WorldWideScience

Sample records for biomedical complex systems

  1. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  2. Visualization and simulation of complex flows in biomedical engineering

    CERN Document Server

    Imai, Yohsuke; Ishikawa, Takuji; Oliveira, Mónica

    2014-01-01

    This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.

  3. Integrating systems biology models and biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V

    2011-08-11

    Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  4. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  5. Cardiovascular system simulation in biomedical engineering education.

    Science.gov (United States)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  6. Engineering of PDMS surfaces for use in microsystems for capture and isolation of complex and biomedically important proteins: epidermal growth factor receptor as a model system.

    Science.gov (United States)

    Lowe, Aaron M; Ozer, Byram H; Wiepz, Gregory J; Bertics, Paul J; Abbott, Nicholas L

    2008-08-01

    Elastomers based on poly(dimethylsiloxane) (PDMS) are promising materials for fabrication of a wide range of microanalytical systems due to their mechanical and optical properties and ease of processing. To date, however, quantitative studies that demonstrate reliable and reproducible methods for attachment of binding groups that capture complex receptor proteins of relevance to biomedical applications of PDMS microsystems have not been reported. Herein we describe methods that lead to the reproducible capture of a transmembrane protein, the human epidermal growth factor (EGF) receptor, onto PDMS surfaces presenting covalently immobilized antibodies for EGF receptor, and subsequent isolation of the captured receptor by mechanical transfer of the receptor onto a chemically functionalized surface of a gold film for detection. This result is particularly significant because the physical properties of transmembrane proteins make this class of proteins a difficult one to analyze. We benchmark the performance of antibodies to the human EGF receptor covalently immobilized on PDMS against the performance of the same antibodies physisorbed to conventional surfaces utilized in ELISA assays through the use of EGF receptor that was (32)P-radiolabeled in its autophosphorylation domain. These results reveal that two pan-reactive antibodies for the EGF receptor (clones H11 and 111.6) and one phosphospecific EGF receptor antibody (clone pY1068) capture the receptor on both PDMS and ELISA plates. When using H11 antibody to capture EGF receptor and subsequent treatment with a stripping buffer (NaOH and sodium dodecylsulfate) to isolate the receptor, the signal-to-background obtained using the PDMS surface was 82 : 1, exceeding the signal-to-background measured on the ELISA plate (<48 : 1). We also characterized the isolation of captured EGF receptor by mechanical contact of the PDMS surface with a chemically functionalized gold film. The efficiency of mechanical transfer of the

  7. Personalized biomedical devices & systems for healthcare applications

    Science.gov (United States)

    Chen, I.-Ming; Phee, Soo Jay; Luo, Zhiqiang; Lim, Chee Kian

    2011-03-01

    With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

  8. Networked Biomedical System for Ubiquitous Health Monitoring

    Directory of Open Access Journals (Sweden)

    Arjan Durresi

    2008-01-01

    Full Text Available We propose a distributed system that enables global and ubiquitous health monitoring of patients. The biomedical data will be collected by wearable health diagnostic devices, which will include various types of sensors and will be transmitted towards the corresponding Health Monitoring Centers. The permanent medical data of patients will be kept in the corresponding Home Data Bases, while the measured biomedical data will be sent to the Visitor Health Monitor Center and Visitor Data Base that serves the area of present location of the patient. By combining the measured biomedical data and the permanent medical data, Health Medical Centers will be able to coordinate the needed actions and help the local medical teams to make quickly the best decisions that could be crucial for the patient health, and that can reduce the cost of health service.

  9. BiOSS: A system for biomedical ontology selection.

    Science.gov (United States)

    Martínez-Romero, Marcos; Vázquez-Naya, José M; Pereira, Javier; Pazos, Alejandro

    2014-04-01

    In biomedical informatics, ontologies are considered a key technology for annotating, retrieving and sharing the huge volume of publicly available data. Due to the increasing amount, complexity and variety of existing biomedical ontologies, choosing the ones to be used in a semantic annotation problem or to design a specific application is a difficult task. As a consequence, the design of approaches and tools addressed to facilitate the selection of biomedical ontologies is becoming a priority. In this paper we present BiOSS, a novel system for the selection of biomedical ontologies. BiOSS evaluates the adequacy of an ontology to a given domain according to three different criteria: (1) the extent to which the ontology covers the domain; (2) the semantic richness of the ontology in the domain; (3) the popularity of the ontology in the biomedical community. BiOSS has been applied to 5 representative problems of ontology selection. It also has been compared to existing methods and tools. Results are promising and show the usefulness of BiOSS to solve real-world ontology selection problems. BiOSS is openly available both as a web tool and a web service. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Biomedical devices and systems security.

    Science.gov (United States)

    Arney, David; Venkatasubramanian, Krishna K; Sokolsky, Oleg; Lee, Insup

    2011-01-01

    Medical devices have been changing in revolutionary ways in recent years. One is in their form-factor. Increasing miniaturization of medical devices has made them wearable, light-weight, and ubiquitous; they are available for continuous care and not restricted to clinical settings. Further, devices are increasingly becoming connected to external entities through both wired and wireless channels. These two developments have tremendous potential to make healthcare accessible to everyone and reduce costs. However, they also provide increased opportunity for technology savvy criminals to exploit them for fun and profit. Consequently, it is essential to consider medical device security issues. In this paper, we focused on the challenges involved in securing networked medical devices. We provide an overview of a generic networked medical device system model, a comprehensive attack and adversary model, and describe some of the challenges present in building security solutions to manage the attacks. Finally, we provide an overview of two areas of research that we believe will be crucial for making medical device system security solutions more viable in the long run: forensic data logging, and building security assurance cases.

  11. MOLIERE: Automatic Biomedical Hypothesis Generation System.

    Science.gov (United States)

    Sybrandt, Justin; Shtutman, Michael; Safro, Ilya

    2017-08-01

    Hypothesis generation is becoming a crucial time-saving technique which allows biomedical researchers to quickly discover implicit connections between important concepts. Typically, these systems operate on domain-specific fractions of public medical data. MOLIERE, in contrast, utilizes information from over 24.5 million documents. At the heart of our approach lies a multi-modal and multi-relational network of biomedical objects extracted from several heterogeneous datasets from the National Center for Biotechnology Information (NCBI). These objects include but are not limited to scientific papers, keywords, genes, proteins, diseases, and diagnoses. We model hypotheses using Latent Dirichlet Allocation applied on abstracts found near shortest paths discovered within this network, and demonstrate the effectiveness of MOLIERE by performing hypothesis generation on historical data. Our network, implementation, and resulting data are all publicly available for the broad scientific community.

  12. Image BOSS: a biomedical object storage system

    Science.gov (United States)

    Stacy, Mahlon C.; Augustine, Kurt E.; Robb, Richard A.

    1997-05-01

    Researchers using biomedical images have data management needs which are oriented perpendicular to clinical PACS. The image BOSS system is designed to permit researchers to organize and select images based on research topic, image metadata, and a thumbnail of the image. Image information is captured from existing images in a Unix based filesystem, stored in an object oriented database, and presented to the user in a familiar laboratory notebook metaphor. In addition, the ImageBOSS is designed to provide an extensible infrastructure for future content-based queries directly on the images.

  13. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  14. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  15. Multi-scale biomedical systems: measurement challenges

    International Nuclear Information System (INIS)

    Summers, R

    2016-01-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper. (paper)

  16. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  17. Distributed System for Spaceflight Biomedical Support

    Data.gov (United States)

    National Aeronautics and Space Administration — Our project investigated whether a software platform could integrate as wide a variety of devices and data types as needed for spaceflight biomedical support. The...

  18. Object-oriented biomedical system modelling--the language.

    Science.gov (United States)

    Hakman, M; Groth, T

    1999-11-01

    The paper describes a new object-oriented biomedical continuous system modelling language (OOBSML). It is fully object-oriented and supports model inheritance, encapsulation, and model component instantiation and behaviour polymorphism. Besides the traditional differential and algebraic equation expressions the language includes also formal expressions for documenting models and defining model quantity types and quantity units. It supports explicit definition of model input-, output- and state quantities, model components and component connections. The OOBSML model compiler produces self-contained, independent, executable model components that can be instantiated and used within other OOBSML models and/or stored within model and model component libraries. In this way complex models can be structured as multilevel, multi-component model hierarchies. Technically the model components produced by the OOBSML compiler are executable computer code objects based on distributed object and object request broker technology. This paper includes both the language tutorial and the formal language syntax and semantic description.

  19. Design of biomedical devices and systems

    CERN Document Server

    King, Paul H

    2008-01-01

    Introduction to Biomedical Engineering Design. Fundamental Design Tools. Design Team Management, Reporting, and Documentation. Product Definition. Product Documentation. Product Development. Hardware Development Methods and Tools. Software Development Methods and Tools. Human Factors. Industrial Design. Biomaterials and Material Testing. Safety Engineering: Devices and Processes. Testing. Analysis of Test Data. Reliability and Liability. Food and Drug Administration. Regulations and Standards. Licensing, Patents, Copyrights, and Trade Secrets. Manufacturing and Quality Control. Miscellaneous Issues. Product Issues. Professional Issues. Design Case Studies. Future Design Issues.

  20. Resolving complex research data management issues in biomedical laboratories: Qualitative study of an industry-academia collaboration.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L; Bova, G Steven; Wang, Jian; Ackerman, Christopher F; Berlinicke, Cynthia A; Chen, Steve H; Lindvall, Mikael; Zack, Donald J

    2016-04-01

    This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to (1) characterize specific problems faced by biomedical researchers with traditional information management practices, (2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to (3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Cloud Based Metalearning System for Predictive Modeling of Biomedical Data

    Directory of Open Access Journals (Sweden)

    Milan Vukićević

    2014-01-01

    Full Text Available Rapid growth and storage of biomedical data enabled many opportunities for predictive modeling and improvement of healthcare processes. On the other side analysis of such large amounts of data is a difficult and computationally intensive task for most existing data mining algorithms. This problem is addressed by proposing a cloud based system that integrates metalearning framework for ranking and selection of best predictive algorithms for data at hand and open source big data technologies for analysis of biomedical data.

  2. Biomedical tracers: technetium-99 m complexing sulfur polydentate ligands

    International Nuclear Information System (INIS)

    Bendennoune, A.

    1994-01-01

    Cyclic and acyclic tetra sulfur ligands have been synthesized and some of them have been labelled with technetium-99m. These works have two different aims: 1- Development of methods permitting to obtain easily potential technetium complexing sulfur polydentate chelates. 2- Research of positive and neutral complexes of this metal likely to replace thalium-201 in the coronary flow estimation and [TcO-HMPAO] sup 0 complex in the cerebral scintigraphy, respectively. In this work, first, different ways for obtaining dithioetherdithiols and cyclic tetrathioethers containing functional groups have been carried out, then complexation of the core of nitrutechnetium (TcN) sup 2+ at tracers scale, by dithioetherdithiols, using exchange reaction with [sup 9 sup 9 sup m TcNCl sub 4 ] sup - ion complex or sup 99 sup m TcN Cl sub 2 [P(CH sub 2 CH sub 2 CN) sub 3 ] sub 2 has been studied. Finally, biological distribution in swiss mouse of these technetiated complexes has been studied. 135 refs., 30 figs., 13 tabs. (F.M.)

  3. Collaborative Initiative in Biomedical Imaging to Study Complex Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Weili [The University of North Carolina at Chapel Hill; Fiddy, Michael A. [The University of North Carolina at Charlotte

    2012-03-31

    The work reported addressed these topics: Fluorescence imaging; Optical coherence tomography; X-ray interferometer/phase imaging system; Quantitative imaging from scattered fields, Terahertz imaging and spectroscopy; and Multiphoton and Raman microscopy.

  4. [The system of biomedical scientific information of Serbia].

    Science.gov (United States)

    Dacić, M

    1995-09-01

    Building of the System of biomedical scientific information of Yugoslavia (SBMSI YU) began, by the end of 1980, and the system became operative officially in 1986. After the political disintegration of former Yugoslavia SBMSI of Serbia was formed. SBMSI is developed according to the policy of developing of the System of scientific technologic information of Serbia (SSTI S), and with technical support of SSTI S. Reconstruction of the System is done by using former SBMSI YU as a model. Unlike the former SBMSI YU, SBMSI S owns besides the database Biomedicina Serbica, three important databases: database of doctoral dissertations promoted at University Medical School in Belgrade in the period from 1955-1993, database of Master's theses promoted at the University School of Medicine in Belgrade from 1965-1993; A database of foreign biomedical periodicals in libraries of Serbia.

  5. Complex Systems: An Introduction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 9. Complex Systems: An Introduction - Anthropic Principle, Terrestrial Complexity, Complex Materials. V K Wadhawan. General Article Volume 14 Issue 9 September 2009 pp 894-906 ...

  6. [Big data, medical language and biomedical terminology systems].

    Science.gov (United States)

    Schulz, Stefan; López-García, Pablo

    2015-08-01

    A variety of rich terminology systems, such as thesauri, classifications, nomenclatures and ontologies support information and knowledge processing in health care and biomedical research. Nevertheless, human language, manifested as individually written texts, persists as the primary carrier of information, in the description of disease courses or treatment episodes in electronic medical records, and in the description of biomedical research in scientific publications. In the context of the discussion about big data in biomedicine, we hypothesize that the abstraction of the individuality of natural language utterances into structured and semantically normalized information facilitates the use of statistical data analytics to distil new knowledge out of textual data from biomedical research and clinical routine. Computerized human language technologies are constantly evolving and are increasingly ready to annotate narratives with codes from biomedical terminology. However, this depends heavily on linguistic and terminological resources. The creation and maintenance of such resources is labor-intensive. Nevertheless, it is sensible to assume that big data methods can be used to support this process. Examples include the learning of hierarchical relationships, the grouping of synonymous terms into concepts and the disambiguation of homonyms. Although clear evidence is still lacking, the combination of natural language technologies, semantic resources, and big data analytics is promising.

  7. Remote powering and data communication for implanted biomedical systems

    CERN Document Server

    Kilinc, Enver Gurhan; Maloberti, Franco

    2016-01-01

    This book describes new circuits and systems for implantable biomedical applications and explains the design of a batteryless, remotely-powered implantable micro-system, designed for long-term patient monitoring.  Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient, remote powering and reliable data communication.  Novel architecture and design methodologies are used to transfer power with a low-power, optimized inductive link and data is transmitted by a reliable communication link.  Additionally, an electro-mechanical solution is presented for tracking and monitoring the implantable system, while the patient is mobile.  ·         Describes practical example of an implantable batteryless biomedical system; ·         Analyzes and compares various energy harvesting and power transfer methods; ·         Describes design of remote powering link and data communication of the implantable system, comparing differe...

  8. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  9. MBA: a literature mining system for extracting biomedical abbreviations.

    Science.gov (United States)

    Xu, Yun; Wang, ZhiHao; Lei, YiMing; Zhao, YuZhong; Xue, Yu

    2009-01-09

    The exploding growth of the biomedical literature presents many challenges for biological researchers. One such challenge is from the use of a great deal of abbreviations. Extracting abbreviations and their definitions accurately is very helpful to biologists and also facilitates biomedical text analysis. Existing approaches fall into four broad categories: rule based, machine learning based, text alignment based and statistically based. State of the art methods either focus exclusively on acronym-type abbreviations, or could not recognize rare abbreviations. We propose a systematic method to extract abbreviations effectively. At first a scoring method is used to classify the abbreviations into acronym-type and non-acronym-type abbreviations, and then their corresponding definitions are identified by two different methods: text alignment algorithm for the former, statistical method for the latter. A literature mining system MBA was constructed to extract both acronym-type and non-acronym-type abbreviations. An abbreviation-tagged literature corpus, called Medstract gold standard corpus, was used to evaluate the system. MBA achieved a recall of 88% at the precision of 91% on the Medstract gold-standard EVALUATION Corpus. We present a new literature mining system MBA for extracting biomedical abbreviations. Our evaluation demonstrates that the MBA system performs better than the others. It can identify the definition of not only acronym-type abbreviations including a little irregular acronym-type abbreviations (e.g., ), but also non-acronym-type abbreviations (e.g., ).

  10. LINNAEUS: A species name identification system for biomedical literature

    Directory of Open Access Journals (Sweden)

    Nenadic Goran

    2010-02-01

    Full Text Available Abstract Background The task of recognizing and identifying species names in biomedical literature has recently been regarded as critical for a number of applications in text and data mining, including gene name recognition, species-specific document retrieval, and semantic enrichment of biomedical articles. Results In this paper we describe an open-source species name recognition and normalization software system, LINNAEUS, and evaluate its performance relative to several automatically generated biomedical corpora, as well as a novel corpus of full-text documents manually annotated for species mentions. LINNAEUS uses a dictionary-based approach (implemented as an efficient deterministic finite-state automaton to identify species names and a set of heuristics to resolve ambiguous mentions. When compared against our manually annotated corpus, LINNAEUS performs with 94% recall and 97% precision at the mention level, and 98% recall and 90% precision at the document level. Our system successfully solves the problem of disambiguating uncertain species mentions, with 97% of all mentions in PubMed Central full-text documents resolved to unambiguous NCBI taxonomy identifiers. Conclusions LINNAEUS is an open source, stand-alone software system capable of recognizing and normalizing species name mentions with speed and accuracy, and can therefore be integrated into a range of bioinformatics and text-mining applications. The software and manually annotated corpus can be downloaded freely at http://linnaeus.sourceforge.net/.

  11. Low cost open data acquisition system for biomedical applications

    Science.gov (United States)

    Zabolotny, Wojciech M.; Laniewski-Wollk, Przemyslaw; Zaworski, Wojciech

    2005-09-01

    In the biomedical applications it is often necessary to collect measurement data from different devices. It is relatively easy, if the devices are equipped with a MIB or Ethernet interface, however often they feature only the asynchronous serial link, and sometimes the measured values are available only as the analog signals. The system presented in the paper is a low cost alternative to commercially available data acquisition systems. The hardware and software architecture of the system is fully open, so it is possible to customize it for particular needs. The presented system offers various possibilities to connect it to the computer based data processing unit - e.g. using the USB or Ethernet ports. Both interfaces allow also to use many such systems in parallel to increase amount of serial and analog inputs. The open source software used in the system makes possible to process the acquired data with standard tools like MATLAB, Scilab or Octave, or with a dedicated, user supplied application.

  12. Complex Systems and Dependability

    CERN Document Server

    Zamojski, Wojciech; Sugier, Jaroslaw

    2012-01-01

    Typical contemporary complex system is a multifaceted amalgamation of technical, information, organization, software and human (users, administrators and management) resources. Complexity of such a system comes not only from its involved technical and organizational structure but mainly from complexity of information processes that must be implemented in the operational environment (data processing, monitoring, management, etc.). In such case traditional methods of reliability analysis focused mainly on technical level are usually insufficient in performance evaluation and more innovative meth

  13. The role of real-time in biomedical science: a meta-analysis on computational complexity, delay and speedup.

    Science.gov (United States)

    Faust, Oliver; Yu, Wenwei; Rajendra Acharya, U

    2015-03-01

    The concept of real-time is very important, as it deals with the realizability of computer based health care systems. In this paper we review biomedical real-time systems with a meta-analysis on computational complexity (CC), delay (Δ) and speedup (Sp). During the review we found that, in the majority of papers, the term real-time is part of the thesis indicating that a proposed system or algorithm is practical. However, these papers were not considered for detailed scrutiny. Our detailed analysis focused on papers which support their claim of achieving real-time, with a discussion on CC or Sp. These papers were analyzed in terms of processing system used, application area (AA), CC, Δ, Sp, implementation/algorithm (I/A) and competition. The results show that the ideas of parallel processing and algorithm delay were only recently introduced and journal papers focus more on Algorithm (A) development than on implementation (I). Most authors compete on big O notation (O) and processing time (PT). Based on these results, we adopt the position that the concept of real-time will continue to play an important role in biomedical systems design. We predict that parallel processing considerations, such as Sp and algorithm scaling, will become more important. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Design and implementation of efficient low complexity biomedical artifact canceller for nano devices

    Directory of Open Access Journals (Sweden)

    Md Zia Ur RAHMAN

    2016-07-01

    Full Text Available In the current day scenario, with the rapid development of communication technology remote health care monitoring becomes as an intense research area. In remote health care monitoring, the primary aim is to facilitate the doctor with high resolution biomedical data. In order to cancel various artifacts in clinical environment in this paper we propose some efficient adaptive noise cancellation techniques. To obtain low computational complexity we combine clipping the data or error with Least Mean Square (LMS algorithm. This results sign regressor LMS (SRLMS, sign LMS (SLMS and sign LMS (SSLMS algorithms. Using these algorithms, we design Very-large-scale integration (VLSI architectures of various Biomedical Noise Cancellers (BNCs. In addition, the filtering capabilities of the proposed implementations are measured using real biomedical signals. Among the various BNCs tested, SRLMS based BNC is found to be better with reference to convergence speed, filtering capability and computational complexity. The main advantage of this technique is it needs only one multiplication to compute next weight. In this manner SRLMS based BNC is independent of filter length with reference to its computations. Whereas, the average signal to noise ratio achieved in the noise cancellation experiments are recorded as 7.1059dBs, 7.1776dBs, 6.2795dBs and 5.8847dBs for various BNCs based on LMS, SRLMS, SLMS and SSSLMS algorithms respectively. Based on the filtering characteristics, convergence and computational complexity, the proposed SRLMS based BNC architecture is well suited for nanotechnology applications.

  15. Peptide-mediated vectorization of metal complexes: conjugation strategies and biomedical applications.

    Science.gov (United States)

    Soler, Marta; Feliu, Lidia; Planas, Marta; Ribas, Xavi; Costas, Miquel

    2016-08-16

    The rich chemical and structural versatility of transition metal complexes provides numerous novel paths to be pursued in the design of molecules that exert particular chemical or physicochemical effects that could operate over specific biological targets. However, the poor cell permeability of metallodrugs represents an important barrier for their therapeutic use. The conjugation between metal complexes and a functional peptide vector can be regarded as a versatile and potential strategy to improve their bioavailability and accumulation inside cells, and the site selectivity of their effect. This perspective lies in reviewing the recent advances in the design of metallopeptide conjugates for biomedical applications. Additionally, we highlight the studies where this approach has been directed towards the incorporation of redox active metal centers into living organisms for modulating the cellular redox balance, as a tool with application in anticancer therapy.

  16. Complex logistics audit system

    Directory of Open Access Journals (Sweden)

    Zuzana Marková

    2010-02-01

    Full Text Available Complex logistics audit system is a tool for realization of logistical audit in the company. The current methods for logistics auditare based on “ad hok” analysis of logisticsl system. This paper describes system for complex logistics audit. It is a global diagnosticsof logistics processes and functions of enterprise. The goal of logistics audit is to provide comparative documentation for managementabout state of logistics in company and to show the potential of logistics changes in order to achieve more effective companyperformance.

  17. Modeling Complex Systems

    CERN Document Server

    Boccara, Nino

    2010-01-01

    Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).

  18. Philosophy of complex systems

    CERN Document Server

    2011-01-01

    The domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on. Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of comple...

  19. Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems.

    Science.gov (United States)

    Hinchet, Ronan; Kim, Sang-Woo

    2015-08-25

    In this issue of ACS Nano, Tang et al. investigate the ability of a triboelectric nanogenerator (TENG) to self-power a low-level laser cure system for osteogenesis by studying the efficiency of a bone remodeling laser treatment that is powered by a skin-patch-like TENG instead of a battery. We outline this field by highlighting the motivations for self-powered biomedical systems and by discussing recent progress in nanogenerators. We note the overlap between biomedical devices and TENGs and their dawning synergy, and we highlight key prospects for future developments. Biomedical systems should be more autonomous. This advance could improve their body integration and fields of action, leading to new medical diagnostics and treatments. However, future self-powered biomedical systems will need to be more flexible, biocompatible, and biodegradable. These advances hold the promise of enabling new smart autonomous biomedical systems and contributing significantly to the Internet of Things.

  20. Complexity of Economical Systems

    Directory of Open Access Journals (Sweden)

    G. P. Pavlos

    2015-01-01

    Full Text Available In this study new theoretical concepts are described concerning the interpretation of economical complex dynamics. In addition a summary of an extended algorithm of nonlinear time series analysis is provided which is applied not only in economical time series but also in other physical complex systems (e.g. [22, 24]. In general, Economy is a vast and complicated set of arrangements and actions wherein agents—consumers, firms, banks, investors, government agencies—buy and sell, speculate, trade, oversee, bring products into being, offer services, invest in companies, strategize, explore, forecast, compete, learn, innovate, and adapt. As a result the economic and financial variables such as foreign exchange rates, gross domestic product, interest rates, production, stock market prices and unemployment exhibit large-amplitude and aperiodic fluctuations evident in complex systems. Thus, the Economics can be considered as spatially distributed non-equilibrium complex system, for which new theoretical concepts, such as Tsallis non extensive statistical mechanics and strange dynamics, percolation, nonGaussian, multifractal and multiscale dynamics related to fractional Langevin equations can be used for modeling and understanding of the economical complexity locally or globally.

  1. Advances in polymeric systems for tissue engineering and biomedical applications.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Complexity in Dynamical Systems

    Science.gov (United States)

    Moore, Cristopher David

    The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.

  3. Portable blood extraction device integrated with biomedical monitoring system

    Science.gov (United States)

    Khumpuang, S.; Horade, M.; Fujioka, K.; Sugiyama, S.

    2006-01-01

    Painless and portable blood extraction device has been immersed in the world of miniaturization on bio-medical research particularly in manufacturing point-of-care systems. The fabrication of a blood extraction device integrated with an electrolyte-monitoring system is reported in this paper. The device has advantages in precise controlled dosage of blood extracted including the slightly damaged blood vessels and nervous system. The in-house blood diagnostic will become simple for the patients. Main components of the portable system are; the blood extraction device and electrolyte-monitoring system. The monitoring system consists of ISFET (Ion Selective Field Effect Transistor) for measuring the concentration level of minerals in blood. In this work, we measured the level of 3 ions; Na+, K+ and Cl-. The mentioned ions are frequently required the measurement since their concentration levels in the blood can indicate whether the kidney, pancreas, liver or heart is being malfunction. The fabrication of the whole system and experimentation on each ISM (Ion Sensitive Membrane) will be provided. Taking the advantages of LIGA technology, the 100 hollow microneedles fabricated by Synchrotron Radiation deep X-ray lithography through PCT (Plane-pattern to Cross-section Transfer) technique have been consisted in 5x5 mm2 area. The microneedle is 300 μm in base-diameter, 500 μm-pitch, 800 μm-height and 50 μm hole-diameter. The total size of the blood extraction device is 2x2x2 cm 3. The package is made from a plastic socket including slots for inserting microneedle array and ISFET connecting to an electrical circuit for the monitoring. Through the dimensional design for simply handling and selection of disposable material, the patients can self-evaluate the critical level of the body minerals in anywhere and anytime.

  4. Managing Complex Dynamical Systems

    Science.gov (United States)

    Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.

    2011-01-01

    Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.

  5. Control of complex systems

    CERN Document Server

    Albertos, Pedro; Blanke, Mogens; Isidori, Alberto; Schaufelberger, Walter; Sanz, Ricardo

    2001-01-01

    The world of artificial systems is reaching complexity levels that es­ cape human understanding. Surface traffic, electricity distribution, air­ planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi­ neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re­ search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu­ ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimula...

  6. Modeling Complex Systems

    International Nuclear Information System (INIS)

    Schreckenberg, M

    2004-01-01

    This book by Nino Boccara presents a compilation of model systems commonly termed as 'complex'. It starts with a definition of the systems under consideration and how to build up a model to describe the complex dynamics. The subsequent chapters are devoted to various categories of mean-field type models (differential and recurrence equations, chaos) and of agent-based models (cellular automata, networks and power-law distributions). Each chapter is supplemented by a number of exercises and their solutions. The table of contents looks a little arbitrary but the author took the most prominent model systems investigated over the years (and up until now there has been no unified theory covering the various aspects of complex dynamics). The model systems are explained by looking at a number of applications in various fields. The book is written as a textbook for interested students as well as serving as a comprehensive reference for experts. It is an ideal source for topics to be presented in a lecture on dynamics of complex systems. This is the first book on this 'wide' topic and I have long awaited such a book (in fact I planned to write it myself but this is much better than I could ever have written it!). Only section 6 on cellular automata is a little too limited to the author's point of view and one would have expected more about the famous Domany-Kinzel model (and more accurate citation!). In my opinion this is one of the best textbooks published during the last decade and even experts can learn a lot from it. Hopefully there will be an actualization after, say, five years since this field is growing so quickly. The price is too high for students but this, unfortunately, is the normal case today. Nevertheless I think it will be a great success! (book review)

  7. [Biomedical informatics].

    Science.gov (United States)

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  8. A novel biomedical image indexing and retrieval system via deep preference learning.

    Science.gov (United States)

    Pang, Shuchao; Orgun, Mehmet A; Yu, Zhezhou

    2018-05-01

    The traditional biomedical image retrieval methods as well as content-based image retrieval (CBIR) methods originally designed for non-biomedical images either only consider using pixel and low-level features to describe an image or use deep features to describe images but still leave a lot of room for improving both accuracy and efficiency. In this work, we propose a new approach, which exploits deep learning technology to extract the high-level and compact features from biomedical images. The deep feature extraction process leverages multiple hidden layers to capture substantial feature structures of high-resolution images and represent them at different levels of abstraction, leading to an improved performance for indexing and retrieval of biomedical images. We exploit the current popular and multi-layered deep neural networks, namely, stacked denoising autoencoders (SDAE) and convolutional neural networks (CNN) to represent the discriminative features of biomedical images by transferring the feature representations and parameters of pre-trained deep neural networks from another domain. Moreover, in order to index all the images for finding the similarly referenced images, we also introduce preference learning technology to train and learn a kind of a preference model for the query image, which can output the similarity ranking list of images from a biomedical image database. To the best of our knowledge, this paper introduces preference learning technology for the first time into biomedical image retrieval. We evaluate the performance of two powerful algorithms based on our proposed system and compare them with those of popular biomedical image indexing approaches and existing regular image retrieval methods with detailed experiments over several well-known public biomedical image databases. Based on different criteria for the evaluation of retrieval performance, experimental results demonstrate that our proposed algorithms outperform the state

  9. Complex adaptive systems ecology

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2003-01-01

    In the following, I will analyze two articles called Complex Adaptive Systems EcologyI & II (Molin & Molin, 1997 & 2000). The CASE-articles are some of the more quirkyarticles that have come out of the Molecular Microbial Ecology Group - a groupwhere I am currently making observational studies....... They are the result of acooperation between Søren Molin, professor in the group, and his brother, JanMolin, professor at Department of Organization and Industrial Sociology atCopenhagen Business School. The cooperation arises from the recognition that bothmicrobial ecology and sociology/organization theory works...

  10. Forecasting in Complex Systems

    Science.gov (United States)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2014-12-01

    Complex nonlinear systems are typically characterized by many degrees of freedom, as well as interactions between the elements. Interesting examples can be found in the areas of earthquakes and finance. In these two systems, fat tails play an important role in the statistical dynamics. For earthquake systems, the Gutenberg-Richter magnitude-frequency is applicable, whereas for daily returns for the securities in the financial markets are known to be characterized by leptokurtotic statistics in which the tails are power law. Very large fluctuations are present in both systems. In earthquake systems, one has the example of great earthquakes such as the M9.1, March 11, 2011 Tohoku event. In financial systems, one has the example of the market crash of October 19, 1987. Both were largely unexpected events that severely impacted the earth and financial systems systemically. Other examples include the M9.3 Andaman earthquake of December 26, 2004, and the Great Recession which began with the fall of Lehman Brothers investment bank on September 12, 2013. Forecasting the occurrence of these damaging events has great societal importance. In recent years, national funding agencies in a variety of countries have emphasized the importance of societal relevance in research, and in particular, the goal of improved forecasting technology. Previous work has shown that both earthquakes and financial crashes can be described by a common Landau-Ginzburg-type free energy model. These metastable systems are characterized by fat tail statistics near the classical spinodal. Correlations in these systems can grow and recede, but do not imply causation, a common source of misunderstanding. In both systems, a common set of techniques can be used to compute the probabilities of future earthquakes or crashes. In this talk, we describe the basic phenomenology of these systems and emphasize their similarities and differences. We also consider the problem of forecast validation and verification

  11. BIG: a Grid Portal for Biomedical Data and Images

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-06-01

    Full Text Available Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc., advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid, a Web-based Grid portal for management of biomedical information (data and images in a distributed environment. BIG is an interactive environment that deals with complex user's requests, regarding the acquisition of biomedical data, the "processing" and "delivering" of biomedical images, using the power and security of Computational Grids.

  12. Comparatively Studied Color Correction Methods for Color Calibration of Automated Microscopy Complex of Biomedical Specimens

    Directory of Open Access Journals (Sweden)

    T. A. Kravtsova

    2016-01-01

    Full Text Available The paper considers a task of generating the requirements and creating a calibration target for automated microscopy systems (AMS of biomedical specimens to provide the invariance of algorithms and software to the hardware configuration. The required number of color fields of the calibration target and their color coordinates are mostly determined by the color correction method, for which coefficients of the equations are estimated during the calibration process. The paper analyses existing color calibration techniques for digital imaging systems using an optical microscope and shows that there is a lack of published results of comparative studies to demonstrate a particular useful color correction method for microscopic images. A comparative study of ten image color correction methods in RGB space using polynomials and combinations of color coordinate of different orders was carried out. The method of conditioned least squares to estimate the coefficients in the color correction equations using captured images of 217 color fields of the calibration target Kodak Q60-E3 was applied. The regularization parameter in this method was chosen experimentally. It was demonstrated that the best color correction quality characteristics are provided by the method that uses a combination of color coordinates of the 3rd order. The study of the influence of the number and the set of color fields included in calibration target on color correction quality for microscopic images was performed. Six train sets containing 30, 35, 40, 50, 60 and 80 color fields, and test set of 47 color fields not included in any of the train sets were formed. It was found out that the train set of 60 color fields minimizes the color correction error values for both operating modes of digital camera: using "default" color settings and with automatic white balance. At the same time it was established that the use of color fields from the widely used now Kodak Q60-E3 target does not

  13. [The system of protection of scientific biomedical research participants in France and in Poland].

    Science.gov (United States)

    Czarkowski, Marek; Sieczych, Alicja

    2013-07-01

    Realizing scientific biomedical research conducted on human-beings demands obeying ample ethical rules. However, states keep independence in the means of implementing deontological guidelines to legislative acts. The aim of the article is to compare rules of law relative to protection of scientific biomedical research participants in two European Union member states--France and Poland. French regulations cover more types of scientific biomedical research than those in Poland. In France almost all types of interventional scientific biomedical research including research on human biological samples and research on cosmetics are covered by the rules of law. Polish regulations are limited to interventional research conducted by doctors and dentists. In both states projects of clinical trials of medicinal products demands double acceptance - from bioethics committee and from competent state authority. In protection of scientific biomedical research participants the role of state authority competent for personal data is more vital in France than it is in Poland. In France there is also National Ethics Advisory Committee whereas in Poland there is no such institution. The systems protecting scientific biomedical research participants differs therefore in both states in many vital aspects and French measures cover more types of scientific biomedical research, hence the level of participants protection in various types of research is more equitable.

  14. A low-cost biomedical signal transceiver based on a Bluetooth wireless system.

    Science.gov (United States)

    Fazel-Rezai, Reza; Pauls, Mark; Slawinski, David

    2007-01-01

    Most current wireless biomedical signal transceivers use range-limiting communication. This work presents a low-cost biomedical signal transceiver that uses Bluetooth wireless technology. The design is implemented in a modular form to be adaptable to different types of biomedical signals. The signal front end obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless module. Near real-time receive software in LabVIEW was developed to demonstrate the system capability. The completed transmitter prototype successfully transmits ECG signals, and is able to simultaneously send multiple signals. The sampling rate of the transmitter is fast enough to send up to thirteen ECG signals simultaneously, with an error rate below 0.1% for transmission exceeding 65 meters. A low-cost wireless biomedical transceiver has many applications, such as real-time monitoring of patients with a known condition in non-clinical settings.

  15. From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce

    Science.gov (United States)

    Valantine, Hannah A.; Lund, P. Kay; Gammie, Alison E.

    2016-01-01

    The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges.…

  16. Nanoparticle-Based Delivery System for Biomedical Applications of RNAi

    DEFF Research Database (Denmark)

    Yang, Chuanxu

    RNA interference (RNAi) is a post-transcriptional gene silencing process triggered by double-strand RNA, including synthetic short interfering RNA (siRNA) and endogenous microRNA (miRNA). RNAi has attracted great attention for developing a new class of therapeutics, due to its capability to speci......RNA/miRNA and transport them to the action site in the target cells. This thesis describes the development of various nanocarriers for siRNA/miRNA delivery and investigate their potential biomedical applications including: anti-inflammation, tissue engineering and cancer...

  17. FamPlex: a resource for entity recognition and relationship resolution of human protein families and complexes in biomedical text mining.

    Science.gov (United States)

    Bachman, John A; Gyori, Benjamin M; Sorger, Peter K

    2018-06-28

    For automated reading of scientific publications to extract useful information about molecular mechanisms it is critical that genes, proteins and other entities be correctly associated with uniform identifiers, a process known as named entity linking or "grounding." Correct grounding is essential for resolving relationships among mined information, curated interaction databases, and biological datasets. The accuracy of this process is largely dependent on the availability of machine-readable resources associating synonyms and abbreviations commonly found in biomedical literature with uniform identifiers. In a task involving automated reading of ∼215,000 articles using the REACH event extraction software we found that grounding was disproportionately inaccurate for multi-protein families (e.g., "AKT") and complexes with multiple subunits (e.g."NF- κB"). To address this problem we constructed FamPlex, a manually curated resource defining protein families and complexes as they are commonly encountered in biomedical text. In FamPlex the gene-level constituents of families and complexes are defined in a flexible format allowing for multi-level, hierarchical membership. To create FamPlex, text strings corresponding to entities were identified empirically from literature and linked manually to uniform identifiers; these identifiers were also mapped to equivalent entries in multiple related databases. FamPlex also includes curated prefix and suffix patterns that improve named entity recognition and event extraction. Evaluation of REACH extractions on a test corpus of ∼54,000 articles showed that FamPlex significantly increased grounding accuracy for families and complexes (from 15 to 71%). The hierarchical organization of entities in FamPlex also made it possible to integrate otherwise unconnected mechanistic information across families, subfamilies, and individual proteins. Applications of FamPlex to the TRIPS/DRUM reading system and the Biocreative VI Bioentity

  18. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    Pawar, S.H.; Khyalappa, R.J.; Yakhmi, J.V.

    2009-01-01

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  19. Complexity of EEG-signal in Time Domain - Possible Biomedical Application

    Science.gov (United States)

    Klonowski, Wlodzimierz; Olejarczyk, Elzbieta; Stepien, Robert

    2002-07-01

    Human brain is a highly complex nonlinear system. So it is not surprising that in analysis of EEG-signal, which represents overall activity of the brain, the methods of Nonlinear Dynamics (or Chaos Theory as it is commonly called) can be used. Even if the signal is not chaotic these methods are a motivating tool to explore changes in brain activity due to different functional activation states, e.g. different sleep stages, or to applied therapy, e.g. exposure to chemical agents (drugs) and physical factors (light, magnetic field). The methods supplied by Nonlinear Dynamics reveal signal characteristics that are not revealed by linear methods like FFT. Better understanding of principles that govern dynamics and complexity of EEG-signal can help to find `the signatures' of different physiological and pathological states of human brain, quantitative characteristics that may find applications in medical diagnostics.

  20. Management of complex dynamical systems

    Science.gov (United States)

    MacKay, R. S.

    2018-02-01

    Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.

  1. PASSIM – an open source software system for managing information in biomedical studies

    Directory of Open Access Journals (Sweden)

    Neogi Sudeshna

    2007-02-01

    Full Text Available Abstract Background One of the crucial aspects of day-to-day laboratory information management is collection, storage and retrieval of information about research subjects and biomedical samples. An efficient link between sample data and experiment results is absolutely imperative for a successful outcome of a biomedical study. Currently available software solutions are largely limited to large-scale, expensive commercial Laboratory Information Management Systems (LIMS. Acquiring such LIMS indeed can bring laboratory information management to a higher level, but often implies sufficient investment of time, effort and funds, which are not always available. There is a clear need for lightweight open source systems for patient and sample information management. Results We present a web-based tool for submission, management and retrieval of sample and research subject data. The system secures confidentiality by separating anonymized sample information from individuals' records. It is simple and generic, and can be customised for various biomedical studies. Information can be both entered and accessed using the same web interface. User groups and their privileges can be defined. The system is open-source and is supplied with an on-line tutorial and necessary documentation. It has proven to be successful in a large international collaborative project. Conclusion The presented system closes the gap between the need and the availability of lightweight software solutions for managing information in biomedical studies involving human research subjects.

  2. Measuring Complexity of SAP Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-10-01

    Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.

  3. Pattern recognition and expert image analysis systems in biomedical image processing (Invited Paper)

    Science.gov (United States)

    Oosterlinck, A.; Suetens, P.; Wu, Q.; Baird, M.; F. M., C.

    1987-09-01

    This paper gives an overview of pattern recoanition techniques (P.R.) used in biomedical image processing and problems related to the different P.R. solutions. Also the use of knowledge based systems to overcome P.R. difficulties, is described. This is illustrated by a common example ofabiomedical image processing application.

  4. 75 FR 3948 - Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc...

    Science.gov (United States)

    2010-01-25

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc., Biosys, Inc., Bolder Technologies Corp., Boyds Wheels, Inc... securities of Biometrics Security Technology, Inc. because it has not filed any periodic reports since...

  5. An ultra low energy biomedical signal processing system operating at near-threshold

    NARCIS (Netherlands)

    Hulzink, J.; Konijnenburg, M.; Ashouei, M.; Breeschoten, A.; Berset, T.; Huisken, J.; Stuyt, J.; Groot, H. de; Barat, F.; David, J.; Ginderdeuren, J. van

    2011-01-01

    This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signals. To fulfill the requirements of ambulatory monitoring, power consumption, which directly translates to the WSN battery lifetime

  6. Bioinspired design and interfacial failure of biomedical systems

    Science.gov (United States)

    Rahbar, Nima

    The deformation mechanism of nacre as a model biological material is studied in this project. A numerical model is presented which consists of tensile pillars, shear pillars, asperities and aragonite platelets. It has been shown that the tensile pillars are the main elements that control the global stiffness of the nacre structure. Meanwhile, ultimate strength of the nacre structure is controlled by asperities and their behavior and the ratio of L/2D which is itself a function of the geometry of the platelets. Protein/shear pillars provide the glue which holds the assembly of entire system together, particularly in the direction normal to the platelets main axis. This dissertation also presents the results of a combined theoretical/computational and experimental effort to develop crack resistant dental multilayers that are inspired by the functionally graded dento-enamel junction (DEJ) structure that occurs between dentin and enamel in natural teeth. The complex structures of natural teeth and ceramic crowns are idealized using at layered configurations. The potential effects of occlusal contact are then modeled using finite element simulations of Hertzian contact. The resulting stress distributions are compared for a range of possible bioinspired, functionally graded architecture. The computed stress distributions show that the highest stress concentrations in the top ceramic layer of crown structures are reduced significantly by the use of bioinspired functionally graded architectures. The reduced stresses are shown to be associated with significant improvements (30%) in the pop-in loads over a wide range of clinically-relevant loading rates. The implications of the results are discussed for the design of bioinspired dental ceramic crown structures. The results of a combined experimental and computational study of mixed mode fracture in glass/cement and zirconia/cement interfaces that are relevant to dental restorations is also presented. The interfacial fracture

  7. Signals and Systems in Biomedical Engineering Signal Processing and Physiological Systems Modeling

    CERN Document Server

    Devasahayam, Suresh R

    2013-01-01

    The use of digital signal processing is ubiquitous in the field of physiology and biomedical engineering. The application of such mathematical and computational tools requires a formal or explicit understanding of physiology. Formal models and analytical techniques are interlinked in physiology as in any other field. This book takes a unitary approach to physiological systems, beginning with signal measurement and acquisition, followed by signal processing, linear systems modelling, and computer simulations. The signal processing techniques range across filtering, spectral analysis and wavelet analysis. Emphasis is placed on fundamental understanding of the concepts as well as solving numerical problems. Graphs and analogies are used extensively to supplement the mathematics. Detailed models of nerve and muscle at the cellular and systemic levels provide examples for the mathematical methods and computer simulations. Several of the models are sufficiently sophisticated to be of value in understanding real wor...

  8. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  9. Suitability of customer relationship management systems for the management of study participants in biomedical research.

    Science.gov (United States)

    Schwanke, J; Rienhoff, O; Schulze, T G; Nussbeck, S Y

    2013-01-01

    Longitudinal biomedical research projects study patients or participants over a course of time. No IT solution is known that can manage study participants, enhance quality of data, support re-contacting of participants, plan study visits, and keep track of informed consent procedures and recruitments that may be subject to change over time. In business settings management of personal is one of the major aspects of customer relationship management systems (CRMS). To evaluate whether CRMS are suitable IT solutions for study participant management in biomedical research. Three boards of experts in the field of biomedical research were consulted to get an insight into recent IT developments regarding study participant management systems (SPMS). Subsequently, a requirements analysis was performed with stakeholders of a major biomedical research project. The successive suitability evaluation was based on the comparison of the identified requirements with the features of six CRMS. Independently of each other, the interviewed expert boards confirmed that there is no generic IT solution for the management of participants. Sixty-four requirements were identified and prioritized in a requirements analysis. The best CRMS was able to fulfill forty-two of these requirements. The non-fulfilled requirements demand an adaption of the CRMS, consuming time and resources, reducing the update compatibility, the system's suitability, and the security of the CRMS. A specific solution for the SPMS is favored instead of a generic and commercially-oriented CRMS. Therefore, the development of a small and specific SPMS solution was commenced and is currently on the way to completion.

  10. European Conference on Complex Systems

    CERN Document Server

    Pellegrini, Francesco; Caldarelli, Guido; Merelli, Emanuela

    2016-01-01

    This work contains a stringent selection of extended contributions presented at the meeting of 2014 and its satellite meetings, reflecting scope, diversity and richness of research areas in the field, both fundamental and applied. The ECCS meeting, held under the patronage of the Complex Systems Society, is an annual event that has become the leading European conference devoted to complexity science. It offers cutting edge research and unique opportunities to study novel scientific approaches in a multitude of application areas. ECCS'14, its eleventh occurrence, took place in Lucca, Italy. It gathered some 650 scholars representing a wide range of topics relating to complex systems research, with emphasis on interdisciplinary approaches. The editors are among the best specialists in the area. The book is of great interest to scientists, researchers and graduate students in complexity, complex systems and networks.

  11. Design, Microfabrication and Characterization of a Power Delivery System for new Biomedical Applications

    Directory of Open Access Journals (Sweden)

    CARUSO Massimo

    2017-05-01

    Full Text Available This paper presents the design, microfabrication and characterization of a wireless power delivery system capable of driving a surface acoustic wave sensor (SAW for biomedical applications. The system consists of two planar, spiral-square microcoils, which have been geometrically optimized in order to maximize the quality factor Q. The integration of the SAW - microcoil system into artificial implant sites will allow a real-time biofilm growth monitoring and treatment, providing countless advantages to the related medical applications.

  12. Anomaly Detection for Complex Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — In performance maintenance in large, complex systems, sensor information from sub-components tends to be readily available, and can be used to make predictions about...

  13. Decentralized control of complex systems

    CERN Document Server

    Siljak, Dragoslav D

    2011-01-01

    Complex systems require fast control action in response to local input, and perturbations dictate the use of decentralized information and control structures. This much-cited reference book explores the approaches to synthesizing control laws under decentralized information structure constraints.Starting with a graph-theoretic framework for structural modeling of complex systems, the text presents results related to robust stabilization via decentralized state feedback. Subsequent chapters explore optimization, output feedback, the manipulative power of graphs, overlapping decompositions and t

  14. Recent progresses in biomedical applications of aptamer-functionalized systems.

    Science.gov (United States)

    Ding, Fei; Gao, Yangguang; He, Xianran

    2017-09-15

    Aptamers, known as "chemical antibodies" are screened via a combinational technology of systematic evolution of ligands by exponential enrichment (SELEX). Due to their specific targeting ability, high binding affinity, low immunogenicity and easy modification, aptamer-functionalized systems have been extensively applied in various fields and exhibit favorable results. However, there is still a long way for them to be commercialized, and few aptamer-functionalized systems have yet successfully entered clinical and industrial use. Thus, it is necessary to overview the recent research progresses of aptamer-functionalized systems for the researchers to improve or design novel and better aptamer-functionalized systems. In this review, we first introduce the recent progresses of aptamer-functionalized systems' applications in biosensing, targeted drug delivery, gene therapy and cancer cell imaging, followed by a discussion of the challenges faced with extensive applications of aptamer-functionalized systems and speculation of the future prospects of them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Body surface mounted biomedical monitoring system using Bluetooth.

    Science.gov (United States)

    Nambu, Masayuki

    2007-01-01

    Continuous monitoring in daily life is important for the health condition control of the elderly. However, portable or wearable devices need to carry by user on their own will. On the other hand, implantation sensors are not adoptable, because of generic users dislike to insert the any object in the body for monitoring. Therefore, another monitoring system of the health condition to carry it easily is necessary. In addition, ID system is necessary even if the subject live with few families. Furthermore, every measurement system should be wireless system, because not to obstruct the daily life of the user. In this paper, we propose the monitoring system, which is mounted on the body surface. This system will not obstruct the action or behavior of user in daily life, because this system attached the body surface on the back of the user. In addition, this system has wireless communication system, using Bluetooth, and acquired data transfer to the outside of the house via the Internet.

  16. Simulation Analysis of Wireless Power Transmission System for Biomedical Applications

    Science.gov (United States)

    Yang, Zhao; Wei, Zhiqiang; Chi, Haokun; Yin, Bo; Cong, Yanping

    2018-03-01

    In recent years, more and more implantable medical devices have been used in the medical field. Some of these devices, such as brain pacemakers, require long-term power support. The WPT(wireless power transmission) technology which is more convenient and economical than replacing the battery by surgery, has become the first choice of many patients. In this paper, we design a WPT system that can be used in implantable medical devices, simulate the transmission efficiency of the system in the air and in the head model, and simulate the SAR value when the system working in the head model. The results show that when implantation depth of the secondary coil is 3 mm, the efficiency of the system can reach 45%, and the maximum average SAR value is 2.19 W / kg, slightly higher than the standard of IEEE.

  17. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    Science.gov (United States)

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future. © 2015 American Society for Nutrition.

  18. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    propagation parameters and therefore efficiently increases the brightness of compact and cost-effective diode laser systems. The condition of overlapping beams is an ideal scenario for subsequent frequency conversion. Based on sum-frequency generation of two beam combined diode lasers a 3.2 fold increase...... output power of frequency doubled single emitters is limited by thermal effects potentially resulting in laser degradation and failure. In this work new concepts for power scaling of visible diode laser systems are introduced that help to overcome current limitations and enhance the application potential....... Implementing the developed concept of frequency converted, beam combined diode laser systems will help to overcome the high pump thresholds for ultrabroad bandwidth titanium sapphire lasers, leading towards diode based high-resolution optical coherence tomography with enhanced image quality. In their entirety...

  19. THz impulse radar for biomedical sensing: nonlinear system behavior

    Science.gov (United States)

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  20. Language Networks as Complex Systems

    Science.gov (United States)

    Lee, Max Kueiming; Ou, Sheue-Jen

    2008-01-01

    Starting in the late eighties, with a growing discontent with analytical methods in science and the growing power of computers, researchers began to study complex systems such as living organisms, evolution of genes, biological systems, brain neural networks, epidemics, ecology, economy, social networks, etc. In the early nineties, the research…

  1. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  2. Impedance matching wireless power transmission system for biomedical devices.

    Science.gov (United States)

    Lum, Kin Yun; Lindén, Maria; Tan, Tian Swee

    2015-01-01

    For medical application, the efficiency and transmission distance of the wireless power transfer (WPT) are always the main concern. Research has been showing that the impedance matching is one of the critical factors for dealing with the problem. However, there is not much work performed taking both the source and load sides into consideration. Both sides matching is crucial in achieving an optimum overall performance, and the present work proposes a circuit model analysis for design and implementation. The proposed technique was validated against experiment and software simulation. Result was showing an improvement in transmission distance up to 6 times, and efficiency at this transmission distance had been improved up to 7 times as compared to the impedance mismatch system. The system had demonstrated a near-constant transfer efficiency for an operating range of 2cm-12cm.

  3. Biomedical image acquisition system using a gamma camera

    International Nuclear Information System (INIS)

    Jara B, A.T.; Sevillano, J.; Del Carpio S, J.A.

    2003-01-01

    A gamma camera images PC acquisition board has been developed. The digital system has been described using VHDL and has been synthesized and implemented in a Altera Max7128S CPLD and two PALs 16L8. The use of programmable-logic technologies has afforded a higher scale integration and a reduction of the digital delays and also has allowed us to modify and bring up to date the entire digital design easily. (orig.)

  4. Biomedical wellness monitoring system based upon molecular markers

    Science.gov (United States)

    Ingram, Whitney

    2012-06-01

    We wish to assist caretakers with a sensor monitoring systems for tracking the physiological changes of homealone patients. One goal is seeking biomarkers and modern imaging sensors like stochastic optical reconstruction microscopy (STORM), which has achieved visible imaging at the nano-scale range. Imaging techniques like STORM can be combined with a fluorescent functional marker in a system to capture the early transformation signs from wellness to illness. By exploiting both microscopic knowledge of genetic pre-disposition and the macroscopic influence of epigenetic factors we hope to target these changes remotely. We adopt dual spectral infrared imaging for blind source separation (BSS) to detect angiogenesis changes and use laser speckle imaging for hypertension blood flow monitoring. Our design hypothesis for the monitoring system is guided by the user-friendly, veteran-preferred "4-Non" principles (noninvasive, non-contact, non-tethered, non-stop-to-measure) and by the NIH's "4Ps" initiatives (predictive, personalized, preemptive, and participatory). We augment the potential storage system with the recent know-how of video Compressive Sampling (CSp) from surveillance cameras. In CSp only major changes are saved, which reduces the manpower cost of caretakers and medical analysts. This CSp algorithm is based on smart associative memory (AM) matrix storage: change features and detailed scenes are written by the outer-product and read by the inner product without the usual Harsh index for image searching. From this approach, we attempt to design an effective household monitoring approach to save healthcare costs and maintain the quality of life of seniors.

  5. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L

    2010-06-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers' time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment.

  6. Method for detecting core malware sites related to biomedical information systems.

    Science.gov (United States)

    Kim, Dohoon; Choi, Donghee; Jin, Jonghyun

    2015-01-01

    Most advanced persistent threat attacks target web users through malicious code within landing (exploit) or distribution sites. There is an urgent need to block the affected websites. Attacks on biomedical information systems are no exception to this issue. In this paper, we present a method for locating malicious websites that attempt to attack biomedical information systems. Our approach uses malicious code crawling to rearrange websites in the order of their risk index by analyzing the centrality between malware sites and proactively eliminates the root of these sites by finding the core-hub node, thereby reducing unnecessary security policies. In particular, we dynamically estimate the risk index of the affected websites by analyzing various centrality measures and converting them into a single quantified vector. On average, the proactive elimination of core malicious websites results in an average improvement in zero-day attack detection of more than 20%.

  7. Method for Detecting Core Malware Sites Related to Biomedical Information Systems

    Directory of Open Access Journals (Sweden)

    Dohoon Kim

    2015-01-01

    Full Text Available Most advanced persistent threat attacks target web users through malicious code within landing (exploit or distribution sites. There is an urgent need to block the affected websites. Attacks on biomedical information systems are no exception to this issue. In this paper, we present a method for locating malicious websites that attempt to attack biomedical information systems. Our approach uses malicious code crawling to rearrange websites in the order of their risk index by analyzing the centrality between malware sites and proactively eliminates the root of these sites by finding the core-hub node, thereby reducing unnecessary security policies. In particular, we dynamically estimate the risk index of the affected websites by analyzing various centrality measures and converting them into a single quantified vector. On average, the proactive elimination of core malicious websites results in an average improvement in zero-day attack detection of more than 20%.

  8. A System for Information Management in BioMedical Studies—SIMBioMS

    Science.gov (United States)

    Krestyaninova, Maria; Zarins, Andris; Viksna, Juris; Kurbatova, Natalja; Rucevskis, Peteris; Neogi, Sudeshna Guha; Gostev, Mike; Perheentupa, Teemu; Knuuttila, Juha; Barrett, Amy; Lappalainen, Ilkka; Rung, Johan; Podnieks, Karlis; Sarkans, Ugis; McCarthy, Mark I; Brazma, Alvis

    2009-01-01

    Summary: SIMBioMS is a web-based open source software system for managing data and information in biomedical studies. It provides a solution for the collection, storage, management and retrieval of information about research subjects and biomedical samples, as well as experimental data obtained using a range of high-throughput technologies, including gene expression, genotyping, proteomics and metabonomics. The system can easily be customized and has proven to be successful in several large-scale multi-site collaborative projects. It is compatible with emerging functional genomics data standards and provides data import and export in accepted standard formats. Protocols for transferring data to durable archives at the European Bioinformatics Institute have been implemented. Availability: The source code, documentation and initialization scripts are available at http://simbioms.org. Contact: support@simbioms.org; mariak@ebi.ac.uk PMID:19633095

  9. Applying systems biology to biomedical research and health care: a précising definition of systems medicine.

    Science.gov (United States)

    Schleidgen, Sebastian; Fernau, Sandra; Fleischer, Henrike; Schickhardt, Christoph; Oßa, Ann-Kristin; Winkler, Eva C

    2017-11-21

    Systems medicine has become a key word in biomedical research. Although it is often referred to as P4-(predictive, preventive, personalized and participatory)-medicine, it still lacks a clear definition and is open to interpretation. This conceptual lack of clarity complicates the scientific and public discourse on chances, risks and limits of Systems Medicine and may lead to unfounded hopes. Against this background, our goal was to develop a sufficiently precise and widely acceptable definition of Systems Medicine. In a first step, PubMed was searched using the keyword "systems medicine". A data extraction tabloid was developed putting forward a means/ends-division. Full-texts of articles containing Systems Medicine in title or abstract were screened for definitions. Definitions were extracted; their semantic elements were assigned as either means or ends. To reduce complexity of the resulting list, summary categories were developed inductively. In a second step, we applied six criteria for adequate definitions (necessity, non-circularity, non-redundancy, consistency, non-vagueness, and coherence) to these categories to derive a so-called précising definition of Systems Medicine. We identified 185 articles containing the term Systems Medicine in title or abstract. 67 contained at least one definition of Systems Medicine. In 98 definitions, we found 114 means and 132 ends. From these we derived the précising definition: Systems Medicine is an approach seeking to improve medical research (i.e. the understanding of complex processes occurring in diseases, pathologies and health states as well as innovative approaches to drug discovery) and health care (i.e. prevention, prediction, diagnosis and treatment) through stratification by means of Systems Biology (i.e. data integration, modeling, experimentation and bioinformatics). Our study also revealed the visionary character of Systems Medicine. Our insights, on the one hand, allow for a realistic identification of

  10. Implementation and management of a biomedical observation dictionary in a large healthcare information system.

    Science.gov (United States)

    Vandenbussche, Pierre-Yves; Cormont, Sylvie; André, Christophe; Daniel, Christel; Delahousse, Jean; Charlet, Jean; Lepage, Eric

    2013-01-01

    This study shows the evolution of a biomedical observation dictionary within the Assistance Publique Hôpitaux Paris (AP-HP), the largest European university hospital group. The different steps are detailed as follows: the dictionary creation, the mapping to logical observation identifier names and codes (LOINC), the integration into a multiterminological management platform and, finally, the implementation in the health information system. AP-HP decided to create a biomedical observation dictionary named AnaBio, to map it to LOINC and to maintain the mapping. A management platform based on methods used for knowledge engineering has been put in place. It aims at integrating AnaBio within the health information system and improving both the quality and stability of the dictionary. This new management platform is now active in AP-HP. The AnaBio dictionary is shared by 120 laboratories and currently includes 50 000 codes. The mapping implementation to LOINC reaches 40% of the AnaBio entries and uses 26% of LOINC records. The results of our work validate the choice made to develop a local dictionary aligned with LOINC. This work constitutes a first step towards a wider use of the platform. The next step will support the entire biomedical production chain, from the clinician prescription, through laboratory tests tracking in the laboratory information system to the communication of results and the use for decision support and biomedical research. In addition, the increase in the mapping implementation to LOINC ensures the interoperability allowing communication with other international health institutions.

  11. DyKOSMap: A framework for mapping adaptation between biomedical knowledge organization systems.

    Science.gov (United States)

    Dos Reis, Julio Cesar; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal

    2015-06-01

    Knowledge Organization Systems (KOS) and their associated mappings play a central role in several decision support systems. However, by virtue of knowledge evolution, KOS entities are modified over time, impacting mappings and potentially turning them invalid. This requires semi-automatic methods to maintain such semantic correspondences up-to-date at KOS evolution time. We define a complete and original framework based on formal heuristics that drives the adaptation of KOS mappings. Our approach takes into account the definition of established mappings, the evolution of KOS and the possible changes that can be applied to mappings. This study experimentally evaluates the proposed heuristics and the entire framework on realistic case studies borrowed from the biomedical domain, using official mappings between several biomedical KOSs. We demonstrate the overall performance of the approach over biomedical datasets of different characteristics and sizes. Our findings reveal the effectiveness in terms of precision, recall and F-measure of the suggested heuristics and methods defining the framework to adapt mappings affected by KOS evolution. The obtained results contribute and improve the quality of mappings over time. The proposed framework can adapt mappings largely automatically, facilitating thus the maintenance task. The implemented algorithms and tools support and minimize the work of users in charge of KOS mapping maintenance. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A new visual navigation system for exploring biomedical Open Educational Resource (OER) videos.

    Science.gov (United States)

    Zhao, Baoquan; Xu, Songhua; Lin, Shujin; Luo, Xiaonan; Duan, Lian

    2016-04-01

    Biomedical videos as open educational resources (OERs) are increasingly proliferating on the Internet. Unfortunately, seeking personally valuable content from among the vast corpus of quality yet diverse OER videos is nontrivial due to limitations of today's keyword- and content-based video retrieval techniques. To address this need, this study introduces a novel visual navigation system that facilitates users' information seeking from biomedical OER videos in mass quantity by interactively offering visual and textual navigational clues that are both semantically revealing and user-friendly. The authors collected and processed around 25 000 YouTube videos, which collectively last for a total length of about 4000 h, in the broad field of biomedical sciences for our experiment. For each video, its semantic clues are first extracted automatically through computationally analyzing audio and visual signals, as well as text either accompanying or embedded in the video. These extracted clues are subsequently stored in a metadata database and indexed by a high-performance text search engine. During the online retrieval stage, the system renders video search results as dynamic web pages using a JavaScript library that allows users to interactively and intuitively explore video content both efficiently and effectively.ResultsThe authors produced a prototype implementation of the proposed system, which is publicly accessible athttps://patentq.njit.edu/oer To examine the overall advantage of the proposed system for exploring biomedical OER videos, the authors further conducted a user study of a modest scale. The study results encouragingly demonstrate the functional effectiveness and user-friendliness of the new system for facilitating information seeking from and content exploration among massive biomedical OER videos. Using the proposed tool, users can efficiently and effectively find videos of interest, precisely locate video segments delivering personally valuable

  13. Physical approach to complex systems

    Science.gov (United States)

    Kwapień, Jarosław; Drożdż, Stanisław

    2012-06-01

    Typically, complex systems are natural or social systems which consist of a large number of nonlinearly interacting elements. These systems are open, they interchange information or mass with environment and constantly modify their internal structure and patterns of activity in the process of self-organization. As a result, they are flexible and easily adapt to variable external conditions. However, the most striking property of such systems is the existence of emergent phenomena which cannot be simply derived or predicted solely from the knowledge of the systems’ structure and the interactions among their individual elements. This property points to the holistic approaches which require giving parallel descriptions of the same system on different levels of its organization. There is strong evidence-consolidated also in the present review-that different, even apparently disparate complex systems can have astonishingly similar characteristics both in their structure and in their behaviour. One can thus expect the existence of some common, universal laws that govern their properties. Physics methodology proves helpful in addressing many of the related issues. In this review, we advocate some of the computational methods which in our opinion are especially fruitful in extracting information on selected-but at the same time most representative-complex systems like human brain, financial markets and natural language, from the time series representing the observables associated with these systems. The properties we focus on comprise the collective effects and their coexistence with noise, long-range interactions, the interplay between determinism and flexibility in evolution, scale invariance, criticality, multifractality and hierarchical structure. The methods described either originate from “hard” physics-like the random matrix theory-and then were transmitted to other fields of science via the field of complex systems research, or they originated elsewhere but

  14. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined

  15. Survey of biomedical and environental data bases, models, and integrated computer systems at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Murarka, I.P.; Bodeau, D.J.; Scott, J.M.; Huebner, R.H.

    1978-08-01

    This document contains an inventory (index) of information resources pertaining to biomedical and environmental projects at Argonne National Laboratory--the information resources include a data base, model, or integrated computer system. Entries are categorized as models, numeric data bases, bibliographic data bases, or integrated hardware/software systems. Descriptions of the Information Coordination Focal Point (ICFP) program, the system for compiling this inventory, and the plans for continuing and expanding it are given, and suggestions for utilizing the services of the ICFP are outlined.

  16. Preliminary design of the beam transport system for the Milan biomedical cyclotron

    International Nuclear Information System (INIS)

    Silari, M.

    1988-01-01

    This report illustrates the preliminary design of the beam transport system for the Scanditronix MC40 cyclotron to be installed in Milan. The Cyclotron will be dedicated to biomedical research and the different experimental conditions that could occur will require a beam transport system flexible enough so as to deliver beams with the specified characteristics. The report describes the computer codes used, the calculations performed and the results obtained. The complete configuration of the beam lines serving the first two target rooms is given, together with typical beam profiles and the emittance ellipse variation along the transfer channels

  17. Empirical and theoretical analysis of complex systems

    Science.gov (United States)

    Zhao, Guannan

    This thesis is an interdisciplinary work under the heading of complexity science which focuses on an arguably common "hard" problem across physics, finance and biology [1], to quantify and mimic the macroscopic "emergent phenomenon" in large-scale systems consisting of many interacting "particles" governed by microscopic rules. In contrast to traditional statistical physics, we are interested in systems whose dynamics are subject to feedback, evolution, adaption, openness, etc. Global financial markets, like the stock market and currency market, are ideal candidate systems for such a complexity study: there exists a vast amount of accurate data, which is the aggregate output of many autonomous agents continuously competing with each other. We started by examining the ultrafast "mini flash crash (MFC)" events in the US stock market. An abrupt system-wide composition transition from a mixed human machine phase to a new all-machine phase is uncovered, and a novel theory developed to explain this observation. Then in the study of FX market, we found an unexpected variation in the synchronicity of price changes in different market subsections as a function of the overall trading activity. Several survival models have been tested in analyzing the distribution of waiting times to the next price change. In the region of long waiting-times, the distribution for each currency pair exhibits a power law with exponent in the vicinity of 3.5. By contrast, for short waiting times only, the market activity can be mimicked by the fluctuations emerging from a finite resource competition model containing multiple agents with limited rationality (so called El Farol Model). Switching to the biomedical domain, we present a minimal mathematical model built around a co-evolving resource network and cell population, yielding good agreement with primary tumors in mice experiment and with clinical metastasis data. In the quest to understand contagion phenomena in systems where social group

  18. Science gateways for biomedical big data analysis

    NARCIS (Netherlands)

    Shahand, S.

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists

  19. Combinations of complex dynamical systems

    CERN Document Server

    Pilgrim, Kevin M

    2003-01-01

    This work is a research-level monograph whose goal is to develop a general combination, decomposition, and structure theory for branched coverings of the two-sphere to itself, regarded as the combinatorial and topological objects which arise in the classification of certain holomorphic dynamical systems on the Riemann sphere. It is intended for researchers interested in the classification of those complex one-dimensional dynamical systems which are in some loose sense tame. The program is motivated by the dictionary between the theories of iterated rational maps and Kleinian groups.

  20. Semiotics of constructed complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Landauer, C.; Bellman, K.L.

    1996-12-31

    The scope of this paper is limited to software and other constructed complex systems mediated or integrated by software. Our research program studies foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. There have really been only two theoretical approaches that have helped us understand and develop computational systems: mathematics and linguistics. We show how semiotics can also play a role, whether we think of it as part of these other theories or as subsuming one or both of them. We describe our notion of {open_quotes}computational semiotics{close_quotes}, which we define to be the study of computational methods of dealing with symbols, show how such a theory might be formed, and describe what we might get from it in terms of more interesting use of symbols by computing systems. This research was supported in part by the Federal Highway Administration`s Office of Advanced Research and by the Advanced Research Projects Agency`s Software and Intelligent Systems Technology Office.

  1. 5th International Conference on Complex Systems

    CERN Document Server

    Braha, Dan; Bar-Yam, Yaneer

    2011-01-01

    The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.

  2. 7th International Conference on Complex Systems

    CERN Document Server

    Braha, Dan; Bar-Yam, Yaneer

    2012-01-01

    The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore common themes and applications of complex system science. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex system science.

  3. Technology for 3D System Integration for Flexible Wireless Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Kuo

    2018-05-01

    Full Text Available This paper presents a new 3D bottom-up packing technology for integrating a chip, an induction coil, and interconnections for flexible wireless biomedical applications. Parylene was used as a flexible substrate for the bottom-up embedding of the chip, insulation layer, interconnection, and inductors to form a flexible wireless biomedical microsystem. The system can be implanted on or inside the human body. A 50-μm gold foil deposited through laser micromachining by using a picosecond laser was used as an inductor to yield a higher quality factor than that yielded by thickness-increasing methods such as the fold-and-bond method or thick-metal electroplating method at the operation frequency of 1 MHz. For system integration, parylene was used as a flexible substrate, and the contact pads and connections between the coil and chip were generated using gold deposition. The advantage of the proposed process can integrate the chip and coil vertically to generate a single biocompatible system in order to reduce required area. The proposed system entails the use of 3D integrated circuit packaging concepts to integrate the chip and coil. The results validated the feasibility of this technology.

  4. Computational models of complex systems

    CERN Document Server

    Dabbaghian, Vahid

    2014-01-01

    Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the reader...

  5. Operational results for the raster scanning power supply system constructed at the Bevalac Biomedical Facility

    International Nuclear Information System (INIS)

    Stover, G.; Halliwell, J.; Nyman, M.; Dwinell, R.

    1989-03-01

    A raster scanning power supply for controlling an 8.0 Tesla-meter relativistic heavy-ion beam at the Biomedical Facility has been recently completed and is undergoing electrical testing before on- line operation in 1989. The scanner system will provide tightly controlled beam uniformity and off-axis treatment profiles with large aspect ratios and unusual dimensions. This article will discuss original specifications, agreement with measured results and special device performance (i.e. GTOs, FET actuator assembly, etc.). 5 refs., 4 figs

  6. High-Definition 3D Stereoscopic Microscope Display System for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yoo Kwan-Hee

    2010-01-01

    Full Text Available Biomedical research has been performed by using advanced information techniques, and micro-high-quality stereo images have been used by researchers and/or doctors for various aims in biomedical research and surgery. To visualize the stereo images, many related devices have been developed. However, the devices are difficult to learn for junior doctors and demanding to supervise for experienced surgeons. In this paper, we describe the development of a high-definition (HD three-dimensional (3D stereoscopic imaging display system for operating a microscope or experimenting on animals. The system consists of a stereoscopic camera part, image processing device for stereoscopic video recording, and stereoscopic display. In order to reduce eyestrain and viewer fatigue, we use a preexisting stereo microscope structure and polarized-light stereoscopic display method that does not reduce the quality of the stereo images. The developed system can overcome the discomfort of the eye piece and eyestrain caused by use over a long period of time.

  7. Modeling Power Systems as Complex Adaptive Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  8. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  9. Interdisciplinary Symposium on Complex Systems

    CERN Document Server

    Zelinka, Ivan; Rössler, Otto

    2014-01-01

    The book you hold in your hands is the outcome of the "ISCS 2013: Interdisciplinary Symposium on Complex Systems" held at the historical capital of Bohemia as a continuation of our series of symposia in the science of complex systems. Prague, one of the most beautiful European cities, has its own beautiful genius loci. Here, a great number of important discoveries were made and many important scientists spent fruitful and creative years to leave unforgettable traces. The perhaps most significant period was the time of Rudolf II who was a great supporter of the art and the science and attracted a great number of prominent minds to Prague. This trend would continue. Tycho Brahe, Niels Henrik Abel, Johannes Kepler, Bernard Bolzano, August Cauchy Christian Doppler, Ernst Mach, Albert Einstein and many others followed developing fundamental mathematical and physical theories or expanding them. Thus in the beginning of the 17th century, Kepler formulated here the first two of his three laws of planetary motion on ...

  10. Bridging the gap between clinicians and systems biologists: from network biology to translational biomedical research.

    Science.gov (United States)

    Jinawath, Natini; Bunbanjerdsuk, Sacarin; Chayanupatkul, Maneerat; Ngamphaiboon, Nuttapong; Asavapanumas, Nithi; Svasti, Jisnuson; Charoensawan, Varodom

    2016-11-22

    With the wealth of data accumulated from completely sequenced genomes and other high-throughput experiments, global studies of biological systems, by simultaneously investigating multiple biological entities (e.g. genes, transcripts, proteins), has become a routine. Network representation is frequently used to capture the presence of these molecules as well as their relationship. Network biology has been widely used in molecular biology and genetics, where several network properties have been shown to be functionally important. Here, we discuss how such methodology can be useful to translational biomedical research, where scientists traditionally focus on one or a small set of genes, diseases, and drug candidates at any one time. We first give an overview of network representation frequently used in biology: what nodes and edges represent, and review its application in preclinical research to date. Using cancer as an example, we review how network biology can facilitate system-wide approaches to identify targeted small molecule inhibitors. These types of inhibitors have the potential to be more specific, resulting in high efficacy treatments with less side effects, compared to the conventional treatments such as chemotherapy. Global analysis may provide better insight into the overall picture of human diseases, as well as identify previously overlooked problems, leading to rapid advances in medicine. From the clinicians' point of view, it is necessary to bridge the gap between theoretical network biology and practical biomedical research, in order to improve the diagnosis, prevention, and treatment of the world's major diseases.

  11. Recombinant production of plant lectins in microbial systems for biomedical application – the frutalin case study

    Directory of Open Access Journals (Sweden)

    Carla eOliveira

    2014-08-01

    Full Text Available Frutalin is a homotetrameric partly-glycosylated alpha-D-galactose-binding lectin of biomedical interest from Artocarpus incisa (breadfruit seeds, belonging to the jacalin-related lectins family. As other plant lectins, frutalin is a heterogeneous mixture of several isoforms possibly with distinct biological activities. The main problem of using such lectins as biomedical tools is that batch-to-batch variation in isoforms content may lead to inconstant results. The production of lectins by recombinant means has the advantage of obtaining high amounts of proteins with defined amino-acid sequences and more precise properties. In this mini review, we provide the strategies followed to produce two different forms of frutalin in two different microbial systems: Escherichia coli and Pichia pastoris. The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit. Emphasis is given particularly to recombinant frutalin produced in P. pastoris, which showed a remarkable capacity as biomarker of human prostate cancer and as apoptosis-inducer of cancer cells. Recombinant frutalin production opens perspectives for its development as a new tool in human medicine.

  12. Recombinant production of plant lectins in microbial systems for biomedical application – the frutalin case study

    Science.gov (United States)

    Oliveira, Carla; Teixeira, José A.; Domingues, Lucília

    2014-01-01

    Frutalin is a homotetrameric partly glycosylated α-D-galactose-binding lectin of biomedical interest from Artocarpus incisa (breadfruit) seeds, belonging to the jacalin-related lectins family. As other plant lectins, frutalin is a heterogeneous mixture of several isoforms possibly with distinct biological activities. The main problem of using such lectins as biomedical tools is that “batch-to-batch” variation in isoforms content may lead to inconstant results. The production of lectins by recombinant means has the advantage of obtaining high amounts of proteins with defined amino-acid sequences and more precise properties. In this mini review, we provide the strategies followed to produce two different forms of frutalin in two different microbial systems: Escherichia coli and Pichia pastoris. The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit. Emphasis is given particularly to recombinant frutalin produced in P. pastoris, which showed a remarkable capacity as biomarker of human prostate cancer and as apoptosis-inducer of cancer cells. Recombinant frutalin production opens perspectives for its development as a new tool in human medicine. PMID:25152749

  13. Infinite Particle Systems: Complex Systems III

    Directory of Open Access Journals (Sweden)

    Editorial Board

    2008-06-01

    Full Text Available In the years 2002-2005, a group of German and Polish mathematicians worked under a DFG research project No 436 POL 113/98/0-1 entitled "Methods of stochastic analysis in the theory of collective phenomena: Gibbs states and statistical hydrodynamics". The results of their study were summarized at the German-Polish conference, which took place in Poland in October 2005. The venue of the conference was Kazimierz Dolny upon Vistula - a lovely town and a popular place for various cultural, scientific, and even political events of an international significance. The conference was also attended by scientists from France, Italy, Portugal, UK, Ukraine, and USA, which predetermined its international character. Since that time, the conference, entitled "Infinite Particle Systems: Complex Systems" has become an annual international event, attended by leading scientists from Germany, Poland and many other countries. The present volume of the "Condensed Matter Physics" contains proceedings of the conference "Infinite Particle Systems: Complex Systems III", which took place in June 2007.

  14. Multilevel Complex Networks and Systems

    Science.gov (United States)

    Caldarelli, Guido

    2014-03-01

    Network theory has been a powerful tool to model isolated complex systems. However, the classical approach does not take into account the interactions often present among different systems. Hence, the scientific community is nowadays concentrating the efforts on the foundations of new mathematical tools for understanding what happens when multiple networks interact. The case of economic and financial networks represents a paramount example of multilevel networks. In the case of trade, trade among countries the different levels can be described by the different granularity of the trading relations. Indeed, we have now data from the scale of consumers to that of the country level. In the case of financial institutions, we have a variety of levels at the same scale. For example one bank can appear in the interbank networks, ownership network and cds networks in which the same institution can take place. In both cases the systemically important vertices need to be determined by different procedures of centrality definition and community detection. In this talk I will present some specific cases of study related to these topics and present the regularities found. Acknowledged support from EU FET Project ``Multiplex'' 317532.

  15. Consideration for solar system exploration - A system to Mars. [biomedical, environmental, and psychological factors

    Science.gov (United States)

    Nicogossian, Arnauld E.; Garshnek, Victoria

    1989-01-01

    Biomedical issues related to a manned mission to Mars are reviewed. Consideration is given to cardiovascular deconditioning, hematological and immunological changes, bone and muscle changes, nutritional issues, and the development of physiological countermeasures. Environmental issues are discussed, including radiation hazards, toxic chemical exposure, and the cabin environment. Also, human factors, performance and behavior, medical screening of the crew, disease prediction, and health maintenance are examined.

  16. Visualization of biomedical image data and irradiation planning using a parallel computing system

    International Nuclear Information System (INIS)

    Lehrig, R.

    1991-01-01

    The contribution explains the development of a novel, low-cost workstation for the processing of biomedical tomographic data sequences. The workstation was to allow both graphical display of the data and implementation of modelling software for irradiation planning, especially for calculation of dose distributions on the basis of the measured tomogram data. The system developed according to these criteria is a parallel computing system which performs secondary, two-dimensional image reconstructions irrespective of the imaging direction of the original tomographic scans. Three-dimensional image reconstructions can be generated from any direction of view, with random selection of sections of the scanned object. (orig./MM) With 69 figs., 2 tabs [de

  17. Increase of Organization in Complex Systems

    OpenAIRE

    Georgiev, Georgi Yordanov; Daly, Michael; Gombos, Erin; Vinod, Amrit; Hoonjan, Gajinder

    2013-01-01

    Measures of complexity and entropy have not converged to a single quantitative description of levels of organization of complex systems. The need for such a measure is increasingly necessary in all disciplines studying complex systems. To address this problem, starting from the most fundamental principle in Physics, here a new measure for quantity of organization and rate of self-organization in complex systems based on the principle of least (stationary) action is applied to a model system -...

  18. Metasynthetic computing and engineering of complex systems

    CERN Document Server

    Cao, Longbing

    2015-01-01

    Provides a comprehensive overview and introduction to the concepts, methodologies, analysis, design and applications of metasynthetic computing and engineering. The author: Presents an overview of complex systems, especially open complex giant systems such as the Internet, complex behavioural and social problems, and actionable knowledge discovery and delivery in the big data era. Discusses ubiquitous intelligence in complex systems, including human intelligence, domain intelligence, social intelligence, network intelligence, data intelligence and machine intelligence, and their synergy thro

  19. The Interaction Network Ontology-supported modeling and mining of complex interactions represented with multiple keywords in biomedical literature.

    Science.gov (United States)

    Özgür, Arzucan; Hur, Junguk; He, Yongqun

    2016-01-01

    The Interaction Network Ontology (INO) logically represents biological interactions, pathways, and networks. INO has been demonstrated to be valuable in providing a set of structured ontological terms and associated keywords to support literature mining of gene-gene interactions from biomedical literature. However, previous work using INO focused on single keyword matching, while many interactions are represented with two or more interaction keywords used in combination. This paper reports our extension of INO to include combinatory patterns of two or more literature mining keywords co-existing in one sentence to represent specific INO interaction classes. Such keyword combinations and related INO interaction type information could be automatically obtained via SPARQL queries, formatted in Excel format, and used in an INO-supported SciMiner, an in-house literature mining program. We studied the gene interaction sentences from the commonly used benchmark Learning Logic in Language (LLL) dataset and one internally generated vaccine-related dataset to identify and analyze interaction types containing multiple keywords. Patterns obtained from the dependency parse trees of the sentences were used to identify the interaction keywords that are related to each other and collectively represent an interaction type. The INO ontology currently has 575 terms including 202 terms under the interaction branch. The relations between the INO interaction types and associated keywords are represented using the INO annotation relations: 'has literature mining keywords' and 'has keyword dependency pattern'. The keyword dependency patterns were generated via running the Stanford Parser to obtain dependency relation types. Out of the 107 interactions in the LLL dataset represented with two-keyword interaction types, 86 were identified by using the direct dependency relations. The LLL dataset contained 34 gene regulation interaction types, each of which associated with multiple keywords. A

  20. Views on the peer review system of biomedical journals: an online survey of academics from high-ranking universities

    Science.gov (United States)

    2013-01-01

    Background Peer review is the major method used by biomedical journals for making the decision of publishing an article. This cross-sectional survey assesses views concerning the review system of biomedical journals among academics globally. Methods A total of 28,009 biomedical academics from high-ranking universities listed by the 2009 Times Higher Education Quacquarelli Symonds (THE-QS) World University Rankings were contacted by email between March 2010 and August 2010. 1,340 completed an online survey which focused on their academic background, negative experiences and views on biomedical journal peer review and the results were compared among basic scientists, clinicians and clinician scientists. Results Fewer than half of the respondents agreed that the peer review systems of biomedical journals were fair (48.4%), scientific (47.5%), or transparent (25.1%). Nevertheless, 58.2% of the respondents agreed that authors should remain anonymous and 64.4% agreed that reviewers should not be disclosed. Most, (67.7%) agreed to the establishment of an appeal system. The proportion of native English-speaking respondents who agreed that the “peer review system is fair” was significantly higher than for non-native respondents (p = 0.02). Similarly, the proportion of clinicians stating that the “peer review system is fair” was significantly higher than that for basic scientists and clinician-scientists (p = 0.004). For females, (β = −0.1, p = 0.03), the frequency of encountering personal attacks in reviewers’ comments (β = −0.1, p = 0.002) and the frequency of imposition of unnecessary references by reviewers (β = −0.06, p = 0.04) were independently and inversely associated with agreement that “the peer review system is fair”. Conclusion Academics are divided on the issue of whether the biomedical journal peer review system is fair, scientific and transparent. A majority of academics agreed with the double-blind peer

  1. Reduction of Subjective and Objective System Complexity

    Science.gov (United States)

    Watson, Michael D.

    2015-01-01

    Occam's razor is often used in science to define the minimum criteria to establish a physical or philosophical idea or relationship. Albert Einstein is attributed the saying "everything should be made as simple as possible, but not simpler". These heuristic ideas are based on a belief that there is a minimum state or set of states for a given system or phenomena. In looking at system complexity, these heuristics point us to an idea that complexity can be reduced to a minimum. How then, do we approach a reduction in complexity? Complexity has been described as a subjective concept and an objective measure of a system. Subjective complexity is based on human cognitive comprehension of the functions and inter relationships of a system. Subjective complexity is defined by the ability to fully comprehend the system. Simplifying complexity, in a subjective sense, is thus gaining a deeper understanding of the system. As Apple's Jonathon Ive has stated," It's not just minimalism or the absence of clutter. It involves digging through the depth of complexity. To be truly simple, you have to go really deep". Simplicity is not the absence of complexity but a deeper understanding of complexity. Subjective complexity, based on this human comprehension, cannot then be discerned from the sociological concept of ignorance. The inability to comprehend a system can be either a lack of knowledge, an inability to understand the intricacies of a system, or both. Reduction in this sense is based purely on a cognitive ability to understand the system and no system then may be truly complex. From this view, education and experience seem to be the keys to reduction or eliminating complexity. Objective complexity, is the measure of the systems functions and interrelationships which exist independent of human comprehension. Jonathon Ive's statement does not say that complexity is removed, only that the complexity is understood. From this standpoint, reduction of complexity can be approached

  2. A Multilayer Secure Biomedical Data Management System for Remotely Managing a Very Large Number of Diverse Personal Healthcare Devices

    Directory of Open Access Journals (Sweden)

    KeeHyun Park

    2015-01-01

    Full Text Available In this paper, a multilayer secure biomedical data management system for managing a very large number of diverse personal health devices is proposed. The system has the following characteristics: the system supports international standard communication protocols to achieve interoperability. The system is integrated in the sense that both a PHD communication system and a remote PHD management system work together as a single system. Finally, the system proposed in this paper provides user/message authentication processes to securely transmit biomedical data measured by PHDs based on the concept of a biomedical signature. Some experiments, including the stress test, have been conducted to show that the system proposed/constructed in this study performs very well even when a very large number of PHDs are used. For a stress test, up to 1,200 threads are made to represent the same number of PHD agents. The loss ratio of the ISO/IEEE 11073 messages in the normal system is as high as 14% when 1,200 PHD agents are connected. On the other hand, no message loss occurs in the multilayered system proposed in this study, which demonstrates the superiority of the multilayered system to the normal system with regard to heavy traffic.

  3. Encyclopedia of Complexity and Systems Science

    CERN Document Server

    Meyers, Robert A

    2009-01-01

    Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other n...

  4. European Conference on Complex Systems 2012

    CERN Document Server

    Kirkilionis, Markus; Nicolis, Gregoire

    2013-01-01

    The European Conference on Complex Systems, held under the patronage of the Complex Systems Society, is an annual event that has become the leading European conference devoted to complexity science. ECCS'12, its ninth edition, took place in Brussels, during the first week of September 2012. It gathered about 650 scholars representing a wide range of topics relating to complex systems research, with emphasis on interdisciplinary approaches. More specifically, the following tracks were covered:  1. Foundations of Complex Systems 2. Complexity, Information and Computation 3. Prediction, Policy and Planning, Environment 4. Biological Complexity 5. Interacting Populations, Collective Behavior 6. Social Systems, Economics and Finance This book contains a selection of the contributions presented at the conference and its satellite meetings. Its contents reflect the extent, diversity and richness of research areas in the field, both fundamental and applied.  

  5. Systemic Resilience of Complex Urban Systems

    Directory of Open Access Journals (Sweden)

    Serge Salat

    2012-07-01

    Full Text Available Two key paradigms emerge out of the variety of urban forms: certain cities resemble trees, others leaves. The structural difference between a tree and a leaf is huge: one is open, the other closed. Trees are entirely disconnected on a given scale: even if two twigs are spatially close, if they do not belong to the same branch, to go from one to the other implies moving down and then up all the hierarchy of branches.  Leaves on the contrary are entirely connected on intermediary scales. The veins of a leaf are disconnected on the two larger scales but entirely connected on the two or three following intermediary scales before presenting tiny tree-like structures on the finest capillary scales. Deltas are leaves not trees. Neither galaxies nor whirlpools are trees. We will see in this paper that historical cities, like leaves, deltas, galaxies, lungs, brains and vein systems are all fractal structures, multiply connected and complex on all scales. These structures display the same degree of complexity and connectivity, regardless of the magnification scale on which we observe them. We say that these structures are scale free. Mathematical fractal forms are often generated recursively by applying again and again the same generator to an initiator. The iteration creates an arborescence. But scale free structure is not synonymous with a recursive tree-like structure. The fractal structure of the leaf is much more complex than that of the tree by its multiconnectivity on three or more intermediary levels. In contrast, trees in the virgin forest, even when they seem to be entangled, horizontal, and rhizomic, have branches that are not interconnected to form a lattice. As we will see, the history of urban planning has evolved from leaf-like to tree-like patterns, with a consequent loss of efficiency and resilience. Indeed, in a closed foliar path structure, the formation of cycles enables internal complexification and flow fluctuations due to the

  6. Mutual-Information-Based Incremental Relaying Communications for Wireless Biomedical Implant Systems

    Directory of Open Access Journals (Sweden)

    Yangzhe Liao

    2018-02-01

    Full Text Available Network lifetime maximization of wireless biomedical implant systems is one of the major research challenges of wireless body area networks (WBANs. In this paper, a mutual information (MI-based incremental relaying communication protocol is presented where several on-body relay nodes and one coordinator are attached to the clothes of a patient. Firstly, a comprehensive analysis of a system model is investigated in terms of channel path loss, energy consumption, and the outage probability from the network perspective. Secondly, only when the MI value becomes smaller than the predetermined threshold is data transmission allowed. The communication path selection can be either from the implanted sensor to the on-body relay then forwards to the coordinator or from the implanted sensor to the coordinator directly, depending on the communication distance. Moreover, mathematical models of quality of service (QoS metrics are derived along with the related subjective functions. The results show that the MI-based incremental relaying technique achieves better performance in comparison to our previous proposed protocol techniques regarding several selected performance metrics. The outcome of this paper can be applied to intra-body continuous physiological signal monitoring, artificial biofeedback-oriented WBANs, and telemedicine system design.

  7. 1989 lectures in complex systems

    International Nuclear Information System (INIS)

    Jen, E.

    1990-01-01

    This report contains papers on the following topics: Lectures on a Theory of Computation and Complexity over the Reals; Algorithmic Information Content, Church-Turing Thesis, Physical Entroph, and Maxwell's Demon; Physical Measures of Complexity; An Introduction to Chaos and Prediction; Hamiltonian Chaos in Nonlinear Polarized Optical Beam; Chemical Oscillators and Nonlinear Chemical Dynamics; Isotropic Navier-Stokes Turbulence. I. Qualitative Features and Basic Equations; Isotropic Navier-Stokes Turbulence. II. Statistical Approximation Methods; Lattice Gases; Data-Parallel Computation and the Connection Machine; Preimages and Forecasting for Cellular Automata; Lattice-Gas Models for Multiphase Flows and Magnetohydrodynamics; Probabilistic Cellular Automata: Some Statistical Mechanical Considerations; Complexity Due to Disorder and Frustration; Self-Organization by Simulated Evolution; Theoretical Immunology; Morphogenesis by Cell Intercalation; and Theoretical Physics Meets Experimental Neurobiology

  8. Complex system modelling and control through intelligent soft computations

    CERN Document Server

    Azar, Ahmad

    2015-01-01

    The book offers a snapshot of the theories and applications of soft computing in the area of complex systems modeling and control. It presents the most important findings discussed during the 5th International Conference on Modelling, Identification and Control, held in Cairo, from August 31-September 2, 2013. The book consists of twenty-nine selected contributions, which have been thoroughly reviewed and extended before their inclusion in the volume. The different chapters, written by active researchers in the field, report on both current theories and important applications of soft-computing. Besides providing the readers with soft-computing fundamentals, and soft-computing based inductive methodologies/algorithms, the book also discusses key industrial soft-computing applications, as well as multidisciplinary solutions developed for a variety of purposes, like windup control, waste management, security issues, biomedical applications and many others. It is a perfect reference guide for graduate students, r...

  9. Synchronization and emergence in complex systems

    Indian Academy of Sciences (India)

    ... complex systems. Fatihcan M Atay. Synchronization, Coupled Systems and Networks Volume 77 Issue 5 November 2011 pp 855-863 ... We show how novel behaviour can emerge in complex systems at the global level through synchronization of the activities of their constituent units. Two mechanisms are suggested for ...

  10. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  11. A generic miniature multi-feature programmable wireless powering headstage ASIC for implantable biomedical systems.

    Science.gov (United States)

    Kubendran, Rajkumar; Krishnan, Harish; Manola, Bhupendra; John, Simon W M; Chappell, William J; Irazoqui, Pedro P

    2011-01-01

    Wireless powering holds immense promise to enable a variety of implantable biomedical measurement systems with different power supply and current budget requirements. Effective power management demands more functionality in the headstage design like power level detection for range estimation and power save modes for sleep-wake operation. This paper proposes a single chip ASIC solution that addresses these problems by incorporating digitally programmable features and thus has the potential to enable wireless powering for many implantable systems. The ASIC includes an RF rectifier which has a peak efficiency of 17.9% at 900 MHz and 11.0% at 2.4 GHz, a robust 1 V bandgap reference and LDO voltage regulator whose output can be programmed in the range of 1 V-1.5 V, and can drive upto 4 mA of load current. The input RF power level detector has a threshold of 1.6 V and the power management block can be programmed to give a 6%, 12.5% or 25% duty cycle power line to the transmitter resulting in upto 60% reduction in average power. The ASIC was fabricated using the TSMC 65 nm process, occupies 1mm(2) die area and the headstage consumes ~300 μA at 1.2V regulated supply.

  12. A closed loop wireless power transmission system using a commercial RFID transceiver for biomedical applications.

    Science.gov (United States)

    Kiani, Mehdi; Ghovanloo, Maysam

    2009-01-01

    This paper presents a standalone closed loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (MLX90121) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop fashion. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either malfunction or excessive heat dissipation. RFID transceivers are often used open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 1.48 mW over a range of 6 to 12 cm, while the transmitter power consumption changed from 0.3 W to 1.21 W. The closed loop system can also oppose voltage variations as a result of sudden changes in load current.

  13. An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications.

    Science.gov (United States)

    Kiani, Mehdi; Ghovanloo, Maysam

    2010-04-01

    This brief presents a standalone closed-loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader (TRF7960) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either a malfunction or excessive heat dissipation. RFID circuits are often used in an open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 11.2 mW over a range of 0.5 to 2 cm, while the transmitter power consumption changed from 78 mW to 1.1 W. The closed-loop system can also oppose voltage variations as a result of sudden changes in the load current.

  14. Large-scale Complex IT Systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2011-01-01

    This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that identifies the major challen...

  15. Large-scale complex IT systems

    OpenAIRE

    Sommerville, Ian; Cliff, Dave; Calinescu, Radu; Keen, Justin; Kelly, Tim; Kwiatkowska, Marta; McDermid, John; Paige, Richard

    2012-01-01

    12 pages, 2 figures This paper explores the issues around the construction of large-scale complex systems which are built as 'systems of systems' and suggests that there are fundamental reasons, derived from the inherent complexity in these systems, why our current software engineering methods and techniques cannot be scaled up to cope with the engineering challenges of constructing such systems. It then goes on to propose a research and education agenda for software engineering that ident...

  16. Extending Life Concepts to Complex Systems

    Directory of Open Access Journals (Sweden)

    Jean Le Fur

    2013-01-01

    Full Text Available There is still no consensus definition of complex systems. This article explores, as a heuristic approach, the possibility of using notions associated with life as transversal concepts for defining complex systems. This approach is developed within a general classification of systems, with complex systems considered as a general ‘living things’ category and living organisms as a specialised class within this category. Concepts associated with life are first explored in the context of complex systems: birth, death and lifetime, adaptation, ontogeny and growth, reproduction. Thereafter, a refutation approach is used to test the proposed classification against a set of diverse systems, including a reference case, edge cases and immaterial complex systems. The summary of this analysis is then used to generate a definition of complex systems, based on the proposal, and within the background of cybernetics, complex adaptive systems and biology. Using notions such as ‘birth’ or ‘lifespan’ as transversal concepts may be of heuristic value for the generic characterization of complex systems, opening up new lines of research for improving their definition.

  17. Metal ion-assisted self-assembly of complexes for controlled and sustained release of minocycline for biomedical applications

    International Nuclear Information System (INIS)

    Zhang, Zhiling; Wang, Zhicheng; Nong, Jia; Nix, Camilla A; Zhong, Yinghui; Ji, Hai-Feng

    2015-01-01

    This study reports the development of novel drug delivery complexes self-assembled by divalent metal ion-assisted coacervation for controlled and sustained release of a hydrophilic small drug molecule minocycline hydrochloride (MH). MH is a multifaceted agent that has demonstrated therapeutic effects in infection, inflammation, tumor, as well as cardiovascular, renal, and neurological disorders due to its anti-microbial, anti-inflammatory, and cytoprotective properties. However, the inability to translate the high doses used in experimental animals to tolerable doses in human patients limits its clinical application. Localized delivery can potentially expose the diseased tissue to high concentrations of MH that systemic delivery cannot achieve, while minimizing the side effects from systemic exposure. The strong metal ion binding-assisted interaction enabled high drug entrapment and loading efficiency, and stable long term release for more than 71 d. Released MH demonstrated potent anti-biofilm, anti-inflammatory, and neuroprotective activities. Furthermore, MH release from the complexes is pH-sensitive as the chelation between minocycline and metal ions decreases with pH, allowing ‘smart’ drug release in response to the severity of pathology-induced tissue acidosis. This novel metal ion binding-mediated drug delivery mechanism can potentially be applied to other drugs that have high binding affinity for metal ions and may lead to the development of new delivery systems for a variety of drugs. (paper)

  18. Models of complex attitude systems

    DEFF Research Database (Denmark)

    Sørensen, Bjarne Taulo

    search algorithms and structural equation models. The results suggest that evaluative judgments of the importance of production system attributes are generated in a schematic manner, driven by personal value orientations. The effect of personal value orientations was strong and largely unmediated...... that evaluative affect propagates through the system in such a way that the system becomes evaluatively consistent and operates as a schema for the generation of evaluative judgments. In the empirical part of the paper, the causal structure of an attitude system from which people derive their evaluations of pork......Existing research on public attitudes towards agricultural production systems is largely descriptive, abstracting from the processes through which members of the general public generate their evaluations of such systems. The present paper adopts a systems perspective on such evaluations...

  19. Third International Conference on Complex Systems

    CERN Document Server

    Minai, Ali A; Unifying Themes in Complex Systems

    2006-01-01

    In recent years, scientists have applied the principles of complex systems science to increasingly diverse fields. The results have been nothing short of remarkable: their novel approaches have provided answers to long-standing questions in biology, ecology, physics, engineering, computer science, economics, psychology and sociology. The Third International Conference on Complex Systems attracted over 400 researchers from around the world. The conference aimed to encourage cross-fertilization between the many disciplines represented and to deepen our understanding of the properties common to all complex systems. This volume contains over 35 papers selected from those presented at the conference on topics including: self-organization in biology, ecological systems, language, economic modeling, ecological systems, artificial life, robotics, and complexity and art. ALI MINAI is an Affiliate of the New England Complex Systems Institute and an Associate Professor in the Department of Electrical and Computer Engine...

  20. Reliability of large and complex systems

    CERN Document Server

    Kolowrocki, Krzysztof

    2014-01-01

    Reliability of Large and Complex Systems, previously titled Reliability of Large Systems, is an innovative guide to the current state and reliability of large and complex systems. In addition to revised and updated content on the complexity and safety of large and complex mechanisms, this new edition looks at the reliability of nanosystems, a key research topic in nanotechnology science. The author discusses the importance of safety investigation of critical infrastructures that have aged or have been exposed to varying operational conditions. This reference provides an asympt

  1. Multi-agent and complex systems

    CERN Document Server

    Ren, Fenghui; Fujita, Katsuhide; Zhang, Minjie; Ito, Takayuki

    2017-01-01

    This book provides a description of advanced multi-agent and artificial intelligence technologies for the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field. A complex system features a large number of interacting components, whose aggregate activities are nonlinear and self-organized. A multi-agent system is a group or society of agents which interact with others cooperatively and/or competitively in order to reach their individual or common goals. Multi-agent systems are suitable for modeling and simulation of complex systems, which is difficult to accomplish using traditional computational approaches.

  2. Mining sensor data from complex systems

    NARCIS (Netherlands)

    Vespier, Ugo

    2015-01-01

    Today, virtually everything, from natural phenomena to complex artificial and physical systems, can be measured and the resulting information collected, stored and analyzed in order to gain new insight. This thesis shows how complex systems often exhibit diverse behavior at different temporal

  3. Interval stability for complex systems

    Science.gov (United States)

    Klinshov, Vladimir V.; Kirillov, Sergey; Kurths, Jürgen; Nekorkin, Vladimir I.

    2018-04-01

    Stability of dynamical systems against strong perturbations is an important problem of nonlinear dynamics relevant to many applications in various areas. Here, we develop a novel concept of interval stability, referring to the behavior of the perturbed system during a finite time interval. Based on this concept, we suggest new measures of stability, namely interval basin stability (IBS) and interval stability threshold (IST). IBS characterizes the likelihood that the perturbed system returns to the stable regime (attractor) in a given time. IST provides the minimal magnitude of the perturbation capable to disrupt the stable regime for a given interval of time. The suggested measures provide important information about the system susceptibility to external perturbations which may be useful for practical applications. Moreover, from a theoretical viewpoint the interval stability measures are shown to bridge the gap between linear and asymptotic stability. We also suggest numerical algorithms for quantification of the interval stability characteristics and demonstrate their potential for several dynamical systems of various nature, such as power grids and neural networks.

  4. Systems Biology and Health Systems Complexity in;

    NARCIS (Netherlands)

    Donald Combs, C.; Barham, S.R.; Sloot, P.M.A.

    2016-01-01

    Systems biology addresses interactions in biological systems at different scales of biological organization, from the molecular to the cellular, organ, organism, societal, and ecosystem levels. This chapter expands on the concept of systems biology, explores its implications for individual patients

  5. Fourth International Conference on Complex Systems

    CERN Document Server

    Minai, Ali A; Unifying Themes in Complex Systems IV

    2008-01-01

    In June of 2002, over 500 professors, students and researchers met in Boston, Massachusetts for the Fourth International Conference on Complex Systems. The attendees represented a remarkably diverse collection of fields: biology, ecology, physics, engineering, computer science, economics, psychology and sociology, The goal of the conference was to encourage cross-fertilization between the many disciplines represented and to deepen understanding of the properties common to all complex systems. This volume contains 43 papers selected from the more than 200 presented at the conference. Topics include: cellular automata, neurology, evolution, computer science, network dynamics, and urban planning. About NECSI: For over 10 years, The New England Complex Systems Institute (NECSI) has been instrumental in the development of complex systems science and its applications. NECSI conducts research, education, knowledge dissemination, and community development around the world for the promotion of the study of complex sys...

  6. Sixth International Conference on Complex Systems

    CERN Document Server

    Minai, Ali; Bar-Yam, Yaneer; Unifying Themes in Complex Systems

    2008-01-01

    The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore the common themes and applications of complex systems science. In June 2006, 500 participants convened in Boston for the sixth ICCS, exploring an array of topics, including networks, systems biology, evolution and ecology, nonlinear dynamics and pattern formation, as well as neural, psychological, psycho-social, socio-economic, and global systems. This volume selects 77 papers from over 300 presented at the conference. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex systems science.

  7. Quantum transport in complex system

    International Nuclear Information System (INIS)

    Kusnezov, D.; Bulgac, A.; DoDang, G.

    1998-01-01

    We derive the influence function and the effective dynamics of a quantum systems coupled to a chaotic environment, using very general parametric and banded random matrices to describe the quantum properties of a chaotic bath. We find that only in certain limits the thermalization can result from the environment. We study the general transport problems including escape, fusion and tunneling (fission). (author)

  8. Lectures in Complex Systems (1991)

    Science.gov (United States)

    1992-08-05

    of Development and Aging of the Nervous System, edited by J. M. Lauder , 217-225. New York: Plenum Press, 1990. 88. Keller, E. F. A Feeling for the...not every player wins an infinite amount of money just because the expected winning is infinite. The perception of this paradox in the 1700s was to cast

  9. Complex System Governance for Acquisition

    Science.gov (United States)

    2016-04-30

    are not the privilege, or curse, of any particular field or sector (energy, utilities, healthcare, transportation , commerce, defense, security...2005; Whitney et al., 2015) and Management Cybernetics ( Beer , 1972, 1979, 1985) and the field has been built upon their philosophical, theoretical, and...et al., 2015), while Management Cybernetics has been identified as the science of effective (system) organization ( Beer , 1972). Following from the

  10. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  11. Workshop on Nonlinear Phenomena in Complex Systems

    CERN Document Server

    1989-01-01

    This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.

  12. Comparing a rule based vs. statistical system for automatic categorization of MEDLINE documents according to biomedical specialty

    OpenAIRE

    Humphrey, Susanne M.; Névéol, Aurélie; Browne, Allen; Gobeill, Julien; Ruch, Patrick; Darmoni, Stéfan J.

    2010-01-01

    Automatic document categorization is an important research problem in Information Science and Natural Language Processing. Many applications, including Word Sense Disambiguation and Information Retrieval in large collections, can benefit from such categorization. This paper focuses on automatic categorization of documents from the biomedical literature into broad discipline-based categories. Two different systems are described and contrasted: CISMeF, which uses rules based on human indexing o...

  13. Complex energy system management using optimization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bridgeman, Stuart; Hurdowar-Castro, Diana; Allen, Rick; Olason, Tryggvi; Welt, Francois

    2010-09-15

    Modern energy systems are often very complex with respect to the mix of generation sources, energy storage, transmission, and avenues to market. Historically, power was provided by government organizations to load centers, and pricing was provided in a regulatory manner. In recent years, this process has been displaced by the independent system operator (ISO). This complexity makes the operation of these systems very difficult, since the components of the system are interdependent. Consequently, computer-based large-scale simulation and optimization methods like Decision Support Systems are now being used. This paper discusses the application of a DSS to operations and planning systems.

  14. Dynamics of complex quantum systems

    CERN Document Server

    Akulin, Vladimir M

    2014-01-01

    This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...

  15. Bilinear effect in complex systems

    Science.gov (United States)

    Lam, Lui; Bellavia, David C.; Han, Xiao-Pu; Alston Liu, Chih-Hui; Shu, Chang-Qing; Wei, Zhengjin; Zhou, Tao; Zhu, Jichen

    2010-09-01

    The distribution of the lifetime of Chinese dynasties (as well as that of the British Isles and Japan) in a linear Zipf plot is found to consist of two straight lines intersecting at a transition point. This two-section piecewise-linear distribution is different from the power law or the stretched exponent distribution, and is called the Bilinear Effect for short. With assumptions mimicking the organization of ancient Chinese regimes, a 3-layer network model is constructed. Numerical results of this model show the bilinear effect, providing a plausible explanation of the historical data. The bilinear effect in two other social systems is presented, indicating that such a piecewise-linear effect is widespread in social systems.

  16. Thermodynamic modeling of complex systems

    DEFF Research Database (Denmark)

    Liang, Xiaodong

    after an oil spill. Engineering thermodynamics could be applied in the state-of-the-art sonar products through advanced artificial technology, if the speed of sound, solubility and density of oil-seawater systems could be satisfactorily modelled. The addition of methanol or glycols into unprocessed well...... is successfully applied to model the phase behaviour of water, chemical and hydrocarbon (oil) containing systems with newly developed pure component parameters for water and chemicals and characterization procedures for petroleum fluids. The performance of the PCSAFT EOS on liquid-liquid equilibria of water...... with hydrocarbons has been under debate for some vii years. An interactive step-wise procedure is proposed to fit the model parameters for small associating fluids by taking the liquid-liquid equilibrium data into account. It is still far away from a simple task to apply PC-SAFT in routine PVT simulations and phase...

  17. Agile Integration of Complex Systems

    Science.gov (United States)

    2010-04-28

    intervention in using SOA can be reduced Page 5 SOA in DoD DoD has mandated that all systems support the Network - Centric Environment and SOA is fundamental to...it and dropping it on an orchestrate icon (slide 22) Di i lifi d d d i l Page 13 scovery s mp e an ma e v sua SOAF Messaging Service Transport

  18. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  19. Complex motions and chaos in nonlinear systems

    CERN Document Server

    Machado, José; Zhang, Jiazhong

    2016-01-01

    This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.

  20. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Tobias [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Institute of Materials, Swiss Federal Institute of Technology, EPFL, 1015 Lausanne (Switzerland); Hofmann, Margarete [MatSearch Pully, Chemin Jean Pavillard, 14, CH-1009 Pully (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed.

  1. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    International Nuclear Information System (INIS)

    Neuberger, Tobias; Schoepf, Bernhard; Hofmann, Heinrich; Hofmann, Margarete; Rechenberg, Brigitte von

    2005-01-01

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed

  2. Quantum mechanics in complex systems

    Science.gov (United States)

    Hoehn, Ross Douglas

    This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown

  3. Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems.

    Science.gov (United States)

    Chai, Rifai; Naik, Ganesh R; Ling, Sai Ho; Nguyen, Hung T

    2017-01-07

    One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.

  4. Complex engineering systems science meets technology

    CERN Document Server

    Minai, Ali A; Bar-Yam, Yaneer

    2006-01-01

    Every time that we take money out of an ATM, surf the internet or simply turn on a light switch, we enjoy the benefits of complex engineered systems. Systems like power grids and global communication networks are so ubiquitous in our daily lives that we usually take them for granted, only noticing them when they break down. But how do such amazing technologies and infrastructures come to be what they are? How are these systems designed? How do distributed networks work? How are they made to respond rapidly in 'real time'? And as the demands that we place on these systems become increasingly complex, are traditional systems-engineering practices still relevant? This volume examines the difficulties that arise in creating highly complex engineered systems and new approaches that are being adopted. Topics addressed range from the formal representation and classification of distributed networked systems to revolutionary engineering practices inspired by biological evolution. By bringing together the latest resear...

  5. The Self as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This article explores the potential offered by complexity theories for understanding language learners' sense of self and attempts to show how the self might usefully be conceived of as a complex dynamic system. Rather than presenting empirical findings, the article discusses existent research on the self and aims at outlining a conceptual…

  6. Strategies of complexity leadership in governance systems

    NARCIS (Netherlands)

    Nooteboom, S.G.; Termeer, C.J.A.M.

    2013-01-01

    In complex governance systems, innovations may emerge, not controlled by a single leader, but enabled by many. We discuss how these leaders are embedded in networks and which strategies they use. The theoretical framework is based on Complexity Leadership Theory. We conducted participatory

  7. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  8. Geographical National Condition and Complex System

    Directory of Open Access Journals (Sweden)

    WANG Jiayao

    2016-01-01

    Full Text Available The significance of studying the complex system of geographical national conditions lies in rationally expressing the complex relationships of the “resources-environment-ecology-economy-society” system. Aiming to the problems faced by the statistical analysis of geographical national conditions, including the disunity of research contents, the inconsistency of range, the uncertainty of goals, etc.the present paper conducted a range of discussions from the perspectives of concept, theory and method, and designed some solutions based on the complex system theory and coordination degree analysis methods.By analyzing the concepts of geographical national conditions, geographical national conditions survey and geographical national conditions statistical analysis, as well as investigating the relationships between theirs, the statistical contents and the analytical range of geographical national conditions are clarified and defined. This investigation also clarifies the goals of the statistical analysis by analyzing the basic characteristics of the geographical national conditions and the complex system, and the consistency between the analysis of the degree of coordination and statistical analyses. It outlines their goals, proposes a concept for the complex system of geographical national conditions, and it describes the concept. The complex system theory provides new theoretical guidance for the statistical analysis of geographical national conditions. The degree of coordination offers new approaches on how to undertake the analysis based on the measurement method and decision-making analysis scheme upon which the complex system of geographical national conditions is based. It analyzes the overall trend via the degree of coordination of the complex system on a macro level, and it determines the direction of remediation on a micro level based on the degree of coordination among various subsystems and of single systems. These results establish

  9. From System Complexity to Emergent Properties

    CERN Document Server

    Aziz-Alaoui, M. A

    2009-01-01

    Emergence and complexity refer to the appearance of higher-level properties and behaviours of a system that obviously comes from the collective dynamics of that system's components. These properties are not directly deductable from the lower-level motion of that system. Emergent properties are properties of the "whole'' that are not possessed by any of the individual parts making up that whole. Such phenomena exist in various domains and can be described, using complexity concepts and thematic knowledges. This book highlights complexity modelling through dynamical or behavioral systems. The pluridisciplinary purposes, developped along the chapters, are enable to design links between a wide-range of fundamental and applicative Sciences. Developing such links - instead of focusing on specific and narrow researches - is characteristic of the Science of Complexity that we try to promote by this contribution.

  10. Coordination Approaches for Complex Software Systems

    NARCIS (Netherlands)

    Bosse, T.; Hoogendoorn, M.; Treur, J.

    2006-01-01

    This document presents the results of a collaboration between the Vrije Universiteit Amsterdam, Department of Artificial Intelligence and Force Vision to investigate coordination approaches for complex software systems. The project was funded by Force Vision.

  11. Platform strategy for complex products and systems

    NARCIS (Netherlands)

    Alblas, A.A.

    2011-01-01

    The thesis of Alex Alblas presents a design reuse strategy for firms producing complex products and systems (CoPS). Examples of CoPS include industrial machinery, oil-rigs, electrical power distribution systems, integrated mail processing systems and printing press machinery. CoPS firms are

  12. Distributed redundancy and robustness in complex systems

    KAUST Repository

    Randles, Martin; Lamb, David J.; Odat, Enas M.; Taleb-Bendiab, Azzelarabe

    2011-01-01

    that emerges in complex biological and natural systems. However, in order to promote an evolutionary approach, through emergent self-organisation, it is necessary to specify the systems in an 'open-ended' manner where not all states of the system are prescribed

  13. Biomedical technology transfer: Bioinstrumentation for cardiology, neurology, and the circulatory system

    Science.gov (United States)

    1976-01-01

    Developments in applying aerospace medical technology to the design and production of medical equipment and instrumentation are reported. Projects described include intercranial pressure transducers, leg negative pressure devices, a synthetic speech prosthesis for victims of cerebral palsy, and a Doppler blood flow instrument. Commercialization activities for disseminating and utilizing NASA technology, and new biomedical problem areas are discussed.

  14. A new decision sciences for complex systems

    OpenAIRE

    Lempert, Robert J.

    2002-01-01

    Models of complex systems can capture much useful information but can be difficult to apply to real-world decision-making because the type of information they contain is often inconsistent with that required for traditional decision analysis. New approaches, which use inductive reasoning over large ensembles of computational experiments, now make possible systematic comparison of alternative policy options using models of complex systems. This article describes Computer-Assisted Reasoning, an...

  15. Project risk management in complex petrochemical system

    Directory of Open Access Journals (Sweden)

    Kirin Snežana

    2012-01-01

    Full Text Available Investigation of risk in complex industrial systems, as well as evaluation of main factors influencing decision making and implementation process using large petrochemical company as an example, has proved the importance of successful project risk management. This is even more emphasized when analyzing systems with complex structure, i.e. with several organizational units. It has been shown that successful risk management requires modern methods, based on adequate application of statistical analysis methods.

  16. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  17. The sleeping brain as a complex system.

    Science.gov (United States)

    Olbrich, Eckehard; Achermann, Peter; Wennekers, Thomas

    2011-10-13

    'Complexity science' is a rapidly developing research direction with applications in a multitude of fields that study complex systems consisting of a number of nonlinear elements with interesting dynamics and mutual interactions. This Theme Issue 'The complexity of sleep' aims at fostering the application of complexity science to sleep research, because the brain in its different sleep stages adopts different global states that express distinct activity patterns in large and complex networks of neural circuits. This introduction discusses the contributions collected in the present Theme Issue. We highlight the potential and challenges of a complex systems approach to develop an understanding of the brain in general and the sleeping brain in particular. Basically, we focus on two topics: the complex networks approach to understand the changes in the functional connectivity of the brain during sleep, and the complex dynamics of sleep, including sleep regulation. We hope that this Theme Issue will stimulate and intensify the interdisciplinary communication to advance our understanding of the complex dynamics of the brain that underlies sleep and consciousness.

  18. What Is a Complex Innovation System?

    Science.gov (United States)

    Katz, J. Sylvan

    2016-01-01

    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too. PMID:27258040

  19. What Is a Complex Innovation System?

    Directory of Open Access Journals (Sweden)

    J Sylvan Katz

    Full Text Available Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too.

  20. The BioIntelligence Framework: a new computational platform for biomedical knowledge computing.

    Science.gov (United States)

    Farley, Toni; Kiefer, Jeff; Lee, Preston; Von Hoff, Daniel; Trent, Jeffrey M; Colbourn, Charles; Mousses, Spyro

    2013-01-01

    Breakthroughs in molecular profiling technologies are enabling a new data-intensive approach to biomedical research, with the potential to revolutionize how we study, manage, and treat complex diseases. The next great challenge for clinical applications of these innovations will be to create scalable computational solutions for intelligently linking complex biomedical patient data to clinically actionable knowledge. Traditional database management systems (DBMS) are not well suited to representing complex syntactic and semantic relationships in unstructured biomedical information, introducing barriers to realizing such solutions. We propose a scalable computational framework for addressing this need, which leverages a hypergraph-based data model and query language that may be better suited for representing complex multi-lateral, multi-scalar, and multi-dimensional relationships. We also discuss how this framework can be used to create rapid learning knowledge base systems to intelligently capture and relate complex patient data to biomedical knowledge in order to automate the recovery of clinically actionable information.

  1. Signs, Systems and Complexity of Transmedia Storytelling

    Directory of Open Access Journals (Sweden)

    Renira Rampazzo Gambarato

    2012-12-01

    Full Text Available This article addresses key concepts such as sign, system and complexity in order to approach transmedia storytelling and better understand its intricate nature. The theoretical framework chosen to investigate transmedia storytelling meanders is Semiotics by Charles Sanders Peirce (1839-1914 and General Systems Theory by Mario Bunge (1919-. The complexity of transmedia storytelling is not simply the one of the signs of the works included in a transmedia franchise. It also includes the complexity of the dispositions of users/consumers/players as interpreters of semiotic elements (e.g. characters, themes, environments, events and outcomes presented by transmedia products. It extends further to the complexity of social, cultural, economical and political constructs. The German transmedia narrative The Ultimate SuperHero-Blog by Stefan Gieren and Sofia’s Diary, a Portuguese multiplatform production by BeActive, are presented as examples of closed and open system transmedia storytelling respectively.

  2. Vibrations and stability of complex beam systems

    CERN Document Server

    Stojanović, Vladimir

    2015-01-01

     This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...

  3. Collectives and the design of complex systems

    CERN Document Server

    Wolpert, David

    2004-01-01

    Increasingly powerful computers are making possible distributed systems comprised of many adaptive and self-motivated computational agents. Such systems, when distinguished by system-level performance criteria, are known as "collectives." Collectives and the Design of Complex Systems lays the foundation for a science of collectives and describes how to design them for optimal performance. An introductory survey chapter is followed by descriptions of information-processing problems that can only be solved by the joint actions of large communities of computers, each running its own complex, decentralized machine-learning algorithm. Subsequent chapters analyze the dynamics and structures of collectives, as well as address economic, model-free, and control-theory approaches to designing complex systems. The work assumes a modest understanding of basic statistics and calculus. Topics and Features: Introduces the burgeoning science of collectives and its practical applications in a single useful volume Combines ap...

  4. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2007-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  5. Complex and Adaptive Dynamical Systems A Primer

    CERN Document Server

    Gros, Claudius

    2011-01-01

    We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...

  6. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2013-01-01

    Complex system theory is rapidly developing and gaining importance, providing tools and concepts central to our modern understanding of emergent phenomena. This primer offers an introduction to this area together with detailed coverage of the mathematics involved. All calculations are presented step by step and are straightforward to follow. This new third edition comes with new material, figures and exercises. Network theory, dynamical systems and information theory, the core of modern complex system sciences, are developed in the first three chapters, covering basic concepts and phenomena like small-world networks, bifurcation theory and information entropy. Further chapters use a modular approach to address the most important concepts in complex system sciences, with the emergence and self-organization playing a central role. Prominent examples are self-organized criticality in adaptive systems, life at the edge of chaos, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase...

  7. Synchronization coupled systems to complex networks

    CERN Document Server

    Boccaletti, Stefano; del Genio, Charo I; Amann, Andreas

    2018-01-01

    A modern introduction to synchronization phenomena, this text presents recent discoveries and the current state of research in the field, from low-dimensional systems to complex networks. The book describes some of the main mechanisms of collective behaviour in dynamical systems, including simple coupled systems, chaotic systems, and systems of infinite-dimension. After introducing the reader to the basic concepts of nonlinear dynamics, the book explores the main synchronized states of coupled systems and describes the influence of noise and the occurrence of synchronous motion in multistable and spatially-extended systems. Finally, the authors discuss the underlying principles of collective dynamics on complex networks, providing an understanding of how networked systems are able to function as a whole in order to process information, perform coordinated tasks, and respond collectively to external perturbations. The demonstrations, numerous illustrations and application examples will help advanced graduate s...

  8. Discontinuity and complexity in nonlinear physical systems

    CERN Document Server

    Baleanu, Dumitru; Luo, Albert

    2014-01-01

    This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....

  9. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  10. [Integration of fundamental and applied medical and technical research made at the department of the biomedical systems, Moscow State Institute of Electronic Engineering].

    Science.gov (United States)

    Selishchev, S V

    2004-01-01

    The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.

  11. Customizable Electronic Laboratory Online (CELO): A Web-based Data Management System Builder for Biomedical Research Laboratories

    Science.gov (United States)

    Fong, Christine; Brinkley, James F.

    2006-01-01

    A common challenge among today’s biomedical research labs is managing growing amounts of research data. In order to reduce the time and resource costs of building data management tools, we designed the Customizable Electronic Laboratory Online (CELO) system. CELO automatically creates a generic database and web interface for laboratories that submit a simple web registration form. Laboratories can then use a collection of predefined XML templates to assist with the design of a database schema. Users can immediately utilize the web-based system to query data, manage multimedia files, and securely share data remotely over the internet. PMID:17238541

  12. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  13. Cynefin as Reference Framework to Facilitate Insight and Decision-Making in Complex Contexts of Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gerd Kempermann

    2017-11-01

    Full Text Available The Cynefin scheme is a concept of knowledge management, originally devised to support decision making in management, but more generally applicable to situations, in which complexity challenges the quality of insight, prediction, and decision. Despite the fact that life itself, and especially the brain and its diseases, are complex to the extent that complexity could be considered their cardinal feature, complex problems in biomedicine are often treated as if they were actually not more than the complicated sum of solvable sub-problems. Because of the emergent properties of complex contexts this is not correct. With a set of clear criteria Cynefin helps to set apart complex problems from “simple/obvious,” “complicated,” “chaotic,” and “disordered” contexts in order to avoid misinterpreting the relevant causality structures. The distinction comes with the insight, which specific kind of knowledge is possible in each of these categories and what are the consequences for resulting decisions and actions. From student's theses over the publication and grant writing process to research politics, misinterpretation of complexity can have problematic or even dangerous consequences, especially in clinical contexts. Conceptualization of problems within a straightforward reference language like Cynefin improves clarity and stringency within projects and facilitates communication and decision-making about them.

  14. Modeling complex work systems - method meets reality

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; Hoeve, Machteld; Lenting, Bert

    1996-01-01

    Modeling an existing task situation is often a first phase in the (re)design of information systems. For complex systems design, this model should consider both the people and the organization involved, the work, and situational aspects. Groupware Task Analysis (GTA) as part of a method for the

  15. Design tools for complex dynamic security systems.

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson; Laguna, Glenn A.; Robinett, Rush D. III (.; ); Groom, Kenneth Neal; Wilson, David Gerald; Bickerstaff, Robert J.; Harrington, John J.

    2007-01-01

    The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.

  16. Dynamic tables: an architecture for managing evolving, heterogeneous biomedical data in relational database management systems.

    Science.gov (United States)

    Corwin, John; Silberschatz, Avi; Miller, Perry L; Marenco, Luis

    2007-01-01

    Data sparsity and schema evolution issues affecting clinical informatics and bioinformatics communities have led to the adoption of vertical or object-attribute-value-based database schemas to overcome limitations posed when using conventional relational database technology. This paper explores these issues and discusses why biomedical data are difficult to model using conventional relational techniques. The authors propose a solution to these obstacles based on a relational database engine using a sparse, column-store architecture. The authors provide benchmarks comparing the performance of queries and schema-modification operations using three different strategies: (1) the standard conventional relational design; (2) past approaches used by biomedical informatics researchers; and (3) their sparse, column-store architecture. The performance results show that their architecture is a promising technique for storing and processing many types of data that are not handled well by the other two semantic data models.

  17. Atomic switch networks as complex adaptive systems

    Science.gov (United States)

    Scharnhorst, Kelsey S.; Carbajal, Juan P.; Aguilera, Renato C.; Sandouk, Eric J.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2018-03-01

    Complexity is an increasingly crucial aspect of societal, environmental and biological phenomena. Using a dense unorganized network of synthetic synapses it is shown that a complex adaptive system can be physically created on a microchip built especially for complex problems. These neuro-inspired atomic switch networks (ASNs) are a dynamic system with inherent and distributed memory, recurrent pathways, and up to a billion interacting elements. We demonstrate key parameters describing self-organized behavior such as non-linearity, power law dynamics, and multistate switching regimes. Device dynamics are then investigated using a feedback loop which provides control over current and voltage power-law behavior. Wide ranging prospective applications include understanding and eventually predicting future events that display complex emergent behavior in the critical regime.

  18. Radwaste treatment complex. DRAWMACS planned maintenance system

    International Nuclear Information System (INIS)

    Keel, A.J.

    1992-07-01

    This document describes the operation of the Planned Maintenance System for the Radwaste Treatment Complex. The Planned Maintenance System forms part of the Decommissioning and Radwaste Management Computer System (DRAWMACS). Further detailed information about the data structure of the system is contained in Database Design for the DRAWMACS Planned Maintenance System (AEA-D and R-0285, 2nd issue, 25th February 1992). Information for other components of DRAWMACS is contained in Basic User Guide for the Radwaste Treatment Plant Computer System (AEA-D and R-0019, July 1990). (author)

  19. The self as a complex dynamic system

    Directory of Open Access Journals (Sweden)

    Sarah Mercer

    2011-04-01

    Full Text Available This article explores the potential offered by complexity theories for understanding language learners’ sense of self and attempts to show how the self might usefully be conceived of as a complex dynamic system. Rather than presenting empirical findings, the article discusses existent research on the self and aims at outlining a conceptual perspective that may inform future studies into the self and possibly other individual learner differences. The article concludes by critically considering the merits of a complexity perspective but also reflecting on the challenges it poses for research.

  20. Distributed redundancy and robustness in complex systems

    KAUST Repository

    Randles, Martin

    2011-03-01

    The uptake and increasing prevalence of Web 2.0 applications, promoting new large-scale and complex systems such as Cloud computing and the emerging Internet of Services/Things, requires tools and techniques to analyse and model methods to ensure the robustness of these new systems. This paper reports on assessing and improving complex system resilience using distributed redundancy, termed degeneracy in biological systems, to endow large-scale complicated computer systems with the same robustness that emerges in complex biological and natural systems. However, in order to promote an evolutionary approach, through emergent self-organisation, it is necessary to specify the systems in an \\'open-ended\\' manner where not all states of the system are prescribed at design-time. In particular an observer system is used to select robust topologies, within system components, based on a measurement of the first non-zero Eigen value in the Laplacian spectrum of the components\\' network graphs; also known as the algebraic connectivity. It is shown, through experimentation on a simulation, that increasing the average algebraic connectivity across the components, in a network, leads to an increase in the variety of individual components termed distributed redundancy; the capacity for structurally distinct components to perform an identical function in a particular context. The results are applied to a specific application where active clustering of like services is used to aid load balancing in a highly distributed network. Using the described procedure is shown to improve performance and distribute redundancy. © 2010 Elsevier Inc.

  1. A new decision sciences for complex systems.

    Science.gov (United States)

    Lempert, Robert J

    2002-05-14

    Models of complex systems can capture much useful information but can be difficult to apply to real-world decision-making because the type of information they contain is often inconsistent with that required for traditional decision analysis. New approaches, which use inductive reasoning over large ensembles of computational experiments, now make possible systematic comparison of alternative policy options using models of complex systems. This article describes Computer-Assisted Reasoning, an approach to decision-making under conditions of deep uncertainty that is ideally suited to applying complex systems to policy analysis. The article demonstrates the approach on the policy problem of global climate change, with a particular focus on the role of technology policies in a robust, adaptive strategy for greenhouse gas abatement.

  2. Third International Conference on Complex Systems

    CERN Document Server

    Minai, Ali A; Unifying Themes in Complex Systems

    2006-01-01

    In recent years, scientists have applied the principles of complex systems science to increasingly diverse fields. The results have been nothing short of remarkable: their novel approaches have provided answers to long-standing questions in biology, ecology, physics, engineering, computer science, economics, psychology and sociology. The Third International Conference on Complex Systems attracted over 400 researchers from around the world. The conference aimed to encourage cross-fertilization between the many disciplines represented and to deepen our understanding of the properties common to all complex systems. This volume contains selected transcripts from presentations given at the conference. Speakers include: Chris Adami, Kenneth Arrow, Michel Baranger, Dan Braha, Timothy Buchman, Michael Caramanis, Kathleen Carley, Greg Chaitin, David Clark, Jack Cohen, Jim Collins, George Cowan, Clay Easterly, Steven Eppinger, Irving Epstein, Dan Frey, Ary Goldberger, Helen Harte, Leroy Hood, Don Ingber, Atlee Jackson,...

  3. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  4. Complexity in electronic negotiation support systems.

    Science.gov (United States)

    Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T

    2011-10-01

    It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.

  5. Machine learning and complex-network for personalized and systems biomedicine

    KAUST Repository

    Cannistraci, Carlo Vittorio

    2016-01-27

    The talk will begin with an introduction on using machine learning to discover hidden information and unexpected patterns in large biomedical datasets. Then, recent results on the use of complex network theory in biomedicine and neuroscience will be discussed. In particular, metagenomics and metabolomics data, approaches for drug-target repositioning, functional/structural MR connectomes and gut-brain axis data will be presented. The conclusion will outline the novel and exciting perspectives offered by the translation of these methods from systems biology to systems medicine.

  6. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  7. System crash as dynamics of complex networks.

    Science.gov (United States)

    Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2016-10-18

    Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.

  8. Automatic Emergence Detection in Complex Systems

    Directory of Open Access Journals (Sweden)

    Eugene Santos

    2017-01-01

    Full Text Available Complex systems consist of multiple interacting subsystems, whose nonlinear interactions can result in unanticipated (emergent system events. Extant systems analysis approaches fail to detect such emergent properties, since they analyze each subsystem separately and arrive at decisions typically through linear aggregations of individual analysis results. In this paper, we propose a quantitative definition of emergence for complex systems. We also propose a framework to detect emergent properties given observations of its subsystems. This framework, based on a probabilistic graphical model called Bayesian Knowledge Bases (BKBs, learns individual subsystem dynamics from data, probabilistically and structurally fuses said dynamics into a single complex system dynamics, and detects emergent properties. Fusion is the central element of our approach to account for situations when a common variable may have different probabilistic distributions in different subsystems. We evaluate our detection performance against a baseline approach (Bayesian Network ensemble on synthetic testbeds from UCI datasets. To do so, we also introduce a method to simulate and a metric to measure discrepancies that occur with shared/common variables. Experiments demonstrate that our framework outperforms the baseline. In addition, we demonstrate that this framework has uniform polynomial time complexity across all three learning, fusion, and reasoning procedures.

  9. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...... system, rather than a modular, although the industry forces modular organizational structures. This creates a high complexity degree caused by the non-alignment of building parts and organizations and the frequent swapping of modules....... finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral...

  10. Extraction of quantifiable information from complex systems

    CERN Document Server

    Dahmen, Wolfgang; Griebel, Michael; Hackbusch, Wolfgang; Ritter, Klaus; Schneider, Reinhold; Schwab, Christoph; Yserentant, Harry

    2014-01-01

    In April 2007, the  Deutsche Forschungsgemeinschaft (DFG) approved the  Priority Program 1324 “Mathematical Methods for Extracting Quantifiable Information from Complex Systems.” This volume presents a comprehensive overview of the most important results obtained over the course of the program.   Mathematical models of complex systems provide the foundation for further technological developments in science, engineering and computational finance.  Motivated by the trend toward steadily increasing computer power, ever more realistic models have been developed in recent years. These models have also become increasingly complex, and their numerical treatment poses serious challenges.   Recent developments in mathematics suggest that, in the long run, much more powerful numerical solution strategies could be derived if the interconnections between the different fields of research were systematically exploited at a conceptual level. Accordingly, a deeper understanding of the mathematical foundations as w...

  11. Complex and adaptive dynamical systems a primer

    CERN Document Server

    Gros, Claudius

    2015-01-01

    This primer offers readers an introduction to the central concepts that form our modern understanding of complex and emergent behavior, together with detailed coverage of accompanying mathematical methods. All calculations are presented step by step and are easy to follow. This new fourth edition has been fully reorganized and includes new chapters, figures and exercises. The core aspects of modern complex system sciences are presented in the first chapters, covering network theory, dynamical systems, bifurcation and catastrophe theory, chaos and adaptive processes, together with the principle of self-organization in reaction-diffusion systems and social animals. Modern information theoretical principles are treated in further chapters, together with the concept of self-organized criticality, gene regulation networks, hypercycles and coevolutionary avalanches, synchronization phenomena, absorbing phase transitions and the cognitive system approach to the brain. Technical course prerequisites are the standard ...

  12. Morphogenetic Engineering Toward Programmable Complex Systems

    CERN Document Server

    Sayama, Hiroki; Michel, Olivier

    2012-01-01

    Generally, spontaneous pattern formation phenomena are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both self-organized and architectural.   This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is placed on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies.   Altogether, the aim of this work is to provide a framework for and examples of a larger class of “self-architecturing” systems, while addressing fundamental questions such as   > How do biological organisms carry out morphog...

  13. Managing interoperability and complexity in health systems.

    Science.gov (United States)

    Bouamrane, M-M; Tao, C; Sarkar, I N

    2015-01-01

    In recent years, we have witnessed substantial progress in the use of clinical informatics systems to support clinicians during episodes of care, manage specialised domain knowledge, perform complex clinical data analysis and improve the management of health organisations' resources. However, the vision of fully integrated health information eco-systems, which provide relevant information and useful knowledge at the point-of-care, remains elusive. This journal Focus Theme reviews some of the enduring challenges of interoperability and complexity in clinical informatics systems. Furthermore, a range of approaches are proposed in order to address, harness and resolve some of the many remaining issues towards a greater integration of health information systems and extraction of useful or new knowledge from heterogeneous electronic data repositories.

  14. Modeling and Optimization of Class-E Amplifier at Subnominal Condition in a Wireless Power Transfer System for Biomedical Implants.

    Science.gov (United States)

    Liu, Hao; Shao, Qi; Fang, Xuelin

    2017-02-01

    For the class-E amplifier in a wireless power transfer (WPT) system, the design parameters are always determined by the nominal model. However, this model neglects the conduction loss and voltage stress of MOSFET and cannot guarantee the highest efficiency in the WPT system for biomedical implants. To solve this problem, this paper proposes a novel circuit model of the subnominal class-E amplifier. On a WPT platform for capsule endoscope, the proposed model was validated to be effective and the relationship between the amplifier's design parameters and its characteristics was analyzed. At a given duty ratio, the design parameters with the highest efficiency and safe voltage stress are derived and the condition is called 'optimal subnominal condition.' The amplifier's efficiency can reach the highest of 99.3% at the 0.097 duty ratio. Furthermore, at the 0.5 duty ratio, the measured efficiency of the optimal subnominal condition can reach 90.8%, which is 15.2% higher than that of the nominal condition. Then, a WPT experiment with a receiving unit was carried out to validate the feasibility of the optimized amplifier. In general, the design parameters of class-E amplifier in a WPT system for biomedical implants can be determined with the proposed optimization method in this paper.

  15. On complex adaptive systems and terrorism

    International Nuclear Information System (INIS)

    Ahmed, E.; Elgazzar, A.S.; Hegazi, A.S.

    2005-01-01

    Complex adaptive systems (CAS) are ubiquitous in nature. They are basic in social sciences. An overview of CAS is given with emphasize on the occurrence of bad side effects to seemingly 'wise' decisions. Hence application to terrorism is given. Some conclusions on how to deal with this phenomena are proposed

  16. Complex systems modeling by cellular automata

    NARCIS (Netherlands)

    Kroc, J.; Sloot, P.M.A.; Rabuñal Dopico, J.R.; Dorado de la Calle, J.; Pazos Sierra, A.

    2009-01-01

    In recent years, the notion of complex systems proved to be a very useful concept to define, describe, and study various natural phenomena observed in a vast number of scientific disciplines. Examples of scientific disciplines that highly benefit from this concept range from physics, mathematics,

  17. Engineering Education as a Complex System

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-01-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating…

  18. Designing complex systems - a structured activity

    NARCIS (Netherlands)

    van der Veer, Gerrit C.; van Vliet, Johannes C.; Lenting, Bert; Olson, Gary M.; Schuon, Sue

    1995-01-01

    This paper concerns the development of complex systems from the point of view of design as a structure of activities, related both to the clients and the users. Several modeling approaches will be adopted for different aspects of design, and several views on design will be integrated. The proposed

  19. Ensemble annealing of complex physical systems

    OpenAIRE

    Habeck, Michael

    2015-01-01

    Algorithms for simulating complex physical systems or solving difficult optimization problems often resort to an annealing process. Rather than simulating the system at the temperature of interest, an annealing algorithm starts at a temperature that is high enough to ensure ergodicity and gradually decreases it until the destination temperature is reached. This idea is used in popular algorithms such as parallel tempering and simulated annealing. A general problem with annealing methods is th...

  20. Modelling methodology for engineering of complex sociotechnical systems

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2014-10-01

    Full Text Available Different systems engineering techniques and approaches are applied to design and develop complex sociotechnical systems for complex problems. In a complex sociotechnical system cognitive and social humans use information technology to make sense...

  1. Dependency visualization for complex system understanding

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J. Allison Cory [Univ. of California, Davis, CA (United States)

    1994-09-01

    With the volume of software in production use dramatically increasing, the importance of software maintenance has become strikingly apparent. Techniques now sought and developed for reverse engineering and design extraction and recovery. At present, numerous commercial products and research tools exist which are capable of visualizing a variety of programming languages and software constructs. The list of new tools and services continues to grow rapidly. Although the scope of the existing commercial and academic product set is quite broad, these tools still share a common underlying problem. The ability of each tool to visually organize object representations is increasingly impaired as the number of components and component dependencies within systems increases. Regardless of how objects are defined, complex ``spaghetti`` networks result in nearly all large system cases. While this problem is immediately apparent in modem systems analysis involving large software implementations, it is not new. As will be discussed in Chapter 2, related problems involving the theory of graphs were identified long ago. This important theoretical foundation provides a useful vehicle for representing and analyzing complex system structures. While the utility of directed graph based concepts in software tool design has been demonstrated in literature, these tools still lack the capabilities necessary for large system comprehension. This foundation must therefore be expanded with new organizational and visualization constructs necessary to meet this challenge. This dissertation addresses this need by constructing a conceptual model and a set of methods for interactively exploring, organizing, and understanding the structure of complex software systems.

  2. The 1 MV multi-element AMS system for biomedical applications at the Netherlands Organization for Applied Scientific Research (TNO)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Matthias, E-mail: mklein@highvolteng.com [High Voltage Engineering Europa B.V., P.O. Box 99, 3800 AB Amersfoort (Netherlands); Vaes, W.H.J.; Fabriek, B.; Sandman, H. [TNO, P.O. Box 360, 3700 AJ Zeist (Netherlands); Mous, D.J.W.; Gottdang, A. [High Voltage Engineering Europa B.V., P.O. Box 99, 3800 AB Amersfoort (Netherlands)

    2013-01-15

    The Netherlands Organization for Applied Scientific Research (TNO) has installed a compact 1 MV multi-element AMS system manufactured by High Voltage Engineering Europa B.V., The Netherlands. TNO performs clinical research programs for pharmaceutical and innovative foods industry to obtain early pharmacokinetic data and to provide anti-osteoporotic efficacy data of new treatments. The AMS system will analyze carbon, iodine and calcium samples for this purpose. The first measurements on blank samples indicate background levels in the low 10{sup -12} for calcium and iodine, making the system well suited for these biomedical applications. Carbon blanks have been measured at low 10{sup -16}. For unattended, around-the-clock analysis, the system features the 200 sample version of the SO110 hybrid ion source and user friendly control software.

  3. Multidimensional approach to complex system resilience analysis

    International Nuclear Information System (INIS)

    Gama Dessavre, Dante; Ramirez-Marquez, Jose E.; Barker, Kash

    2016-01-01

    Recent works have attempted to formally define a general metric for quantifying resilience for complex systems as a relationship of performance of the systems against time. The technical content in the proposed work introduces a new model that allows, for the first time, to compare the system resilience among systems (or different modifications to a system), by introducing a new dimension to system resilience models, called stress, to mimic the definition of resilience in material science. The applicability and usefulness of the model is shown with a new heat map visualization proposed in this work, and it is applied to a simulated network resilience case to exemplify its potential benefits. - Highlights: • We analyzed two of the main current metrics of resilience. • We create a new model that relates events with the effects they have. • We develop a novel heat map visualization to compare system resilience. • We showed the model and visualization usefulness in a simulated case.

  4. SATORI: a system for ontology-guided visual exploration of biomedical data repositories.

    Science.gov (United States)

    Lekschas, Fritz; Gehlenborg, Nils

    2018-04-01

    The ever-increasing number of biomedical datasets provides tremendous opportunities for re-use but current data repositories provide limited means of exploration apart from text-based search. Ontological metadata annotations provide context by semantically relating datasets. Visualizing this rich network of relationships can improve the explorability of large data repositories and help researchers find datasets of interest. We developed SATORI-an integrative search and visual exploration interface for the exploration of biomedical data repositories. The design is informed by a requirements analysis through a series of semi-structured interviews. We evaluated the implementation of SATORI in a field study on a real-world data collection. SATORI enables researchers to seamlessly search, browse and semantically query data repositories via two visualizations that are highly interconnected with a powerful search interface. SATORI is an open-source web application, which is freely available at http://satori.refinery-platform.org and integrated into the Refinery Platform. nils@hms.harvard.edu. Supplementary data are available at Bioinformatics online.

  5. Combinatorial nanodiamond in pharmaceutical and biomedical applications.

    Science.gov (United States)

    Lim, Dae Gon; Prim, Racelly Ena; Kim, Ki Hyun; Kang, Eunah; Park, Kinam; Jeong, Seong Hoon

    2016-11-30

    One of the newly emerging carbon materials, nanodiamond (ND), has been exploited for use in traditional electric materials and this has extended into biomedical and pharmaceutical applications. Recently, NDs have attained significant interests as a multifunctional and combinational drug delivery system. ND studies have provided insights into granting new potentials with their wide ranging surface chemistry, complex formation with biopolymers, and combination with biomolecules. The studies that have proved ND inertness, biocompatibility, and low toxicity have made NDs much more feasible for use in real in vivo applications. This review gives an understanding of NDs in biomedical engineering and pharmaceuticals, focusing on the classified introduction of ND/drug complexes. In addition, the diverse potential applications that can be obtained with chemical modification are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Unified Computational Intelligence for Complex Systems

    CERN Document Server

    Seiffertt, John

    2010-01-01

    Computational intelligence encompasses a wide variety of techniques that allow computation to learn, to adapt, and to seek. That is, they may be designed to learn information without explicit programming regarding the nature of the content to be retained, they may be imbued with the functionality to adapt to maintain their course within a complex and unpredictably changing environment, and they may help us seek out truths about our own dynamics and lives through their inclusion in complex system modeling. These capabilities place our ability to compute in a category apart from our ability to e

  7. Complex Physical, Biophysical and Econophysical Systems

    Science.gov (United States)

    Dewar, Robert L.; Detering, Frank

    1. Introduction to complex and econophysics systems: a navigation map / T. Aste and T. Di Matteo -- 2. An introduction to fractional diffusion / B. I. Henry, T.A.M. Langlands and P. Straka -- 3. Space plasmas and fusion plasmas as complex systems / R. O. Dendy -- 4. Bayesian data analysis / M. S. Wheatland -- 5. Inverse problems and complexity in earth system science / I. G. Enting -- 6. Applied fluid chaos: designing advection with periodically reoriented flows for micro to geophysical mixing and transport enhancement / G. Metcalfe -- 7. Approaches to modelling the dynamical activity of brain function based on the electroencephalogram / D. T. J. Liley and F. Frascoli -- 8. Jaynes' maximum entropy principle, Riemannian metrics and generalised least action bound / R. K. Niven and B. Andresen -- 9. Complexity, post-genomic biology and gene expression programs / R. B. H. Williams and O. J.-H. Luo -- 10. Tutorials on agent-based modelling with NetLogo and network analysis with Pajek / M. J. Berryman and S. D. Angus.

  8. A Multifaceted Mathematical Approach for Complex Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, F.; Anitescu, M.; Bell, J.; Brown, D.; Ferris, M.; Luskin, M.; Mehrotra, S.; Moser, B.; Pinar, A.; Tartakovsky, A.; Willcox, K.; Wright, S.; Zavala, V.

    2012-03-07

    Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significant impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.

  9. Transition Manifolds of Complex Metastable Systems

    Science.gov (United States)

    Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof

    2018-04-01

    We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.

  10. Structured analysis and modeling of complex systems

    Science.gov (United States)

    Strome, David R.; Dalrymple, Mathieu A.

    1992-01-01

    The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.

  11. Lessons Learned from Development of De-identification System for Biomedical Research in a Korean Tertiary Hospital.

    Science.gov (United States)

    Shin, Soo-Yong; Lyu, Yongman; Shin, Yongdon; Choi, Hyo Joung; Park, Jihyun; Kim, Woo-Sung; Lee, Jae Ho

    2013-06-01

    The Korean government has enacted two laws, namely, the Personal Information Protection Act and the Bioethics and Safety Act to prevent the unauthorized use of medical information. To protect patients' privacy by complying with governmental regulations and improve the convenience of research, Asan Medical Center has been developing a de-identification system for biomedical research. We reviewed Korean regulations to define the scope of the de-identification methods and well-known previous biomedical research platforms to extract the functionalities of the systems. Based on these review results, we implemented necessary programs based on the Asan Medical Center Information System framework which was built using the Microsoft. NET Framework and C#. The developed de-identification system comprises three main components: a de-identification tool, a search tool, and a chart review tool. The de-identification tool can substitute a randomly assigned research ID for a hospital patient ID, remove the identifiers in the structured format, and mask them in the unstructured format, i.e., texts. This tool achieved 98.14% precision and 97.39% recall for 6,520 clinical notes. The search tool can find the number of patients which satisfies given search criteria. The chart review tool can provide de-identified patient's clinical data for review purposes. We found that a clinical data warehouse was essential for successful implementation of the de-identification system, and this system should be tightly linked to an electronic Institutional Review Board system for easy operation of honest brokers. Additionally, we found that a secure cloud environment could be adopted to protect patients' privacy more thoroughly.

  12. Dependability problems of complex information systems

    CERN Document Server

    Zamojski, Wojciech

    2014-01-01

    This monograph presents original research results on selected problems of dependability in contemporary Complex Information Systems (CIS). The ten chapters are concentrated around the following three aspects: methods for modelling of the system and its components, tasks ? or in more generic and more adequate interpretation, functionalities ? accomplished by the system and conditions for their correct realization in the dynamic operational environment. While the main focus is on theoretical advances and roadmaps for implementations of new technologies, a?much needed forum for sharing of the bes

  13. Engineering education as a complex system

    Science.gov (United States)

    Gattie, David K.; Kellam, Nadia N.; Schramski, John R.; Walther, Joachim

    2011-12-01

    This paper presents a theoretical basis for cultivating engineering education as a complex system that will prepare students to think critically and make decisions with regard to poorly understood, ill-structured issues. Integral to this theoretical basis is a solution space construct developed and presented as a benchmark for evaluating problem-solving orientations that emerge within students' thinking as they progress through an engineering curriculum. It is proposed that the traditional engineering education model, while analytically rigorous, is characterised by properties that, although necessary, are insufficient for preparing students to address complex issues of the twenty-first century. A Synthesis and Design Studio model for engineering education is proposed, which maintains the necessary rigor of analysis within a uniquely complex yet sufficiently structured learning environment.

  14. Automated design of complex dynamic systems.

    Directory of Open Access Journals (Sweden)

    Michiel Hermans

    Full Text Available Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.

  15. Complex Systems Design & Management : Proceedings of the Third International Conference on Complex Systems Design & Management

    CERN Document Server

    Caseau, Yves; Krob, Daniel; Rauzy, Antoine

    2013-01-01

    This book contains all refereed papers that were accepted to the third edition of the « Complex Systems Design & Management » (CSD&M 2012) international conference that took place in Paris (France) from December 12-14, 2012. (Website: http://www.csdm2012.csdm.fr)  These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture& engineering, systems metrics & quality, systemic  tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2012 conference is organized under the guidance of the CESAMES non-profit organization (http://www.cesames.net).

  16. Controlling Complex Systems and Developing Dynamic Technology

    Science.gov (United States)

    Avizienis, Audrius Victor

    In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit

  17. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University Reactor

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kanda, K.; Ujeno, Y.; Ishida, M.R.

    1990-01-01

    Physics studies related to radiation source, spectroscopy, beam quality, dosimetry, and biomedical applications using the Kyoto University Reactor Heavy Water Facility are described. Also, described are a Nickel Mirror Neutron Guide Tube and a Super Mirror Neutron Guide Tube that are used both for the measurement of boron concentration in phantom and living tissue and for precise measurements of neutron flux in phantom in the presence of both light and heavy water. Discussed are: (1) spectrum measurements using the time of flight technique, (2) the elimination of gamma rays and fast neutrons from a thermal neutron irradiation field, (3) neutron collimation without producing secondary gamma rays, (4) precise neutron flux measurements, dose estimation, and the measurement of boron concentration in tumor and its periphery using guide tubes, (5) the dose estimation of boron-10 for the first melanoma patient, and (6) special-purpose biological irradiation equipment. Other related subjects are also described

  18. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University reactor

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kanda, K.; Ujeno, Y.; Ishida, M.R.

    1990-01-01

    Physics studies related to radiation source, spectroscopy, beam quality, dosimetry, and biomedical applications using the Kyoto University Reactor Heavy Water Facility are described. Also, described are a Nickel Mirror Neutron Guide Tube and a Super Mirror Neutron Guide Tube that are used both for the measurement of boron concentration in phantom and living tissue and for precise measurements of neutron flux in phantom in the presence of both light and heavy water. Discussed are: (1) spectrum measurements using the time of flight technique, (2) the elimination of gamma rays and fast neutrons from a thermal neutron irradiation field, (3) neutron collimation without producing secondary gamma rays, (4) precise neutron flux measurements, dose estimation, and the measurement of boron concentration in tumor and its periphery using guide tubes, (5) the dose estimation of boron-10 for the first melanoma patient, and (6) special-purpose biological irradiation equipment. Other related subjects are also described

  19. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications

    Science.gov (United States)

    Kalomiraki, Marina; Thermos, Kyriaki; Chaniotakis, Nikos A

    2016-01-01

    Dendrimers are large polymeric structures with nanosize dimensions (1–10 nm) and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific “architecture” and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases. PMID:26730187

  20. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications

    Directory of Open Access Journals (Sweden)

    Kalomiraki M

    2015-12-01

    Full Text Available Marina Kalomiraki,1 Kyriaki Thermos,2 Nikos A Chaniotakis1 1Laboratory of Analytical Chemistry, Department of Chemistry, 2Department of Pharmacology, School of Medicine, University of Crete Voutes, Heraklion, Greece Abstract: Dendrimers are large polymeric structures with nanosize dimensions (1–10 nm and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific “architecture” and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases. Keywords: nanoparticles, ocular diseases, encapsulation, macromolecule, diagnostic agent

  1. Morphodynamics: Ergodic theory of complex systems

    International Nuclear Information System (INIS)

    Fivaz, R.

    1993-01-01

    Morphodynamics is a general theory of stationary complex systems, such as living systems, or mental and social systems; it is based on the thermodynamics of physical systems and built on the same lines. By means of the ergodic hypothesis, thermodynamics is known to connect the particle dynamics to the emergence of order parameters in the equations of state. In the same way, morphodynamics connects order parameters to the emergence of higher level variables; through recurrent applications of the ergodic hypothesis, a hierarchy of equations of state is established which describes a series of successive levels of organization. The equations support a cognitivist interpretation that leads to general principles of evolution; the principles determine the spontaneous and irreversible complexification of systems living in their natural environment. 19 refs

  2. Relaxation and Diffusion in Complex Systems

    CERN Document Server

    Ngai, K L

    2011-01-01

    Relaxation and Diffusion in Complex Systems comprehensively presents a variety of experimental evidences of universal relaxation and diffusion properties in complex materials and systems. The materials discussed include liquids, glasses, colloids, polymers, rubbers, plastic crystals and aqueous mixtures, as well as carbohydrates, biomolecules, bioprotectants and pharmaceuticals. Due to the abundance of experimental data, emphasis is placed on glass-formers and the glass transition problem, a still unsolved problem in condensed matter physics and chemistry. The evidence for universal properties of relaxation and diffusion dynamics suggests that a fundamental physical law is at work. The origin of the universal properties is traced to the many-body effects of the interaction, rigorous theory of which does not exist at the present time. However, using solutions of simplified models as guides, key quantities have been identified and predictions of the universal properties generated. These predictions from Ngai’...

  3. Symmetry analysis in parametrisation of complex systems

    International Nuclear Information System (INIS)

    Sikora, W; Malinowski, J

    2010-01-01

    The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).

  4. Symmetry analysis in parametrisation of complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Malinowski, J, E-mail: sikora@novell.ftj.agh.edu.p [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland)

    2010-03-01

    The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).

  5. Analysis of complex systems using neural networks

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms), to some of the problems of complex engineering systems has the potential to enhance the safety, reliability, and operability of these systems. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network (e.g., a fast Fourier transformation of the time-series data to produce a spectral plot of the data). Specific applications described include: (1) Diagnostics: State of the Plant (2) Hybrid System for Transient Identification, (3) Sensor Validation, (4) Plant-Wide Monitoring, (5) Monitoring of Performance and Efficiency, and (6) Analysis of Vibrations. Although specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  6. Verification and Examination Management of Complex Systems

    Directory of Open Access Journals (Sweden)

    Stian Ruud

    2014-10-01

    Full Text Available As ship systems become more complex, with an increasing number of safety-critical functions, many interconnected subsystems, tight integration to other systems, and a large amount of potential failure modes, several industry parties have identified the need for improved methods for managing the verification and examination efforts of such complex systems. Such needs are even more prominent now that the marine and offshore industries are targeting more activities and operations in the Arctic environment. In this paper, a set of requirements and a method for verification and examination management are proposed for allocating examination efforts to selected subsystems. The method is based on a definition of a verification risk function for a given system topology and given requirements. The marginal verification risks for the subsystems may then be evaluated, so that examination efforts for the subsystem can be allocated. Two cases of requirements and systems are used to demonstrate the proposed method. The method establishes a systematic relationship between the verification loss, the logic system topology, verification method performance, examination stop criterion, the required examination effort, and a proposed sequence of examinations to reach the examination stop criterion.

  7. Classification of time series patterns from complex dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, J.C.; Rao, N.

    1998-07-01

    An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately, the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.

  8. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    Science.gov (United States)

    Holmes, Benjamin

    As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young's Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer

  9. FRAM Modelling Complex Socio-technical Systems

    CERN Document Server

    Hollnagel, Erik

    2012-01-01

    There has not yet been a comprehensive method that goes behind 'human error' and beyond the failure concept, and various complicated accidents have accentuated the need for it. The Functional Resonance Analysis Method (FRAM) fulfils that need. This book presents a detailed and tested method that can be used to model how complex and dynamic socio-technical systems work, and understand both why things sometimes go wrong but also why they normally succeed.

  10. Complex Systems and Self-organization Modelling

    CERN Document Server

    Bertelle, Cyrille; Kadri-Dahmani, Hakima

    2009-01-01

    The concern of this book is the use of emergent computing and self-organization modelling within various applications of complex systems. The authors focus their attention both on the innovative concepts and implementations in order to model self-organizations, but also on the relevant applicative domains in which they can be used efficiently. This book is the outcome of a workshop meeting within ESM 2006 (Eurosis), held in Toulouse, France in October 2006.

  11. Synchronization in node of complex networks consist of complex chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qiang, E-mail: qiangweibeihua@163.com [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024 (China); Xie, Cheng-jun [Beihua University computer and technology College, BeiHua University, Jilin, 132021, Jilin (China); Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin (China); Liu, Hong-jun [School of Information Engineering, Weifang Vocational College, Weifang, 261041 (China); Li, Yan-hui [The Library, Weifang Vocational College, Weifang, 261041 (China)

    2014-07-15

    A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

  12. Complex Engineered Systems: A New Paradigm

    Science.gov (United States)

    Mina, Ali A.; Braha, Dan; Bar-Yam, Yaneer

    Human history is often seen as an inexorable march towards greater complexity — in ideas, artifacts, social, political and economic systems, technology, and in the structure of life itself. While we do not have detailed knowledge of ancient times, it is reasonable to conclude that the average resident of New York City today faces a world of much greater complexity than the average denizen of Carthage or Tikal. A careful consideration of this change, however, suggests that most of it has occurred recently, and has been driven primarily by the emergence of technology as a force in human life. In the 4000 years separating the Indus Valley Civilization from 18th century Europe, human transportation evolved from the bullock cart to the hansom, and the methods of communication used by George Washington did not differ significantly from those used by Alexander or Rameses. The world has moved radically towards greater complexity in the last two centuries. We have moved from buggies and letter couriers to airplanes and the Internet — an increase in capacity, and through its diversity also in complexity, orders of magnitude greater than that accumulated through the rest of human history. In addition to creating iconic artifacts — the airplane, the car, the computer, the television, etc. — this change has had a profound effect on the scope of experience by creating massive, connected and multiultra- level systems — traffic networks, power grids, markets, multinational corporations — that defy analytical understanding and seem to have a life of their own. This is where complexity truly enters our lives.

  13. Life: An Introduction to Complex Systems Biology

    CERN Document Server

    Kaneko, Kunihiko

    2006-01-01

    What is life? Has molecular biology given us a satisfactory answer to this question? And if not, why, and how to carry on from there? This book examines life not from the reductionist point of view, but rather asks the question: what are the universal properties of living systems and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation has been deliberately kept fairly non-technical so as to address a broad spectrum of students and researchers from the natural sciences and informatics.

  14. Chaos from simple models to complex systems

    CERN Document Server

    Cencini, Massimo; Vulpiani, Angelo

    2010-01-01

    Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theor

  15. Reliability Standards of Complex Engineering Systems

    Science.gov (United States)

    Galperin, E. M.; Zayko, V. A.; Gorshkalev, P. A.

    2017-11-01

    Production and manufacture play an important role in today’s modern society. Industrial production is nowadays characterized by increased and complex communications between its parts. The problem of preventing accidents in a large industrial enterprise becomes especially relevant. In these circumstances, the reliability of enterprise functioning is of particular importance. Potential damage caused by an accident at such enterprise may lead to substantial material losses and, in some cases, can even cause a loss of human lives. That is why industrial enterprise functioning reliability is immensely important. In terms of their reliability, industrial facilities (objects) are divided into simple and complex. Simple objects are characterized by only two conditions: operable and non-operable. A complex object exists in more than two conditions. The main characteristic here is the stability of its operation. This paper develops the reliability indicator combining the set theory methodology and a state space method. Both are widely used to analyze dynamically developing probability processes. The research also introduces a set of reliability indicators for complex technical systems.

  16. BioSTEC 2017: 10th International Joint Conference on Biomedical Engineering Systems and Technologies : Proceedings Volume 5: HealthInf

    NARCIS (Netherlands)

    2017-01-01

    This book contains the proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017). This conference is sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC), in cooperation with the ACM

  17. Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Cuimei Jiang

    2015-07-01

    Full Text Available Based on two fractional-order chaotic complex drive systems and one fractional-order chaotic complex response system with different dimensions, we propose generalized combination complex synchronization. In this new synchronization scheme, there are two complex scaling matrices that are non-square matrices. On the basis of the stability theory of fractional-order linear systems, we design a general controller via active control. Additionally, by virtue of two complex scaling matrices, generalized combination complex synchronization between fractional-order chaotic complex systems and real systems is investigated. Finally, three typical examples are given to demonstrate the effectiveness and feasibility of the schemes.

  18. Lighting characteristics of complex fenestration systems

    Energy Technology Data Exchange (ETDEWEB)

    Laouadi, A. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Research in Construction; Parekh, A. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre, Sustainable Buildings and Community Group

    2006-07-01

    Innovations in window technologies have been motivated by the need for energy conservation in buildings. Shading devices and windows with complex glazings such as smart glazings, translucent and transparent insulation, and patterned glass are among the newly developed products. Although complex fenestration systems (CFS) have superior energy performance, a potential glare problem can have a significant effect on the indoor environment as experienced by occupants. A good view and glare-free environment are important for the commercialization of fenestration products. This study addressed the development of new lighting quality indices for the outdoor view, indoor view and window luminance. It was noted that the outdoor view gives a feeling of connection to the outside, an indoor view affects the feelings of privacy, while window luminance indicates the potential risk of discomfort glare. The study applied the new lighting quality indices on a typical complex fenestration system consisting of a double clear window combined with different types of an interior perforated shading screen with opaque and translucent materials. According to simulation results, the light-coloured screen has a significant impact on the outdoor view and window's luminance, and depends largely on the sky conditions. Under clear sky conditions, the luminance of a window with a translucent screen can increase by up to 80 per cent compared to overcast sky conditions. This study aspires to have these indices be part of a fenestration product ratings for indoor environment quality. 19 refs., 1 tab., 3 figs.

  19. Propagating wave correlations in complex systems

    International Nuclear Information System (INIS)

    Creagh, Stephen C; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor

    2017-01-01

    We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures. (paper)

  20. Community characterization of heterogeneous complex systems

    International Nuclear Information System (INIS)

    Tumminello, Michele; Miccichè, Salvatore; Lillo, Fabrizio; Mantegna, Rosario N; Varho, Jan; Piilo, Jyrki

    2011-01-01

    We introduce an analytical statistical method for characterizing the communities detected in heterogeneous complex systems. By proposing a suitable null hypothesis, our method makes use of the hypergeometric distribution to assess the probability that a given property is over-expressed in the elements of a community with respect to all the elements of the investigated set. We apply our method to two specific complex networks, namely a network of world movies and a network of physics preprints. The characterization of the elements and of the communities is done in terms of languages and countries for the movie network and of journals and subject categories for papers. We find that our method is able to characterize clearly the communities identified. Moreover our method works well both for large and for small communities

  1. Complex harmonic modal analysis of rotor systems

    International Nuclear Information System (INIS)

    Han, Dong Ju

    2015-01-01

    Complex harmonic analysis for rotor systems has been proposed from the strict complex modal analysis based upon Floquet theory. In this process the harmonic balance method is adopted, effectively associated with conventional eigenvalue analysis. Also, the harmonic coefficients equivalent to dFRFs in harmonic mode has been derived in practice. The modes are classified from identifying the modal characteristics, and the adaptation of harmonic balance method has been proven by comparing the results of the stability analyses from Floque theory and the eigen analysis. The modal features of each critical speed are depicted in quantitatively and qualitatively by showing that the strengths of each component of the harmonic coefficients are estimated from the order of magnitude analysis according to their harmonic patterns. This effectiveness has been verified by comparing with the numerical solutions

  2. Simulating Complex Systems by Cellular Automata

    CERN Document Server

    Kroc, Jiri; Hoekstra, Alfons G

    2010-01-01

    Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on th...

  3. Supervisory control for a complex robotic system

    International Nuclear Information System (INIS)

    Miller, D.J.

    1988-01-01

    The Robotic Radiation Survey and Analysis System investigates the use of advanced robotic technology for performing remote radiation surveys on nuclear waste shipping casks. Robotic systems have the potential for reducing personnel exposure to radiation and providing fast reliable throughput at future repository sites. A primary technology issue is the integrated control of distributed specialized hardware through a modular supervisory software system. Automated programming of robot trajectories based upon mathematical models of the cask and robot coupled with sensory feedback enables flexible operation of a commercial gantry robot with the reliability needed to perform autonomous operations in a hazardous environment. Complexity is managed using structured software engineering techniques resulting in the generation of reusable command primitives which contribute to a software parts catalog for a generalized robot programming language

  4. Simulating Complex Window Systems using BSDF Data

    Energy Technology Data Exchange (ETDEWEB)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  5. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  6. Automated Diagnosis and Control of Complex Systems

    Science.gov (United States)

    Kurien, James; Plaunt, Christian; Cannon, Howard; Shirley, Mark; Taylor, Will; Nayak, P.; Hudson, Benoit; Bachmann, Andrew; Brownston, Lee; Hayden, Sandra; hide

    2007-01-01

    Livingstone2 is a reusable, artificial intelligence (AI) software system designed to assist spacecraft, life support systems, chemical plants, or other complex systems by operating with minimal human supervision, even in the face of hardware failures or unexpected events. The software diagnoses the current state of the spacecraft or other system, and recommends commands or repair actions that will allow the system to continue operation. Livingstone2 is an enhancement of the Livingstone diagnosis system that was flight-tested onboard the Deep Space One spacecraft in 1999. This version tracks multiple diagnostic hypotheses, rather than just a single hypothesis as in the previous version. It is also able to revise diagnostic decisions made in the past when additional observations become available. In such cases, Livingstone might arrive at an incorrect hypothesis. Re-architecting and re-implementing the system in C++ has increased performance. Usability has been improved by creating a set of development tools that is closely integrated with the Livingstone2 engine. In addition to the core diagnosis engine, Livingstone2 includes a compiler that translates diagnostic models written in a Java-like language into Livingstone2's language, and a broad set of graphical tools for model development.

  7. Modular interdependency in complex dynamical systems.

    Science.gov (United States)

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.

  8. On sampling and modeling complex systems

    International Nuclear Information System (INIS)

    Marsili, Matteo; Mastromatteo, Iacopo; Roudi, Yasser

    2013-01-01

    The study of complex systems is limited by the fact that only a few variables are accessible for modeling and sampling, which are not necessarily the most relevant ones to explain the system behavior. In addition, empirical data typically undersample the space of possible states. We study a generic framework where a complex system is seen as a system of many interacting degrees of freedom, which are known only in part, that optimize a given function. We show that the underlying distribution with respect to the known variables has the Boltzmann form, with a temperature that depends on the number of unknown variables. In particular, when the influence of the unknown degrees of freedom on the known variables is not too irregular, the temperature decreases as the number of variables increases. This suggests that models can be predictable only when the number of relevant variables is less than a critical threshold. Concerning sampling, we argue that the information that a sample contains on the behavior of the system is quantified by the entropy of the frequency with which different states occur. This allows us to characterize the properties of maximally informative samples: within a simple approximation, the most informative frequency size distributions have power law behavior and Zipf’s law emerges at the crossover between the under sampled regime and the regime where the sample contains enough statistics to make inferences on the behavior of the system. These ideas are illustrated in some applications, showing that they can be used to identify relevant variables or to select the most informative representations of data, e.g. in data clustering. (paper)

  9. Nonlinear Dynamics, Chaotic and Complex Systems

    Science.gov (United States)

    Infeld, E.; Zelazny, R.; Galkowski, A.

    2011-04-01

    Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet

  10. Bio-medical CMOS ICs

    CERN Document Server

    Yoo, Hoi-Jun

    2011-01-01

    This book is based on a graduate course entitled, Ubiquitous Healthcare Circuits and Systems, that was given by one of the editors. It includes an introduction and overview to biomedical ICs and provides information on the current trends in research.

  11. Summer Biomedical Engineering Institute 1972

    Science.gov (United States)

    Deloatch, E. M.

    1973-01-01

    The five problems studied for biomedical applications of NASA technology are reported. The studies reported are: design modification of electrophoretic equipment, operating room environment control, hematological viscometry, handling system for iridium, and indirect blood pressure measuring device.

  12. Metaheuristics progress in complex systems optimization

    CERN Document Server

    Doerner, Karl F; Greistorfer, Peter; Gutjahr, Walter; Hartl, Richard F; Reimann, Marc

    2007-01-01

    The aim of ""Metaheuristics: Progress in Complex Systems Optimization"" is to provide several different kinds of information: a delineation of general metaheuristics methods, a number of state-of-the-art articles from a variety of well-known classical application areas as well as an outlook to modern computational methods in promising new areas. Therefore, this book may equally serve as a textbook in graduate courses for students, as a reference book for people interested in engineering or social sciences, and as a collection of new and promising avenues for researchers working in this field.

  13. Abstraction in artificial intelligence and complex systems

    CERN Document Server

    Saitta, Lorenza

    2013-01-01

    Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences.  After discussing the characterizing properties of abstraction, a formal model, the K

  14. Complex Fluids in Energy Dissipating Systems

    Directory of Open Access Journals (Sweden)

    Francisco J. Galindo-Rosales

    2016-07-01

    Full Text Available The development of engineered systems for energy dissipation (or absorption during impacts or vibrations is an increasing need in our society, mainly for human protection applications, but also for ensuring the right performance of different sort of devices, facilities or installations. In the last decade, new energy dissipating composites based on the use of certain complex fluids have flourished, due to their non-linear relationship between stress and strain rate depending on the flow/field configuration. This manuscript intends to review the different approaches reported in the literature, analyses the fundamental physics behind them and assess their pros and cons from the perspective of their practical applications.

  15. Statistical Physics of Complex Substitutive Systems

    Science.gov (United States)

    Jin, Qing

    Diffusion processes are central to human interactions. Despite extensive studies that span multiple disciplines, our knowledge is limited to spreading processes in non-substitutive systems. Yet, a considerable number of ideas, products, and behaviors spread by substitution; to adopt a new one, agents must give up an existing one. This captures the spread of scientific constructs--forcing scientists to choose, for example, a deterministic or probabilistic worldview, as well as the adoption of durable items, such as mobile phones, cars, or homes. In this dissertation, I develop a statistical physics framework to describe, quantify, and understand substitutive systems. By empirically exploring three collected high-resolution datasets pertaining to such systems, I build a mechanistic model describing substitutions, which not only analytically predicts the universal macroscopic phenomenon discovered in the collected datasets, but also accurately captures the trajectories of individual items in a complex substitutive system, demonstrating a high degree of regularity and universality in substitutive systems. I also discuss the origins and insights of the parameters in the substitution model and possible generalization form of the mathematical framework. The systematical study of substitutive systems presented in this dissertation could potentially guide the understanding and prediction of all spreading phenomena driven by substitutions, from electric cars to scientific paradigms, and from renewable energy to new healthy habits.

  16. Managing Schools as Complex Adaptive Systems: A Strategic Perspective

    Science.gov (United States)

    Fidan, Tuncer; Balci, Ali

    2017-01-01

    This conceptual study examines the analogies between schools and complex adaptive systems and identifies strategies used to manage schools as complex adaptive systems. Complex adaptive systems approach, introduced by the complexity theory, requires school administrators to develop new skills and strategies to realize their agendas in an…

  17. Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling.

    Science.gov (United States)

    Friedrich, O; Schneidereit, D; Nikolaev, Y A; Nikolova-Krstevski, V; Schürmann, S; Wirth-Hücking, A; Merten, A L; Fatkin, D; Martinac, B

    2017-11-01

    Hollow organs (e.g. heart) experience pressure-induced mechanical wall stress sensed by molecular mechano-biosensors, including mechanosensitive ion channels, to translate into intracellular signaling. For direct mechanistic studies, stretch devices to apply defined extensions to cells adhered to elastomeric membranes have stimulated mechanotransduction research. However, most engineered systems only exploit unilateral cellular stretch. In addition, it is often taken for granted that stretch applied by hardware translates 1:1 to the cell membrane. However, the latter crucially depends on the tightness of the cell-substrate junction by focal adhesion complexes and is often not calibrated for. In the heart, (increased) hemodynamic volume/pressure load is associated with (increased) multiaxial wall tension, stretching individual cardiomyocytes in multiple directions. To adequately study cellular models of chronic organ distension on a cellular level, biomedical engineering faces challenges to implement multiaxial cell stretch systems that allow observing cell reactions to stretch during live-cell imaging, and to calibrate for hardware-to-cell membrane stretch translation. Here, we review mechanotransduction, cell stretch technologies from uni-to multiaxial designs in cardio-vascular research, and the importance of the stretch substrate-cell membrane junction. We also present new results using our IsoStretcher to demonstrate mechanosensitivity of Piezo1 in HEK293 cells and stretch-induced Ca 2+ entry in 3D-hydrogel-embedded cardiomyocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A comparative analysis of biomedical research ethics regulation systems in Europe and Latin America with regard to the protection of human subjects.

    Science.gov (United States)

    Lamas, Eugenia; Ferrer, Marcela; Molina, Alberto; Salinas, Rodrigo; Hevia, Adriana; Bota, Alexandre; Feinholz, Dafna; Fuchs, Michael; Schramm, Roland; Tealdi, Juan-Carlos; Zorrilla, Sergio

    2010-12-01

    The European project European and Latin American Systems of Ethics Regulation of Biomedical Research Project (EULABOR) has carried out the first comparative analysis of ethics regulation systems for biomedical research in seven countries in Europe and Latin America, evaluating their roles in the protection of human subjects. We developed a conceptual and methodological framework defining 'ethics regulation system for biomedical research' as a set of actors, institutions, codes and laws involved in overseeing the ethics of biomedical research on humans. This framework allowed us to develop comprehensive national reports by conducting semi-structured interviews to key informants. These reports were summarised and analysed in a comparative analysis. The study showed that the regulatory framework for clinical research in these countries differ in scope. It showed that despite the different political contexts, actors involved and motivations for creating the regulation, in most of the studied countries it was the government who took the lead in setting up the system. The study also showed that Europe and Latin America are similar regarding national bodies and research ethics committees, but the Brazilian system has strong and noteworthy specificities.

  19. Theories and simulations of complex social systems

    CERN Document Server

    Mago, Vijay

    2014-01-01

    Research into social systems is challenging due to their complex nature. Traditional methods of analysis are often difficult to apply effectively as theories evolve over time. This can be due to a lack of appropriate data, or too much uncertainty. It can also be the result of problems which are not yet understood well enough in the general sense so that they can be classified, and an appropriate solution quickly identified. Simulation is one tool that deals well with these challenges, fits in well with the deductive process, and is useful for testing theory. This field is still relatively new, and much of the work is necessarily innovative, although it builds upon a rich and varied foundation. There are a number of existing modelling paradigms being applied to complex social systems research. Additionally, new methods and measures are being devised through the process of conducting research. We expect that readers will enjoy the collection of high quality research works from new and accomplished researchers. ...

  20. Electromagnetic driving units for complex microrobotic systems

    Science.gov (United States)

    Michel, Frank; Ehrfeld, Wolfgang; Berg, Udo; Degen, Reinhard; Schmitz, Felix

    1998-10-01

    Electromagnetic actuators play an important role in macroscopic robotic systems. In combination with motion transformers, like reducing gear units, angular gears or spindle-screw drives, electromagnetic motors in large product lines ensure the rotational or linear motion of robot driving units and grippers while electromagnets drive valves or part conveyors. In this paper micro actuators and miniaturized motion transformers are introduced which allow a similar development in microrobotics. An electromagnetic motor and a planetary gear box, both with a diameter of 1.9 mm, are already commercially available from the cooperation partner of IMM, the company Dr. Fritz Faulhaber GmbH in Schonaich, Germany. In addition, a motor with a diameter of 2.4 mm is in development. The motors successfully drive an angular gear and a belt drive. A linear stage with a motion range of 7 mm and an overall size as small as 5 X 3.5 X 24 mm3 has been realized involving the motor, a stationary spur gear with zero backlash and a spindle-screw drive. By the use of these commercially available elements complex microrobots can be built up cost-efficiently and rapidly. Furthermore, a batch process has been developed to produce the coils of micro actuator arrays using lithographic techniques with SU-8 resin. In applying these components, the modular construction of complex microrobotic systems becomes feasible.

  1. Intrinsic Uncertainties in Modeling Complex Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Curtis S; Bramson, Aaron L.; Ames, Arlo L.

    2014-09-01

    Models are built to understand and predict the behaviors of both natural and artificial systems. Because it is always necessary to abstract away aspects of any non-trivial system being modeled, we know models can potentially leave out important, even critical elements. This reality of the modeling enterprise forces us to consider the prospective impacts of those effects completely left out of a model - either intentionally or unconsidered. Insensitivity to new structure is an indication of diminishing returns. In this work, we represent a hypothetical unknown effect on a validated model as a finite perturba- tion whose amplitude is constrained within a control region. We find robustly that without further constraints, no meaningful bounds can be placed on the amplitude of a perturbation outside of the control region. Thus, forecasting into unsampled regions is a very risky proposition. We also present inherent difficulties with proper time discretization of models and representing in- herently discrete quantities. We point out potentially worrisome uncertainties, arising from math- ematical formulation alone, which modelers can inadvertently introduce into models of complex systems. Acknowledgements This work has been funded under early-career LDRD project #170979, entitled "Quantify- ing Confidence in Complex Systems Models Having Structural Uncertainties", which ran from 04/2013 to 09/2014. We wish to express our gratitude to the many researchers at Sandia who con- tributed ideas to this work, as well as feedback on the manuscript. In particular, we would like to mention George Barr, Alexander Outkin, Walt Beyeler, Eric Vugrin, and Laura Swiler for provid- ing invaluable advice and guidance through the course of the project. We would also like to thank Steven Kleban, Amanda Gonzales, Trevor Manzanares, and Sarah Burwell for their assistance in managing project tasks and resources.

  2. FULERENIC MATERIALS WITH BIOMEDICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Radu Claudiu FIERASCU

    2010-05-01

    Full Text Available Soluble fullerenic derivates are essential for numerous biomedical techniques that exploit the unique structural chemical and physical properties of carbon nanospheres. Their toxicity, demonstrated in vitro and in vivo is important for the characterization and limitation of those applications. The phototoxicity of some fullerene molecules was identified as a future therapeutical instrument. Other studies focused on the decrease of the phototoxicity of hydrosoluble fullerenes follow the use of those compounds as drug delivery systems or their use in environment protection. Starting from the characteristics of those compounds, which can be by themeselves cytotoxic, or could become during irradiation (photosensitizers we have tried to obtain new materials based on fullerenes and diads/triads fullerene/porphyrines or fullerenes/calixarenes.The obtained complexes were characterized by UV Vis and IR spectroscopy.

  3. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  4. Enabling Large-Scale Biomedical Analysis in the Cloud

    Directory of Open Access Journals (Sweden)

    Ying-Chih Lin

    2013-01-01

    Full Text Available Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable.

  5. Optimal control of complex atomic quantum systems.

    Science.gov (United States)

    van Frank, S; Bonneau, M; Schmiedmayer, J; Hild, S; Gross, C; Cheneau, M; Bloch, I; Pichler, T; Negretti, A; Calarco, T; Montangero, S

    2016-10-11

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  6. Visualizing complex (hydrological) systems with correlation matrices

    Science.gov (United States)

    Haas, J. C.

    2016-12-01

    When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011

  7. Control of multidimensional systems on complex network

    Science.gov (United States)

    Bagnoli, Franco; Battistelli, Giorgio; Chisci, Luigi; Fanelli, Duccio

    2017-01-01

    Multidimensional systems coupled via complex networks are widespread in nature and thus frequently invoked for a large plethora of interesting applications. From ecology to physics, individual entities in mutual interactions are grouped in families, homogeneous in kind. These latter interact selectively, through a sequence of self-consistently regulated steps, whose deeply rooted architecture is stored in the assigned matrix of connections. The asymptotic equilibrium eventually attained by the system, and its associated stability, can be assessed by employing standard nonlinear dynamics tools. For many practical applications, it is however important to externally drive the system towards a desired equilibrium, which is resilient, hence stable, to external perturbations. To this end we here consider a system made up of N interacting populations which evolve according to general rate equations, bearing attributes of universality. One species is added to the pool of interacting families and used as a dynamical controller to induce novel stable equilibria. Use can be made of the root locus method to shape the needed control, in terms of intrinsic reactivity and adopted protocol of injection. The proposed method is tested on both synthetic and real data, thus enabling to demonstrate its robustness and versatility. PMID:28892493

  8. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  9. Functionalized carbon nanotubes: biomedical applications

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  10. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  11. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  12. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    . The procedure for sensor configuration is based on the simultaneous perturbation stochastic approximation (SPSA) algorithm. SPSA avoids the need for detailed modeling of the sensor response by simply relying on the observed responses obtained by limited experimentation with test sensor configurations. We......The paper considers the problem of sensor configuration for complex systems with the aim of maximizing the useful information about certain quantities of interest. Our approach involves: 1) definition of an appropriate optimality criterion or performance measure; and 2) description of an efficient...... and practical algorithm for achieving the optimality objective. The criterion for optimal sensor configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs, so as to minimize the redundant information being provided by the multiple sensors...

  13. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs. The procedure for sensor configuration is based on simultaneous perturbation stochastic approximation (SPSA). SPSA avoids the need for detailed modeling of the sensor response by simply......Considers the problem of sensor configuration for complex systems. Our approach involves definition of an appropriate optimality criterion or performance measure, and description of an efficient and practical algorithm for achieving the optimality objective. The criterion for optimal sensor...... relying on observed responses as obtained by limited experimentation with test sensor configurations. We illustrate the approach with the optimal placement of acoustic sensors for signal detection in structures. This includes both a computer simulation study for an aluminum plate, and real...

  14. Exergy Analysis of Complex Ship Energy Systems

    Directory of Open Access Journals (Sweden)

    Pierre Marty

    2016-04-01

    Full Text Available With multiple primary and secondary energy converters (diesel engines, steam turbines, waste heat recovery (WHR and oil-fired boilers, etc. and extensive energy networks (steam, cooling water, exhaust gases, etc., ships may be considered as complex energy systems. Understanding and optimizing such systems requires advanced holistic energy modeling. This modeling can be done in two ways: The simpler approach focuses on energy flows, and has already been tested, approved and presented; a new, more complicated approach, focusing on energy quality, i.e., exergy, is presented in this paper. Exergy analysis has rarely been applied to ships, and, as a general rule, the shipping industry is not familiar with this tool. This paper tries to fill this gap. We start by giving a short reminder of what exergy is and describe the principles of exergy modeling to explain what kind of results should be expected from such an analysis. We then apply these principles to the analysis of a large two-stroke diesel engine with its cooling and exhaust systems. Simulation results are then presented along with the exergy analysis. Finally, we propose solutions for energy and exergy saving which could be applied to marine engines and ships in general.

  15. FPGA-Based HD Camera System for the Micropositioning of Biomedical Micro-Objects Using a Contactless Micro-Conveyor

    Directory of Open Access Journals (Sweden)

    Elmar Yusifli

    2017-03-01

    Full Text Available With recent advancements, micro-object contactless conveyers are becoming an essential part of the biomedical sector. They help avoid any infection and damage that can occur due to external contact. In this context, a smart micro-conveyor is devised. It is a Field Programmable Gate Array (FPGA-based system that employs a smart surface for conveyance along with an OmniVision complementary metal-oxide-semiconductor (CMOS HD camera for micro-object position detection and tracking. A specific FPGA-based hardware design and VHSIC (Very High Speed Integrated Circuit Hardware Description Language (VHDL implementation are realized. It is done without employing any Nios processor or System on a Programmable Chip (SOPC builder based Central Processing Unit (CPU core. It keeps the system efficient in terms of resource utilization and power consumption. The micro-object positioning status is captured with an embedded FPGA-based camera driver and it is communicated to the Image Processing, Decision Making and Command (IPDC module. The IPDC is programmed in C++ and can run on a Personal Computer (PC or on any appropriate embedded system. The IPDC decisions are sent back to the FPGA, which pilots the smart surface accordingly. In this way, an automated closed-loop system is employed to convey the micro-object towards a desired location. The devised system architecture and implementation principle is described. Its functionality is also verified. Results have confirmed the proper functionality of the developed system, along with its outperformance compared to other solutions.

  16. Adaptive generalized combination complex synchronization of uncertain real and complex nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shi-bing, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xing-yuan, E-mail: wang-shibing@dlut.edu.cn, E-mail: wangxy@dlut.edu.cn [Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Xiu-you [School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041 (China); Zhou, Yu-fei [College of Electrical Engineering and Automation, Anhui University, Hefei 230601 (China)

    2016-04-15

    With comprehensive consideration of generalized synchronization, combination synchronization and adaptive control, this paper investigates a novel adaptive generalized combination complex synchronization (AGCCS) scheme for different real and complex nonlinear systems with unknown parameters. On the basis of Lyapunov stability theory and adaptive control, an AGCCS controller and parameter update laws are derived to achieve synchronization and parameter identification of two real drive systems and a complex response system, as well as two complex drive systems and a real response system. Two simulation examples, namely, ACGCS for chaotic real Lorenz and Chen systems driving a hyperchaotic complexsystem, and hyperchaotic complex Lorenz and Chen systems driving a real chaotic Lü system, are presented to verify the feasibility and effectiveness of the proposed scheme.

  17. Perceptions of the use of intelligent information access systems in university level active learning activities among teachers of biomedical subjects.

    Science.gov (United States)

    Aparicio, Fernando; Morales-Botello, María Luz; Rubio, Margarita; Hernando, Asunción; Muñoz, Rafael; López-Fernández, Hugo; Glez-Peña, Daniel; Fdez-Riverola, Florentino; de la Villa, Manuel; Maña, Manuel; Gachet, Diego; Buenaga, Manuel de

    2018-04-01

    Student participation and the use of active methodologies in classroom learning are being increasingly emphasized. The use of intelligent systems can be of great help when designing and developing these types of activities. Recently, emerging disciplines such as 'educational data mining' and 'learning analytics and knowledge' have provided clear examples of the importance of the use of artificial intelligence techniques in education. The main objective of this study was to gather expert opinions regarding the benefits of using complementary methods that are supported by intelligent systems, specifically, by intelligent information access systems, when processing texts written in natural language and the benefits of using these methods as companion tools to the learning activities that are employed by biomedical and health sciences teachers. Eleven teachers of degree courses who belonged to the Faculties of Biomedical Sciences (BS) and Health Sciences (HS) of a Spanish university in Madrid were individually interviewed. These interviews were conducted using a mixed methods questionnaire that included 66 predefined close-ended and open-ended questions. In our study, three intelligent information access systems (i.e., BioAnnote, CLEiM and MedCMap) were successfully used to evaluate the teacher's perceptions regarding the utility of these systems and their different methods in learning activities. All teachers reported using active learning methods in the classroom, most of which were computer programs that were used for initially designing and later executing learning activities. All teachers used case-based learning methods in the classroom, with a specific emphasis on case reports written in Spanish and/or English. In general, few or none of the teachers were familiar with the technical terms related to the technologies used for these activities such as "intelligent systems" or "concept/mental maps". However, they clearly realized the potential applicability of such

  18. System dynamics in complex psychiatric treatment organizations.

    Science.gov (United States)

    Rosenheck, R

    1988-05-01

    One of the major challenges facing contemporary psychiatry is the coordination of diverse services through organizational integration. With increasing frequency, psychiatric treatment takes place in complex treatment systems composed of multiple inpatient and outpatient programs. Particularly in public health care systems serving the chronically ill, contemporary practice demands a broad spectrum of programs, often geographically dispersed, that include crisis intervention teams, day treatment programs, substance abuse units, social rehabilitation programs and halfway houses (Bachrach 1983; Turner and TenHoor 1978). Individualized treatment planning often requires that a particular patient participate in two or more specialized programs either simultaneously or in a specified sequence. As a consequence of this specialization, treatment fragmentation has emerged as a significant clinical problem, and continuity of care has been highlighted as a valuable but elusive ingredient of optimal treatment. This paper will describe the dynamic interactions that result when several such programs are united under a common organizational roof. Using a large VA Psychiatry Service as an example, I will outline the hierarchical structure characteristic of such an organization, as well as the persistent pulls toward both integration and fragmentation that influence its operation.

  19. A robust approach to extract biomedical events from literature.

    Science.gov (United States)

    Bui, Quoc-Chinh; Sloot, Peter M A

    2012-10-15

    The abundance of biomedical literature has attracted significant interest in novel methods to automatically extract biomedical relations from the literature. Until recently, most research was focused on extracting binary relations such as protein-protein interactions and drug-disease relations. However, these binary relations cannot fully represent the original biomedical data. Therefore, there is a need for methods that can extract fine-grained and complex relations known as biomedical events. In this article we propose a novel method to extract biomedical events from text. Our method consists of two phases. In the first phase, training data are mapped into structured representations. Based on that, templates are used to extract rules automatically. In the second phase, extraction methods are developed to process the obtained rules. When evaluated against the Genia event extraction abstract and full-text test datasets (Task 1), we obtain results with F-scores of 52.34 and 53.34, respectively, which are comparable to the state-of-the-art systems. Furthermore, our system achieves superior performance in terms of computational efficiency. Our source code is available for academic use at http://dl.dropbox.com/u/10256952/BioEvent.zip.

  20. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants.

    Science.gov (United States)

    Ramrakhyani, A K; Mirabbasi, S; Mu Chiao

    2011-02-01

    Resonance-based wireless power delivery is an efficient technique to transfer power over a relatively long distance. This technique typically uses four coils as opposed to two coils used in conventional inductive links. In the four-coil system, the adverse effects of a low coupling coefficient between primary and secondary coils are compensated by using high-quality (Q) factor coils, and the efficiency of the system is improved. Unlike its two-coil counterpart, the efficiency profile of the power transfer is not a monotonically decreasing function of the operating distance and is less sensitive to changes in the distance between the primary and secondary coils. A four-coil energy transfer system can be optimized to provide maximum efficiency at a given operating distance. We have analyzed the four-coil energy transfer systems and outlined the effect of design parameters on power-transfer efficiency. Design steps to obtain the efficient power-transfer system are presented and a design example is provided. A proof-of-concept prototype system is implemented and confirms the validity of the proposed analysis and design techniques. In the prototype system, for a power-link frequency of 700 kHz and a coil distance range of 10 to 20 mm, using a 22-mm diameter implantable coil resonance-based system shows a power-transfer efficiency of more than 80% with an enhanced operating range compared to ~40% efficiency achieved by a conventional two-coil system.

  1. Metric for Calculation of System Complexity based on its Connections

    Directory of Open Access Journals (Sweden)

    João Ricardo Braga de Paiva

    2017-02-01

    Full Text Available This paper proposes a methodology based on system connections to calculate its complexity. Two study cases are proposed: the dining Chinese philosophers’ problem and the distribution center. Both studies are modeled using the theory of Discrete Event Systems and simulations in different contexts were performed in order to measure their complexities. The obtained results present i the static complexity as a limiting factor for the dynamic complexity, ii the lowest cost in terms of complexity for each unit of measure of the system performance and iii the output sensitivity to the input parameters. The associated complexity and performance measures aggregate knowledge about the system.

  2. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  3. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  4. Environmental/Biomedical Terminology Index

    International Nuclear Information System (INIS)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index

  5. Anti-synchronization between different chaotic complex systems

    International Nuclear Information System (INIS)

    Liu Ping; Liu Shutang

    2011-01-01

    Many studies on the anti-synchronization of nonlinear real dynamic systems have been carried out, whereas the anti-synchronization of chaotic complex systems has not been studied extensively. In this work, the anti-synchronization between a new chaotic complex system and a complex Lorenz system and that between a new chaotic complex system and a complex Lue system were separately investigated by active control and nonlinear control methods, and explicit expressions were derived for the controllers that are used to achieve the anti-synchronization of chaotic complex systems. These expressions were tested numerically and excellent agreement was found. Concerning the new chaotic complex system, we discuss its dynamical properties including dissipation, chaotic behavior, fixed points, and their stability and invariance.

  6. System for circular and complex tomography

    International Nuclear Information System (INIS)

    Hellstrom, M.J.

    1979-01-01

    This invention discloses a system for conducting circular as well as complex tomographic procedures utilizing apparatus which has no mechanical linkage between the X-ray source and the X-ray receptor. The path of travel of the X-ray source both circularly and linearly is sensed by electromagnetic radiation and more particularly by light radiation which is generated by a laser. The linear travel is sensed by means of reflected laser radiation directed to the X-ray source and fed to an interferometer. The circular travel, on the other hand, is sensed by means of a laser gyroscope also receiving light radiation from a laser. Optical energy sensing means is thus used to generate command signals which are coupled to respective drive motors which act to rotate and when desirable, translate the X-ray receptor so that its motion follows the motion, both orbital and linear, of the X-ray source for performing any desired type of tomographic procedure

  7. Modeling Complex Chemical Systems: Problems and Solutions

    Science.gov (United States)

    van Dijk, Jan

    2016-09-01

    Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.

  8. Trends in biomedical engineering: focus on Patient Specific Modeling and Life Support Systems.

    Science.gov (United States)

    Dubini, Gabriele; Ambrosi, Davide; Bagnoli, Paola; Boschetti, Federica; Caiani, Enrico G; Chiastra, Claudio; Conti, Carlo A; Corsini, Chiara; Costantino, Maria Laura; D'Angelo, Carlo; Formaggia, Luca; Fumero, Roberto; Gastaldi, Dario; Migliavacca, Francesco; Morlacchi, Stefano; Nobile, Fabio; Pennati, Giancarlo; Petrini, Lorenza; Quarteroni, Alfio; Redaelli, Alberto; Stevanella, Marco; Veneziani, Alessandro; Vergara, Christian; Votta, Emiliano; Wu, Wei; Zunino, Paolo

    2011-01-01

    Over the last twenty years major advancements have taken place in the design of medical devices and personalized therapies. They have paralleled the impressive evolution of three-dimensional, non invasive, medical imaging techniques and have been continuously fuelled by increasing computing power and the emergence of novel and sophisticated software tools. This paper aims to showcase a number of major contributions to the advancements of modeling of surgical and interventional procedures and to the design of life support systems. The selected examples will span from pediatric cardiac surgery procedures to valve and ventricle repair techniques, from stent design and endovascular procedures to life support systems and innovative ventilation techniques.

  9. Cosmic Ray Neutron Sensing in Complex Systems

    Science.gov (United States)

    Piussi, L. M.; Tomelleri, E.; Tonon, G.; Bertoldi, G.; Mejia Aguilar, A.; Monsorno, R.; Zebisch, M.

    2017-12-01

    Soil moisture is a key variable in environmental monitoring and modelling: being located at the soil-atmosphere boundary, it is a driving force for water, energy and carbon fluxes. Nevertheless its importance, soil moisture observations lack of long time-series at high acquisition frequency in spatial meso-scale resolutions: traditional measurements deliver either long time series with high measurement frequency at spatial point scale or large scale and low frequency acquisitions. The Cosmic Ray Neutron Sensing (CRNS) technique fills this gap because it supplies information from a footprint of 240m of diameter and 15 to 83 cm of depth at a temporal resolution varying between 15 minutes and 24 hours. In addition, being a passive sensing technique, it is non-invasive. For these reasons, CRNS is gaining more and more attention from the scientific community. Nevertheless, the application of this technique in complex systems is still an open issue: where different Hydrogen pools are present and where their distributions vary appreciably with space and time, the traditional calibration method shows some limits. In order to obtain a better understanding of the data and to compare them with remote sensing products and spatially distributed traditional measurements (i.e. Wireless Sensors Network), the complexity of the surrounding environment has to be taken into account. In the current work we assessed the effects of spatial-temporal variability of soil moisture within the footprint, in a steep, heterogeneous mountain grassland area. Measurement were performed with a Cosmic Ray Neutron Probe (CRNP) and a mobile Wireless Sensors Network. We performed an in-deep sensitivity analysis of the effects of varying distributions of soil moisture on the calibration of the CRNP and our preliminary results show how the footprint shape varies depending on these dynamics. The results are then compared with remote sensing data (Sentinel 1 and 2). The current work is an assessment of

  10. A System for Computing Conceptual Pathways in Bio-medical Text Models

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik; Nilsson, Jørgen Fischer

    2014-01-01

    This paper describes the key principles in a system for querying and conceptual path finding in a logic-based knowledge base. The knowledge base is extracted from textual descriptions in bio-, pharma- and medical areas. The knowledge base applies natural logic, that is, a variable-free term...

  11. An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    M. A. Adeeb

    2012-01-01

    Full Text Available A wireless power transfer system using an inductive link has been demonstrated for implantable sensor applications. The system is composed of two primary blocks: an inductive power transfer unit and a backward data communication unit. The inductive link performs two functions: coupling the required power from a wireless power supply system enabling battery-less, long-term implant operation and providing a backward data transmission path. The backward data communication unit transmits the data to an outside reader using FSK modulation scheme via the inductive link. To demonstrate the operation of the inductive link, a board-level design has been implemented with high link efficiency. Test results from a fabricated sensor system, composed of a hybrid implementation of custom-integrated circuits and board-level discrete components, are presented demonstrating power transmission of 125 mW with a 12.5% power link transmission efficiency. Simultaneous backward data communication involving a digital pulse rate of up to 10 kbps was also observed.

  12. Reliable and energy-efficient communications for wireless biomedical implant systems.

    Science.gov (United States)

    Ntouni, Georgia D; Lioumpas, Athanasios S; Nikita, Konstantina S

    2014-11-01

    Implant devices are used to measure biological parameters and transmit their results to remote off-body devices. As implants are characterized by strict requirements on size, reliability, and power consumption, applying the concept of cooperative communications to wireless body area networks offers several benefits. In this paper, we aim to minimize the power consumption of the implant device by utilizing on-body wearable devices, while providing the necessary reliability in terms of outage probability and bit error rate. Taking into account realistic power considerations and wireless propagation environments based on the IEEE P802.l5 channel model, an exact theoretical analysis is conducted for evaluating several communication scenarios with respect to the position of the wearable device and the motion of the human body. The derived closed-form expressions are employed toward minimizing the required transmission power, subject to a minimum quality-of-service requirement. In this way, the complexity and power consumption are transferred from the implant device to the on-body relay, which is an efficient approach since they can be easily replaced, in contrast to the in-body implants.

  13. A Triple-Loop Inductive Power Transmission System for Biomedical Applications.

    Science.gov (United States)

    Lee, Byunghun; Kiani, Mehdi; Ghovanloo, Maysam

    2016-02-01

    A triple-loop wireless power transmission (WPT) system equipped with closed-loop global power control, adaptive transmitter (Tx) resonance compensation (TRC), and automatic receiver (Rx) resonance tuning (ART) is presented. This system not only opposes coupling and load variations but also compensates for changes in the environment surrounding the inductive link to enhance power transfer efficiency (PTE) in applications such as implantable medical devices (IMDs). The Tx was built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader, operating at 13.56 MHz. A local Tx loop finds the optimal capacitance in parallel with the Tx coil by adjusting a varactor. A global power control loop maintains the received power at a desired level in the presence of changes in coupling distance, coil misalignments, and loading. Moreover, a local Rx loop is implemented inside a power management integrated circuit (PMIC) to avoid PTE degradation due to the Rx coil surrounding environment and process variations. The PMIC was fabricated in a 0.35- μm 4M2P standard CMOS process with 2.54 mm(2) active area. Measurement results show that the proposed triple-loop system improves the overall PTE by up to 10.5% and 4.7% compared to a similar open- and single closed-loop system, respectively, at nominal coil distance of 2 cm. The added TRC and ART loops contribute 2.3% and 1.4% to the overall PTE of 13.5%, respectively. This is the first WPT system to include three loops to dynamically compensate for environment and circuit variations and improve the overall power efficiency all the way from the driver output in Tx to the load in Rx.

  14. [The role of bioethics committees in the systems protecting scientific biomedical research participants in France and in Poland].

    Science.gov (United States)

    Czarkowski, Marek; Sieczych, Alicja

    2013-08-01

    Bioethics committees are along with ethic regulations and rules of law one of three main pillars in the system of protection of scientific biomedical research participants. Although principal directives for bioethics committees are established by international guidelines, detailed regulations may differ in particular states. The aim of this article was to compare two bioethic committees systems: French and Polish one. Historical beginnings of the bioethics committees system in France and in Poland are briefly mentioned, Subsequently, the networks of bioethics committees in both countries are compared. Although the number of bioethics committees (Research Ethic Committees) in both countries is comparable, the procedure of their establishment varies. French committees are based on administrative division of the country and divide on regional and interregional committees. In Poland, bioethics committees are established by medical universities, medical research and development units or regional chambers of physicians and dentists. In France there is no equivalent of Appeal Bioethics Committee, however one could appeal from the negative bioethics committee's opinion. The composition of French bioethics committees is more diverse and half of the members are not related to medical professions. Members of French committees are named on indefinite term by headmaster of Regional Health Agency after having been chosen in competition for the post. In Poland members are called on three-year-term but the rotation of members is not overwhelming since there is no limit of terms for one member. French legal solutions seems more secure for scientific bioethics research participants. For this reason, a detailed research on legislation in other countries is necessary before introducing any new regulations in Polish law.

  15. Mid-infrared spectroscopic characterisation of an ultra-broadband tunable EC-QCL system intended for biomedical applications

    Science.gov (United States)

    Vahlsing, T.; Moser, H.; Grafen, M.; Nalpantidis, K.; Brandstetter, M.; Heise, H. M.; Lendl, B.; Leonhardt, S.; Ihrig, D.; Ostendorf, A.

    2015-07-01

    Mid-infrared spectroscopy has been successfully applied for reagent-free clinical chemistry applications. Our aim is to design a portable bed-side system for ICU patient monitoring, based on mid-infrared absorption spectra of continuously sampled body-fluids. Robust and miniature bed-side systems can be achieved with tunable external cavity quantum cascade lasers (EC-QCL). Previously, single EC-QCL modules covering a wavenumber interval up to 250 cm-1 have been utilized. However, for broader applicability in biomedical research an extended interval around the mid-infrared fingerprint region should be accessible, which is possible with at least three or four EC-QCL modules. For such purpose, a tunable ultra-broadband system (1920 - 780 cm-1, Block Engineering) has been studied with regard to its transient emission characteristics in ns time resolution during different laser pulse widths using a VERTEX 80v FTIR spectrometer with step-scan option. Furthermore, laser emission line profiles of all four incorporated EC-QCL modules have been analysed at high spectral resolution (0.08 cm-1) and beam profiles with few deviations from the TEM 00 spatial mode have been manifested. Emission line reproducibility has been tested for various wavenumbers in step tune mode. The overall accuracy of manufacturer default wavenumber setting has been found between ± 3 cm-1 compared to the FTIR spectrometer scale. With regard to an application in clinical chemistry, theoretically achievable concentration accuracies for different blood substrates based on blood plasma and dialysate spectra previously recorded by FTIRspectrometers have been estimated taking into account the now accessible extended wavenumber interval.

  16. Electroactive polymers for healthcare and biomedical applications

    Science.gov (United States)

    Bauer, Siegfried

    2017-04-01

    Electroactivity was noticed early in biological substances, including proteins, polynucleotides and enzymes, even piezoand pyroelectricity were found in wool, hair, wood, bone and tendon. Recently, ferroelectricity has been identified in a surprisingly large number of biologically relevant materials, including hydroxyapatite, aortic walls and elastin. Inspired by the variety of natural electroactive materials, a wealth of new elastomers and polymers were designed recently, including an all organic elastomer electret and self-healing dielectric elastomers. Let's further draw inspiration from nature and widen the utilization of electroactive polymers towards (mobile) healthcare and biomedical applications. Ferroelectrets, internally charged polymer foams with a strong piezoelectric thickness coefficient are employed in biomedical sensing, for example as blood pressure and pulse sensor, as vital signs monitor or for the detection of tonicclonic seizures. Piezo- and pyroelectric polymers are booming in printed electronics research. They provide electronic skin the ability to "feel" pressure and temperature changes, or to generate electrical energy from vibrations and motions, even from contractile and relaxation motions of the heart and lung. Dielectric elastomers are pioneered by StretchSense as wearable motion capture sensors, monitoring pressure, stretch, bend and shear, quantifying comfort in sports and healthcare. On the cellular level, electroactive polymer arrays are used to study mechanotransduction of individual cells. Ionic electroactive polymers show potential to be used in implantable electroactive biomedical devices. Already with the currently available science and technology, we are at the verge of witnessing the demonstration of truly complex bionic systems.

  17. Biomedical semantics in the Semantic Web.

    Science.gov (United States)

    Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott

    2011-03-07

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.

  18. Embracing uncertainty, managing complexity: applying complexity thinking principles to transformation efforts in healthcare systems.

    Science.gov (United States)

    Khan, Sobia; Vandermorris, Ashley; Shepherd, John; Begun, James W; Lanham, Holly Jordan; Uhl-Bien, Mary; Berta, Whitney

    2018-03-21

    Complexity thinking is increasingly being embraced in healthcare, which is often described as a complex adaptive system (CAS). Applying CAS to healthcare as an explanatory model for understanding the nature of the system, and to stimulate changes and transformations within the system, is valuable. A seminar series on systems and complexity thinking hosted at the University of Toronto in 2016 offered a number of insights on applications of CAS perspectives to healthcare that we explore here. We synthesized topics from this series into a set of six insights on how complexity thinking fosters a deeper understanding of accepted ideas in healthcare, applications of CAS to actors within the system, and paradoxes in applications of complexity thinking that may require further debate: 1) a complexity lens helps us better understand the nebulous term "context"; 2) concepts of CAS may be applied differently when actors are cognizant of the system in which they operate; 3) actor responses to uncertainty within a CAS is a mechanism for emergent and intentional adaptation; 4) acknowledging complexity supports patient-centred intersectional approaches to patient care; 5) complexity perspectives can support ways that leaders manage change (and transformation) in healthcare; and 6) complexity demands different ways of implementing ideas and assessing the system. To enhance our exploration of key insights, we augmented the knowledge gleaned from the series with key articles on complexity in the literature. Ultimately, complexity thinking acknowledges the "messiness" that we seek to control in healthcare and encourages us to embrace it. This means seeing challenges as opportunities for adaptation, stimulating innovative solutions to ensure positive adaptation, leveraging the social system to enable ideas to emerge and spread across the system, and even more important, acknowledging that these adaptive actions are part of system behaviour just as much as periods of stability are. By

  19. Lie and Noether symmetries of systems of complex ordinary ...

    Indian Academy of Sciences (India)

    2014-07-02

    Jul 2, 2014 ... Abstract. The Lie and Noether point symmetry analyses of a kth-order system of m complex ordi- nary differential equations (ODEs) with m dependent variables are performed. The decomposition of complex symmetries of the given system of complex ODEs yields Lie- and Noether-like opera- tors.

  20. A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.

    Science.gov (United States)

    Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S

    2010-04-01

    Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.

  1. Parallel scan hyperspectral fluorescence imaging system and biomedical application for microarrays

    International Nuclear Information System (INIS)

    Liu Zhiyi; Ma Suihua; Liu Le; Guo Jihua; He Yonghong; Ji Yanhong

    2011-01-01

    Microarray research offers great potential for analysis of gene expression profile and leads to greatly improved experimental throughput. A number of instruments have been reported for microarray detection, such as chemiluminescence, surface plasmon resonance, and fluorescence markers. Fluorescence imaging is popular for the readout of microarrays. In this paper we develop a quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging system for microarray research. Hyperspectral imaging records the entire emission spectrum for every voxel within the imaged area in contrast to recording only fluorescence intensities of filter-based scanners. Coupled with data analysis, the recorded spectral information allows for quantitative identification of the contributions of multiple, spectrally overlapping fluorescent dyes and elimination of unwanted artifacts. The mechanism of quasi-confocal imaging provides a high signal-to-noise ratio, and parallel scan makes this approach a high throughput technique for microarray analysis. This system is improved with a specifically designed spectrometer which can offer a spectral resolution of 0.2 nm, and operates with spatial resolutions ranging from 2 to 30 μm . Finally, the application of the system is demonstrated by reading out microarrays for identification of bacteria.

  2. Biomedical visual data analysis to build an intelligent diagnostic decision support system in medical genetics.

    Science.gov (United States)

    Kuru, Kaya; Niranjan, Mahesan; Tunca, Yusuf; Osvank, Erhan; Azim, Tayyaba

    2014-10-01

    In general, medical geneticists aim to pre-diagnose underlying syndromes based on facial features before performing cytological or molecular analyses where a genotype-phenotype interrelation is possible. However, determining correct genotype-phenotype interrelationships among many syndromes is tedious and labor-intensive, especially for extremely rare syndromes. Thus, a computer-aided system for pre-diagnosis can facilitate effective and efficient decision support, particularly when few similar cases are available, or in remote rural districts where diagnostic knowledge of syndromes is not readily available. The proposed methodology, visual diagnostic decision support system (visual diagnostic DSS), employs machine learning (ML) algorithms and digital image processing techniques in a hybrid approach for automated diagnosis in medical genetics. This approach uses facial features in reference images of disorders to identify visual genotype-phenotype interrelationships. Our statistical method describes facial image data as principal component features and diagnoses syndromes using these features. The proposed system was trained using a real dataset of previously published face images of subjects with syndromes, which provided accurate diagnostic information. The method was tested using a leave-one-out cross-validation scheme with 15 different syndromes, each of comprised 5-9 cases, i.e., 92 cases in total. An accuracy rate of 83% was achieved using this automated diagnosis technique, which was statistically significant (pbenefits of using hybrid image processing and ML-based computer-aided diagnostics for identifying facial phenotypes. Copyright © 2014. Published by Elsevier B.V.

  3. An efficient, interactive, and parallel system for biomedical volume analysis on a standard workstation

    International Nuclear Information System (INIS)

    Rebuffel, V.; Gonon, G.

    1992-01-01

    A software package is presented that can be employed for any 3D imaging modalities: X-ray tomography, emission tomography, magnetic resonance imaging. This system uses a hierarchical data structure, named Octree, that naturally allows a multi-resolution approach. The well-known problems of such an indeterministic representation, especially the neighbor finding, has been solved. Several algorithms of volume processing have been developed, using these techniques and an optimal data storage for the Octree. A parallel implementation was chosen that is compatible with the constraints of the Octree base and the various algorithms. (authors) 4 refs., 3 figs., 1 tab

  4. Stroke: pathophysiology from the biomedical system perspective and its equivalent in the traditional Chinese medicine

    Directory of Open Access Journals (Sweden)

    Alba Fernanda Ruiz-Mejía

    2017-01-01

    Despite this, stroke is not limited to a molecular event, but also encompasses the life story of the patients who suffer from this condition and have to integrate it into their physical, emotional and mental dimensions. With this in mind, the needs of the approach and treatment of patients can be satisfied by other medical systems such as traditional Chinese medicine, which considers the signs and symptoms of stroke as the result of a disharmony created and perpetuated by environmental, emotional and mental causes, as well as by lifestyle.

  5. Biomedical informatics as support to individual healthcare in hereditary colon cancer: the Danish HNPCC system.

    Science.gov (United States)

    Bernstein, Inge T; Lindorff-Larsen, Karen; Timshel, Susanne; Brandt, Carsten A; Dinesen, Birger; Fenger, Mogens; Gerdes, Anne-Marie; Iversen, Lene H; Madsen, Mogens R; Okkels, Henrik; Sunde, Lone; Rahr, Hans B; Wikman, Friedrick P; Rossing, Niels

    2011-05-01

    The Danish HNPCC register is a publically financed national database. The register gathers epidemiological and genomic data in HNPCC families to improve prognosis by screening and identifying family members at risk. Diagnostic data are generated throughout the country and collected over several decades. Until recently, paper-based reports were sent to the register and typed into the database. In the EC cofunded-INFOBIOMED network of excellence, the register was a model for electronic exchange of epidemiological and genomic data between diagnosing/treating departments and the central database. The aim of digitization was to optimize the organization of screening by facilitating combination of genotype-phenotype information, and to generate IT-tools sufficiently usable and generic to be implemented in other countries and for other oncogenetic diseases. The focus was on integration of heterogeneous data, elaboration, and dissemination of classification systems and development of communication standards. At the conclusion of the EU project in 2007 the system was implemented in 12 pilot departments. In the surgical departments this resulted in a 192% increase of reports to the database. Several gaps were identified: lack of standards for data to be exchanged, lack of local databases suitable for direct communication, reporting being time-consuming and dependent on interest and feedback. © 2011 Wiley-Liss, Inc.

  6. Imaging, scattering, and spectroscopic systems for biomedical optics: Tools for bench top and clinical applications

    Science.gov (United States)

    Cottrell, William J.

    Optical advances have had a profound impact on biology and medicine. The capabilities range from sensing biological analytes to whole animal and subcellular imaging and clinical therapies. The work presented in this thesis describes three independent and multifunctional optical systems, which explore clinical therapy at the tissue level, biological structure at the cell/organelle level, and the function of underlying fundamental cellular processes. First, we present a portable clinical instrument for delivering delta-aminolevulinic acid photodynamic therapy (ALA-PDT) while performing noninvasive spectroscopic monitoring in vivo. Using an off-surface probe, the instrument delivered the treatment beam to a user-defined field on the skin and performed reflectance and fluorescence spectroscopies at two regions within this field. The instrument was used to monitor photosensitizer fluorescence photobleaching, fluorescent photoproduct kinetics, and blood oxygen saturation during a clinical ALA-PDT trial on superficial basal cell carcinoma (sBCC). Protoporphyrin IX and photoproduct fluorescence excited by the 632.8 nm PDT treatment laser was collected between 665 and 775 nm. During a series of brief treatment interruptions at programmable time points, white-light reflectance spectra between 475 and 775 nm were acquired. Fluorescence spectra were corrected for the effects of absorption and scattering, informed by the reflectance measurements, and then decomposed into known fluorophore contributions in real time using a robust singular-value decomposition fitting routine. Reflectance spectra additionally provided information on hemoglobin oxygen saturation. We next describe the incorporation of this instrument into clinical trials at Roswell Park Cancer Institute (Buffalo, NY). In this trial we examined the effects of light irradiance on photodynamic efficiency and pain. The rate of singlet-oxygen production depends on the product of irradiance and photosensitizer and oxygen

  7. Integrated Visualisation and Description of Complex Systems

    National Research Council Canada - National Science Library

    Goodburn, D

    1999-01-01

    ... on system topographies and feature overlays. System information from the domain's information space is filtered and integrated into a Composite Systems Model that provides a basis for consistency and integration between all system views...

  8. Chaotic systems in complex phase space

    Indian Academy of Sciences (India)

    figure 1, a qualitative change in the complex behaviour is quite evident in ..... [19] S Fishman, Quantum Localization in Quantum Chaos, Proc. of the International ... of the 44th Scottish Universities Summer School in Physics, Stirling, August ...

  9. Sensor-based supporting mobile system Parkinson disease clinical tests utilising biomedical and RFID technologies

    Directory of Open Access Journals (Sweden)

    Chmielewski Mariusz

    2017-01-01

    Full Text Available This paper discusses method and tool for assisting clinical tests of pharmaceutical drugs utilising sensors and mobile technologies. Emerging sensor and mobile technologies deliver new opportunities to gather and process medical data. Presented analytical approach implements such observations and delivers new, convenient means for remote patient monitoring. Clinical tests are highly specialised process requiring methodology and tools to support such research. Currently available methods rely mostly on analogue approach (booklets, requiring the clinical test participant to fill in health state daily. Such approach often can be biased by unpunctual, not precise reporting. The mobile device can support this process by automatic scheduling and recording an actual time of reports and most of all it can record the inertial and biometric sensor data during the survey process. Presented analytical method (tremors recognition and mobile tool offers consistent approach to clinical test assistance transforming and Android smartphone into remote reporting and notification tool. The tool offers additionally features for sensor based diagnostics support for PD tremor recognition as well as specific clonic and tonic symptoms (dedicated for further system extensions towards epilepsy. Capabilities of the system delivers also RFID mechanisms for efficient on-site clinical test authorisation and configuration. This feature simplifies application installation and automatic set-up considering the participant, clinical test configuration, schedule, smartphone and sensor data. Such a composition delivers convenient and reliable tool which can assist patients and medical staff during the process objectifying the clinical tests results and helping to ensure good quality of the data, quickly available and easily accessible.

  10. Patients' and physicians' understanding of health and biomedical concepts: relationship to the design of EMR systems.

    Science.gov (United States)

    Patel, Vimla L; Arocha, José F; Kushniruk, André W

    2002-02-01

    The aim of this paper is to examine knowledge organization and reasoning strategies involved in physician-patient communication and to consider how these are affected by the use of computer tools, in particular, electronic medical record (EMR) systems. In the first part of the paper, we summarize results from a study in which patients were interviewed before their interactions with physicians and where physician-patient interactions were recorded and analyzed to evaluate patients' and physicians' understanding of the patient problem. We give a detailed presentation of one of such interaction, with characterizations of physician and patient models. In a second set of studies, the contents of both paper and EMRs were compared and in addition, physician-patient interactions (involving the use of EMR technology) were video recorded and analyzed to assess physicians' information gathering and knowledge organization for medical decision-making. Physicians explained the patient problems in terms of causal pathophysiological knowledge underlying the disease (disease model), whereas patients explained them in terms of narrative structures of illness (illness model). The data-driven nature of the traditional physician-patient interaction allows physicians to capture the temporal flow of events and to document key aspects of the patients' narratives. Use of electronic medical records was found to influence the way patient data were gathered, resulting in information loss and disruption of temporal sequence of events in assessing patient problem. The physician-patient interview allows physicians to capture crucial aspects of the patient's illness model, which are necessary for understanding the problem from the patients' perspective. Use of computer-based patient record technology may lead to a loss of this relevant information. As a consequence, designers of such systems should take into account information relevant to the patient comprehension of medical problems, which will

  11. Studies of complexity in fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Sidney R.

    2000-06-12

    This is the final report of Grant DE-FG02-92ER25119, ''Studies of Complexity in Fluids'', we have investigated turbulence, flow in granular materials, singularities in evolution of fluid surfaces and selective withdrawal fluid flows. We have studied numerical methods for dealing with complex phenomena, and done simulations on the formation of river networks. We have also studied contact-line deposition that occurs in a drying drop.

  12. Membrane Tethering Complexes in the Endosomal System

    OpenAIRE

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is...

  13. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems.

    Science.gov (United States)

    Kaur, Randeep; Badea, Ildiko

    2013-01-01

    Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.

  14. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems

    Directory of Open Access Journals (Sweden)

    Kaur R

    2013-01-01

    Full Text Available Randeep Kaur, Ildiko BadeaDrug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaAbstract: Detonation nanodiamonds (NDs are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.Keywords: dispersion, surface functionalization, toxicity, carriers, fluorescence, light scattering

  15. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Hassan Saberi Nik

    2014-01-01

    Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  16. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  17. Establishing a methodology to develop complex sociotechnical systems

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2013-02-01

    Full Text Available Many modern management systems, such as military command and control, tend to be large and highly interconnected sociotechnical systems operating in a complex environment. Successful development, assessment and implementation of these systems...

  18. Analysis and control of complex dynamical systems robust bifurcation, dynamic attractors, and network complexity

    CERN Document Server

    Imura, Jun-ichi; Ueta, Tetsushi

    2015-01-01

    This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

  19. Biomedical applications of batteries

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Roger [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Linford, Roger [The Research Office, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Schlindwein, Walkiria [School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom)

    2004-08-31

    An overview is presented of the many ways in which batteries and battery materials are used in medicine and in biomedical studies. These include the use of batteries as power sources for motorised wheelchairs, surgical tools, cardiac pacemakers and defibrillators, dynamic prostheses, sensors and monitors for physiological parameters, neurostimulators, devices for pain relief, and iontophoretic, electroporative and related devices for drug administration. The various types of battery and fuel cell used for this wide range of applications will be considered, together with the potential harmful side effects, including accidental ingestion of batteries and the explosive nature of some of the early cardiac pacemaker battery systems.

  20. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  1. Complexity Thinking in PE: Game-Centred Approaches, Games as Complex Adaptive Systems, and Ecological Values

    Science.gov (United States)

    Storey, Brian; Butler, Joy

    2013-01-01

    Background: This article draws on the literature relating to game-centred approaches (GCAs), such as Teaching Games for Understanding, and dynamical systems views of motor learning to demonstrate a convergence of ideas around games as complex adaptive learning systems. This convergence is organized under the title "complexity thinking"…

  2. Complexity: Outline of the NWO strategic theme Dynamics of complex systems

    NARCIS (Netherlands)

    Burgers, G.; Doelman, A.; Frenken, K.; Hogeweg, P.; Hommes, C.; van der Maas, H.; Mulder, B.; Stam, K.; van Steen, M.; Zandee, L.

    2008-01-01

    Dynamics of complex systems is one of the program 5 themes in the NWO (Netherlands Organisation for Scientific Research) strategy for the years 2007-2011. The ambition of the current proposal is to initiate integrated activities in the field of complex systems within the Netherlands, to provide

  3. Complexity : outline of the NWO strategic theme dynamics of complex systems

    NARCIS (Netherlands)

    Burgers, G.; Doelman, A.; Frenken, K.; Hogeweg, P.; Hommes, C.; Maas, van der H.; Mulder, B.; Stam, K.; Steen, van M.; Zandee, L.

    2008-01-01

    Dynamics of complex systems is one of the program 5 themes in the NWO (Netherlands Organisation for Scientific Research) strategy for the years 2007-2011. The ambition of the current proposal is to initiate integrated activities in the field of complex systems within the Netherlands, to provide

  4. Smart modeling and simulation for complex systems practice and theory

    CERN Document Server

    Ren, Fenghui; Zhang, Minjie; Ito, Takayuki; Tang, Xijin

    2015-01-01

    This book aims to provide a description of these new Artificial Intelligence technologies and approaches to the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field such as the platforms and/or the software tools for smart modeling and simulating complex systems. These tasks are difficult to accomplish using traditional computational approaches due to the complex relationships of components and distributed features of resources, as well as the dynamic work environments. In order to effectively model the complex systems, intelligent technologies such as multi-agent systems and smart grids are employed to model and simulate the complex systems in the areas of ecosystem, social and economic organization, web-based grid service, transportation systems, power systems and evacuation systems.

  5. Integration of the immune system: a complex adaptive supersystem

    Science.gov (United States)

    Crisman, Mark V.

    2001-10-01

    Immunity to pathogenic organisms is a complex process involving interacting factors within the immune system including circulating cells, tissues and soluble chemical mediators. Both the efficiency and adaptive responses of the immune system in a dynamic, often hostile, environment are essential for maintaining our health and homeostasis. This paper will present a brief review of one of nature's most elegant, complex adaptive systems.

  6. Complex network synchronization of chaotic systems with delay coupling

    International Nuclear Information System (INIS)

    Theesar, S. Jeeva Sathya; Ratnavelu, K.

    2014-01-01

    The study of complex networks enables us to understand the collective behavior of the interconnected elements and provides vast real time applications from biology to laser dynamics. In this paper, synchronization of complex network of chaotic systems has been studied. Every identical node in the complex network is assumed to be in Lur’e system form. In particular, delayed coupling has been assumed along with identical sector bounded nonlinear systems which are interconnected over network topology

  7. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  8. A complex systems methodology to transition management

    NARCIS (Netherlands)

    Alkemade, F.; Frenken, K.; Hekkert, M.P.; Schwoon, M.

    2009-01-01

    There is a general sense of urgency that major technological transitions are required for sustainable development. Such transitions are best perceived as involving multiple transition steps along a transition path. Due to the path dependent and irreversible nature of innovation in complex

  9. SORTA : a system for ontology-based re-coding and technical annotation of biomedical phenotype data

    NARCIS (Netherlands)

    Pang, Chao; Sollie, Annet; Sijtsma, Anna; Hendriksen, Dennis; Charbon, Bart; Haan, Mark de; de Boer, Tommy; Kelpin, Fleur; Jetten, Jonathan; van der Velde, Joeri K.; Smidt, Nynke; Sijmons, Rolf; Hillege, Hans; Swertz, Morris A.

    2015-01-01

    There is an urgent need to standardize the semantics of biomedical data values, such as phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all studies will use the same data collection protocols. As a result, retrospective standardization is often required,

  10. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic systems (CVCSs in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  11. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    Science.gov (United States)

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  12. Classical and quantum mechanics of complex Hamiltonian systems ...

    Indian Academy of Sciences (India)

    Vol. 73, No. 2. — journal of. August 2009 physics pp. 287–297. Classical and quantum mechanics of complex. Hamiltonian systems: An extended complex phase space ... 1Department of Physics, Ramjas College (University Enclave), University of Delhi,. Delhi 110 ... 1.1 Motivation behind the study of complex Hamiltonians.

  13. From Hamiltonian chaos to complex systems a nonlinear physics approach

    CERN Document Server

    Leonetti, Marc

    2013-01-01

    From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of  research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...

  14. Complexity, flow, and antifragile healthcare systems: implications for nurse executives.

    Science.gov (United States)

    Clancy, Thomas R

    2015-04-01

    As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on the application of management strategies in health systems. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. In this article, I further discuss the concept of fragility, its impact on system behavior, and ways to reduce it.

  15. Oxalate complexation in dissolved carbide systems

    International Nuclear Information System (INIS)

    Choppin, G.R.; Bokelund, H.; Valkiers, S.

    1983-01-01

    It has been shown that the oxalic acid produced in the dissolution of mixed uranium, plutonium carbides in nitric acid can account for the problems of incomplete uranium and plutonium extraction on the Purex process. Moreover, it was demonstrated that other identified products such as benzene polycarboxylic acids are either too insoluble or insufficiently complexing to be of concern. The stability constants for oxalate complexing of UO 2 +2 and Pu +4 ions (as UO 2 (C 2 O 4 ), Pu(C 2 O 4 ) 2+ and Pu(C 2 O 4 ) 2 , respectively) were measured in nitrate solutions of 4.0 molar ionic strength (0-4 M HNO 3 ) by extraction of these species with TBP. (orig.)

  16. Enhancing Teacher Utilization of Complex Instructional Systems.

    Science.gov (United States)

    Shore, Ann; Daniel, Dan

    This paper describes a research and development effort by Jostens Learning Corporation that resulted in the Renaissance Information Management System (RIMS), an information-management user interface for an integrated learning system that is designed to overcome two major obstacles to the use of computer systems by classroom teachers--limited…

  17. Challenges in the analysis of complex systems: introduction and overview

    Science.gov (United States)

    Hastings, Harold M.; Davidsen, Jörn; Leung, Henry

    2017-12-01

    One of the main challenges of modern physics is to provide a systematic understanding of systems far from equilibrium exhibiting emergent behavior. Prominent examples of such complex systems include, but are not limited to the cardiac electrical system, the brain, the power grid, social systems, material failure and earthquakes, and the climate system. Due to the technological advances over the last decade, the amount of observations and data available to characterize complex systems and their dynamics, as well as the capability to process that data, has increased substantially. The present issue discusses a cross section of the current research on complex systems, with a focus on novel experimental and data-driven approaches to complex systems that provide the necessary platform to model the behavior of such systems.

  18. Towards an evaluation framework for complex social systems

    Science.gov (United States)

    McDonald, Diane M.; Kay, Nigel

    While there is growing realisation that the world in which we live in is highly complex with multiple interdependencies and irreducibly open to outside influence, how to make these 'systems' more manageable is still a significant outstanding issue. As (2004) suggests, applying the theoretical principles of Complex Systems may help solve complex problems in this complex world. While Bar-Yam provides examples of forward-thinking organisations which have begun to see the relevance of complex systems principles, for many organisations the language and concepts of complexity science such as self-organisation and unpredictability while they make theoretical sense offer no practical or acceptable method of implementation to those more familiar with definitive facts and classical hierarchical, deterministic approaches to control. Complexity Science explains why designed systems or interventions may not function as anticipated in differing environments, without providing a silver bullet which enables control or engineering of the system to ensure the desired results. One familiar process which might, if implemented with complex systems in mind, provide the basis of an accessible and understandable framework that enables policy makers and practitioners to better design and manage complex socio-technical systems is that of evaluation.

  19. SUPERCOMPUTER SIMULATION OF CRITICAL PHENOMENA IN COMPLEX SOCIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Petrus M.A. Sloot

    2014-09-01

    Full Text Available The paper describes a problem of computer simulation of critical phenomena in complex social systems on a petascale computing systems in frames of complex networks approach. The three-layer system of nested models of complex networks is proposed including aggregated analytical model to identify critical phenomena, detailed model of individualized network dynamics and model to adjust a topological structure of a complex network. The scalable parallel algorithm covering all layers of complex networks simulation is proposed. Performance of the algorithm is studied on different supercomputing systems. The issues of software and information infrastructure of complex networks simulation are discussed including organization of distributed calculations, crawling the data in social networks and results visualization. The applications of developed methods and technologies are considered including simulation of criminal networks disruption, fast rumors spreading in social networks, evolution of financial networks and epidemics spreading.

  20. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John D; Blanchard, Susan M

    2005-01-01

    Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering * New chapters o...

  1. Confluence and convergence: team effectiveness in complex systems.

    Science.gov (United States)

    Porter-OʼGrady, Tim

    2015-01-01

    Complex adaptive systems require nursing leadership to rethink organizational work and the viability and effectiveness of teams. Much of emergent thinking about complexity and systems and organizations alter the understanding of the nature and function of teamwork and the configuration and leadership of team effort. Reflecting on basic concepts of complexity and their application to team formation, dynamics, and outcomes lays an important foundation for effectively guiding the strategic activity of systems through the focused tactical action of teams. Basic principles of complexity, their impact on teams, and the fundamental elements of team effectiveness are explored.

  2. Classroom-oriented research from a complex systems perspective

    Directory of Open Access Journals (Sweden)

    Diane Larsen-Freeman

    2016-09-01

    Full Text Available Bringing a complex systems perspective to bear on classroom-oriented research challenges researchers to think differently, seeing the classroom ecology as one dynamic system nested in a hierarchy of such systems at different levels of scale, all of which are spatially and temporally situated. This article begins with an introduction to complex dynamic systems theory, in which challenges to traditional ways of conducting classroom research are interwoven. It concludes with suggestions for research methods that are more consistent with the theory. Research does not become easier when approached from a complex systems perspective, but it has the virtue of reflecting the way the world works.

  3. Statistical analysis of complex systems with nonclassical invariant measures

    KAUST Repository

    Fratalocchi, Andrea

    2011-01-01

    I investigate the problem of finding a statistical description of a complex many-body system whose invariant measure cannot be constructed stemming from classical thermodynamics ensembles. By taking solitons as a reference system and by employing a

  4. Advances in complex societal, environmental and engineered systems

    CERN Document Server

    Essaaidi, Mohammad

    2017-01-01

    This book addresses recent technological progress that has led to an increased complexity in many natural and artificial systems. The resulting complexity research due to the emergence of new properties and spatio-temporal interactions among a large number of system elements - and between the system and its environment - is the primary focus of this text. This volume is divided into three parts: Part one focuses on societal and ecological systems, Part two deals with approaches for understanding, modeling, predicting and mastering socio-technical systems, and Part three includes real-life examples. Each chapter has its own special features; it is a self-contained contribution of distinguished experts working on different fields of science and technology relevant to the study of complex systems. Advances in Complex Systems of Contemporary Reality: Societal, Environmental and Engineered Systems will provide postgraduate students, researchers and managers with qualitative and quantitative methods for handling th...

  5. Biomedical technology

    CERN Document Server

    Wriggers, Peter

    2015-01-01

    During the last years computational methods lead to new approaches that can be applied within medical practice. Based on the tremendous advances in medical imaging and high-performance computing, virtual testing is able to help in medical decision processes or implant designs. Current challenges in medicine and engineering are related to the application of computational methods to clinical medicine and the study of biological systems at different scales. Additionally manufacturers will be able to use computational tools and methods to predict the performance of their medical devices in virtual patients. The physical and animal testing procedures could be reduced by virtual prototyping of medical devices. Here simulations can enhance the performance of alternate device designs for a range of virtual patients. This will lead to a refinement of designs and to safer products. This book summarizes different aspects of approaches to enhance function, production, initialization and complications of different types o...

  6. Size and complexity in model financial systems

    Science.gov (United States)

    Arinaminpathy, Nimalan; Kapadia, Sujit; May, Robert M.

    2012-01-01

    The global financial crisis has precipitated an increasing appreciation of the need for a systemic perspective toward financial stability. For example: What role do large banks play in systemic risk? How should capital adequacy standards recognize this role? How is stability shaped by concentration and diversification in the financial system? We explore these questions using a deliberately simplified, dynamic model of a banking system that combines three different channels for direct transmission of contagion from one bank to another: liquidity hoarding, asset price contagion, and the propagation of defaults via counterparty credit risk. Importantly, we also introduce a mechanism for capturing how swings in “confidence” in the system may contribute to instability. Our results highlight that the importance of relatively large, well-connected banks in system stability scales more than proportionately with their size: the impact of their collapse arises not only from their connectivity, but also from their effect on confidence in the system. Imposing tougher capital requirements on larger banks than smaller ones can thus enhance the resilience of the system. Moreover, these effects are more pronounced in more concentrated systems, and continue to apply, even when allowing for potential diversification benefits that may be realized by larger banks. We discuss some tentative implications for policy, as well as conceptual analogies in ecosystem stability and in the control of infectious diseases. PMID:23091020

  7. Narrowing the gap between network models and real complex systems

    OpenAIRE

    Viamontes Esquivel, Alcides

    2014-01-01

    Simple network models that focus only on graph topology or, at best, basic interactions are often insufficient to capture all the aspects of a dynamic complex system. In this thesis, I explore those limitations, and some concrete methods of resolving them. I argue that, in order to succeed at interpreting and influencing complex systems, we need to take into account  slightly more complex parts, interactions and information flows in our models.This thesis supports that affirmation with five a...

  8. Leadership Behaviors of Management for Complex Adaptive Systems

    Science.gov (United States)

    2010-04-01

    Leadership Behaviors of Management for Complex Adaptive Systems Systems and Software Technology Conference April 2010 Dr. Suzette S. Johnson...2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Leadership Behaviors of Management for Complex Adaptive...as they evolve – Control is dispersed and decentralized – Simple rules and governance used to direct behavior • Complexity Leadership Theory – Built on

  9. Complex Systems: Science for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Charles V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Awschalom, David [Univ. of California, Santa Barbara, CA (United States); Bawendi, Moungi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Frechet, Jean [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Murphy, Donald [Lucent Technologies (United States); Stupp, Sam [Northwestern Univ., Evanston, IL (United States); Wolynes, Peter [Univ. of Illinois, Urbana, IL (United States)

    1999-03-06

    The workshop was designed to help define new scientific directions related to complex systems in order to create new understanding about the nano world and complicated, multicomponent structures. Five emerging themes regarding complexity were covered: Collective Phenomena; Materials by Design; Functional Systems; Nature's Mastery; and New Tools.

  10. Application of Complex Adaptive Systems in Portfolio Management

    Science.gov (United States)

    Su, Zheyuan

    2017-01-01

    Simulation-based methods are becoming a promising research tool in financial markets. A general Complex Adaptive System can be tailored to different application scenarios. Based on the current research, we built two models that would benefit portfolio management by utilizing Complex Adaptive Systems (CAS) in Agent-based Modeling (ABM) approach.…

  11. Common cause failure analysis methodology for complex systems

    International Nuclear Information System (INIS)

    Wagner, D.P.; Cate, C.L.; Fussell, J.B.

    1977-01-01

    Common cause failure analysis, also called common mode failure analysis, is an integral part of a complex system reliability analysis. This paper extends existing methods of computer aided common cause failure analysis by allowing analysis of the complex systems often encountered in practice. The methods presented here aid in identifying potential common cause failures and also address quantitative common cause failure analysis

  12. Diagnostics of the vibrations of complex rotor systems

    Science.gov (United States)

    Yugraytis, I. Y.; Ragulskis, K. M.; Ionushas, R. A.; Karuzhene, I. P.

    1973-01-01

    The parameters of the imbalance of a complex rotor system, having n parallel rotors and having six degrees of freedom, can be determined from the parameters of the vibrations of two appropriate degrees of freedom. This considerably simplifies diagnostics of the vibrations of complex rotor systems.

  13. Complex, Dynamic Systems: A New Transdisciplinary Theme for Applied Linguistics?

    Science.gov (United States)

    Larsen-Freeman, Diane

    2012-01-01

    In this plenary address, I suggest that Complexity Theory has the potential to contribute a transdisciplinary theme to applied linguistics. Transdisciplinary themes supersede disciplines and spur new kinds of creative activity (Halliday 2001 [1990]). Investigating complex systems requires researchers to pay attention to system dynamics. Since…

  14. What is complex in the complex world? Niklas Luhmann and the theory of social systems

    Directory of Open Access Journals (Sweden)

    Clarissa Eckert Baeta Neves

    Full Text Available This paper discusses Niklas Luhmann's understanding of complexity, its function in the theory and the different ways of its use. It starts with the paradigmatic change that occurred in the field of general Science, with the rupture of the Newtonian model. In the 20th century, the paradigm of order, symmetry, regularity, regulation of the intellect to things, collapses.Based on new formulations of Physics, Chemistry, etc., a new universe is built on bases radically opposed to those of modern Science.Chaos, the procedural irreversibility, indeterminism, the observer and the complexity are rehabilitated.This new conceptual context served as substratum to Niklas Luhmann's theoretical reflection.With his Theory of Social Systems, he proposes the reduction of the world's complexity.Social systems have the function of reducing complexity because of their difference in relation to the environment.On the other hand, the reduction of complexity also creates its own complexity. Luhmann defines complexity as the moment when it is not possible anymore for each element to relate at any moment with all the others. Complexity forces the selection, what means contingency and risk. Luhmann expands the concept of complexity when he introduces the figure of the observer and the distinction of complexity as a unit of a multiplicity. He also deals with the limit of relations in connection, the time factor, the self-reference of operations and the representation of complexity in the form of sense. To conclude, the paper discusses the complexity in the system of science, the way it reduces internal and external complexity, in accordance in its own operative basis.

  15. Understanding complex urban systems multidisciplinary approaches to modeling

    CERN Document Server

    Gurr, Jens; Schmidt, J

    2014-01-01

    Understanding Complex Urban Systems takes as its point of departure the insight that the challenges of global urbanization and the complexity of urban systems cannot be understood – let alone ‘managed’ – by sectoral and disciplinary approaches alone. But while there has recently been significant progress in broadening and refining the methodologies for the quantitative modeling of complex urban systems, in deepening the theoretical understanding of cities as complex systems, or in illuminating the implications for urban planning, there is still a lack of well-founded conceptual thinking on the methodological foundations and the strategies of modeling urban complexity across the disciplines. Bringing together experts from the fields of urban and spatial planning, ecology, urban geography, real estate analysis, organizational cybernetics, stochastic optimization, and literary studies, as well as specialists in various systems approaches and in transdisciplinary methodologies of urban analysis, the volum...

  16. Complex systems fractionality, time-delay and synchronization

    CERN Document Server

    Sun, Jian-Qiao

    2012-01-01

    "Complex Systems: Fractionality, Time-delay and Synchronization" covers the most recent developments and advances in the theory and application of complex systems in these areas. Each chapter was written by scientists highly active in the field of complex systems. The book discusses a new treatise on fractional dynamics and control, as well as the new methods for differential delay systems and control. Lastly, a theoretical framework for the complexity and synchronization of complex system is presented. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. It can also serve as a reference book for graduate students in physics, applied mathematics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Jian-Qiao Sun is a Professor at the University of California, Merced, USA.

  17. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  18. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    1981-01-01

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  19. Melt-processable hydrophobic acrylonitrile-based copolymer systems with adjustable elastic properties designed for biomedical applications.

    Science.gov (United States)

    Cui, J; Trescher, K; Kratz, K; Jung, F; Hiebl, B; Lendlein, A

    2010-01-01

    Acrylonitrile-based polymer systems (PAN) are comprehensively explored as versatile biomaterials having various potential biomedical applications, such as membranes for extra corporal devices or matrixes for guided skin reconstruction. The surface properties (e.g. hydrophilicity or charges) of such materials can be tailored over a wide range by variation of molecular parameters such as different co-monomers or their sequence structure. Some of these materials show interesting biofunctionalities such as capability for selective cell cultivation. So far, the majority of AN-based copolymers, which were investigated in physiological environments, were processed from the solution (e.g. membranes), as these materials are thermo-sensitive and might degrade when heated. In this work we aimed at the synthesis of hydrophobic, melt-processable AN-based copolymers with adjustable elastic properties for preparation of model scaffolds with controlled pore geometry and size. For this purpose a series of copolymers from acrylonitrile and n-butyl acrylate (nBA) was synthesized via free radical copolymerisation technique. The content of nBA in the copolymer varied from 45 wt% to 70 wt%, which was confirmed by 1H-NMR spectroscopy. The glass transition temperatures (Tg) of the P(AN-co-nBA) copolymers determined by differential scanning calorimetry (DSC) decreased from 58 degrees C to 20 degrees C with increasing nBA-content, which was in excellent agreement with the prediction of the Gordon-Taylor equation based on the Tgs of the homopolymers. The Young's modulus obtained in tensile tests was found to decrease significantly with rising nBA-content from 1062 MPa to 1.2 MPa. All copolymers could be successfully processed from the melt with processing temperatures ranging from 50 degrees C to 170 degrees C, whereby thermally induced decomposition was only observed at temperatures higher than 320 degrees C in thermal gravimetric analysis (TGA). Finally, the melt processed P

  20. Complexity in practice: understanding primary care as a complex adaptive system

    Directory of Open Access Journals (Sweden)

    Beverley Ellis

    2010-06-01

    Conclusions The results are real-world exemplars of the emergent properties of complex adaptive systems. Improving clinical governance in primary care requires both complex social interactions and underpinning informatics. The socio-technical lessons learned from this research should inform future management approaches.

  1. Nonlinear and Complex Dynamics in Real Systems

    OpenAIRE

    William Barnett; Apostolos Serletis; Demitre Serletis

    2005-01-01

    This paper was produced for the El-Naschie Symposium on Nonlinear Dynamics in Shanghai in December 2005. In this paper we provide a review of the literature with respect to fluctuations in real systems and chaos. In doing so, we contrast the order and organization hypothesis of real systems with nonlinear chaotic dynamics and discuss some techniques used in distinguishing between stochastic and deterministic behavior. Moreover, we look at the issue of where and when the ideas of chaos could p...

  2. Optimal interdependence enhances robustness of complex systems

    OpenAIRE

    Singh, R. K.; Sinha, Sitabhra

    2017-01-01

    While interdependent systems have usually been associated with increased fragility, we show that strengthening the interdependence between dynamical processes on different networks can make them more robust. By coupling the dynamics of networks that in isolation exhibit catastrophic collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal range of interdependence between the networks. This is related to the appearance of attractors of the g...

  3. Top event prevention in complex systems

    International Nuclear Information System (INIS)

    Youngblood, R.W.; Worrell, R.B.

    1995-01-01

    A key step in formulating a regulatory basis for licensing complex and potentially hazardous facilities is identification of a collection of design elements that is necessary and sufficient to achieve the desired level of protection of the public, the workers, and the environment. Here, such a collection of design elements will be called a ''prevention set.'' At the design stage, identifying a prevention set helps to determine what elements to include in the final design. Separately, a prevention-set argument could be used to limit the scope of regulatory oversight to a subset of design elements. This step can be taken during initial review of a design, or later as part of an effort to justify relief from regulatory requirements that are burdensome but provide little risk reduction. This paper presents a systematic approach to the problem of optimally choosing a prevention set

  4. Biomedical text mining and its applications in cancer research.

    Science.gov (United States)

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Complex systems and networks dynamics, controls and applications

    CERN Document Server

    Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu

    2016-01-01

    This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...

  6. 5th International Conference on Complex Systems Design & Management

    CERN Document Server

    Krob, Daniel; Morel, Gérard; Roussel, Jean-Claude

    2015-01-01

    This book contains all refereed papers that were accepted to the fifth edition of the « Complex Systems Design & Management » (CSD&M 2014) international conference which took place in Paris (France) on the November 12-14, 2014. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, transportation & systems, defense & security, electronics & robotics, energy & environment, health & welfare services, software & e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2014 conference is organized under the guidance of the CESAMES non-profit organization, addres...

  7. Complex systems relationships between control, communications and computing

    CERN Document Server

    2016-01-01

    This book gives a wide-ranging description of the many facets of complex dynamic networks and systems within an infrastructure provided by integrated control and supervision: envisioning, design, experimental exploration, and implementation. The theoretical contributions and the case studies presented can reach control goals beyond those of stabilization and output regulation or even of adaptive control. Reporting on work of the Control of Complex Systems (COSY) research program, Complex Systems follows from and expands upon an earlier collection: Control of Complex Systems by introducing novel theoretical techniques for hard-to-control networks and systems. The major common feature of all the superficially diverse contributions encompassed by this book is that of spotting and exploiting possible areas of mutual reinforcement between control, computing and communications. These help readers to achieve not only robust stable plant system operation but also properties such as collective adaptivity, integrity an...

  8. Hybrid Techniques for Optimizing Complex Systems

    Science.gov (United States)

    2009-12-01

    relay placement problem, we modeled the network as a mechanical system with springs and a viscous damper ⎯a widely used approach for solving optimization...fundamental mathematical tools in many branches of physics such as fluid and solid mechanics, and general relativity [108]. More recently, several

  9. Dynamical systems examples of complex behaviour

    CERN Document Server

    Jost, Jürgen

    2005-01-01

    Our aim is to introduce, explain, and discuss the fundamental problems, ideas, concepts, results, and methods of the theory of dynamical systems and to show how they can be used in speci?c examples. We do not intend to give a comprehensive overview of the present state of research in the theory of dynamical systems, nor a detailed historical account of its development. We try to explain the important results, often neglecting technical re?nements 1 and, usually, we do not provide proofs. One of the basic questions in studying dynamical systems, i.e. systems that evolve in time, is the construction of invariants that allow us to classify qualitative types of dynamical evolution, to distinguish between qualitatively di?erent dynamics, and to studytransitions between di?erent types. Itis also important to ?nd out when a certain dynamic behavior is stable under small perturbations, as well as to understand the various scenarios of instability. Finally, an essential aspect of a dynamic evolution is the transformat...

  10. An Alternative Front End Analysis Strategy for Complex Systems

    Science.gov (United States)

    2014-12-01

    missile ( ABM ) system . Patriot is employed in the field through a battalion echelon organizational structure. The line battery is the basic building...Research Report 1981 An Alternative Front End Analysis Strategy for Complex Systems M. Glenn Cobb U.S. Army Research Institute...NUMBER W5J9CQ11D0003 An Alternative Front End Analysis Strategy for Complex Systems 5b. PROGRAM ELEMENT NUMBER 633007 6

  11. Some overdetermined systems of complex partial differential equations

    International Nuclear Information System (INIS)

    Le Hung Son.

    1990-01-01

    In this paper we extend some properties of analytic functions on several complex variables to solutions of overdetermined systems of complex partial differential equations. It is proved that many global properties of analytic functions are true for solutions of the Vekua system in special cases. The relation between analytic functions and solutions of quasi-linear systems is discussed in the paper. (author). 8 refs

  12. Mathematical Models to Determine Stable Behavior of Complex Systems

    Science.gov (United States)

    Sumin, V. I.; Dushkin, A. V.; Smolentseva, T. E.

    2018-05-01

    The paper analyzes a possibility to predict functioning of a complex dynamic system with a significant amount of circulating information and a large number of random factors impacting its functioning. Functioning of the complex dynamic system is described as a chaotic state, self-organized criticality and bifurcation. This problem may be resolved by modeling such systems as dynamic ones, without applying stochastic models and taking into account strange attractors.

  13. Systems thinking and complexity: considerations for health promoting schools.

    Science.gov (United States)

    Rosas, Scott R

    2017-04-01

    The health promoting schools concept reflects a comprehensive and integrated philosophy to improving student and personnel health and well-being. Conceptualized as a configuration of interacting, interdependent parts connected through a web of relationships that form a whole greater than the sum of its parts, school health promotion initiatives often target several levels (e.g. individual, professional, procedural and policy) simultaneously. Health promoting initiatives, such as those operationalized under the whole school approach, include several interconnected components that are coordinated to improve health outcomes in complex settings. These complex systems interventions are embedded in intricate arrangements of physical, biological, ecological, social, political and organizational relationships. Systems thinking and characteristics of complex adaptive systems are introduced in this article to provide a perspective that emphasizes the patterns of inter-relationships associated with the nonlinear, dynamic and adaptive nature of complex hierarchical systems. Four systems thinking areas: knowledge, networks, models and organizing are explored as a means to further manage the complex nature of the development and sustainability of health promoting schools. Applying systems thinking and insights about complex adaptive systems can illuminate how to address challenges found in settings with both complicated (i.e. multi-level and multisite) and complex aspects (i.e. synergistic processes and emergent outcomes). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Synchronizing and controlling hyperchaos in complex Lorentz-Haken systems

    Energy Technology Data Exchange (ETDEWEB)

    Jinqing, Fang [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1995-03-01

    Synchronizing hyperchaos is realized by the drive-response relationship in the complex Lorentz-Haken system and its higher-order cascading systems for the first time. Controlling hyperchaos is achieved by the intermittent proportional feedback to all of the drive (master) system variables. The complex Lorentz-Haken system describes the detuned single-mode laser and is taken as a typical example of hyperchaotic synchronization to clarify our ideas and results. The ideas and concepts could be extended to some nonlinear dynamical systems and have prospects for potential applications, for example. to laser, electronics, plasma, cryptography, communication, chemical and biological systems and so on. (8 figs., 2 tabs.).

  15. Synchronizing and controlling hyperchaos in complex Lorentz-Haken systems

    International Nuclear Information System (INIS)

    Fang Jinqing

    1995-03-01

    Synchronizing hyperchaos is realized by the drive-response relationship in the complex Lorentz-Haken system and its higher-order cascading systems for the first time. Controlling hyperchaos is achieved by the intermittent proportional feedback to all of the drive (master) system variables. The complex Lorentz-Haken system describes the detuned single-mode laser and is taken as a typical example of hyperchaotic synchronization to clarify our ideas and results. The ideas and concepts could be extended to some nonlinear dynamical systems and have prospects for potential applications, for example. to laser, electronics, plasma, cryptography, communication, chemical and biological systems and so on. (8 figs., 2 tabs.)

  16. Fourth International Conference on Complex Systems Design & Management

    CERN Document Server

    Boulanger, Frédéric; Krob, Daniel; Marchal, Clotilde

    2014-01-01

    This book contains all refereed papers that were accepted to the fourth edition of the « Complex Systems Design & Management » (CSD&M 2013) international conference which took place in Paris (France) from December 4-6, 2013. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (transport, defense & security, electronics, energy & environment, e-services), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systemic tools) and system types (transportation systems, embedded systems, software & information systems, systems of systems, artificial ecosystems). The CSD&M 2013 conference is organized under the guidance of the CESAMES non-profit organization

  17. 7th International Conference on Complex Systems Design & Management

    CERN Document Server

    Goubault, Eric; Krob, Daniel; Stephan, François

    2017-01-01

    This book contains all refereed papers that were accepted to the seventh edition of the international conference « Complex Systems Design & Management Paris» (CSD&M Paris 2016) which took place in Paris (France) on the December 13-14, 2016 These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautic & aerospace, defense & security, electronics & robotics, energy & environment, healthcare & welfare services, software & e-services, transportation), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, system is modeling tools) and system types (artificial ecosystems, embedded systems, software & information systems, systems of systems, transportation systems). The CSD&M Paris 2016 conference is organized under the guidance of the CESAMES non-profit orga...

  18. 6th International Conference on Complex Systems Design & Management

    CERN Document Server

    Bocquet, Jean-Claude; Bonjour, Eric; Krob, Daniel

    2016-01-01

    This book contains all refereed papers that were accepted to the sixth edition of the « Complex Systems Design & Management Paris » (CSD&M Paris 2015) international conference which took place in Paris (France) on November 23-25, 2015. These proceedings cover the most recent trends in the emerging field of complex systems sciences & practices from an industrial and academic perspective, including the main industrial domains (aeronautics & aerospace, defense & security, electronics & robotics, energy & environment, health & welfare, software & e-services, transportation), scientific & technical topics (systems fundamentals, systems architecture & engineering, systems metrics & quality, systems modeling tools) and systems types (artificial ecosystems, embedded systems, software & information systems, systems of systems, transportation systems). The CSD&M Paris 2015 conference is organized under the guidance of the CESAMES non-profit organization, address...

  19. Theoretical optical spectroscopy of complex systems

    International Nuclear Information System (INIS)

    Conte, A. Mosca; Violante, C.; Missori, M.; Bechstedt, F.; Teodonio, L.; Ippoliti, E.; Carloni, P.; Guidoni, L.; Pulci, O.

    2013-01-01

    Highlights: ► We review some theoretical condensed matter ab initio spectroscopic computational techniques. ► We show several applications ranging from 0 to 3 dimensional systems. ► For each system studied, we show which kind of information it is possible to obtain by performing these calculations. -- Abstract: We review here some of the most reliable and efficient computational theoretical ab initio techniques for the prediction of optical and electronic spectroscopic properties and show some important applications to molecules, surfaces, and solids. We investigate the role of the solvent in the optical absorption spectrum of indole molecule. We study the excited-state properties of a photo-active minimal model molecule for the retinal of rhodopsin, responsible for vision mechanism in animals. We then show a study about spectroscopic properties of Si(1 1 1) surface. Finally we simulate a bulk system: paper, that is mainly made of cellulose, a pseudo-crystalline material representing 40% of annual biomass production in the Earth

  20. Theoretical optical spectroscopy of complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Conte, A. Mosca, E-mail: adriano.mosca.conte@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Violante, C., E-mail: claudia.violante@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Missori, M., E-mail: mauro.missori@isc.cnr.it [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Salaria Km 29.300, 00016 Monterotondo Scalo (Rome) (Italy); Bechstedt, F., E-mail: bech@ifto.physik.uni-jena.de [Institut fur Festkorpertheorie und -optik, Friedrich-Schiller-Universitat, Max-Wien-Platz 1, 07743 Jena (Germany); Teodonio, L. [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy); Istituto centrale per il restauro e la conservazione del patrimonio archivistico e librario (IC-RCPAL), Italian Minister for Cultural Heritage, Via Milano 76, 00184 Rome (Italy); Ippoliti, E.; Carloni, P. [German Research School for Simulation Sciences, Julich (Germany); Guidoni, L., E-mail: leonardo.guidoni@univaq.it [Università degli Studi di L’Aquila, Dipartimento di Chimica e Materiali, Via Campo di Pile, 67100 L’Aquila (Italy); Pulci, O., E-mail: olivia.pulci@roma2.infn.it [MIFP, NAST, ETSF,CNR INFM-SMC, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma (Italy)

    2013-08-15

    Highlights: ► We review some theoretical condensed matter ab initio spectroscopic computational techniques. ► We show several applications ranging from 0 to 3 dimensional systems. ► For each system studied, we show which kind of information it is possible to obtain by performing these calculations. -- Abstract: We review here some of the most reliable and efficient computational theoretical ab initio techniques for the prediction of optical and electronic spectroscopic properties and show some important applications to molecules, surfaces, and solids. We investigate the role of the solvent in the optical absorption spectrum of indole molecule. We study the excited-state properties of a photo-active minimal model molecule for the retinal of rhodopsin, responsible for vision mechanism in animals. We then show a study about spectroscopic properties of Si(1 1 1) surface. Finally we simulate a bulk system: paper, that is mainly made of cellulose, a pseudo-crystalline material representing 40% of annual biomass production in the Earth.

  1. Critical care nursing: Embedded complex systems.

    Science.gov (United States)

    Trinier, Ruth; Liske, Lori; Nenadovic, Vera

    2016-01-01

    Variability in parameters such as heart rate, respiratory rate and blood pressure defines healthy physiology and the ability of the person to adequately respond to stressors. Critically ill patients have lost this variability and require highly specialized nursing care to support life and monitor changes in condition. The critical care environment is a dynamic system through which information flows. The critical care unit is typically designed as a tree structure with generally one attending physician and multiple nurses and allied health care professionals. Information flow through the system allows for identification of deteriorating patient status and timely interventionfor rescue from further deleterious effects. Nurses provide the majority of direct patient care in the critical care setting in 2:1, 1:1 or 1:2 nurse-to-patient ratios. The bedside nurse-critically ill patient relationship represents the primary, real-time feedback loop of information exchange, monitoring and treatment. Variables that enhance information flow through this loop and support timely nursing intervention can improve patient outcomes, while barriers can lead to errors and adverse events. Examining patient information flow in the critical care environment from a dynamic systems perspective provides insights into how nurses deliver effective patient care and prevent adverse events.

  2. Computer aided operation of complex systems

    International Nuclear Information System (INIS)

    Goodstein, L.P.

    1985-09-01

    Advanced technology is having the effect that industrial systems are becoming more highly automated and do not rely on human intervention for the control of normally planned and/or predicted situations. Thus the importance of the operator has shifted from being a manual controller to becoming more of a systems manager and supervisory controller. At the same time, the use of advanced information technology in the control room and its potential impact on human-machine capabilities places additional demands on the designer. This report deals with work carried out to describe the plant-operator relationship in order to systematize the design and evaluation of suitable information systems in the control room. This design process starts with the control requirements from the plant and transforms them into corresponding sets of decision-making tasks with appropriate allocation of responsibilities between computer and operator. To further effectivize this cooperation, appropriate information display and accession are identified. The conceptual work has been supported by experimental studies on a small-scale simulator. (author)

  3. Integrated Modeling of Complex Optomechanical Systems

    Science.gov (United States)

    Andersen, Torben; Enmark, Anita

    2011-09-01

    Mathematical modeling and performance simulation are playing an increasing role in large, high-technology projects. There are two reasons; first, projects are now larger than they were before, and the high cost calls for detailed performance prediction before construction. Second, in particular for space-related designs, it is often difficult to test systems under realistic conditions beforehand, and mathematical modeling is then needed to verify in advance that a system will work as planned. Computers have become much more powerful, permitting calculations that were not possible before. At the same time mathematical tools have been further developed and found acceptance in the community. Particular progress has been made in the fields of structural mechanics, optics and control engineering, where new methods have gained importance over the last few decades. Also, methods for combining optical, structural and control system models into global models have found widespread use. Such combined models are usually called integrated models and were the subject of this symposium. The objective was to bring together people working in the fields of groundbased optical telescopes, ground-based radio telescopes, and space telescopes. We succeeded in doing so and had 39 interesting presentations and many fruitful discussions during coffee and lunch breaks and social arrangements. We are grateful that so many top ranked specialists found their way to Kiruna and we believe that these proceedings will prove valuable during much future work.

  4. Tailoring Enterprise Systems Engineering Policy for Project Scale and Complexity

    Science.gov (United States)

    Cox, Renee I.; Thomas, L. Dale

    2014-01-01

    Space systems are characterized by varying degrees of scale and complexity. Accordingly, cost-effective implementation of systems engineering also varies depending on scale and complexity. Recognizing that systems engineering and integration happen everywhere and at all levels of a given system and that the life cycle is an integrated process necessary to mature a design, the National Aeronautic and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) has developed a suite of customized implementation approaches based on project scale and complexity. While it may be argued that a top-level system engineering process is common to and indeed desirable across an enterprise for all space systems, implementation of that top-level process and the associated products developed as a result differ from system to system. The implementation approaches used for developing a scientific instrument necessarily differ from those used for a space station. .

  5. Natural immunoglobulins (contribution to a debate on biomedical education

    Directory of Open Access Journals (Sweden)

    Vaz Nelson M

    2000-01-01

    Full Text Available Immunology has contributed to biomedical education in many important ways since the creation of scientific medicine in the last quarter of the 19th century. Today, immunology is a major area of biomedical research. Nevertheless, there are many basic problems unresolved in immunological activities and phenomena. Solving these problems is probably necessary to devise predictable and safe ways to produce new vaccines, treat allergy and autoimmune diseases and perform safe transplants. This challenge involves not only technical developments but also changes in attitude, of which the most fundamental is to abandon the traditional stimulus-response perspective in favor of more "systemic" views. Describing immunological activities as the operation of a complex multiconnected network, raises biological and epistemological issues not usually dealt with in biomedical education. Here we point to one example of systemic approaches. A new form of immunoblot (Panama blot, by which the reaction of natural immunoglobulins with complex protein mixtures may be analyzed by a special software and multivariate statistics, has been recently used to characterize human autoimmune diseases. Our preliminary data show that Panama blots can also be used to characterize global (systemic immunogical changes in chronic human parasitic diseases, such as malaria and schistosomiasis mansoni, that correlate with the clinical status.

  6. A Memristor-Based Hyperchaotic ComplexSystem and Its Adaptive Complex Generalized Synchronization

    Directory of Open Access Journals (Sweden)

    Shibing Wang

    2016-02-01

    Full Text Available This paper introduces a new memristor-based hyperchaotic complexsystem (MHCLS and investigates its adaptive complex generalized synchronization (ACGS. Firstly, the complex system is constructed based on a memristor-based hyperchaotic real Lü system, and its properties are analyzed theoretically. Secondly, its dynamical behaviors, including hyperchaos, chaos, transient phenomena, as well as periodic behaviors, are explored numerically by means of bifurcation diagrams, Lyapunov exponents, phase portraits, and time history diagrams. Thirdly, an adaptive controller and a parameter estimator are proposed to realize complex generalized synchronization and parameter identification of two identical MHCLSs with unknown parameters based on Lyapunov stability theory. Finally, the numerical simulation results of ACGS and its applications to secure communication are presented to verify the feasibility and effectiveness of the proposed method.

  7. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  8. Synchronization in Complex Networks of Nonlinear Dynamical Systems

    CERN Document Server

    Wu, Chai Wah

    2007-01-01

    This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide

  9. Communication and control for networked complex systems

    CERN Document Server

    Peng, Chen; Han, Qing-Long

    2015-01-01

    This book reports on the latest advances in the study of Networked Control Systems (NCSs). It highlights novel research concepts on NCSs; the analysis and synthesis of NCSs with special attention to their networked character; self- and event-triggered communication schemes for conserving limited network resources; and communication and control co-design for improving the efficiency of NCSs. The book will be of interest to university researchers, control and network engineers, and graduate students in the control engineering, communication and network sciences interested in learning the core principles, methods, algorithms and applications of NCSs.

  10. International biomedical law in search for its normative status.

    Science.gov (United States)

    Krajewska, Atina

    2012-01-01

    The broad and multifaceted problem of global health law and global health governance has been attracting increasing attention in the last few decades. The global community has failed to establish international legal regime that deals comprehensively with the 'technological revolution'. The latter has posed complex questions to regions of the world with widely differing cultural perspectives. At the same time, an increasing number of governmental and non-state actors have become significantly involved in the sector. They use legal, political, and other forms of decision-making that result in regulatory instruments of contrasting normative status. Law created in this heterogeneous environment has been said to be fragmented, inconsistent, and exacerbating uncertainties. Therefore, claims have been made that a centralised and institutionalised system would help address the problems of transparency, legitimacy and efficiency. Nevertheless, little scholarly consideration is paid to the normative status of international biomedical law. This paper explores whether formalisation and "constitutionalisation" of biomedical law are indeed inevitable for its establishment as a separate regulatory regime. It does so by analysing the proliferation of biomedical law in light of two the theory of fragmentation and the theory of global legal pluralism. Investigating the problem in this way helps determine the theoretical framework and methodology of future studies of biomedical law at the international level. This in turn should help its future development in a more consistent and harmonised manner.

  11. Complex fluids in biological systems experiment, theory, and computation

    CERN Document Server

    2015-01-01

    This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solut...

  12. Methodology for Measuring the Complexity of Enterprise Information Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-07-01

    Full Text Available The complexity of enterprise information systems is currently a challenge faced not only by IT professionals and project managers, but also by the users of such systems. Current methodologies and frameworks used to design and implement information systems do not specifically deal with the issue of their complexity and, apart from few exceptions, do not at all attempt to simplify the complexity. This article presents the author's own methodology for managing complexity, which can be used to complement any other methodology and which helps limit the growth of complexity. It introduces its own definition and metric of complexity, which it defines as the sum of entities of the individual UML models of the given system, which are selected according to the MMDIS methodology so as to consistently describe all relevant content dimensions of the system. The main objective is to propose a methodology to manage information system complexity and to verify it in practice on a real-life SAP implementation project.

  13. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  14. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  15. Reliability assessment of complex electromechanical systems under epistemic uncertainty

    International Nuclear Information System (INIS)

    Mi, Jinhua; Li, Yan-Feng; Yang, Yuan-Jian; Peng, Weiwen; Huang, Hong-Zhong

    2016-01-01

    The appearance of macro-engineering and mega-project have led to the increasing complexity of modern electromechanical systems (EMSs). The complexity of the system structure and failure mechanism makes it more difficult for reliability assessment of these systems. Uncertainty, dynamic and nonlinearity characteristics always exist in engineering systems due to the complexity introduced by the changing environments, lack of data and random interference. This paper presents a comprehensive study on the reliability assessment of complex systems. In view of the dynamic characteristics within the system, it makes use of the advantages of the dynamic fault tree (DFT) for characterizing system behaviors. The lifetime of system units can be expressed as bounded closed intervals by incorporating field failures, test data and design expertize. Then the coefficient of variation (COV) method is employed to estimate the parameters of life distributions. An extended probability-box (P-Box) is proposed to convey the present of epistemic uncertainty induced by the incomplete information about the data. By mapping the DFT into an equivalent Bayesian network (BN), relevant reliability parameters and indexes have been calculated. Furthermore, the Monte Carlo (MC) simulation method is utilized to compute the DFT model with consideration of system replacement policy. The results show that this integrated approach is more flexible and effective for assessing the reliability of complex dynamic systems. - Highlights: • A comprehensive study on the reliability assessment of complex system is presented. • An extended probability-box is proposed to convey the present of epistemic uncertainty. • The dynamic fault tree model is built. • Bayesian network and Monte Carlo simulation methods are used. • The reliability assessment of a complex electromechanical system is performed.

  16. Understanding sustainability from an exergetic frame in complex adaptive systems

    International Nuclear Information System (INIS)

    Aguilar Hernandez, Glem Alonso

    2017-01-01

    The concept of sustainability was developed from thermodynamic properties applied to complex adaptive systems. The origins of the perception about sustainable development and limitation in its application to analyze the interaction between a system and its surroundings were described. The properties of a complex adaptive system were taken as basis to determine how a system can to be affected by the resources restriction and irreversibility of the processes. The complex adaptive system was understood using the first and second law of thermodynamics, generating a conceptual framework to define the sustainability of a system. The contributions developed by exergy were shown to analyze the sustainability of systems in an economic, social and environmental context [es

  17. Operation safety of complex industrial systems

    International Nuclear Information System (INIS)

    Zwingelstein, G.

    1999-01-01

    Zero fault or zero risk is an unreachable goal in industrial activities like nuclear activities. However, methods and techniques exist to reduce the risks to the lowest possible and acceptable level. The operation safety consists in the recognition, evaluation, prediction, measurement and mastery of technological and human faults. This paper analyses each of these points successively: 1 - evolution of operation safety; 2 - definitions and basic concepts: failure, missions and functions of a system and of its components, basic concepts and operation safety; 3 - forecasting analysis of operation safety: reliability data, data-banks, precautions for the use of experience feedback data; realization of an operation safety study: management of operation safety, quality assurance, critical review and audit of operation safety studies; 6 - conclusions. (J.S.)

  18. Understanding Learner Agency as a Complex Dynamic System

    Science.gov (United States)

    Mercer, Sarah

    2011-01-01

    This paper attempts to contribute to a fuller understanding of the nature of language learner agency by considering it as a complex dynamic system. The purpose of the study was to explore detailed situated data to examine to what extent it is feasible to view learner agency through the lens of complexity theory. Data were generated through a…

  19. Classical and quantum mechanics of complex Hamiltonian systems

    Indian Academy of Sciences (India)

    Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted P T symmetry in ...

  20. Note on transmitted complexity for quantum dynamical systems

    Science.gov (United States)

    Watanabe, Noboru; Muto, Masahiro

    2017-10-01

    Transmitted complexity (mutual entropy) is one of the important measures for quantum information theory developed recently in several ways. We will review the fundamental concepts of the Kossakowski, Ohya and Watanabe entropy and define a transmitted complexity for quantum dynamical systems. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  1. Stability of Rotor Systems: A Complex Modelling Approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob

    1996-01-01

    A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...

  2. System complexity and (im)possible sound changes

    NARCIS (Netherlands)

    Seinhorst, K.T.

    2016-01-01

    In the acquisition of phonological patterns, learners tend to considerably reduce the complexity of their input. This learning bias may also constrain the set of possible sound changes, which might be expected to contain only those changes that do not increase the complexity of the system. However,

  3. Customization of biomedical terminologies.

    Science.gov (United States)

    Homo, Julien; Dupuch, Laëtitia; Benbrahim, Allel; Grabar, Natalia; Dupuch, Marie

    2012-01-01

    Within the biomedical area over one hundred terminologies exist and are merged in the Unified Medical Language System Metathesaurus, which gives over 1 million concepts. When such huge terminological resources are available, the users must deal with them and specifically they must deal with irrelevant parts of these terminologies. We propose to exploit seed terms and semantic distance algorithms in order to customize the terminologies and to limit within them a semantically homogeneous space. An evaluation performed by a medical expert indicates that the proposed approach is relevant for the customization of terminologies and that the extracted terms are mostly relevant to the seeds. It also indicates that different algorithms provide with similar or identical results within a given terminology. The difference is due to the terminologies exploited. A special attention must be paid to the definition of optimal association between the semantic similarity algorithms and the thresholds specific to a given terminology.

  4. Biomedical applications of nanotechnology.

    Science.gov (United States)

    Ramos, Ana P; Cruz, Marcos A E; Tovani, Camila B; Ciancaglini, Pietro

    2017-04-01

    The ability to investigate substances at the molecular level has boosted the search for materials with outstanding properties for use in medicine. The application of these novel materials has generated the new research field of nanobiotechnology, which plays a central role in disease diagnosis, drug design and delivery, and implants. In this review, we provide an overview of the use of metallic and metal oxide nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. The chemical and physical properties of the surface of these materials allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology that studies the surface effects emerging from nanostructured materials.

  5. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it\\'s also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  6. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it's also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  7. Concussion As a Multi-Scale Complex System: An Interdisciplinary Synthesis of Current Knowledge

    Directory of Open Access Journals (Sweden)

    Erin S. Kenzie

    2017-09-01

    Full Text Available Traumatic brain injury (TBI has been called “the most complicated disease of the most complex organ of the body” and is an increasingly high-profile public health issue. Many patients report long-term impairments following even “mild” injuries, but reliable criteria for diagnosis and prognosis are lacking. Every clinical trial for TBI treatment to date has failed to demonstrate reliable and safe improvement in outcomes, and the existing body of literature is insufficient to support the creation of a new classification system. Concussion, or mild TBI, is a highly heterogeneous phenomenon, and numerous factors interact dynamically to influence an individual’s recovery trajectory. Many of the obstacles faced in research and clinical practice related to TBI and concussion, including observed heterogeneity, arguably stem from the complexity of the condition itself. To improve understanding of this complexity, we review the current state of research through the lens provided by the interdisciplinary field of systems science, which has been increasingly applied to biomedical issues. The review was conducted iteratively, through multiple phases of literature review, expert interviews, and systems diagramming and represents the first phase in an effort to develop systems models of concussion. The primary focus of this work was to examine concepts and ways of thinking about concussion that currently impede research design and block advancements in care of TBI. Results are presented in the form of a multi-scale conceptual framework intended to synthesize knowledge across disciplines, improve research design, and provide a broader, multi-scale model for understanding concussion pathophysiology, classification, and treatment.

  8. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  9. Traditional Knowledge of Western Herbal Medicine and Complex Systems Science.

    Science.gov (United States)

    Niemeyer, Kathryn; Bell, Iris R; Koithan, Mary

    2013-09-01

    Traditional knowledge of Western herbal medicine (WHM) supports experiential approaches to healing that have evolved over time. This is evident in the use of polyherb formulations comprised of crude plant parts, individually tailored to treat the cause of dysfunction and imbalance by addressing the whole person holistically. The challenge for WHM is to integrate science with traditional knowledge that is a foundation of the practice of WHM. The purpose of this paper is to provide a plausible theoretical hypothesis by applying complex systems science to WHM, illustrating how medicinal plants are complex, adaptive, environmentally interactive systems exhibiting synergy and nonlinear healing causality. This paper explores the conceptual congruence between medicinal plants and humans as complex systems coherently coupled through recurrent interaction. Complex systems science provides the theoretical tenets that explain traditional knowledge of medicinal plants while supporting clinical practice and expanding research and documentation of WHM.

  10. Assessing the impact of new technology on complex sociotechnical systems

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2016-08-01

    Full Text Available , South Africa roosthuizen@csir.co.za Department of Engineering and Technology Management University of Pretoria, South Africa Leon.Pretorius@up.ac.za ABSTRACT In complex sociotechnical systems, cognitive and social humans use technology...

  11. Distributed Diagnosis, Prognosis and Recovery for Complex Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Complex space systems such as lunar habitats generate huge amounts of data. For example, the International Space Station (ISS) has over 250,000 individually...

  12. A Framework for Modeling and Analyzing Complex Distributed Systems

    National Research Council Canada - National Science Library

    Lynch, Nancy A; Shvartsman, Alex Allister

    2005-01-01

    Report developed under STTR contract for topic AF04-T023. This Phase I project developed a modeling language and laid a foundation for computational support tools for specifying, analyzing, and verifying complex distributed system designs...

  13. The deconvolution of complex spectra by artificial immune system

    Science.gov (United States)

    Galiakhmetova, D. I.; Sibgatullin, M. E.; Galimullin, D. Z.; Kamalova, D. I.

    2017-11-01

    An application of the artificial immune system method for decomposition of complex spectra is presented. The results of decomposition of the model contour consisting of three components, Gaussian contours, are demonstrated. The method of artificial immune system is an optimization method, which is based on the behaviour of the immune system and refers to modern methods of search for the engine optimization.

  14. Summer School Mathematical Foundations of Complex Networked Information Systems

    CERN Document Server

    Fosson, Sophie; Ravazzi, Chiara

    2015-01-01

    Introducing the reader to the mathematics beyond complex networked systems, these lecture notes investigate graph theory, graphical models, and methods from statistical physics. Complex networked systems play a fundamental role in our society, both in everyday life and in scientific research, with applications ranging from physics and biology to economics and finance. The book is self-contained, and requires only an undergraduate mathematical background.

  15. Obesity, Complexity, and the Role of the Health System

    OpenAIRE

    Frood, Sarah; Johnston, Lee M.; Matteson, Carrie L.; Finegood, Diane T.

    2013-01-01

    As obesity continues to increase throughout the world, there is still no well-defined solution to the issue. Reducing obesity poses a significant challenge for the health care system because it is a complex problem with numerous interconnections and elements. The complexity of obesity challenges traditional primary care practices that have been structured to address simple or less complicated conditions. Systems thinking provides a way forward for clinicians that are discouraged or overwhelme...

  16. Documentation Driven Development for Complex Real-Time Systems

    Science.gov (United States)

    2004-12-01

    This paper presents a novel approach for development of complex real - time systems , called the documentation-driven development (DDD) approach. This... time systems . DDD will also support automated software generation based on a computational model and some relevant techniques. DDD includes two main...stakeholders to be easily involved in development processes and, therefore, significantly improve the agility of software development for complex real

  17. Advertising, product quality, and complex evolving marketing systems

    OpenAIRE

    Verbeke, Willem

    1992-01-01

    textabstractThe paper analyses the advertising as power vs. advertising as information controversy as well as its recent empirical testing. It is stressed that this distinction focuses too much on the interaction between consumer and manufacturer while ignoring the retailer as an important stake-holder. To compensate for this lack, a complex marketing system perspective is introduced in which consumer, retailer, and manufacturer interact. However, these complex marketing systems might drift t...

  18. Statistical physics of complex systems a concise introduction

    CERN Document Server

    Bertin, Eric

    2016-01-01

    This course-tested primer provides graduate students and non-specialists with a basic understanding of the concepts and methods of statistical physics and demonstrates their wide range of applications to interdisciplinary topics in the field of complex system sciences, including selected aspects of theoretical modeling in biology and the social sciences. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting units, and on the other to predict the macroscopic, collective behavior of the system considered from the perspective of the microscopic laws governing the dynamics of the individual entities. These two goals are essentially also shared by what is now called 'complex systems science', and as such, systems studied in the framework of statistical physics may be considered to be among the simplest examples of complex systems – while also offering a rather well developed mathematical treatment. The second ...

  19. Leadership and transitions: maintaining the science in complexity and complex systems.

    Science.gov (United States)

    Sturmberg, Joachim P; Martin, Carmel M

    2012-02-01

    It is the 'moral compass', however subtle, that underpins leadership. Leadership, meaning showing the way, demands as much conviction as gentile diplomacy in the discourse with supporters and detractors. In particular, leadership defends the goal by safeguarding its principles from its detractors. The authors writing in the Forum on Complexity in Medicine and Healthcare since its inception are leaders in an intellectual transition to complex systems thinking in medicine and health. © 2012 Blackwell Publishing Ltd.

  20. Recording information on protein complexes in an information management system.

    Science.gov (United States)

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  2. Mobile Complex For Rapid Diagnosis of the Technological System Elements

    Directory of Open Access Journals (Sweden)

    Gavrilin Alexey

    2016-01-01

    Full Text Available The article shows the up-to-dateness of the new informing and measuring tools and technologies development. It is reviewed the mobile complex for runtime diagnostics of technological system “machine-toolinstrument- detail”. It was found that the use of the complex allows to identify the frequency area in which the appearance of resonance of the technological system elements is possible, and thus to draw a conclusion on the technical state of the diagnosed object. It is concluded that there is the prospects for the use of the above mentioned mobile complex for vibration diagnostics.

  3. EPISTEMOLOGY AND INVESTIGATION WITHIN THE CURRENT ORGANIZATIONAL COMPLEX SYSTEMS

    Directory of Open Access Journals (Sweden)

    Karla Torres

    2015-11-01

    Full Text Available The way of approaching reality and generate knowledge is now different from those applied in the past ; It is why the aim of this paper was to analyze the changing elements in organizational structures framed in complex systems , addressing the study from the interpretive perspective with the use of hermeneutical method in theory , documentary context. It is concluding that the research methods require adaptation to this new reality for knowledge production. The complexity plays an important role in organizational systems and the environment in general, raising the need for revision in the way of thinking and actually faces this new complex, full of uncertainty and organizational chaos.

  4. Biomedical applications engineering tasks

    Science.gov (United States)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  5. A Relation Extraction Framework for Biomedical Text Using Hybrid Feature Set

    Directory of Open Access Journals (Sweden)

    Abdul Wahab Muzaffar

    2015-01-01

    Full Text Available The information extraction from unstructured text segments is a complex task. Although manual information extraction often produces the best results, it is harder to manage biomedical data extraction manually because of the exponential increase in data size. Thus, there is a need for automatic tools and techniques for information extraction in biomedical text mining. Relation extraction is a significant area under biomedical information extraction that has gained much importance in the last two decades. A lot of work has been done on biomedical relation extraction focusing on rule-based and machine learning techniques. In the last decade, the focus has changed to hybrid approaches showing better results. This research presents a hybrid feature set for classification of relations between biomedical entities. The main contribution of this research is done in the semantic feature set where verb phrases are ranked using Unified Medical Language System (UMLS and a ranking algorithm. Support Vector Machine and Naïve Bayes, the two effective machine learning techniques, are used to classify these relations. Our approach has been validated on the standard biomedical text corpus obtained from MEDLINE 2001. Conclusively, it can be articulated that our framework outperforms all state-of-the-art approaches used for relation extraction on the same corpus.

  6. Diagnosis for Control and Decision Support in Complex Systems

    DEFF Research Database (Denmark)

    Blanke, Mogens; Hansen, Søren; Blas, Morten Rufus

    2011-01-01

    with complex and nonlinear systems have matured and even though there are many un-solved problems, methodology and associated tools have become available in the form of theory and software for design. Genuine industrial cases have also become available. Analysis of system topology, referred to as structural...... for on-line prognosis and diagnosis. For complex systems, results from non-Gaussian detection theory have been employed with convincing results. The paper presents the theoretical foundation for design methodologies that now appear as enabling technology for a new area of design of systems...

  7. Use of neural networks in the analysis of complex systems

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1992-01-01

    The application of neural networks, alone or in conjunction with other advanced technologies (expert systems, fuzzy logic, and/or genetic algorithms) to some of the problems of complex engineering systems has the potential to enhance the safety reliability and operability of these systems. The work described here deals with complex systems or parts of such systems that can be isolated from the total system. Typically, the measured variables from the systems are analog variables that must be sampled and normalized to expected peak values before they are introduced into neural networks. Often data must be processed to put it into a form more acceptable to the neural network. The neural networks are usually simulated on modern high-speed computers that carry out the calculations serially. However, it is possible to implement neural networks using specially designed microchips where the network calculations are truly carried out in parallel, thereby providing virtually instantaneous outputs for each set of inputs. Specific applications described include: Diagnostics: State of the Plant; Hybrid System for Transient Identification; Detection of Change of Mode in Complex Systems; Sensor Validation; Plant-Wide Monitoring; Monitoring of Performance and Efficiency; and Analysis of Vibrations. Although the specific examples described deal with nuclear power plants or their subsystems, the techniques described can be applied to a wide variety of complex engineering systems

  8. Automated System for Teaching Computational Complexity of Algorithms Course

    Directory of Open Access Journals (Sweden)

    Vadim S. Roublev

    2017-01-01

    Full Text Available This article describes problems of designing automated teaching system for “Computational complexity of algorithms” course. This system should provide students with means to familiarize themselves with complex mathematical apparatus and improve their mathematical thinking in the respective area. The article introduces the technique of algorithms symbol scroll table that allows estimating lower and upper bounds of computational complexity. Further, we introduce a set of theorems that facilitate the analysis in cases when the integer rounding of algorithm parameters is involved and when analyzing the complexity of a sum. At the end, the article introduces a normal system of symbol transformations that allows one both to perform any symbol transformations and simplifies the automated validation of such transformations. The article is published in the authors’ wording.

  9. PCA Fault Feature Extraction in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    ZHANG, J.

    2010-08-01

    Full Text Available Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc. may change significantly. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Therefore, utilizing real-time measurements of phasor measurement unit, based on principal components analysis technology, we have extracted successfully the distinct features of fault component. Of course, because of the complexity of different types of faults in electric power system, there still exists enormous problems need a close and intensive study.

  10. Symmetric and Asymmetric Tendencies in Stable Complex Systems.

    Science.gov (United States)

    Tan, James P L

    2016-08-22

    A commonly used approach to study stability in a complex system is by analyzing the Jacobian matrix at an equilibrium point of a dynamical system. The equilibrium point is stable if all eigenvalues have negative real parts. Here, by obtaining eigenvalue bounds of the Jacobian, we show that stable complex systems will favor mutualistic and competitive relationships that are asymmetrical (non-reciprocative) and trophic relationships that are symmetrical (reciprocative). Additionally, we define a measure called the interdependence diversity that quantifies how distributed the dependencies are between the dynamical variables in the system. We find that increasing interdependence diversity has a destabilizing effect on the equilibrium point, and the effect is greater for trophic relationships than for mutualistic and competitive relationships. These predictions are consistent with empirical observations in ecology. More importantly, our findings suggest stabilization algorithms that can apply very generally to a variety of complex systems.

  11. An introduction to complex systems society, ecology, and nonlinear dynamics

    CERN Document Server

    Fieguth, Paul

    2017-01-01

    This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or per...

  12. An Agent Based Software Approach towards Building Complex Systems

    Directory of Open Access Journals (Sweden)

    Latika Kharb

    2015-08-01

    Full Text Available Agent-oriented techniques represent an exciting new means of analyzing, designing and building complex software systems. They have the potential to significantly improve current practice in software engineering and to extend the range of applications that can feasibly be tackled. Yet, to date, there have been few serious attempts to cast agent systems as a software engineering paradigm. This paper seeks to rectify this omission. Specifically, points to be argued include:firstly, the conceptual apparatus of agent-oriented systems is well-suited to building software solutions for complex systems and secondly, agent-oriented approaches represent a genuine advance over the current state of the art for engineering complex systems. Following on from this view, the major issues raised by adopting an agentoriented approach to software engineering are highlighted and discussed in this paper.

  13. Collaborative Management of Risks and Complexity in Banking Systems

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2012-01-01

    Full Text Available This paper describes types of risks encountered in banking systems and ways to prevent and eliminate them. Banking systems are presented in order to have a view on banking activities and processes that generates risks. The risks in banking processes are analyzed and the collaborative character of risk management is highlighted. A way to control the risk in banking systems through information security is described. Risks arise from system complexity, thus evaluation and comparison of different configurations are bases for improvements. The Halstead relative complexity function synthesizes system complexity from the point of view of the size of the variables analyzed and the heterogeneity between the variables. Section four was realized by Catalin SBORA.

  14. Nanomaterials driven energy, environmental and biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F. [Department of Physics, College of Arts and Sciences, Tuskegee University, Tuskegee, AL 36088 (United States)

    2014-03-31

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO{sub 2} nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH{sub 2} and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe{sub 2}O{sub 4} have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)

  15. Complexity and Control: Towards a Rigorous Behavioral Theory of Complex Dynamical Systems

    Science.gov (United States)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    We introduce our motive for writing this book on complexity and control with a popular "complexity myth," which seems to be quite wide spread among chaos and complexity theory fashionistas: quote>Low-dimensional systems usually exhibit complex behaviours (which we know fromMay's studies of the Logisticmap), while high-dimensional systems usually exhibit simple behaviours (which we know from synchronisation studies of the Kuramoto model)...quote> We admit that this naive view on complex (e.g., human) systems versus simple (e.g., physical) systems might seem compelling to various technocratic managers and politicians; indeed, the idea makes for appealing sound-bites. However, it is enough to see both in the equations and computer simulations of pendula of various degree - (i) a single pendulum, (ii) a double pendulum, and (iii) a triple pendulum - that this popular myth is plain nonsense. The only thing that we can learn from it is what every tyrant already knows: by using force as a strong means of control, it is possible to effectively synchronise even hundreds of millions of people, at least for a while.

  16. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  17. The BIRN Project: Distributed Information Infrastructure and Multi-scale Imaging of the Nervous System (BIRN = Biomedical Informatics Research Network)

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The grand goal in neuroscience research is to understand how the interplay of structural, chemical and electrical signals in nervous tissue gives rise to behavior. Experimental advances of the past decades have given the individual neuroscientist an increasingly powerful arsenal for obtaining data, from the level of molecules to nervous systems. Scientists have begun the arduous and challenging process of adapting and assembling neuroscience data at all scales of resolution and across disciplines into computerized databases and other easily accessed sources. These databases will complement the vast structural and sequence databases created to catalogue, organize and analyze gene sequences and protein products. The general premise of the neuroscience goal is simple; namely that with "complete" knowledge of the genome and protein structures accruing rapidly we next need to assemble an infrastructure that will facilitate acquisition of an understanding for how functional complexes operate in their ...

  18. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  19. Controller Design of Complex System Based on Nonlinear Strength

    Directory of Open Access Journals (Sweden)

    Rongjun Mu

    2015-01-01

    Full Text Available This paper presents a new idea of controller design for complex systems. The nonlinearity index method was first developed for error propagation of nonlinear system. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of the system model. The algorithm of nonlinearity index according to engineering application is first proposed in this paper. Applying this method on nonlinear systems is an effective way to measure the nonlinear strength of dynamics model over the full flight envelope. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of system model. According to the different nonlinear strength of dynamical model, the control system is designed. The simulation time of dynamical complex system is selected by the maximum value of dynamic nonlinearity indices. Take a missile as example; dynamical system and control characteristic of missile are simulated. The simulation results show that the method is correct and appropriate.

  20. Semiotic aspects of control and modeling relations in complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, C.

    1996-08-01

    A conceptual analysis of the semiotic nature of control is provided with the goal of elucidating its nature in complex systems. Control is identified as a canonical form of semiotic relation of a system to its environment. As a form of constraint between a system and its environment, its necessary and sufficient conditions are established, and the stabilities resulting from control are distinguished from other forms of stability. These result from the presence of semantic coding relations, and thus the class of control systems is hypothesized to be equivalent to that of semiotic systems. Control systems are contrasted with models, which, while they have the same measurement functions as control systems, do not necessarily require semantic relations because of the lack of the requirement of an interpreter. A hybrid construction of models in control systems is detailed. Towards the goal of considering the nature of control in complex systems, the possible relations among collections of control systems are considered. Powers arguments on conflict among control systems and the possible nature of control in social systems are reviewed, and reconsidered based on our observations about hierarchical control. Finally, we discuss the necessary semantic functions which must be present in complex systems for control in this sense to be present at all.

  1. Constructing compact Takagi-Sugeno rule systems: identification of complex interactions in epidemiological data.

    Science.gov (United States)

    Zhou, Shang-Ming; Lyons, Ronan A; Brophy, Sinead; Gravenor, Mike B

    2012-01-01

    The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data.

  2. Entropy-based generating Markov partitions for complex systems

    Science.gov (United States)

    Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.

    2018-03-01

    Finding the correct encoding for a generic dynamical system's trajectory is a complicated task: the symbolic sequence needs to preserve the invariant properties from the system's trajectory. In theory, the solution to this problem is found when a Generating Markov Partition (GMP) is obtained, which is only defined once the unstable and stable manifolds are known with infinite precision and for all times. However, these manifolds usually form highly convoluted Euclidean sets, are a priori unknown, and, as it happens in any real-world experiment, measurements are made with finite resolution and over a finite time-span. The task gets even more complicated if the system is a network composed of interacting dynamical units, namely, a high-dimensional complex system. Here, we tackle this task and solve it by defining a method to approximately construct GMPs for any complex system's finite-resolution and finite-time trajectory. We critically test our method on networks of coupled maps, encoding their trajectories into symbolic sequences. We show that these sequences are optimal because they minimise the information loss and also any spurious information added. Consequently, our method allows us to approximately calculate the invariant probability measures of complex systems from the observed data. Thus, we can efficiently define complexity measures that are applicable to a wide range of complex phenomena, such as the characterisation of brain activity from electroencephalogram signals measured at different brain regions or the characterisation of climate variability from temperature anomalies measured at different Earth regions.

  3. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    Science.gov (United States)

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-06-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.

  4. From globally coupled maps to complex-systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp [Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  5. Promoting evaluation capacity building in a complex adaptive system.

    Science.gov (United States)

    Lawrenz, Frances; Kollmann, Elizabeth Kunz; King, Jean A; Bequette, Marjorie; Pattison, Scott; Nelson, Amy Grack; Cohn, Sarah; Cardiel, Christopher L B; Iacovelli, Stephanie; Eliou, Gayra Ostgaard; Goss, Juli; Causey, Lauren; Sinkey, Anne; Beyer, Marta; Francisco, Melanie

    2018-04-10

    This study provides results from an NSF funded, four year, case study about evaluation capacity building in a complex adaptive system, the Nanoscale Informal Science Education Network (NISE Net). The results of the Complex Adaptive Systems as a Model for Network Evaluations (CASNET) project indicate that complex adaptive system concepts help to explain evaluation capacity building in a network. The NISE Network was found to be a complex learning system that was supportive of evaluation capacity building through feedback loops that provided for information sharing and interaction. Participants in the system had different levels of and sources of evaluation knowledge. To be successful at building capacity, the system needed to have a balance between both centralized and decentralized control, coherence, redundancy, and diversity. Embeddedness of individuals within the system also provided support and moved the capacity of the system forward. Finally, success depended on attention being paid to the control of resources. Implications of these findings are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Model-based safety architecture framework for complex systems

    NARCIS (Netherlands)

    Schuitemaker, Katja; Rajabali Nejad, Mohammadreza; Braakhuis, J.G.; Podofillini, Luca; Sudret, Bruno; Stojadinovic, Bozidar; Zio, Enrico; Kröger, Wolfgang

    2015-01-01

    The shift to transparency and rising need of the general public for safety, together with the increasing complexity and interdisciplinarity of modern safety-critical Systems of Systems (SoS) have resulted in a Model-Based Safety Architecture Framework (MBSAF) for capturing and sharing architectural

  7. Application of functional derivatives to analysis of complex systems

    Czech Academy of Sciences Publication Activity Database

    Beran, Zdeněk; Čelikovský, Sergej

    2013-01-01

    Roč. 350, č. 10 (2013), s. 2982-2993 ISSN 0016-0032 R&D Projects: GA ČR GA13-20433S Institutional support: RVO:67985556 Keywords : complex systems * linear equation * modeling Subject RIV: BC - Control Systems Theory Impact factor: 2.260, year: 2013 http://library.utia.cas.cz/separaty/2013/TR/beran-0398123.pdf

  8. Integration and test plans for complex manufacturing systems

    NARCIS (Netherlands)

    Boumen, R.

    2007-01-01

    The integration and test phases that are part of the development and manufacturing of complex manufacturing systems are costly and time consuming. As time-to-market is becoming increasingly important, it is crucial to keep these phases as short as possible, whilemaintaining system quality. This is

  9. Can Models Capture the Complexity of the Systems Engineering Process?

    Science.gov (United States)

    Boppana, Krishna; Chow, Sam; de Weck, Olivier L.; Lafon, Christian; Lekkakos, Spyridon D.; Lyneis, James; Rinaldi, Matthew; Wang, Zhiyong; Wheeler, Paul; Zborovskiy, Marat; Wojcik, Leonard A.

    Many large-scale, complex systems engineering (SE) programs have been problematic; a few examples are listed below (Bar-Yam, 2003 and Cullen, 2004), and many others have been late, well over budget, or have failed: Hilton/Marriott/American Airlines system for hotel reservations and flights; 1988-1992; 125 million; "scrapped"

  10. Losing the boxes: fragmentation as a source of system complexity

    CSIR Research Space (South Africa)

    Baumbach, J

    2015-09-01

    Full Text Available . This paper, which looks at systems containing people, argues that the use of transdisciplinary approaches will aid in the insight and comprehension of complex problems. It will also be shown that the inclusion of subjective and inter-subjective system aspects...

  11. Imaging tissues for biomedical research using the high-resolution micro-tomography system nanotom® m

    Science.gov (United States)

    Deyhle, Hans; Schulz, Georg; Khimchenko, Anna; Bikis, Christos; Hieber, Simone E.; Jaquiery, Claude; Kunz, Christoph; Müller-Gerbl, Magdalena; Höchel, Sebastian; Saxer, Till; Stalder, Anja K.; Ilgenstein, Bernd; Beckmann, Felix; Thalmann, Peter; Buscema, Marzia; Rohr, Nadja; Holme, Margaret N.; Müller, Bert

    2016-10-01

    Micro computed tomography (mCT) is well established in virtually all fields of biomedical research, allowing for the non-destructive volumetric visualization of tissue morphology. A variety of specimens can be investigated, ranging from soft to hard tissue to engineered structures like scaffolds. Similarly, the size of the objects of interest ranges from a fraction of a millimeter to several tens of centimeters. While synchrotron radiation-based μCT still offers unrivaled data quality, the ever-improving technology of cathodic tube-based machines offers a valuable and more accessible alternative. The Biomaterials Science Center of the University of Basel operates a nanotomOR m (phoenix|x-ray, GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany), with a 180 kV source and a minimal spot size of about 0.9 μm. Through the adjustable focus-specimen and focus-detector distances, the effective pixel size can be adjusted from below 500 nm to about 80 μm. On the high-resolution side, it is for example possible to visualize the tubular network in sub-millimeter thin dentin specimens. It is then possible to locally extract parameters such as tubule diameter, density, or alignment, giving information on cell movements during tooth formation. On the other side, with a horizontal shift of the 3,072 pixels x 2,400 pixels detector, specimens up to 35 cm in diameter can be scanned. It is possible, for example, to scan an entire human knee, albeit with inferior resolution. Lab source μCT machines are thus a powerful and flexible tool for the advancement of biomedical research, and a valuable and more accessible alternative to synchrotron radiation facilities.

  12. A Concise Introduction to the Statistical Physics of Complex Systems

    CERN Document Server

    Bertin, Eric

    2012-01-01

    This concise primer (based on lectures given at summer schools on complex systems and on a masters degree course in complex systems modeling) will provide graduate students and newcomers to the field with the basic knowledge of the concepts and methods of statistical physics and its potential for application to interdisciplinary topics.  Indeed, in recent years, statistical physics has begun to attract the interest of a broad community of researchers in the field of complex system sciences, ranging from biology to the social sciences, economics and computer science. More generally, a growing number of graduate students and researchers feel the need to learn some basic concepts and questions originating in other disciplines without necessarily having to master all of the corresponding technicalities and jargon. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting ‘entities’, and on the other to predict...

  13. Complex Time-Delay Systems Theory and Applications

    CERN Document Server

    Atay, Fatihcan M

    2010-01-01

    Time delays in dynamical systems arise as an inevitable consequence of finite speeds of information transmission. Realistic models increasingly demand the inclusion of delays in order to properly understand, analyze, design, and control real-life systems. The goal of this book is to present the state-of-the-art in research on time-delay dynamics in the framework of complex systems and networks. While the mathematical theory of delay equations is quite mature, its application to the particular problems of complex systems and complexity is a newly emerging field, and the present volume aims to play a pioneering role in this perspective. The chapters in this volume are authored by renowned experts and cover both theory and applications in a wide range of fields, with examples extending from neuroscience and biology to laser physics and vehicle traffic. Furthermore, all chapters include sufficient introductory material and extensive bibliographies, making the book a self-contained reference for both students and ...

  14. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  15. Inclusive Education as Complex Process and Challenge for School System

    Directory of Open Access Journals (Sweden)

    Al-Khamisy Danuta

    2015-08-01

    Full Text Available Education may be considered as a number of processes, actions and effects affecting human being, as the state or level of the results of these processes or as the modification of the functions, institutions and social practices roles, which in the result of inclusion become new, integrated system. Thus this is very complex process. Nowadays the complexity appears to be one of very significant terms both in science and in philosophy. It appears that despite searching for simple rules, strategies, solutions everything is still more complex. The environment is complex, the organism living in it and exploring it, and just the exploration itself is a complex phenomenon, much more than this could initially seem to be.

  16. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    Science.gov (United States)

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  17. Observation-Driven Configuration of Complex Software Systems

    Science.gov (United States)

    Sage, Aled

    2010-06-01

    The ever-increasing complexity of software systems makes them hard to comprehend, predict and tune due to emergent properties and non-deterministic behaviour. Complexity arises from the size of software systems and the wide variety of possible operating environments: the increasing choice of platforms and communication policies leads to ever more complex performance characteristics. In addition, software systems exhibit different behaviour under different workloads. Many software systems are designed to be configurable so that policies can be chosen to meet the needs of various stakeholders. For complex software systems it can be difficult to accurately predict the effects of a change and to know which configuration is most appropriate. This thesis demonstrates that it is useful to run automated experiments that measure a selection of system configurations. Experiments can find configurations that meet the stakeholders' needs, find interesting behavioural characteristics, and help produce predictive models of the system's behaviour. The design and use of ACT (Automated Configuration Tool) for running such experiments is described, in combination a number of search strategies for deciding on the configurations to measure. Design Of Experiments (DOE) is discussed, with emphasis on Taguchi Methods. These statistical methods have been used extensively in manufacturing, but have not previously been used for configuring software systems. The novel contribution here is an industrial case study, applying the combination of ACT and Taguchi Methods to DC-Directory, a product from Data Connection Ltd (DCL). The case study investigated the applicability of Taguchi Methods for configuring complex software systems. Taguchi Methods were found to be useful for modelling and configuring DC- Directory, making them a valuable addition to the techniques available to system administrators and developers.

  18. Norm estimates of complex symmetric operators applied to quantum systems

    International Nuclear Information System (INIS)

    Prodan, Emil; Garcia, Stephan R; Putinar, Mihai

    2006-01-01

    This paper communicates recent results in the theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schroedinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schroedinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schroedinger operators appearing in the complex scaling theory of resonances

  19. Foundations of Complex Systems Nonlinear Dynamics, Statistical Physics, and Prediction

    CERN Document Server

    Nicolis, Gregoire

    2007-01-01

    Complexity is emerging as a post-Newtonian paradigm for approaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. This book outlines the foundations of modern complexity research as it arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation. It is shown how these developments lead to an understanding, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience and, conversely, h

  20. Planning and complexity : Engaging with temporal dynamics, uncertainty and complex adaptive systems

    NARCIS (Netherlands)

    Sengupta, Ulysses; Rauws, Ward S.; de Roo, Gert

    2016-01-01

    The nature of complex systems as a transdisciplinary collection of concepts from physics and economics to sociology and ecology provides an evolving field of inquiry (Laszlo and Krippner, 1998) for urban planning and urban design. As a result, planning theory has assimilated multiple concepts from

  1. Planning and complexity : Engaging with temporal dynamics, uncertainty and complex adaptive systems

    NARCIS (Netherlands)

    Sengupta, Ulysses; Rauws, Ward S.; de Roo, Gert

    The nature of complex systems as a transdisciplinary collection of concepts from physics and economics to sociology and ecology provides an evolving field of inquiry (Laszlo and Krippner, 1998) for urban planning and urban design. As a result, planning theory has assimilated multiple concepts from

  2. Speciation in the aqueous H+/H2VO4-/H2O2/citrate system of biomedical interest.

    Science.gov (United States)

    Gorzsás, András; Getty, Kendra; Andersson, Ingegärd; Pettersson, Lage

    2004-09-21

    The speciation in the quaternary aqueous H+/H2VO4-/H2O2/citrate (Cit3-) and H+/H2VO4-/Cit3-/L-(+)-lactate (Lac-) systems has been determined at 25 degrees C in the physiological medium of 0.150 M Na(Cl). A combination of 51V NMR integral intensities and chemical shift (Bruker AMX500) as well as potentiometric data (glass electrode) have been collected and evaluated with the computer program LAKE, which is able to treat multimethod data simultaneously. The pKa-values for citric acid have been determined as 2.94, 4.34 and 5.61. Altogether six vanadate-citrate species have been found in the ternary H+/H2VO4-/Cit3- system in the pH region 2-10, only two of which are mononuclear. Reduction of vanadium(V) becomes more pronounced at pH acidic solutions limited the final model to pH > 4. In the quaternary H+/H2VO4-/Cit3-/Lac- system, two mixed-ligand species have been determined, with the compositions V2CitLac2- and V2CitLac3- (pKa = 5.0). To our knowledge, this is the first time such complexes have been reported for vanadium(V). 51V NMR chemical shifts, compositions and formation constants are given, and equilibrium conditions are illustrated in distribution diagrams as well as the fit of the model to the experimental data. When suitable, structural proposals are given, based on 13C NMR measurements and available literature data of related compounds.

  3. Reflecting on complexity of biological systems: Kant and beyond?

    Science.gov (United States)

    Van de Vijver, Gertrudis; Van Speybroeck, Linda; Vandevyvere, Windy

    2003-01-01

    Living organisms are currently most often seen as complex dynamical systems that develop and evolve in relation to complex environments. Reflections on the meaning of the complex dynamical nature of living systems show an overwhelming multiplicity in approaches, descriptions, definitions and methodologies. Instead of sustaining an epistemic pluralism, which often functions as a philosophical armistice in which tolerance and so-called neutrality discharge proponents of the burden to clarify the sources and conditions of agreement and disagreement, this paper aims at analysing: (i) what has been Kant's original conceptualisation of living organisms as natural purposes; (ii) how the current perspectives are to be related to Kant's viewpoint; (iii) what are the main trends in current complexity thinking. One of the basic ideas is that the attention for structure and its epistemological consequences witness to a great extent of Kant's viewpoint, and that the idea of organisational stratification today constitutes a different breeding ground within which complexity issues are raised. The various approaches of complexity in biological systems are captured in terms of two different styles, universalism and (weak and strong) constructivism, between which hybrid forms exist.

  4. Variable structure control of complex systems analysis and design

    CERN Document Server

    Yan, Xing-Gang; Edwards, Christopher

    2017-01-01

    This book systematizes recent research work on variable-structure control. It is self-contained, presenting necessary mathematical preliminaries so that the theoretical developments can be easily understood by a broad readership. The text begins with an introduction to the fundamental ideas of variable-structure control pertinent to their application in complex nonlinear systems. In the core of the book, the authors lay out an approach, suitable for a large class of systems, that deals with system uncertainties with nonlinear bounds. Its treatment of complex systems in which limited measurement information is available makes the results developed convenient to implement. Various case-study applications are described, from aerospace, through power systems to river pollution control with supporting simulations to aid the transition from mathematical theory to engineering practicalities. The book addresses systems with nonlinearities, time delays and interconnections and considers issues such as stabilization, o...

  5. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  6. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  7. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  8. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  9. Modelling, Estimation and Control of Networked Complex Systems

    CERN Document Server

    Chiuso, Alessandro; Frasca, Mattia; Rizzo, Alessandro; Schenato, Luca; Zampieri, Sandro

    2009-01-01

    The paradigm of complexity is pervading both science and engineering, leading to the emergence of novel approaches oriented at the development of a systemic view of the phenomena under study; the definition of powerful tools for modelling, estimation, and control; and the cross-fertilization of different disciplines and approaches. This book is devoted to networked systems which are one of the most promising paradigms of complexity. It is demonstrated that complex, dynamical networks are powerful tools to model, estimate, and control many interesting phenomena, like agent coordination, synchronization, social and economics events, networks of critical infrastructures, resources allocation, information processing, or control over communication networks. Moreover, it is shown how the recent technological advances in wireless communication and decreasing in cost and size of electronic devices are promoting the appearance of large inexpensive interconnected systems, each with computational, sensing and mobile cap...

  10. 10th International Conference on Dependability and Complex Systems

    CERN Document Server

    Mazurkiewicz, Jacek; Sugier, Jarosław; Walkowiak, Tomasz; Kacprzyk, Janusz

    2015-01-01

    Building upon a long tradition of scientifi c conferences dealing with problems of reliability in technical systems, in 2006 Department of Computer Engineering at Wrocław University of Technology established DepCoS-RELCOMEX series of events in order to promote a comprehensive approach to evaluation of system performability which is now commonly called dependability. Contemporary complex systems integrate variety of technical, information, soft ware and human (users, administrators and management) resources. Their complexity comes not only from involved technical and organizational structures but mainly from complexity of information processes that must be implemented in specific operational environment (data processing, monitoring, management, etc.). In such a case traditional methods of reliability evaluation focused mainly on technical levels are insufficient and more innovative, multidisciplinary methods of dependability analysis must be applied. Selection of submissions for these proceedings exemplify di...

  11. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  12. Solution of generalized shifted linear systems with complex symmetric matrices

    International Nuclear Information System (INIS)

    Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo

    2012-01-01

    We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.

  13. State analysis requirements database for engineering complex embedded systems

    Science.gov (United States)

    Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.

    2004-01-01

    It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.

  14. Complex systems dynamics in aging: new evidence, continuing questions.

    Science.gov (United States)

    Cohen, Alan A

    2016-02-01

    There have long been suggestions that aging is tightly linked to the complex dynamics of the physiological systems that maintain homeostasis, and in particular to dysregulation of regulatory networks of molecules. This review synthesizes recent work that is starting to provide evidence for the importance of such complex systems dynamics in aging. There is now clear evidence that physiological dysregulation--the gradual breakdown in the capacity of complex regulatory networks to maintain homeostasis--is an emergent property of these regulatory networks, and that it plays an important role in aging. It can be measured simply using small numbers of biomarkers. Additionally, there are indications of the importance during aging of emergent physiological processes, functional processes that cannot be easily understood through clear metabolic pathways, but can nonetheless be precisely quantified and studied. The overall role of such complex systems dynamics in aging remains an important open question, and to understand it future studies will need to distinguish and integrate related aspects of aging research, including multi-factorial theories of aging, systems biology, bioinformatics, network approaches, robustness, and loss of complexity.

  15. Evaluating Complex Healthcare Systems: A Critique of Four Approaches

    Directory of Open Access Journals (Sweden)

    Heather Boon

    2007-01-01

    Full Text Available The purpose of this paper is to bring clarity to the emerging conceptual and methodological literature that focuses on understanding and evaluating complex or ‘whole’ systems of healthcare. An international working group reviewed literature from interdisciplinary or interprofessional groups describing approaches to the evaluation of complex systems of healthcare. The following four key approaches were identified: a framework from the MRC (UK, whole systems research, whole medical systems research described by NCCAM (USA and a model from NAFKAM (Norway. Main areas of congruence include acknowledgment of the inherent complexity of many healthcare interventions and the need to find new ways to evaluate these; the need to describe and understand the components of complex interventions in context (as they are actually practiced; the necessity of using mixed methods including randomized clinical trials (RCTs (explanatory and pragmatic and qualitative approaches; the perceived benefits of a multidisciplinary team approach to research; and the understanding that methodological developments in this field can be applied to both complementary and alternative medicine (CAM as well as conventional therapies. In contrast, the approaches differ in the following ways: terminology used, the extent to which the approach attempts to be applicable to both CAM and conventional medical interventions; the prioritization of research questions (in order of what should be done first especially with respect to how the ‘definitive’ RCT fits into the process of assessing complex healthcare systems; and the need for a staged approach. There appears to be a growing international understanding of the need for a new perspective on assessing complex healthcare systems.

  16. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.

  17. Stephen Jay Kline on systems, or physics, complex systems, and the gap between.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Philip LaRoche

    2011-06-01

    At the end of his life, Stephen Jay Kline, longtime professor of mechanical engineering at Stanford University, completed a book on how to address complex systems. The title of the book is 'Conceptual Foundations of Multi-Disciplinary Thinking' (1995), but the topic of the book is systems. Kline first establishes certain limits that are characteristic of our conscious minds. Kline then establishes a complexity measure for systems and uses that complexity measure to develop a hierarchy of systems. Kline then argues that our minds, due to their characteristic limitations, are unable to model the complex systems in that hierarchy. Computers are of no help to us here. Our attempts at modeling these complex systems are based on the way we successfully model some simple systems, in particular, 'inert, naturally-occurring' objects and processes, such as what is the focus of physics. But complex systems overwhelm such attempts. As a result, the best we can do in working with these complex systems is to use a heuristic, what Kline calls the 'Guideline for Complex Systems.' Kline documents the problems that have developed due to 'oversimple' system models and from the inappropriate application of a system model from one domain to another. One prominent such problem is the Procrustean attempt to make the disciplines that deal with complex systems be 'physics-like.' Physics deals with simple systems, not complex ones, using Kline's complexity measure. The models that physics has developed are inappropriate for complex systems. Kline documents a number of the wasteful and dangerous fallacies of this type.

  18. Teleconnections in complex human-Earth system models

    Science.gov (United States)

    Calvin, K. V.; Edmonds, J.

    2017-12-01

    Human systems and physical Earth systems are closely coupled and interact in complex ways that are sometimes surprising. This presentation discusses a few examples of system interactions. We consider the coupled energy-water-land-economy systems. We show how reductions in fossil fuel emissions are inversely coupled to land rents, food prices and deforestation. We discuss how water shortages in one part of the world is propagated to other distant parts of the world. We discuss the sensitivity of international trade patterns to energy and land systems technology and markets, and the potentially unanticipated results that can emerge.

  19. Complex adaptative systems and computational simulation in Archaeology

    Directory of Open Access Journals (Sweden)

    Salvador Pardo-Gordó

    2017-07-01

    Full Text Available Traditionally the concept of ‘complexity’ is used as a synonym for ‘complex society’, i.e., human groups with characteristics such as urbanism, inequalities, and hierarchy. The introduction of Nonlinear Systems and Complex Adaptive Systems to the discipline of archaeology has nuanced this concept. This theoretical turn has led to the rise of modelling as a method of analysis of historical processes. This work has a twofold objective: to present the theoretical current characterized by generative thinking in archaeology and to present a concrete application of agent-based modelling to an archaeological problem: the dispersal of the first ceramic production in the western Mediterranean.

  20. LORD: a phenotype-genotype semantically integrated biomedical data tool to support rare disease diagnosis coding in health information systems.

    Science.gov (United States)

    Choquet, Remy; Maaroufi, Meriem; Fonjallaz, Yannick; de Carrara, Albane; Vandenbussche, Pierre-Yves; Dhombres, Ferdinand; Landais, Paul

    Characterizing a rare disease diagnosis for a given patient is often made through expert's networks. It is a complex task that could evolve over time depending on the natural history of the disease and the evolution of the scientific knowledge. Most rare diseases have genetic causes and recent improvements of sequencing techniques contribute to the discovery of many new diseases every year. Diagnosis coding in the rare disease field requires data from multiple knowledge bases to be aggregated in order to offer the clinician a global information space from possible diagnosis to clinical signs (phenotypes) and known genetic mutations (genotype). Nowadays, the major barrier to the coding activity is the lack of consolidation of such information scattered in different thesaurus such as Orphanet, OMIM or HPO. The Linking Open data for Rare Diseases (LORD) web portal we developed stands as the first attempt to fill this gap by offering an integrated view of 8,400 rare diseases linked to more than 14,500 signs and 3,270 genes. The application provides a browsing feature to navigate through the relationships between diseases, signs and genes, and some Application Programming Interfaces to help its integration in health information systems in routine.