nanotherapeutic platforms and conjugates, are being engineered to encapsulate or carry drugs for treating diseases such as cancer, cardiovascular disorders, neurodegeneration, and inflammations. Nanocarriers are designed to increase the half-life of drugs, decrease their toxicity and, ideally, target pathological sites. Developing smart carriers with the capacity to deliver drugs specifically to the microenvironment of diseased cells with minimum systemic toxicity is the goal. Blood cells, and potentially also the liposome-like micro- and nano-vesicles they generate, may be regarded as ideally suited to perform such specific targeting with minimum immunogenic risks. Blood cell membranes are "decorated" with complex physiological receptors capable of targeting and communicating with other cells and tissues and delivering their content to the surrounding pathological microenvironment. Blood cells, such as erythrocytes, have been developed as permeable carriers to release drugs to diseased tissues or act as biofactory allowing enzymatic degradation of a pathological substrate. Interestingly, attempts are also being made to improve the targeting capacity of synthetic nanoparticles by "decorating" their surface with blood cell membrane receptor-like biochemical structures. Research is needed to further explore the benefits that blood cell-derived microvesicles, as a Trojan horse delivery systems, can bring to the arsenal of therapeutic micro- and nanotechnologies. This short review focuses on the therapeutic roles that red blood cells and platelets can play as smart drug-delivery systems, and highlights the benefits that blood transfusion expertise can bring to this exciting and novel biomedical engineering field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The New Maritime Engineering Education at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Andersen, Ingrid Marie Vincent; Nielsen, Ulrik Dam

    2014-01-01

    maritime engineering education has so far been very successful with the number of students increased by a factor of two and with very good job opportunities in the Danish maritime industry. A spin-off of this change is DTU's participation in a dual MSc degree engineering program: Nordic Master in Maritime......Until 2010, the maritime engineering education at the Technical University of Denmark (DTU) followed the rather classical naval architecture approach with the main focus on marine hydrodynamics and strength of ship structures. The number of students was rather modest and constant. However......, at that time the last major ship yard in Denmark was closing down and ship operation, together with ship design, became the main working area for the students after graduation. It was then decided to broaden the naval architecture education to a maritime engineering education taking marine logistics...

  1. Inventing Problems for Technical Solutions – The Co-production of Universities, Skills and Engineering Challenges

    DEFF Research Database (Denmark)

    Juhl, Joakim; Buch, Anders

    institution building where business and management competencies are incorporated to engineering curricula. By comparing experiences from early career alumni from educations that are results of moving engineering institutions into business, we analyze the consequences imposed by changing disciplinary...... of innovation. In the recent two decades, universities and other engineering institutions that are typically identified with technology development have expanded their research and teaching activities towards the business end of innovation. Purpose This paper investigates the new emergent trend in academic...... demarcations within academic and professional engineering knowledges. Theoretical and methodological framework The paper draws upon theoretical frameworks from Practice Theory (e.g. as developed by Theodore Schatzki, Stephen Kemmis et al.), and co-production and sociotechnical imaginaries from Science...

  2. Report of the 2nd RCM on nanoscale radiation engineering of advanced materials for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions for which, due to their characteristics, radiation techniques are uniquely suited. Accordingly, many of the IAEA Member States (MS) have interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. In seeking new knowledge to advance the field and tackle this specific problem, to collaborate to enhance the quality of the scientific research and improve their efficiency and effectiveness, MS had requested the support of the IAEA for such collaboration. Based on these requests, and the conclusions and recommendations of the Consultant's meeting on Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes, held on 10-14 December 2007, the present CRP was formulated and started in 2009. The first RCM was held in 30 March – 3 April 2009, in Vienna, where the work plan for both individual participants and collaborations were discussed and accepted, as reported in the Meeting Report published as IAEA Working Material (http://www-naweb.iaea.org/napc/iachem/working{sub m}aterials.html). The second RCM was held on 15-19 November 2010, Paris, France, and was attended by 17 participants (chief scientific investigators or team members) and one cost-free observer from Brazil. The participants presented their research achievements since the first RCM, centred on the main expected outputs of this CRP: a. Methodologies to prepare and characterize nanogels; nanoparticles and nanoporous membranes, as well as to synthesize and modify nanoparticle surfaces by attaching organic ligands by radiation; b. Methodologies to radiation

  3. Report of the 2nd RCM on nanoscale radiation engineering of advanced materials for potential biomedical applications

    International Nuclear Information System (INIS)

    2010-01-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions for which, due to their characteristics, radiation techniques are uniquely suited. Accordingly, many of the IAEA Member States (MS) have interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. In seeking new knowledge to advance the field and tackle this specific problem, to collaborate to enhance the quality of the scientific research and improve their efficiency and effectiveness, MS had requested the support of the IAEA for such collaboration. Based on these requests, and the conclusions and recommendations of the Consultant's meeting on Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes, held on 10-14 December 2007, the present CRP was formulated and started in 2009. The first RCM was held in 30 March – 3 April 2009, in Vienna, where the work plan for both individual participants and collaborations were discussed and accepted, as reported in the Meeting Report published as IAEA Working Material (http://www-naweb.iaea.org/napc/iachem/working_materials.html). The second RCM was held on 15-19 November 2010, Paris, France, and was attended by 17 participants (chief scientific investigators or team members) and one cost-free observer from Brazil. The participants presented their research achievements since the first RCM, centred on the main expected outputs of this CRP: a. Methodologies to prepare and characterize nanogels; nanoparticles and nanoporous membranes, as well as to synthesize and modify nanoparticle surfaces by attaching organic ligands by radiation; b. Methodologies to radiation synthesize

  4. 77 FR 39996 - Department of Mechanical Engineering, Texas A&M University, Notice of Decision on Application for...

    Science.gov (United States)

    2012-07-06

    ... DEPARTMENT OF COMMERCE International Trade Administration Department of Mechanical Engineering, Texas A&M University, Notice of Decision on Application for Duty-Free Entry of Scientific Instruments...: Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123. Instrument: Arc...

  5. Identifying the Barriers upon Development of Virtual Education in Engineering Majors (Case Study: The University of Isfahan)

    Science.gov (United States)

    Nikoonezhad, Sepideh; Nili, Mohammadreza; Esfahani, Ahmadreza Nasr

    2015-01-01

    The present study aims at investigating barriers upon development of virtual education in engineering majors at the University of Isfahan. The study has applied a mixed method (qualitative and quantitative) and its population consists all of the department members of the technical and engineering majors at the University of Isfahan including 125…

  6. FOREWORD: 9th Curtin University of Technology Science and Engineering International Conference 2014 (CUTSE2014)

    Science.gov (United States)

    Chieng Chen, Vincent Lee

    2015-04-01

    A very warm welcome to all participants of the 9th Curtin University Technology, Science and Engineering (CUTSE) Conference 2014. This annual conference dates back to 2006 when the first Curtin University of Technology Science and Engineering (CUTSE) Conference was held in Curtin University, Miri Sarawak. CUTSE Conference was initially intended for Curtin's undergraduates such that they are able to experience the presentation of their work in a conference environment. As time passes and following the urge of knowledge dissemination, CUTSE Conference is hence open to public. This year the Department of Mechanical Engineering has been given the honour to organize the 9th CUTSE Conference. It has been a pleasure to watch CUTSE grow from strength to strength over the years. This year, our theme is "Discovering, Innovating and Engineering". We hope that it is in this spirit that CUTSE participants may align their respective work, such that we all aim for a greater and better implementation of "Discovering, Innovating and Engineering". The 9th CUTSE Conference 2014 is an excellent avenue for researchers, engineers, scientists, academicians, professionals from industry and students to share their research findings and initiate further collaborations in their respective fields. Parallel sessions in Mechanical, Electrical, Computer, Civil and Chemical engineering as well as the sciences will be hosted over a period of two days. Each year, the conference attracts participation from a number of countries in addition to Malaysia and Australia. In addition, student participants will get the opportunity to present their research projects and gain valuable feedback from industry professionals. This year the Conference will be organised by the Department of Mechanical Engineering of Curtin Sarawak's School of Engineering and Science in collaboration with The Institute of Engineers Malaysia, Miri Branch. On behalf of the organizing committee, I would like to thank this year

  7. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications

    OpenAIRE

    Wang, Yongzhong; Fan,Zhen; Shao,Lei; Kong,Xiaowei; Hou,Xianjuan; Tian,Dongrui; Sun,Ying; Xiao,Yazhong; Yu,Li

    2016-01-01

    Yongzhong Wang,1 Zhen Fan,2 Lei Shao,3 Xiaowei Kong,1 Xianjuan Hou,1 Dongrui Tian,1 Ying Sun,1 Yazhong Xiao,1 Li Yu4 1School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People’s Republic of China; 2Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA; 3State Key Laboratory of New Drugs and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, 4Department of Microbiolog...

  8. Analysis of the Impact of Introductory Physics on Engineering Students at Texas A&M University

    Science.gov (United States)

    Perry, Jonathan; Bassichis, William

    Introductory physics forms a major part of the foundational knowledge of engineering majors, independent of discipline and institution. While the content of introductory physics courses is consistent from institution to institution, the manner in which it is taught can vary greatly due to professor, textbook, instructional method, and overall course design. This work attempts to examine variations in student success, as measured by overall academic performance in an engineering major, and matriculation rates, based on the type of introductory physics a student took while enrolled in an engineering degree at Texas A&M University. Specific options for introductory physics at Texas A&M University include two calculus based physics courses, one traditional (UP), and one more mathematically rigorous (DP), transfer credit, and high school (AP or dual) credit. In order to examine the impact of introductory physics on a student's degree progression, data mining analyses are performed on a data set of relatively comprehensive academic records for all students enrolled as an engineering major for a minimum of one academic term. Student data has been collected for years of entering freshman beginning in 1990 and ending in 2010. Correlations will be examined between freshman level courses, including introductory physics, and follow on engineering courses, matriculation rates, and time to graduation.

  9. Obstacles to the Application of Administrative Process Engineering in Gaza Universities from the Faculty Members’ Perspective

    Directory of Open Access Journals (Sweden)

    Mahmoud A.R. Assaf

    2017-08-01

    Full Text Available The study aimed to identify the faculty members’ levels of assessment at Palestinian universities of the obstacles to the application of engineering of administrative processes ; and to find out whether there were statistically significant differences at the level of significance (α≤0.05 between the mean scores of assessment attributable to the variables: (college, academic rank, years of service. To achieve this, the researcher followed the descriptive method by using a questionnaire consisting of 36 items distributed into 4 areas: (technical, human, financial, administrative. The sample consisted of (95 faculty members from two universities (Al-Azhar and Islamia. The study revealed that the total degree of the respondents’ assessment of the obstacles to the application of engineering of administrative processes was (73.4%. The order of obstacles was as follows: i financial, ii human, iii administrative and iv technical obstacles. Further, there were no statistically significant differences at the level of significance (α≤0.05 between the mean scores of respondents’ assessment of the obstacles to the application of this method at the Palestinian universities that were attributed to these variables: (college, academic rank, years of service.The study recommended the need for allocating of adequate financial budgets, and the creation of a special unit in each university to be responsible for providing training on the concepts of reengineering administrative processes and linking them to quality and continuous improvement. Keywords: Administrative process engineering, Gaza governorates , Faculty members.

  10. Development of undergraduate nuclear security curriculum at College of Engineering, Universiti Tenaga Nasional

    Science.gov (United States)

    Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz

    2017-01-01

    The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy

  11. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    Science.gov (United States)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes

  12. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    International Nuclear Information System (INIS)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-01-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO 2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes

  13. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri [Nuclear Energy Center, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper

  14. Searching for a New Way to Reach Patrons: A Search Engine Optimization Pilot Project at Binghamton University Libraries

    Science.gov (United States)

    Rushton, Erin E.; Kelehan, Martha Daisy; Strong, Marcy A.

    2008-01-01

    Search engine use is one of the most popular online activities. According to a recent OCLC report, nearly all students start their electronic research using a search engine instead of the library Web site. Instead of viewing search engines as competition, however, librarians at Binghamton University Libraries decided to employ search engine…

  15. Education for Sustainable Development: Assessment of the Current Situation at the Faculty of Engineering of Notre Dame University--Louaize

    Science.gov (United States)

    Salem, Talal; Harb, Jacques

    2012-01-01

    There is a growing need to incorporate educational sustainable development (ESD) principles into engineering education. This paper identifies engineering competencies within the Faculty of Engineering at Notre Dame University--Louaize and the means to shift towards sustainability. ESD tools are used to carry the analysis, keeping in mind the…

  16. Undergraduate courses in nuclear engineering in Italian universities: Cultural and practical aspects

    International Nuclear Information System (INIS)

    Guerrini, B.; Lombardi, C.; Naviglio, A.; Oliveri, E.; Panella, B.; Sobrero, E.

    1992-01-01

    The contents of the undergraduate courses given in Italian nuclear engineering faculties are analyzed, showing the validity of this professional profile also with reference to non-nuclear applications including relevant safety issues and the management of complex projects. The role of Italian universities is stressed, in the defense of knowledge and capability in the nuclear sector, also with reference to the years of the nuclear 'moratoria' decided at the political level after public consultation. The prospects of Italian nuclear engineers are examined, with reference to the European labour market

  17. Ethics and engineering courses at Delft University of Technology: contents, educational setup and experiences.

    Science.gov (United States)

    van de Poel, I R; Zandvoort, H; Brumsen, M

    2001-04-01

    This article reports on the development and teaching of compulsory courses on ethics and engineering at Delft University of Technology (DUT). Attention is paid to the teaching goals, the educational setup and methods, the contents of the courses, involvement of staff from engineering schools, experiences to date, and challenges for the future. The choices made with respect to the development and teaching of the courses are placed within the European and Dutch context and are compared and contrasted with the American situation and experiences.

  18. Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines

    Science.gov (United States)

    Pietzonka, Patrick; Seifert, Udo

    2018-05-01

    Heat engines should ideally have large power output, operate close to Carnot efficiency and show constancy, i.e., exhibit only small fluctuations in this output. For steady-state heat engines, driven by a constant temperature difference between the two heat baths, we prove that out of these three requirements only two are compatible. Constancy enters quantitatively the conventional trade-off between power and efficiency. Thus, we rationalize and unify recent suggestions for overcoming this simple trade-off. Our universal bound is illustrated for a paradigmatic model of a quantum dot solar cell and for a Brownian gyrator delivering mechanical work against an external force.

  19. Computer aided training in nuclear power engineering at the Gdansk Technical University

    International Nuclear Information System (INIS)

    Marecki, J.; Duzinkiewicz, K.; Kosmowski, K.T.

    1993-01-01

    The Faculty of Electrical Engineering of the Gdansk Technical University has organized post-graduate studies in nuclear power engineering in cooperation with the Institute of Nuclear Research at Swierk since 1973. Post-graduate courses in nuclear power plant construction and design were organized twice. Between 1986 and 1990, prototype software was developed for aiding lectures, self-teaching and knowledge testing in the following fields: 1) dynamics and control of nuclear reactors; 2) simulators of nuclear power plant basic systems (reactor, steam generator, steam turbine, and synchronous generator). (Z.S.) 2 refs

  20. National research council report and its impact on nuclear engineering education at the University of Michigan

    International Nuclear Information System (INIS)

    Martin, W.R.

    1991-01-01

    A recent report by the National Research Council raised a number of important issues that will have an impact on nuclear engineering departments across the country. The report has been reviewed in the context of its relevance to the Department of Nuclear Engineering at the University of Michigan (UM), and some observations and conclusions have been drawn. This paper focuses on those portions of Ref. 1 concerning undergraduate and graduate curricula, research facilities and laboratories, faculty research interests, and funding for research and graduate student support because these topics have a direct impact on current and future directions for the department

  1. Learning analytics: Dataset for empirical evaluation of entry requirements into engineering undergraduate programs in a Nigerian university.

    Science.gov (United States)

    Odukoya, Jonathan A; Popoola, Segun I; Atayero, Aderemi A; Omole, David O; Badejo, Joke A; John, Temitope M; Olowo, Olalekan O

    2018-04-01

    In Nigerian universities, enrolment into any engineering undergraduate program requires that the minimum entry criteria established by the National Universities Commission (NUC) must be satisfied. Candidates seeking admission to study engineering discipline must have reached a predetermined entry age and met the cut-off marks set for Senior School Certificate Examination (SSCE), Unified Tertiary Matriculation Examination (UTME), and the post-UTME screening. However, limited effort has been made to show that these entry requirements eventually guarantee successful academic performance in engineering programs because the data required for such validation are not readily available. In this data article, a comprehensive dataset for empirical evaluation of entry requirements into engineering undergraduate programs in a Nigerian university is presented and carefully analyzed. A total sample of 1445 undergraduates that were admitted between 2005 and 2009 to study Chemical Engineering (CHE), Civil Engineering (CVE), Computer Engineering (CEN), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mechanical Engineering (MEE), and Petroleum Engineering (PET) at Covenant University, Nigeria were randomly selected. Entry age, SSCE aggregate, UTME score, Covenant University Scholastic Aptitude Screening (CUSAS) score, and the Cumulative Grade Point Average (CGPA) of the undergraduates were obtained from the Student Records and Academic Affairs unit. In order to facilitate evidence-based evaluation, the robust dataset is made publicly available in a Microsoft Excel spreadsheet file. On yearly basis, first-order descriptive statistics of the dataset are presented in tables. Box plot representations, frequency distribution plots, and scatter plots of the dataset are provided to enrich its value. Furthermore, correlation and linear regression analyses are performed to understand the relationship between the entry requirements and the

  2. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  3. Nuclear Science and Engineering education at the Delft University of Technology

    International Nuclear Information System (INIS)

    Bode, P.

    2009-01-01

    There is a national awareness in the Netherlands for strengthening education in the nuclear sciences, because of the ageing workforce, and to ensure competence as acceptability increases of nuclear power as an option for diversification of the energy supply. This may be reflected by the rapidly increasing number of students at the Delft University of Technology with interest in nuclear science oriented courses, and related bachelor and MSc graduation projects. These considerations formed the basis of the Nuclear Science and Engineering concentration, effectively starting in 2009. The programme can be taken as focus of the Research and Development Specialisation within the Master Programme in Applied Physics or as a Specialisation within the Master's Programme in Chemical Engineering. Both programmes require successful completion of a total of 120 ECTS study points, consisting of two academic years of 60 ECTS (1680 hours of study). Of that total, 100 ECTS are in the field of Nuclear Science and Engineering, depending on students choices within the programme, including a (industrial) internship, to be taken in companies all over the world. In Chemical Engineering, there is a compulsory design project during which a product or process should be developed. Both programmes also require a final graduation project. In both curricula, Nuclear Science and Engineering comprises compulsory and elective courses, which allow students to focus on either health or energy. Examples of courses include Nuclear Science, Nuclear Chemistry, Nuclear Engineering, Reactor Physics, Chemistry of the Nuclear Fuel Cycle, Medical Physics and Radiation Technology and Radiological Health Physics. (Author)

  4. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1991

    International Nuclear Information System (INIS)

    1992-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1991 are summarized. In this Laboratory, there are four large research facilities, that is, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of the research by using respective research facilities were summarized in separate reports. In this annual report, the course of the management and operation of respective research facilities is described, and the research activities, the theses for doctorate and graduation theses of the teachers, personnel and graduate students in the Laboratory are summarized. In the research, those on first wall engineering for fusion reactors, fuel cycle engineering, electromagnetic structure engineering, AI and robotics, quantum beam engineering, new type reactor design and so on are included. (K.I.)

  5. Integrating E-Learning and Classroom Learning for Engineering Quality Control unit - Curtin University Experience

    Directory of Open Access Journals (Sweden)

    Ali M. Darabi Golshani

    2011-08-01

    Full Text Available Engineering employers expect engineering graduates to possess a wide range of skills that goes beyond their technical knowledge. It is vital that graduates have skills which demonstrate that they are responsible for their own development and careers. Some of these skills include; communication abilities, organizational skills, self-promotion, the ability to work as part of a team, be an effective problem solver, be a critical thinker, have good negotiation skills, have the ability to be a leader and being able to network effectively. Department of Civil Engineering at Curtin University of Technology in Perth, Australia offers a Master of Engineering Management degree for Engineers from various disciplines. One of the units taught in this Master degree program is Engineering Quality Control. It was decided to incorporate these non-technical skills in this unit by using an e-learning platform (Blackboard together with an adaptation of the Seven Principles of Good Practice and Dr Meredith Belbin’s team role theory to divide participants into groups. At the end of the unit, most of the participants were showing improvements in their non-technical skills.

  6. Quality Assessment Survey at the School of Civil Engineering at Aalborg University

    DEFF Research Database (Denmark)

    Brohus, Henrik

    2008-01-01

    the study board of civil engineering. The questionnaire was jointly developed for all study boards at Aalborg University. The questionnaire forms an investigation of students' satisfaction and evaluation of the overall structure of the education including self-reported performance assessment. The paper......As part of an improved quality assessment procedure at the School of Civil Engineering at Aalborg University, an online survey has been undertaken among all students. Due to external requirements and a wish for more structured feedback, an online questionnaire was presented to all students under...... discusses the structure of the questionnaire and presents the results. Finally, suggestions for improvements regarding the questionnaire and further quality assessment are included. The response rate was 40%. Overall, the results showed a general satisfaction with the studies although substantial variance...

  7. IPR Barriers in Collaboration between University and Engineering Industry in Sweden

    OpenAIRE

    Huang, Wenting

    2011-01-01

    This thesis examines the barriers, especially intellectual property rights concerned that inhibit industry academia collaboration. By analyzing Swedish firms in the engineering industry, I explore the influence of IPR barrier on firms’ benefits, short- and long-term respectively from university-industry interaction. Three hypotheses are suggested to investigate the relationship between IPR barriers, firm categories, short-term benefits and long-term benefits. The results illustrate different ...

  8. The record of electrical and communication engineering conversazione Tohoku University Volume 63, No. 3

    Science.gov (United States)

    1995-05-01

    English abstracts contained are from papers authored by the research staff of the Research Institute of Electrical Communication and the departments of Electrical Engineering, Electrical Communications, Electronic Engineering, and Information Engineering, Tohoku University, which originally appeared in scientific journals in 1994. The abstracts are organized under the following disciplines: electromagnetic theory; physics; fundamental theory of information; communication theory and systems; signal and image processing; systems control; computers; artificial intelligence; recording; acoustics and speech; ultrasonic electronics; antenna, propagation, and transmission; optoelectronics and optical communications; quantum electronics; superconducting materials and applications; magnetic materials and magnetics; semiconductors; electronic materials and parts; electronic devices and integrated circuits; electronic circuits; medical electronics and bionics; measurements and applied electronics; electric power; and miscellaneous.

  9. Status of University of Cincinnati reactor-site nuclear engineering graduate programs

    International Nuclear Information System (INIS)

    Anno, J.N.; Christenson, J.M.; Eckart, L.E.

    1993-01-01

    The University of Cincinnati (UC) nuclear engineering program faculty has now had 12 yr of experience in delivering reactor-site educational programs to nuclear power plant technical personnel. Currently, with the sponsorship of the Toledo-Edison Company (TED), we are conducting a multiyear on-site graduate program with more than 30 participants at the Davis-Besse nuclear power plant. The program enables TED employees with the proper academic background to earn a master of science (MS) degree in nuclear engineering (mechanical engineering option). This paper presents a brief history of tile evolution of UC reactor-site educational programs together with a description of the progress of the current program

  10. Sierra Leone Journal of Biomedical Research

    African Journals Online (AJOL)

    The Sierra Leone Journal of Biomedical Research publishes papers in all fields of Medicine and Allied Health Sciences including Basic Medical Sciences, Clinical Sciences, Dental Sciences, Behavioural Sciences, Biomedical Engineering, Molecular Biology, Pharmaceutical Sciences, Biotechnology in relation to Medicine, ...

  11. Quality aspects in nuclear engineering courses at the University of Arkansas

    International Nuclear Information System (INIS)

    West, L.

    1993-01-01

    Although quality assurance and total quality management are well-established programs in industry, almost all university academic programs lack formally organized programs for development, demonstration, and maintenance of high quality. Many academic programs do have many facets of a quality assurance program, it is simply handled as a part of the usual management of the academic program. These quality assurance programs inevitably are aimed at management of the instructor, with little or no emphasis on the ongoing quality of student work. This paper describes how the concept of quality is directed toward the entire aspect of nuclear engineering classes at the University of Arkansas, from overall university management of the instructor to details concerning instructor contact with students to improve the quality of the student's own work. One particular new concept is introduced: the use of quality points by the author in grading all students work

  12. THE RESEARCH PROJECTS THROUGH UNIVERSITY-BUSINESS RELATIONSHIP IN THE CONTINUOUS FORMATION OF CHEMICAL ENGINEERS

    Directory of Open Access Journals (Sweden)

    Diana Niurka Concepción Toledo

    2015-07-01

    Full Text Available Economic and social development requires the establishment of strategic alliances of society to higher education. The university, based on the benefits of deep multiplier effect, has the ability and the duty to manage knowledge and transferring scientific results obtained in its substantive processes: teaching, scientific research and university extension to the productive context. In this paper the experience developed by Chemical Engineering Department of Central University “Marta Abreu” of Las Villas in which the scientific community in the industry of sugar cane is prepared to manage knowledge through university- business relationship is exposed. For this effort, an innovative process focused on the execution of research projects from scientific and technological demands set by the sugar factory "Antonio Sanchez" Aguada de Pasajeros develops. In the development of the planned actions it will be attended teacher-researchers, specialists and managers of the company and the incorporation of students in the race for the exercise of labor practice, innovative aspect of its formation, which consolidates professional preparation. The experience showed the potential offered by the connection of university science with industry through the establishment of innovative processes in knowledge management to ensure greater relevance of university substantive processes and the immediate incorporation of scientific results to the productive sector as the supreme goal of this activity.

  13. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1990

    International Nuclear Information System (INIS)

    1991-01-01

    In this annual report, the activities of research and education and the state of operation of the research facilities in this Laboratory in fiscal year 1990 are summarized. There are four large research facilities in this Laboratory, that is, the fast neutron source reactor 'Yayoi', the electron beam linear accelerator, the nuclear fusion reactor blanket experiment device and the heavy ion irradiation research facility. Those are used to execute research and education in the wide fields of atomic energy engineering, and put to the common utilization by universities in whole Japan. The results of the research with these facilities have been reported in the separate reports. The research aims at developing the most advanced and new fields in nuclear reactor engineering, and includes the engineering of the first wall and the fuel cycle for nuclear fusion reactors, electromagnetic structure engineering, AI and robotics, quantum beam engineering, the design of new type reactors, the basic process of radiochemistry and so on. The report on the course of the large scale facilities, research activities, the publication of research, education and the events in the Laboratory in the year are described. (K.I.)

  14. Harnessing supramolecular peptide nanotechnology in biomedical applications

    Directory of Open Access Journals (Sweden)

    Chan KH

    2017-02-01

    Full Text Available Kiat Hwa Chan,1 Wei Hao Lee,2 Shuangmu Zhuo,3 Ming Ni3 1Division of Science, Yale-NUS College, Singapore; 2Department of Chemistry, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA; 3Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China Abstract: The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1 nanofibrils in biomaterials that can interact with cells, 2 nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3 nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected. Keywords: peptides, self-assembly, nanotechnology

  15. Figure mining for biomedical research.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Iossifov, Ivan

    2009-08-15

    Figures from biomedical articles contain valuable information difficult to reach without specialized tools. Currently, there is no search engine that can retrieve specific figure types. This study describes a retrieval method that takes advantage of principles in image understanding, text mining and optical character recognition (OCR) to retrieve figure types defined conceptually. A search engine was developed to retrieve tables and figure types to aid computational and experimental research. http://iossifovlab.cshl.edu/figurome/.

  16. Exploration of Factors Affecting Success of Undergraduate Engineering Majors at a Historically Black University

    Science.gov (United States)

    Igbinoba, Egheosa P.

    Blacks are underrepresented amongst persons who earn college degrees in the United States and Black males attend and complete college at a lower rate than Black females (Toldson, Fry Brown, & Sutton, 2009). According to Toldson et al. (2009), this quandary may be attributed to Black males' apathy toward education in general, waning support and ideological challenges toward Pell Grants and affirmative action, cultural incompetency on the part of the 90% White, ethnic makeup of the U.S. teaching force, and the relatively high numbers of Black males who are held back in school. In spite of the dismal statistics regarding Black male academic achievement and matriculation, there are those Black males who do participate in postsecondary education. While many studies have highlighted reasons that Black males do not achieve success in attending and persisting through college, few have adopted the anti-deficit research framework suggested by Harper (2010), identifying reasons Black males do persist in higher education. Although science, technology, engineering, and mathematics careers are identified as those most imperative to the economic competitiveness of the United States, few studies have concentrated solely on engineering majors and fewer, if any, solely on Black male engineering majors at an historically Black college and university. The aim of this study was to address an apparent gap in the literature and invoke theories for recruitment, retention, and success of Black males in engineering degree programs by employing an anti-deficit achievement framework for research of students of color in science, technology, engineering, and mathematics. Data garnered from the study included insight into participants' definitions of success, precollege experiences, factors contributing to the persistence during undergraduate study, and perceptions of attending a historically Black college and university versus a primarily White institution.

  17. Training in software used by practising engineers should be included in university curricula

    Science.gov (United States)

    Silveira, A.; Perdigones, A.; García, J. L.

    2009-04-01

    Deally, an engineering education should prepare students, i.e., emerging engineers, to use problem-solving processes that synergistically combine creativity and imagination with rigour and discipline. Recently, pressures on curricula have resulted in the development of software-specific courses, often to the detriment of the understanding of theory [1]. However, it is also true that there is a demand for information technology courses by students other than computer science majors [2]. The emphasis on training engineers may be best placed on answering the needs of industry; indeed, many proposals are now being made to try to reduce the gap between the educational and industrial communities [3]. Training in the use of certain computer programs may be one way of better preparing engineering undergraduates for eventual employment in industry. However, industry's needs in this respect must first be known. The aim of this work was to determine which computer programs are used by practising agricultural engineers with the aim of incorporating training in their use into our department's teaching curriculum. The results showed that 72% of their working hours involved the use computer programs. The software packages most commonly used were Microsoft Office (used by 79% of respondents) and CAD (56%), as well as budgeting (27%), statistical (21%), engineering (15%) and GIS (13%) programs. As a result of this survey our university department opened an additional computer suite in order to provide students practical experience in the use of Microsoft Excel, budgeting and engineering software. The results of this survey underline the importance of computer software training in this and perhaps other fields of engineering. [1] D. J. Moore, and D. R. Voltmer, "Curriculum for an engineering renaissance," IEEE Trans. Educ., vol. 46, pp. 452-455, Nov. 2003. [2] N. Kock, R. Aiken, and C. Sandas, "Using complex IT in specific domains: developing and assessing a course for nonmajors

  18. Universality of energy conversion efficiency for optimal tight-coupling heat engines and refrigerators

    International Nuclear Information System (INIS)

    Sheng, Shiqi; Tu, Z C

    2013-01-01

    A unified χ-criterion for heat devices (including heat engines and refrigerators), which is defined as the product of the energy conversion efficiency and the heat absorbed per unit time by the working substance (de Tomás et al 2012 Phys. Rev. E 85 010104), is optimized for tight-coupling heat engines and refrigerators operating between two heat baths at temperatures T c and T h ( > T c ). By taking a new convention on the thermodynamic flux related to the heat transfer between two baths, we find that for a refrigerator tightly and symmetrically coupled with two heat baths, the coefficient of performance (i.e., the energy conversion efficiency of refrigerators) at maximum χ asymptotically approaches √(ε C ) when the relative temperature difference between two heat baths ε C -1 ≡(T h -T c )/T c is sufficiently small. Correspondingly, the efficiency at maximum χ (equivalent to maximum power) for a heat engine tightly and symmetrically coupled with two heat baths is proved to be η C /2+η C 2 /8 up to the second order term of η C ≡ (T h − T c )/T h , which reverts to the universal efficiency at maximum power for tight-coupling heat engines operating between two heat baths at small temperature difference in the presence of left–right symmetry (Esposito et al 2009 Phys. Rev. Lett. 102 130602). (fast track communication)

  19. Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program

    International Nuclear Information System (INIS)

    Jack S. Brenizer, Jr.

    2003-01-01

    The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs. Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students

  20. Biomedical applications of magnetic particles

    CERN Document Server

    Mefford, Thompson

    2018-01-01

    Magnetic particles are increasingly being used in a wide variety of biomedical applications. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, and detailing methods to characterize magnetic particles. The second section describes biomedical applications, including chemical sensors and cellular actuators, and diagnostic applications such as drug delivery, hyperthermia cancer treatment, and magnetic resonance imaging contrast.

  1. Interactive Lab to Learn Radio Astronomy, Microwave & Antenna Engineering at the Technical University of Cartagena (Spain

    Directory of Open Access Journals (Sweden)

    Fernando Daniel Quesada-Pereira

    2011-02-01

    Full Text Available An initiative carried out at the Technical University of Cartagena (UPCT, Spain to encourage students and promote the interest for Scientific and Engineering Culture between society is presented in this contribution. For this purpose, a long-term project based on the set-up of an interactive laboratory surrounding a small Radio Telescope (SRT system has been carried out. The main novelty is that this project is entirely being developed by students of last courses of our Telecommunication Engineering Faculty, under the supervision of four lecturers. This lab offers the possibility to remotely control the SRT, and it provides a set of multimedia web-based applications to produce a novel, practical, multidisciplinary virtual laboratory to improve the learning and teaching processes in related sciences and technologies.

  2. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1992

    International Nuclear Information System (INIS)

    1993-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1992 are summarized. In this Laboratory, there are four large research facilities, that are, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of research by using respective research facilities have been summarized in separate reports. The course of the management and operation of each research facility is described, and the research activities, the theses for doctorate and graduation these of teachers, personnel and graduate students in the Laboratory are summarized. (J.P.N.)

  3. Analysis of Search Engines and Meta Search Engines\\\\\\' Position by University of Isfahan Users Based on Rogers\\\\\\' Diffusion of Innovation Theory

    Directory of Open Access Journals (Sweden)

    Maryam Akbari

    2012-10-01

    Full Text Available The present study investigated the analysis of search engines and meta search engines adoption process by University of Isfahan users during 2009-2010 based on the Rogers' diffusion of innovation theory. The main aim of the research was to study the rate of adoption and recognizing the potentials and effective tools in search engines and meta search engines adoption among University of Isfahan users. The research method was descriptive survey study. The cases of the study were all of the post graduate students of the University of Isfahan. 351 students were selected as the sample and categorized by a stratified random sampling method. Questionnaire was used for collecting data. The collected data was analyzed using SPSS 16 in both descriptive and analytic statistic. For descriptive statistic frequency, percentage and mean were used, while for analytic statistic t-test and Kruskal-Wallis non parametric test (H-test were used. The finding of t-test and Kruscal-Wallis indicated that the mean of search engines and meta search engines adoption did not show statistical differences gender, level of education and the faculty. Special search engines adoption process was different in terms of gender but not in terms of the level of education and the faculty. Other results of the research indicated that among general search engines, Google had the most adoption rate. In addition, among the special search engines, Google Scholar and among the meta search engines Mamma had the most adopting rate. Findings also showed that friends played an important role on how students adopted general search engines while professors had important role on how students adopted special search engines and meta search engines. Moreover, results showed that the place where students got the most acquaintance with search engines and meta search engines was in the university. The finding showed that the curve of adoption rate was not normal and it was not also in S-shape. Morover

  4. A Qualitative Evaluation of the Use of Multimedia Case Studies in an Introductory Engineering Course at Two Southeastern Universities

    Science.gov (United States)

    Huett, Kim C.; Kawulich, Barbara

    2015-01-01

    Collaborating at two universities to improve teaching and learning in undergraduate engineering, an interdisciplinary team of researchers, instructors, and evaluators planned and implemented the use of multimedia case studies with students enrolled in an introductory engineering course. This qualitative action evaluation study focuses on results…

  5. Differences in Chemical Engineering Student-Faculty Interactions by Student Age and Experience at a Large, Public, Research University

    Science.gov (United States)

    Ciston, Shannon; Sehgal, Sanya; Mikel, Tressa; Carnasciali, Maria-Isabel

    2018-01-01

    Adult undergraduate students aged 25+ in engineering disciplines are an important demographic bringing a wealth of life experience to the classroom. This study uses qualitative data drawn from semi-structured interviews with two groups of undergraduate chemical engineering students at a large, public research university: adult students with…

  6. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles

    CERN Document Server

    Qin Xiao Yong; Sun Feng Rui; Wu Chih

    2003-01-01

    The performance of irreversible reciprocating heat engine cycles with heat transfer loss and friction-like term loss is analysed using finite-time thermodynamics. The universal relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, and the optimal relation between power output and the efficiency of the cycles are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of cycle processes on the performance of the cycle using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson and Brayton cycles.

  7. Characterization of hybrid lighting systems of the Electrical Engineering Building in the Industrial University of Santander

    Science.gov (United States)

    Galvis, D.; Exposito, C.; Osma, G.; Amado, L.; Ordóñez, G.

    2016-07-01

    This paper presents an analysis of hybrid lighting systems of Electrical Engineering Building in the Industrial University of Santander, which is a pilot of green building for warm- tropical conditions. Analysis of lighting performance of inner spaces is based on lighting curves obtained from characterization of daylighting systems of these spaces. A computation tool was made in Excel-Visual Basic to simulate the behaviour of artificial lighting system considering artificial control system, user behaviour and solar condition. Also, this tool allows to estimate the electrical energy consumption of the lighting system for a day, a month and a year.

  8. Said Ali Hassan El-Quliti1* and Neyara Radwan2 1 Prof., Department of Industrial Engineering, King Abdulaziz University

    OpenAIRE

    El-Quliti, Said Ali Hassan; Radwan, Neyara

    2016-01-01

    Faculty of Engineering at King Abdulaziz University plans to redesign its undergraduate courses, which is required for students in 14 different programs. These courses have an annual enrolment of about 2,500 students each year. The Operations Research Teaching Area in the Department of Industrial Engineering will be presented as a case study. This area involves two core and three elective courses.The course redesign involves preparing students for the Fundamentals of Engineering (FE) Exam req...

  9. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1993

    International Nuclear Information System (INIS)

    1994-08-01

    In this annual report, the activities of research and education, the state of operation of research facilities and others in fiscal year 1993 are summarized. Four main research facilities are the fast neutron source reactor 'Yayoi', the electron linear accelerator, the basic experiment facility for nuclear fusion reactor blanket design and the heavy irradiation research facility. The reactor and the accelerator are for the joint utilization by all universities in Japan, the blanket is used by the Faculty of Engineering, and the HIT is for the joint utilization in University of Tokyo. In fiscal year 1993, the installation of the fast neutron science research facility was approved. In this annual report, the management and operation of the above research facilities are described, and the research activities, the theses for doctorate and graduation theses of teachers, are summarized. (K.I.)

  10. On a Vision to Educating Students in Sustainability and Design—The James Madison University School of Engineering Approach

    Directory of Open Access Journals (Sweden)

    Olga Pierrakos

    2011-12-01

    Full Text Available In order for our future engineers to be able to work toward a sustainable future, they must be versed not only in sustainable engineering but also in engineering design. An engineering education must train our future engineers to think flexibly and to be adaptive, as it is unlikely that their future will have them working in one domain. They must, instead, be versatilists. The School of Engineering at James Madison University has been developed from the ground up to provide this engineering training with an emphasis on engineering design, systems thinking, and sustainability. Neither design nor sustainability are mutually exclusive, and consequently, an education focusing on design and sustainability must integrate these topics, teaching students to follow a sustainable design process. This is the goal of the James Madison University School of Engineering. In this paper, we present our approach to curricular integration of design and sustainability as well as the pedagogical approaches used throughout the curriculum. We do not mean to present the School’s model as an all or nothing approach consisting of dependent elements, but instead as a collection of independent approaches, of which one or more may be appropriate at another university.

  11. Safety leadership in the teaching laboratories of electrical and electronic engineering departments at Taiwanese Universities.

    Science.gov (United States)

    Wu, Tsung-Chih

    2008-01-01

    Safety has always been one of the principal goals in teaching laboratories. Laboratories cannot serve their educational purpose when accidents occur. The leadership of department heads has a major impact on laboratory safety, so this study discusses the factors affecting safety leadership in teaching laboratories. This study uses a mail survey to explore the perceived safety leadership in electrical and electronic engineering departments at Taiwanese universities. An exploratory factor analysis shows that there are three main components of safety leadership, as measured on a safety leadership scale: safety controlling, safety coaching, and safety caring. The descriptive statistics also reveals that among faculty, the perception of department heads' safety leadership is in general positive. A two-way MANOVA shows that there are interaction effects on safety leadership between university size and instructor age; there are also interaction effects between presence of a safety committee and faculty gender and faculty age. It is therefore necessary to assess organizational factors when determining whether individual factors are the cause of differing perceptions among faculty members. The author also presents advice on improving safety leadership for department heads at small universities and at universities without safety committees.

  12. College of Engineering & Applied Science

    Science.gov (United States)

    Computational Mechanics Laboratory Environmental Engineering Laboratory Geotechnical Engineering Laboratory Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  13. Sierra Leone Journal of Biomedical Research

    African Journals Online (AJOL)

    MHRL

    Sierra Leone Journal of Biomedical Research. (A publication of the College of Medicine and Allied Health Sciences, University of Sierra Leone). ©Sierra Leone Journal .... was used to. She seemed to have had a change of mind after ingesting.

  14. Research activities in the first two cycles of European Biosystems engineering university studies - Situation in the Netherlands

    NARCIS (Netherlands)

    Hofstee, J.W.

    2009-01-01

    Wageningen University has implemented the bachelor – master model by 2003. The biosystems related programmes of Wageningen University are the BSc Agrotechnology and the MSc Agricultural and Bioresource Engineering. The bachelor programme has a size of 180 credits and the master programme a size of

  15. A Survey of the Role of Thermodynamics and Transport Properties in Chemical Engineering University Education in Europe and the USA

    Science.gov (United States)

    Ahlstrom, Peter; Aim, Karel; Dohrn, Ralf; Elliott, J. Richard; Jackson, George; Jaubert, Jean-Noel; Macedo, Eugenia A.; Pokki, Juha-Pekka; Reczey, Kati; Victorov, Alexey; Zilnik, Ljudmila Fele; Economou, Ioannis G.

    2010-01-01

    A survey on the teaching of thermodynamics and transport phenomena in chemical engineering curricula in European and US Universities was performed and results are presented here. Overall, 136 universities and colleges responded to the survey, out of which 81 from Europe and 55 from the USA. In most of the institutions responding at least two…

  16. Research-based learning for nuclear engineering education in Gadjah Mada University

    International Nuclear Information System (INIS)

    Putero, Susetyo Hario; Kusnanto; Harto, Andang Widi

    2011-01-01

    Nuclear engineering education in Gadjah Mada University has been operated since 1977 in order to prepare Indonesian people facing up nuclear era in Indonesia. Until 1995, most of the alumni work in National Nuclear Energy Board, but recently many of them have been taking advanced study abroad. To improve our quality of education, since the last 3 years Gadjah Mada University has implemented Research-Based Learning (RBL). RBL for nuclear engineering student is conducted by providing challenges to the student related to the critical issues in public acceptance of nuclear power plant (NPP) in Indonesia that is waste management. Students should join in a group to complete the assignment. Within the group, they discuss and produce new idea in order to manage radioactive waste of new generation NPP. So, they are stimulated to think the future based on the state of the art of waste technology. This method could increase student's knowledge and soft skills, simultaneously. Some students also continue to explore and to refine the task as their thesis topic. Therefore, implementation of RBL also succeeds in increasing student's efficiency study. (author)

  17. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers

    OpenAIRE

    Roach, Michael

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discoura...

  18. Reorganization and the present situation of the department of nuclear engineering of the national universities in Japan

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Tanaka, Satoru; Imanishi, Nobutsugu; Takeda, Toshikazu; Kudo, Kazuhiko

    2000-01-01

    On July 1999, the 36th Conference on Isotopes in Physics and Engineering was held, where a panel discussion titled on 'new development on nuclear energy and radiation education at universities' was carried out. In the discussion, reports from every universities were stated and some opinion exchanges were carried out. Every representatives of faculty mentioned not only on how nuclear energy and radiation education became, but also on general problems on recent engineering education (for example, what education is aimed under maintenance of what cooperation with the other faculties and specialties). Here were introduced on five cases of typical universities in Japan (Hokkaido, Tokyo, Kyoto, Osaka, and Kyushu Universities), where present states and future scopes in the Nuclear Engineering Faculty and its graduate school were described at a standpoint of their educational researches on nuclear energy. (G.K.)

  19. SEA Change: Bringing together Science, Engineering and the Arts at the University of Florida

    Science.gov (United States)

    Perfit, M. R.; Mertz, M. S.; Lavelli, L.

    2014-12-01

    A group of interested and multifaceted faculty, administrators and students created the Science, Engineering, Arts Committee (SEA Change) two years ago at the University of Florida (UF). Recognizing that innovative ideas arise from the convergence of divergent thinkers, the committee seeks to bring together faculty in Science, Engineering, the Arts and others across campus to develop and disseminate innovative ideas for research, teaching and service that will enhance the campus intellectual environment. We meet regularly throughout the year as faculty with graduate and undergraduate students to catalyze ideas that could lead to collaborative or interdisciplinary projects and make recommendations to support innovative, critical and creative work. As an example, the Department of Geological Sciences and the School of Art and Art History collaborated on a competition among UF undergraduate painting students to create artistic works that related to geoscience. Each student gathered information from Geological Sciences faculty members to use for inspiration in creating paintings along with site-specific proposals to compete for a commission. The winning work was three-story high painting representing rock strata and the Florida environment entitled "Prairie Horizontals" that is now installed in the Geoscience building entrance atrium. Two smaller paintings of the second place winner, depicting geologists in the field were also purchased and displayed in a main hallway. Other activities supported by SEA Change have included a collaborative work of UF engineering and dance professors who partnered for the Creative Storytelling and Choreography Lab, to introduce basic storytelling tools to engineering students. A campus-wide gathering of UF faculty and graduate students titled Creative Practices: The Art & Science of Discovery featured guest speakers Steven Tepper, Victoria Vesna and Benjamin Knapp in spring 2014. The Committee plans to develop and foster ideas that will

  20. Innovation in engineering education through computer assisted learning and virtual university model

    Science.gov (United States)

    Raicu, A.; Raicu, G.

    2015-11-01

    The paper presents the most important aspects of innovation in Engineering Education using Computer Assisted Learning. The authors propose to increase the quality of Engineering Education programs of study at European standards. The use of computer assisted learning methodologies in all studies is becoming an important resource in Higher Education. We intend to improve the concept of e-Learning using virtual terminals, online support and assisting special training through live seminars and interactive labs to develop a virtual university model. We intend to encourage computer assisted learning and innovation as sources of competitive advantage, to permit vision and learning analysis, identifies new sources of technology and ideas. Our work is based on our university datasets collected during last fifteen years using several e-Learning systems. In Constanta Maritime University (CMU), using eLearning and Knowledge Management Services (KMS) is very important and we apply it effectively to achieve strategic objectives, such as collaboration, sharing and good practice. We have experience in this field since 2000 year using Moodle as KMS in our university. The term KMS can be associated to Open Source Software, Open Standards, Open Protocols and Open Knowledge licenses, initiatives and policies. In CMU Virtual Campus we have today over 12500 active users. Another experience of the authors is the implementation of MariTrainer Wiki educational platform based on Dokeos and DekiWiki under MARICOMP and MEP Leonardo da Vinci Project. We'll also present in this paper a case study under EU funded project POSDRU, where the authors implemented other educational platform in Technological High Schools from Romania used over 1000 teachers. Based on large datasets the study tries to improve the concept of e-Learning teaching using the revolutionary technologies. The new concept present in this paper is that the teaching and learning will be interactive and live. The new and modern