WorldWideScience

Sample records for biomedical complex systems

  1. Mechanism-based modeling of complex biomedical systems

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Sosnovtseva, Olga; Holstein-Rathlou, N.-H.

    2005-01-01

    Mechanism-based modeling is an approach in which the physiological, pathological and pharmacological processes of relevance to a given problem are represented as directly as possible. This approach allows us (i) to test whether assumed hypotheses are consistent with observed behaviour, (ii) to ex...... regulatory mechanism represents the target for intervention and that the development of new and more effective drugs must be based on a deeper understanding of the biological processes.......Mechanism-based modeling is an approach in which the physiological, pathological and pharmacological processes of relevance to a given problem are represented as directly as possible. This approach allows us (i) to test whether assumed hypotheses are consistent with observed behaviour, (ii......) to examine the sensitivity of a system to parameter variation, (iii) to learn about processes not directly amenable to experimentation, and (iv) to predict system behavior under conditions not previously experienced. The paper illustrates different aspects of the application of mechanism-based modeling...

  2. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  3. Visualization and simulation of complex flows in biomedical engineering

    CERN Document Server

    Imai, Yohsuke; Ishikawa, Takuji; Oliveira, Mónica

    2014-01-01

    This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.

  4. BIMS: Biomedical Information Management System

    OpenAIRE

    Mora, Oscar; Bisbal, Jesús

    2013-01-01

    In this paper, we present BIMS (Biomedical Information Management System). BIMS is a software architecture designed to provide a flexible computational framework to manage the information needs of a wide range of biomedical research projects. The main goal is to facilitate the clinicians' job in data entry, and researcher's tasks in data management, in high data quality biomedical research projects. The BIMS architecture has been designed following the two-level modeling paradigm, a promising...

  5. Integrating systems biology models and biomedical ontologies

    Directory of Open Access Journals (Sweden)

    de Bono Bernard

    2011-08-01

    Full Text Available Abstract Background Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. Results We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. Conclusions We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  6. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  7. Biomedical applications of X-ray absorption and vibrational spectroscopic microscopies in obtaining structural information from complex systems

    Science.gov (United States)

    Aitken, Jade B.; Carter, Elizabeth A.; Eastgate, Harold; Hackett, Mark J.; Harris, Hugh H.; Levina, Aviva; Lee, Yao-Chang; Chen, Ching-Iue; Lai, Barry; Vogt, Stefan; Lay, Peter A.

    2010-02-01

    Protein crystallography and NMR spectroscopy took decades to emerge as routine techniques in structural biology. X-ray absorption spectroscopy now has reached a similar stage of maturity for obtaining complementary local structural information around metals in metalloproteins. However, the relatively recent emergence of X-ray and vibrational spectroscopic microprobes that build on these techniques has enabled the structural information obtained from the "mature" techniques on isolated biomolecules to be translated into in situ structural information from inhomogeneous complex systems, such as whole cells and tissues.

  8. Cardiovascular system simulation in biomedical engineering education.

    Science.gov (United States)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  9. Personalized biomedical devices & systems for healthcare applications

    Science.gov (United States)

    Chen, I.-Ming; Phee, Soo Jay; Luo, Zhiqiang; Lim, Chee Kian

    2011-03-01

    With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

  10. BiOSS: A system for biomedical ontology selection.

    Science.gov (United States)

    Martínez-Romero, Marcos; Vázquez-Naya, José M; Pereira, Javier; Pazos, Alejandro

    2014-04-01

    In biomedical informatics, ontologies are considered a key technology for annotating, retrieving and sharing the huge volume of publicly available data. Due to the increasing amount, complexity and variety of existing biomedical ontologies, choosing the ones to be used in a semantic annotation problem or to design a specific application is a difficult task. As a consequence, the design of approaches and tools addressed to facilitate the selection of biomedical ontologies is becoming a priority. In this paper we present BiOSS, a novel system for the selection of biomedical ontologies. BiOSS evaluates the adequacy of an ontology to a given domain according to three different criteria: (1) the extent to which the ontology covers the domain; (2) the semantic richness of the ontology in the domain; (3) the popularity of the ontology in the biomedical community. BiOSS has been applied to 5 representative problems of ontology selection. It also has been compared to existing methods and tools. Results are promising and show the usefulness of BiOSS to solve real-world ontology selection problems. BiOSS is openly available both as a web tool and a web service.

  11. Polyion complex (PIC) particles: Preparation and biomedical applications.

    Science.gov (United States)

    Insua, Ignacio; Wilkinson, Andrew; Fernandez-Trillo, Francisco

    2016-08-01

    Oppositely charged polyions can self-assemble in solution to form colloidal polyion complex (PIC) particles. Such nanomaterials can be loaded with charged therapeutics such as DNA, drugs or probes for application as novel nanomedicines and chemical sensors to detect disease markers. A comprehensive discussion of the factors affecting PIC particle self-assembly and their response to physical and chemical stimuli in solution is described herein. Finally, a collection of key examples of polyionic nanoparticles for biomedical applications is discussed to illustrate their behaviour and demonstrate the potential of PIC nanoparticles in medicine.

  12. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  13. Biomedical Engineering Strategies in System Design Space

    Science.gov (United States)

    Savageau, Michael A.

    2011-01-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a “system design space” for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further

  14. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  15. Multi-scale biomedical systems: measurement challenges

    Science.gov (United States)

    Summers, R.

    2016-11-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper.

  16. Analysis and modeling of noise in biomedical systems.

    Science.gov (United States)

    Ranjbaran, Mina; Jalaleddini, Kian; Lopez, Diego Guarin; Kearney, Robert E; Galiana, Henrietta L

    2013-01-01

    Noise characteristics play an important role in evaluating tools developed to study biomedical systems. Despite usual assumptions, noise in biomedical systems is often nonwhite or non-Gaussian. In this paper, we present a method to analyze the noise component of a biomedical system. We demonstrate the effectiveness of the method in the analysis of noise in voluntary ankle torque measured by a torque transducer and eye movements measured by electro-oculography (EOG).

  17. Multiple energy synchrotron biomedical imaging system

    Science.gov (United States)

    Bassey, B.; Martinson, M.; Samadi, N.; Belev, G.; Karanfil, C.; Qi, P.; Chapman, D.

    2016-12-01

    A multiple energy imaging system that can extract multiple endogenous or induced contrast materials as well as water and bone images would be ideal for imaging of biological subjects. The continuous spectrum available from synchrotron light facilities provides a nearly perfect source for multiple energy x-ray imaging. A novel multiple energy x-ray imaging system, which prepares a horizontally focused polychromatic x-ray beam, has been developed at the BioMedical Imaging and Therapy bend magnet beamline at the Canadian Light Source. The imaging system is made up of a cylindrically bent Laue single silicon (5,1,1) crystal monochromator, scanning and positioning stages for the subjects, flat panel (area) detector, and a data acquisition and control system. Depending on the crystal’s bent radius, reflection type, and the horizontal beam width of the filtered synchrotron radiation (20-50 keV) used, the size and spectral energy range of the focused beam prepared varied. For example, with a bent radius of 95 cm, a (1,1,1) type reflection and a 50 mm wide beam, a 0.5 mm wide focused beam of spectral energy range 27 keV-43 keV was obtained. This spectral energy range covers the K-edges of iodine (33.17 keV), xenon (34.56 keV), cesium (35.99 keV), and barium (37.44 keV) some of these elements are used as biomedical and clinical contrast agents. Using the developed imaging system, a test subject composed of iodine, xenon, cesium, and barium along with water and bone were imaged and their projected concentrations successfully extracted. The estimated dose rate to test subjects imaged at a ring current of 200 mA is 8.7 mGy s-1, corresponding to a cumulative dose of 1.3 Gy and a dose of 26.1 mGy per image. Potential biomedical applications of the imaging system will include projection imaging that requires any of the extracted elements as a contrast agent and multi-contrast K-edge imaging.

  18. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  19. A Semantics and Data-Driven Biomedical Multimedia Software System

    Directory of Open Access Journals (Sweden)

    Shih-Hsi Liu

    2010-08-01

    Full Text Available Developing a large-scale biomedical multimedia software system is always a challenging task: Satisfaction of sundry and stringent biomedical multimedia related requirements and standards; Heterogeneous software deployment and communication environments; and tangling correlation between data/contents and software functionalities, among others. This paper introduces a novel biomedical multimedia software system developed under Service-Oriented Architecture (SOA. Such a system takes the advantage of interoperability of SOA to solve the heterogeneity and correlation problems. The paper also classifies the system into services, annotation, ontologies, semantics matching, and QoS optimization aspects which may potentially solve the requirements problem: By establishing data ontology with respect to data properties, contents, QoS, and biomedical regulations and expanding service ontology to describe more functional and QoS specifications supported by services, appropriate services for processing biomedical multimedia data may be discovered, performed, tuned up or replaced as needed. Lastly, a biomedical education project that improves the performance of feature extraction and classification processed afterwards is introduced to illustrate the advantages of our software system developed under SOA.

  20. Cloud Based Metalearning System for Predictive Modeling of Biomedical Data

    Directory of Open Access Journals (Sweden)

    Milan Vukićević

    2014-01-01

    Full Text Available Rapid growth and storage of biomedical data enabled many opportunities for predictive modeling and improvement of healthcare processes. On the other side analysis of such large amounts of data is a difficult and computationally intensive task for most existing data mining algorithms. This problem is addressed by proposing a cloud based system that integrates metalearning framework for ranking and selection of best predictive algorithms for data at hand and open source big data technologies for analysis of biomedical data.

  1. Data Mining Algorithms for Classification of Complex Biomedical Data

    Science.gov (United States)

    Lan, Liang

    2012-01-01

    In my dissertation, I will present my research which contributes to solve the following three open problems from biomedical informatics: (1) Multi-task approaches for microarray classification; (2) Multi-label classification of gene and protein prediction from multi-source biological data; (3) Spatial scan for movement data. In microarray…

  2. Resolving complex research data management issues in biomedical laboratories: Qualitative study of an industry-academia collaboration.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L; Bova, G Steven; Wang, Jian; Ackerman, Christopher F; Berlinicke, Cynthia A; Chen, Steve H; Lindvall, Mikael; Zack, Donald J

    2016-04-01

    This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to (1) characterize specific problems faced by biomedical researchers with traditional information management practices, (2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to (3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity.

  3. Antimicrobial Activity from Colistin-Heparin Lamellar-Phase Complexes for the Coating of Biomedical Devices.

    Science.gov (United States)

    Tangso, Kristian J; C D da Cunha, Paulo Henrique; Spicer, Patrick; Li, Jian; Boyd, Ben J

    2016-11-16

    Infections arising in hospitalized patients, particularly those who have undergone surgery and are reliant on receiving treatment through biomedical devices, continue to be a rising concern. It is well-known that aqueous mixtures of oppositely charged surfactant and polymer molecules can self-assemble to form liquid crystalline structures, primarily via electrostatically driven interactions that have demonstrated great potential as tailored-release nanomaterials. Colistin is a re-emerging antibiotic used against multidrug-resistant Gram-negative bacteria. Its amphiphilic structure allows it to form micellar aggregates in solution. Thus, the aim of this study was to determine whether structured complexes form between colistin and negatively charged biopolymers, such as the highly sulfated anticoagulant, heparin. Cross-polarized light microscopy and synchrotron small-angle X-ray scattering were employed to visualize the appearance of birefringent structures and identify liquid crystalline structures, respectively, formed across the interface between solutions of colistin and heparin. A lamellar phase with a lattice parameter of ∼40 Å was formed upon contact between the oppositely charged solutions of colistin and heparin. In addition, in vitro release studies showed a slow release of colistin from the lamellar-phase gel complexes into the bulk media, and disk diffusion bioassays revealed antimicrobial activity against Pseudomonas aeruginosa. This system provides a novel, cost-effective, and simple approach to reducing the risk of infections by potentially applying the formulation as a coating for biomedical implants or tubing.

  4. Multi-Polarization Reconfigurable Antenna for Wireless Biomedical System.

    Science.gov (United States)

    Wong, Hang; Lin, Wei; Huitema, Laure; Arnaud, Eric

    2017-01-23

    This paper presents a multi-polarization reconfigurable antenna with four dipole radiators for biomedical applications in body-centric wireless communication system (BWCS). The proposed multi-dipole antenna with switchable 0°, +45°, 90° and -45° linear polarizations is able to overcome the polarization mismatching and multi-path distortion in complex wireless channels as in BWCS. To realize this reconfigurable feature for the first time among all the reported antenna designs, we assembled four dipoles together with 45° rotated sequential arrangements. These dipoles are excited by the same feeding source provided by a ground tapered Balun. A metallic reflector is placed below the dipoles to generate a broadside radiation. By introducing eight PIN diodes as RF switches between the excitation source and the four dipoles, we can control a specific dipole to operate. As the results, 0°, +45°, 90° and -45° linear polarizations can be switched correspondingly to different operating dipoles. Experimental results agree with the simulation and show that the proposed antenna well works in all polarization modes with desirable electrical characteristics. The antenna has a wide impedance bandwidth of 34% from 2.2 to 3.1 GHz (for the reflection coefficient ≤ -10 dB) and exhibits a stable cardioid-shaped radiation pattern across the operating bandwidth with a peak gain of 5.2 dBi. To validate the effectiveness of the multi-dipole antenna for biomedical applications, we also designed a meandered PIFA as the implantable antenna. Finally, the communication link measurement shows that our proposed antenna is able to minimize the polarization mismatching and maintains the optimal communication link thanks to its polarization reconfigurability.

  5. [The system of biomedical scientific information of Serbia].

    Science.gov (United States)

    Dacić, M

    1995-09-01

    Building of the System of biomedical scientific information of Yugoslavia (SBMSI YU) began, by the end of 1980, and the system became operative officially in 1986. After the political disintegration of former Yugoslavia SBMSI of Serbia was formed. SBMSI is developed according to the policy of developing of the System of scientific technologic information of Serbia (SSTI S), and with technical support of SSTI S. Reconstruction of the System is done by using former SBMSI YU as a model. Unlike the former SBMSI YU, SBMSI S owns besides the database Biomedicina Serbica, three important databases: database of doctoral dissertations promoted at University Medical School in Belgrade in the period from 1955-1993, database of Master's theses promoted at the University School of Medicine in Belgrade from 1965-1993; A database of foreign biomedical periodicals in libraries of Serbia.

  6. Bioactive luminescent transition-metal complexes for biomedical applications.

    Science.gov (United States)

    Ma, Dik-Lung; He, Hong-Zhang; Leung, Ka-Ho; Chan, Daniel Shiu-Hin; Leung, Chung-Hang

    2013-07-22

    The serendipitous discovery of the anticancer drug cisplatin cemented medicinal inorganic chemistry as an independent discipline in the 1960s. Luminescent metal complexes have subsequently been widely applied for sensing, bio-imaging, and in organic light-emitting diode applications. Transition-metal complexes possess a variety of advantages that make them suitable as therapeutics and as luminescent probes for biomolecules. It is thus highly desirable to develop new luminescent metal complexes that either interact with DNA through different binding modes or target alternative cellular machinery such as proteins as well as to provide a more effective means of monitoring disease progression. In this Review, we highlight recent examples of biologically active luminescent metal complexes that can target and probe a specific biomolecule, and offer insights into the future potential of these compounds for the investigation and treatment of human diseases.

  7. [Big data, medical language and biomedical terminology systems].

    Science.gov (United States)

    Schulz, Stefan; López-García, Pablo

    2015-08-01

    A variety of rich terminology systems, such as thesauri, classifications, nomenclatures and ontologies support information and knowledge processing in health care and biomedical research. Nevertheless, human language, manifested as individually written texts, persists as the primary carrier of information, in the description of disease courses or treatment episodes in electronic medical records, and in the description of biomedical research in scientific publications. In the context of the discussion about big data in biomedicine, we hypothesize that the abstraction of the individuality of natural language utterances into structured and semantically normalized information facilitates the use of statistical data analytics to distil new knowledge out of textual data from biomedical research and clinical routine. Computerized human language technologies are constantly evolving and are increasingly ready to annotate narratives with codes from biomedical terminology. However, this depends heavily on linguistic and terminological resources. The creation and maintenance of such resources is labor-intensive. Nevertheless, it is sensible to assume that big data methods can be used to support this process. Examples include the learning of hierarchical relationships, the grouping of synonymous terms into concepts and the disambiguation of homonyms. Although clear evidence is still lacking, the combination of natural language technologies, semantic resources, and big data analytics is promising.

  8. Remote powering and data communication for implanted biomedical systems

    CERN Document Server

    Kilinc, Enver Gurhan; Maloberti, Franco

    2016-01-01

    This book describes new circuits and systems for implantable biomedical applications and explains the design of a batteryless, remotely-powered implantable micro-system, designed for long-term patient monitoring.  Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient, remote powering and reliable data communication.  Novel architecture and design methodologies are used to transfer power with a low-power, optimized inductive link and data is transmitted by a reliable communication link.  Additionally, an electro-mechanical solution is presented for tracking and monitoring the implantable system, while the patient is mobile.  ·         Describes practical example of an implantable batteryless biomedical system; ·         Analyzes and compares various energy harvesting and power transfer methods; ·         Describes design of remote powering link and data communication of the implantable system, comparing differe...

  9. Continuous-terahertz-wave molecular imaging system for biomedical applications

    Science.gov (United States)

    Zhang, Rui; Zhang, Liangliang; Wu, Tong; Wang, Ruixue; Zuo, Shasha; Wu, Dong; Zhang, Cunlin; Zhang, Jue; Fang, Jing

    2016-07-01

    Molecular imaging techniques are becoming increasingly important in biomedical research and potentially in clinical practice. We present a continuous-terahertz (THz)-wave molecular imaging system for biomedical applications, in which an infrared (IR) laser is integrated into a 0.2-THz reflection-mode continuous-THz-wave imaging system to induce surface plasmon polaritons on the nanoparticles and further improve the intensity of the reflected signal from the water around the nanoparticles. A strong and rapid increment of the reflected THz signal in the nanoparticle solution upon the IR laser irradiation is demonstrated, using either gold or silver nanoparticles. This low-cost, simple, and stable continuous-THz-wave molecular imaging system is suitable for miniaturization and practical imaging applications; in particular, it shows great promise for cancer diagnosis and nanoparticle drug-delivery monitoring.

  10. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  11. MBA: a literature mining system for extracting biomedical abbreviations

    Directory of Open Access Journals (Sweden)

    Lei YiMing

    2009-01-01

    Full Text Available Abstract Background The exploding growth of the biomedical literature presents many challenges for biological researchers. One such challenge is from the use of a great deal of abbreviations. Extracting abbreviations and their definitions accurately is very helpful to biologists and also facilitates biomedical text analysis. Existing approaches fall into four broad categories: rule based, machine learning based, text alignment based and statistically based. State of the art methods either focus exclusively on acronym-type abbreviations, or could not recognize rare abbreviations. We propose a systematic method to extract abbreviations effectively. At first a scoring method is used to classify the abbreviations into acronym-type and non-acronym-type abbreviations, and then their corresponding definitions are identified by two different methods: text alignment algorithm for the former, statistical method for the latter. Results A literature mining system MBA was constructed to extract both acronym-type and non-acronym-type abbreviations. An abbreviation-tagged literature corpus, called Medstract gold standard corpus, was used to evaluate the system. MBA achieved a recall of 88% at the precision of 91% on the Medstract gold-standard EVALUATION Corpus. Conclusion We present a new literature mining system MBA for extracting biomedical abbreviations. Our evaluation demonstrates that the MBA system performs better than the others. It can identify the definition of not only acronym-type abbreviations including a little irregular acronym-type abbreviations (e.g., , but also non-acronym-type abbreviations (e.g., .

  12. Information Retrieval Systems Adapted to the Biomedical Domain

    CERN Document Server

    Marrero, Mónica; Urbano, Julián; Morato, Jorge; Moreiro, José-Antonio; 10.3145/epi.2010.may.04

    2012-01-01

    The terminology used in Biomedicine shows lexical peculiarities that have required the elaboration of terminological resources and information retrieval systems with specific functionalities. The main characteristics are the high rates of synonymy and homonymy, due to phenomena such as the proliferation of polysemic acronyms and their interaction with common language. Information retrieval systems in the biomedical domain use techniques oriented to the treatment of these lexical peculiarities. In this paper we review some of the techniques used in this domain, such as the application of Natural Language Processing (BioNLP), the incorporation of lexical-semantic resources, and the application of Named Entity Recognition (BioNER). Finally, we present the evaluation methods adopted to assess the suitability of these techniques for retrieving biomedical resources.

  13. Imaging systems for biomedical applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Radparvar, M.

    1995-06-06

    Many of the activities of the human body manifest themselves by the presence of a very weak magnetic field outside the body, a field that is so weak that an ultra-sensitive magnetic sensor is needed for specific biomagnetic measurements. Superconducting QUantum Interference Devices (SQUIDs) are extremely sensitive detectors of magnetic flux and have been used extensively to detect the human magnetocardiogram, and magnetoencephalogram. and other biomagnetic signals. In order to utilize a SQUID as a magnetometer, its transfer characteristics should be linearized. This linearization requires extensive peripheral electronics, thus limiting the number of SQUID magnetometer channels in a practical system. The proposed digital SQUID integrates the processing circuitry on the same cryogenic chip as the SQUID magnetometer and eliminates the sophisticated peripheral electronics. Such a system is compact and cost effective, and requires minimal support electronics. Under a DOE-sponsored SBIR program, we designed, simulated, laid out, fabricated, evaluated, and demonstrated a digital SQUID magnetometer. This report summarizes the accomplishments under this program and clearly demonstrates that all of the tasks proposed in the phase II application were successfully completed with confirmed experimental results.

  14. LINNAEUS: A species name identification system for biomedical literature

    Directory of Open Access Journals (Sweden)

    Nenadic Goran

    2010-02-01

    Full Text Available Abstract Background The task of recognizing and identifying species names in biomedical literature has recently been regarded as critical for a number of applications in text and data mining, including gene name recognition, species-specific document retrieval, and semantic enrichment of biomedical articles. Results In this paper we describe an open-source species name recognition and normalization software system, LINNAEUS, and evaluate its performance relative to several automatically generated biomedical corpora, as well as a novel corpus of full-text documents manually annotated for species mentions. LINNAEUS uses a dictionary-based approach (implemented as an efficient deterministic finite-state automaton to identify species names and a set of heuristics to resolve ambiguous mentions. When compared against our manually annotated corpus, LINNAEUS performs with 94% recall and 97% precision at the mention level, and 98% recall and 90% precision at the document level. Our system successfully solves the problem of disambiguating uncertain species mentions, with 97% of all mentions in PubMed Central full-text documents resolved to unambiguous NCBI taxonomy identifiers. Conclusions LINNAEUS is an open source, stand-alone software system capable of recognizing and normalizing species name mentions with speed and accuracy, and can therefore be integrated into a range of bioinformatics and text-mining applications. The software and manually annotated corpus can be downloaded freely at http://linnaeus.sourceforge.net/.

  15. Collaborative Initiative in Biomedical Imaging to Study Complex Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Weili [The University of North Carolina at Chapel Hill; Fiddy, Michael A. [The University of North Carolina at Charlotte

    2012-03-31

    The work reported addressed these topics: Fluorescence imaging; Optical coherence tomography; X-ray interferometer/phase imaging system; Quantitative imaging from scattered fields, Terahertz imaging and spectroscopy; and Multiphoton and Raman microscopy.

  16. Approaches to the development of biomedical support systems for piloted exploration missions

    Science.gov (United States)

    Grigoriev, A. I.; Potapov, A. N.

    2014-01-01

    Many aspects of the biomedical systems developed and realized aboard orbital stations, the International space station in the first place, deserve to be regarded as predecessors of the systems for health monitoring and maintenance of future exploration crews. At the same time, there are issues and tasks which have not been yet fully resolved. Specifically, these are prevention of the adverse changes in body systems and organs due to microgravity, reliable protection from the spectrum of space radiation, and elucidation of possible effects of hypomagnetic environment. We should not walk away from search and development of key biomedical technologies such as a system of automated fitness evaluation and a psychodiagnostic complex for testing and optimization of operator‧s efficiency, and others. We have to address a large number of issues related to designing the composite life support systems of the utmost autonomy, closure and ecological safety of the human environment that will provide transformation of all kinds of waste. Another crucial task is to define a concept of the onboard medical center and dataware including the telemedicine technology. All the above developments should assimilate the most recent achievements in physiology, molecular biology, genetics, and advanced medical technologies. Biomedical researches on biosatellites also do not lose topicality.

  17. Design and implementation of efficient low complexity biomedical artifact canceller for nano devices

    Directory of Open Access Journals (Sweden)

    Md Zia Ur RAHMAN

    2016-07-01

    Full Text Available In the current day scenario, with the rapid development of communication technology remote health care monitoring becomes as an intense research area. In remote health care monitoring, the primary aim is to facilitate the doctor with high resolution biomedical data. In order to cancel various artifacts in clinical environment in this paper we propose some efficient adaptive noise cancellation techniques. To obtain low computational complexity we combine clipping the data or error with Least Mean Square (LMS algorithm. This results sign regressor LMS (SRLMS, sign LMS (SLMS and sign LMS (SSLMS algorithms. Using these algorithms, we design Very-large-scale integration (VLSI architectures of various Biomedical Noise Cancellers (BNCs. In addition, the filtering capabilities of the proposed implementations are measured using real biomedical signals. Among the various BNCs tested, SRLMS based BNC is found to be better with reference to convergence speed, filtering capability and computational complexity. The main advantage of this technique is it needs only one multiplication to compute next weight. In this manner SRLMS based BNC is independent of filter length with reference to its computations. Whereas, the average signal to noise ratio achieved in the noise cancellation experiments are recorded as 7.1059dBs, 7.1776dBs, 6.2795dBs and 5.8847dBs for various BNCs based on LMS, SRLMS, SLMS and SSSLMS algorithms respectively. Based on the filtering characteristics, convergence and computational complexity, the proposed SRLMS based BNC architecture is well suited for nanotechnology applications.

  18. Application of the dual-tree complex wavelet transform in biomedical signal denoising.

    Science.gov (United States)

    Wang, Fang; Ji, Zhong

    2014-01-01

    In biomedical signal processing, Gibbs oscillation and severe frequency aliasing may occur when using the traditional discrete wavelet transform (DWT). Herein, a new denoising algorithm based on the dual-tree complex wavelet transform (DTCWT) is presented. Electrocardiogram (ECG) signals and heart sound signals are denoised based on the DTCWT. The results prove that the DTCWT is efficient. The signal-to-noise ratio (SNR) and the mean square error (MSE) are used to compare the denoising effect. Results of the paired samples t-test show that the new method can remove noise more thoroughly and better retain the boundary and texture of the signal.

  19. Complexity, Systems, and Software

    Science.gov (United States)

    2014-08-14

    complex ( Hidden issues; dumbs down operator) 11 Complexity, Systems, and Software Sarah Sheard August 14, 2014 © 2014 Carnegie...August 14, 2014 © 2014 Carnegie Mellon University Addressing Complexity in SoSs Source: SEBOK Wiki System Con truer Strateglc Context

  20. SYSTEMS WITH COMPLEXITY

    Institute of Scientific and Technical Information of China (English)

    WANG Chenghong; ZHANG Lijun

    2004-01-01

    Science of Complexity is a newly emerging branch of natural scienceAlthoughwe still haven't a precise definition, there are some principles for justifying whether a systemis a complex systemThe purpose of this article is to reveal some of such principlesOnthe basis of them, the concept of a system with complexity is proposedThey may helpus to distinguish a real complex system from complicated objects in common senseThenwe propose some fundamental problems faced by the study of systems with complexity.

  1. Advances in polymeric systems for tissue engineering and biomedical applications.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.

  2. Complex Systems and Dependability

    CERN Document Server

    Zamojski, Wojciech; Sugier, Jaroslaw

    2012-01-01

    Typical contemporary complex system is a multifaceted amalgamation of technical, information, organization, software and human (users, administrators and management) resources. Complexity of such a system comes not only from its involved technical and organizational structure but mainly from complexity of information processes that must be implemented in the operational environment (data processing, monitoring, management, etc.). In such case traditional methods of reliability analysis focused mainly on technical level are usually insufficient in performance evaluation and more innovative meth

  3. Controllability of Complex Systems

    Science.gov (United States)

    Slotine, Jean-Jacques

    2013-03-01

    We review recent work on controllability of complex systems. We also discuss the interplay of our results with questions of synchronization, and point out key directions of future research. Work done in collaboration with Yang-Yu Liu, Center for Complex Network Research and Departments of Physics, Computer Science and Biology, Northeastern University and Center for Cancer Systems Biology, Dana-Farber Cancer Institute; and Albert-László Barabási, Center for Complex Network Research and Departments of Physics, Computer Science and Biology, Northeastern University; Center for Cancer Systems Biology, Dana-Farber Cancer Institute; and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School.

  4. 复杂疾病的系统医学视角:内源性网络理论%Endogenous molecular-cellular network theory:A system-biomedical perspective towards complex diseases

    Institute of Scientific and Technical Information of China (English)

    苏杭; 王高伟; 朱晓梅; 徐岷涓; 敖平

    2015-01-01

    随着分子生物学的发展,对表型背后复杂的分子调控机制进行系统和定量分析成为当前重要研究方向之一。内源性网络理论提供了一种可行的方法,可以通过总结已有的生物学知识构建系统核心调控网络,并利用非线性随机动力系统对网络进行定量分析。本文主要回顾了内源性网络理论的核心内容及迄今为止基于该理论框架下所取得的成果。在内源性网络理论框架下,我们可以利用功能性景观理解复杂疾病的发生发展过程,作出可验证的全新预测,进而为复杂疾病预防、诊断、治疗提供一系列潜在的思路和方案。%With the development of molecular biology, it becomes increasingly important to understand the biological complexity systematically and quantitatively. Endogenous molecular-cellular network theory was proposed to depict the core network structure underneath biological system and quantify it by a nonlinear stochastic dynamical system. We review the basic considerations of this theory and several results achieved so far here. Based on this theoretical framework, we may achieve a better understanding of the progression and regression of complex diseases from an adaptive landscape view, make new and practical predictions, and provide some potentialstrategies towards the prevention, diagnosis, and treatment of these diseases.

  5. From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce.

    Science.gov (United States)

    Valantine, Hannah A; Lund, P Kay; Gammie, Alison E

    2016-01-01

    The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges. Over the past few decades, the biomedical research workforce has benefited from NIH programs aimed at enhancing diversity. However, there is considerable room for improvement, particularly at the level of independent scientists and within scientific leadership. We provide a rationale and specific opportunities to develop and sustain a diverse biomedical research workforce through interventions that promote the successful transitions to different stages on the path toward completion of training and entry into the biomedical workforce.

  6. BIG: a Grid Portal for Biomedical Data and Images

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-06-01

    Full Text Available Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc., advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid, a Web-based Grid portal for management of biomedical information (data and images in a distributed environment. BIG is an interactive environment that deals with complex user's requests, regarding the acquisition of biomedical data, the "processing" and "delivering" of biomedical images, using the power and security of Computational Grids.

  7. Optical Complex Systems 2008

    Science.gov (United States)

    Brun, Guillaume

    The Optical Complex Systems are more and more in the heart of various systems that industrial applications bring to everyday life. From environment up to spatial applications, OCS is also relevant in monitoring, transportation, robotics, life sciences, sub-marine, and even for agricultural purposes.

  8. System-of-Systems Complexity

    Directory of Open Access Journals (Sweden)

    Hermann Kopetz

    2013-11-01

    Full Text Available The global availability of communication services makes it possible to interconnect independently developed systems, called constituent systems, to provide new synergistic services and more efficient economic processes. The characteristics of these new Systems-of-Systems are qualitatively different from the classic monolithic systems. In the first part of this presentation we elaborate on these differences, particularly with respect to the autonomy of the constituent systems, to dependability, continuous evolution, and emergence. In the second part we look at a SoS from the point of view of cognitive complexity. Cognitive complexity is seen as a relation between a model of an SoS and the observer. In order to understand the behavior of a large SoS we have to generate models of adequate simplicity, i.e, of a cognitive complexity that can be handled by the limited capabilities of the human mind. We will discuss the importance of properly specifying and placing the relied-upon message interfaces between the constituent systems that form an open SoS and discuss simplification strategies that help to reduce the cognitive complexity.

  9. Philosophy of complex systems

    CERN Document Server

    2011-01-01

    The domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on. Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of comple...

  10. Modeling Complex Systems

    CERN Document Server

    Boccara, Nino

    2010-01-01

    Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).

  11. Complexity in Dynamical Systems

    Science.gov (United States)

    Moore, Cristopher David

    The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.

  12. Managing Complex Dynamical Systems

    Science.gov (United States)

    Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.

    2011-01-01

    Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.

  13. A low-cost biomedical signal transceiver based on a Bluetooth wireless system.

    Science.gov (United States)

    Fazel-Rezai, Reza; Pauls, Mark; Slawinski, David

    2007-01-01

    Most current wireless biomedical signal transceivers use range-limiting communication. This work presents a low-cost biomedical signal transceiver that uses Bluetooth wireless technology. The design is implemented in a modular form to be adaptable to different types of biomedical signals. The signal front end obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless module. Near real-time receive software in LabVIEW was developed to demonstrate the system capability. The completed transmitter prototype successfully transmits ECG signals, and is able to simultaneously send multiple signals. The sampling rate of the transmitter is fast enough to send up to thirteen ECG signals simultaneously, with an error rate below 0.1% for transmission exceeding 65 meters. A low-cost wireless biomedical transceiver has many applications, such as real-time monitoring of patients with a known condition in non-clinical settings.

  14. Control of complex systems

    CERN Document Server

    Albertos, Pedro; Blanke, Mogens; Isidori, Alberto; Schaufelberger, Walter; Sanz, Ricardo

    2001-01-01

    The world of artificial systems is reaching complexity levels that es­ cape human understanding. Surface traffic, electricity distribution, air­ planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi­ neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re­ search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu­ ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimula...

  15. Biomedical implantable microelectronics.

    Science.gov (United States)

    Meindl, J D

    1980-10-17

    Innovative applications of microelectronics in new biomedical implantable instruments offer a singular opportunity for advances in medical research and practice because of two salient factors: (i) beyond all other types of biomedical instruments, implants exploit fully the inherent technical advantages--complex functional capability, high reliability, lower power drain, small size and weight-of microelectronics, and (ii) implants bring microelectronics into intimate association with biological systems. The combination of these two factors enables otherwise impossible new experiments to be conducted and new paostheses developed that will improve the quality of human life.

  16. Nanoparticle-Based Delivery System for Biomedical Applications of RNAi

    DEFF Research Database (Denmark)

    Yang, Chuanxu

    RNA interference (RNAi) is a post-transcriptional gene silencing process triggered by double-strand RNA, including synthetic short interfering RNA (siRNA) and endogenous microRNA (miRNA). RNAi has attracted great attention for developing a new class of therapeutics, due to its capability to speci......RNA/miRNA and transport them to the action site in the target cells. This thesis describes the development of various nanocarriers for siRNA/miRNA delivery and investigate their potential biomedical applications including: anti-inflammation, tissue engineering and cancer...

  17. Level-Crossing ADCs and Their Applications in Biomedical Readout Systems

    NARCIS (Netherlands)

    Li, Y.

    2015-01-01

    This thesis describes the theory, design and implementation of levelcrossing ADCs and their system integration. The goal of this work is to explore methods at both the circuit level and the system level to improve the energy efficiency of LC-ADCs and integrate LC-ADCs in biomedical readout systems.

  18. STUDYING COMPLEX ADAPTIVE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    John H. Holland

    2006-01-01

    Complex adaptive systems (cas) - systems that involve many components that adapt or learn as they interact - are at the heart of important contemporary problems. The study of cas poses unique challenges: Some of our most powerful mathematical tools, particularly methods involving fixed points, attractors, and the like, are of limited help in understanding the development of cas. This paper suggests ways to modify research methods and tools, with an emphasis on the role of computer-based models, to increase our understanding of cas.

  19. Question Processing and Clustering in INDOC: A Biomedical Question Answering System

    Directory of Open Access Journals (Sweden)

    Ankush Mittal

    2007-12-01

    Full Text Available The exponential growth in the volume of publications in the biomedical domain has made it impossible for an individual to keep pace with the advances. Even though evidence-based medicine has gained wide acceptance, the physicians are unable to access the relevant information in the required time, leaving most of the questions unanswered. This accentuates the need for fast and accurate biomedical question answering systems. In this paper we introduce INDOC—a biomedical question answering system based on novel ideas of indexing and extracting the answer to the questions posed. INDOC displays the results in clusters to help the user arrive the most relevant set of documents quickly. Evaluation was done against the standard OHSUMED test collection. Our system achieves high accuracy and minimizes user effort.

  20. Establishment of an index system for evaluating outstanding biomedical scientists for science foundation of Shanghai

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-jing; CHEN Xin; REN Xu-feng

    2007-01-01

    Objective:To establish a scientific, objective and applicable index system for evaluating outstanding biomedical scientists for science foundation of Shanghai. Methods: According to the principal indices that have been used in the developed countries for evaluating their talented personnel and the reality of our country, an index system was set up to evaluate the outstanding biomedical scientists for Shanghai science foundation. The following parameters were used to simplify the indices: correlation coefficient,multiple correlation coefficient, partial correlation coefficient, creditability, and discriminatory power.And analytic hierarchy process was used to determine the weights of each index. Results and Conclusions:The established index system is scientific and applicable; it is helpful for cultivating and evaluating outstanding biomedical scientists.

  1. Hardware and software design for a National Instrument-based magnetic induction tomography system for prospective biomedical applications.

    Science.gov (United States)

    Wei, Hsin-Yu; Soleimani, Manuchehr

    2012-05-01

    Magnetic induction tomography (MIT) is a new and emerging type of tomography technique that is able to map the passive electromagnetic properties (in particular conductivity) of an object. Excitation coils are used to induce eddy currents in the medium, and the magnetic field produced by the induced eddy current is then sensed by the receiver coils. Because of its non-invasive and contactless feature, it becomes an attractive technique for many applications (especially in biomedical area) compared to traditional contact electrode-based electrical impedance tomography. Due to the low contrast in conductivity between biological tissues, an accurate and stable hardware system is necessary. Most MIT systems in the literature employ external signal generators, power amplifiers and highly stable down-conversion electronics to obtain a satisfactory phase measurement. However, this would increase design complexity substantially. In this paper, a National Instrument-based MIT system is developed at the University of Bath, aiming for biomedical applications. The system utilizes National Instrument products to accomplish all signal driving, switching and data acquisition tasks, which ease the system design whilst providing satisfactory performance. This paper presents a full-scaled medical MIT system, from the sensor and system hardware design, eddy current model verification to the image reconstruction software: the performance of this MIT instrumentation system is characterized in detail, including the system accuracy and system stability. The methods of solving eddy current problem are presented. The reconstructed images of detecting the presence of saline solutions are also included in this paper, which show the capability of national instrument products to be developed into a full-scaled biomedical MIT system, by demonstrating the practical experimental results.

  2. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies....... They are the result of acooperation between Søren Molin, professor in the group, and his brother, JanMolin, professor at Department of Organization and Industrial Sociology atCopenhagen Business School. The cooperation arises from the recognition that bothmicrobial ecology and sociology/organization theory works...

  3. PASSIM – an open source software system for managing information in biomedical studies

    Directory of Open Access Journals (Sweden)

    Neogi Sudeshna

    2007-02-01

    Full Text Available Abstract Background One of the crucial aspects of day-to-day laboratory information management is collection, storage and retrieval of information about research subjects and biomedical samples. An efficient link between sample data and experiment results is absolutely imperative for a successful outcome of a biomedical study. Currently available software solutions are largely limited to large-scale, expensive commercial Laboratory Information Management Systems (LIMS. Acquiring such LIMS indeed can bring laboratory information management to a higher level, but often implies sufficient investment of time, effort and funds, which are not always available. There is a clear need for lightweight open source systems for patient and sample information management. Results We present a web-based tool for submission, management and retrieval of sample and research subject data. The system secures confidentiality by separating anonymized sample information from individuals' records. It is simple and generic, and can be customised for various biomedical studies. Information can be both entered and accessed using the same web interface. User groups and their privileges can be defined. The system is open-source and is supplied with an on-line tutorial and necessary documentation. It has proven to be successful in a large international collaborative project. Conclusion The presented system closes the gap between the need and the availability of lightweight software solutions for managing information in biomedical studies involving human research subjects.

  4. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  5. An ultra low energy biomedical signal processing system operating at near-threshold

    NARCIS (Netherlands)

    Hulzink, J.; Konijnenburg, M.; Ashouei, M.; Breeschoten, A.; Berset, T.; Huisken, J.; Stuyt, J.; Groot, H. de; Barat, F.; David, J.; Ginderdeuren, J. van

    2011-01-01

    This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signals. To fulfill the requirements of ambulatory monitoring, power consumption, which directly translates to the WSN battery lifetime

  6. 75 FR 3948 - Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc...

    Science.gov (United States)

    2010-01-25

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc., Biosys... Commission that there is a lack of current and accurate information concerning the securities of Big...

  7. Bioinspired design and interfacial failure of biomedical systems

    Science.gov (United States)

    Rahbar, Nima

    The deformation mechanism of nacre as a model biological material is studied in this project. A numerical model is presented which consists of tensile pillars, shear pillars, asperities and aragonite platelets. It has been shown that the tensile pillars are the main elements that control the global stiffness of the nacre structure. Meanwhile, ultimate strength of the nacre structure is controlled by asperities and their behavior and the ratio of L/2D which is itself a function of the geometry of the platelets. Protein/shear pillars provide the glue which holds the assembly of entire system together, particularly in the direction normal to the platelets main axis. This dissertation also presents the results of a combined theoretical/computational and experimental effort to develop crack resistant dental multilayers that are inspired by the functionally graded dento-enamel junction (DEJ) structure that occurs between dentin and enamel in natural teeth. The complex structures of natural teeth and ceramic crowns are idealized using at layered configurations. The potential effects of occlusal contact are then modeled using finite element simulations of Hertzian contact. The resulting stress distributions are compared for a range of possible bioinspired, functionally graded architecture. The computed stress distributions show that the highest stress concentrations in the top ceramic layer of crown structures are reduced significantly by the use of bioinspired functionally graded architectures. The reduced stresses are shown to be associated with significant improvements (30%) in the pop-in loads over a wide range of clinically-relevant loading rates. The implications of the results are discussed for the design of bioinspired dental ceramic crown structures. The results of a combined experimental and computational study of mixed mode fracture in glass/cement and zirconia/cement interfaces that are relevant to dental restorations is also presented. The interfacial fracture

  8. Signals and Systems in Biomedical Engineering Signal Processing and Physiological Systems Modeling

    CERN Document Server

    Devasahayam, Suresh R

    2013-01-01

    The use of digital signal processing is ubiquitous in the field of physiology and biomedical engineering. The application of such mathematical and computational tools requires a formal or explicit understanding of physiology. Formal models and analytical techniques are interlinked in physiology as in any other field. This book takes a unitary approach to physiological systems, beginning with signal measurement and acquisition, followed by signal processing, linear systems modelling, and computer simulations. The signal processing techniques range across filtering, spectral analysis and wavelet analysis. Emphasis is placed on fundamental understanding of the concepts as well as solving numerical problems. Graphs and analogies are used extensively to supplement the mathematics. Detailed models of nerve and muscle at the cellular and systemic levels provide examples for the mathematical methods and computer simulations. Several of the models are sufficiently sophisticated to be of value in understanding real wor...

  9. Photoacoustic and thermoacoustic tomography: System development for biomedical applications

    Science.gov (United States)

    Ku, Geng

    Photoacoustic tomography (PAT), as well as thermoacoustic tomography (TAT), utilize electromagnetic radiation in its visible, near infrared, microwave, and radiofrequency forms, respectively, to induce acoustic waves in biological tissues for imaging purposes. Combining the advantages of both the high image contrast that results from electromagnetic absorption and the high resolution of ultrasound imaging, these new imaging modalities could be the next successful imaging techniques in biomedical applications. Basic research on PAT and TAT, and the relevant physics, is presented in Chapter I. In Chapter II, we investigate the imaging mechanisms of TAT in terms of signal generation, propagation and detection. We present a theoretical analysis as well as simulations of such imaging characteristics as contrast and resolution, accompanied by experimental results from phantom and tissue samples. In Chapter III, we discuss the further application of TAT to the imaging of biological tissues. The microwave absorption difference in normal and cancerous breast tissues, as well as its influence on thermoacoustic wave generation and the resulting transducer response, is investigated over a wide range of electromagnetic frequencies and depths of tumor locations. In Chapter IV, we describe the mechanism of PAT and the algorithm used for image reconstruction. Because of the broad bandwidth of the laser-induced ultrasonic waves and the limited bandwidth of the single transducer, multiple ultrasonic transducers, each with a different central frequency, are employed for simultaneous detection. Chapter V further demonstrates PAT's ability to image vascular structures in biological tissue based on blood's strong light absorption capability. The photoacoustic images of rat brain tumors in this study clearly reveal the angiogenesis that is associated with tumors. In Chapter VI, we report on further developing PAT to image deeply embedded optical heterogeneity in biological tissues. The

  10. ON COMPLEX DYNAMIC CONTROL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHENG Daizhan

    2003-01-01

    This paper presents some recent works on the control of dynamic systems, which have certain complex properties caused by singularity of the nonlinear structures, structure-varyings, or evolution process etc. First, we consider the structure singularity of nonlinear control systems. It was revealed that the focus of researches on nonlinear control theory is shifting from regular systems to singular systems. The singularity of nonlinear systems causes certain complexity. Secondly, the switched systems are considered. For such systems the complexity is caused by the structure varying. We show that the switched systems have significant characteristics of complex systems. Finally, we investigate the evolution systems. The evolution structure makes complexity, and itself is a proper model for complex systems.

  11. [Design and implementation of management system of international academic conference on biomedical engineering].

    Science.gov (United States)

    Weng, Xiaohong; Guo, Xinhai; Fan, Yubo

    2009-04-01

    To meet the demands of managing international academic conferences on Biomedical Engineering, a management system was designed and implemented based on Internet. The system was aimed to implement the cooperation of different departments to manage common affair and academic papers of the conference together. In addition, it could be connected to the membership management system of Chinese Society of Biomedical Engineering. With its advanced, practical, humanized and expansible characteristics, the system performed seven main functions, including the management in general information, participant information, papers, reviewer information, booking, exhibition and manager information. The system proved to be feasible and optimized as well in the 7th Asia-Pacific Conference on Medical and Biological Engineering.

  12. Body surface mounted biomedical monitoring system using Bluetooth.

    Science.gov (United States)

    Nambu, Masayuki

    2007-01-01

    Continuous monitoring in daily life is important for the health condition control of the elderly. However, portable or wearable devices need to carry by user on their own will. On the other hand, implantation sensors are not adoptable, because of generic users dislike to insert the any object in the body for monitoring. Therefore, another monitoring system of the health condition to carry it easily is necessary. In addition, ID system is necessary even if the subject live with few families. Furthermore, every measurement system should be wireless system, because not to obstruct the daily life of the user. In this paper, we propose the monitoring system, which is mounted on the body surface. This system will not obstruct the action or behavior of user in daily life, because this system attached the body surface on the back of the user. In addition, this system has wireless communication system, using Bluetooth, and acquired data transfer to the outside of the house via the Internet.

  13. Biocompatible hybrid nanomaterials involving polymers and hydrogels interfaced with phosphorescent complexes and toxin-free metallic nanoparticles for biomedical applications

    Science.gov (United States)

    Marpu, Sreekar B.

    The major topics discussed are all relevant to interfacing brightly phosphorescent and non-luminescent coinage metal complexes of [Ag(I) and Au(I)] with biopolymers and thermoresponsive gels for making hybrid nanomaterials with an explanation on syntheses, characterization and their significance in biomedical fields. Experimental results and ongoing work on determining outreaching consequences of these hybrid nanomaterials for various biomedical applications like cancer therapy, bio-imaging and antibacterial abilities are described. In vitro and in vivo studies have been performed on majority of the discussed hybrid nanomaterials and determined that the cytotoxicity or antibacterial activity are comparatively superior when compared to analogues in literature. Consequential differences are noticed in photoluminescence enhancement from hybrid phosphorescent hydrogels, phosphorescent complex ability to physically crosslink, Au(I) sulfides tendency to form NIR (near-infrared) absorbing AuNPs compared to any similar work in literature. Syntheses of these hybrid nanomaterials has been thoroughly investigated and it is determined that either metallic nanoparticles syntheses or syntheses of phosphorescent hydrogels can be carried in single step without involving any hazardous reducing agents or crosslinkers or stabilizers that are commonly employed during multiple step syntheses protocols for syntheses of similar materials in literature. These astounding results that have been discovered within studies of hybrid nanomaterials are an asset to applications ranging from materials development to health science and will have striking effect on environmental and green chemistry approaches.

  14. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  15. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    Science.gov (United States)

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future.

  16. Engineered cells as biosensing systems in biomedical analysis.

    Science.gov (United States)

    Raut, Nilesh; O'Connor, Gregory; Pasini, Patrizia; Daunert, Sylvia

    2012-04-01

    Over the past two decades there have been great advances in biotechnology, including use of nucleic acids, proteins, and whole cells to develop a variety of molecular analytical tools for diagnostic, screening, and pharmaceutical applications. Through manipulation of bacterial plasmids and genomes, bacterial whole-cell sensing systems have been engineered that can serve as novel methods for analyte detection and characterization, and as more efficient and cost-effective alternatives to traditional analytical techniques. Bacterial cell-based sensing systems are typically sensitive, specific and selective, rapid, easy to use, low-cost, and amenable to multiplexing, high-throughput, and miniaturization for incorporation into portable devices. This critical review is intended to provide an overview of available bacterial whole-cell sensing systems for assessment of a variety of clinically relevant analytes. Specifically, we examine whole-cell sensing systems for detection of bacterial quorum sensing molecules, organic and inorganic toxic compounds, and drugs, and for screening of antibacterial compounds for identification of their mechanisms of action. Methods used in the design and development of whole-cell sensing systems are also reviewed.

  17. Impedance matching wireless power transmission system for biomedical devices.

    Science.gov (United States)

    Lum, Kin Yun; Lindén, Maria; Tan, Tian Swee

    2015-01-01

    For medical application, the efficiency and transmission distance of the wireless power transfer (WPT) are always the main concern. Research has been showing that the impedance matching is one of the critical factors for dealing with the problem. However, there is not much work performed taking both the source and load sides into consideration. Both sides matching is crucial in achieving an optimum overall performance, and the present work proposes a circuit model analysis for design and implementation. The proposed technique was validated against experiment and software simulation. Result was showing an improvement in transmission distance up to 6 times, and efficiency at this transmission distance had been improved up to 7 times as compared to the impedance mismatch system. The system had demonstrated a near-constant transfer efficiency for an operating range of 2cm-12cm.

  18. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L.

    2010-01-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers’ time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment. PMID:20543892

  19. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L

    2010-06-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers' time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment.

  20. Managing complexity of aerospace systems

    Science.gov (United States)

    Tamaskar, Shashank

    Growing complexity of modern aerospace systems has exposed the limits of conventional systems engineering tools and challenged our ability to design them in a timely and cost effective manner. According to the US Government Accountability Office (GAO), in 2009 nearly half of the defense acquisition programs are expecting 25% or more increase in unit acquisition cost. Increase in technical complexity has been identified as one of the primary drivers behind cost-schedule overruns. Thus to assure the affordability of future aerospace systems, it is increasingly important to develop tools and capabilities for managing their complexity. We propose an approach for managing the complexity of aerospace systems to address this pertinent problem. To this end, we develop a measure that improves upon the state-of-the-art metrics and incorporates key aspects of system complexity. We address the problem of system decomposition by presenting an algorithm for module identification that generates modules to minimize integration complexity. We demonstrate the framework on diverse spacecraft and show the impact of design decisions on integration cost. The measure and the algorithm together help the designer track and manage complexity in different phases of system design. We next investigate how complexity can be used as a decision metric in the model-based design (MBD) paradigm. We propose a framework for complexity enabled design space exploration that introduces the idea of using complexity as a non-traditional design objective. We also incorporate complexity with the component based design paradigm (a sub-field of MBD) and demonstrate it on several case studies. The approach for managing complexity is a small but significant contribution to the vast field of complexity management. We envision our approach being used in concert with a suite of complexity metrics to provide an ability to measure and track complexity through different stages of design and development. This will not

  1. Mid-infrared supercontinuum laser system and its biomedical applications

    Science.gov (United States)

    Xia, Chenan

    A mid-infrared supercontinuum (SC) laser system is developed, which provides a continuous spectrum from ˜0.8 to ˜4.5 microm and is pumped by amplified nanosecond laser diode pulses. The SC laser uses ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fluoride fibers. The SC light source is all-fiber-integrated with no moving parts, operates at room temperature, and eliminates the need of mode-locked lasers. The time-averaged power of the SC is scalable up to 10.5 W by amplifying the pump pulses using cladding-pumped erbium/ytterbium co-doped fiber power amplifiers. SC has also been generated in silica fibers with spectrum extending to ˜3 microm and an average power up to 5.3 W. The SC laser system comprises an all-fiber-spliced high power pump laser system followed by nonlinear optical generation fibers, i.e. ZBLAN and silica fibers. The SC generation is initiated by breaking up the nanosecond diode pulses into femtosecond pulses through modulation instability, and the spectrum is then broadened through the interplay of self-phase modulation, parametric four-wave mixing, and stimulated Raman scattering. Theoretical simulations have been carried out to study the SC generation mechanism by numerically solving the generalized nonlinear Schrodinger equation. The SC long wavelength edge is limited by the intrinsic fiber material absorption, i.e. ˜3 microm in silica fibers and ˜4.5 microm in ZBLAN fibers, respectively. Mid-infrared absorption spectroscopy of the constituents of normal artery, e.g. endothelial cells and smooth muscle cells, and atherosclerotic plaques, e.g. adipose tissue, macrophages and foam cells, and selective ablation of lipid-rich tissues have also been demonstrated using the SC laser system.

  2. Biomedical wellness monitoring system based upon molecular markers

    Science.gov (United States)

    Ingram, Whitney

    2012-06-01

    We wish to assist caretakers with a sensor monitoring systems for tracking the physiological changes of homealone patients. One goal is seeking biomarkers and modern imaging sensors like stochastic optical reconstruction microscopy (STORM), which has achieved visible imaging at the nano-scale range. Imaging techniques like STORM can be combined with a fluorescent functional marker in a system to capture the early transformation signs from wellness to illness. By exploiting both microscopic knowledge of genetic pre-disposition and the macroscopic influence of epigenetic factors we hope to target these changes remotely. We adopt dual spectral infrared imaging for blind source separation (BSS) to detect angiogenesis changes and use laser speckle imaging for hypertension blood flow monitoring. Our design hypothesis for the monitoring system is guided by the user-friendly, veteran-preferred "4-Non" principles (noninvasive, non-contact, non-tethered, non-stop-to-measure) and by the NIH's "4Ps" initiatives (predictive, personalized, preemptive, and participatory). We augment the potential storage system with the recent know-how of video Compressive Sampling (CSp) from surveillance cameras. In CSp only major changes are saved, which reduces the manpower cost of caretakers and medical analysts. This CSp algorithm is based on smart associative memory (AM) matrix storage: change features and detailed scenes are written by the outer-product and read by the inner product without the usual Harsh index for image searching. From this approach, we attempt to design an effective household monitoring approach to save healthcare costs and maintain the quality of life of seniors.

  3. A System for Information Management in BioMedical Studies—SIMBioMS

    Science.gov (United States)

    Krestyaninova, Maria; Zarins, Andris; Viksna, Juris; Kurbatova, Natalja; Rucevskis, Peteris; Neogi, Sudeshna Guha; Gostev, Mike; Perheentupa, Teemu; Knuuttila, Juha; Barrett, Amy; Lappalainen, Ilkka; Rung, Johan; Podnieks, Karlis; Sarkans, Ugis; McCarthy, Mark I; Brazma, Alvis

    2009-01-01

    Summary: SIMBioMS is a web-based open source software system for managing data and information in biomedical studies. It provides a solution for the collection, storage, management and retrieval of information about research subjects and biomedical samples, as well as experimental data obtained using a range of high-throughput technologies, including gene expression, genotyping, proteomics and metabonomics. The system can easily be customized and has proven to be successful in several large-scale multi-site collaborative projects. It is compatible with emerging functional genomics data standards and provides data import and export in accepted standard formats. Protocols for transferring data to durable archives at the European Bioinformatics Institute have been implemented. Availability: The source code, documentation and initialization scripts are available at http://simbioms.org. Contact: support@simbioms.org; mariak@ebi.ac.uk PMID:19633095

  4. Waves in complex systems

    Science.gov (United States)

    Xie, Hang

    The theme of this thesis is the study of wave phenomena in complex systems. In particular, the following three topics constitute the foci of my research. The first topic involves the generalization of an electronic transport mechanism commonly observed in disordered media, fluctuation induced tunneling conduction, by considering tunneling through not just insulating potential barriers, but also narrow conducting channels. Here the wave nature of the electron implies that a narrow conduction channel can act as an electronic waveguide, with a cutoff transverse dimension that is half the Fermi wavelength. My research involves the study of electronic transport through finite-length conducting channels with transverse dimensions below the cutoff. Such narrow conduction channel may be physically realized by chains of single conducting atoms, for example. At small voltage bias across the conduction channel, only tunneling transport is possible at zero temperature. But at finite temperatures some of the electrons with energies above the Fermi level can ballistically transport across the channel. By considering both tunneling and thermal activation mechanisms, with thermally-generated (random) voltage bias across the narrow channel, we obtained a temperature-dependent conductivity behavior that is in good agreement with the measured two-lead conductance of RuO2 and IrO2 nanowires. Furthermore, by considering high applied voltage across the nano conduction channels, our model predicts interesting electronic Fabry-Perot behavior whose experimental verification is presently underway. The second topic involves the study of the Hall effect in mesoscopic samples. In particular, we are interested in the possibility of enhancing the Hall effect by nano-patterning samples of 2D electron gas. Through numerical solution of the Schrodinger equation in the presence of a magnetic field, mesoscopic transport behavior is obtained for samples with given geometric patterns of the

  5. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    Science.gov (United States)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  6. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    in conjunction with optical coherence tomography, two-photon microscopy or coherent anti-Stokes Raman scattering microscopy. In order to provide high-power green diode laser emission, nonlinear frequency conversion of state-of-the-art near-infrared diode lasers represents a necessary means. However, the obtained...... output power of frequency doubled single emitters is limited by thermal effects potentially resulting in laser degradation and failure. In this work new concepts for power scaling of visible diode laser systems are introduced that help to overcome current limitations and enhance the application potential...

  7. Complex Digital Visual Systems

    Science.gov (United States)

    Sweeny, Robert W.

    2013-01-01

    This article identifies possibilities for data visualization as art educational research practice. The author presents an analysis of the relationship between works of art and digital visual culture, employing aspects of network analysis drawn from the work of Barabási, Newman, and Watts (2006) and Castells (1994). Describing complex network…

  8. Implementation and management of a biomedical observation dictionary in a large healthcare information system

    Science.gov (United States)

    Vandenbussche, Pierre-Yves; Cormont, Sylvie; André, Christophe; Daniel, Christel; Delahousse, Jean; Charlet, Jean; Lepage, Eric

    2013-01-01

    Objective This study shows the evolution of a biomedical observation dictionary within the Assistance Publique Hôpitaux Paris (AP-HP), the largest European university hospital group. The different steps are detailed as follows: the dictionary creation, the mapping to logical observation identifier names and codes (LOINC), the integration into a multiterminological management platform and, finally, the implementation in the health information system. Methods AP-HP decided to create a biomedical observation dictionary named AnaBio, to map it to LOINC and to maintain the mapping. A management platform based on methods used for knowledge engineering has been put in place. It aims at integrating AnaBio within the health information system and improving both the quality and stability of the dictionary. Results This new management platform is now active in AP-HP. The AnaBio dictionary is shared by 120 laboratories and currently includes 50 000 codes. The mapping implementation to LOINC reaches 40% of the AnaBio entries and uses 26% of LOINC records. The results of our work validate the choice made to develop a local dictionary aligned with LOINC. Discussion and Conclusions This work constitutes a first step towards a wider use of the platform. The next step will support the entire biomedical production chain, from the clinician prescription, through laboratory tests tracking in the laboratory information system to the communication of results and the use for decision support and biomedical research. In addition, the increase in the mapping implementation to LOINC ensures the interoperability allowing communication with other international health institutions. PMID:23635601

  9. ON COMPLEXITY OF POWER SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    MA Jin; CHENG Daizhan; HONG Yiguang; SUN Yuanzhang

    2003-01-01

    The power system is a classical example of complex systems. In this paper it is shown that the power industry in China is facing a tremendous challenge. The complexity in power systems is investigated as follows. First, the cascade failure in power systems is analyzed, and compared with sand-pile model. Next, we show that the agent-based modelling is a proper way for power network. Mathematically, the geometric dynamics and differential inclusion are useful tools for the stability analysis of large scale power systems. As for power market, the game theory and generalized control system model are proposed. For a complex power system, an evolutive model may be more accurate in description and analysis. Finally, certain newly developed numerical methods in the power system computation are introduced. Overall, we are convinced that the theorem of complexity, combined with modern control theory, may be the right way to answer the challenges faced by the power industry in China.

  10. Smart textile-based wearable biomedical systems: a transition plan for research to reality.

    Science.gov (United States)

    Park, Sungmee; Jayaraman, Sundaresan

    2010-01-01

    The field of smart textile-based wearable biomedical systems (ST-WBSs) has of late been generating a lot of interest in the research and business communities since its early beginnings in the mid-nineties. However, the technology is yet to enter the marketplace and realize its original goal of enhancing the quality of life for individuals through enhanced real-time biomedical monitoring. In this paper, we propose a framework for analyzing the transition of ST-WBS from research to reality. We begin with a look at the evolution of the field and describe the major components of an ST-WBS. We then analyze the key issues encompassing the technical, medical, economic, public policy, and business facets from the viewpoints of various stakeholders in the continuum. We conclude with a plan of action for transitioning ST-WBS from "research to reality."

  11. Wearable Biomedical Measurement Systems for Assessment of Mental Stress of Combatants in Real Time

    Directory of Open Access Journals (Sweden)

    Fernando Seoane

    2014-04-01

    Full Text Available The Spanish Ministry of Defense, through its Future Combatant program, has sought to develop technology aids with the aim of extending combatants’ operational capabilities. Within this framework the ATREC project funded by the “Coincidente” program aims at analyzing diverse biometrics to assess by real time monitoring the stress levels of combatants. This project combines multidisciplinary disciplines and fields, including wearable instrumentation, textile technology, signal processing, pattern recognition and psychological analysis of the obtained information. In this work the ATREC project is described, including the different execution phases, the wearable biomedical measurement systems, the experimental setup, the biomedical signal analysis and speech processing performed. The preliminary results obtained from the data analysis collected during the first phase of the project are presented, indicating the good classification performance exhibited when using features obtained from electrocardiographic recordings and electrical bioimpedance measurements from the thorax. These results suggest that cardiac and respiration activity offer better biomarkers for assessment of stress than speech, galvanic skin response or skin temperature when recorded with wearable biomedical measurement systems.

  12. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined.

  13. Comment on 'Interpretation of the Lempel-Ziv Complexity Measure in the context of Biomedical Signal Analysis'

    CERN Document Server

    Balasubramanian, Karthi

    2013-01-01

    In this Communication, we express our reservations on some aspects of the interpretation of the Lempel-Ziv Complexity measure (LZ) by Mateo et al. in "Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis," IEEE Trans. Biomed. Eng., vol. 53, no. 11, pp. 2282-2288, Nov. 2006. In particular, we comment on the dependence of the LZ complexity measure on number of harmonics, frequency content and amplitude modulation. We disagree with the following statements made by Mateo et al. 1. "LZ is not sensitive to the number of harmonics in periodic signals." 2. "LZ increases as the frequency of a sinusoid increases." 3. "Amplitude modulation of a signal doesnot result in an increase in LZ." We show the dependence of LZ complexity measure on harmonics and amplitude modulation by using a modified version of the synthetic signal that has been used in the original paper. Also, the second statement is a generic statement which is not entirely true. This is true only in the low freque...

  14. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  15. Measuring Complexity of SAP Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-10-01

    Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.

  16. Complex systems: physics beyond physics

    CERN Document Server

    Holovatch, Yurij; Thurner, Stefan

    2016-01-01

    Complex systems are characterized by specific time-dependent interactions among their many constituents. As a consequence they often manifest rich, non-trivial and unexpected behavior. Examples arise both in the physical and non-physical world. The study of complex systems forms a new interdisciplinary research area that cuts across physics, biology, ecology, economics, sociology, and the humanities. In this paper we review the essence of complex systems from a physicist's point of view, and try to clarify what makes them conceptually different from systems that are traditionally studied in physics. Our goal is to demonstrate how the dynamics of such systems may be conceptualized in quantitative and predictive terms by extending notions from statistical physics and how they can often be captured in a framework of co-evolving multiplex network structures. We mention three areas of complex-systems science that are currently studied extensively, the science of cities, dynamics of societies, and the representatio...

  17. Challenges in Complex Systems Science

    CERN Document Server

    Miguel, Maxi San; Kertesz, Janos; Kaski, Kimmo; Díaz-Guilera, Albert; MacKay, Robert S; Loreto, Vittorio; Erdi, Peter; Helbing, Dirk

    2012-01-01

    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneou...

  18. European Conference on Complex Systems

    CERN Document Server

    Pellegrini, Francesco; Caldarelli, Guido; Merelli, Emanuela

    2016-01-01

    This work contains a stringent selection of extended contributions presented at the meeting of 2014 and its satellite meetings, reflecting scope, diversity and richness of research areas in the field, both fundamental and applied. The ECCS meeting, held under the patronage of the Complex Systems Society, is an annual event that has become the leading European conference devoted to complexity science. It offers cutting edge research and unique opportunities to study novel scientific approaches in a multitude of application areas. ECCS'14, its eleventh occurrence, took place in Lucca, Italy. It gathered some 650 scholars representing a wide range of topics relating to complex systems research, with emphasis on interdisciplinary approaches. The editors are among the best specialists in the area. The book is of great interest to scientists, researchers and graduate students in complexity, complex systems and networks.

  19. NeuroTerrain – a client-server system for browsing 3D biomedical image data sets

    Directory of Open Access Journals (Sweden)

    Nissanov Jonathan

    2007-02-01

    Full Text Available Abstract Background Three dimensional biomedical image sets are becoming ubiquitous, along with the canonical atlases providing the necessary spatial context for analysis. To make full use of these 3D image sets, one must be able to present views for 2D display, either surface renderings or 2D cross-sections through the data. Typical display software is limited to presentations along one of the three orthogonal anatomical axes (coronal, horizontal, or sagittal. However, data sets precisely oriented along the major axes are rare. To make fullest use of these datasets, one must reasonably match the atlas' orientation; this involves resampling the atlas in planes matched to the data set. Traditionally, this requires the atlas and browser reside on the user's desktop; unfortunately, in addition to being monolithic programs, these tools often require substantial local resources. In this article, we describe a network-capable, client-server framework to slice and visualize 3D atlases at off-axis angles, along with an open client architecture and development kit to support integration into complex data analysis environments. Results Here we describe the basic architecture of a client-server 3D visualization system, consisting of a thin Java client built on a development kit, and a computationally robust, high-performance server written in ANSI C++. The Java client components (NetOStat support arbitrary-angle viewing and run on readily available desktop computers running Mac OS X, Windows XP, or Linux as a downloadable Java Application. Using the NeuroTerrain Software Development Kit (NT-SDK, sophisticated atlas browsing can be added to any Java-compatible application requiring as little as 50 lines of Java glue code, thus making it eminently re-useable and much more accessible to programmers building more complex, biomedical data analysis tools. The NT-SDK separates the interactive GUI components from the server control and monitoring, so as to support

  20. HEALTHCARE: A COMPLEX SERVICE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    James M. TIEN; Pascal J. GOLDSCHMIDT-CLERMONT

    2009-01-01

    Healthcare is indeed a complex service system, one requiring the technobiology approach of systems engineering to underpin its development as an integrated and adaptive system. In general, healthcare services are carried out with knowledge-intensive agents or components which work together as providers and consumers to create or co-produce value. Indeed, the engineering design of a healthcare system must recognize the fact that it is actually a complex integration of human-centered activities that is increasingly dependent on information technology and knowledge. Like any service system, healthcare can be considered to be a combination or recombination of three essential components-people (characterized by behaviors, values, knowledge, etc.), processes (characterized by collaboration, customization, etc.) and products (characterized by software, hardware, infrastructures, etc.). Thus, a healthcare system is an integrated and adaptive set of people, processes and products. It is, in essence, a system of systems which objectives are to enhance its efficiency (leading to greater interdependency) and effectiveness (leading to improved health). Integration occurs over the physical, temporal, organizational and functional dimensions, while adaptation occurs over the monitoring, feedback, cybernetic and learning dimensions. In sum, such service systems as healthcare are indeed complex, especially due to the uncertainties associated with the human-centered aspects of these systems. Moreover, the system complexities can only be dealt with methods that enhance system integration and adaptation.

  1. Anomaly Detection for Complex Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — In performance maintenance in large, complex systems, sensor information from sub-components tends to be readily available, and can be used to make predictions about...

  2. Dynamic voltage and frequency scaling for on-demand performance and availability of biomedical embedded systems.

    Science.gov (United States)

    Raskovic, Dejan; Giessel, David

    2009-11-01

    The goal of the study presented in this paper is to develop an embedded biomedical system capable of delivering maximum performance on demand, while maintaining the optimal energy efficiency whenever possible. Several hardware and software solutions are presented allowing the system to intelligently change the power supply voltage and frequency in runtime. The resulting system allows use of more energy-efficient components, operates most of the time in its most battery-efficient mode, and provides means to quickly change the operation mode while maintaining reliable performance. While all of these techniques extend battery life, the main benefit is on-demand availability of computational performance using a system that is not excessive. Biomedical applications, perhaps more than any other application, require battery operation, favor infrequent battery replacements, and can benefit from increased performance under certain conditions (e.g., when anomaly is detected) that makes them ideal candidates for this approach. In addition, if the system is a part of a body area network, it needs to be light, inexpensive, and adaptable enough to satisfy changing requirements of the other nodes in the network.

  3. Visualization of the Meridian System Based on Biomedical Information about Acupuncture Treatment

    Directory of Open Access Journals (Sweden)

    In-Seon Lee

    2013-01-01

    Full Text Available The origin of the concept of the meridian system is closely connected with the treatment effects of acupuncture, and it serves as an empirical reference system in the clinical setting. Understanding the meridian channels would be a first step in enhancing the clinical efficacy of acupuncture treatment. To understand the relationship between the location of the disease and the sites of relevant acupoints, we investigated acupuncture treatment regimens for low-back pain in 37 clinical studies. We found that the most frequently used acupoints in the treatment of low-back pain were BL23 (51%, BL25 (43%, BL24 (32%, BL40 (32%, BL60 (32%, GB30 (32%, BL26 (28%, BL32 (28%, and GB34 (21%. For the example of low-back pain, we visualized the biomedical information (frequency rates about acupuncture treatment on the meridians of a three-dimensional (3D model of the human body. We found that both local and distal acupoints were used to treat low-back pain in clinical trials based on the meridian theory. We suggest a new model for the visualization of a data-driven 3D meridian system of biomedical information about the meridians and acupoints. These findings may be helpful in understanding the meridian system and revealing the effectiveness of acupuncture treatment.

  4. Challenges in complex systems science

    Science.gov (United States)

    San Miguel, M.; Johnson, J. H.; Kertesz, J.; Kaski, K.; Díaz-Guilera, A.; MacKay, R. S.; Loreto, V.; Érdi, P.; Helbing, D.

    2012-11-01

    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda.

  5. Complex systems: physics beyond physics

    Science.gov (United States)

    Holovatch, Yurij; Kenna, Ralph; Thurner, Stefan

    2017-03-01

    Complex systems are characterised by specific time-dependent interactions among their many constituents. As a consequence they often manifest rich, non-trivial and unexpected behaviour. Examples arise both in the physical and non-physical worlds. The study of complex systems forms a new interdisciplinary research area that cuts across physics, biology, ecology, economics, sociology, and the humanities. In this paper we review the essence of complex systems from a physicists' point of view, and try to clarify what makes them conceptually different from systems that are traditionally studied in physics. Our goal is to demonstrate how the dynamics of such systems may be conceptualised in quantitative and predictive terms by extending notions from statistical physics and how they can often be captured in a framework of co-evolving multiplex network structures. We mention three areas of complex-systems science that are currently studied extensively, the science of cities, dynamics of societies, and the representation of texts as evolutionary objects. We discuss why these areas form complex systems in the above sense. We argue that there exists plenty of new ground for physicists to explore and that methodical and conceptual progress is needed most.

  6. Biomedical stretchable sytems using MID based stretchable electronics technology.

    Science.gov (United States)

    Axisa, F; Brosteaux, D; De Leersnyder, E; Bossuyt, F; Vanfleteren, J; Hermans, B; Puers, R

    2007-01-01

    In order to fit human body, flexibility, or even better stretchability is requested for biomedical systems like implants or smart clothes. A stretchable electronic technology has been developed. This can provide highly stretchable interconnections fully compatible with PCB technologies. In order to prove the feasibility of complex biomedical systems like inner body implants or wearable systems, a variety of stretchable systems has been designed from sensor to power source systems.

  7. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  8. Ultrasonic compatibilization of polyelectrolyte complex based on polysaccharides for biomedical applications

    OpenAIRE

    Belluzo, M. Soledad; Medina, Lara F.; Cortizo, Ana María; Cortizo, María Susana

    2016-01-01

    In recent years, there has been an increasing interest in the design of biomaterials for cartilage tissue engineering. This type of materials must meet several requirements. In this study, we apply ultrasound to prepare a compatibilized blend of polyelectrolyte complexes (PEC) based on carboxymethyl cellulose (CMC) and chitosan (CHI), in order to improve stability and mechanical properties through the interpolymer macroradicals coupling produced by sonochemical reaction. We study the kinetic ...

  9. Language Networks as Complex Systems

    Science.gov (United States)

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  10. Control principles of complex systems

    Science.gov (United States)

    Liu, Yang-Yu; Barabási, Albert-László

    2016-07-01

    A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: it requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in dynamical systems and control theory, notions of control and controllability have taken a new life recently in the study of complex networks, inspiring several fundamental questions: What are the control principles of complex systems? How do networks organize themselves to balance control with functionality? To address these questions here recent advances on the controllability and the control of complex networks are reviewed, exploring the intricate interplay between the network topology and dynamical laws. The pertinent mathematical results are matched with empirical findings and applications. Uncovering the control principles of complex systems can help us explore and ultimately understand the fundamental laws that govern their behavior.

  11. An intelligent monitoring and management system for cross-enterprise biomedical data sharing platform

    Science.gov (United States)

    Wang, Tusheng; Yang, Yuanyuan; Zhang, Jianguo

    2013-03-01

    In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai by using grid-based or cloud-based distributed architecture and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. However, when the platform integrates more and more nodes over different networks, the first challenge is that how to monitor and maintain all the hosts and services operating cross multiple academic institutions and hospitals in the e-Science platform, such as DICOM and Web based image communication services, messaging services and XDS ITI transaction services. In this presentation, we presented a system design and implementation of intelligent monitoring and management which can collect system resource status of every node in real time, alert when node or service failure occurs, and can finally improve the robustness, reliability and service continuity of this e-Science platform.

  12. 1998 Complex Systems Summer School

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-15

    For the past eleven years a group of institutes, centers, and universities throughout the country have sponsored a summer school in Santa Fe, New Mexico as part of an interdisciplinary effort to promote the understanding of complex systems. The goal of these summer schools is to provide graduate students, postdoctoral fellows and active research scientists with an introduction to the study of complex behavior in mathematical, physical, and living systems. The Center for Nonlinear Studies supported the eleventh in this series of highly successful schools in Santa Fe in June, 1998.

  13. Pluralistic Modeling of Complex Systems

    CERN Document Server

    Helbing, Dirk

    2010-01-01

    The modeling of complex systems such as ecological or socio-economic systems can be very challenging. Although various modeling approaches exist, they are generally not compatible and mutually consistent, and empirical data often do not allow one to decide what model is the right one, the best one, or most appropriate one. Moreover, as the recent financial and economic crisis shows, relying on a single, idealized model can be very costly. This contribution tries to shed new light on problems that arise when complex systems are modeled. While the arguments can be transferred to many different systems, the related scientific challenges are illustrated for social, economic, and traffic systems. The contribution discusses issues that are sometimes overlooked and tries to overcome some frequent misunderstandings and controversies of the past. At the same time, it is highlighted how some long-standing scientific puzzles may be solved by considering non-linear models of heterogeneous agents with spatio-temporal inte...

  14. Studies on thermo-optic property of chitosan–alizarin yellow GG complex: a direction for devices for biomedical applications

    Indian Academy of Sciences (India)

    Nidhi Nigam; Santosh Kumar; Pradip Kumar Dutta; Tamal Ghosh

    2015-10-01

    The optical parameters including the refractive index () and thermo-optic coefficient, TOC (d/d), the dielectric constant () and its variation with temperature, and the thermal volume expansion coefficient () and its variation with temperature of chitosan–alizarin yellow GG (CS–AY GG) complex were examined. The dn/dT and - values for the polymer derivative were in the range −2.5 × 10−4 to 1.2 × 10−4° C−1 and 2.2 to 2.3, respectively. The dn/dT values were larger than that of inorganic glasses such as zinc silicate glass (5.5 × 10−6° C−1) and borosilicate glass (4.1 × 10−6° C−1) and were larger than that of organic polymers such as polystyrene (−1.23 × 10−4 ° C−1) and PMMA (−1.20 × 10−4 ° C−1). The -values are lower than optically estimated -values of conventional polymer (3.00), aliphatic polyimide (2.5) and semi-aromatic polyamide (2.83). The obtained results of chitosan derivative are expected to be useful for optical switching and optical waveguide areas for devices of biomedical applications.

  15. Consideration for solar system exploration - A system to Mars. [biomedical, environmental, and psychological factors

    Science.gov (United States)

    Nicogossian, Arnauld E.; Garshnek, Victoria

    1989-01-01

    Biomedical issues related to a manned mission to Mars are reviewed. Consideration is given to cardiovascular deconditioning, hematological and immunological changes, bone and muscle changes, nutritional issues, and the development of physiological countermeasures. Environmental issues are discussed, including radiation hazards, toxic chemical exposure, and the cabin environment. Also, human factors, performance and behavior, medical screening of the crew, disease prediction, and health maintenance are examined.

  16. Lectures in Complex Systems (1991)

    Science.gov (United States)

    1992-08-05

    T. Hecht, A. Hiibler, and E. Luscher . "Skalengesetze fur den Maximalen Energieaustausch Nichtlinearer Gekoppelter Systeme." Natur- wissenschaften 74...1987): 336. 4. Eisenhammer, T. A., A. Hiibler, T. Geisel, and E. LUscher . "Scaling Behavior of the Maximum Energy Exchange Between Coupled Anharmonic...Chaos in the Forced Pendulum." Phys. Rev. A 26 (1982): 3483. 7. Hiibler, A and E. Luscher . "Resonant Stimulation and Control of Complex Systems." Helv

  17. Quantum contextuality in complex systems

    CERN Document Server

    Cabello, Adan

    2010-01-01

    We show that, for a system of several qubits, there is an inequality for the correlations between three compatible dichotomic measurements which must be satisfied by any noncontextual theory, but is violated by any quantum state. Remarkably, the violation grows exponentially with the number of qubits, and the tolerated error per correlation also increases with the number of qubits, showing that state-independent quantum contextuality is experimentally observable in complex systems.

  18. Physical approach to complex systems

    Science.gov (United States)

    Kwapień, Jarosław; Drożdż, Stanisław

    2012-06-01

    Typically, complex systems are natural or social systems which consist of a large number of nonlinearly interacting elements. These systems are open, they interchange information or mass with environment and constantly modify their internal structure and patterns of activity in the process of self-organization. As a result, they are flexible and easily adapt to variable external conditions. However, the most striking property of such systems is the existence of emergent phenomena which cannot be simply derived or predicted solely from the knowledge of the systems’ structure and the interactions among their individual elements. This property points to the holistic approaches which require giving parallel descriptions of the same system on different levels of its organization. There is strong evidence-consolidated also in the present review-that different, even apparently disparate complex systems can have astonishingly similar characteristics both in their structure and in their behaviour. One can thus expect the existence of some common, universal laws that govern their properties. Physics methodology proves helpful in addressing many of the related issues. In this review, we advocate some of the computational methods which in our opinion are especially fruitful in extracting information on selected-but at the same time most representative-complex systems like human brain, financial markets and natural language, from the time series representing the observables associated with these systems. The properties we focus on comprise the collective effects and their coexistence with noise, long-range interactions, the interplay between determinism and flexibility in evolution, scale invariance, criticality, multifractality and hierarchical structure. The methods described either originate from “hard” physics-like the random matrix theory-and then were transmitted to other fields of science via the field of complex systems research, or they originated elsewhere but

  19. A Follow-Up Study of Medical Students' Biomedical Understanding and Clinical Reasoning Concerning the Cardiovascular System

    Science.gov (United States)

    Ahopelto, Ilona; Mikkila-Erdmann, Mirjamaija; Olkinuora, Erkki; Kaapa, Pekka

    2011-01-01

    Novice medical students usually hold initial conceptions concerning medical domains, such as the cardiovascular system, which may contradict scientific explanations and thus hinder learning. The purpose of this study was to investigate which kinds of biomedical representations medical students constructed of the central cardiovascular system in…

  20. Translational systems biology using an agent-based approach for dynamic knowledge representation: An evolutionary paradigm for biomedical research.

    Science.gov (United States)

    An, Gary C

    2010-01-01

    The greatest challenge facing the biomedical research community is the effective translation of basic mechanistic knowledge into clinically effective therapeutics. This challenge is most evident in attempts to understand and modulate "systems" processes/disorders, such as sepsis, cancer, and wound healing. Formulating an investigatory strategy for these issues requires the recognition that these are dynamic processes. Representation of the dynamic behavior of biological systems can aid in the investigation of complex pathophysiological processes by augmenting existing discovery procedures by integrating disparate information sources and knowledge. This approach is termed Translational Systems Biology. Focusing on the development of computational models capturing the behavior of mechanistic hypotheses provides a tool that bridges gaps in the understanding of a disease process by visualizing "thought experiments" to fill those gaps. Agent-based modeling is a computational method particularly well suited to the translation of mechanistic knowledge into a computational framework. Utilizing agent-based models as a means of dynamic hypothesis representation will be a vital means of describing, communicating, and integrating community-wide knowledge. The transparent representation of hypotheses in this dynamic fashion can form the basis of "knowledge ecologies," where selection between competing hypotheses will apply an evolutionary paradigm to the development of community knowledge.

  1. Disorder in Complex Human System

    Science.gov (United States)

    Akdeniz, K. Gediz

    2011-11-01

    Since the world of human and whose life becomes more and more complex every day because of the digital technology and under the storm of knowledge (media, internet, governmental and non-governmental organizations, etc...) the simulation is rapidly growing in the social systems and in human behaviors. The formation of the body and mutual interactions are left to digital technological, communication mechanisms and coding the techno genetics of the body. Deconstruction begins everywhere. The linear simulation mechanism with modern realities are replaced by the disorder simulation of human behaviors with awareness realities. In this paper I would like to introduce simulation theory of "Disorder Sensitive Human Behaviors". I recently proposed this theory to critique the role of disorder human behaviors in social systems. In this theory the principle of realty is the chaotic awareness of the complexity of human systems inside of principle of modern thinking in Baudrillard's simulation theory. Proper examples will be also considered to investigate the theory.

  2. Permutation Complexity in Dynamical Systems

    CERN Document Server

    Amigo, Jose

    2010-01-01

    The study of permutation complexity can be envisioned as a new kind of symbolic dynamics whose basic blocks are ordinal patterns, that is, permutations defined by the order relations among points in the orbits of dynamical systems. Since its inception in 2002 the concept of permutation entropy has sparked a new branch of research in particular regarding the time series analysis of dynamical systems that capitalizes on the order structure of the state space. Indeed, on one hand ordinal patterns and periodic points are closely related, yet ordinal patterns are amenable to numerical methods, while periodicity is not. Another interesting feature is that since it can be shown that random (unconstrained) dynamics has no forbidden patterns with probability one, their existence can be used as a fingerprint to identify any deterministic origin of orbit generation. This book is primarily addressed to researchers working in the field of nonlinear dynamics and complex systems, yet will also be suitable for graduate stude...

  3. Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system.

    Science.gov (United States)

    Lee, Wen-Bin; Weng, Chen-Hsun; Cheng, Fong-Yu; Yeh, Chen-Sheng; Lei, Huan-Yao; Lee, Gwo-Bin

    2009-02-01

    The preparation of nanoparticles is essential in the application of many nanotechnologies and various preparation methods have been explored in the previous decades. Among them, iron oxide nanoparticles have been widely investigated in applications ranging from bio-imaging to bio-sensing due to their unique magnetic properties. Recently, microfluidic systems have been utilized for synthesis of nanoparticles, which have the advantages of automation, well-controlled reactions, and a high particle uniformity. In this study, a new microfluidic system capable of mixing, transporting and reacting was developed for the synthesis of iron oxide nanoparticles. It allowed for a rapid and efficient approach to accelerate and automate the synthesis of the iron oxide nanoparticles as compared with traditional methods. The microfluidic system uses micro-electro-mechanical-system technologies to integrate a new double-loop micromixer, two micropumps, and a microvalve on a single chip. When compared with large-scale synthesis systems with commonly-observed particle aggregation issues, successful synthesis of dispersed and uniform iron oxide nanoparticles has been observed within a shorter period of time (15 min). It was found that the size distribution of these iron oxide nanoparticles is superior to that of the large-scale systems without requiring any extra additives or heating. The size distribution had a variation of 16%. This is much lower than a comparable large-scale system (34%). The development of this microfluidic system is promising for the synthesis of nanoparticles for many future biomedical applications.

  4. Empirical and theoretical analysis of complex systems

    Science.gov (United States)

    Zhao, Guannan

    This thesis is an interdisciplinary work under the heading of complexity science which focuses on an arguably common "hard" problem across physics, finance and biology [1], to quantify and mimic the macroscopic "emergent phenomenon" in large-scale systems consisting of many interacting "particles" governed by microscopic rules. In contrast to traditional statistical physics, we are interested in systems whose dynamics are subject to feedback, evolution, adaption, openness, etc. Global financial markets, like the stock market and currency market, are ideal candidate systems for such a complexity study: there exists a vast amount of accurate data, which is the aggregate output of many autonomous agents continuously competing with each other. We started by examining the ultrafast "mini flash crash (MFC)" events in the US stock market. An abrupt system-wide composition transition from a mixed human machine phase to a new all-machine phase is uncovered, and a novel theory developed to explain this observation. Then in the study of FX market, we found an unexpected variation in the synchronicity of price changes in different market subsections as a function of the overall trading activity. Several survival models have been tested in analyzing the distribution of waiting times to the next price change. In the region of long waiting-times, the distribution for each currency pair exhibits a power law with exponent in the vicinity of 3.5. By contrast, for short waiting times only, the market activity can be mimicked by the fluctuations emerging from a finite resource competition model containing multiple agents with limited rationality (so called El Farol Model). Switching to the biomedical domain, we present a minimal mathematical model built around a co-evolving resource network and cell population, yielding good agreement with primary tumors in mice experiment and with clinical metastasis data. In the quest to understand contagion phenomena in systems where social group

  5. A Review of Biomedical Centrifugal Microfluidic Platforms

    Directory of Open Access Journals (Sweden)

    Minghui Tang

    2016-02-01

    Full Text Available Centrifugal microfluidic or lab-on-a-disc platforms have many advantages over other microfluidic systems. These advantages include a minimal amount of instrumentation, the efficient removal of any disturbing bubbles or residual volumes, and inherently available density-based sample transportation and separation. Centrifugal microfluidic devices applied to biomedical analysis and point-of-care diagnostics have been extensively promoted recently. This paper presents an up-to-date overview of these devices. The development of biomedical centrifugal microfluidic platforms essentially covers two categories: (i unit operations that perform specific functionalities, and (ii systems that aim to address certain biomedical applications. With the aim to provide a comprehensive representation of current development in this field, this review summarizes progress in both categories. The advanced unit operations implemented for biological processing include mixing, valving, switching, metering and sequential loading. Depending on the type of sample to be used in the system, biomedical applications are classified into four groups: nucleic acid analysis, blood analysis, immunoassays, and other biomedical applications. Our overview of advanced unit operations also includes the basic concepts and mechanisms involved in centrifugal microfluidics, while on the other hand an outline on reported applications clarifies how an assembly of unit operations enables efficient implementation of various types of complex assays. Lastly, challenges and potential for future development of biomedical centrifugal microfluidic devices are discussed.

  6. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Fuli Zhao

    2015-12-01

    Full Text Available Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed.

  7. Concept for linking de-identified biomedical research data using a study participant management system.

    Science.gov (United States)

    Stahmann, Alexander; Bauer, Christian R K D; Schwanke, Jens

    2014-01-01

    Biomedical research projects show an increasing demand of large numbers of participants from different recruiting centers to achieve statistically significant results. The collected types of data are stored in distributed databases and are linked to the participant by different non-resolvable identifiers (layered pseudonyms) for de-identification. To ensure the quality of the gathered data, regular quality assurance analyses are required at each local center. Because of the distributed databases and layered pseudonyms the analyses can only be achieved manually. Therefore, the process is error-prone and laborious. The objective of this paper is to propose a solution concept to automate the manual process by using a local study participant management system. It orchestrates the process and enables the quality assurance analyses within a clinical data warehouse.

  8. Injection Molding of Titanium Alloy Implant For Biomedical Application Using Novel Binder System Based on Palm Oil Derivatives

    Directory of Open Access Journals (Sweden)

    R. Ibrahim

    2010-01-01

    Full Text Available Problem statement: Titanium alloy (Ti6Al4V has been widely used as an implant for biomedical application. In this study, the implant had been fabricated using high technology of Powder Injection Molding (PIM process due to the cost effective technique for producing small, complex and precision parts in high volume compared with conventional method through machining. Approach: Through PIM, the binder system is one of the most important criteria in order to successfully fabricate the implants. Even though, the binder system is a temporary, but failure in the selection and removal of the binder system will affect on the final properties of the sintered parts. Therefore, the binder system based on palm oil derivative which is palm stearin had been formulated and developed to replace the conventional binder system. Results: The rheological studies of the mixture between the powder and binders system had been determined properly in order to be successful during injection into injection molding machine. After molding, the binder held the particles in place. The binder system had to be removed completely through debinding step. During debinding step, solvent debinding and thermal pyrolysis had been used to remove completely of the binder system. The debound part was then sintered to give the required physical and mechanical properties. The in vitro biocompatibility also was tested using Neutral Red (NR and mouse fibroblast cell lines L-929 for the direct contact assay. Conclusion: The results showed that the properties of the final sintered parts fulfill the Standard Metal Powder Industries Federation (MPIF 35 for PIM parts except for tensile strength and elongation due to the formation of titanium carbide. The in vitro biocompatibility on the extraction using mouse fibroblast cell line L-929 by means of NR assays showed non toxic for the sintered specimen titanium alloy parts.

  9. Description complexity of lindenmayer systems

    Directory of Open Access Journals (Sweden)

    H. Selamat

    2012-12-01

    Full Text Available In this paper we study the nonterminal complexity of Lindenmayer systems withrespect to tree controlled grammars. We show that all 0L, D0Land E0L languages can begenerated by tree controlled grammars with at most five nonterminals. The results based onthe idea of using a tree controlled grammar in the t-normal form, which has the one activenonterminal, and a coding homomorphism

  10. 7th International Conference on Complex Systems

    CERN Document Server

    Braha, Dan; Bar-Yam, Yaneer

    2012-01-01

    The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.

  11. 5th International Conference on Complex Systems

    CERN Document Server

    Braha, Dan; Bar-Yam, Yaneer

    2011-01-01

    The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.

  12. A Multilayer Secure Biomedical Data Management System for Remotely Managing a Very Large Number of Diverse Personal Healthcare Devices.

    Science.gov (United States)

    Park, KeeHyun; Lim, SeungHyeon

    2015-01-01

    In this paper, a multilayer secure biomedical data management system for managing a very large number of diverse personal health devices is proposed. The system has the following characteristics: the system supports international standard communication protocols to achieve interoperability. The system is integrated in the sense that both a PHD communication system and a remote PHD management system work together as a single system. Finally, the system proposed in this paper provides user/message authentication processes to securely transmit biomedical data measured by PHDs based on the concept of a biomedical signature. Some experiments, including the stress test, have been conducted to show that the system proposed/constructed in this study performs very well even when a very large number of PHDs are used. For a stress test, up to 1,200 threads are made to represent the same number of PHD agents. The loss ratio of the ISO/IEEE 11073 messages in the normal system is as high as 14% when 1,200 PHD agents are connected. On the other hand, no message loss occurs in the multilayered system proposed in this study, which demonstrates the superiority of the multilayered system to the normal system with regard to heavy traffic.

  13. A Multilayer Secure Biomedical Data Management System for Remotely Managing a Very Large Number of Diverse Personal Healthcare Devices

    Directory of Open Access Journals (Sweden)

    KeeHyun Park

    2015-01-01

    Full Text Available In this paper, a multilayer secure biomedical data management system for managing a very large number of diverse personal health devices is proposed. The system has the following characteristics: the system supports international standard communication protocols to achieve interoperability. The system is integrated in the sense that both a PHD communication system and a remote PHD management system work together as a single system. Finally, the system proposed in this paper provides user/message authentication processes to securely transmit biomedical data measured by PHDs based on the concept of a biomedical signature. Some experiments, including the stress test, have been conducted to show that the system proposed/constructed in this study performs very well even when a very large number of PHDs are used. For a stress test, up to 1,200 threads are made to represent the same number of PHD agents. The loss ratio of the ISO/IEEE 11073 messages in the normal system is as high as 14% when 1,200 PHD agents are connected. On the other hand, no message loss occurs in the multilayered system proposed in this study, which demonstrates the superiority of the multilayered system to the normal system with regard to heavy traffic.

  14. Complex Phenomena in Nanoscale Systems

    CERN Document Server

    Casati, Giulio

    2009-01-01

    Nanoscale physics has become one of the rapidly developing areas of contemporary physics because of its direct relevance to newly emerging area, nanotechnologies. Nanoscale devices and quantum functional materials are usually constructed based on the results of fundamental studies on nanoscale physics. Therefore studying physical phenomena in nanosized systems is of importance for progressive development of nanotechnologies. In this context study of complex phenomena in such systems and using them for controlling purposes is of great practical importance. Namely, such studies are brought together in this book, which contains 27 papers on various aspects of nanoscale physics and nonlinear dynamics.

  15. Testing Complex and Embedded Systems

    CERN Document Server

    Pries, Kim H

    2010-01-01

    Many enterprises regard system-level testing as the final piece of the development effort, rather than as a tool that should be integrated throughout the development process. As a consequence, test teams often execute critical test plans just before product launch, resulting in much of the corrective work being performed in a rush and at the last minute. Presenting combinatorial approaches for improving test coverage, Testing Complex and Embedded Systems details techniques to help you streamline testing and identify problems before they occur--including turbocharged testing using Six Sigma and

  16. Semiotics of constructed complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Landauer, C.; Bellman, K.L.

    1996-12-31

    The scope of this paper is limited to software and other constructed complex systems mediated or integrated by software. Our research program studies foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. There have really been only two theoretical approaches that have helped us understand and develop computational systems: mathematics and linguistics. We show how semiotics can also play a role, whether we think of it as part of these other theories or as subsuming one or both of them. We describe our notion of {open_quotes}computational semiotics{close_quotes}, which we define to be the study of computational methods of dealing with symbols, show how such a theory might be formed, and describe what we might get from it in terms of more interesting use of symbols by computing systems. This research was supported in part by the Federal Highway Administration`s Office of Advanced Research and by the Advanced Research Projects Agency`s Software and Intelligent Systems Technology Office.

  17. [An integral chip for the multiphase pulse-duration modulation used for voltage changer in biomedical microprocessor systems].

    Science.gov (United States)

    Balashov, A M; Selishchev, S V

    2004-01-01

    An integral chip (IC) was designed for controlling the step-down pulse voltage converter, which is based on the multiphase pulse-duration modulation, for use in biomedical microprocessor systems. The CMOS technology was an optimal basis for the IC designing. An additional feedback circuit diminishes the output voltage dispersion at dynamically changing loads.

  18. Problem Solving and Complex Systems

    CERN Document Server

    Guinand, Frédéric

    2008-01-01

    The observation and modeling of natural Complex Systems (CSs) like the human nervous system, the evolution or the weather, allows the definition of special abilities and models reusable to solve other problems. For instance, Genetic Algorithms or Ant Colony Optimizations are inspired from natural CSs to solve optimization problems. This paper proposes the use of ant-based systems to solve various problems with a non assessing approach. This means that solutions to some problem are not evaluated. They appear as resultant structures from the activity of the system. Problems are modeled with graphs and such structures are observed directly on these graphs. Problems of Multiple Sequences Alignment and Natural Language Processing are addressed with this approach.

  19. Encyclopedia of complexity and systems science

    OpenAIRE

    2012-01-01

    Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural n...

  20. Computational models of complex systems

    CERN Document Server

    Dabbaghian, Vahid

    2014-01-01

    Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the reader...

  1. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  2. Mining biomedical images towards valuable information retrieval in biomedical and life sciences.

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries.

  3. Evaluation of illumination system uniformity for wide-field biomedical hyperspectral imaging

    Science.gov (United States)

    Sawyer, Travis W.; Siri Luthman, A.; Bohndiek, Sarah E.

    2017-04-01

    Hyperspectral imaging (HSI) systems collect both spatial (morphological) and spectral (chemical) information from a sample. HSI can provide sensitive analysis for biological and medical applications, for example, simultaneously measuring reflectance and fluorescence properties of a tissue, which together with structural information could improve early cancer detection and tumour characterisation. Illumination uniformity is a critical pre-condition for quantitative data extraction from an HSI system. Non-uniformity can cause glare, specular reflection and unwanted shading, which negatively impact statistical analysis procedures used to extract abundance of different chemical species. Here, we model and evaluate several illumination systems frequently used in wide-field biomedical imaging to test their potential for HSI. We use the software LightTools and FRED. The analysed systems include: a fibre ring light; a light emitting diode (LED) ring; and a diffuse scattering dome. Each system is characterised for spectral, spatial, and angular uniformity, as well as transfer efficiency. Furthermore, an approach to measure uniformity using the Kullback–Leibler divergence (KLD) is introduced. The KLD is generalisable to arbitrary illumination shapes, making it an attractive approach for characterising illumination distributions. Although the systems are quite comparable in their spatial and spectral uniformity, the most uniform angular distribution is achieved using a diffuse scattering dome, yielding a contrast of 0.503 and average deviation of 0.303 over a ±60° field of view with a 3.9% model error in the angular domain. Our results suggest that conventional illumination sources can be applied in HSI, but in the case of low light levels, bespoke illumination sources may offer improved performance.

  4. eClims: An Extensible and Dynamic Integration Framework for Biomedical Information Systems.

    Science.gov (United States)

    Savonnet, Marinette; Leclercq, Eric; Naubourg, Pierre

    2016-11-01

    Biomedical information systems (BIS) require consideration of three types of variability: data variability induced by new high throughput technologies, schema or model variability induced by large scale studies or new fields of research, and knowledge variability resulting from new discoveries. Beyond data heterogeneity, managing variabilities in the context of BIS requires extensible and dynamic integration process. In this paper, we focus on data and schema variabilities and we propose an integration framework based on ontologies, master data, and semantic annotations. The framework addresses issues related to: 1) collaborative work through a dynamic integration process; 2) variability among studies using an annotation mechanism; and 3) quality control over data and semantic annotations. Our approach relies on two levels of knowledge: BIS-related knowledge is modeled using an application ontology coupled with UML models that allow controlling data completeness and consistency, and domain knowledge is described by a domain ontology, which ensures data coherence. A system build with the eClims framework has been implemented and evaluated in the context of a proteomic platform.

  5. Mathematical Control of Complex Systems 2013

    OpenAIRE

    Zidong Wang; Hamid Reza Karimi; Bo Shen; Jun Hu; Hongli Dong; Xiao He

    2014-01-01

    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest...

  6. Interdisciplinary Symposium on Complex Systems

    CERN Document Server

    Zelinka, Ivan; Rössler, Otto

    2014-01-01

    The book you hold in your hands is the outcome of the "ISCS 2013: Interdisciplinary Symposium on Complex Systems" held at the historical capital of Bohemia as a continuation of our series of symposia in the science of complex systems. Prague, one of the most beautiful European cities, has its own beautiful genius loci. Here, a great number of important discoveries were made and many important scientists spent fruitful and creative years to leave unforgettable traces. The perhaps most significant period was the time of Rudolf II who was a great supporter of the art and the science and attracted a great number of prominent minds to Prague. This trend would continue. Tycho Brahe, Niels Henrik Abel, Johannes Kepler, Bernard Bolzano, August Cauchy Christian Doppler, Ernst Mach, Albert Einstein and many others followed developing fundamental mathematical and physical theories or expanding them. Thus in the beginning of the 17th century, Kepler formulated here the first two of his three laws of planetary motion on ...

  7. Nonlinear Waves in Complex Systems

    DEFF Research Database (Denmark)

    2007-01-01

    The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ...... in Fourier space and equipartition, the role of inhomogeneities and complex geometry and the importance of coupled systems.......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...

  8. Biomedical data analysis by supervised manifold learning.

    Science.gov (United States)

    Alvarez-Meza, A M; Daza-Santacoloma, G; Castellanos-Dominguez, G

    2012-01-01

    Biomedical data analysis is usually carried out by assuming that the information structure embedded into the biomedical recordings is linear, but that statement actually does not corresponds to the real behavior of the extracted features. In order to improve the accuracy of an automatic system to diagnostic support, and to reduce the computational complexity of the employed classifiers, we propose a nonlinear dimensionality reduction methodology based on manifold learning with multiple kernel representations, which learns the underlying data structure of biomedical information. Moreover, our approach can be used as a tool that allows the specialist to do a visual analysis and interpretation about the studied variables describing the health condition. Obtained results show how our approach maps the original high dimensional features into an embedding space where simple and straightforward classification strategies achieve a suitable system performance.

  9. Adaptive Biomedical Innovation: Evolving Our Global System to Sustainably and Safely Bring New Medicines to Patients in Need.

    Science.gov (United States)

    Hirsch, G; Trusheim, M; Cobbs, E; Bala, M; Garner, S; Hartman, D; Isaacs, K; Lumpkin, M; Lim, R; Oye, K; Pezalla, E; Saltonstall, P; Selker, H

    2016-12-01

    The current system of biomedical innovation is unable to keep pace with scientific advancements. We propose to address this gap by reengineering innovation processes to accelerate reliable delivery of products that address unmet medical needs. Adaptive biomedical innovation (ABI) provides an integrative, strategic approach for process innovation. Although the term "ABI" is new, it encompasses fragmented "tools" that have been developed across the global pharmaceutical industry, and could accelerate the evolution of the system through more coordinated application. ABI involves bringing stakeholders together to set shared objectives, foster trust, structure decision-making, and manage expectations through rapid-cycle feedback loops that maximize product knowledge and reduce uncertainty in a continuous, adaptive, and sustainable learning healthcare system. Adaptive decision-making, a core element of ABI, provides a framework for structuring decision-making designed to manage two types of uncertainty - the maturity of scientific and clinical knowledge, and the behaviors of other critical stakeholders.

  10. Multilevel Complex Networks and Systems

    Science.gov (United States)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  11. Complexity and synchronization in stochastic chaotic systems

    Science.gov (United States)

    Son Dang, Thai; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo

    2016-02-01

    We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.

  12. Complex systems in aeolian geomorphology

    Science.gov (United States)

    Baas, Andreas C. W.

    2007-11-01

    Aeolian geomorphology provides a rich ground for investigating Earth surface processes and landforms as complex systems. Sand transport by wind is a classic dissipative process with non-linear dynamics, while dune field evolution is a prototypical self-organisation phenomenon. Both of these broad areas of aeolian geomorphology are discussed and analysed in the context of complexity and a systems approach. A feedback loop analysis of the aeolian boundary-layer-flow/sediment-transport/bedform interactions, based on contemporary physical models, reveals that the system is fundamentally unstable (or at most meta-stable) and likely to exhibit chaotic behaviour. Recent field-experimental research on aeolian streamers and spatio-temporal transport patterns, however, indicates that sand transport by wind may be wholly controlled by a self-similar turbulence cascade in the boundary layer flow, and that key aspects of transport event time-series can be fully reproduced from a combination of (self-organised) 1/ f forcing, motion threshold, and saltation inertia. The evolution of various types of bare-sand dunes and dune field patterns have been simulated successfully with self-organising cellular automata that incorporate only simplified physically-based interactions (rules). Because of their undefined physical scale, however, it not clear whether they in fact simulate ripples (bedforms) or dunes (landforms), raising fundamental cross-cutting questions regarding the difference between aeolian dunes, impact ripples, and subaqueous (current) ripples and dunes. An extended cellular automaton (CA) model, currently under development, incorporates the effects of vegetation in the aeolian environment and is capable of simulating the development of nebkhas, blow-outs, and parabolic coastal dunes. Preliminary results indicate the potential for establishing phase diagrams and attractor trajectories for vegetated aeolian dunescapes. Progress is limited, however, by a serious lack of

  13. Building biomedical web communities using a semantically aware content management system.

    Science.gov (United States)

    Das, Sudeshna; Girard, Lisa; Green, Tom; Weitzman, Louis; Lewis-Bowen, Alister; Clark, Tim

    2009-03-01

    Web-based biomedical communities are becoming an increasingly popular vehicle for sharing information amongst researchers and are fast gaining an online presence. However, information organization and exchange in such communities is usually unstructured, rendering interoperability between communities difficult. Furthermore, specialized software to create such communities at low cost-targeted at the specific common information requirements of biomedical researchers-has been largely lacking. At the same time, a growing number of biological knowledge bases and biomedical resources are being structured for the Semantic Web. Several groups are creating reference ontologies for the biomedical domain, actively publishing controlled vocabularies and making data available in Resource Description Framework (RDF) language. We have developed the Science Collaboration Framework (SCF) as a reusable platform for advanced structured online collaboration in biomedical research that leverages these ontologies and RDF resources. SCF supports structured 'Web 2.0' style community discourse amongst researchers, makes heterogeneous data resources available to the collaborating scientist, captures the semantics of the relationship among the resources and structures discourse around the resources. The first instance of the SCF framework is being used to create an open-access online community for stem cell research-StemBook (http://www.stembook.org). We believe that such a framework is required to achieve optimal productivity and leveraging of resources in interdisciplinary scientific research. We expect it to be particularly beneficial in highly interdisciplinary areas, such as neurodegenerative disease and neurorepair research, as well as having broad utility across the natural sciences.

  14. Collaboration in Complex Medical Systems

    Science.gov (United States)

    Xiao, Yan; Mankenzie, Colin F.

    1998-01-01

    Improving our understanding of collaborative work in complex environments has the potential for developing effective supporting technologies, personnel training paradigms, and design principles for multi-crew workplaces. USing a sophisticated audio-video-data acquisition system and a corresponding analysis system, the researchers at University of Maryland have been able to study in detail team performance during real trauma patient resuscitation. The first study reported here was on coordination mechanisms and on characteristics of coordination breakdowns. One of the key findings was that implicit communications were an important coordination mechanism (e.g. through the use of shared workspace and event space). The second study was on the sources of uncertainty during resuscitation. Although incoming trauma patients' status is inherently uncertain, the findings suggest that much of the uncertainty felt by care providers was related to communication and coordination. These two studies demonstrate the value of and need for creating a real-life laboratory for studying team performance with the use of comprehensive and integrated data acquisition and analysis tools.

  15. Metasynthetic computing and engineering of complex systems

    CERN Document Server

    Cao, Longbing

    2015-01-01

    Provides a comprehensive overview and introduction to the concepts, methodologies, analysis, design and applications of metasynthetic computing and engineering. The author: Presents an overview of complex systems, especially open complex giant systems such as the Internet, complex behavioural and social problems, and actionable knowledge discovery and delivery in the big data era. Discusses ubiquitous intelligence in complex systems, including human intelligence, domain intelligence, social intelligence, network intelligence, data intelligence and machine intelligence, and their synergy thro

  16. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  17. Hierarchical Self-organization of Complex Systems

    Institute of Scientific and Technical Information of China (English)

    CHAI Li-he; WEN Dong-sheng

    2004-01-01

    Researches on organization and structure in complex systems are academic and industrial fronts in modern sciences. Though many theories are tentatively proposed to analyze complex systems, we still lack a rigorous theory on them. Complex systems possess various degrees of freedom, which means that they should exhibit all kinds of structures. However, complex systems often show similar patterns and structures. Then the question arises why such similar structures appear in all kinds of complex systems. The paper outlines a theory on freedom degree compression and the existence of hierarchical self-organization for all complex systems is found. It is freedom degree compression and hierarchical self-organization that are responsible for the existence of these similar patterns or structures observed in the complex systems.

  18. Optomechatronics for Biomedical Optical Imaging: An Overview

    Directory of Open Access Journals (Sweden)

    Cho Hyungsuck

    2015-01-01

    Full Text Available The use of optomechatronic technology, particularly in biomedical optical imaging, is becoming pronounced and ever increasing due to its synergistic effect of the integration of optics and mechatronics. The background of this trend is that the biomedical optical imaging for example in-vivo imaging related to retraction of tissues, diagnosis, and surgical operations have a variety of challenges due to complexity in internal structure and properties of biological body and the resulting optical phenomena. This paper addresses the technical issues related to tissue imaging, visualization of interior surfaces of organs, laparoscopic and endoscopic imaging and imaging of neuronal activities and structures. Within such problem domains the paper overviews the states of the art technology focused on how optical components are fused together with those of mechatronics to create the functionalities required for the imaging systems. Future perspective of the optical imaging in biomedical field is presented in short.

  19. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  20. Reduction of Subjective and Objective System Complexity

    Science.gov (United States)

    Watson, Michael D.

    2015-01-01

    Occam's razor is often used in science to define the minimum criteria to establish a physical or philosophical idea or relationship. Albert Einstein is attributed the saying "everything should be made as simple as possible, but not simpler". These heuristic ideas are based on a belief that there is a minimum state or set of states for a given system or phenomena. In looking at system complexity, these heuristics point us to an idea that complexity can be reduced to a minimum. How then, do we approach a reduction in complexity? Complexity has been described as a subjective concept and an objective measure of a system. Subjective complexity is based on human cognitive comprehension of the functions and inter relationships of a system. Subjective complexity is defined by the ability to fully comprehend the system. Simplifying complexity, in a subjective sense, is thus gaining a deeper understanding of the system. As Apple's Jonathon Ive has stated," It's not just minimalism or the absence of clutter. It involves digging through the depth of complexity. To be truly simple, you have to go really deep". Simplicity is not the absence of complexity but a deeper understanding of complexity. Subjective complexity, based on this human comprehension, cannot then be discerned from the sociological concept of ignorance. The inability to comprehend a system can be either a lack of knowledge, an inability to understand the intricacies of a system, or both. Reduction in this sense is based purely on a cognitive ability to understand the system and no system then may be truly complex. From this view, education and experience seem to be the keys to reduction or eliminating complexity. Objective complexity, is the measure of the systems functions and interrelationships which exist independent of human comprehension. Jonathon Ive's statement does not say that complexity is removed, only that the complexity is understood. From this standpoint, reduction of complexity can be approached

  1. Encyclopedia of Complexity and Systems Science

    CERN Document Server

    Meyers, Robert A

    2009-01-01

    Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other n...

  2. Complex system modelling and control through intelligent soft computations

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, r...

  3. Biomedical technology transfer: Bioinstrumentation for cardiology, neurology, and the circulatory system

    Science.gov (United States)

    1976-01-01

    Developments in applying aerospace medical technology to the design and production of medical equipment and instrumentation are reported. Projects described include intercranial pressure transducers, leg negative pressure devices, a synthetic speech prosthesis for victims of cerebral palsy, and a Doppler blood flow instrument. Commercialization activities for disseminating and utilizing NASA technology, and new biomedical problem areas are discussed.

  4. The BioIntelligence Framework: a new computational platform for biomedical knowledge computing.

    Science.gov (United States)

    Farley, Toni; Kiefer, Jeff; Lee, Preston; Von Hoff, Daniel; Trent, Jeffrey M; Colbourn, Charles; Mousses, Spyro

    2013-01-01

    Breakthroughs in molecular profiling technologies are enabling a new data-intensive approach to biomedical research, with the potential to revolutionize how we study, manage, and treat complex diseases. The next great challenge for clinical applications of these innovations will be to create scalable computational solutions for intelligently linking complex biomedical patient data to clinically actionable knowledge. Traditional database management systems (DBMS) are not well suited to representing complex syntactic and semantic relationships in unstructured biomedical information, introducing barriers to realizing such solutions. We propose a scalable computational framework for addressing this need, which leverages a hypergraph-based data model and query language that may be better suited for representing complex multi-lateral, multi-scalar, and multi-dimensional relationships. We also discuss how this framework can be used to create rapid learning knowledge base systems to intelligently capture and relate complex patient data to biomedical knowledge in order to automate the recovery of clinically actionable information.

  5. European Conference on Complex Systems 2012

    CERN Document Server

    Kirkilionis, Markus; Nicolis, Gregoire

    2013-01-01

    The European Conference on Complex Systems, held under the patronage of the Complex Systems Society, is an annual event that has become the leading European conference devoted to complexity science. ECCS'12, its ninth edition, took place in Brussels, during the first week of September 2012. It gathered about 650 scholars representing a wide range of topics relating to complex systems research, with emphasis on interdisciplinary approaches. More specifically, the following tracks were covered:  1. Foundations of Complex Systems 2. Complexity, Information and Computation 3. Prediction, Policy and Planning, Environment 4. Biological Complexity 5. Interacting Populations, Collective Behavior 6. Social Systems, Economics and Finance This book contains a selection of the contributions presented at the conference and its satellite meetings. Its contents reflect the extent, diversity and richness of research areas in the field, both fundamental and applied.  

  6. Systemic Resilience of Complex Urban Systems

    Directory of Open Access Journals (Sweden)

    Serge Salat

    2012-07-01

    Full Text Available Two key paradigms emerge out of the variety of urban forms: certain cities resemble trees, others leaves. The structural difference between a tree and a leaf is huge: one is open, the other closed. Trees are entirely disconnected on a given scale: even if two twigs are spatially close, if they do not belong to the same branch, to go from one to the other implies moving down and then up all the hierarchy of branches.  Leaves on the contrary are entirely connected on intermediary scales. The veins of a leaf are disconnected on the two larger scales but entirely connected on the two or three following intermediary scales before presenting tiny tree-like structures on the finest capillary scales. Deltas are leaves not trees. Neither galaxies nor whirlpools are trees. We will see in this paper that historical cities, like leaves, deltas, galaxies, lungs, brains and vein systems are all fractal structures, multiply connected and complex on all scales. These structures display the same degree of complexity and connectivity, regardless of the magnification scale on which we observe them. We say that these structures are scale free. Mathematical fractal forms are often generated recursively by applying again and again the same generator to an initiator. The iteration creates an arborescence. But scale free structure is not synonymous with a recursive tree-like structure. The fractal structure of the leaf is much more complex than that of the tree by its multiconnectivity on three or more intermediary levels. In contrast, trees in the virgin forest, even when they seem to be entangled, horizontal, and rhizomic, have branches that are not interconnected to form a lattice. As we will see, the history of urban planning has evolved from leaf-like to tree-like patterns, with a consequent loss of efficiency and resilience. Indeed, in a closed foliar path structure, the formation of cycles enables internal complexification and flow fluctuations due to the

  7. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  8. Is Echo a complex adaptive system?

    Science.gov (United States)

    Smith, R M; Bedau, M A

    2000-01-01

    We evaluate whether John Holland's Echo model exemplifies his theory of complex adaptive systems. After reviewing Holland's theory of complex adaptive systems and describing his Escho model, we describe and explain the characteristic evolutionary behavior observed in a series of Echo model runs. We conclude that Echo lacks the diversity of hierarchically organized aggregates that typify complex adaptive systems, and we explore possible explanations for this failure.

  9. BioDARA: Data Summarization Approach to Extracting Bio-Medical Structuring Information

    Directory of Open Access Journals (Sweden)

    Chung S. Kheau

    2011-01-01

    Full Text Available Problem statement: Due to the ever growing amount of biomedical datasets stored in multiple tables, Information Extraction (IE from these datasets is increasingly recognized as one of the crucial technologies in bioinformatics. However, for IE to be practically applicable, adaptability of a system is crucial, considering extremely diverse demands in biomedical IE application. One should be able to extract a set of hidden patterns from these biomedical datasets at low cost. Approach: In this study, a new method is proposed, called Bio-medical Data Aggregation for Relational Attributes (BioDARA, for automatic structuring information extraction for biomedical datasets. BioDARA summarizes biomedical data stored in multiple tables in order to facilitate data modeling efforts in a multi-relational setting. BioDARA has the advantages or capabilities to transform biomedical data stored in multiple tables or databases into a Vector Space model, summarize biomedical data using the Information Retrieval theory and finally extract frequent patterns that describe the characteristics of these biomedical datasets. Results: the results show that data summarization performed by DARA, can be beneficial in summarizing biomedical datasets in a complex multi-relational environment, in which biomedical datasets are stored in a multi-level of one-to-many relationships and also in the case of datasets stored in more than one one-to-many relationships with non-target tables. Conclusion: This study concludes that data summarization performed by BioDARA, can be beneficial in summarizing biomedical datasets in a complex multi-relational environment, in which biomedical datasets are stored in a multi-level of one-to-many relationships.

  10. Large-scale Complex IT Systems

    CERN Document Server

    Sommerville, Ian; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challenges and issues in the development of large-scale complex, software-intensive systems. Central to this is the notion that we cannot separate software from the socio-technical environment in which it is used.

  11. Dynamic tables: an architecture for managing evolving, heterogeneous biomedical data in relational database management systems.

    Science.gov (United States)

    Corwin, John; Silberschatz, Avi; Miller, Perry L; Marenco, Luis

    2007-01-01

    Data sparsity and schema evolution issues affecting clinical informatics and bioinformatics communities have led to the adoption of vertical or object-attribute-value-based database schemas to overcome limitations posed when using conventional relational database technology. This paper explores these issues and discusses why biomedical data are difficult to model using conventional relational techniques. The authors propose a solution to these obstacles based on a relational database engine using a sparse, column-store architecture. The authors provide benchmarks comparing the performance of queries and schema-modification operations using three different strategies: (1) the standard conventional relational design; (2) past approaches used by biomedical informatics researchers; and (3) their sparse, column-store architecture. The performance results show that their architecture is a promising technique for storing and processing many types of data that are not handled well by the other two semantic data models.

  12. Chaotic systems in complex phase space

    CERN Document Server

    Bender, Carl M; Hook, Daniel W; Weir, David J

    2008-01-01

    This paper examines numerically the complex classical trajectories of the kicked rotor and the double pendulum. Both of these systems exhibit a transition to chaos, and this feature is studied in complex phase space. Additionally, it is shown that the short-time and long-time behaviors of these two PT-symmetric dynamical models in complex phase space exhibit strong qualitative similarities.

  13. Synchronization and emergence in complex systems

    Indian Academy of Sciences (India)

    Fatihcan M Atay

    2011-11-01

    We show how novel behaviour can emerge in complex systems at the global level through synchronization of the activities of their constituent units. Two mechanisms are suggested for the emergence, namely non-diffusive coupling and time delays. In this way, simple units can synchronize to display complex dynamics, or conversely, simple dynamics may arise from complex constituents.

  14. COMPLEX COMPOST AND DETOXICATION OF AGROLANDSCAPE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Belyuchenko I. S.

    2014-03-01

    Full Text Available Toxicity complex compost arises during compiling of organomineral mixtures of various waste of life, agriculture and mineral industries. One of detoxification factors of complex compost is the ability of heavy metal cations to the formation insoluble compounds, which are fixed by clay materials and different disperse systems, and differ markedly by calcium content, acidity and humus soil-absorbing complex

  15. Biomedical Libraries

    Science.gov (United States)

    Pizer, Irwin H.

    1978-01-01

    Biomedical libraries are discussed as a distinct and specialized group of special libraries and their unique services and user interactions are described. The move toward professional standards, as evidenced by the Medical Library Association's new certification program, and the current state of development for a new section of IFLA established…

  16. Predictive Approaches to Control of Complex Systems

    CERN Document Server

    Karer, Gorazd

    2013-01-01

    A predictive control algorithm uses a model of the controlled system to predict the system behavior for various input scenarios and determines the most appropriate inputs accordingly. Predictive controllers are suitable for a wide range of systems; therefore, their advantages are especially evident when dealing with relatively complex systems, such as nonlinear, constrained, hybrid, multivariate systems etc. However, designing a predictive control strategy for a complex system is generally a difficult task, because all relevant dynamical phenomena have to be considered. Establishing a suitable model of the system is an essential part of predictive control design. Classic modeling and identification approaches based on linear-systems theory are generally inappropriate for complex systems; hence, models that are able to appropriately consider complex dynamical properties have to be employed in a predictive control algorithm. This book first introduces some modeling frameworks, which can encompass the most frequ...

  17. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  18. A complex systems science perspective for whole systems of complementary and alternative medicine research.

    Science.gov (United States)

    Koithan, Mary; Bell, Iris R; Niemeyer, Kathryn; Pincus, David

    2012-01-01

    Whole systems complementary and alternative medicine (WS-CAM) approaches share a basic worldview that embraces interconnectedness; emergent, non-linear outcomes to treatment that include both local and global changes in the human condition; a contextual view of human beings that are inseparable from and responsive to their environments; and interventions that are complex, synergistic, and interdependent. These fundamental beliefs and principles run counter to the assumptions of reductionism and conventional biomedical research methods that presuppose unidimensional simple causes and thus dismantle and individually test various interventions that comprise only single aspects of the WSCAM system. This paper will demonstrate the superior fit and practical advantages of using complex adaptive systems (CAS) and related modeling approaches to develop the scientific basis for WS-CAM. Furthermore, the details of these CAS models will be used to provide working hypotheses to explain clinical phenomena such as (a) persistence of changes for weeks to months between treatments and/or after cessation of treatment, (b) nonlocal and whole systems changes resulting from therapy, (c) Hering's law, and (d) healing crises. Finally, complex systems science will be used to offer an alternative perspective on cause, beyond the simple reductionism of mainstream mechanistic ontology and more parsimonious than the historical vitalism of WS-CAM. Rather, complex systems science provides a scientifically rigorous, yet essentially holistic ontological perspective with which to conceptualize and empirically explore the development of disease and illness experiences, as well as experiences of healing and wellness.

  19. Third International Conference on Complex Systems

    CERN Document Server

    Minai, Ali A; Unifying Themes in Complex Systems

    2006-01-01

    In recent years, scientists have applied the principles of complex systems science to increasingly diverse fields. The results have been nothing short of remarkable: their novel approaches have provided answers to long-standing questions in biology, ecology, physics, engineering, computer science, economics, psychology and sociology. The Third International Conference on Complex Systems attracted over 400 researchers from around the world. The conference aimed to encourage cross-fertilization between the many disciplines represented and to deepen our understanding of the properties common to all complex systems. This volume contains over 35 papers selected from those presented at the conference on topics including: self-organization in biology, ecological systems, language, economic modeling, ecological systems, artificial life, robotics, and complexity and art. ALI MINAI is an Affiliate of the New England Complex Systems Institute and an Associate Professor in the Department of Electrical and Computer Engine...

  20. Reliability of large and complex systems

    CERN Document Server

    Kolowrocki, Krzysztof

    2014-01-01

    Reliability of Large and Complex Systems, previously titled Reliability of Large Systems, is an innovative guide to the current state and reliability of large and complex systems. In addition to revised and updated content on the complexity and safety of large and complex mechanisms, this new edition looks at the reliability of nanosystems, a key research topic in nanotechnology science. The author discusses the importance of safety investigation of critical infrastructures that have aged or have been exposed to varying operational conditions. This reference provides an asympt

  1. Multi-agent and complex systems

    CERN Document Server

    Ren, Fenghui; Fujita, Katsuhide; Zhang, Minjie; Ito, Takayuki

    2017-01-01

    This book provides a description of advanced multi-agent and artificial intelligence technologies for the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field. A complex system features a large number of interacting components, whose aggregate activities are nonlinear and self-organized. A multi-agent system is a group or society of agents which interact with others cooperatively and/or competitively in order to reach their individual or common goals. Multi-agent systems are suitable for modeling and simulation of complex systems, which is difficult to accomplish using traditional computational approaches.

  2. Mining sensor data from complex systems

    NARCIS (Netherlands)

    Vespier, Ugo

    2015-01-01

    Today, virtually everything, from natural phenomena to complex artificial and physical systems, can be measured and the resulting information collected, stored and analyzed in order to gain new insight. This thesis shows how complex systems often exhibit diverse behavior at different temporal scales

  3. Complex Evaluation of Hierarchically-Network Systems

    CERN Document Server

    Polishchuk, Dmytro; Yadzhak, Mykhailo

    2016-01-01

    Methods of complex evaluation based on local, forecasting, aggregated, and interactive evaluation of the state, function quality, and interaction of complex system's objects on the all hierarchical levels is proposed. Examples of analysis of the structural elements of railway transport system are used for illustration of efficiency of proposed approach.

  4. On System Complexity: Identification, Measurement, and Management

    OpenAIRE

    Casti, J.L.

    1985-01-01

    Attempts to axiomatize and formalize system complexity all leave a feeling of basic incompleteness and a sense of failure to grasp important aspects of the problem. This paper examines some of the root causes of these failures and outlines a framework for the consideration of complexity as an implicate, rather than explicate, property of systems in interaction.

  5. Modeling complex work systems - method meets reality

    OpenAIRE

    Veer, van der, C.G.; Hoeve, Machteld; Lenting, Bert F.

    1996-01-01

    Modeling an existing task situation is often a first phase in the (re)design of information systems. For complex systems design, this model should consider both the people and the organization involved, the work, and situational aspects. Groupware Task Analysis (GTA) as part of a method for the design of complex systems, has been applied in a situation of redesign of a Dutch public administration system. The most feasible method to collect information in this case was ethnography, the resulti...

  6. Models of complex attitude systems

    DEFF Research Database (Denmark)

    Sørensen, Bjarne Taulo

    Existing research on public attitudes towards agricultural production systems is largely descriptive, abstracting from the processes through which members of the general public generate their evaluations of such systems. The present paper adopts a systems perspective on such evaluations, understa......Existing research on public attitudes towards agricultural production systems is largely descriptive, abstracting from the processes through which members of the general public generate their evaluations of such systems. The present paper adopts a systems perspective on such evaluations......, understanding them as embedded into a wider attitude system that consists of attitudes towards objects of different abstraction levels, ranging from personal value orientations over general socio-political attitudes to evaluations of specific characteristics of agricultural production systems. It is assumed...... that evaluative affect propagates through the system in such a way that the system becomes evaluatively consistent and operates as a schema for the generation of evaluative judgments. In the empirical part of the paper, the causal structure of an attitude system from which people derive their evaluations of pork...

  7. Change and Identity in Complex Systems

    Directory of Open Access Journals (Sweden)

    John Collier

    2005-06-01

    Full Text Available Complex systems are dynamic and may show high levels of variability in both space and time. It is often difficult to decide on what constitutes a given complex system, i.e., where system boundaries should be set, and what amounts to substantial change within the system. We discuss two central themes: the nature of system definitions and their ability to cope with change, and the importance of system definitions for the mental metamodels that we use to describe and order ideas about system change. Systems can only be considered as single study units if they retain their identity. Previous system definitions have largely ignored the need for both spatial and temporal continuity as essential attributes of identity. After considering the philosophical issues surrounding identity and system definitions, we examine their application to modeling studies. We outline a set of five alternative metamodels that capture a range of the basic dynamics of complex systems. Although Holling's adaptive cycle is a compelling and widely applicable metamodel that fits many complex systems, there are systems that do not necessarily follow the adaptive cycle. We propose that more careful consideration of system definitions and alternative metamodels for complex systems will lead to greater conceptual clarity in the field and, ultimately, to more rigorous research.

  8. Social networks as embedded complex adaptive systems.

    Science.gov (United States)

    Benham-Hutchins, Marge; Clancy, Thomas R

    2010-09-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.

  9. Parametric ordering of complex systems

    CERN Document Server

    Binder, P M

    1993-01-01

    Cellular automata (CA) dynamics are ordered in terms of two global parameters, computable {\\sl a priori} from the description of rules. While one of them (activity) has been used before, the second one is new; it estimates the average sensitivity of rules to small configurational changes. For two well-known families of rules, the Wolfram complexity Classes cluster satisfactorily. The observed simultaneous occurrence of sharp and smooth transitions from ordered to disordered dynamics in CA can be explained with the two-parameter diagram.

  10. Fourth International Conference on Complex Systems

    CERN Document Server

    Minai, Ali A; Unifying Themes in Complex Systems IV

    2008-01-01

    In June of 2002, over 500 professors, students and researchers met in Boston, Massachusetts for the Fourth International Conference on Complex Systems. The attendees represented a remarkably diverse collection of fields: biology, ecology, physics, engineering, computer science, economics, psychology and sociology, The goal of the conference was to encourage cross-fertilization between the many disciplines represented and to deepen understanding of the properties common to all complex systems. This volume contains 43 papers selected from the more than 200 presented at the conference. Topics include: cellular automata, neurology, evolution, computer science, network dynamics, and urban planning. About NECSI: For over 10 years, The New England Complex Systems Institute (NECSI) has been instrumental in the development of complex systems science and its applications. NECSI conducts research, education, knowledge dissemination, and community development around the world for the promotion of the study of complex sys...

  11. Sixth International Conference on Complex Systems

    CERN Document Server

    Minai, Ali; Bar-Yam, Yaneer; Unifying Themes in Complex Systems

    2008-01-01

    The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore the common themes and applications of complex systems science. In June 2006, 500 participants convened in Boston for the sixth ICCS, exploring an array of topics, including networks, systems biology, evolution and ecology, nonlinear dynamics and pattern formation, as well as neural, psychological, psycho-social, socio-economic, and global systems. This volume selects 77 papers from over 300 presented at the conference. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex systems science.

  12. Workshop on Nonlinear Phenomena in Complex Systems

    CERN Document Server

    1989-01-01

    This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.

  13. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  14. Statistically validated networks in bipartite complex systems.

    Directory of Open Access Journals (Sweden)

    Michele Tumminello

    Full Text Available Many complex systems present an intrinsic bipartite structure where elements of one set link to elements of the second set. In these complex systems, such as the system of actors and movies, elements of one set are qualitatively different than elements of the other set. The properties of these complex systems are typically investigated by constructing and analyzing a projected network on one of the two sets (for example the actor network or the movie network. Complex systems are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set, and this heterogeneity makes it very difficult to discriminate links of the projected network that are just reflecting system's heterogeneity from links relevant to unveil the properties of the system. Here we introduce an unsupervised method to statistically validate each link of a projected network against a null hypothesis that takes into account system heterogeneity. We apply the method to a biological, an economic and a social complex system. The method we propose is able to detect network structures which are very informative about the organization and specialization of the investigated systems, and identifies those relationships between elements of the projected network that cannot be explained simply by system heterogeneity. We also show that our method applies to bipartite systems in which different relationships might have different qualitative nature, generating statistically validated networks in which such difference is preserved.

  15. Complex energy system management using optimization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bridgeman, Stuart; Hurdowar-Castro, Diana; Allen, Rick; Olason, Tryggvi; Welt, Francois

    2010-09-15

    Modern energy systems are often very complex with respect to the mix of generation sources, energy storage, transmission, and avenues to market. Historically, power was provided by government organizations to load centers, and pricing was provided in a regulatory manner. In recent years, this process has been displaced by the independent system operator (ISO). This complexity makes the operation of these systems very difficult, since the components of the system are interdependent. Consequently, computer-based large-scale simulation and optimization methods like Decision Support Systems are now being used. This paper discusses the application of a DSS to operations and planning systems.

  16. iMole, a web based image retrieval system from biomedical literature.

    Science.gov (United States)

    Giordano, Manuela; Natale, Massimo; Cornaz, Moreno; Ruffino, Andrea; Bonino, Dario; Bucci, Enrico M

    2013-07-01

    iMole is a platform that automatically extracts images and captions from biomedical literature. Images are tagged with terms contained in figure captions by means of a sophisticate text-mining tool. Moreover, iMole allows the user to upload directly their own images within the database and manually tag images by curated dictionary. Using iMole the researchers can develop a proper biomedical image database, storing the images extracted from paper of interest, image found on the web repositories, and their own experimental images. In order to show the functioning of the platform, we used iMole to build a 2DE database. Briefly, tagged 2DE gel images were collected and stored in a searchable 2DE gel database, available to users through an interactive web interface. Images were obtained by automatically parsing 16,608 proteomic publications, which yielded more than 16,500 images. The database can be further expanded by users with images of interest trough a manual uploading process. iMole is available with a preloaded set of 2DE gel data at http://imole.biodigitalvalley.com.

  17. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  18. Understanding Supply Networks from Complex Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Jamur Johnas Marchi

    2014-10-01

    Full Text Available This theoretical paper is based on complex adaptive systems (CAS that integrate dynamic and holistic elements, aiming to discuss supply networks as complex systems and their dynamic and co-evolutionary processes. The CAS approach can give clues to understand the dynamic nature and co-evolution of supply networks because it consists of an approach that incorporates systems and complexity. This paper’s overall contribution is to reinforce the theoretical discussion of studies that have addressed supply chain issues, such as CAS.

  19. Complex motions and chaos in nonlinear systems

    CERN Document Server

    Machado, José; Zhang, Jiazhong

    2016-01-01

    This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.

  20. Chaotic systems in complex phase space

    Indian Academy of Sciences (India)

    Carl M Bender; Joshua Feinberg; Daniel W Hook; David J Weir

    2009-09-01

    This paper examines numerically the complex classical trajectories of the kicked rotor and the double pendulum. Both of these systems exhibit a transition to chaos, and this feature is studied in complex phase space. Additionally, it is shown that the short-time and long-time behaviours of these two $\\mathcal{PT}$ -symmetric dynamical models in complex phase space exhibit strong qualitative similarities.

  1. Dynamics of complex quantum systems

    CERN Document Server

    Akulin, Vladimir M

    2014-01-01

    This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...

  2. Complex engineering systems science meets technology

    CERN Document Server

    Minai, Ali A; Bar-Yam, Yaneer

    2006-01-01

    Every time that we take money out of an ATM, surf the internet or simply turn on a light switch, we enjoy the benefits of complex engineered systems. Systems like power grids and global communication networks are so ubiquitous in our daily lives that we usually take them for granted, only noticing them when they break down. But how do such amazing technologies and infrastructures come to be what they are? How are these systems designed? How do distributed networks work? How are they made to respond rapidly in 'real time'? And as the demands that we place on these systems become increasingly complex, are traditional systems-engineering practices still relevant? This volume examines the difficulties that arise in creating highly complex engineered systems and new approaches that are being adopted. Topics addressed range from the formal representation and classification of distributed networked systems to revolutionary engineering practices inspired by biological evolution. By bringing together the latest resear...

  3. Data Analysis of Complex Systems

    Science.gov (United States)

    2011-06-01

    Based on Color Brown: Unbleached White: Bleached Colored: Bleached and dyed or pigmented Based on Usage Industrial: Packaging, wrapping...Based on Raw Material Wood: Contain fibers from wood Agricultural residue: Fibers from straw , grass or other annual plants Recycled: Recycle or...screening process, small contaminants such as plastic and adhesives are removed. The amount of debris that is removed from the system depends on the

  4. Active impedance matching of complex structural systems

    Science.gov (United States)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  5. Geographical National Condition and Complex System

    Directory of Open Access Journals (Sweden)

    WANG Jiayao

    2016-01-01

    Full Text Available The significance of studying the complex system of geographical national conditions lies in rationally expressing the complex relationships of the “resources-environment-ecology-economy-society” system. Aiming to the problems faced by the statistical analysis of geographical national conditions, including the disunity of research contents, the inconsistency of range, the uncertainty of goals, etc.the present paper conducted a range of discussions from the perspectives of concept, theory and method, and designed some solutions based on the complex system theory and coordination degree analysis methods.By analyzing the concepts of geographical national conditions, geographical national conditions survey and geographical national conditions statistical analysis, as well as investigating the relationships between theirs, the statistical contents and the analytical range of geographical national conditions are clarified and defined. This investigation also clarifies the goals of the statistical analysis by analyzing the basic characteristics of the geographical national conditions and the complex system, and the consistency between the analysis of the degree of coordination and statistical analyses. It outlines their goals, proposes a concept for the complex system of geographical national conditions, and it describes the concept. The complex system theory provides new theoretical guidance for the statistical analysis of geographical national conditions. The degree of coordination offers new approaches on how to undertake the analysis based on the measurement method and decision-making analysis scheme upon which the complex system of geographical national conditions is based. It analyzes the overall trend via the degree of coordination of the complex system on a macro level, and it determines the direction of remediation on a micro level based on the degree of coordination among various subsystems and of single systems. These results establish

  6. Coordination Approaches for Complex Software Systems

    NARCIS (Netherlands)

    Bosse, T.; Hoogendoorn, M.; Treur, J.

    2006-01-01

    This document presents the results of a collaboration between the Vrije Universiteit Amsterdam, Department of Artificial Intelligence and Force Vision to investigate coordination approaches for complex software systems. The project was funded by Force Vision.

  7. From System Complexity to Emergent Properties

    CERN Document Server

    Aziz-Alaoui, M. A

    2009-01-01

    Emergence and complexity refer to the appearance of higher-level properties and behaviours of a system that obviously comes from the collective dynamics of that system's components. These properties are not directly deductable from the lower-level motion of that system. Emergent properties are properties of the "whole'' that are not possessed by any of the individual parts making up that whole. Such phenomena exist in various domains and can be described, using complexity concepts and thematic knowledges. This book highlights complexity modelling through dynamical or behavioral systems. The pluridisciplinary purposes, developped along the chapters, are enable to design links between a wide-range of fundamental and applicative Sciences. Developing such links - instead of focusing on specific and narrow researches - is characteristic of the Science of Complexity that we try to promote by this contribution.

  8. Increase of Organization in Complex Systems

    CERN Document Server

    Georgiev, Georgi Yordanov; Gombos, Erin; Vinod, Amrit; Hoonjan, Gajinder

    2013-01-01

    Measures of complexity and entropy have not converged to a single quantitative description of levels of organization of complex systems. The need for such a measure is increasingly necessary in all disciplines studying complex systems. To address this problem, starting from the most fundamental principle in Physics, here a new measure for quantity of organization and rate of self-organization in complex systems based on the principle of least (stationary) action is applied to a model system - the central processing unit (CPU) of computers. The quantity of organization for several generations of CPUs shows a double exponential rate of change of organization with time. The exact functional dependence has a fine, S-shaped structure, revealing some of the mechanisms of self-organization. The principle of least action helps to explain the mechanism of increase of organization through quantity accumulation and constraint and curvature minimization with an attractor, the least average sum of actions of all elements ...

  9. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    Considers the problem of sensor configuration for complex systems. Our approach involves definition of an appropriate optimality criterion or performance measure, and description of an efficient and practical algorithm for achieving the optimality objective. The criterion for optimal sensor...

  10. Quantum mechanics in complex systems

    Science.gov (United States)

    Hoehn, Ross Douglas

    This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown

  11. Project risk management in complex petrochemical system

    Directory of Open Access Journals (Sweden)

    Kirin Snežana

    2012-01-01

    Full Text Available Investigation of risk in complex industrial systems, as well as evaluation of main factors influencing decision making and implementation process using large petrochemical company as an example, has proved the importance of successful project risk management. This is even more emphasized when analyzing systems with complex structure, i.e. with several organizational units. It has been shown that successful risk management requires modern methods, based on adequate application of statistical analysis methods.

  12. Thermodynamic modeling of complex systems

    DEFF Research Database (Denmark)

    Liang, Xiaodong

    after an oil spill. Engineering thermodynamics could be applied in the state-of-the-art sonar products through advanced artificial technology, if the speed of sound, solubility and density of oil-seawater systems could be satisfactorily modelled. The addition of methanol or glycols into unprocessed well......Offshore reservoirs represent one of the major growth areas of the oil and gas industry, and environmental safety is one of the biggest challenges for the offshore exploration and production. The oil accidents in the Gulf of Mexico in 1979 and 2010 were two of the biggest disasters in history....... Contrary to earlier theories, the oil is not only present on the surface, but also in great volumes both in the water column and on the seafloor, which indicates that we do not know enough about how oil behaves in water and interacts with it. Sonar detection is one of the most important and necessary...

  13. Understanding health from a complex systems perspective.

    Science.gov (United States)

    Topolski, Stefan

    2009-08-01

    Doctors often use theory to inform medical practice. The current bio-psycho-social model of health may be advanced still further with theoretical rigour. Traditional fields of thermodynamics and newer fields of non-linear dynamics including chaos theory and complex systems science can inform our understanding of the complexity of human health, illness and disease. Commonly accepted aspects of human health may be projected as probabilities over time creating curves of human health potential. Maximum health may be represented by maximum functional complexity. Complexity's relationship to entropy and energy can produce a complex surface that better models the human experience of health and illness from birth to death. Such a potential health trajectory uniting complexity and entropy expands upon earlier theories of health while allowing for unusual predictions and the novel opportunity to test and validate this model of human health.

  14. Low Complex System for Levitating Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Dahiru Sani Shu'aibu

    2010-06-01

    Full Text Available This paper primarily presents detailed design and implementation of a low complex magnetic levitation system which can be used in laboratory for levitation experiments. The system transfer function was derived from the coenergy and the mathematical model of the state space representation was obtained. The mathematical model showed that, the system is highly non-linear and inherently unstable. Based on simulation, a low complex circuit was designed and implemented to stabilize the system, using MATLAB control tool-box. The developed controller was simple, cheap and effective, capable of controlling weights of different masses at various distances as compared to some controllers in literature.

  15. What Is a Complex Innovation System?

    Directory of Open Access Journals (Sweden)

    J Sylvan Katz

    Full Text Available Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too.

  16. Symptoms of complexity in a tourism system

    CERN Document Server

    Baggio, R

    2007-01-01

    Tourism destinations behave as dynamic evolving complex systems, encompassing numerous factors and activities which are interdependent and whose relationships might be highly nonlinear. Traditional research in this field has looked after a linear approach: variables and relationships are monitored in order to forecast future outcomes with simplified models and to derive implications for management organizations. The limitations of this approach have become apparent in many cases, and several authors claim for a new and different attitude. While complex systems ideas are amongst the most promising interdisciplinary research themes emerged in the last few decades, very little has been done so far in the field of tourism. This paper presents a brief overview of the complexity framework as a means to understand structures, characteristics, relationships and explores the implications and contributions of the complexity literature on tourism systems. The objective is to allow the reader to gain a deeper appreciatio...

  17. Vibrations and stability of complex beam systems

    CERN Document Server

    Stojanović, Vladimir

    2015-01-01

     This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...

  18. Signs, Systems and Complexity of Transmedia Storytelling

    Directory of Open Access Journals (Sweden)

    Renira Rampazzo Gambarato

    2012-12-01

    Full Text Available This article addresses key concepts such as sign, system and complexity in order to approach transmedia storytelling and better understand its intricate nature. The theoretical framework chosen to investigate transmedia storytelling meanders is Semiotics by Charles Sanders Peirce (1839-1914 and General Systems Theory by Mario Bunge (1919-. The complexity of transmedia storytelling is not simply the one of the signs of the works included in a transmedia franchise. It also includes the complexity of the dispositions of users/consumers/players as interpreters of semiotic elements (e.g. characters, themes, environments, events and outcomes presented by transmedia products. It extends further to the complexity of social, cultural, economical and political constructs. The German transmedia narrative The Ultimate SuperHero-Blog by Stefan Gieren and Sofia’s Diary, a Portuguese multiplatform production by BeActive, are presented as examples of closed and open system transmedia storytelling respectively.

  19. Complex and Adaptive Dynamical Systems A Primer

    CERN Document Server

    Gros, Claudius

    2011-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  20. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2007-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  1. Collectives and the design of complex systems

    CERN Document Server

    Wolpert, David

    2004-01-01

    Increasingly powerful computers are making possible distributed systems comprised of many adaptive and self-motivated computational agents. Such systems, when distinguished by system-level performance criteria, are known as "collectives." Collectives and the Design of Complex Systems lays the foundation for a science of collectives and describes how to design them for optimal performance. An introductory survey chapter is followed by descriptions of information-processing problems that can only be solved by the joint actions of large communities of computers, each running its own complex, decentralized machine-learning algorithm. Subsequent chapters analyze the dynamics and structures of collectives, as well as address economic, model-free, and control-theory approaches to designing complex systems. The work assumes a modest understanding of basic statistics and calculus. Topics and Features: Introduces the burgeoning science of collectives and its practical applications in a single useful volume Combines ap...

  2. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2013-01-01

    Complex system theory is rapidly developing and gaining importance, providing tools and concepts central to our modern understanding of emergent phenomena. This primer offers an introduction to this area together with detailed coverage of the mathematics involved. All calculations are presented step by step and are straightforward to follow. This new third edition comes with new material, figures and exercises. Network theory, dynamical systems and information theory, the core of modern complex system sciences, are developed in the first three chapters, covering basic concepts and phenomena like small-world networks, bifurcation theory and information entropy. Further chapters use a modular approach to address the most important concepts in complex system sciences, with the emergence and self-organization playing a central role. Prominent examples are self-organized criticality in adaptive systems, life at the edge of chaos, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase...

  3. Discontinuity and complexity in nonlinear physical systems

    CERN Document Server

    Baleanu, Dumitru; Luo, Albert

    2014-01-01

    This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....

  4. Machine learning and complex-network for personalized and systems biomedicine

    KAUST Repository

    Cannistraci, Carlo Vittorio

    2016-01-27

    The talk will begin with an introduction on using machine learning to discover hidden information and unexpected patterns in large biomedical datasets. Then, recent results on the use of complex network theory in biomedicine and neuroscience will be discussed. In particular, metagenomics and metabolomics data, approaches for drug-target repositioning, functional/structural MR connectomes and gut-brain axis data will be presented. The conclusion will outline the novel and exciting perspectives offered by the translation of these methods from systems biology to systems medicine.

  5. Modeling complex work systems - method meets reality

    NARCIS (Netherlands)

    Veer, van der Gerrit C.; Hoeve, Machteld; Lenting, Bert F.

    1996-01-01

    Modeling an existing task situation is often a first phase in the (re)design of information systems. For complex systems design, this model should consider both the people and the organization involved, the work, and situational aspects. Groupware Task Analysis (GTA) as part of a method for the desi

  6. (R)evolution of complex regulatory systems

    DEFF Research Database (Denmark)

    Linding, Rune

    2010-01-01

    Signaling systems are exciting to study precisely because they are some of the most complex and dynamical systems that we know. The cell needs operational freedom and, thus, many motif-domain interactions might not be "hard-wired" through evolution, but instead may be like the Linux operating...

  7. Design tools for complex dynamic security systems.

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson; Laguna, Glenn A.; Robinett, Rush D. III (.; ); Groom, Kenneth Neal; Wilson, David Gerald; Bickerstaff, Robert J.; Harrington, John J.

    2007-01-01

    The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.

  8. Are large complex economic systems unstable ?

    CERN Document Server

    Sinha, Sitabhra

    2010-01-01

    Although classical economic theory is based on the concept of stable equilibrium, real economic systems appear to be always out of equilibrium. Indeed, they share many of the dynamical features of other complex systems, e.g., ecological food-webs. We focus on the relation between increasing complexity of the economic network and its stability with respect to small perturbations in the dynamical variables associated with the constituent nodes. Inherent delays and multiple time-scales suggest that economic systems will be more likely to exhibit instabilities as their complexity is increased even though the speed at which transactions are conducted has increased many-fold through technological developments. Analogous to the birth of nonlinear dynamics from Poincare's work on the question of whether the solar system is stable, we suggest that similar theoretical developments may arise from efforts by econophysicists to understand the mechanisms by which instabilities arise in the economy.

  9. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    Science.gov (United States)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-01

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  10. Telescience testbed for biomedical experiments in space morphological and physiological experiments of rat musculoskeletal system

    Science.gov (United States)

    Watanabe, Satoru; Tanaka, Masafumi; Wada, Yoshiro; Yanagihara, Dai; Tsujimoto, Naoya; Suzuki, Hideki; Kawai, Noriyo; Yamashita, Masamichi; Nagaoka, Shunji; Shoji, Takatoshi; Higashino, Shinichiro; Sudoh, Hideo

    As the second telescience testbed experiment we were examined sophisticated processes of biomedical experiment, such as an implantation of a transmitter into the hmster's abdominal cavity, non-stressful blood sampling, large amountof blood collection, muscle extirpation and biopsy from the hamsters on Feburay 6-8, 1990. To make clear the differences between successful results obtained by an experienced hand and by a non-experienced one, three operators wereselected for three successive experimental days; an engineer who had never experienced any biological experiment, a non-biology student, who experienced on biological experiments, and a veterinary surgeon. Surgical procedures need much experiences on maneuvering and understanding of theory to shorten the elapse time. Especially for a non-experienced hand, graphic instructions were much helpful to understand and to maneuver the procedures. Continuous recordings of ECG from a operator and PIs were of an advantage to grasp an extent of the mental strain, which was compared with their reports requested after end of each experimental day. The mental strain was not related to degrees of scientific achievement, but showed faithfully difficulty of each experimental procedure. Training effects on PIs in successive experimental days were found in their instructions for the operator to let understand the procedures.

  11. The self as a complex dynamic system

    Directory of Open Access Journals (Sweden)

    Sarah Mercer

    2011-04-01

    Full Text Available This article explores the potential offered by complexity theories for understanding language learners’ sense of self and attempts to show how the self might usefully be conceived of as a complex dynamic system. Rather than presenting empirical findings, the article discusses existent research on the self and aims at outlining a conceptual perspective that may inform future studies into the self and possibly other individual learner differences. The article concludes by critically considering the merits of a complexity perspective but also reflecting on the challenges it poses for research.

  12. Distributed redundancy and robustness in complex systems

    KAUST Repository

    Randles, Martin

    2011-03-01

    The uptake and increasing prevalence of Web 2.0 applications, promoting new large-scale and complex systems such as Cloud computing and the emerging Internet of Services/Things, requires tools and techniques to analyse and model methods to ensure the robustness of these new systems. This paper reports on assessing and improving complex system resilience using distributed redundancy, termed degeneracy in biological systems, to endow large-scale complicated computer systems with the same robustness that emerges in complex biological and natural systems. However, in order to promote an evolutionary approach, through emergent self-organisation, it is necessary to specify the systems in an \\'open-ended\\' manner where not all states of the system are prescribed at design-time. In particular an observer system is used to select robust topologies, within system components, based on a measurement of the first non-zero Eigen value in the Laplacian spectrum of the components\\' network graphs; also known as the algebraic connectivity. It is shown, through experimentation on a simulation, that increasing the average algebraic connectivity across the components, in a network, leads to an increase in the variety of individual components termed distributed redundancy; the capacity for structurally distinct components to perform an identical function in a particular context. The results are applied to a specific application where active clustering of like services is used to aid load balancing in a highly distributed network. Using the described procedure is shown to improve performance and distribute redundancy. © 2010 Elsevier Inc.

  13. Complexity of some problems concerning L systems

    DEFF Research Database (Denmark)

    Jones, Neil D.; Skyum, Sven

    1979-01-01

    We determine the computational complexity of membership, emptiness and infiniteness for several types ofL systems. TheL systems we consider are ED0L, E0L, EDT0L, and ET0L, with and without empty productions. For each problem and each type of system we establish both upper and lower bounds...... on the time or memory required for solution by Turing machines....

  14. Stochastic Physics, Complex Systems and Biology

    CERN Document Server

    Qian, Hong

    2012-01-01

    In complex systems, the interplay between nonlinear and stochastic dynamics gives rise to an evolution process in Darwinian sense with punctuated equilibrium, random "mutations" and "adaptations". The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Epigenetic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a framework.

  15. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  16. Third International Conference on Complex Systems

    CERN Document Server

    Minai, Ali A; Unifying Themes in Complex Systems

    2006-01-01

    In recent years, scientists have applied the principles of complex systems science to increasingly diverse fields. The results have been nothing short of remarkable: their novel approaches have provided answers to long-standing questions in biology, ecology, physics, engineering, computer science, economics, psychology and sociology. The Third International Conference on Complex Systems attracted over 400 researchers from around the world. The conference aimed to encourage cross-fertilization between the many disciplines represented and to deepen our understanding of the properties common to all complex systems. This volume contains selected transcripts from presentations given at the conference. Speakers include: Chris Adami, Kenneth Arrow, Michel Baranger, Dan Braha, Timothy Buchman, Michael Caramanis, Kathleen Carley, Greg Chaitin, David Clark, Jack Cohen, Jim Collins, George Cowan, Clay Easterly, Steven Eppinger, Irving Epstein, Dan Frey, Ary Goldberger, Helen Harte, Leroy Hood, Don Ingber, Atlee Jackson,...

  17. Complex system modelling for veterinary epidemiology.

    Science.gov (United States)

    Lanzas, Cristina; Chen, Shi

    2015-02-01

    The use of mathematical models has a long tradition in infectious disease epidemiology. The nonlinear dynamics and complexity of pathogen transmission pose challenges in understanding its key determinants, in identifying critical points, and designing effective mitigation strategies. Mathematical modelling provides tools to explicitly represent the variability, interconnectedness, and complexity of systems, and has contributed to numerous insights and theoretical advances in disease transmission, as well as to changes in public policy, health practice, and management. In recent years, our modelling toolbox has considerably expanded due to the advancements in computing power and the need to model novel data generated by technologies such as proximity loggers and global positioning systems. In this review, we discuss the principles, advantages, and challenges associated with the most recent modelling approaches used in systems science, the interdisciplinary study of complex systems, including agent-based, network and compartmental modelling. Agent-based modelling is a powerful simulation technique that considers the individual behaviours of system components by defining a set of rules that govern how individuals ("agents") within given populations interact with one another and the environment. Agent-based models have become a recent popular choice in epidemiology to model hierarchical systems and address complex spatio-temporal dynamics because of their ability to integrate multiple scales and datasets.

  18. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  19. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    Science.gov (United States)

    Holmes, Benjamin

    As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young's Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer

  20. The Physics of Complex Systems in Cuba

    Science.gov (United States)

    Sotolongo-Costa, Oscar

    In relating the circumstances that led to the birth and development of the physics of complex systems in Cuba, it is difficult to avoid being anecdotal—particularly because of the difficult times during which this research started. Cuban eclecticism, whose spectrum extends from religious syncretism to world-class medicine, seems quite coherent with the field of complex systems, characterized by the synergy of diverse fields. Such a combination, however, in the beginning seemed to be quite removed from the physicists' standard research dogmas.

  1. Evolution, Complex Systems and the Dialectic

    Directory of Open Access Journals (Sweden)

    Peter Knapp

    2015-08-01

    Full Text Available The status of large scale historical macro-theories is contested both in world-systems theory and in sociology as a whole. I distinguish three types of such dynamic models: evolutionary models, systems models and dialectical models. I define dialectical models as a family of complex systems models characterized by positive feedback (self-reinforcement or auto-catalysis. Such models lead to processes of accumulation and polarization, leading to system crisis. The games of Monopoly and Risk provide popular examples. This paper investigates the dynamic properties of three examples of such models: Myrdal's model of cumulative causation; Collins's models of Marxian transformations and geopolitics; and Chaso-Dunn and Hall's iterative model of world-systems transformations. A combination of evolutionary, complex systems and dialectical analyses has consideralble overlap with chaotic, far-from-equilibrium types of models and with analyses of complex adaptive systems. Such discontinuous, nonlinear dynamic models show great potential for solving problems of dynamic analysis both within world-systems theory and within sociology as a whole.

  2. Influence of the Cholinergic System on the Immune Response of Teleost Fishes: Potential Model in Biomedical Research

    Directory of Open Access Journals (Sweden)

    G. A. Toledo-Ibarra

    2013-01-01

    Full Text Available Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system; however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals.

  3. Enabling Large-Scale Biomedical Analysis in the Cloud

    Directory of Open Access Journals (Sweden)

    Ying-Chih Lin

    2013-01-01

    Full Text Available Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable.

  4. Complexity in electronic negotiation support systems.

    Science.gov (United States)

    Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T

    2011-10-01

    It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.

  5. Functionalized carbon nanotubes: biomedical applications.

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.

  6. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  7. SORTA: a system for ontology-based re-coding and technical annotation of biomedical phenotype data.

    Science.gov (United States)

    Pang, Chao; Sollie, Annet; Sijtsma, Anna; Hendriksen, Dennis; Charbon, Bart; de Haan, Mark; de Boer, Tommy; Kelpin, Fleur; Jetten, Jonathan; van der Velde, Joeri K; Smidt, Nynke; Sijmons, Rolf; Hillege, Hans; Swertz, Morris A

    2015-01-01

    There is an urgent need to standardize the semantics of biomedical data values, such as phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all studies will use the same data collection protocols. As a result, retrospective standardization is often required, which involves matching of original (unstructured or locally coded) data to widely used coding or ontology systems such as SNOMED CT (clinical terms), ICD-10 (International Classification of Disease) and HPO (Human Phenotype Ontology). This data curation process is usually a time-consuming process performed by a human expert. To help mechanize this process, we have developed SORTA, a computer-aided system for rapidly encoding free text or locally coded values to a formal coding system or ontology. SORTA matches original data values (uploaded in semicolon delimited format) to a target coding system (uploaded in Excel spreadsheet, OWL ontology web language or OBO open biomedical ontologies format). It then semi- automatically shortlists candidate codes for each data value using Lucene and n-gram based matching algorithms, and can also learn from matches chosen by human experts. We evaluated SORTA's applicability in two use cases. For the LifeLines biobank, we used SORTA to recode 90 000 free text values (including 5211 unique values) about physical exercise to MET (Metabolic Equivalent of Task) codes. For the CINEAS clinical symptom coding system, we used SORTA to map to HPO, enriching HPO when necessary (315 terms matched so far). Out of the shortlists at rank 1, we found a precision/recall of 0.97/0.98 in LifeLines and of 0.58/0.45 in CINEAS. More importantly, users found the tool both a major time saver and a quality improvement because SORTA reduced the chances of human mistakes. Thus, SORTA can dramatically ease data (re)coding tasks and we believe it will prove useful for many more projects. Database URL: http://molgenis.org/sorta or as an open source download from

  8. Extraction of quantifiable information from complex systems

    CERN Document Server

    Dahmen, Wolfgang; Griebel, Michael; Hackbusch, Wolfgang; Ritter, Klaus; Schneider, Reinhold; Schwab, Christoph; Yserentant, Harry

    2014-01-01

    In April 2007, the  Deutsche Forschungsgemeinschaft (DFG) approved the  Priority Program 1324 “Mathematical Methods for Extracting Quantifiable Information from Complex Systems.” This volume presents a comprehensive overview of the most important results obtained over the course of the program.   Mathematical models of complex systems provide the foundation for further technological developments in science, engineering and computational finance.  Motivated by the trend toward steadily increasing computer power, ever more realistic models have been developed in recent years. These models have also become increasingly complex, and their numerical treatment poses serious challenges.   Recent developments in mathematics suggest that, in the long run, much more powerful numerical solution strategies could be derived if the interconnections between the different fields of research were systematically exploited at a conceptual level. Accordingly, a deeper understanding of the mathematical foundations as w...

  9. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  10. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2015-01-01

    This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard ...

  11. Morphogenetic Engineering Toward Programmable Complex Systems

    CERN Document Server

    Sayama, Hiroki; Michel, Olivier

    2012-01-01

    Generally, spontaneous pattern formation phenomena are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both self-organized and architectural.   This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is placed on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies.   Altogether, the aim of this work is to provide a framework for and examples of a larger class of “self-architecturing” systems, while addressing fundamental questions such as   > How do biological organisms carry out morphog...

  12. Major depression as a complex dynamic system

    NARCIS (Netherlands)

    Cramer, A.O.J.; van Borkulo, C.D.; Giltay, E.J.; van der Maas, H.L.J.; Kendler, K.S.; Scheffer, M.; Borsboom, D.

    2016-01-01

    In this paper, we characterize major depression (MD) as a complex dynamic system in which symptoms (e.g., insomnia and fatigue) are directly connected to one another in a network structure. We hypothesize that individuals can be characterized by their own network with unique architecture and resulti

  13. Engineering Education as a Complex System

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-01-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating…

  14. Complex evolutionary systems in behavioral finance

    NARCIS (Netherlands)

    Hommes, C.; Wagener, F.

    2008-01-01

    Traditional finance is built on the rationality paradigm. This chapter discusses simple models from an alternative approach in which financial markets are viewed as complex evolutionary systems. Agents are boundedly rational and base their investment decisions upon market forecasting heuristics. Pri

  15. Complex systems modeling by cellular automata

    NARCIS (Netherlands)

    Kroc, J.; Sloot, P.M.A.; Rabuñal Dopico, J.R.; Dorado de la Calle, J.; Pazos Sierra, A.

    2009-01-01

    In recent years, the notion of complex systems proved to be a very useful concept to define, describe, and study various natural phenomena observed in a vast number of scientific disciplines. Examples of scientific disciplines that highly benefit from this concept range from physics, mathematics, an

  16. Circadian systems : different levels of complexity

    NARCIS (Netherlands)

    Roenneberg, Till; Merrow, Martha

    2001-01-01

    After approximately 50 years of circadian research, especially in selected circadian model systems (Drosophila, Neurospora, Gonyaulax and, more recently, cyanobacteria and mammals), we appreciate the enormous complexity of the circadian programme in organisms and cells, as well as in physiological a

  17. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J.A.C.

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new orgnizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  18. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J. Allison Cory [Univ. of California, Davis, CA (United States)

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  19. Visual basic for biomedical applications: tissue impedance and power delivery in an ESU system.

    Science.gov (United States)

    Bek, R

    1996-01-01

    The typical ESU found in most hospitals utilizes a microprocessor. This microprocessor supervises many tasks these include: time keeping, dosage monitoring, and display control. It must also perform complex tissue impedance measurement in real time as well as establishing a communication protocol to and from test hardware. This article will describe a means of displaying this information.

  20. Biomedical accelerator mass spectrometry

    Science.gov (United States)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  1. Unified Computational Intelligence for Complex Systems

    CERN Document Server

    Seiffertt, John

    2010-01-01

    Computational intelligence encompasses a wide variety of techniques that allow computation to learn, to adapt, and to seek. That is, they may be designed to learn information without explicit programming regarding the nature of the content to be retained, they may be imbued with the functionality to adapt to maintain their course within a complex and unpredictably changing environment, and they may help us seek out truths about our own dynamics and lives through their inclusion in complex system modeling. These capabilities place our ability to compute in a category apart from our ability to e

  2. A Multifaceted Mathematical Approach for Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.

  3. Structured analysis and modeling of complex systems

    Science.gov (United States)

    Strome, David R.; Dalrymple, Mathieu A.

    1992-01-01

    The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.

  4. ERP SYSTEMS IMPLEMENTATION IN COMPLEX ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Alfredo Iarozinski Neto

    2009-07-01

    Full Text Available ERP (Enterprise Resource Planning systems implementation is a great organizational change, which many times does not reach the desired results. This paper proposes to help understand this implementation, considering that the knowledge of change and evolution processes in organizations may lead to other aspects to be considered, assisting in the identification of the most appropriate actions, restrictions and items that may help sustain the change. It proposes a complex organizational reference model to contribute understanding of the implementation process. Research results show that the concepts proposed in this model – subsystems, emergence, behavior attractors and complexity limits – apply to organizations and contribute to the understanding of the changes triggered by an ERP system implementation. Among other contributions, this work shows the importance of potential generation for change, the relationship among the behavior attractor and competitive advantages gained, and organizational systems maturity considerations.

  5. Classification of time series patterns from complex dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, J.C.; Rao, N.

    1998-07-01

    An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately, the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.

  6. Analysis of Complex Valve and Feed Systems

    Science.gov (United States)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford

    2007-01-01

    A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.

  7. FPGA-Based HD Camera System for the Micropositioning of Biomedical Micro-Objects Using a Contactless Micro-Conveyor

    Directory of Open Access Journals (Sweden)

    Elmar Yusifli

    2017-03-01

    Full Text Available With recent advancements, micro-object contactless conveyers are becoming an essential part of the biomedical sector. They help avoid any infection and damage that can occur due to external contact. In this context, a smart micro-conveyor is devised. It is a Field Programmable Gate Array (FPGA-based system that employs a smart surface for conveyance along with an OmniVision complementary metal-oxide-semiconductor (CMOS HD camera for micro-object position detection and tracking. A specific FPGA-based hardware design and VHSIC (Very High Speed Integrated Circuit Hardware Description Language (VHDL implementation are realized. It is done without employing any Nios processor or System on a Programmable Chip (SOPC builder based Central Processing Unit (CPU core. It keeps the system efficient in terms of resource utilization and power consumption. The micro-object positioning status is captured with an embedded FPGA-based camera driver and it is communicated to the Image Processing, Decision Making and Command (IPDC module. The IPDC is programmed in C++ and can run on a Personal Computer (PC or on any appropriate embedded system. The IPDC decisions are sent back to the FPGA, which pilots the smart surface accordingly. In this way, an automated closed-loop system is employed to convey the micro-object towards a desired location. The devised system architecture and implementation principle is described. Its functionality is also verified. Results have confirmed the proper functionality of the developed system, along with its outperformance compared to other solutions.

  8. Dependability problems of complex information systems

    CERN Document Server

    Zamojski, Wojciech

    2014-01-01

    This monograph presents original research results on selected problems of dependability in contemporary Complex Information Systems (CIS). The ten chapters are concentrated around the following three aspects: methods for modelling of the system and its components, tasks ? or in more generic and more adequate interpretation, functionalities ? accomplished by the system and conditions for their correct realization in the dynamic operational environment. While the main focus is on theoretical advances and roadmaps for implementations of new technologies, a?much needed forum for sharing of the bes

  9. Complex Systems Design & Management : Proceedings of the Third International Conference on Complex Systems Design & Management

    CERN Document Server

    Caseau, Yves; Krob, Daniel; Rauzy, Antoine

    2013-01-01

    This book contains all refereed papers that were accepted to the third edition of the « Complex Systems Design & Management » (CSD&M 2012) international conference that took place in Paris (France) from December 12-14, 2012. (Website: http://www.csdm2012.csdm.fr)  These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture& engineering, systems metrics & quality, systemic  tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2012 conference is organized under the guidance of the CESAMES non-profit organization (http://www.cesames.net).

  10. Complex Systems Design & Management : Proceedings of the Second International Conference on Complex Systems Design & Management

    CERN Document Server

    Krob, Daniel; Voirin, Jean-Luc

    2012-01-01

    This book contains all refereed papers that were accepted to the second edition of the « Complex Systems Design & Management » (CSDM 2011) international conference that took place in Paris (France) from December 7 to December 9, 2011. (Website: http://www.csdm2011.csdm.fr/). These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture& engineering, systems metrics & quality, systemic  tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSDM 2011 conference is organized under the guidance of the CESAMES non-profit organization (http://www.cesames.net/).

  11. Complex systems: features, similarity and connectivity

    CERN Document Server

    Comin, Cesar H; Silva, Filipi N; Amancio, Diego R; Rodrigues, Francisco A; Costa, Luciano da F

    2016-01-01

    The increasing interest in complex networks research has been a consequence of several intrinsic features of this area, such as the generality of the approach to represent and model virtually any discrete system, and the incorporation of concepts and methods deriving from many areas, from statistical physics to sociology, which are often used in an independent way. Yet, for this same reason, it would be desirable to integrate these various aspects into a more coherent and organic framework, which would imply in several benefits normally allowed by the systematization in science, including the identification of new types of problems and the cross-fertilization between fields. More specifically, the identification of the main areas to which the concepts frequently used in complex networks can be applied paves the way to adopting and applying a larger set of concepts and methods deriving from those respective areas. Among the several areas that have been used in complex networks research, pattern recognition, op...

  12. Automated design of complex dynamic systems.

    Directory of Open Access Journals (Sweden)

    Michiel Hermans

    Full Text Available Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.

  13. Automated design of complex dynamic systems.

    Science.gov (United States)

    Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni

    2014-01-01

    Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.

  14. Controlling Complex Systems and Developing Dynamic Technology

    Science.gov (United States)

    Avizienis, Audrius Victor

    In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit

  15. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  16. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  17. Toward simulating complex systems with quantum effects

    Science.gov (United States)

    Kenion-Hanrath, Rachel Lynn

    Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation

  18. Complex Failure Forewarning System - DHS Conference Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, Robert K [ORNL; Hively, Lee M [ORNL; Prowell, Stacy J [ORNL; Schlicher, Bob G [ORNL; Sheldon, Frederick T [ORNL

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain, aging bridges, is used to explain the Complex Structure Failure Forewarning System. We discuss the workings of such a system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.

  19. Verification and Examination Management of Complex Systems

    Directory of Open Access Journals (Sweden)

    Stian Ruud

    2014-10-01

    Full Text Available As ship systems become more complex, with an increasing number of safety-critical functions, many interconnected subsystems, tight integration to other systems, and a large amount of potential failure modes, several industry parties have identified the need for improved methods for managing the verification and examination efforts of such complex systems. Such needs are even more prominent now that the marine and offshore industries are targeting more activities and operations in the Arctic environment. In this paper, a set of requirements and a method for verification and examination management are proposed for allocating examination efforts to selected subsystems. The method is based on a definition of a verification risk function for a given system topology and given requirements. The marginal verification risks for the subsystems may then be evaluated, so that examination efforts for the subsystem can be allocated. Two cases of requirements and systems are used to demonstrate the proposed method. The method establishes a systematic relationship between the verification loss, the logic system topology, verification method performance, examination stop criterion, the required examination effort, and a proposed sequence of examinations to reach the examination stop criterion.

  20. Biomedical Technology Assessment The 3Q Method

    CERN Document Server

    Weinfurt, Phillip

    2010-01-01

    Evaluating biomedical technology poses a significant challenge in light of the complexity and rate of introduction in today's healthcare delivery system. Successful evaluation requires an integration of clinical medicine, science, finance, and market analysis. Little guidance, however, exists for those who must conduct comprehensive technology evaluations. The 3Q Method meets these present day needs. The 3Q Method is organized around 3 key questions dealing with 1) clinical and scientific basis, 2) financial fit and 3) strategic and expertise fit. Both healthcare providers (e.g., hospitals) an

  1. Complex Binary Number System Algorithms and Circuits

    CERN Document Server

    Jamil, Tariq

    2013-01-01

    This book is a compilation of the entire research work on the topic of Complex Binary Number System (CBNS) carried out by the author as the principal investigator and members of his research groups at various universities during the years 1992-2012. Pursuant to these efforts spanning several years, the realization of CBNS as a viable alternative to represent complex numbers in an 'all-in-one' binary number format has become possible and efforts are underway to build computer hardware based on this unique number system. It is hoped that this work will be of interest to anyone involved in computer arithmetic and digital logic design and kindle renewed enthusiasm among the engineers working in the areas of digital signal and image processing for developing newer and efficient algorithms and techniques incorporating CBNS.

  2. Coherent Dynamics of Complex Quantum Systems

    CERN Document Server

    Akulin, Vladimir M

    2006-01-01

    A large number of modern problems in physics, chemistry, and quantum electronics require a consideration of population dynamics in complex multilevel quantum systems. The purpose of this book is to provide a systematic treatment of these questions and to present a number of exactly solvable problems. It considers the different dynamical problems frequently encountered in different areas of physics from the same perspective, based mainly on the fundamental ideas of group theory and on the idea of ensemble average. Also treated are concepts of complete quantum control and correction of decoherence induced errors that are complementary to the idea of ensemble average. "Coherent Dynamics of Complex Quantum Systems" is aimed at senior-level undergraduate students in the areas of Atomic, Molecular, and Laser Physics, Physical Chemistry, Quantum Optics and Quantum Informatics. It should help them put particular problems in these fields into a broader scientific context and thereby take advantage of the well-elabora...

  3. Relaxation and Diffusion in Complex Systems

    CERN Document Server

    Ngai, K L

    2011-01-01

    Relaxation and Diffusion in Complex Systems comprehensively presents a variety of experimental evidences of universal relaxation and diffusion properties in complex materials and systems. The materials discussed include liquids, glasses, colloids, polymers, rubbers, plastic crystals and aqueous mixtures, as well as carbohydrates, biomolecules, bioprotectants and pharmaceuticals. Due to the abundance of experimental data, emphasis is placed on glass-formers and the glass transition problem, a still unsolved problem in condensed matter physics and chemistry. The evidence for universal properties of relaxation and diffusion dynamics suggests that a fundamental physical law is at work. The origin of the universal properties is traced to the many-body effects of the interaction, rigorous theory of which does not exist at the present time. However, using solutions of simplified models as guides, key quantities have been identified and predictions of the universal properties generated. These predictions from Ngai’...

  4. Synchronization in node of complex networks consist of complex chaotic system

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2014-07-01

    Full Text Available A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  5. Biomedical informatics as support to individual healthcare in hereditary colon cancer: the Danish HNPCC system

    DEFF Research Database (Denmark)

    Bernstein, Inge Thomsen; Larsen, K.L.; Timshel, Susanne;

    2011-01-01

    of heterogeneous data, elaboration, and dissemination of classification systems and development of communication standards. At the conclusion of the EU project in 2007 the system was implemented in 12 pilot departments. In the surgical departments this resulted in a 192% increase of reports to the database...

  6. Existence of travelling wave solutions for a Fisher-Kolmogorov system with biomedical applications

    Science.gov (United States)

    Belmonte-Beitia, Juan

    2016-07-01

    We consider a Fisher-Kolmogorov system with applications in oncology Pérez-García et al. (2015). Of interest is the question of the existence of travelling front solutions of the system. When the speed of the travelling wave is sufficiently large, existence of such fronts is shown using singular geometric perturbation theory.

  7. Student Response (Clicker) Systems: Preferences of Biomedical Physiology Students in Asian Classes

    Science.gov (United States)

    Hwang, Isabel; Wong, Kevin; Lam, Shun Leung; Lam, Paul

    2015-01-01

    Student response systems (commonly called "clickers") are valuable tools for engaging students in classroom interactions. In this study, we investigated the use of two types of response systems (a traditional clicker and a mobile device) by students in human physiology courses. Our results showed high student satisfaction with the use of…

  8. FRAM Modelling Complex Socio-technical Systems

    CERN Document Server

    Hollnagel, Erik

    2012-01-01

    There has not yet been a comprehensive method that goes behind 'human error' and beyond the failure concept, and various complicated accidents have accentuated the need for it. The Functional Resonance Analysis Method (FRAM) fulfils that need. This book presents a detailed and tested method that can be used to model how complex and dynamic socio-technical systems work, and understand both why things sometimes go wrong but also why they normally succeed.

  9. Complex Systems and Self-organization Modelling

    CERN Document Server

    Bertelle, Cyrille; Kadri-Dahmani, Hakima

    2009-01-01

    The concern of this book is the use of emergent computing and self-organization modelling within various applications of complex systems. The authors focus their attention both on the innovative concepts and implementations in order to model self-organizations, but also on the relevant applicative domains in which they can be used efficiently. This book is the outcome of a workshop meeting within ESM 2006 (Eurosis), held in Toulouse, France in October 2006.

  10. Studies of complexity in fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Kadanoff, L.P.; Constantin, P.; Dupont, T.F.; Nagel, S.

    1993-02-01

    Objective is to bring together researchers from several disciplines (mathematics, numerical computation, theoretical and experimental physics) who share an interest in the development of complexity in fluid systems. Work is in progress on development of singular interfluid interfaces on several fronts. Striking variations in droplet formation can be observed in physical experiments and simulations based on simple models. High-speed photographs are being taken of small liquid drop breaking into droplets. Experimental studies of granular materials are being continued.

  11. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research.

    Science.gov (United States)

    Jain, Dharmendra; Bar-Shalom, Daniel

    2014-12-01

    Alginates are natural polymers widely used in the food industry because of their biocompatible, biodegradable character, nontoxicity and easy availability. The bioadhesive character of alginates makes them useful in the pharmaceutical industry as well. The application areas of sodium alginate-based drug delivery systems are many and these systems can be formulated as gels, matrices, membranes, nanospheres, microspheres, etc. Worldwide researchers are exploring possible applications of alginates as coating material, preparation of controlled-release drug delivery systems such as microspheres, beads, pellets, gels, fibers, membranes, etc. In the present review, such applications of alginates are discussed.

  12. Systems biology: confronting the complexity of cancer.

    Science.gov (United States)

    Gentles, Andrew J; Gallahan, Daniel

    2011-09-15

    The AACR-NCI Conference "Systems Biology: Confronting the Complexity of Cancer" took place from February 27 to March 2, 2011, in San Diego, CA. Several themes resonated during the meeting, notably (i) the need for better methods to distill insights from large-scale networks, (ii) the importance of integrating multiple data types in constructing more realistic models, (iii) challenges in translating insights about tumorigenic mechanisms into therapeutic interventions, and (iv) the role of the tumor microenvironment, at the physical, cellular, and molecular levels. The meeting highlighted concrete applications of systems biology to cancer, and the value of collaboration between interdisciplinary researchers in attacking formidable problems.

  13. Life: An Introduction to Complex Systems Biology

    CERN Document Server

    Kaneko, Kunihiko

    2006-01-01

    What is life? Has molecular biology given us a satisfactory answer to this question? And if not, why, and how to carry on from there? This book examines life not from the reductionist point of view, but rather asks the question: what are the universal properties of living systems and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation has been deliberately kept fairly non-technical so as to address a broad spectrum of students and researchers from the natural sciences and informatics.

  14. Chaos from simple models to complex systems

    CERN Document Server

    Cencini, Massimo; Vulpiani, Angelo

    2010-01-01

    Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theor

  15. Complex Engineered Systems: A New Paradigm

    Science.gov (United States)

    Mina, Ali A.; Braha, Dan; Bar-Yam, Yaneer

    Human history is often seen as an inexorable march towards greater complexity — in ideas, artifacts, social, political and economic systems, technology, and in the structure of life itself. While we do not have detailed knowledge of ancient times, it is reasonable to conclude that the average resident of New York City today faces a world of much greater complexity than the average denizen of Carthage or Tikal. A careful consideration of this change, however, suggests that most of it has occurred recently, and has been driven primarily by the emergence of technology as a force in human life. In the 4000 years separating the Indus Valley Civilization from 18th century Europe, human transportation evolved from the bullock cart to the hansom, and the methods of communication used by George Washington did not differ significantly from those used by Alexander or Rameses. The world has moved radically towards greater complexity in the last two centuries. We have moved from buggies and letter couriers to airplanes and the Internet — an increase in capacity, and through its diversity also in complexity, orders of magnitude greater than that accumulated through the rest of human history. In addition to creating iconic artifacts — the airplane, the car, the computer, the television, etc. — this change has had a profound effect on the scope of experience by creating massive, connected and multiultra- level systems — traffic networks, power grids, markets, multinational corporations — that defy analytical understanding and seem to have a life of their own. This is where complexity truly enters our lives.

  16. A biomedical information system for retrieval and manipulation of NHANES data.

    Science.gov (United States)

    Mukherjee, Sukrit; Martins, David; Norris, Keith C; Jenders, Robert A

    2013-01-01

    The retrieval and manipulation of data from large public databases like the U.S. National Health and Nutrition Examination Survey (NHANES) may require sophisticated statistical software and significant expertise that may be unavailable in the university setting. In response, we have developed the Data Retrieval And Manipulation System (DReAMS), an automated information system to handle all processes of data extraction and cleaning and then joining different subsets to produce analysis-ready output. The system is a browser-based data warehouse application in which the input data from flat files or operational systems are aggregated in a structured way so that the desired data can be read, recoded, queried and extracted efficiently. The current pilot implementation of the system provides access to a limited amount of NHANES database. We plan to increase the amount of data available through the system in the near future and to extend the techniques to other large databases from CDU archive with a current holding of about 53 databases.

  17. Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Cuimei Jiang

    2015-07-01

    Full Text Available Based on two fractional-order chaotic complex drive systems and one fractional-order chaotic complex response system with different dimensions, we propose generalized combination complex synchronization. In this new synchronization scheme, there are two complex scaling matrices that are non-square matrices. On the basis of the stability theory of fractional-order linear systems, we design a general controller via active control. Additionally, by virtue of two complex scaling matrices, generalized combination complex synchronization between fractional-order chaotic complex systems and real systems is investigated. Finally, three typical examples are given to demonstrate the effectiveness and feasibility of the schemes.

  18. High-frequency Ultrasound Doppler System for Biomedical Applications with a 30 MHz Linear Array

    Science.gov (United States)

    Xu, Xiaochen; Sun, Lei; Cannata, Jonathan M.; Yen, Jesse T.; Shung, K. Kirk

    2008-01-01

    In this paper, we report the development of the first high-frequency (HF) pulsed-wave Doppler system using a 30 MHz linear array transducer to assess the cardiovascular functions in small animal. This array based pulsed-wave Doppler system included a 16-channel HF analog beamformer, a HF pulsed-wave Doppler module, timing circuits, HF bipolar pulsers, and analog front-ends. The beamformed echoes acquired by the 16 channel analog beamformer, were directly fed to the HF pulsed-wave Doppler module. Then the in-phase and quadrature-phase (IQ) audio Doppler signals were digitized by either a sound card or a Gage digitizer and stored in a PC. The Doppler spectrogram was displayed on a PC in real time. The two-way beam-widths were determined to be 160 μm to 320 μm when the array was electronically focused at different focal points at depths from 5–10 mm. A micro flow phantom, consisting of a polyimide tube with inner diameter of 127 μm, and the wire phantom were used to evaluate and calibrate the system. The results show that the system is capable of detecting motion velocity of the wire phantom as low as 0.1 mm/s, and detecting blood-mimicking flow velocity in the 127 μm tube lower than 7 mm/s. The system was subsequently used to measure the blood flow in vivo in two mouse abdominal superficial vessels with diameters of approximately 200 μm, and a mouse aorta close to the heart. These results demonstrated that this system may become an indispensable part of the current HF array based imaging systems for small animal studies. PMID:17993243

  19. An engineering approach to biomedical sciences: advanced strategies in drug delivery systems production.

    Science.gov (United States)

    Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo

    2012-09-01

    Development and optimization of novel production techniques for drug delivery systems are fundamental steps in the "from the bench to the bedside" process which is the base of translational medicine. In particular, in the current scenery where the need for reducing energy consumption, emissions, wastes and risks drives the development of sustainable processes, new pharmaceutical manufacturing does not constitute an exception. In this paper, concepts of process intensification are presented and their transposition in drug delivery systems production is discussed. Moreover, some examples on intensified techniques, for drug microencapsulation and granules drying, are reported.

  20. An Engineering Approach to Biomedical Sciences: Advanced Strategies in Drug Delivery Systems Production

    Science.gov (United States)

    Barba, Anna Angela; Dalmoro, Annalisa; d’Amore, Matteo

    2012-01-01

    Development and optimization of novel production techniques for drug delivery systems are fundamental steps in the “from the bench to the bedside” process which is the base of translational medicine. In particular, in the current scenery where the need for reducing energy consumption, emissions, wastes and risks drives the development of sustainable processes, new pharmaceutical manufacturing does not constitute an exception. In this paper, concepts of process intensification are presented and their transposition in drug delivery systems production is discussed. Moreover, some examples on intensified techniques, for drug microencapsulation and granules drying, are reported. PMID:23905058

  1. Trends in biomedical engineering: focus on Patient Specific Modeling and Life Support Systems.

    Science.gov (United States)

    Dubini, Gabriele; Ambrosi, Davide; Bagnoli, Paola; Boschetti, Federica; Caiani, Enrico G; Chiastra, Claudio; Conti, Carlo A; Corsini, Chiara; Costantino, Maria Laura; D'Angelo, Carlo; Formaggia, Luca; Fumero, Roberto; Gastaldi, Dario; Migliavacca, Francesco; Morlacchi, Stefano; Nobile, Fabio; Pennati, Giancarlo; Petrini, Lorenza; Quarteroni, Alfio; Redaelli, Alberto; Stevanella, Marco; Veneziani, Alessandro; Vergara, Christian; Votta, Emiliano; Wu, Wei; Zunino, Paolo

    2011-01-01

    Over the last twenty years major advancements have taken place in the design of medical devices and personalized therapies. They have paralleled the impressive evolution of three-dimensional, non invasive, medical imaging techniques and have been continuously fuelled by increasing computing power and the emergence of novel and sophisticated software tools. This paper aims to showcase a number of major contributions to the advancements of modeling of surgical and interventional procedures and to the design of life support systems. The selected examples will span from pediatric cardiac surgery procedures to valve and ventricle repair techniques, from stent design and endovascular procedures to life support systems and innovative ventilation techniques.

  2. [The role of bioethics committees in the systems protecting scientific biomedical research participants in France and in Poland].

    Science.gov (United States)

    Czarkowski, Marek; Sieczych, Alicja

    2013-08-01

    Bioethics committees are along with ethic regulations and rules of law one of three main pillars in the system of protection of scientific biomedical research participants. Although principal directives for bioethics committees are established by international guidelines, detailed regulations may differ in particular states. The aim of this article was to compare two bioethic committees systems: French and Polish one. Historical beginnings of the bioethics committees system in France and in Poland are briefly mentioned, Subsequently, the networks of bioethics committees in both countries are compared. Although the number of bioethics committees (Research Ethic Committees) in both countries is comparable, the procedure of their establishment varies. French committees are based on administrative division of the country and divide on regional and interregional committees. In Poland, bioethics committees are established by medical universities, medical research and development units or regional chambers of physicians and dentists. In France there is no equivalent of Appeal Bioethics Committee, however one could appeal from the negative bioethics committee's opinion. The composition of French bioethics committees is more diverse and half of the members are not related to medical professions. Members of French committees are named on indefinite term by headmaster of Regional Health Agency after having been chosen in competition for the post. In Poland members are called on three-year-term but the rotation of members is not overwhelming since there is no limit of terms for one member. French legal solutions seems more secure for scientific bioethics research participants. For this reason, a detailed research on legislation in other countries is necessary before introducing any new regulations in Polish law.

  3. A System for Computing Conceptual Pathways in Bio-medical Text Models

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik; Nilsson, Jørgen Fischer;

    2014-01-01

    This paper describes the key principles in a system for querying and conceptual path finding in a logic-based knowledge base. The knowledge base is extracted from textual descriptions in bio-, pharma- and medical areas. The knowledge base applies natural logic, that is, a variable-free term-algeb...

  4. An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    M. A. Adeeb

    2012-01-01

    Full Text Available A wireless power transfer system using an inductive link has been demonstrated for implantable sensor applications. The system is composed of two primary blocks: an inductive power transfer unit and a backward data communication unit. The inductive link performs two functions: coupling the required power from a wireless power supply system enabling battery-less, long-term implant operation and providing a backward data transmission path. The backward data communication unit transmits the data to an outside reader using FSK modulation scheme via the inductive link. To demonstrate the operation of the inductive link, a board-level design has been implemented with high link efficiency. Test results from a fabricated sensor system, composed of a hybrid implementation of custom-integrated circuits and board-level discrete components, are presented demonstrating power transmission of 125 mW with a 12.5% power link transmission efficiency. Simultaneous backward data communication involving a digital pulse rate of up to 10 kbps was also observed.

  5. Investigating combination HIV prevention: isolated interventions or complex system

    Directory of Open Access Journals (Sweden)

    Graham Brown

    2015-12-01

    Full Text Available Introduction: Treatment as prevention has mobilized new opportunities in preventing HIV transmission and has led to bold new UNAIDS targets in testing, treatment coverage and transmission reduction. These will require not only an increase in investment but also a deeper understanding of the dynamics of combining behavioural, biomedical and structural HIV prevention interventions. High-income countries are making substantial investments in combination HIV prevention, but is this investment leading to a deeper understanding of how to combine interventions? The combining of interventions involves complexity, with many strategies interacting with non-linear and multiplying rather than additive effects. Discussion: Drawing on a recent scoping study of the published research evidence in HIV prevention in high-income countries, this paper argues that there is a gap between the evidence currently available and the evidence needed to guide the achieving of these bold targets. The emphasis of HIV prevention intervention research continues to look at one intervention at a time in isolation from its interactions with other interventions, the community and the socio-political context of their implementation. To understand and evaluate the role of a combination of interventions, we need to understand not only what works, but in what circumstances, what role the parts need to play in their relationship with each other, when the combination needs to adapt and identify emergent effects of any resulting synergies. There is little development of evidence-based indicators on how interventions in combination should achieve that strategic advantage and synergy. This commentary discusses the implications of this ongoing situation for future research and the required investment in partnership. We suggest that systems science approaches, which are being increasingly applied in other areas of public health, could provide an expanded vocabulary and analytic tools for

  6. Biomedical informatics: changing what physicians need to know and how they learn.

    Science.gov (United States)

    Stead, William W; Searle, John R; Fessler, Henry E; Smith, Jack W; Shortliffe, Edward H

    2011-04-01

    The explosive growth of biomedical complexity calls for a shift in the paradigm of medical decision making-from a focus on the power of an individual brain to the collective power of systems of brains. This shift alters professional roles and requires biomedical informatics and information technology (IT) infrastructure. The authors illustrate this future role of medical informatics with a vignette and summarize the evolving understanding of both beneficial and deleterious effects of informatics-rich environments on learning, clinical care, and research. The authors also provide a framework of core informatics competencies for health professionals of the future and conclude with broad steps for faculty development. They recommend that medical schools advance on four fronts to prepare their faculty to teach in a biomedical informatics-rich world: (1) create academic units in biomedical informatics; (2) adapt the IT infrastructure of academic health centers (AHCs) into testing laboratories; (3) introduce medical educators to biomedical informatics sufficiently for them to model its use; and (4) retrain AHC faculty to lead the transformation to health care based on a new systems approach enabled by biomedical informatics. The authors propose that embracing this collective and informatics-enhanced future of medicine will provide opportunities to advance education, patient care, and biomedical science.

  7. A Triple-Loop Inductive Power Transmission System for Biomedical Applications.

    Science.gov (United States)

    Lee, Byunghun; Kiani, Mehdi; Ghovanloo, Maysam

    2016-02-01

    A triple-loop wireless power transmission (WPT) system equipped with closed-loop global power control, adaptive transmitter (Tx) resonance compensation (TRC), and automatic receiver (Rx) resonance tuning (ART) is presented. This system not only opposes coupling and load variations but also compensates for changes in the environment surrounding the inductive link to enhance power transfer efficiency (PTE) in applications such as implantable medical devices (IMDs). The Tx was built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader, operating at 13.56 MHz. A local Tx loop finds the optimal capacitance in parallel with the Tx coil by adjusting a varactor. A global power control loop maintains the received power at a desired level in the presence of changes in coupling distance, coil misalignments, and loading. Moreover, a local Rx loop is implemented inside a power management integrated circuit (PMIC) to avoid PTE degradation due to the Rx coil surrounding environment and process variations. The PMIC was fabricated in a 0.35- μm 4M2P standard CMOS process with 2.54 mm(2) active area. Measurement results show that the proposed triple-loop system improves the overall PTE by up to 10.5% and 4.7% compared to a similar open- and single closed-loop system, respectively, at nominal coil distance of 2 cm. The added TRC and ART loops contribute 2.3% and 1.4% to the overall PTE of 13.5%, respectively. This is the first WPT system to include three loops to dynamically compensate for environment and circuit variations and improve the overall power efficiency all the way from the driver output in Tx to the load in Rx.

  8. Simulating Complex Systems by Cellular Automata

    CERN Document Server

    Kroc, Jiri; Hoekstra, Alfons G

    2010-01-01

    Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on th...

  9. Propagating wave correlations in complex systems

    Science.gov (United States)

    Creagh, Stephen C.; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor

    2017-01-01

    We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures.

  10. A Biomedical Review of the U.S. Navy Submarine Escape System: 1996.

    Science.gov (United States)

    2007-11-02

    in the es- cape system: hypothermia, nitrogen narcosis , hypercarbia, barotrauma, and decompression sickness. He attributed these shortcomings to... Nitrogen narcosis is experienced at 600 fsw (183 msw) following a 20-second rapid ZPreST f t3Tu°nd b0tt0m ^ ™e Phys^al effects of nitrogen at...effect of nitrogen narcosis during this rapid cycle (8). How long tiie subject wouWremamun^pafredbeyondSseimerbysubje^ known, but continued use of

  11. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  12. Simulating Complex Window Systems using BSDF Data

    Energy Technology Data Exchange (ETDEWEB)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  13. Nonlinear Dynamics, Chaotic and Complex Systems

    Science.gov (United States)

    Infeld, E.; Zelazny, R.; Galkowski, A.

    2011-04-01

    Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet

  14. Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems

    OpenAIRE

    Cuimei Jiang; Shutang Liu; Da Wang

    2015-01-01

    Based on two fractional-order chaotic complex drive systems and one fractional-order chaotic complex response system with different dimensions, we propose generalized combination complex synchronization. In this new synchronization scheme, there are two complex scaling matrices that are non-square matrices. On the basis of the stability theory of fractional-order linear systems, we design a general controller via active control. Additionally, by virtue of two complex scaling matrices, general...

  15. Complex system analysis using CI methods

    Science.gov (United States)

    Fathi, Madjid; Hildebrand, Lars

    1999-03-01

    Modern technical tasks often need the use of complex system models. In many complex cases the model parameters can be gained using neural networks, but these systems allow only a one-way simulation from the input values to the learned output values. If evaluation in the other direction is needed, these model allow no direct evaluation. This task can be solved using evolutionary algorithms, which are part of the computational intelligence. The term computational intelligence covers three special fields of the artificial intelligence, fuzzy logic, artificial neural networks and evolutionary algorithms. We will focus only on the topic of evolutionary algorithms and fuzzy logic. Evolutionary algorithms covers the fields of genetic algorithms, evolution strategies and evolutionary programming. These methods can be used to optimize technical problems. Evolutionary algorithms have certain advantages, if these problems have no mathematical properties, like steadiness or the possibility to obtain the derivatives. Fuzzy logic systems normally lack these properties. The use of a combination of evolutionary algorithms and fuzzy logic allow an evaluation of the learned simulation models in the direction form output to the input values. An example can be given from the field of screw rotor design.

  16. Biomedical informatics as support to individual healthcare in hereditary colon cancer: the Danish HNPCC system.

    Science.gov (United States)

    Bernstein, Inge T; Lindorff-Larsen, Karen; Timshel, Susanne; Brandt, Carsten A; Dinesen, Birger; Fenger, Mogens; Gerdes, Anne-Marie; Iversen, Lene H; Madsen, Mogens R; Okkels, Henrik; Sunde, Lone; Rahr, Hans B; Wikman, Friedrick P; Rossing, Niels

    2011-05-01

    The Danish HNPCC register is a publically financed national database. The register gathers epidemiological and genomic data in HNPCC families to improve prognosis by screening and identifying family members at risk. Diagnostic data are generated throughout the country and collected over several decades. Until recently, paper-based reports were sent to the register and typed into the database. In the EC cofunded-INFOBIOMED network of excellence, the register was a model for electronic exchange of epidemiological and genomic data between diagnosing/treating departments and the central database. The aim of digitization was to optimize the organization of screening by facilitating combination of genotype-phenotype information, and to generate IT-tools sufficiently usable and generic to be implemented in other countries and for other oncogenetic diseases. The focus was on integration of heterogeneous data, elaboration, and dissemination of classification systems and development of communication standards. At the conclusion of the EU project in 2007 the system was implemented in 12 pilot departments. In the surgical departments this resulted in a 192% increase of reports to the database. Several gaps were identified: lack of standards for data to be exchanged, lack of local databases suitable for direct communication, reporting being time-consuming and dependent on interest and feedback.

  17. Imaging, scattering, and spectroscopic systems for biomedical optics: Tools for bench top and clinical applications

    Science.gov (United States)

    Cottrell, William J.

    Optical advances have had a profound impact on biology and medicine. The capabilities range from sensing biological analytes to whole animal and subcellular imaging and clinical therapies. The work presented in this thesis describes three independent and multifunctional optical systems, which explore clinical therapy at the tissue level, biological structure at the cell/organelle level, and the function of underlying fundamental cellular processes. First, we present a portable clinical instrument for delivering delta-aminolevulinic acid photodynamic therapy (ALA-PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivered the treatment beam to a user-defined field on the skin and performed reflectance and fluorescence spectroscopies at two regions within this field. The instrument was used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, and blood oxygen saturation during a clinical ALA-PDT trial on superficial basal cell carcinoma (sBCC). Protoporphyrin IX and photoproduct fluorescence excited by the 632.8 nm PDT treatment laser was collected between 665 and 775 nm. During a series of brief treatment interruptions at programmable time points, white-light reflectance spectra between 475 and 775 nm were acquired. Fluorescence spectra were corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular-value decomposition fitting routine. Reflectance spectra additionally provided information on hemoglobin oxygen saturation. We next describe the incorporation of this instrument into clinical trials at Roswell Park Cancer Institute (Buffalo, NY). In this trial we examined the effects of light irradiance on photodynamic efficiency and pain. The rate of singlet-oxygen production depends on the product of irradiance and photosensitizer and oxygen

  18. Biomedical Sensors and Instruments

    CERN Document Server

    Tagawa, Tatsuo

    2011-01-01

    The living body is a difficult object to measure: accurate measurements of physiological signals require sensors and instruments capable of high specificity and selectivity that do not interfere with the systems under study. As a result, detailed knowledge of sensor and instrument properties is required to be able to select the "best" sensor from one of the many designed to meet these challenges. From the underlying principles to practical applications, this updated edition of Biomedical Sensors and Instruments provides an easy-to-understand introduction to the various kinds of biome

  19. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  20. Principles of Biomedical Engineering

    CERN Document Server

    Madihally, Sundararajan V

    2010-01-01

    Describing the role of engineering in medicine today, this comprehensive volume covers a wide range of the most important topics in this burgeoning field. Supported with over 145 illustrations, the book discusses bioelectrical systems, mechanical analysis of biological tissues and organs, biomaterial selection, compartmental modeling, and biomedical instrumentation. Moreover, you find a thorough treatment of the concept of using living cells in various therapeutics and diagnostics.Structured as a complete text for students with some engineering background, the book also makes a valuable refere

  1. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1974-01-01

    Advances in Biomedical Engineering, Volume 4, is a collection of papers that deals with gas chromatography, mass spectroscopy and the analysis of minute samples, as well as the role of the government in regulating the production, usage, safety, and efficacy of medical devices. One paper reviews the use of mass spectrometry and computer technology in relation to gas-phase analytical methods based on gas chromatograph-mass spectrometer instruments and gas chromatograph-mass spectrometer-computer analytical systems. Many health practitioners, government and private health agencies, the legal prof

  2. Metaheuristics progress in complex systems optimization

    CERN Document Server

    Doerner, Karl F; Greistorfer, Peter; Gutjahr, Walter; Hartl, Richard F; Reimann, Marc

    2007-01-01

    The aim of ""Metaheuristics: Progress in Complex Systems Optimization"" is to provide several different kinds of information: a delineation of general metaheuristics methods, a number of state-of-the-art articles from a variety of well-known classical application areas as well as an outlook to modern computational methods in promising new areas. Therefore, this book may equally serve as a textbook in graduate courses for students, as a reference book for people interested in engineering or social sciences, and as a collection of new and promising avenues for researchers working in this field.

  3. Complex Adaptive Digital EcoSystems

    CERN Document Server

    Briscoe, Gerard

    2011-01-01

    We investigate an abstract conceptualisation of DigitalEcosystems from a computer science perspective. We then provide a conceptual framework for the cross pollination of ideas, concepts and understanding between different classes of ecosystems through the universally applicable principles of Complex Adaptive Systems (CAS) modelling. A framework to assist the cross-disciplinary collaboration of research into Digital Ecosystems, including Digital BusinessEcosystems (DBEs) and Digital Knowledge Ecosystems (DKEs). So, we have defined the key steps towards a theoretical framework for Digital Ecosystems, that is compatible with the diverse theoretical views prevalent. Therefore, a theoretical edifice that can unify the diverse efforts within Digital Ecosystems research.

  4. Abstraction in artificial intelligence and complex systems

    CERN Document Server

    Saitta, Lorenza

    2013-01-01

    Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences.  After discussing the characterizing properties of abstraction, a formal model, the K

  5. Telementoring and teleparamedic communication platforms and robotic systems for battlefield biomedical applications

    Science.gov (United States)

    Jannson, Tomasz P.; Kostrzewski, Andrew A.; Zeltser, Gregory; Forrester, Thomas

    2000-08-01

    A new approach to C4, in the form of supercomputer-path soft communication and computing (SC2), provides enabling technology baseline for teleparamedic and telementoring communication platforms and robotic systems. In particular, this new information technology offers full-duplex 2-D and/or 3-D wireless communication and interactive telepresence, as well as remotely-controlled semi-automatic sensing, within so-called telementoring scheme, being the specific brand of telemedicine. In this paper, we discuss the SC2 capabilities, including: 20-times, higher than prior art, compression of digital multimedia data (especially including digital video) with computing power higher than the of 100 Pentiums. The further extension of SC2- technologies, combined with nearly-autonomous teleparamedic scheme, will be also discussed.

  6. Assessment Environment for Complex Systems Software Guide

    Science.gov (United States)

    2013-01-01

    This Software Guide (SG) describes the software developed to test the Assessment Environment for Complex Systems (AECS) by the West Virginia High Technology Consortium (WVHTC) Foundation's Mission Systems Group (MSG) for the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD). This software is referred to as the AECS Test Project throughout the remainder of this document. AECS provides a framework for developing, simulating, testing, and analyzing modern avionics systems within an Integrated Modular Avionics (IMA) architecture. The purpose of the AECS Test Project is twofold. First, it provides a means to test the AECS hardware and system developed by MSG. Second, it provides an example project upon which future AECS research may be based. This Software Guide fully describes building, installing, and executing the AECS Test Project as well as its architecture and design. The design of the AECS hardware is described in the AECS Hardware Guide. Instructions on how to configure, build and use the AECS are described in the User's Guide. Sample AECS software, developed by the WVHTC Foundation, is presented in the AECS Software Guide. The AECS Hardware Guide, AECS User's Guide, and AECS Software Guide are authored by MSG. The requirements set forth for AECS are presented in the Statement of Work for the Assessment Environment for Complex Systems authored by NASA Dryden Flight Research Center (DFRC). The intended audience for this document includes software engineers, hardware engineers, project managers, and quality assurance personnel from WVHTC Foundation (the suppliers of the software), NASA (the customer), and future researchers (users of the software). Readers are assumed to have general knowledge in the field of real-time, embedded computer software development.

  7. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  8. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems

    Directory of Open Access Journals (Sweden)

    Kaur R

    2013-01-01

    Full Text Available Randeep Kaur, Ildiko BadeaDrug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaAbstract: Detonation nanodiamonds (NDs are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.Keywords: dispersion, surface functionalization, toxicity, carriers, fluorescence, light scattering

  9. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems.

    Science.gov (United States)

    Kaur, Randeep; Badea, Ildiko

    2013-01-01

    Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.

  10. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  11. Integrative Systems Biology: Elucidating Complex Traits

    DEFF Research Database (Denmark)

    Pers, Tune Hannes

    product itself. My doctoral studies have been focused on the development of integrative approaches to identify systemic risk-modifying and disease-causing patterns. ey have been rooted in the hypothesis that data integration of complementary data sets may yield additional etiologic insights compared...... traits and disease. e esis is structured as follows. Chapter  presents a few introductory remarks to integrative systems biology, and Chapter  gives a brief description of human genetic variation and GWA analysis. Chapters - present the main topics in the esis (integrative methodologies...... to analyses conducted within a single type of data. e first line of research presented here outlines two integrative methodologies designed to identify etiological pathways and susceptibility genes. In Paper I, my coworkers and I present an integrative approach that interrogates protein complexes...

  12. Topological analysis of complexity in multiagent systems

    Science.gov (United States)

    Abaid, Nicole; Bollt, Erik; Porfiri, Maurizio

    2012-04-01

    Social organisms at every level of evolutionary complexity live in groups, such as fish schools, locust swarms, and bird flocks. The complex exchange of multifaceted information across group members may result in a spectrum of salient spatiotemporal patterns characterizing collective behaviors. While instances of collective behavior in animal groups are readily identifiable by trained and untrained observers, a working definition to distinguish these patterns from raw data is not yet established. In this work, we define collective behavior as a manifestation of low-dimensional manifolds in the group motion and we quantify the complexity of such behaviors through the dimensionality of these structures. We demonstrate this definition using the ISOMAP algorithm, a data-driven machine learning algorithm for dimensionality reduction originally formulated in the context of image processing. We apply the ISOMAP algorithm to data from an interacting self-propelled particle model with additive noise, whose parameters are selected to exhibit different behavioral modalities, and from a video of a live fish school. Based on simulations of such model, we find that increasing noise in the system of particles corresponds to increasing the dimensionality of the structures underlying their motion. These low-dimensional structures are absent in simulations where particles do not interact. Applying the ISOMAP algorithm to fish school data, we identify similar low-dimensional structures, which may act as quantitative evidence for order inherent in collective behavior of animal groups. These results offer an unambiguous method for measuring order in data from large-scale biological systems and confirm the emergence of collective behavior in an applicable mathematical model, thus demonstrating that such models are capable of capturing phenomena observed in animal groups.

  13. Electromagnetic driving units for complex microrobotic systems

    Science.gov (United States)

    Michel, Frank; Ehrfeld, Wolfgang; Berg, Udo; Degen, Reinhard; Schmitz, Felix

    1998-10-01

    Electromagnetic actuators play an important role in macroscopic robotic systems. In combination with motion transformers, like reducing gear units, angular gears or spindle-screw drives, electromagnetic motors in large product lines ensure the rotational or linear motion of robot driving units and grippers while electromagnets drive valves or part conveyors. In this paper micro actuators and miniaturized motion transformers are introduced which allow a similar development in microrobotics. An electromagnetic motor and a planetary gear box, both with a diameter of 1.9 mm, are already commercially available from the cooperation partner of IMM, the company Dr. Fritz Faulhaber GmbH in Schonaich, Germany. In addition, a motor with a diameter of 2.4 mm is in development. The motors successfully drive an angular gear and a belt drive. A linear stage with a motion range of 7 mm and an overall size as small as 5 X 3.5 X 24 mm3 has been realized involving the motor, a stationary spur gear with zero backlash and a spindle-screw drive. By the use of these commercially available elements complex microrobots can be built up cost-efficiently and rapidly. Furthermore, a batch process has been developed to produce the coils of micro actuator arrays using lithographic techniques with SU-8 resin. In applying these components, the modular construction of complex microrobotic systems becomes feasible.

  14. Theories and simulations of complex social systems

    CERN Document Server

    Mago, Vijay

    2014-01-01

    Research into social systems is challenging due to their complex nature. Traditional methods of analysis are often difficult to apply effectively as theories evolve over time. This can be due to a lack of appropriate data, or too much uncertainty. It can also be the result of problems which are not yet understood well enough in the general sense so that they can be classified, and an appropriate solution quickly identified. Simulation is one tool that deals well with these challenges, fits in well with the deductive process, and is useful for testing theory. This field is still relatively new, and much of the work is necessarily innovative, although it builds upon a rich and varied foundation. There are a number of existing modelling paradigms being applied to complex social systems research. Additionally, new methods and measures are being devised through the process of conducting research. We expect that readers will enjoy the collection of high quality research works from new and accomplished researchers. ...

  15. Intrinsic Uncertainties in Modeling Complex Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Curtis S; Bramson, Aaron L.; Ames, Arlo L.

    2014-09-01

    Models are built to understand and predict the behaviors of both natural and artificial systems. Because it is always necessary to abstract away aspects of any non-trivial system being modeled, we know models can potentially leave out important, even critical elements. This reality of the modeling enterprise forces us to consider the prospective impacts of those effects completely left out of a model - either intentionally or unconsidered. Insensitivity to new structure is an indication of diminishing returns. In this work, we represent a hypothetical unknown effect on a validated model as a finite perturba- tion whose amplitude is constrained within a control region. We find robustly that without further constraints, no meaningful bounds can be placed on the amplitude of a perturbation outside of the control region. Thus, forecasting into unsampled regions is a very risky proposition. We also present inherent difficulties with proper time discretization of models and representing in- herently discrete quantities. We point out potentially worrisome uncertainties, arising from math- ematical formulation alone, which modelers can inadvertently introduce into models of complex systems. Acknowledgements This work has been funded under early-career LDRD project #170979, entitled "Quantify- ing Confidence in Complex Systems Models Having Structural Uncertainties", which ran from 04/2013 to 09/2014. We wish to express our gratitude to the many researchers at Sandia who con- tributed ideas to this work, as well as feedback on the manuscript. In particular, we would like to mention George Barr, Alexander Outkin, Walt Beyeler, Eric Vugrin, and Laura Swiler for provid- ing invaluable advice and guidance through the course of the project. We would also like to thank Steven Kleban, Amanda Gonzales, Trevor Manzanares, and Sarah Burwell for their assistance in managing project tasks and resources.

  16. On Complexity of Social System and Modern Thinking

    Institute of Scientific and Technical Information of China (English)

    HongsenWei

    2004-01-01

    This paper puts forward the idea that social system is an open complex macrosystem and summarized its eight characteristics. The research object of social system is also an open complex macro-system, thus the complex theory and systems thinking should be applied to research rather than the simplicity theory.

  17. 生物医学传感器与医疗保健系统的发展趋势%Developing Trends of Biomedical Sensors and Healthcare System

    Institute of Scientific and Technical Information of China (English)

    陈鲁英; 刘忠国; 刘伯强

    2011-01-01

    生物医学传感器是高质量、低成本的卫生保健系统发展的主要驱动力.以智能生物医学衣服、无损检测传感器、吞服式智能药丸、植入式传感器、无线传感器等为例介绍了生物医学传感器的发展趋势,指出它的发展方向是低成本、低功耗、微型化、智能化、多功能化、无损检测、远程供电、无线传输和采用高级功能生物相客材料,并对未来卫生保健系统的发展进行了展望.%With the upcoming aging population, it will be important to offer high-quality cost-effective health care services to them. Monitoring, diagnostics and therapy will become much more closely coupled than it is now. Thus, development of biomedical sensors technology will be crucial. With the increasing of hospital cost, the need for home care is expected to increase drastically, which will necessitate an increased use of simple sensors for health status monitoring and early detection. This will prevent diseases and will shorten hospital stays and contribute to a better life quality. Biomedical sensors will be one of the main driving forces for a high quality cost effective healthcare system. Future biomedical sensors will be low -cost, low -power, miniature, intelligent, invasive and multifunctional. Future biomedical sensors require technology of remote power generation and wireless communication with advanced functional and biocompatible materials. Intelligent biomedical clothes, invasive sensors, implantable sensors, smart pill, wireless monitoring, etc are taken as the examples to explain the prospect of biomedical sensor.[Chinese Medical Equipment Journal,2011,32(12) :90-92,109

  18. Statistically validated networks in bipartite complex systems

    CERN Document Server

    Tumminello, Michele; Lillo, Fabrizio; Piilo, Jyrki; Mantegna, Rosario N

    2010-01-01

    Many complex systems present an intrinsic bipartite nature and are often described and modeled in terms of networks [1-5]. Examples include movies and actors [1, 2, 4], authors and scientific papers [6-9], email accounts and emails [10], plants and animals that pollinate them [11, 12]. Bipartite networks are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set. When one constructs a projected network with nodes from only one set, the system heterogeneity makes it very difficult to identify preferential links between the elements. Here we introduce an unsupervised method to statistically validate each link of the projected network against a null hypothesis taking into account the heterogeneity of the system. We apply our method to three different systems, namely the set of clusters of orthologous genes (COG) in completely sequenced genomes [13, 14], a set of daily returns of 500 US financial stocks, and the set of world movies of the ...

  19. Herd behavior in a complex adaptive system

    Science.gov (United States)

    Zhao, Li; Yang, Guang; Wang, Wei; Chen, Yu; Huang, J. P.; Ohashi, Hirotada; Stanley, H. Eugene

    2011-01-01

    In order to survive, self-serving agents in various kinds of complex adaptive systems (CASs) must compete against others for sharing limited resources with biased or unbiased distribution by conducting strategic behaviors. This competition can globally result in the balance of resource allocation. As a result, most of the agents and species can survive well. However, it is a common belief that the formation of a herd in a CAS will cause excess volatility, which can ruin the balance of resource allocation in the CAS. Here this belief is challenged with the results obtained from a modeled resource-allocation system. Based on this system, we designed and conducted a series of computer-aided human experiments including herd behavior. We also performed agent-based simulations and theoretical analyses, in order to confirm the experimental observations and reveal the underlying mechanism. We report that, as long as the ratio of the two resources for allocation is biased enough, the formation of a typically sized herd can help the system to reach the balanced state. This resource ratio also serves as the critical point for a class of phase transition identified herein, which can be used to discover the role change of herd behavior, from a ruinous one to a helpful one. This work is also of value to some fields, ranging from management and social science, to ecology and evolution, and to physics. PMID:21876133

  20. Optimal control of complex atomic quantum systems

    Science.gov (United States)

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-10-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  1. Recent developments in intelligent biomedical polymers

    Institute of Scientific and Technical Information of China (English)

    XIAO ChunSheng; TIAN HuaYu; ZHUANG XiuLi; CHEN XueSi; JING XiaBin

    2009-01-01

    Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique 'intelligent' characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.

  2. Recent developments in intelligent biomedical polymers

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique ’intelligent’ characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.

  3. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  4. Exergy Analysis of Complex Ship Energy Systems

    Directory of Open Access Journals (Sweden)

    Pierre Marty

    2016-04-01

    Full Text Available With multiple primary and secondary energy converters (diesel engines, steam turbines, waste heat recovery (WHR and oil-fired boilers, etc. and extensive energy networks (steam, cooling water, exhaust gases, etc., ships may be considered as complex energy systems. Understanding and optimizing such systems requires advanced holistic energy modeling. This modeling can be done in two ways: The simpler approach focuses on energy flows, and has already been tested, approved and presented; a new, more complicated approach, focusing on energy quality, i.e., exergy, is presented in this paper. Exergy analysis has rarely been applied to ships, and, as a general rule, the shipping industry is not familiar with this tool. This paper tries to fill this gap. We start by giving a short reminder of what exergy is and describe the principles of exergy modeling to explain what kind of results should be expected from such an analysis. We then apply these principles to the analysis of a large two-stroke diesel engine with its cooling and exhaust systems. Simulation results are then presented along with the exergy analysis. Finally, we propose solutions for energy and exergy saving which could be applied to marine engines and ships in general.

  5. Biomedical technology

    CERN Document Server

    Wriggers, Peter

    2015-01-01

    During the last years computational methods lead to new approaches that can be applied within medical practice. Based on the tremendous advances in medical imaging and high-performance computing, virtual testing is able to help in medical decision processes or implant designs. Current challenges in medicine and engineering are related to the application of computational methods to clinical medicine and the study of biological systems at different scales. Additionally manufacturers will be able to use computational tools and methods to predict the performance of their medical devices in virtual patients. The physical and animal testing procedures could be reduced by virtual prototyping of medical devices. Here simulations can enhance the performance of alternate device designs for a range of virtual patients. This will lead to a refinement of designs and to safer products. This book summarizes different aspects of approaches to enhance function, production, initialization and complications of different types o...

  6. Biomedical ethics.

    Science.gov (United States)

    Walters, LeRoy

    1985-10-25

    An overview is provided of bioethical issues recently under discussion in the United States. Six topics dominated the field in 1984 and early 1985: human gene therapy; in vitro fertilization and research with human embryos; appropriate care for dying patients, both adults and newborns; organ transplantation; resource allocation and payment for health care services; and the role of hospital ethics committees in medical decision making. Walters focuses on three of these topics: (1) the issuing of standards for somatic-cell gene therapy; (2) developments in the death and dying arena, including state living will legislation, the emergence of a viewpoint that artificial nutrition and hydration are not qualitatively different from respiratory life-support systems, and federal efforts to regulate appropriate treatment for handicapped newborns; and (3) the growing support among medical organizations for hospital ethics committees.

  7. Dynamics Control of the Complex Systems via Nondifferentiability

    Directory of Open Access Journals (Sweden)

    Carmen Nejneru

    2013-01-01

    Full Text Available A new topic in the analyses of complex systems dynamics, considering that the movements of complex system entities take place on continuum but nondifferentiable curves, is proposed. In this way, some properties of complex systems (barotropic-type behaviour, self-similarity behaviour, chaoticity through turbulence and stochasticization, etc. are controlled through nondifferentiability of motion curves. These behaviours can simulate the standard properties of the complex systems (emergence, self-organization, adaptability, etc..

  8. Dynamics Control of the Complex Systems via Nondifferentiability

    OpenAIRE

    Carmen Nejneru; Anca Nicuţă; Boris Constantin; Liliana Rozemarie Manea; Mirela Teodorescu; Maricel Agop

    2013-01-01

    A new topic in the analyses of complex systems dynamics, considering that the movements of complex system entities take place on continuum but nondifferentiable curves, is proposed. In this way, some properties of complex systems (barotropic-type behaviour, self-similarity behaviour, chaoticity through turbulence and stochasticization, etc.) are controlled through nondifferentiability of motion curves. These behaviours can simulate the standard properties of the complex systems (emergence, se...

  9. SoC-based architecture for biomedical signal processing.

    Science.gov (United States)

    Gutiérrez-Rivas, R; Hernández, A; García, J J; Marnane, W

    2015-01-01

    Over the last decades, many algorithms have been proposed for processing biomedical signals. Most of these algorithms have been focused on the elimination of noise and artifacts existing in these signals, so they can be used for automatic monitoring and/or diagnosis applications. With regard to remote monitoring, the use of portable devices often requires a reduced number of resources and power consumption, being necessary to reach a trade-off between the accuracy of algorithms and their computational complexity. This paper presents a SoC (System-on-Chip) architecture, based on a FPGA (Field-Programmable Gate Array) device, suitable for the implementation of biomedical signal processing. The proposal has been successfully validated by implementing an efficient QRS complex detector. The results show that, using a reduced amount of resources, values of sensitivity and positive predictive value above 99.49% are achieved, which make the proposed approach suitable for telemedicine applications.

  10. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  11. Major depression as a complex dynamical system

    CERN Document Server

    Cramer, Angélique O J; Giltay, Erik J; van der Maas, Han L J; Kendler, Kenneth S; Scheffer, Marten; Borsboom, Denny

    2016-01-01

    In this paper, we characterize major depression (MD) as a complex dynamical system in which symptoms (e.g., insomnia and fatigue) are directly connected to one another in a network structure. We hypothesize that individuals can be characterized by their own network with unique architecture and resulting dynamics. With respect to architecture, we show that individuals vulnerable to developing MD are those with strong connections between symptoms: e.g., only one night of poor sleep suffices to make a particular person feel tired. Such vulnerable networks, when pushed by forces external to the system such as stress, are more likely to end up in a depressed state; whereas networks with weaker connections tend to remain in or return to a healthy state. We show this with a simulation in which we model the probability of a symptom becoming active as a logistic function of the activity of its neighboring symptoms. Additionally, we show that this model potentially explains some well-known empirical phenomena such as s...

  12. Procedures in complex systems: the airline cockpit.

    Science.gov (United States)

    Degani, A; Wiener, E L

    1997-05-01

    In complex human-machine systems, successful operations depend on an elaborate set of procedures which are specified by the operational management of the organization. These procedures indicate to the human operator (in this case the pilot) the manner in which operational management intends to have various tasks done. The intent is to provide guidance to the pilots and to ensure a safe, logical, efficient, and predictable (standardized) means of carrying out the objectives of the job. However, procedures can become a hodge-podge. Inconsistent or illogical procedures may lead to noncompliance by operators. Based on a field study with three major airlines, the authors propose a model for procedure development called the "Four P's": philosophy, policies, procedures, and practices. Using this model as a framework, the authors discuss the intricate issue of designing flight-deck procedures, and propose a conceptual approach for designing any set of procedures. The various factors, both external and internal to the cockpit, that must be considered for procedure design are presented. In particular, the paper addresses the development of procedures for automated cockpits--a decade-long, and highly controversial issue in commercial aviation. Although this paper is based on airline operations, we assume that the principles discussed here are also applicable to other high-risk supervisory control systems, such as space flight, manufacturing process control, nuclear power production, and military operations.

  13. A complex systems approach to bibliometrics

    Science.gov (United States)

    Stringer, Michael J.

    Enabled by technological change, we are in the midst of a fundamental shift in how scientific information is produced and communicated. Electronic publishing, preprint archives, blogs, and wikis are emerging as possible viable alternatives to the current journal publishing and peer review system. However, these new technologies flood the environment with information, making it increasingly difficult to find the highest quality and most relevant papers. Additionally, accreditation and quality assessment of published material becomes nearly impossible for agencies interested in funding the research and development that is most likely to succeed. Recently, bibliometric tools have emerged as an effective means for the filtering, accreditation, and assessment of scholarly information. In this thesis, we approach bibliometrics from a complex systems perspective. A unique characteristic of the work presented in this thesis is that we perform empirical validation of bibliometric models using the most comprehensive bibliographic database available. Using these methods, we quantify the dynamics of citations to scientific journals, and investigate the relationship between social network position and research performance.

  14. MEMS biomedical implants

    Institute of Scientific and Technical Information of China (English)

    Tai Yuchong

    2012-01-01

    The field of micro-electro-mechanical systems (MEMS) has advanced tremendously for the last 20 years. Most commercially noticeably, the field has successfully advanced from pressure sensors to micro physical sensors, such as accelerometers and gyros, for handheld electronics application. In parallel, MEMS has also advanced into micro total analysis system(TAS) and/or lab-on-a-chip applications. This article would discuss a relatively new but promising future direction towards MEMS biomedical implants. Specifically, Parylene C has been explored to be used as a good MEMS implant material and will be discussed in detail. Demonstrated implant devices, such as retinal and spinal cord implants, are presented in this article.

  15. Melt-processable hydrophobic acrylonitrile-based copolymer systems with adjustable elastic properties designed for biomedical applications.

    Science.gov (United States)

    Cui, J; Trescher, K; Kratz, K; Jung, F; Hiebl, B; Lendlein, A

    2010-01-01

    Acrylonitrile-based polymer systems (PAN) are comprehensively explored as versatile biomaterials having various potential biomedical applications, such as membranes for extra corporal devices or matrixes for guided skin reconstruction. The surface properties (e.g. hydrophilicity or charges) of such materials can be tailored over a wide range by variation of molecular parameters such as different co-monomers or their sequence structure. Some of these materials show interesting biofunctionalities such as capability for selective cell cultivation. So far, the majority of AN-based copolymers, which were investigated in physiological environments, were processed from the solution (e.g. membranes), as these materials are thermo-sensitive and might degrade when heated. In this work we aimed at the synthesis of hydrophobic, melt-processable AN-based copolymers with adjustable elastic properties for preparation of model scaffolds with controlled pore geometry and size. For this purpose a series of copolymers from acrylonitrile and n-butyl acrylate (nBA) was synthesized via free radical copolymerisation technique. The content of nBA in the copolymer varied from 45 wt% to 70 wt%, which was confirmed by 1H-NMR spectroscopy. The glass transition temperatures (Tg) of the P(AN-co-nBA) copolymers determined by differential scanning calorimetry (DSC) decreased from 58 degrees C to 20 degrees C with increasing nBA-content, which was in excellent agreement with the prediction of the Gordon-Taylor equation based on the Tgs of the homopolymers. The Young's modulus obtained in tensile tests was found to decrease significantly with rising nBA-content from 1062 MPa to 1.2 MPa. All copolymers could be successfully processed from the melt with processing temperatures ranging from 50 degrees C to 170 degrees C, whereby thermally induced decomposition was only observed at temperatures higher than 320 degrees C in thermal gravimetric analysis (TGA). Finally, the melt processed P

  16. Biomedical text mining and its applications in cancer research.

    Science.gov (United States)

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research.

  17. Optomechatronics for Biomedical Optical Imaging: An Overview

    OpenAIRE

    Cho Hyungsuck

    2015-01-01

    The use of optomechatronic technology, particularly in biomedical optical imaging, is becoming pronounced and ever increasing due to its synergistic effect of the integration of optics and mechatronics. The background of this trend is that the biomedical optical imaging for example in-vivo imaging related to retraction of tissues, diagnosis, and surgical operations have a variety of challenges due to complexity in internal structure and properties of biological body and the resulting optical ...

  18. Metabolic Scaling in Complex Living Systems

    Directory of Open Access Journals (Sweden)

    Douglas S. Glazier

    2014-10-01

    Full Text Available In this review I show that four major kinds of theoretical approaches have been used to explain the scaling of metabolic rate in cells, organisms and groups of organisms in relation to system size. They include models focusing on surface-area related fluxes of resources and wastes (including heat, internal resource transport, system composition, and various processes affecting resource demand, all of which have been discussed extensively for nearly a century or more. I argue that, although each of these theoretical approaches has been applied to multiple levels of biological organization, none of them alone can fully explain the rich diversity of metabolic scaling relationships, including scaling exponents (log-log slopes that vary from ~0 to >1. Furthermore, I demonstrate how a synthetic theory of metabolic scaling can be constructed by including the context-dependent action of each of the above modal effects. This “contextual multimodal theory” (CMT posits that various modulating factors (including metabolic level, surface permeability, body shape, modes of thermoregulation and resource-transport, and other internal and external influences affect the mechanistic expression of each theoretical module. By involving the contingent operation of several mechanisms, the “meta-mechanistic” CMT differs from most metabolic scaling theories that are deterministically mechanistic. The CMT embraces a systems view of life, and as such recognizes the open, dynamic nature and complex hierarchical and interactive organization of biological systems, and the importance of multiple (upward, downward and reciprocal causation, biological regulation of resource supply and demand and their interaction, and contingent internal (system and external (environmental influences on metabolic scaling, all of which are discussed. I hope that my heuristic attempt at building a unifying theory of metabolic scaling will not only stimulate further testing of all of the

  19. Research on basic characteristics of complex system brittleness

    Institute of Scientific and Technical Information of China (English)

    JIN Hong-zhang; GUO Jian; WEI Qi; LIN De-ming; LI Qi

    2004-01-01

    Tbe goal of this paper is to research one new characteristic of complex system. Brittleness, which is one new characteritic of complex system, is presented in this paper. The linguistic and qualitative descriptions of complex system are also given in this paper.Otherwise, the qualitative description of complex system is presented at first. On the basis of analyzing the existing brittleness problems, linguistic description and mathematic description of brittleness are given as well. Three kinds of phenomena to judge brittleness of complex system are also given, based on catastrophe theory. Basic characteristics of brittleness are given on the basis of its mathematic description. Two critical point sets are defined by using catastrophe theory. The definition of brittleness and its related theory can serve the control of complex system, and provide theoretical basis for the design and control of complex system.

  20. Biomedical Engineering Laboratory

    Science.gov (United States)

    2007-11-02

    The Masters of Engineering program with concentration in Biomedical Engineering at Tennessee State University was established in fall 2000. Under... biomedical engineering . The lab is fully equipped with 10 Pentium5-based, 2 Pentium4-based laptops for mobile experiments at remote locations, 8 Biopac...students (prospective graduate students in biomedical engineering ) are regularly using this lab. This summer, 8 new prospective graduate students

  1. Natural immunoglobulins (contribution to a debate on biomedical education

    Directory of Open Access Journals (Sweden)

    Vaz Nelson M

    2000-01-01

    Full Text Available Immunology has contributed to biomedical education in many important ways since the creation of scientific medicine in the last quarter of the 19th century. Today, immunology is a major area of biomedical research. Nevertheless, there are many basic problems unresolved in immunological activities and phenomena. Solving these problems is probably necessary to devise predictable and safe ways to produce new vaccines, treat allergy and autoimmune diseases and perform safe transplants. This challenge involves not only technical developments but also changes in attitude, of which the most fundamental is to abandon the traditional stimulus-response perspective in favor of more "systemic" views. Describing immunological activities as the operation of a complex multiconnected network, raises biological and epistemological issues not usually dealt with in biomedical education. Here we point to one example of systemic approaches. A new form of immunoblot (Panama blot, by which the reaction of natural immunoglobulins with complex protein mixtures may be analyzed by a special software and multivariate statistics, has been recently used to characterize human autoimmune diseases. Our preliminary data show that Panama blots can also be used to characterize global (systemic immunogical changes in chronic human parasitic diseases, such as malaria and schistosomiasis mansoni, that correlate with the clinical status.

  2. Modeling Complex Chemical Systems: Problems and Solutions

    Science.gov (United States)

    van Dijk, Jan

    2016-09-01

    Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.

  3. International biomedical law in search for its normative status.

    Science.gov (United States)

    Krajewska, Atina

    2012-01-01

    The broad and multifaceted problem of global health law and global health governance has been attracting increasing attention in the last few decades. The global community has failed to establish international legal regime that deals comprehensively with the 'technological revolution'. The latter has posed complex questions to regions of the world with widely differing cultural perspectives. At the same time, an increasing number of governmental and non-state actors have become significantly involved in the sector. They use legal, political, and other forms of decision-making that result in regulatory instruments of contrasting normative status. Law created in this heterogeneous environment has been said to be fragmented, inconsistent, and exacerbating uncertainties. Therefore, claims have been made that a centralised and institutionalised system would help address the problems of transparency, legitimacy and efficiency. Nevertheless, little scholarly consideration is paid to the normative status of international biomedical law. This paper explores whether formalisation and "constitutionalisation" of biomedical law are indeed inevitable for its establishment as a separate regulatory regime. It does so by analysing the proliferation of biomedical law in light of two the theory of fragmentation and the theory of global legal pluralism. Investigating the problem in this way helps determine the theoretical framework and methodology of future studies of biomedical law at the international level. This in turn should help its future development in a more consistent and harmonised manner.

  4. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  5. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  6. Biomedical ethics and the biomedical engineer: a review.

    Science.gov (United States)

    Saha, S; Saha, P S

    1997-01-01

    Biomedical engineering is responsible for many of the dramatic advances in modern medicine. This has resulted in improved medical care and better quality of life for patients. However, biomedical technology has also contributed to new ethical dilemmas and has challenged some of our moral values. Bioengineers often lack adequate training in facing these moral and ethical problems. These include conflicts of interest, allocation of scarce resources, research misconduct, animal experimentation, and clinical trials for new medical devices. This paper is a compilation of our previous published papers on these topics, and it summarizes many complex ethical issues that a bioengineer may face during his or her research career or professional practice. The need for ethics training in the education of a bioengineering student is emphasized. We also advocate the adoption of a code of ethics for bioengineers.

  7. Antimicrobial Chitosan based formulations with impact on different biomedical applications.

    Science.gov (United States)

    Radulescu, Marius; Ficai, Denisa; Oprea, Ovidiu; Ficai, Anton; Andronescu, Ecaterina; Holban, Alina M

    2015-01-01

    Owing to its physico-chemical characteristics, the biodegradable and biocompatible polymer derived from crustacean shells, Chitosan is one of the preferred candidates for green biomedical applications and also for several industries. Its solubility in acid solutions and ability to form complexes with anionic macromolecules to yield nanoparticles, microparticles and hydrogels, as well as the ability of chitosan based nanocomposites to remain stable at physiological pH recommend this polymer for the development of efficient drug delivery systems. This paper reviews the main utilities of chitosan as a drug delivery component and describes the most recent technologies which utilize this polymer for developing nanostructured systems with antimicrobial effect, offering a perspective of using these findings in new, ecological biomedical applications.

  8. SWITCHING CONTROL:FROM SIMPLE RULES TO COMPLEX CHAOTIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    L(U) Jinhu

    2003-01-01

    This paper reviews and introduces some simple switching piecewise-linear controllers, which can generate complex chaotic behaviors from simple switching systems. The mechanism of simple switching rules creating complex chaotic behaviors is further investigated.

  9. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it\\'s also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  10. Complex System Optimization Using Biogeography-Based Optimization

    Directory of Open Access Journals (Sweden)

    Dawei Du

    2013-01-01

    Full Text Available Complex systems are frequently found in modern industry. But with their multisubsystems, multiobjectives, and multiconstraints, the optimization of complex systems is extremely hard. In this paper, a new algorithm adapted from biogeography-based optimization (BBO is introduced for complex system optimization. BBO/Complex is the combination of BBO with a multiobjective ranking system, an innovative migration approach, and effective diversity control. Based on comparisons with three complex system optimization algorithms (multidisciplinary feasible (MDF, individual discipline feasible (IDF, and collaborative optimization (CO on four real-world benchmark problems, BBO/Complex demonstrates competitive performance. BBO/Complex provides the best performance in three of the benchmark problems and the second best in the fourth problem.

  11. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  12. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Hassan Saberi Nik

    2014-01-01

    Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  13. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  14. Complexity Measurement of Large-Scale Software System Based on Complex Network

    Directory of Open Access Journals (Sweden)

    Dali Li

    2014-05-01

    Full Text Available With the increase of software system complexity, the traditional measurements can not meet the requirements, for the reason that the developers need control the software quality effectively and guarantee the normal operation of software system. Hence how to measure the complexity of large-scale software system has been a challenge problem. In order to solve this problem, the developers have to obtain a good method to measure the complexity of software system first. Only through this work, the software quality and the software structure could be controlled and optimized. Note that the complex network theory has offered a new theoretical understanding and a new perspective to solve this kind of complexity problem, this work discusses the complexity phenomenon in large-scale software system. Based on this, some complexity measurements of large-scale software system are put forward from static structure and dynamic structure perspectives. Furthermore, we find some potential complexity characteristics in large-scale software networks through the numerical simulations. The proposed measurement methods have a guiding significance on the development for today's large-scale software system. In addition, this paper presents a new technique for the structural complexity measurements of large-scale software system

  15. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral......This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...

  16. A Relation Extraction Framework for Biomedical Text Using Hybrid Feature Set.

    Science.gov (United States)

    Muzaffar, Abdul Wahab; Azam, Farooque; Qamar, Usman

    2015-01-01

    The information extraction from unstructured text segments is a complex task. Although manual information extraction often produces the best results, it is harder to manage biomedical data extraction manually because of the exponential increase in data size. Thus, there is a need for automatic tools and techniques for information extraction in biomedical text mining. Relation extraction is a significant area under biomedical information extraction that has gained much importance in the last two decades. A lot of work has been done on biomedical relation extraction focusing on rule-based and machine learning techniques. In the last decade, the focus has changed to hybrid approaches showing better results. This research presents a hybrid feature set for classification of relations between biomedical entities. The main contribution of this research is done in the semantic feature set where verb phrases are ranked using Unified Medical Language System (UMLS) and a ranking algorithm. Support Vector Machine and Naïve Bayes, the two effective machine learning techniques, are used to classify these relations. Our approach has been validated on the standard biomedical text corpus obtained from MEDLINE 2001. Conclusively, it can be articulated that our framework outperforms all state-of-the-art approaches used for relation extraction on the same corpus.

  17. A Relation Extraction Framework for Biomedical Text Using Hybrid Feature Set

    Directory of Open Access Journals (Sweden)

    Abdul Wahab Muzaffar

    2015-01-01

    Full Text Available The information extraction from unstructured text segments is a complex task. Although manual information extraction often produces the best results, it is harder to manage biomedical data extraction manually because of the exponential increase in data size. Thus, there is a need for automatic tools and techniques for information extraction in biomedical text mining. Relation extraction is a significant area under biomedical information extraction that has gained much importance in the last two decades. A lot of work has been done on biomedical relation extraction focusing on rule-based and machine learning techniques. In the last decade, the focus has changed to hybrid approaches showing better results. This research presents a hybrid feature set for classification of relations between biomedical entities. The main contribution of this research is done in the semantic feature set where verb phrases are ranked using Unified Medical Language System (UMLS and a ranking algorithm. Support Vector Machine and Naïve Bayes, the two effective machine learning techniques, are used to classify these relations. Our approach has been validated on the standard biomedical text corpus obtained from MEDLINE 2001. Conclusively, it can be articulated that our framework outperforms all state-of-the-art approaches used for relation extraction on the same corpus.

  18. Tethering complexes in the Arabidopsis endomembrane system

    Directory of Open Access Journals (Sweden)

    Nemanja eVukasinovic

    2016-05-01

    Full Text Available AbstractTargeting of endomembrane transport containers is of the utmost importance for proper land plant growth and development. Given the immobility of plant cells, localized membrane vesicle secretion and recycling are amongst the main processes guiding proper cell, tissue and whole plant morphogenesis. Cell wall biogenesis and modification are dependent on vectorial membrane traffic, not only during normal development, but also in stress responses and in plant defence against pathogens and/or symbiosis. It is surprising how little we know about these processes in plants, from small GTPase regulation to the tethering complexes that act as their effectors. Tethering factors are single proteins or protein complexes mediating first contact between the target membrane and arriving membrane vesicles. In this review we focus on the tethering complexes of the best-studied plant model – Arabidopsis thaliana. Genome-based predictions indicate the presence of all major tethering complexes in plants that are known from a hypothetical last eukaryotic common ancestor (LECA. The evolutionary multiplication of paralogs of plant tethering complex subunits has produced the massively expanded EXO70 family, indicating a subfunctionalization of the terminal exocytosis machinery in land plants. Interpretation of loss of function (LOF mutant phenotypes has to consider that related, yet clearly functionally-specific complexes often share some common core subunits. It is therefore impossible to conclude with clarity which version of the complex is responsible for the phenotypic deviations observed. Experimental interest in the analysis of plant tethering complexes is growing and we hope to contribute with this review by attracting even more attention to this fascinating field of plant cell biology.

  19. Studies of complexity in fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Sidney R.

    2000-06-12

    This is the final report of Grant DE-FG02-92ER25119, ''Studies of Complexity in Fluids'', we have investigated turbulence, flow in granular materials, singularities in evolution of fluid surfaces and selective withdrawal fluid flows. We have studied numerical methods for dealing with complex phenomena, and done simulations on the formation of river networks. We have also studied contact-line deposition that occurs in a drying drop.

  20. A Remote Health Care System Combining a Fall Down Alarm and Biomedical Signal Monitor System in an Android Smart-Phone

    Directory of Open Access Journals (Sweden)

    Ching-Sung Wang

    2013-10-01

    Full Text Available First aid and immediate help are very important following an accident. The earlier the detection and treatment is carried out, the better the prognosis and chance of recovery of the patients. It is even more important when considering the elderly. Once the elderly have an accident, they not only physically injure their body, but also impair their mental and social ability, and may develop severe sequela. In the last few years, the continuously developed Android cell phone has been applied to many fields. Despite the nature of the GPS positioning system that the mobile phone currently uses, most applications used are SMS and file transfers. However, these biomedical measurement signals, passing through a transferring interface and uploading to the mobile, result the little really successful cases with the remote health care feasibility. This research will develop an Android cell phone which combines the functionality of an ECG, pulsimeter, SpO2, and BAD (Body Activity Detector for real-time monitoring of the activity of a body. When an accident occurs, the signals go through Android smart phone, immediately notifying the remote ends and providing first time help.

  1. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  2. Smart modeling and simulation for complex systems practice and theory

    CERN Document Server

    Ren, Fenghui; Zhang, Minjie; Ito, Takayuki; Tang, Xijin

    2015-01-01

    This book aims to provide a description of these new Artificial Intelligence technologies and approaches to the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field such as the platforms and/or the software tools for smart modeling and simulating complex systems. These tasks are difficult to accomplish using traditional computational approaches due to the complex relationships of components and distributed features of resources, as well as the dynamic work environments. In order to effectively model the complex systems, intelligent technologies such as multi-agent systems and smart grids are employed to model and simulate the complex systems in the areas of ecosystem, social and economic organization, web-based grid service, transportation systems, power systems and evacuation systems.

  3. Analysis and control of complex dynamical systems robust bifurcation, dynamic attractors, and network complexity

    CERN Document Server

    Imura, Jun-ichi; Ueta, Tetsushi

    2015-01-01

    This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

  4. Nanomaterials driven energy, environmental and biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F. [Department of Physics, College of Arts and Sciences, Tuskegee University, Tuskegee, AL 36088 (United States)

    2014-03-31

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO{sub 2} nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH{sub 2} and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe{sub 2}O{sub 4} have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)

  5. Nanomaterials driven energy, environmental and biomedical research

    Science.gov (United States)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F.

    2014-03-01

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO2 nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH2 and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe2O4 have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI).

  6. From Hamiltonian chaos to complex systems a nonlinear physics approach

    CERN Document Server

    Leonetti, Marc

    2013-01-01

    From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of  research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...

  7. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations.

  8. Complexity

    CERN Document Server

    Gershenson, Carlos

    2011-01-01

    The term complexity derives etymologically from the Latin plexus, which means interwoven. Intuitively, this implies that something complex is composed by elements that are difficult to separate. This difficulty arises from the relevant interactions that take place between components. This lack of separability is at odds with the classical scientific method - which has been used since the times of Galileo, Newton, Descartes, and Laplace - and has also influenced philosophy and engineering. In recent decades, the scientific study of complexity and complex systems has proposed a paradigm shift in science and philosophy, proposing novel methods that take into account relevant interactions.

  9. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  10. The BIRN Project: Distributed Information Infrastructure and Multi-scale Imaging of the Nervous System (BIRN = Biomedical Informatics Research Network)

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences and protein products. The general premise of the neuroscience goal is simple; namely that with "complete" knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their ...

  11. Analyzing Adversaries as Complex Adaptive Systems

    Science.gov (United States)

    2006-10-01

    reflecting the general population’s sympathy (support) for the terrorist’s cause, is depressed as the terrorist attack magnitude increases, as shown in...Cowan, George A., Pines, David, Meltzer , David, eds., 1994, Complexity: Metaphors, Models, and Reality, Reading, Massachusetts: Addison-Wesley

  12. Spatial data infrastructures as complex adaptive systems

    NARCIS (Netherlands)

    Grus, L.; Crompvoets, J.W.H.C.; Bregt, A.K.

    2010-01-01

    Many researchers throughout the world have been struggling to better understand and describe spatial data infrastructures (SDIs). Our knowledge of the real forces and mechanisms behind SDIs is still very limited. The reason for this difficulty might lie in the complex, dynamic and multifaceted natur

  13. Complexation of Si in Hydrothermal Systems

    Institute of Scientific and Technical Information of China (English)

    樊文苓; 王声远; 田弋夫; 陈紫新

    2001-01-01

    The Au-SiO2 and Sn-SiO2 complexes have been experimentally calibrated at varying temperature, silica concentration and pH:Au+ + H3SiO4-=AuH3SiO4 lgK = - 1. 65436 + 9611.21/TSn4 + + 4H3SiO4-=Sn(H3SiO4)4 lgK200℃ = 42.73Compared with Au-Cl, Au-HS and Sn-OH complexes, AuH3SiO4 and Sn(H3SiO4)4 complexes can be recognized as the dominant transport forms in Si-bearing solutions under pH and Eh con ditions of general interest. The decrease of SiO2 concentration and oxygen fugacity would re verse the direction of dissolution-complexing reactions, resulting in the precipitation of gold and silica, as well as cassiterite and silica. This study illustrates the significance of SiO2-complexa tion in hydrothermal solutions for gold, tin and other metallizations.

  14. Environmental and biomedical applications of natural metal stable isotope variations

    Science.gov (United States)

    Bullen, T.D.; Walczyk, T.

    2009-01-01

    etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.

  15. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  16. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  17. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D; Bronzino, Joseph D

    2006-01-01

    Over the last century,medicine has come out of the "black bag" and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiology to informatics and signal processing. Reflecting the enormous growth and change in biomedical engineering during the infancy of the 21st century, The Biomedical Engineering Handbook enters its third edition as a set of three carefully focused and

  18. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  19. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  20. Imaging tissues for biomedical research using the high-resolution micro-tomography system nanotom® m

    Science.gov (United States)

    Deyhle, Hans; Schulz, Georg; Khimchenko, Anna; Bikis, Christos; Hieber, Simone E.; Jaquiery, Claude; Kunz, Christoph; Müller-Gerbl, Magdalena; H öchel, Sebastian; Saxer, Till; Stalder, Anja K.; Ilgenstein, Bernd; Beckmann, Felix; Thalmann, Peter; Buscema, Marzia; Rohr, Nadja; Holme, Margaret N.; Müller, Bert

    2016-10-01

    Micro computed tomography (mCT) is well established in virtually all fields of biomedical research, allowing for the non-destructive volumetric visualization of tissue morphology. A variety of specimens can be investigated, ranging from soft to hard tissue to engineered structures like scaffolds. Similarly, the size of the objects of interest ranges from a fraction of a millimeter to several tens of centimeters. While synchrotron radiation-based μCT still offers unrivaled data quality, the ever-improving technology of cathodic tube-based machines offers a valuable and more accessible alternative. The Biomaterials Science Center of the University of Basel operates a nanotomOR m (phoenix|x-ray, GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany), with a 180 kV source and a minimal spot size of about 0.9 μm. Through the adjustable focus-specimen and focus-detector distances, the effective pixel size can be adjusted from below 500 nm to about 80 μm. On the high-resolution side, it is for example possible to visualize the tubular network in sub-millimeter thin dentin specimens. It is then possible to locally extract parameters such as tubule diameter, density, or alignment, giving information on cell movements during tooth formation. On the other side, with a horizontal shift of the 3,072 pixels x 2,400 pixels detector, specimens up to 35 cm in diameter can be scanned. It is possible, for example, to scan an entire human knee, albeit with inferior resolution. Lab source μCT machines are thus a powerful and flexible tool for the advancement of biomedical research, and a valuable and more accessible alternative to synchrotron radiation facilities.

  1. Confluence and convergence: team effectiveness in complex systems.

    Science.gov (United States)

    Porter-OʼGrady, Tim

    2015-01-01

    Complex adaptive systems require nursing leadership to rethink organizational work and the viability and effectiveness of teams. Much of emergent thinking about complexity and systems and organizations alter the understanding of the nature and function of teamwork and the configuration and leadership of team effort. Reflecting on basic concepts of complexity and their application to team formation, dynamics, and outcomes lays an important foundation for effectively guiding the strategic activity of systems through the focused tactical action of teams. Basic principles of complexity, their impact on teams, and the fundamental elements of team effectiveness are explored.

  2. Quantum information science as an approach to complex quantum systems

    CERN Document Server

    Nielsen, M A

    2003-01-01

    What makes quantum information science a science? These notes explore the idea that quantum information science may offer a powerful approach to the study of complex quantum systems. We discuss how to quantify complexity in quantum systems, and argue that there are two qualitatively different types of complex quantum system. We also explore ways of understanding complex quantum dynamics by quantifying the strength of a quantum dynamical operation as a physical resource. This is the text for a talk at the ``Sixth International Conference on Quantum Communication, Measurement and Computing'', held at MIT, July 2002. Viewgraphs for the talk may be found at http://www.qinfo.org/talks/.

  3. Advances in complex societal, environmental and engineered systems

    CERN Document Server

    Essaaidi, Mohammad

    2017-01-01

    This book addresses recent technological progress that has led to an increased complexity in many natural and artificial systems. The resulting complexity research due to the emergence of new properties and spatio-temporal interactions among a large number of system elements - and between the system and its environment - is the primary focus of this text. This volume is divided into three parts: Part one focuses on societal and ecological systems, Part two deals with approaches for understanding, modeling, predicting and mastering socio-technical systems, and Part three includes real-life examples. Each chapter has its own special features; it is a self-contained contribution of distinguished experts working on different fields of science and technology relevant to the study of complex systems. Advances in Complex Systems of Contemporary Reality: Societal, Environmental and Engineered Systems will provide postgraduate students, researchers and managers with qualitative and quantitative methods for handling th...

  4. Systems Thinking Managing Chaos and Complexity

    OpenAIRE

    Sönmez, Selçuk

    2014-01-01

    This book is the third edition of the Author’s System Thinking and was first published in 1999 by Butterworth-Heinemann Title. This book is a direct result of the author's work with the systems methodology first introduced by the author's partner, Russell Ackoff, one of the founding fathers of systems thinking. Ackoff reported that it was the most comprehensive systems methodology he has seen.

  5. The Computational Complexity of Evolving Systems

    NARCIS (Netherlands)

    Verbaan, P.R.A.

    2006-01-01

    Evolving systems are systems that change over time. Examples of evolving systems are computers with soft-and hardware upgrades and dynamic networks of computers that communicate with each other, but also colonies of cooperating organisms or cells within a single organism. In this research, several m

  6. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    OpenAIRE

    Hana Koorehdavoudi; Paul Bogdan

    2016-01-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of t...

  7. Complex Systems: Science for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Charles V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Awschalom, David [Univ. of California, Santa Barbara, CA (United States); Bawendi, Moungi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Frechet, Jean [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Murphy, Donald [Lucent Technologies (United States); Stupp, Sam [Northwestern Univ., Evanston, IL (United States); Wolynes, Peter [Univ. of Illinois, Urbana, IL (United States)

    1999-03-06

    The workshop was designed to help define new scientific directions related to complex systems in order to create new understanding about the nano world and complicated, multicomponent structures. Five emerging themes regarding complexity were covered: Collective Phenomena; Materials by Design; Functional Systems; Nature's Mastery; and New Tools.

  8. Existence and stability of fractional complex Liu system

    Directory of Open Access Journals (Sweden)

    Rabha W. Ibrahim

    2014-04-01

    Full Text Available In this work, we consider the stability and stabilization of complex fractional Liu system. We assume the fractional calculus in sense of the Caputo derivatives (real and complex. The method based on stability theory of fractional-order systems. Numerical solutions are imposed. Moreover, conditions of unique solution are established.

  9. Complex, Dynamic Systems: A New Transdisciplinary Theme for Applied Linguistics?

    Science.gov (United States)

    Larsen-Freeman, Diane

    2012-01-01

    In this plenary address, I suggest that Complexity Theory has the potential to contribute a transdisciplinary theme to applied linguistics. Transdisciplinary themes supersede disciplines and spur new kinds of creative activity (Halliday 2001 [1990]). Investigating complex systems requires researchers to pay attention to system dynamics. Since…

  10. Research on Ultrasonic NDT System for Complex Surface Parts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Aimed at inner quality controlling for complex surface parts, an ultrasonic testing system for complex surface parts has been developed using ultrasonic NDT(Non-destructive Testing)which has features of strong penetration, well direction, high sensitivity, low cost, and harmless to people and material. The technologies of the computer, NC (Numerical control), precision mechanism, signal analysis and processing were integrated in the testing system. The system includes a PC, system software, ultrasonic data ...

  11. INFORMATION AND COMPLEXITY IN CONTROL SYSTEMS: A TUTORIAL

    Institute of Scientific and Technical Information of China (English)

    WANG Leyi

    2001-01-01

    This is a tutorial paper which presents schematically theconcepts of information, uncertainty, and complexity, and their relationships in their applications to control systems. By focusing on exact or lower bounds on achievable performance in the presence of uncertainties, studies of complexity in a control system can potentially reveal fundamentally limiting factors of the system, suggest beneficial modifications to system structures and hardware configurations to remove these limitations, provide benchmark values for evaluating a design and for quantifying rooms for performance improvement, and demonstrate intrinsic tradeoffs. Compared to its counterparts in communications (Shannon's information theory), computations (computational complexity and information-based complexity), and approximations (n-widths and Kolmogorov entropy), studies of information and complexity in control systems encounter further challenges, such as characterization of feedback robustness, interaction between identification and control, and co-existence of deterministic and stochastic uncertainties. Some of these issues are outlined and discussed.

  12. Complex systems fractionality, time-delay and synchronization

    CERN Document Server

    Sun, Jian-Qiao

    2012-01-01

    "Complex Systems: Fractionality, Time-delay and Synchronization" covers the most recent developments and advances in the theory and application of complex systems in these areas. Each chapter was written by scientists highly active in the field of complex systems. The book discusses a new treatise on fractional dynamics and control, as well as the new methods for differential delay systems and control. Lastly, a theoretical framework for the complexity and synchronization of complex system is presented. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. It can also serve as a reference book for graduate students in physics, applied mathematics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Jian-Qiao Sun is a Professor at the University of California, Merced, USA.

  13. Understanding complex urban systems multidisciplinary approaches to modeling

    CERN Document Server

    Gurr, Jens; Schmidt, J

    2014-01-01

    Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...

  14. No Fundamental Limitation on Studying Living Organisms and Other Complex Systems with Statistical Methods

    CERN Document Server

    Thomas, Drew M

    2012-01-01

    Although the state of living organisms is affected by many interrelated and unidentified variables, one need not invoke this to explain the "Truth Wears Off" or "decline" effect, and this complexity imposes no fundamental limitation on statistical inference. Similar "decline" effects occur in physics as well as the biomedical sciences; selective reporting and publication bias, and scientists' biases in favour of reporting eye-catching results (in biomedical sciences and psychology) or conforming to others' results (in physics) better explain this feature of the "Truth Wears Off" effect than Rabin's suggested limitation on statistical inference.

  15. ARTIFICIAL LIVING SYSTEM AND ITS COMPLEXITY

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongguang

    2001-01-01

    In this paper the author shows some artificial living systems, whose basic life characteristics are explored, especially the differentiation in evolution from single cellular to multi-cellular organism. In addition, the author discusses diversity and evolvability also.The author gives a modified entropy function to measure the diversity. Finally, the author drops an open problem about the structure of "gene" of artificial living systems, so that we can measure the evolutionary order between the artificial living systems.

  16. Sensors for biomedical applications

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.

  17. What is complex in the complex world? Niklas Luhmann and the theory of social systems

    Directory of Open Access Journals (Sweden)

    Clarissa Eckert Baeta Neves

    Full Text Available This paper discusses Niklas Luhmann's understanding of complexity, its function in the theory and the different ways of its use. It starts with the paradigmatic change that occurred in the field of general Science, with the rupture of the Newtonian model. In the 20th century, the paradigm of order, symmetry, regularity, regulation of the intellect to things, collapses.Based on new formulations of Physics, Chemistry, etc., a new universe is built on bases radically opposed to those of modern Science.Chaos, the procedural irreversibility, indeterminism, the observer and the complexity are rehabilitated.This new conceptual context served as substratum to Niklas Luhmann's theoretical reflection.With his Theory of Social Systems, he proposes the reduction of the world's complexity.Social systems have the function of reducing complexity because of their difference in relation to the environment.On the other hand, the reduction of complexity also creates its own complexity. Luhmann defines complexity as the moment when it is not possible anymore for each element to relate at any moment with all the others. Complexity forces the selection, what means contingency and risk. Luhmann expands the concept of complexity when he introduces the figure of the observer and the distinction of complexity as a unit of a multiplicity. He also deals with the limit of relations in connection, the time factor, the self-reference of operations and the representation of complexity in the form of sense. To conclude, the paper discusses the complexity in the system of science, the way it reduces internal and external complexity, in accordance in its own operative basis.

  18. Size and complexity in model financial systems.

    Science.gov (United States)

    Arinaminpathy, Nimalan; Kapadia, Sujit; May, Robert M

    2012-11-06

    The global financial crisis has precipitated an increasing appreciation of the need for a systemic perspective toward financial stability. For example: What role do large banks play in systemic risk? How should capital adequacy standards recognize this role? How is stability shaped by concentration and diversification in the financial system? We explore these questions using a deliberately simplified, dynamic model of a banking system that combines three different channels for direct transmission of contagion from one bank to another: liquidity hoarding, asset price contagion, and the propagation of defaults via counterparty credit risk. Importantly, we also introduce a mechanism for capturing how swings in "confidence" in the system may contribute to instability. Our results highlight that the importance of relatively large, well-connected banks in system stability scales more than proportionately with their size: the impact of their collapse arises not only from their connectivity, but also from their effect on confidence in the system. Imposing tougher capital requirements on larger banks than smaller ones can thus enhance the resilience of the system. Moreover, these effects are more pronounced in more concentrated systems, and continue to apply, even when allowing for potential diversification benefits that may be realized by larger banks. We discuss some tentative implications for policy, as well as conceptual analogies in ecosystem stability and in the control of infectious diseases.

  19. Understanding Information System Failures from the Complexity Perspective

    Directory of Open Access Journals (Sweden)

    Indranil Mukherjee

    2008-01-01

    Full Text Available Problem Statement: Failure of computer based information systems had been a source of major concern in the modern technological era. Information System (IS researchers have spent a significant amount of their time and effort in understanding the recurring failure of Information Systems. Studies in this regard have ranged from being primarily technical in their approach to those having a much stronger socio-technical bias. The purpose of this paper was to analyze information system failures using the lens of complexity theory. Approach: Complexity theory was proposed as an alternative paradigm for understanding and analyzing Information System failures. Other research frameworks within which system failures were studied were also discussed. The core concepts of complexity and the salient features of information systems were elucidated. It was shown that information systems could be interpreted as complex entities both from the structural and functional viewpoints. Pictorial representations were given to corroborate this point. Results: It was shown that the complexity framework could be utilized to understand the different types of system failures, viz. process, correspondence and interaction failures in a more meaningful way. The idea of recurrent failures was also examined in the context of complexity theory. It was shown how such failures could be tackled much better by using lessons drawn from complexity. The inadequacy of the systems approach was pointed out that necessiated the introduction of complexity. Conclusions: It appeared that adopting certain features of complexity in the analysis, design and management of information systems could help in avoiding certain failures related to information systems. Some of these features were facilitating the process of co-evolution, exploring the space of possibilities and encouraging self-organization and emergent behaviour.

  20. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.

  1. A high accuracy broadband measurement system for time resolved complex bioimpedance measurements.

    Science.gov (United States)

    Kaufmann, S; Malhotra, A; Ardelt, G; Ryschka, M

    2014-06-01

    Bioimpedance measurements are useful tools in biomedical engineering and life science. Bioimpedance is the electrical impedance of living tissue and can be used in the analysis of various physiological parameters. Bioimpedance is commonly measured by injecting a small well known alternating current via surface electrodes into an object under test and measuring the resultant surface voltages. It is non-invasive, painless and has no known hazards. This work presents a field programmable gate array based high accuracy broadband bioimpedance measurement system for time resolved bioimpedance measurements. The system is able to measure magnitude and phase of complex impedances under test in a frequency range of about 10-500 kHz with excitation currents from 10 µA to 5 mA. The overall measurement uncertainties stay below 1% for the impedance magnitude and below 0.5° for the phase in most measurement ranges. Furthermore, the described system has a sample rate of up to 3840 impedance spectra per second. The performance of the bioimpedance measurement system is demonstrated with a resistor based system calibration and with measurements on biological samples.

  2. Statistics in biomedical research

    OpenAIRE

    González-Manteiga, Wenceslao; Cadarso-Suárez, Carmen

    2007-01-01

    The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new p...

  3. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  4. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  5. A cross-lingual framework for monolingual biomedical information retrieval

    NARCIS (Netherlands)

    Trieschnigg, D.; Hiemstra, D.; Jong, F. de; Kraaij, W.

    2010-01-01

    An important challenge for biomedical information retrieval (IR) is dealing with the complex, inconsistent and ambiguous biomedical terminology. Frequently, a concept-based representation defined in terms of a domain-specific terminological resource is employed to deal with this challenge. In this p

  6. Complex Dynamical Behavior in Hybrid Systems

    Science.gov (United States)

    2012-09-29

    2010. J15. T. Hu, T. Thibodeau , A.R. Teel, ``A Unified Lyapunov Approach to Analysis of Oscillations and Stability for Systems With Piecewise...Hu, T. Thibodeau , A.R. Teel, ``Analysis of oscillation and stability for systems with piecewise linear components via saturation functions

  7. Big Data Processing in Complex Hierarchical Network Systems

    CERN Document Server

    Polishchuk, Olexandr; Tyutyunnyk, Maria; Yadzhak, Mykhailo

    2016-01-01

    This article covers the problem of processing of Big Data that describe process of complex networks and network systems operation. It also introduces the notion of hierarchical network systems combination into associations and conglomerates alongside with complex networks combination into multiplexes. The analysis is provided for methods of global network structures study depending on the purpose of the research. Also the main types of information flows in complex hierarchical network systems being the basic components of associations and conglomerates are covered. Approaches are proposed for creation of efficient computing environments, distributed computations organization and information processing methods parallelization at different levels of system hierarchy.

  8. Complexity analyses of multi-wing chaotic systems

    Institute of Scientific and Technical Information of China (English)

    He Shao-Bo; Sun Ke-Hui; Zhu Cong-Xu

    2013-01-01

    The complexities of multi-wing chaotic systems based on the modified Chen system and a multi-segment quadratic function are investigated by employing the statistical complexity measure (SCM) and the spectral entropy (SE) algorithm.How to choose the parameters of the SCM and SE algorithms is discussed.The results show that the complexity of the multi-wing chaotic system does not increase as the number of wings increases,and it is consistent with the results of the Grassberger-Procaccia (GP) algorithm and the largest Lyapunov exponent (LLE) of the multi-wing chaotic system.

  9. Complexity analyses of multi-wing chaotic systems

    Science.gov (United States)

    He, Shao-Bo; Sun, Ke-Hui; Zhu, Cong-Xu

    2013-05-01

    The complexities of multi-wing chaotic systems based on the modified Chen system and a multi-segment quadratic function are investigated by employing the statistical complexity measure (SCM) and the spectral entropy (SE) algorithm. How to choose the parameters of the SCM and SE algorithms is discussed. The results show that the complexity of the multi-wing chaotic system does not increase as the number of wings increases, and it is consistent with the results of the Grassberger—Procaccia (GP) algorithm and the largest Lyapunov exponent (LLE) of the multi-wing chaotic system.

  10. Carbon nanotubes: engineering biomedical applications.

    Science.gov (United States)

    Gomez-Gualdrón, Diego A; Burgos, Juan C; Yu, Jiamei; Balbuena, Perla B

    2011-01-01

    Carbon nanotubes (CNTs) are cylinder-shaped allotropic forms of carbon, most widely produced under chemical vapor deposition. They possess astounding chemical, electronic, mechanical, and optical properties. Being among the most promising materials in nanotechnology, they are also likely to revolutionize medicine. Among other biomedical applications, after proper functionalization carbon nanotubes can be transformed into sophisticated biosensing and biocompatible drug-delivery systems, for specific targeting and elimination of tumor cells. This chapter provides an introduction to the chemical and electronic structure and properties of single-walled carbon nanotubes, followed by a description of the main synthesis and post-synthesis methods. These sections allow the reader to become familiar with the specific characteristics of these materials and the manner in which these properties may be dependent on the specific synthesis and post-synthesis processes. The chapter ends with a review of the current biomedical applications of carbon nanotubes, highlighting successes and challenges.

  11. Complexity in practice: understanding primary care as a complex adaptive system

    Directory of Open Access Journals (Sweden)

    Beverley Ellis

    2010-06-01

    Conclusions The results are real-world exemplars of the emergent properties of complex adaptive systems. Improving clinical governance in primary care requires both complex social interactions and underpinning informatics. The socio-technical lessons learned from this research should inform future management approaches.

  12. MODELING AND ANALYSIS OF ENERGY SYSTEM BASED ON COMPLEX ADAPTIVE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    QIU Shiming; GU Peiliang

    2004-01-01

    Complex adaptive system (CAS) is a kind of complex system in natural and artificial systems. In this paper, the theory of complex adaptive system is introduced at first. Considering the characteristic of energy system, it can be regarded as a complex adaptive system. After the evolutionary law is analysed, the energy complex system model is established based on CAS and application tool SWARM, which is a simulation software platform. The model differs from the models as well as methods developed before. As an application, China's energy system is simulated with the model established above.China's future total energy demand in the future, energy structure and related in fiuence on environment are presented.

  13. 5th International Conference on Complex Systems Design & Management

    CERN Document Server

    Krob, Daniel; Morel, Gérard; Roussel, Jean-Claude

    2015-01-01

    This book contains all refereed papers that were accepted to the fifth edition of the « Complex Systems Design & Management » (CSD&M 2014) international conference which took place in Paris (France) on the November 12-14, 2014. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, transportation & systems, defense & security, electronics & robotics, energy & environment, health & welfare services, software & e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2014 conference is organized under the guidance of the CESAMES non-profit organization, addres...

  14. Complex systems and networks dynamics, controls and applications

    CERN Document Server

    Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu

    2016-01-01

    This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...

  15. Observation-Driven Configuration of Complex Software Systems

    CERN Document Server

    Sage, Aled

    2010-01-01

    The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of...

  16. Complex systems relationships between control, communications and computing

    CERN Document Server

    2016-01-01

    This book gives a wide-ranging description of the many facets of complex dynamic networks and systems within an infrastructure provided by integrated control and supervision: envisioning, design, experimental exploration, and implementation. The theoretical contributions and the case studies presented can reach control goals beyond those of stabilization and output regulation or even of adaptive control. Reporting on work of the Control of Complex Systems (COSY) research program, Complex Systems follows from and expands upon an earlier collection: Control of Complex Systems by introducing novel theoretical techniques for hard-to-control networks and systems. The major common feature of all the superficially diverse contributions encompassed by this book is that of spotting and exploiting possible areas of mutual reinforcement between control, computing and communications. These help readers to achieve not only robust stable plant system operation but also properties such as collective adaptivity, integrity an...

  17. Forewarning of Failure in Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, Robert K [ORNL; Hively, Lee M [ORNL; Prowell, Stacy J [ORNL; Schlicher, Bob G [ORNL; Sheldon, Frederick T [ORNL

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain is failure in critical equipment. A second is aging bridges. We discuss the workings of such a system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.

  18. Keynote Lecture: The Problems and Challenges in Biomedical Sciences

    OpenAIRE

    Bruce Albert

    2015-01-01

    Distressed by the perverse incentives that have generated the current hyper-competitive biomedical research environment in the United States, four of us published an open-access article in April 2014 entitled: Rescuing US biomedical research from its systemic flaws (Alberts, B., Kirschner, Marc W., Tilghman, Shirley, and  Varmus, H.; Proc. Natl. Acad. Sci. USA 111, 5773-5777 (2014)). As announced in our follow-up piece, Opinion: Addressing systemic problems in the biomedical research enterpri...

  19. 6th International Conference on Complex Systems Design & Management

    CERN Document Server

    Bocquet, Jean-Claude; Bonjour, Eric; Krob, Daniel

    2016-01-01

    This book contains all refereed papers that were accepted to the sixth edition of the « Complex Systems Design & Management Paris » (CSD&M Paris 2015) international conference which took place in Paris (France) on November 23-25, 2015. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautics & aerospace, defense & security, electronics & robotics, energy & environment, health & welfare, software & e-services, transportation), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systems modeling tools) and systems types (artificial ecosystems, embedded systems, software & information systems, systems of systems, transportation systems). The CSD&M Paris 2015 conference is organized under the guidance of the CESAMES non-profit organization, address...

  20. Fourth International Conference on Complex Systems Design & Management

    CERN Document Server

    Boulanger, Frédéric; Krob, Daniel; Marchal, Clotilde

    2014-01-01

    This book contains all refereed papers that were accepted to the fourth edition of the « Complex Systems Design & Management » (CSD&M 2013) international conference which took place in Paris (France) from December 4-6, 2013. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2013 conference is organized under the guidance of the CESAMES non-profit organization

  1. 7th International Conference on Complex Systems Design & Management

    CERN Document Server

    Goubault, Eric; Krob, Daniel; Stephan, François

    2017-01-01

    This book contains all refereed papers that were accepted to the seventh edition of the international conference « Complex Systems Design & Management Paris» (CSD&M Paris 2016) which took place in Paris (France) on the December 13-14, 2016 These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, defense & security, electronics & robotics, energy & environment, healthcare & welfare services, software & e-services, transportation), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, system is modeling tools) and system types (artificial ecosystems, embedded systems, software & information systems, systems of systems, transportation systems). The CSD&M Paris 2016 conference is organized under the guidance of the CESAMES non-profit orga...

  2. Exploring subdomain variation in biomedical language

    Directory of Open Access Journals (Sweden)

    Séaghdha Diarmuid Ó

    2011-05-01

    Full Text Available Abstract Background Applications of Natural Language Processing (NLP technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. Results Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. Conclusions We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers.

  3. Theory and model of water resources complex adaptive allocation system

    Institute of Scientific and Technical Information of China (English)

    ZHAOJianshi; WANGZhongjing; WENGWenbin

    2003-01-01

    Complex adaptive system theory is a new and important embranchment of system science,which provides a new thought to research water resources allocation system.Based on the analysis of complexity and complex adaptive mechanism of water resources allocation system,a fire-new analysis model is presented in this paper.With the description of Dynamical mechanism of system,behavior characters of agents and the evalustion method of system status,an integrity research system is built to analyse the evolvement rule of water resources allocation system.And a brief research for the impact of water resources allocation in beneficial regions of the Water Transfer from south to North China Project is conducted.

  4. Statistical Study of Complex Eigenvalues in Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Seifedine Kadry

    2010-05-01

    Full Text Available In this research we analyze the complex modes arising in multiple degree-of-freedom nonproportionally damped discrete linear stochastic systems. The complex eigenvalues intervene when unstable states like resonances, happened. Linear dynamic systems must generally be expected to exhibit non-proportional damping. Non-proportionally damped linear systems do not possess classical normal modes but possess complex modes. The proposed method is based on the transformation of random variables. The advantage of this method which give us the probability density function of real and imaginary part of the complex eigenvalue for stochastic mechanical system, i.e. a system with random output (Young's modulus, load. The proposed method is illustrated by considering numerical example based on a linear array of damped spring-mass oscillators. It is show n that the approach can predict the probability density function with good accuracy when compared with independent Monte-Carlo simulations.

  5. Synchronization in Complex Networks of Nonlinear Dynamical Systems

    CERN Document Server

    Wu, Chai Wah

    2007-01-01

    This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide

  6. Stability of Rotor Systems: A Complex Modelling Approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1996-01-01

    with the results of the classical approach using Rayleighquotients. Several rotor systems are tested: a simple Laval rotor, a Laval rotor with additional elasticity and damping in thr bearings, and a number of rotor systems with complex symmetric 4x4 randomly generated matrices.......A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...

  7. Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering

    Science.gov (United States)

    Bar-Yam, Yaneer

    We describe an analytic approach, multiscale analysis, that can demonstrate the fundamental limitations of decomposition based engineering for the development of highly complex systems. The interdependence of components and communication between design teams limits any planning based process. Recognizing this limitation, we found that a new strategy for constructing many highly complex systems should be modeled after biological evolution, or market economies, where multiple design efforts compete in parallel for adoption through testing in actual use. Evolution is the only process that is known to create highly complex systems.

  8. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  9. Complex Systems and Human Performance Modeling

    Science.gov (United States)

    2013-12-01

    constitute a cognitive architecture or decomposing the work flows and resource constraints that characterize human-system interactions, the modeler...also explored the generation of so-called “ fractal ” series from simple task network models where task times are the calculated by way of a moving

  10. Dynamical systems examples of complex behaviour

    CERN Document Server

    Jost, Jürgen

    2005-01-01

    Our aim is to introduce, explain, and discuss the fundamental problems, ideas, concepts, results, and methods of the theory of dynamical systems and to show how they can be used in speci?c examples. We do not intend to give a comprehensive overview of the present state of research in the theory of dynamical systems, nor a detailed historical account of its development. We try to explain the important results, often neglecting technical re?nements 1 and, usually, we do not provide proofs. One of the basic questions in studying dynamical systems, i.e. systems that evolve in time, is the construction of invariants that allow us to classify qualitative types of dynamical evolution, to distinguish between qualitatively di?erent dynamics, and to studytransitions between di?erent types. Itis also important to ?nd out when a certain dynamic behavior is stable under small perturbations, as well as to understand the various scenarios of instability. Finally, an essential aspect of a dynamic evolution is the transformat...

  11. 生物医学研究伦理审查信息系统的应用%Application of biomedical research ethics review information system

    Institute of Scientific and Technical Information of China (English)

    彭智才; 尚政琴

    2016-01-01

    目的:探讨生物医学研究伦理审查信息系统在医院生物医学研究伦理审查中的应用.方法:系统设计依据国际协调会议(ICH)、临床试验管理规范(GCP)、世界卫生组织与热带病研究部门(WHO/TDR)的《生物医学研究审查伦理委员会操作指南》以及世界卫生组织、发展伦理委员会审查能力的战略行动(WHO SIDCER)认证有关伦理委员会操作规范进行开发.结果:新型生物医学研究伦理审查系统的应用,解决了伦理委员会务实高效地开展伦理审查和研究者有效遵循伦理原则来开展研究的问题,实现了伦理审查的申请、受理、审查、传达决定以及跟踪审查等操作规程的电子程序化.结论:生物医学研究伦理审查系统的应用,使伦理审查流程更加合理,操作更加简捷,可极大提高医院伦理审查的工作效率,方便和规范伦理审查的文档管理,提升伦理审查的质量管理,对生物医学研究伦理审查工作具有重要意义.%Objective:To discuss the application of "ethical review of biomedical research" system in the hospital ethical review of biomedical research.Methods: To design based on the ICH GCP specification, WHO/TDR" biomedical research ethics committee guidelines" Systematic, WHO SIDCER authentication on the ethics committee specification development.Results: The application of this system can realize the ethical review application, acceptance, examination and decision, convey the follow-up review procedures for electronic program.Conclusion: "The ethical review of biomedical research ethics review" system to make process more reasonable, operation more convenient, greatly improves the work efficiency of the hospital ethics review, document management, facilitate and regulate the ethical review, enhance the quality of management ethics review, plays an important role inbiomedical research ethics review.

  12. Converging micro-nano-bio technologies towards integrated biomedical systems: state of the art and future perspectives under the EU-information & communication technologies program.

    Science.gov (United States)

    Lymberis, A

    2008-01-01

    Research and development at the convergence of microelectronics, nano-materials, biochemistry, measurement technology and information technology is leading to a new class of biomedical systems and applications e.g. molecular imaging, point of care testing, gene therapy and bionics (including on and inside the body sensors and other miniaturised smart systems) which are expected to revolutionise the healthcare provision and quality of life. In particular they are expected to identify diseases at the earliest possible stage, intervene before symptomatic disease becomes apparent and monitor both the progress of the diseases and the effect of intervention and therapeutic procedures. The group of EC-funded projects on Micro-Nano-Bio Convergence Systems, "so-called" MNBS, is made by projects developing systems that use a vast array of technologies to integrate across traditional boundaries between the micro-nano-bio, and info worlds, enabling a wide range of applications from health care to food quality monitoring. It includes mainly two sub-groups, one dealing with systems for in vitro molecular diagnosis and biological/biochemical analysis and the other is dealing with systems for in vivo interaction with the human body. Current status of development and future challenges, technological and socioeconomic, are briefly presented in this paper as background introductory information to the mini-symposium on MNBS. Relevant examples of R&D within the group will be presented in the mini-symposium.

  13. Complex fluids in biological systems experiment, theory, and computation

    CERN Document Server

    2015-01-01

    This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solut...

  14. Applications of Complex Systems in Business and Economy

    CERN Document Server

    Kitt, Robert

    2012-01-01

    In this paper the complex systems are discussed from the business and economics point of view. It will be showed and motivated that social systems are typically chaotic and/or non-linear and therefore non-equilibrium or complex systems. It is discussed that the rapid change global consumer behaviour is underway, that further increases the complexity in the business and management. For successful management under complexity, a following principles are offered: openness and international competition, tolerance and variety of the ideas, self-reliability and low dependence on external help. The paper discusses the opportunities and challenges in management under complexity from macro and micro economic perspective. It is motivated that small economies have good prospects to gain from the global processes underway, if they can demonstrate flexible production, reliable business ethics and good risk management. In this environment, the challenges for corporate managements are being also permanently changed: the bala...

  15. Methodology for Measuring the Complexity of Enterprise Information Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-07-01

    Full Text Available The complexity of enterprise information systems is currently a challenge faced not only by IT professionals and project managers, but also by the users of such systems. Current methodologies and frameworks used to design and implement information systems do not specifically deal with the issue of their complexity and, apart from few exceptions, do not at all attempt to simplify the complexity. This article presents the author's own methodology for managing complexity, which can be used to complement any other methodology and which helps limit the growth of complexity. It introduces its own definition and metric of complexity, which it defines as the sum of entities of the individual UML models of the given system, which are selected according to the MMDIS methodology so as to consistently describe all relevant content dimensions of the system. The main objective is to propose a methodology to manage information system complexity and to verify it in practice on a real-life SAP implementation project.

  16. Stripping syntax from complexity: An information-theoretical perspective on complex systems

    CERN Document Server

    Quax, Rick; Thurner, Stefan; Sloot, Peter M A

    2016-01-01

    Claude Shannons information theory (1949) has had a revolutionary impact on communication science. A crucial property of his framework is that it decouples the meaning of a message from the mechanistic details from the actual communication process itself, which opened the way to solve long-standing communication problems. Here we argue that a similar impact could be expected by applying information theory in the context of complexity science to answer long-standing, cross-domain questions about the nature of complex systems. This happens by decoupling the domain-specific model details (e.g., neuronal networks, ecosystems, flocks of birds) from the cross-domain phenomena that characterize complex systems (e.g., criticality, robustness, tipping points). This goes beyond using information theory as a non-linear correlation measure, namely it allows describing a complex system entirely in terms of the storage, transfer, and modification of informational bits. After all, a phenomenon that does not depend on model ...

  17. A Memristor-Based Hyperchaotic ComplexSystem and Its Adaptive Complex Generalized Synchronization

    Directory of Open Access Journals (Sweden)

    Shibing Wang

    2016-02-01

    Full Text Available This paper introduces a new memristor-based hyperchaotic complexsystem (MHCLS and investigates its adaptive complex generalized synchronization (ACGS. Firstly, the complex system is constructed based on a memristor-based hyperchaotic real Lü system, and its properties are analyzed theoretically. Secondly, its dynamical behaviors, including hyperchaos, chaos, transient phenomena, as well as periodic behaviors, are explored numerically by means of bifurcation diagrams, Lyapunov exponents, phase portraits, and time history diagrams. Thirdly, an adaptive controller and a parameter estimator are proposed to realize complex generalized synchronization and parameter identification of two identical MHCLSs with unknown parameters based on Lyapunov stability theory. Finally, the numerical simulation results of ACGS and its applications to secure communication are presented to verify the feasibility and effectiveness of the proposed method.

  18. Interdependent complex systems and critical infrastructures

    Science.gov (United States)

    D'Souza, Raissa

    2013-03-01

    Collections of networks are at the core of modern society, spanning technological, biological and social systems. Understanding the network structure of individual systems has lead to tremendous advances in the past decade. Yet, in reality, none of these individual networks lives in isolation and the consequences of interdependence can be surprising. Here we present results from random graph models of interacting networks. First, from a structural perspective, we show that interactions between different types of networks can enhance or delay the onset of large scale connectivity. Second, we consider a dynamical process on coupled networks. We use the classic Bak-Tang-Wiesenfeld sandpile model as an abstraction for cascades of load shedding and show that their can exist optimal levels of interconnectivity between networks that provide stabilizing effects with respect to cascades. We will also discuss recent advances in understanding interdependent social and technological networks which rely on coupling game theory to statistical physics and spatial models of random graphs that attempt to capture interdependencies in critical infrastructure systems.

  19. Theoretical optical spectroscopy of complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Conte, A. Mosca, E-mail: adriano.mosca.conte@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Violante, C., E-mail: claudia.violante@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Missori, M., E-mail: mauro.missori@isc.cnr.it [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Salaria Km 29.300, 00016 Monterotondo Scalo (Rome) (Italy); Bechstedt, F., E-mail: bech@ifto.physik.uni-jena.de [Institut fur Festkorpertheorie und -optik, Friedrich-Schiller-Universitat, Max-Wien-Platz 1, 07743 Jena (Germany); Teodonio, L. [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Istituto centrale per il restauro e la conservazione del patrimonio archivistico e librario (IC-RCPAL), Italian Minister for Cultural Heritage, Via Milano 76, 00184 Rome (Italy); Ippoliti, E.; Carloni, P. [German Research School for Simulation Sciences, Julich (Germany); Guidoni, L., E-mail: leonardo.guidoni@univaq.it [Università degli Studi di L’Aquila, Dipartimento di Chimica e Materiali, Via Campo di Pile, 67100 L’Aquila (Italy); Pulci, O., E-mail: olivia.pulci@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy)

    2013-08-15

    Highlights: ► We review some theoretical condensed matter ab initio spectroscopic computational techniques. ► We show several applications ranging from 0 to 3 dimensional systems. ► For each system studied, we show which kind of information it is possible to obtain by performing these calculations. -- Abstract: We review here some of the most reliable and efficient computational theoretical ab initio techniques for the prediction of optical and electronic spectroscopic properties and show some important applications to molecules, surfaces, and solids. We investigate the role of the solvent in the optical absorption spectrum of indole molecule. We study the excited-state properties of a photo-active minimal model molecule for the retinal of rhodopsin, responsible for vision mechanism in animals. We then show a study about spectroscopic properties of Si(1 1 1) surface. Finally we simulate a bulk system: paper, that is mainly made of cellulose, a pseudo-crystalline material representing 40% of annual biomass production in the Earth.

  20. Critical care nursing: Embedded complex systems.

    Science.gov (United States)

    Trinier, Ruth; Liske, Lori; Nenadovic, Vera

    2016-01-01

    Variability in parameters such as heart rate, respiratory rate and blood pressure defines healthy physiology and the ability of the person to adequately respond to stressors. Critically ill patients have lost this variability and require highly specialized nursing care to support life and monitor changes in condition. The critical care environment is a dynamic system through which information flows. The critical care unit is typically designed as a tree structure with generally one attending physician and multiple nurses and allied health care professionals. Information flow through the system allows for identification of deteriorating patient status and timely interventionfor rescue from further deleterious effects. Nurses provide the majority of direct patient care in the critical care setting in 2:1, 1:1 or 1:2 nurse-to-patient ratios. The bedside nurse-critically ill patient relationship represents the primary, real-time feedback loop of information exchange, monitoring and treatment. Variables that enhance information flow through this loop and support timely nursing intervention can improve patient outcomes, while barriers can lead to errors and adverse events. Examining patient information flow in the critical care environment from a dynamic systems perspective provides insights into how nurses deliver effective patient care and prevent adverse events.

  1. Thresholds and Complex Dynamics of Interdependent Cascading Infrastructure Systems

    Science.gov (United States)

    Carreras, B. A.; Newman, D. E.; Dobson, I.; Lynch, V. E.; Gradney, Paul

    Critical infrastructures have a number of the characteristic properties of complex systems. Among these are infrequent large failures through cascading events. These events, though infrequent, often obey a power law distribution in their probability versus size which suggests that conventional risk analysis does not apply to these systems. Real infrastructure systems typically have an additional layer of complexity, namely the heterogeneous coupling to other infrastructure systems that can allow a failure in one system to propagate to the other system. Here, we model the infrastructure systems through a network with complex system dynamics. We use both mean field theory to get analytic results and a numerical complex systems model, Demon, for computational results. An isolated system has bifurcated fixed points and a cascading threshold which is the same as the bifurcation point. When systems are coupled, this is no longer true and the cascading threshold is different from the bifurcation point of the fixed point solutions. This change in the cascading threshold caused by the interdependence of the system can have an impact on the "safe operation" of interdependent infrastructure systems by changing the critical point and even the power law exponent.

  2. Research Methodology on Language Development from a Complex Systems Perspective

    Science.gov (United States)

    Larsen-Freeman, Diane; Cameron, Lynne

    2008-01-01

    Changes to research methodology motivated by the adoption of a complexity theory perspective on language development are considered. The dynamic, nonlinear, and open nature of complex systems, together with their tendency toward self-organization and interaction across levels and timescales, requires changes in traditional views of the functions…

  3. Universal properties of dynamically complex systems - The organization of chaos

    Science.gov (United States)

    Procaccia, Itamar

    1988-06-01

    The complex dynamic behavior of natural systems far from equilibrium is discussed. Progress that has been made in understanding universal aspects of the paths to such behavior, of the trajectories at the borderline of chaos, and of the nature of the complexity in the chaotic regime, is reviewed. The emerging grammar of chaos is examined.

  4. Understanding Learner Agency as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…

  5. Communication and control for networked complex systems

    CERN Document Server

    Peng, Chen; Han, Qing-Long

    2015-01-01

    This book reports on the latest advances in the study of Networked Control Systems (NCSs). It highlights novel research concepts on NCSs; the analysis and synthesis of NCSs with special attention to their networked character; self- and event-triggered communication schemes for conserving limited network resources; and communication and control co-design for improving the efficiency of NCSs. The book will be of interest to university researchers, control and network engineers, and graduate students in the control engineering, communication and network sciences interested in learning the core principles, methods, algorithms and applications of NCSs.

  6. Lie and Noether symmetries of systems of complex ordinary differential equations and their split systems

    Indian Academy of Sciences (India)

    R Naz; F M Mahomed

    2014-07-01

    The Lie and Noether point symmetry analyses of a th-order system of complex ordinary differential equations (ODEs) with dependent variables are performed. The decomposition of complex symmetries of the given system of complex ODEs yields Lie- and Noether-like operators. The system of complex ODEs can be split into 2 coupled real partial differential equations (PDEs) and 2 Cauchy–Riemann (CR) equations. The classical approach is invoked to compute the symmetries of the 4 real PDEs and these are compared with the decomposed Lie- and Noetherlike operators of the system of complex ODEs. It is shown that, in general, the Lie- and Noether-like operators of the system of complex ODEs and the symmetries of the decomposed system of real PDEs are not the same. A similar analysis is carried out for restricted systems of complex ODEs that split into 2 coupled real ODEs. We summarize our findings on restricted complex ODEs in two propositions.

  7. Data Infrastructures for Asset Management Viewed as Complex Adaptive Systems

    NARCIS (Netherlands)

    Brous, P.A.; Overtoom, I.; Herder, P.M.; Versluis, A.; Janssen, M.F.W.H.A

    2014-01-01

    Data infrastructures represent information about physical reality. As reality changes, data infrastructures might also be subject to change. Researchers have increasingly approached physical infrastructures as being complex adaptive systems (CAS). Although physical infrastructures are often approach

  8. Distributed Diagnosis, Prognosis and Recovery for Complex Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Complex space systems such as lunar habitats generate huge amounts of data. For example, the International Space Station (ISS) has over 250,000 individually...

  9. Summer School Mathematical Foundations of Complex Networked Information Systems

    CERN Document Server

    Fosson, Sophie; Ravazzi, Chiara

    2015-01-01

    Introducing the reader to the mathematics beyond complex networked systems, these lecture notes investigate graph theory, graphical models, and methods from statistical physics. Complex networked systems play a fundamental role in our society, both in everyday life and in scientific research, with applications ranging from physics and biology to economics and finance. The book is self-contained, and requires only an undergraduate mathematical background.

  10. Safety control program for complex system based on behavior science

    Institute of Scientific and Technical Information of China (English)

    LIANG Mei-jian; YANG Guang; CHEN Da-wei

    2008-01-01

    To control complex system's safety effectively,safety control program was supported based on the principles of behavioral science that shapes organizational behavior,and organizational behavior produced individual behavior.The program can be structured into a model that consists of three modules including individual behavior rectification,organization behavior diagnosis and model of safety culture.The research result not only reveals the deep cause of complex system accidents but also provides structural descriptions with the accidents cause.

  11. Safety control program for complex system based on behavior science

    Institute of Scientific and Technical Information of China (English)

    LIANG Mei-jian; YANG Guang; CHEN Da-wei

    2008-01-01

    To control complex system's safety effectively, safety control program was supported based on the principles of behavioral science that shapes organizational be-havior, and organizational behavior produced individual behavior. The program can be structured into a model that consists of three modules including individual behavior rectifi-cation, organization behavior diagnosis and model of safety culture. The research result not only reveals the deep cause of complex system accidents but also provides structural descriptions with the accidents cause.

  12. Supply Chain as Complex Adaptive System and Its Modeling

    Institute of Scientific and Technical Information of China (English)

    MingmingWang

    2004-01-01

    Supply chain is a complex, hierarchical, integrated, open and dynamic network.Every node in the network is an independent business unit that unites other organizations to develop its value, the competition and cooperation between these units are basic impetus of the development and evolution of the supply chain system. The characteristics of supply chain as a complex adaptive system and its modeling are discussed in this paper, and use an example demonstrating the feasibility of CAS modeling in supply chain management study.

  13. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  14. Manpower development for the biomedical industry space.

    Science.gov (United States)

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  15. Statistical physics of complex systems a concise introduction

    CERN Document Server

    Bertin, Eric

    2016-01-01

    This course-tested primer provides graduate students and non-specialists with a basic understanding of the concepts and methods of statistical physics and demonstrates their wide range of applications to interdisciplinary topics in the field of complex system sciences, including selected aspects of theoretical modeling in biology and the social sciences. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting units, and on the other to predict the macroscopic, collective behavior of the system considered from the perspective of the microscopic laws governing the dynamics of the individual entities. These two goals are essentially also shared by what is now called 'complex systems science', and as such, systems studied in the framework of statistical physics may be considered to be among the simplest examples of complex systems – while also offering a rather well developed mathematical treatment. The second ...

  16. Dynamics of ranking processes in complex systems.

    Science.gov (United States)

    Blumm, Nicholas; Ghoshal, Gourab; Forró, Zalán; Schich, Maximilian; Bianconi, Ginestra; Bouchaud, Jean-Philippe; Barabási, Albert-László

    2012-09-21

    The world is addicted to ranking: everything, from the reputation of scientists, journals, and universities to purchasing decisions is driven by measured or perceived differences between them. Here, we analyze empirical data capturing real time ranking in a number of systems, helping to identify the universal characteristics of ranking dynamics. We develop a continuum theory that not only predicts the stability of the ranking process, but shows that a noise-induced phase transition is at the heart of the observed differences in ranking regimes. The key parameters of the continuum theory can be explicitly measured from data, allowing us to predict and experimentally document the existence of three phases that govern ranking stability.

  17. Recording information on protein complexes in an information management system

    Science.gov (United States)

    Savitsky, Marc; Diprose, Jonathan M.; Morris, Chris; Griffiths, Susanne L.; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S.; Blake, Richard; Stuart, David I.; Esnouf, Robert M.

    2011-01-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein–protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. PMID:21605682

  18. From the complex system leadership perspective: DNA leadership

    Directory of Open Access Journals (Sweden)

    Hasan Basri Gündüz

    2011-01-01

    Full Text Available Traditional leadership models are based on the paradigm of bureaucratic top-down administration. These models were suitable for industrial societies and organizations. However, the complex and quickly changing structure of information societies and because market conditions become more and more challenging conditions require different and more flexible organizational structures and leadership approaches. Complexity leadership approach is one of the approaches that were put forward to meet these needs. This approach suggests a new paradigm for leadership, and leadership is defined as a complex interactive dynamic from which adaptive outcomes (learning, innovation, and adaptability emerge.  Multi-cellular higher organisms are complex systems like information societies. In this context, DNA that leads the processes in multi-cellular higher organisms may be taken as a metaphor for leadership. In this study, considering the functions and role of DNA in a cell, the concept of DNA leadership was discussed from the complex system leadership perspective.

  19. Recording information on protein complexes in an information management system.

    Science.gov (United States)

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described.

  20. Cancer-drug associations: a complex system.

    Directory of Open Access Journals (Sweden)

    Ertugrul Dalkic

    Full Text Available BACKGROUND: Network analysis has been performed on large-scale medical data, capturing the global topology of drugs, targets, and disease relationships. A smaller-scale network is amenable to a more detailed and focused analysis of the individual members and their interactions in a network, which can complement the global topological descriptions of a network system. Analysis of these smaller networks can help address questions, i.e., what governs the pairing of the different cancers and drugs, is it driven by molecular findings or other factors, such as death statistics. METHODOLOGY/PRINCIPAL FINDINGS: We defined global and local lethality values representing death rates relative to other cancers vs. within a cancer. We generated two cancer networks, one of cancer types that share Food and Drug Administration (FDA approved drugs (FDA cancer network, and another of cancer types that share clinical trials of FDA approved drugs (clinical trial cancer network. Breast cancer is the only cancer type with significant weighted degree values in both cancer networks. Lung cancer is significantly connected in the FDA cancer network, whereas ovarian cancer and lymphoma are significantly connected in the clinical trial cancer network. Correlation and linear regression analyses showed that global lethality impacts the drug approval and trial numbers, whereas, local lethality impacts the amount of drug sharing in trials and approvals. However, this effect does not apply to pancreatic, liver, and esophagus cancers as the sharing of drugs for these cancers is very low. We also collected mutation target information to generate cancer type associations which were compared with the cancer type associations derived from the drug target information. The analysis showed a weak overlap between the mutation and drug target based networks. CONCLUSIONS/SIGNIFICANCE: The clinical and FDA cancer networks are differentially connected, with only breast cancer significantly

  1. An ensemble approach to the evolution of complex systems.

    Science.gov (United States)

    Arpağ, Göker; Erzan, Ayşe

    2014-04-01

    Adaptive systems frequently incorporate complex structures which can arise spontaneously and which may be nonadaptive in the evolutionary sense. We give examples from phase transition and fractal growth to develop the themes of cooperative phenomena and pattern formation. We discuss RNA interference and transcriptional gene regulation networks, where a major part of the topological properties can be accounted for by mere combinatorics. A discussion of ensemble approaches to biological systems and measures of complexity is presented, and a connection is established between complexity and fitness.

  2. Hybrid synchronization of two independent chaotic systems on complex network

    Indian Academy of Sciences (India)

    NIAN FUZHONG; LIU WEILONG

    2016-06-01

    The real network nodes are always interfered by other messages. So, how to realize the hybrid synchronization of two independent chaotic systems based on the complex network is very important. To solve this problem, two other problems should be considered. One is how the same network node of the complex network was affected by different information sources. Another is how to achieve hybrid synchronization on the network. In this paper, the theoretical analysis andnumerical simulation on various complex networks are implemented. The results indicate that the hybrid synchronization of two independent chaotic systems is feasible.

  3. An ensemble approach to the evolution of complex systems

    Indian Academy of Sciences (India)

    Göker Arpağ; Ayşe Erzan

    2014-04-01

    Adaptive systems frequently incorporate complex structures which can arise spontaneously and which may be non-adaptive in the evolutionary sense. We give examples from phase transition and fractal growth to develop the themes of cooperative phenomena and pattern formation. We discuss RNA interference and transcriptional gene regulation networks, where a major part of the topological properties can be accounted for by mere combinatorics. A discussion of ensemble approaches to biological systems and measures of complexity is presented, and a connection is established between complexity and fitness.

  4. Development of a Virtual Maintenance System for Complex Mechanical Product

    Directory of Open Access Journals (Sweden)

    Xin-hua Liu

    2013-01-01

    Full Text Available In order to improve the maintenance training effect of complex mechanical product, a virtual maintenance system was developed. The system framework was proposed, and the main functional modules were elaborated. A multilevel information representation model for complex mechanical product was put forward, and the flowchart of model transformation technology was designed. Moreover, a collision detection method based on hierarchical bounding volume was proposed, and the maintainability analysis and evaluation solution based on maintenance knowledge was presented. Finally, a prototype system was developed, and the proposed system was provedto be efficient through an example of hydraulic winch.

  5. Unified Modeling of Complex Real-Time Control Systems

    CERN Document Server

    Hai, He; Chi-Lan, Cai

    2011-01-01

    Complex real-time control system is a software dense and algorithms dense system, which needs modern software engineering techniques to design. UML is an object-oriented industrial standard modeling language, used more and more in real-time domain. This paper first analyses the advantages and problems of using UML for real-time control systems design. Then, it proposes an extension of UML-RT to support time-continuous subsystems modeling. So we can unify modeling of complex real-time control systems on UML-RT platform, from requirement analysis, model design, simulation, until generation code.

  6. 基于知识组织系统的生物医学文本挖掘研究%Research on Biomedical Text Mining Based on Knowledge Organization System

    Institute of Scientific and Technical Information of China (English)

    钱庆

    2016-01-01

    With the rapid development of biomedical information technology, biological medical literatures grow exponential y. It's hard to read and understand the required knowledge by manual, how to integrate knowledge from huge amounts of biomedical literatures, mining new knowledge has been becoming the current hot spot. Knowledge organization system construction in the field of biological medicine is more normative and complete than other fields, which is the foundation for biomedical text mining. A large number of text mining methodsand systems based on knowledge organization system have fast development. This paper investigates the existing medical knowledge organization systems and summarizes the process of biomedical text mining. It also summaries the researches andrecentprogressand analyzes the characteristics of biomedical text mining based on knowledge organization system. The knowledge organization systems play an important role in biomedical text mining and the chal enge for the current study are summarized, so as to provide references for biomedical workers.%随着生物医学信息技术的飞速发展,生物医学文献呈“指数型”增长,单纯依靠人工阅读获取和理解所需知识变得异常困难,如何从海量生物医学文献中整合已有知识、挖掘新知识成为当前研究热点。生物医学领域的知识组织系统建设相比其他领域更加规范和完整,为生物医学文本挖掘奠定了基础,大量基于知识组织系统的文本挖掘方法、系统得到快速发展。本文主要梳理现有医学知识组织系统,归纳生物医学文本挖掘的主要流程,按照挖掘任务探讨当前的主要研究和进展情况,并进一步分析基于知识组织系统的生物医学文本挖掘的特点,对知识组织系统在生物医学文本挖掘中发挥的主要作用和当前研究面临的挑战进行总结,以期为生物医学工作者提供借鉴。

  7. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society.

  8. Ethics in biomedical engineering.

    Science.gov (United States)

    Morsy, Ahmed; Flexman, Jennifer

    2008-01-01

    This session focuses on a number of aspects of the subject of Ethics in Biomedical Engineering. The session starts by providing a case study of a company that manufactures artificial heart valves where the valves were failing at an unexpected rate. The case study focuses on Biomedical Engineers working at the company and how their education and training did not prepare them to deal properly with such situation. The second part of the session highlights the need to learn about various ethics rules and policies regulating research involving human or animal subjects.

  9. Green photonics realized by optical complex systems

    Science.gov (United States)

    Nanri, Hiroto; Sasaki, Wakao

    2013-12-01

    We have experimentally demonstrated a new smart grid model which can control DC electric power flow autonomously among individual homes, by using an optical self-organized node with optical non-linear characteristics, and these homes are assumed to be installed by distributed power supplies, and electric power storage devices, and also supposed to be supplied partly by the commercial electric power grid utilities. An electric power network is composed of nodes and devises called Power Gate Unit (PGU). The nodes have optical nonlinearity for self-organizing informations about surplus or shortage of electric power as to individual homes. The PGU is a distributing unit of actual electric power based on above informations of power surplus or shortage at each home. The PGU at each home is electrically connected to both the onsite power supplies and household load such as a solar panel, a DC motor, and a storage battery as well as the commercial electric power grid utilities. In this work, we composed our experimental self-organized DC power grid with above components and supposed the supplied maximum power from the commercial electric power grid utilities to be limited to 5V-0.5A. In this network, information about surplus or shortage of electric power will propagate through the nodes. In the experiments, surplus electric current 0.4A at a particular node was distributed toward a PGU of another node suffering from shortage of electric current. We also confirmed in the experiments and simulations that even when signal propagation path was disconnected accidentally the network could recover an optimized path. The present smart grid system we have attained may be applied by optical fiber link in the near future because our essential components controlling PGU, i.e. the nodes are electro-optical hybrid which are easily applicable to fiber optical link so as to control electric power transmission line.

  10. Leadership and transitions: maintaining the science in complexity and complex systems.

    Science.gov (United States)

    Sturmberg, Joachim P; Martin, Carmel M

    2012-02-01

    It is the 'moral compass', however subtle, that underpins leadership. Leadership, meaning showing the way, demands as much conviction as gentile diplomacy in the discourse with supporters and detractors. In particular, leadership defends the goal by safeguarding its principles from its detractors. The authors writing in the Forum on Complexity in Medicine and Healthcare since its inception are leaders in an intellectual transition to complex systems thinking in medicine and health.

  11. An introduction to complex systems society, ecology, and nonlinear dynamics

    CERN Document Server

    Fieguth, Paul

    2017-01-01

    This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or per...

  12. Universality of flux-fluctuation law in complex dynamical systems

    Science.gov (United States)

    Zhou, Zhao; Huang, Zi-Gang; Huang, Liang; Lai, Ying-Cheng; Yang, Lei; Xue, De-Sheng

    2013-01-01

    Recent work has revealed a law governing flux fluctuation and the average flux in complex dynamical systems. We establish the universality of this flux-fluctuation law through the following steps: (i) We derive the law in a more general setting, showing that it depends on a single parameter characterizing the external driving; (ii) we conduct extensive numerical computations using distinct external driving, different network topologies, and multiple traffic routing strategies; and (iii) we analyze data from an actual vehicle traffic system in a major city in China to lend more credence to the universality of the flux-fluctuation law. Additional factors considered include flux fluctuation on links, window size effect, and hidden topological structures such as nodal degree correlation. Besides its fundamental importance in complex systems, the flux-fluctuation law can be used to infer certain intrinsic property of the system for potential applications such as control of complex systems for improved performance.

  13. An Agent Based Software Approach towards Building Complex Systems

    Directory of Open Access Journals (Sweden)

    Latika Kharb

    2015-08-01

    Full Text Available Agent-oriented techniques represent an exciting new means of analyzing, designing and building complex software systems. They have the potential to significantly improve current practice in software engineering and to extend the range of applications that can feasibly be tackled. Yet, to date, there have been few serious attempts to cast agent systems as a software engineering paradigm. This paper seeks to rectify this omission. Specifically, points to be argued include:firstly, the conceptual apparatus of agent-oriented systems is well-suited to building software solutions for complex systems and secondly, agent-oriented approaches represent a genuine advance over the current state of the art for engineering complex systems. Following on from this view, the major issues raised by adopting an agentoriented approach to software engineering are highlighted and discussed in this paper.

  14. Collaborative Management of Risks and Complexity in Banking Systems

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2012-01-01

    Full Text Available This paper describes types of risks encountered in banking systems and ways to prevent and eliminate them. Banking systems are presented in order to have a view on banking activities and processes that generates risks. The risks in banking processes are analyzed and the collaborative character of risk management is highlighted. A way to control the risk in banking systems through information security is described. Risks arise from system complexity, thus evaluation and comparison of different configurations are bases for improvements. The Halstead relative complexity function synthesizes system complexity from the point of view of the size of the variables analyzed and the heterogeneity between the variables. Section four was realized by Catalin SBORA.

  15. Correlations in complex nonlinear systems and quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, Innsbruck (Austria); Galla, Tobias [School of Physics and Astronomy, University of Manchester (United Kingdom)

    2010-07-01

    The dynamical evolution of classical complex systems such as coupled logistic maps or simple models of lattice gases and cellular automata can result in correlations between distant parts of the system. For the understanding of these systems, it is crucial to develop methods to characterize and quantify these multi-party correlations. On the other hand, the study of correlations between distant particles is also a central problem in the field of quantum information theory. There, correlations are often viewed as a resource and many tools have been developed for their characterization. In this talk, we explore the extent to which the tools from quantum information can be applied to study classical complex systems and whether they allow to study complex systems from a different perspective.

  16. PCA Fault Feature Extraction in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    ZHANG, J.

    2010-08-01

    Full Text Available Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc. may change significantly. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Therefore, utilizing real-time measurements of phasor measurement unit, based on principal components analysis technology, we have extracted successfully the distinct features of fault component. Of course, because of the complexity of different types of faults in electric power system, there still exists enormous problems need a close and intensive study.

  17. Semiotic aspects of control and modeling relations in complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, C.

    1996-08-01

    A conceptual analysis of the semiotic nature of control is provided with the goal of elucidating its nature in complex systems. Control is identified as a canonical form of semiotic relation of a system to its environment. As a form of constraint between a system and its environment, its necessary and sufficient conditions are established, and the stabilities resulting from control are distinguished from other forms of stability. These result from the presence of semantic coding relations, and thus the class of control systems is hypothesized to be equivalent to that of semiotic systems. Control systems are contrasted with models, which, while they have the same measurement functions as control systems, do not necessarily require semantic relations because of the lack of the requirement of an interpreter. A hybrid construction of models in control systems is detailed. Towards the goal of considering the nature of control in complex systems, the possible relations among collections of control systems are considered. Powers arguments on conflict among control systems and the possible nature of control in social systems are reviewed, and reconsidered based on our observations about hierarchical control. Finally, we discuss the necessary semantic functions which must be present in complex systems for control in this sense to be present at all.

  18. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  19. Controller Design of Complex System Based on Nonlinear Strength

    Directory of Open Access Journals (Sweden)

    Rongjun Mu

    2015-01-01

    Full Text Available This paper presents a new idea of controller design for complex systems. The nonlinearity index method was first developed for error propagation of nonlinear system. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of the system model. The algorithm of nonlinearity index according to engineering application is first proposed in this paper. Applying this method on nonlinear systems is an effective way to measure the nonlinear strength of dynamics model over the full flight envelope. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of system model. According to the different nonlinear strength of dynamical model, the control system is designed. The simulation time of dynamical complex system is selected by the maximum value of dynamic nonlinearity indices. Take a missile as example; dynamical system and control characteristic of missile are simulated. The simulation results show that the method is correct and appropriate.

  20. Reliability Architecture for Collaborative Robot Control Systems in Complex Environments

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2016-02-01

    Full Text Available Many different kinds of robot systems have been successfully deployed in complex environments, while research into collaborative control systems between different robots, which can be seen as a hybrid internetware safety-critical system, has become essential. This paper discusses ways to construct robust and secure reliability architecture for collaborative robot control systems in complex environments. First, the indication system for evaluating the realtime reliability of hybrid internetware systems is established. Next, a dynamic collaborative reliability model for components of hybrid internetware systems is proposed. Then, a reliable, adaptive and evolutionary computation method for hybrid internetware systems is proposed, and a timing consistency verification solution for collaborative robot control internetware applications is studied. Finally, a multi-level security model supporting dynamic resource allocation is established.