WorldWideScience

Sample records for biomedical applications including

  1. AMS at the ANU including biomedical applications

    International Nuclear Information System (INIS)

    Fifield, L.K.; Allan, G.L.; Cresswell, R.G.; Ophel, T.R.; King, S.J.; Day, J.P.

    1993-01-01

    An extensive accelerator mass spectrometry program has been conducted on the 14UD accelerator at the Australian National University since 1986. In the two years since the previous conference, the research program has expanded significantly to include biomedical applications of 26 Al and studies of landform evolution using isotopes produced in situ in surface rocks by cosmic ray bombardment. The system is now used for the measurement of 10 Be, 14 C, 26 Al, 36 Cl, 59 Ni and 129 I, and research is being undertaken in hydrology, environmental geochemistry, archaeology and biomedicine. On the technical side, a new test system has permitted the successful off-line development of a high-intensity ion source. A new injection line to the 14UD has been established and the new source is now in position and providing beams to the accelerator. 4 refs

  2. AMS at the ANU including biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L.K.; Allan, G.L.; Cresswell, R.G.; Ophel, T.R. [Australian National Univ., Canberra, ACT (Australia); King, S.J.; Day, J.P. [Manchester Univ. (United Kingdom). Dept. of Chemistry

    1993-12-31

    An extensive accelerator mass spectrometry program has been conducted on the 14UD accelerator at the Australian National University since 1986. In the two years since the previous conference, the research program has expanded significantly to include biomedical applications of {sup 26}Al and studies of landform evolution using isotopes produced in situ in surface rocks by cosmic ray bombardment. The system is now used for the measurement of {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 59}Ni and {sup 129}I, and research is being undertaken in hydrology, environmental geochemistry, archaeology and biomedicine. On the technical side, a new test system has permitted the successful off-line development of a high-intensity ion source. A new injection line to the 14UD has been established and the new source is now in position and providing beams to the accelerator. 4 refs.

  3. The influence of sterilization on nitrogen-included ultrananocrystalline diamond for biomedical applications.

    Science.gov (United States)

    Tong, Wei; Tran, Phong A; Turnley, Ann M; Aramesh, Morteza; Prawer, Steven; Brandt, Milan; Fox, Kate

    2016-04-01

    Diamond has shown great potential in different biomedical applications, but the effects of sterilization on its properties have not been investigated. Here, we studied the influence of five sterilization techniques (solvent cleaning, oxygen plasma, UV irradiation, autoclave and hydrogen peroxide) on nitrogen-included ultrananocrystalline diamond. The chemical modification of the diamond surface was evaluated using X-ray photoelectron spectroscopy and water contact angle measurements. Different degrees of surface oxidation and selective sp(2) bonded carbon etching were found following all sterilization techniques, resulting in an increase of hydrophilicity. Higher viabilities of in vitro mouse 3T3 fibroblasts and rat cortical neuron cells were observed on oxygen plasma, autoclave and hydrogen peroxide sterilized diamond, which correlated with their higher hydrophilicity. By examination of apatite formation in simulated body fluid, in vivo bioactivity was predicted to be best on those surfaces which have been oxygen plasma treated and lowest on those which have been exposed to UV irradiation. The charge injection properties were also altered by the sterilization process and there appears to be a correlation between these changes and the degree of oxygen termination of the surface. We find that the modification brought by autoclave, oxygen plasma and hydrogen peroxide were most consistent with the use of N-UNCD in biological applications as compared to samples sterilized by solvent cleaning or UV exposure or indeed non-sterilized. A two-step process of sterilization by hydrogen peroxide following oxygen plasma treatment was then suggested. However, the final choice of sterilization technique will depend on the intended end application. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The influence of sterilization on nitrogen-included ultrananocrystalline diamond for biomedical applications

    International Nuclear Information System (INIS)

    Tong, Wei; Tran, Phong A.; Turnley, Ann M.; Aramesh, Morteza; Prawer, Steven; Brandt, Milan; Fox, Kate

    2016-01-01

    Diamond has shown great potential in different biomedical applications, but the effects of sterilization on its properties have not been investigated. Here, we studied the influence of five sterilization techniques (solvent cleaning, oxygen plasma, UV irradiation, autoclave and hydrogen peroxide) on nitrogen-included ultrananocrystalline diamond. The chemical modification of the diamond surface was evaluated using X-ray photoelectron spectroscopy and water contact angle measurements. Different degrees of surface oxidation and selective sp 2 bonded carbon etching were found following all sterilization techniques, resulting in an increase of hydrophilicity. Higher viabilities of in vitro mouse 3T3 fibroblasts and rat cortical neuron cells were observed on oxygen plasma, autoclave and hydrogen peroxide sterilized diamond, which correlated with their higher hydrophilicity. By examination of apatite formation in simulated body fluid, in vivo bioactivity was predicted to be best on those surfaces which have been oxygen plasma treated and lowest on those which have been exposed to UV irradiation. The charge injection properties were also altered by the sterilization process and there appears to be a correlation between these changes and the degree of oxygen termination of the surface. We find that the modification brought by autoclave, oxygen plasma and hydrogen peroxide were most consistent with the use of N-UNCD in biological applications as compared to samples sterilized by solvent cleaning or UV exposure or indeed non-sterilized. A two-step process of sterilization by hydrogen peroxide following oxygen plasma treatment was then suggested. However, the final choice of sterilization technique will depend on the intended end application. - Highlights: • We test for the first time the effect of 5 sterilization techniques on nitrogen included ultrananocrystalline diamond. • Different degrees of surface oxidation and selective sp 2 bonded carbon etching were found to

  5. The influence of sterilization on nitrogen-included ultrananocrystalline diamond for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Wei [School of Physics, University of Melbourne, Parkville, Victoria (Australia); Tran, Phong A. [Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria (Australia); Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland (Australia); Turnley, Ann M. [Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria (Australia); Aramesh, Morteza [School of Physics, University of Melbourne, Parkville, Victoria (Australia); School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia); Prawer, Steven [School of Physics, University of Melbourne, Parkville, Victoria (Australia); Brandt, Milan [Centre for Additive Manufacturing, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria (Australia); Fox, Kate, E-mail: kate.fox@rmit.edu.au [Centre for Additive Manufacturing, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria (Australia)

    2016-04-01

    Diamond has shown great potential in different biomedical applications, but the effects of sterilization on its properties have not been investigated. Here, we studied the influence of five sterilization techniques (solvent cleaning, oxygen plasma, UV irradiation, autoclave and hydrogen peroxide) on nitrogen-included ultrananocrystalline diamond. The chemical modification of the diamond surface was evaluated using X-ray photoelectron spectroscopy and water contact angle measurements. Different degrees of surface oxidation and selective sp{sup 2} bonded carbon etching were found following all sterilization techniques, resulting in an increase of hydrophilicity. Higher viabilities of in vitro mouse 3T3 fibroblasts and rat cortical neuron cells were observed on oxygen plasma, autoclave and hydrogen peroxide sterilized diamond, which correlated with their higher hydrophilicity. By examination of apatite formation in simulated body fluid, in vivo bioactivity was predicted to be best on those surfaces which have been oxygen plasma treated and lowest on those which have been exposed to UV irradiation. The charge injection properties were also altered by the sterilization process and there appears to be a correlation between these changes and the degree of oxygen termination of the surface. We find that the modification brought by autoclave, oxygen plasma and hydrogen peroxide were most consistent with the use of N-UNCD in biological applications as compared to samples sterilized by solvent cleaning or UV exposure or indeed non-sterilized. A two-step process of sterilization by hydrogen peroxide following oxygen plasma treatment was then suggested. However, the final choice of sterilization technique will depend on the intended end application. - Highlights: • We test for the first time the effect of 5 sterilization techniques on nitrogen included ultrananocrystalline diamond. • Different degrees of surface oxidation and selective sp{sup 2} bonded carbon etching were

  6. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  7. Biomedical applications engineering tasks

    Science.gov (United States)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  8. Functionalized carbon nanotubes: biomedical applications

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  9. Biomedical Applications of Graphene

    Science.gov (United States)

    Shen, He; Zhang, Liming; Liu, Min; Zhang, Zhijun

    2012-01-01

    Graphene exhibits unique 2-D structure and exceptional phyiscal and chemical properties that lead to many potential applications. Among various applications, biomedical applications of graphene have attracted ever-increasing interests over the last three years. In this review, we present an overview of current advances in applications of graphene in biomedicine with focus on drug delivery, cancer therapy and biological imaging, together with a brief discussion on the challenges and perspectives for future research in this field. PMID:22448195

  10. Zirconia in biomedical applications.

    Science.gov (United States)

    Chen, Yen-Wei; Moussi, Joelle; Drury, Jeanie L; Wataha, John C

    2016-10-01

    The use of zirconia in medicine and dentistry has rapidly expanded over the past decade, driven by its advantageous physical, biological, esthetic, and corrosion properties. Zirconia orthopedic hip replacements have shown superior wear-resistance over other systems; however, risk of catastrophic fracture remains a concern. In dentistry, zirconia has been widely adopted for endosseous implants, implant abutments, and all-ceramic crowns. Because of an increasing demand for esthetically pleasing dental restorations, zirconia-based ceramic restorations have become one of the dominant restorative choices. Areas covered: This review provides an updated overview of the applications of zirconia in medicine and dentistry with a focus on dental applications. The MEDLINE electronic database (via PubMed) was searched, and relevant original and review articles from 2010 to 2016 were included. Expert commentary: Recent data suggest that zirconia performs favorably in both orthopedic and dental applications, but quality long-term clinical data remain scarce. Concerns about the effects of wear, crystalline degradation, crack propagation, and catastrophic fracture are still debated. The future of zirconia in biomedical applications will depend on the generation of these data to resolve concerns.

  11. Biomedical applications of magnetic particles

    CERN Document Server

    Mefford, Thompson

    2017-01-01

    Magnetic particles are increasingly being used in a wide variety of biomedical applications. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, and detailing methods to characterize magnetic particles. The second section describes biomedical applications, including chemical sensors and cellular actuators, and diagnostic applications such as drug delivery, hyperthermia cancer treatment, and magnetic resonance imaging contrast.

  12. Biomedical applications of magnetic particles

    CERN Document Server

    Mefford, Thompson

    2018-01-01

    Magnetic particles are increasingly being used in a wide variety of biomedical applications. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, and detailing methods to characterize magnetic particles. The second section describes biomedical applications, including chemical sensors and cellular actuators, and diagnostic applications such as drug delivery, hyperthermia cancer treatment, and magnetic resonance imaging contrast.

  13. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  14. Biomedical applications of nanotechnology.

    Science.gov (United States)

    Ramos, Ana P; Cruz, Marcos A E; Tovani, Camila B; Ciancaglini, Pietro

    2017-04-01

    The ability to investigate substances at the molecular level has boosted the search for materials with outstanding properties for use in medicine. The application of these novel materials has generated the new research field of nanobiotechnology, which plays a central role in disease diagnosis, drug design and delivery, and implants. In this review, we provide an overview of the use of metallic and metal oxide nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. The chemical and physical properties of the surface of these materials allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology that studies the surface effects emerging from nanostructured materials.

  15. Superhydrophobic Materials for Biomedical Applications

    Science.gov (United States)

    Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air state at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors’ future perspectives on the utility of superhydrophobic surfaces for biomedical applications. PMID:27449946

  16. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou

    2011-08-01

    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  17. Luminescent nanodiamonds for biomedical applications.

    Science.gov (United States)

    Say, Jana M; van Vreden, Caryn; Reilly, David J; Brown, Louise J; Rabeau, James R; King, Nicholas J C

    2011-12-01

    In recent years, nanodiamonds have emerged from primarily an industrial and mechanical applications base, to potentially underpinning sophisticated new technologies in biomedical and quantum science. Nanodiamonds are relatively inexpensive, biocompatible, easy to surface functionalise and optically stable. This combination of physical properties are ideally suited to biological applications, including intracellular labelling and tracking, extracellular drug delivery and adsorptive detection of bioactive molecules. Here we describe some of the methods and challenges for processing nanodiamond materials, detection schemes and some of the leading applications currently under investigation.

  18. Magnetic nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Krustev, P.; Ruskov, T.

    2007-01-01

    In this paper we describe different biomedical application using magnetic nanoparticles. Over the past decade, a number of biomedical applications have begun to emerge for magnetic nanoparticles of differing sizes, shapes, and compositions. Areas under investigation include targeted drug delivery, ultra-sensitive disease detection, gene therapy, high throughput genetic screening, biochemical sensing, and rapid toxicity cleansing. Magnetic nanoparticles exhibit ferromagnetic or superparamagnetic behavior, magnetizing strongly under an applied field. In the second case (superparamagnetic nanoparticles) there is no permanent magnetism once the field is removed. The superparamagnetic nanoparticles are highly attractive as in vivo probes or in vitro tools to extract information on biochemical systems. The optical properties of magnetic metal nanoparticles are spectacular and, therefore, have promoted a great deal of excitement during the last few decades. Many applications as MRI imaging and hyperthermia rely on the use of iron oxide particles. Moreover magnetic nanoparticles conjugated with antibodies are also applied to hyperthermia and have enabled tumor specific contrast enhancement in MRI. Other promising biomedical applications are connected with tumor cells treated with magnetic nanoparticles with X-ray ionizing radiation, which employs magnetic nanoparticles as a complementary radiate source inside the tumor. (authors)

  19. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  20. Biomedical Optical Imaging Technologies Design and Applications

    CERN Document Server

    2013-01-01

    This book provides an introduction to design of biomedical optical imaging technologies and their applications. The main topics include: fluorescence imaging, confocal imaging, micro-endoscope, polarization imaging, hyperspectral imaging, OCT imaging, multimodal imaging and spectroscopic systems. Each chapter is written by the world leaders of the respective fields, and will cover: principles and limitations of optical imaging technology, system design and practical implementation for one or two specific applications, including design guidelines, system configuration, optical design, component requirements and selection, system optimization and design examples, recent advances and applications in biomedical researches and clinical imaging. This book serves as a reference for students and researchers in optics and biomedical engineering.

  1. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  2. Modified chitosans for biomedical applications

    OpenAIRE

    Yalınca, Zülal

    2013-01-01

    ABSTRACT: The subject of this thesis is the exploration of the suitability of chitosan and some of its derivatives for some chosen biomedical applications. Chitosan-graft-poly (N-vinyl imidazole), Chitosan-tripolyphosphate and ascorbyl chitosan were synthesized and characterized for specific biomedical applications in line with their chemical functionalities. Chitosan-graft-poly (N-vinyl imidazole), Chi-graft-PNVI, was synthesized by two methods; via an N-protection route and without N-pr...

  3. Biomedical research applications

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The biomedical research Panel believes that the Calutron facility at Oak Ridge is a national and international resource of immense scientific value and of fundamental importance to continued biomedical research. This resource is essential to the development of new isotope uses in biology and medicine. It should therefore be nurtured by adequate support and operated in a way that optimizes its services to the scientific and technological community. The Panel sees a continuing need for a reliable supply of a wide variety of enriched stable isotopes. The past and present utilization of stable isotopes in biomedical research is documented in Appendix 7. Future requirements for stable isotopes are impossible to document, however, because of the unpredictability of research itself. Nonetheless we expect the demand for isotopes to increase in parallel with the continuing expansion of biomedical research as a whole. There are a number of promising research projects at the present time, and these are expected to lead to an increase in production requirements. The Panel also believes that a high degree of priority should be given to replacing the supplies of the 65 isotopes (out of the 224 previously available enriched isotopes) no longer available from ORNL

  4. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  5. Nanomaterials in biomedical applications

    DEFF Research Database (Denmark)

    Christiansen, Jesper de Claville; Potarniche, Catalina-Gabriela; Vuluga, Z.

    2011-01-01

    Advances in nano materials have lead to applications in many areas from automotive to electronics and medicine. Nano composites are a popular group of nano materials. Nanocomposites in medical applications provide novel solutions to common problems. Materials for implants, biosensors and drug del...

  6. Nanomaterials in biomedical applications

    DEFF Research Database (Denmark)

    Christiansen, Jesper de Claville; Potarniche, Catalina-Gabriela; Vuluga, Z.

    2011-01-01

    Advances in nano materials have lead to applications in many areas from automotive to electronics and medicine. Nano composites are a popular group of nano materials. Nanocomposites in medical applications provide novel solutions to common problems. Materials for implants, biosensors and drug...

  7. Polymer/metal nanocomposites for biomedical applications.

    Science.gov (United States)

    Zare, Yasser; Shabani, Iman

    2016-03-01

    Polymer/metal nanocomposites consisting of polymer as matrix and metal nanoparticles as nanofiller commonly show several attractive advantages such as electrical, mechanical and optical characteristics. Accordingly, many scientific and industrial communities have focused on polymer/metal nanocomposites in order to develop some new products or substitute the available materials. In the current paper, characteristics and applications of polymer/metal nanocomposites for biomedical applications are extensively explained in several categories including strong and stable materials, conductive devices, sensors and biomedical products. Moreover, some perspective utilizations are suggested for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  9. Gold Nanocages for Biomedical Applications**

    OpenAIRE

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where ...

  10. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  11. Biomedical applications of nanodiamond (Review)

    Science.gov (United States)

    Turcheniuk, K.; Mochalin, Vadym N.

    2017-06-01

    The interest in nanodiamond applications in biology and medicine is on the rise over recent years. This is due to the unique combination of properties that nanodiamond provides. Small size (∼5 nm), low cost, scalable production, negligible toxicity, chemical inertness of diamond core and rich chemistry of nanodiamond surface, as well as bright and robust fluorescence resistant to photobleaching are the distinct parameters that render nanodiamond superior to any other nanomaterial when it comes to biomedical applications. The most exciting recent results have been related to the use of nanodiamonds for drug delivery and diagnostics—two components of a quickly growing area of biomedical research dubbed theranostics. However, nanodiamond offers much more in addition: it can be used to produce biodegradable bone surgery devices, tissue engineering scaffolds, kill drug resistant microbes, help us to fight viruses, and deliver genetic material into cell nucleus. All these exciting opportunities require an in-depth understanding of nanodiamond. This review covers the recent progress as well as general trends in biomedical applications of nanodiamond, and underlines the importance of purification, characterization, and rational modification of this nanomaterial when designing nanodiamond based theranostic platforms.

  12. Opal web services for biomedical applications.

    Science.gov (United States)

    Ren, Jingyuan; Williams, Nadya; Clementi, Luca; Krishnan, Sriram; Li, Wilfred W

    2010-07-01

    Biomedical applications have become increasingly complex, and they often require large-scale high-performance computing resources with a large number of processors and memory. The complexity of application deployment and the advances in cluster, grid and cloud computing require new modes of support for biomedical research. Scientific Software as a Service (sSaaS) enables scalable and transparent access to biomedical applications through simple standards-based Web interfaces. Towards this end, we built a production web server (http://ws.nbcr.net) in August 2007 to support the bioinformatics application called MEME. The server has grown since to include docking analysis with AutoDock and AutoDock Vina, electrostatic calculations using PDB2PQR and APBS, and off-target analysis using SMAP. All the applications on the servers are powered by Opal, a toolkit that allows users to wrap scientific applications easily as web services without any modification to the scientific codes, by writing simple XML configuration files. Opal allows both web forms-based access and programmatic access of all our applications. The Opal toolkit currently supports SOAP-based Web service access to a number of popular applications from the National Biomedical Computation Resource (NBCR) and affiliated collaborative and service projects. In addition, Opal's programmatic access capability allows our applications to be accessed through many workflow tools, including Vision, Kepler, Nimrod/K and VisTrails. From mid-August 2007 to the end of 2009, we have successfully executed 239,814 jobs. The number of successfully executed jobs more than doubled from 205 to 411 per day between 2008 and 2009. The Opal-enabled service model is useful for a wide range of applications. It provides for interoperation with other applications with Web Service interfaces, and allows application developers to focus on the scientific tool and workflow development. Web server availability: http://ws.nbcr.net.

  13. Blockchain distributed ledger technologies for biomedical and health care applications.

    Science.gov (United States)

    Kuo, Tsung-Ting; Kim, Hyeon-Eui; Ohno-Machado, Lucila

    2017-11-01

    To introduce blockchain technologies, including their benefits, pitfalls, and the latest applications, to the biomedical and health care domains. Biomedical and health care informatics researchers who would like to learn about blockchain technologies and their applications in the biomedical/health care domains. The covered topics include: (1) introduction to the famous Bitcoin crypto-currency and the underlying blockchain technology; (2) features of blockchain; (3) review of alternative blockchain technologies; (4) emerging nonfinancial distributed ledger technologies and applications; (5) benefits of blockchain for biomedical/health care applications when compared to traditional distributed databases; (6) overview of the latest biomedical/health care applications of blockchain technologies; and (7) discussion of the potential challenges and proposed solutions of adopting blockchain technologies in biomedical/health care domains. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  14. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  15. Biomedical Applications of Nanodiamonds: An Overview.

    Science.gov (United States)

    Passeri, D; Rinaldi, F; Ingallina, C; Carafa, M; Rossi, M; Terranova, M L; Marianecci, C

    2015-02-01

    Nanodiamonds are a novel class of nanomaterials which have raised much attention for application in biomedical field, as they combine the possibility of being produced on large scale using relatively inexpensive synthetic processes, of being fluorescent as a consequence of the presence of nitrogen vacancies, of having their surfaces functionalized, and of having good biocompatibility. Among other applications, we mainly focus on drug delivery, including cell interaction, targeting, cancer therapy, gene and protein delivery. In addition, nanodiamonds for bone and dental implants and for antibacterial use is discussed. Techniques for detection and imaging of nanodiamonds in biological tissues are also reviewed, including electron microscopy, fluorescence microscopy, Raman mapping, atomic force microscopy, thermal imaging, magnetic resonance imaging, and positron emission tomography, either in vitro, in vivo, or ex vivo. Toxicological aspects related to the use of nanodiamonds are also discussed. Finally, patents, preclinical and clinical trials based on the use of nanodiamonds for biomedical applications are reviewed.

  16. Biomedical applications of control engineering

    CERN Document Server

    Hacısalihzade, Selim S

    2013-01-01

    Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engin­eering and biomedical engineering students as well as for medical prac­ti­tioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice.   The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like ·         Different models for the human operator, ·         Dosage and timing optimization in oral drug administration, ·         Measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, ·         Measure­ment and control of blood glucose le­vels both naturally and by means of external controllers in diabetes, and ·         Control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers....

  17. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu

    2014-01-01

    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.

  18. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Kulkarni, M; Gongadze, E; Perutkova, Š; A Iglič; Mazare, A; Schmuki, P; Kralj-Iglič, V; Milošev, I; Mozetič, M

    2015-01-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO 2 ) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO 2 nanotubes in cell interactions is based on the fact that TiO 2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO 2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  19. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  20. Application of infrared to biomedical sciences

    CERN Document Server

    Etehadtavakol, Mahnaz

    2017-01-01

    The book covers the latest updates in the application of infrared to biomedical sciences, a non-invasive, contactless, safe and easy approach imaging of skin and tissue temperatures. Its diagnostic procedure allows practitioners to identify the locations of abnormal chemical and blood vessel activity such as angiogenesis in body tissue. Its non-invasive approach works by applying the technology of the infrared camera and state-of-the-art software, where high-resolution digital infrared imaging technology benefits highly from enhanced image production, standardized image interpretation protocols, computerized comparison and storage, and sophisticated image enhancement and analysis. The book contains contributions from global prominent scientists in the area of infrared applications in biomedical studies. The target audience includes academics, practitioners, clinicians and students working in the area of infrared imaging in biomedicine.

  1. Biomedical applications of graphene and graphene oxide.

    Science.gov (United States)

    Chung, Chul; Kim, Young-Kwan; Shin, Dolly; Ryoo, Soo-Ryoon; Hong, Byung Hee; Min, Dal-Hee

    2013-10-15

    Graphene has unique mechanical, electronic, and optical properties, which researchers have used to develop novel electronic materials including transparent conductors and ultrafast transistors. Recently, the understanding of various chemical properties of graphene has facilitated its application in high-performance devices that generate and store energy. Graphene is now expanding its territory beyond electronic and chemical applications toward biomedical areas such as precise biosensing through graphene-quenched fluorescence, graphene-enhanced cell differentiation and growth, and graphene-assisted laser desorption/ionization for mass spectrometry. In this Account, we review recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications. Because of its excellent aqueous processability, amphiphilicity, surface functionalizability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, the hydrophobicity and flexibility of large-area graphene synthesized by chemical vapor deposition (CVD) allow this material to play an important role in cell growth and differentiation. The lack of acceptable classification standards of graphene derivatives based on chemical and physical properties has hindered the biological application of graphene derivatives. The development of an efficient graphene-based biosensor requires stable biofunctionalization of graphene derivatives under physiological conditions with minimal loss of their unique properties. For the development graphene-based therapeutics, researchers will need to build on the standardization of graphene derivatives and study the biofunctionalization of graphene to clearly understand how cells respond to exposure to graphene derivatives. Although several

  2. Marine polysaccharides: therapeutic efficacy and biomedical applications.

    Science.gov (United States)

    Lee, Young-Eun; Kim, Hyeongmin; Seo, Changwon; Park, Taejun; Lee, Kyung Bin; Yoo, Seung-Yup; Hong, Seong-Chul; Kim, Jeong Tae; Lee, Jaehwi

    2017-09-01

    The ocean contains numerous marine organisms, including algae, animals, and plants, from which diverse marine polysaccharides with useful physicochemical and biological properties can be extracted. In particular, fucoidan, carrageenan, alginate, and chitosan have been extensively investigated in pharmaceutical and biomedical fields owing to their desirable characteristics, such as biocompatibility, biodegradability, and bioactivity. Various therapeutic efficacies of marine polysaccharides have been elucidated, including the inhibition of cancer, inflammation, and viral infection. The therapeutic activities of these polysaccharides have been demonstrated in various settings, from in vitro laboratory-scale experiments to clinical trials. In addition, marine polysaccharides have been exploited for tissue engineering, the immobilization of biomolecules, and stent coating. Their ability to detect and respond to external stimuli, such as pH, temperature, and electric fields, has enabled their use in the design of novel drug delivery systems. Thus, along with the promising characteristics of marine polysaccharides, this review will comprehensively detail their various therapeutic, biomedical, and miscellaneous applications.

  3. Biomedical Applications of Zinc Oxide Nanomaterials

    Science.gov (United States)

    Zhang, Yin; Nayak, Tapas R.; Hong, Hao; Cai, Weibo

    2013-01-01

    Nanotechnology has witnessed tremendous advancement over the last several decades. Zinc oxide (ZnO), which can exhibit a wide variety of nanostructures, possesses unique semiconducting, optical, and piezoelectric properties hence has been investigated for a wide variety of applications. One of the most important features of ZnO nanomaterials is low toxicity and biodegradability. Zn2+ is an indispensable trace element for adults (~10 mg of Zn2+ per day is recommended) and it is involved in various aspects of metabolism. Chemically, the surface of ZnO is rich in -OH groups, which can be readily functionalized by various surface decorating molecules. In this review article, we summarized the current status of the use of ZnO nanomaterials for biomedical applications, such as biomedical imaging (which includes fluorescence, magnetic resonance, positron emission tomography, as well as dual-modality imaging), drug delivery, gene delivery, and biosensing of a wide array of molecules of interest. Research in biomedical applications of ZnO nanomaterials will continue to flourish over the next decade, and much research effort will be needed to develop biocompatible/biodegradable ZnO nanoplatforms for potential clinical translation. PMID:24206130

  4. Functional supramolecular polymers for biomedical applications.

    Science.gov (United States)

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biodegradable polymers for electrospinning: towards biomedical applications.

    Science.gov (United States)

    Kai, Dan; Liow, Sing Shy; Loh, Xian Jun

    2014-12-01

    Electrospinning has received much attention recently due to the growing interest in nano-technologies and the unique material properties. This review focuses on recent progress in applying electrospinning technique in production of biodegradable nanofibers to the emerging field of biomedical. It first introduces the basic theory and parameters of nanofibers fabrication, with focus on factors affecting the morphology and fiber diameter of biodegradable nanofibers. Next, commonly electrospun biodegradable nanofibers are discussed, and the comparison of the degradation rate of nanoscale materials with macroscale materials are highlighted. The article also assesses the recent advancement of biodegradable nanofibers in different biomedical applications, including tissue engineering, drug delivery, biosensor and immunoassay. Future perspectives of biodegradable nanofibers are discussed in the last section, which emphasizes on the innovation and development in electrospinning of hydrogels nanofibers, pore size control and scale-up productions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  7. Electroactive polymers for healthcare and biomedical applications

    Science.gov (United States)

    Bauer, Siegfried

    2017-04-01

    Electroactivity was noticed early in biological substances, including proteins, polynucleotides and enzymes, even piezoand pyroelectricity were found in wool, hair, wood, bone and tendon. Recently, ferroelectricity has been identified in a surprisingly large number of biologically relevant materials, including hydroxyapatite, aortic walls and elastin. Inspired by the variety of natural electroactive materials, a wealth of new elastomers and polymers were designed recently, including an all organic elastomer electret and self-healing dielectric elastomers. Let's further draw inspiration from nature and widen the utilization of electroactive polymers towards (mobile) healthcare and biomedical applications. Ferroelectrets, internally charged polymer foams with a strong piezoelectric thickness coefficient are employed in biomedical sensing, for example as blood pressure and pulse sensor, as vital signs monitor or for the detection of tonicclonic seizures. Piezo- and pyroelectric polymers are booming in printed electronics research. They provide electronic skin the ability to "feel" pressure and temperature changes, or to generate electrical energy from vibrations and motions, even from contractile and relaxation motions of the heart and lung. Dielectric elastomers are pioneered by StretchSense as wearable motion capture sensors, monitoring pressure, stretch, bend and shear, quantifying comfort in sports and healthcare. On the cellular level, electroactive polymer arrays are used to study mechanotransduction of individual cells. Ionic electroactive polymers show potential to be used in implantable electroactive biomedical devices. Already with the currently available science and technology, we are at the verge of witnessing the demonstration of truly complex bionic systems.

  8. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  9. Gold Nanocages for Biomedical Applications**

    Science.gov (United States)

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2008-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy. PMID:18648528

  10. Gold Nanocages for Biomedical Applications.

    Science.gov (United States)

    Skrabalak, Sara E; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2007-10-17

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl(4). The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy.

  11. Magnetic Nanoparticles for Biomedical Applications

    Science.gov (United States)

    Jing, Ying

    Nanotechnology is revolutionizing human's life. Synthesis and application of magnetic nanoparticles is a fast burgeoning field which has potential to bring significant advance in many fields, for example diagnosis and treatment in biomedical area. Novel nanoparticles to function efficiently and intelligently are in desire to improve the current technology. We used a magnetron-sputtering-based nanocluster deposition technique to synthesize magnetic nanoparticles in gas phase, and specifically engineered nanoparticles for different applications. Alternating magnetic field heating is emerging as a technique to assist cancer treatment or drug delivery. We proposed high-magnetic-moment Fe3Si particles with relatively large magnetic anisotropy energy should in principle provide superior performance. Such nanoparticles were experimentally synthesized and characterized. Their promising magnetic properties can contribute to heating performance under suitable alternating magnetic field conditions. When thermal energy is used for medical treatment, it is ideal to work in a designed temperature range. Biocompatible and "smart" magnetic nanoparticles with temperature self-regulation were designed from both materials science and biomedicine aspects. We chose Fe-Si material system to demonstrate the concept. Temperature dependent physical property was adjusted by tuning of exchange coupling between Fe atoms through incorporation of various amount of Si. The magnetic moment can still be kept in a promising range. The two elements are both biocompatible, which is favored by in-vivo medical applications. A combination of "smart" magnetic particles and thermo-sensitive polymer were demonstrated to potentially function as a platform for drug delivery. Highly sensitive diagnosis for point-of-care is in desire nowadays. We developed composition- and phase-controlled Fe-Co nanoparticles for bio-molecule detection. It has been demonstrated that Fe70Co30 nanoparticles and giant

  12. Potential biomedical applications of ion beam technology

    Science.gov (United States)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  13. Hydrogel-based devices for biomedical applications

    NARCIS (Netherlands)

    Deligkaris, Kosmas; Tadele, T.S.; Olthuis, Wouter; van den Berg, Albert

    2010-01-01

    This review paper presents hydrogel-based devices for biomedical applications. The first part of the paper gives a comprehensive, qualitative, theoretical overview of hydrogels' synthesis and operation. Crosslinking methods, operation principles and transduction mechanisms are discussed in this

  14. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  15. Biomedical image understanding methods and applications

    CERN Document Server

    Lim, Joo-Hwee; Xiong, Wei

    2015-01-01

    A comprehensive guide to understanding and interpreting digital images in medical and functional applications Biomedical Image Understanding focuses on image understanding and semantic interpretation, with clear introductions to related concepts, in-depth theoretical analysis, and detailed descriptions of important biomedical applications. It covers image processing, image filtering, enhancement, de-noising, restoration, and reconstruction; image segmentation and feature extraction; registration; clustering, pattern classification, and data fusion. With contributions from ex

  16. DNA nanotechnology and its applications in biomedical research.

    Science.gov (United States)

    Sun, Lifan; Yu, Lu; Shen, Wanqiu

    2014-09-01

    DNA nanotechnology, which uses DNA as a material to self-assemble designed nanostructures, including DNA 2D arrays, 3D nanostructures, DNA nanotubes and DNA nanomechanical devices, has showed great promise in biomedical applications. Various DNA nanostructures have been used for protein characterization, enzyme assembly, biosensing, drug delivery and biomimetic assemblies. In this review, we will present recent advances of DNA nanotechnology and its applications in biomedical research field.

  17. Fluid-structure interaction and biomedical applications

    CERN Document Server

    Galdi, Giovanni; Nečasová, Šárka

    2014-01-01

    This book presents, in a methodical way, updated and comprehensive descriptions and analyses of some of the most relevant problems in the context of fluid-structure interaction (FSI). Generally speaking, FSI is among the most popular and intriguing problems in applied sciences and includes industrial as well as biological applications. Various fundamental aspects of FSI are addressed from different perspectives, with a focus on biomedical applications. More specifically, the book presents a mathematical analysis of basic questions like the well-posedness of the relevant initial and boundary value problems, as well as the modeling and the numerical simulation of a number of fundamental phenomena related to human biology. These latter research topics include blood flow in arteries and veins, blood coagulation and speech modeling. We believe that the variety of the topics discussed, along with the different approaches used to address and solve the corresponding problems, will help readers to develop a more holis...

  18. Engineering Stem Cells for Biomedical Applications

    Science.gov (United States)

    Yin, Perry T.; Han, Edward

    2018-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134

  19. Engineering Stem Cells for Biomedical Applications.

    Science.gov (United States)

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Selected Topics in MicroNano-robotics for Biomedical Applications

    CERN Document Server

    2013-01-01

    Selected Topics in Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials and cutting-edge research results in micro/nanorobotics for biomedical applications. The book presents new sensing technology on nanofibers, new power supply techniques including miniature fuel cells and energy harvesting devices, and manipulation techniques including AFM-based nano-robotic manipulation, robot-aided optical tweezers, and robot-assisted catheter surgery systems. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Each chapter covers a different topic of the highly interdisciplinary area. Bring together the selected topics into ...

  1. Tritium AMS for biomedical applications

    International Nuclear Information System (INIS)

    Roberts, M.L.; Velsko, C.; Turteltaub, K.W.

    1993-08-01

    We are developing 3 H-AMS to measure 3 H activity of mg-sized biological samples. LLNL has already successfully applied 14 C AMS to a variety of problems in the area of biomedical research. Development of 3 H AMS would greatly complement these studies. The ability to perform 3 H AMS measurements at sensitivities equivalent to those obtained for 14 C will allow us to perform experiments using compounds that are not readily available in 14 C-tagged form. A 3 H capability would also allow us to perform unique double-labeling experiments in which we learn the fate, distribution, and metabolism of separate fractions of biological compounds

  2. Micro-systems in biomedical applications

    Science.gov (United States)

    Dario, Paolo; Chiara Carrozza, Maria; Benvenuto, Antonella; Menciassi, Arianna

    2000-06-01

    In this paper we analyse the main characteristics of some micro-devices which have been developed recently for biomedical applications. Among the many biomedical micro-systems proposed in the literature or already on the market, we have selected a few which, in our opinion, represent particularly well the technical problems to be solved, the research topics to be addressed and the opportunities offered by micro-system technology (MST) in the biomedical field. For this review we have identified four important areas of application of micro-systems in medicine and biology: (1) diagnostics (2) drug delivery; (3) neural prosthetics and tissue engineering; and (4) minimally invasive surgery. We conclude that MST has the potential to play a major role in the development of new medical instrumentation and to have a considerable industrial impact in this field.

  3. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    Science.gov (United States)

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  4. Medical and biomedical applications of shock waves

    CERN Document Server

    Loske, Achim M

    2017-01-01

    This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...

  5. Implantable biomedical microsystems design principles and applications

    CERN Document Server

    Bhunia, Swarup; Sawan, Mohamad

    2015-01-01

    Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each co

  6. Ethical Issues of Artificial Biomedical Applications

    OpenAIRE

    Alexiou, Athanasios; Psixa, Maria; Vlamos, Panagiotis

    2011-01-01

    Part 12: Medical Applications of ANN and Ethics of AI; International audience; While the plethora of artificial biomedical applications is enriched and combined with the possibilities of artificial intelligence, bioinformatics and nanotechnology, the variability in the ideological use of such concepts is associated with bioethical issues and several legal aspects. The convergence of bioethics and computer ethics, attempts to illustrate and approach problems, occurring by the fusion of human a...

  7. Production and Biomedical Applications of Probiotic Biosurfactants.

    Science.gov (United States)

    Fariq, Anila; Saeed, Ayesha

    2016-04-01

    Biosurfactants have been widely used for environmental and industrial applications. However, their use in medical field is still limited. Probiotic biosurfactants possess an immense antimicrobial, anti-adhesive, antitumor, and antibiofilm potential. Moreover, they have an additional advantage over conventional microbial surfactants because probiotics are an integral part of normal human microflora and their biosurfactants are innocuous to human. So, they can be effectively exploited for medicinal use. Present review is aimed to discourse the production and biomedical applications of probiotic biosurfactants.

  8. Bibliography of astatine chemistry and biomedical applications

    International Nuclear Information System (INIS)

    Berei, K.; Vasaros, L.

    1992-02-01

    An overall bibliography is presented on astatine chemistry and on the biomedical applications of its 211 At isotope. The references were grouped in the following chapters: General reviews; Discovery, Natural Occurence; Nuclear Data; Preparation, Handling, Radiation Risk; Physico-chemical Properties; Astatine Compounds and Chemical Reactions; Biological Effects and Applications. Entries are sorted alphabetically by authors name in each chapter, and cross-references to other chapters are provided if appropriate. (R.P.)

  9. Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications.

    Science.gov (United States)

    Santos, Hélder A; Mäkilä, Ermei; Airaksinen, Anu J; Bimbo, Luis M; Hirvonen, Jouni

    2014-04-01

    The research on porous silicon (PSi) materials for biomedical applications has expanded greatly since the early studies of Leigh Canham more than 25 years ago. Currently, PSi nanoparticles are receiving growing attention from the scientific biomedical community. These nanostructured materials have emerged as promising multifunctional and versatile platforms for nanomedicine in drug delivery, diagnostics and therapy. The outstanding properties of PSi, including excellent in vivo biocompatibility and biodegradability, have led to many applications of PSi for delivery of therapeutic agents. In this review, we highlight current advances and recent efforts on PSi nanoparticles regarding the production properties, efficient drug delivery, multidrug delivery, permeation across biological barriers, biosafety and in vivo tracking for biomedical applications. The constant boost on successful preclinical in vivo data reported so far makes this the 'golden age' for PSi, which is expected to finally be translated into the clinic in the near future.

  10. Marine Polysaccharides from Algae with Potential Biomedical Applications

    Science.gov (United States)

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  11. Marine polysaccharides from algae with potential biomedical applications.

    Science.gov (United States)

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-05-15

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  12. Marine Polysaccharides from Algae with Potential Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2015-05-01

    Full Text Available There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  13. Recent advances in terahertz technology for biomedical applications.

    Science.gov (United States)

    Sun, Qiushuo; He, Yuezhi; Liu, Kai; Fan, Shuting; Parrott, Edward P J; Pickwell-MacPherson, Emma

    2017-06-01

    Terahertz instrumentation has improved significantly in recent years such that THz imaging systems have become more affordable and easier to use. THz systems can now be operated by non-THz experts greatly facilitating research into many potential applications. Due to the non-ionising nature of THz light and its high sensitivity to soft tissues, there is an increasing interest in biomedical applications including both in vivo and ex vivo studies. Additionally, research continues into understanding the origin of contrast and how to interpret terahertz biomedical images. This short review highlights some of the recent work in these areas and suggests some future research directions.

  14. Magnetic Helical Micro- and Nanorobots: Toward Their Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Famin Qiu

    2015-03-01

    Full Text Available Magnetic helical micro- and nanorobots can perform 3D navigation in various liquids with a sub-micrometer precision under low-strength rotating magnetic fields (<10 mT. Since magnetic fields with low strengths are harmless to cells and tissues, magnetic helical micro/nanorobots are promising tools for biomedical applications, such as minimally invasive surgery, cell manipulation and analysis, and targeted therapy. This review provides general information on magnetic helical micro/nanorobots, including their fabrication, motion control, and further functionalization for biomedical applications.

  15. Combinatorial nanodiamond in pharmaceutical and biomedical applications.

    Science.gov (United States)

    Lim, Dae Gon; Prim, Racelly Ena; Kim, Ki Hyun; Kang, Eunah; Park, Kinam; Jeong, Seong Hoon

    2016-11-30

    One of the newly emerging carbon materials, nanodiamond (ND), has been exploited for use in traditional electric materials and this has extended into biomedical and pharmaceutical applications. Recently, NDs have attained significant interests as a multifunctional and combinational drug delivery system. ND studies have provided insights into granting new potentials with their wide ranging surface chemistry, complex formation with biopolymers, and combination with biomolecules. The studies that have proved ND inertness, biocompatibility, and low toxicity have made NDs much more feasible for use in real in vivo applications. This review gives an understanding of NDs in biomedical engineering and pharmaceuticals, focusing on the classified introduction of ND/drug complexes. In addition, the diverse potential applications that can be obtained with chemical modification are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review

    International Nuclear Information System (INIS)

    Huang, Shih-Hung; Juang, Ruey-Shin

    2011-01-01

    Nanotechnology offers tremendous potential for future medical diagnosis and therapy. Various types of nanoparticles have been extensively studied for numerous biochemical and biomedical applications. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated by an external magnetic field, and enhancement of contrast in magnetic resonance imaging. As a result, these nanoparticles could have many applications including bacterial detection, protein purification, enzyme immobilization, contamination decorporation, drug delivery, hyperthermia, etc. All these biochemical and biomedical applications require that these nanoparticles should satisfy some prerequisites including high magnetization, good stability, biocompatibility, and biodegradability. Because of the potential benefits of multimodal functionality in biomedical applications, in this account highlights some general strategies to generate magnetic nanoparticle-based multifunctional nanostructures. After these magnetic nanoparticles are conjugated with proper ligands (e.g., nitrilotriacetate), polymers (e.g., polyacrylic acid, chitosan, temperature- and pH-sensitive polymers), antibodies, enzymes, and inorganic metals (e.g., gold), such biofunctional magnetic nanoparticles exhibit many advantages in biomedical applications. In addition, the multifunctional magnetic nanoparticles have been widely applied in biochemical fields including enzyme immobilization and protein purification.

  17. Nanocellulose and its Composites for Biomedical Applications.

    Science.gov (United States)

    Dumanli, Ahu Gumrah

    2017-01-01

    Cellulose is a natural linear biopolymer, which is constituted of an assembly of cellulose nanofibrils in a hierarchical order. Nanocelluloses in particular show great promise as a cost-effective advanced material for biomedical applications because of their biocompatibility, biodegradability, and low cytotoxicity. Moreover, with their chemical functionality they can be easily modified to yield useful products. While nature uses the hierarchical nanostructure of cellulose as the load-bearing constituent in plants, a significant amount of research has been directed toward the fabrication of advanced cellulosic materials with various nanostructures and functional properties. Such nanocelluloses are widely applied in medical implants, tissue engineering, drug delivery, wound healing, diagnostics, and other medical applications with real examples in this field. There are also emerging fields being developed to use nanocelluloses and their composites in more novel ways in biomedical applications such as 3D printing and magnetically responsive materials. In this mini-review, recent advances in the design and fabrication of nanocellulose-based materials and composites are presented with a special emphasis on their suitability for material requirements for biomedical applications as well as the new directions and challenges that the materials might face in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Some biomedical applications of ferrofluids

    Science.gov (United States)

    Roger, J.; Pons, J. N.; Massart, R.; Halbreich, A.; Bacri, J. C.

    1999-03-01

    Ferrofluids are colloidal solutions of iron oxide magnetic nanoparticles in either a polar or no polar liquid. We present here two biological applications using maghemite (γ Fe_{2O3}) ferrofluids: magnetic cell sorting and magnetocytolysis. The first application employs magnetic particles binding a biological effector, which is capable to recognize the target cells specifically. These cells become magnetic and can be sorted in a gradient of magnetic field. We describe first the various steps of the synthesis of a biocompatible ferrofluid and the grafting an effector protein onto the particles. We then describe the use of particles carrying annexin V in the separation and quantification of damaged erythrocytes in blood samples. This very sensitive technique can be used to follow the erythrocytes ageing of normal blood samples during their storage under blood bank conditions or to detect the membrane modifications that are associated with some pathologies such as malaria or Alzheimer's disease. The dependence of the magnetic susceptibility versus the frequency is a way to transform magnetic energy into thermal energy. Magnetocytolysis is the destruction of cells, carrying magnetic particles, through the action of an alternating magnetic field (about 1 MHz). We present here preliminary experiments with macrophages, which demonstrate the method's feasibility and the formation of the non-specific interactions between the cells and the magnetic particles.

  19. Potential of Starch Nanocomposites for Biomedical Applications

    Science.gov (United States)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  20. Harnessing supramolecular peptide nanotechnology in biomedical applications.

    Science.gov (United States)

    Chan, Kiat Hwa; Lee, Wei Hao; Zhuo, Shuangmu; Ni, Ming

    2017-01-01

    The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1) nanofibrils in biomaterials that can interact with cells, 2) nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3) nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected.

  1. Diversity of biomedical applications of acoustic radiation force.

    Science.gov (United States)

    Sarvazyan, Armen

    2010-02-01

    This manuscript is a summary of the paper presented at the ICU'2009 on biomedical applications of acoustic radiation force with emphasis on emerging applications in microfluidics, biotechnology, biosensors and assessment of the skeletal system. In this brief overview of current and projected applications of radiation force, no detailed description of the experiments illustrating particular applications are given as this would result in a far different and longer paper. Various mechanisms of acoustic radiation force generations and their biomedical applications are considered. These mechanisms include: (a) change in the density of energy of the propagating wave due to absorption and scattering; (b) spatial variations of energy density in standing acoustic waves; (c) reflection from inclusions, walls or other interfaces; and (d) spatial variations in propagation velocity. The widest area of biomedical applications of radiation force is related to medical diagnostics, to assessing viscoelastic properties of biological tissues and fluids, and specifically to elasticity imaging. Another actively explored area is related to manipulation of biological cells and particles in standing ultrasonic wave fields. There are several poorly explored areas of potential biomedical applications of ultrasound radiation force. A promising area of biomedical application of ultrasound radiation force is stirring and mixing of microvolumes of liquids in microfluidics and in various biotechnological application where diffusion rate is the main factor limiting the efficiency of the process of interest. A new technique, called "swept frequency method", based on the use of radiation force in the standing acoustic wave for microstirring of liquids is described. The potential applications of the ultrasound radiation force for assessment of skeletal system, where conventional bone ultrasonometry are inapplicable are considered.

  2. Nanodiamonds of Laser Synthesis for Biomedical Applications.

    Science.gov (United States)

    Perevedentseva, E; Peer, D; Uvarov, V; Zousman, B; Levinson, O

    2015-02-01

    In recent decade detonation nanodiamonds (DND), discovered 50 years ago and used in diverse technological processes, have been actively applied in biomedical research as a drug and gene delivery carrier, a contrast agent for bio-imaging and diagnostics and an adsorbent for protein separation and purification. In this work we report about nanodiamonds of high purity produced by laser assisted technique, compare them with DND and consider the prospect and advantages of their use in the said applications.

  3. Multijet atmospheric plasma device for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Zablotskyy, Vitaliy A.; Churpita, Olexandr; Hubička, Zdeněk; Jastrabík, Lubomír; Dejneka, Alexandr

    2011-01-01

    Roč. 1, č. 2 (2011), s. 135-141 ISSN 1947-5764 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : atmospheric plasma * plasma sources * biomedical applications Subject RIV: BL - Plasma and Gas Discharge Physics

  4. Biomedical applications of nano-antioxidant.

    Science.gov (United States)

    Watal, Geeta; Watal, Aparna; Rai, Prashant Kumar; Rai, Devendra Kumar; Sharma, Gaurav; Sharma, Bechan

    2013-01-01

    For centuries now, antioxidants have been known to provide better health by neutralizing the free radicals which are continuously produced in the human body. In normal circumstances, self-antioxidant defense system of the human body is capable of quantitatively managing the free radicals. However, in certain cases, which are at the threshold of developing diseases like diabetes and Alzheimer's, the human body calls for an external source of antioxidants. Since orally delivered antioxidants are easily destroyed by acids and enzymes present in the human system, only a small portion of what is consumed actually gets absorbed. Hence, there is a recognized and urgent need to develop effective methods for efficiently delivering antioxidants to the required sites. This chapter provides an in-depth overview and analysis of two such methods and processes-nano-encapsulation and nano-dendrimers. Among the various nanoscale delivery mechanisms, nano-encapsulation has emerged as a key and efficient delivery process. Designed as a spongelike polymer, nano-encapsulated antioxidants provide a protective vehicle which keeps antioxidants from being destroyed in the human gut and ensures their better absorption in the digestive tract. In fact, the nano-capsules bind themselves to the intestinal walls and pour antioxidants directly into the intestinal cells, which allow them to be absorbed directly into the blood stream. Another distinguished and popular mode for delivering antioxidants is that of nano-polymers known as dendrimers. Dendrimers involve multiple branches and sub-branches of atoms radiating out from a central core. Dendrimers afford a high level of control over their architectural design, including their size, shape, branching length or density, and surface functionality. Such flexibility makes these nanostructures ideal carriers in biomedical applications such as drug delivery, gene transfection, and imaging. Antioxidant dendrimers, made out of numerous units of

  5. Ultrawideband radar imaging system for biomedical applications

    International Nuclear Information System (INIS)

    Jafari, H.M.; Liu, W.; Hranilovic, S.; Deen, M.J.

    2006-01-01

    Ultrawideband (UWB) (3-10 GHz) radar imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration and resolution characteristics. The underlying principle of UWB cancer detection is a significant contrast in dielectric properties, which is estimated to be greater than 2:1 between normal and cancerous tissue, compared to a few-percent contrast in radiographic density exploited by x rays. This article presents a feasibility study of the UWB imaging of liver cancer tumors, based on the frequency-dependent finite difference time domain method. The reflection, radiation, and scattering properties of UWB pulses as they propagate through the human body are studied. The reflected and back-scattered electromagnetic energies from cancer tumors inside the liver are also investigated. An optimized, ultrawideband antenna was designed for near field operation, allowing for the reduction of the air-skin interface. It will be placed on the fat-liver tissue phantom with a malignant tumor stimulant. By performing an incremental scan over the phantom and removing early time artifacts, including reflection from the antenna ends, images based on the back-scattered signal from the tumor can be constructed. This research is part of our effort to develop a UWB cancer detection system with good detection and localization properties

  6. Organic Bioelectronic Tools for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Susanne Löffler

    2015-11-01

    Full Text Available Organic bioelectronics forms the basis of conductive polymer tools with great potential for application in biomedical science and medicine. It is a rapidly growing field of both academic and industrial interest since conductive polymers bridge the gap between electronics and biology by being electronically and ionically conductive. This feature can be employed in numerous ways by choosing the right polyelectrolyte system and tuning its properties towards the intended application. This review highlights how active organic bioelectronic surfaces can be used to control cell attachment and release as well as to trigger cell signaling by means of electrical, chemical or mechanical actuation. Furthermore, we report on the unique properties of conductive polymers that make them outstanding materials for labeled or label-free biosensors. Techniques for electronically controlled ion transport in organic bioelectronic devices are introduced, and examples are provided to illustrate their use in self-regulated medical devices. Organic bioelectronics have great potential to become a primary platform in future bioelectronics. We therefore introduce current applications that will aid in the development of advanced in vitro systems for biomedical science and of automated systems for applications in neuroscience, cell biology and infection biology. Considering this broad spectrum of applications, organic bioelectronics could lead to timely detection of disease, and facilitate the use of remote and personalized medicine. As such, organic bioelectronics might contribute to efficient healthcare and reduced hospitalization times for patients.

  7. Biocompatible electrospun polymer blends for biomedical applications.

    Science.gov (United States)

    Munj, Hrishikesh Ramesh; Nelson, M Tyler; Karandikar, Prathamesh Sadanand; Lannutti, John Joseph; Tomasko, David Lane

    2014-10-01

    Blends of natural and synthetic polymers have received considerable attention as biomaterials due to the potential to optimize both mechanical and bioactive properties. Electrospinning of biocompatible polymers is an efficient method producing biomimetic topographies suited to various applications. In the ultimate application, electrospun scaffolds must also incorporate drug/protein delivery for effective cell growth and tissue repair. This study explored the suitability of a ternary Polymethylmethacrylate-Polycaprolactone-gelatin blend in the preparation of electrospun scaffolds for biomedical applications. Tuning the blend composition allows control over scaffold mechanical properties and degradation rate. Significant improvements were observed in the mechanical properties of the blend compared with the individual components. In order to study drug delivery potential, triblends were impregnated with the model compound Rhodamine-B using sub/supercritical CO₂ infusion under benign conditions. Results show significantly distinct release profiles of the impregnated dye from the triblends. Specific factors such as porosity, degradation rate, stress relaxation, dye-polymer interactions, play key roles in impregnation and release. Each polymer component of the triblends shows distinct behavior during impregnation and release process. This affects the aforementioned factors and the release profiles of the dye. Careful control over blend composition and infusion conditions creates the flexibility needed to produce biocompatible electrospun scaffolds for a variety of biomedical applications. © 2014 Wiley Periodicals, Inc.

  8. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Vanessa F. Cardoso

    2018-02-01

    Full Text Available Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.

  9. Radioctivation analysis: methods and biomedical applications

    International Nuclear Information System (INIS)

    Maziere, B.

    1976-01-01

    After a brief survey of activation analysis and its fields of application in biomedicine the physical bases of neutron activation are reviewed and the different neutron sources and nuclear reactions used are described. In the next chapter 'in vitro' analysis techniques are described and some biomedical applications developed. Carried out in the Frederic Joliot Hospital Service (S.H.F.J.) these applications concern research on the thyroid metabolism or hydromineral equilibrium in young patients under chronic dialysis, together with a nutritional study of some oligo-elements in infants. Chapter three deals with analysis 'in vivo', its methods and applications. Three examples are described: thyroid iodine determination, elementary analysis of the living animal and in vivo analysis of bone tissue in man. The article concludes with a discussion on the future prospects offered by the use of charged particles or muons for activation analysis purposes [fr

  10. Functionalized magnetic nanoparticles for biomedical applications.

    Science.gov (United States)

    Gudovan, Dragoș; Balaure, Paul Cătălin; Mihăiescu, Dan Eduard; Fudulu, Adrian; Purcăreanu, Bogdan; Radu, Mihai

    2015-01-01

    Functionalized magnetic nanoparticles followed two main directions in the field of biomedical applications: one direction is as image enhancing agents for magnetic resonance imaging (MRI) and the other is as drugdelivery devices for various biologically-active substances. A third field which just emerges in nanomedicine is the field of the so-called theranostic devices which combines in the same delivery vehicle both the therapeutic agent and the contrast substance. The advantages of using nanoparticles instead of larger carriers for delivery of both drug and image contrast enhancing agents will be highlighted throughout this review article. Despite the ever increasing number of articles reporting both in vitro and in vivo studies carried out on functionalized magnetic nanoparticles and envisaging their potential biomedical applications, only few formulations reached the phase of clinical trials and even fewer became marketed products. The perspectives in the field are open, since new drugs require new delivery devices and possibly new means of functionalization. At the same time, the field of nanomedicine also provides the opportunity to better exploit drugs that are already in clinical use by improving their bioavailability through appropriate nanoformulations.

  11. Harnessing supramolecular peptide nanotechnology in biomedical applications

    Directory of Open Access Journals (Sweden)

    Chan KH

    2017-02-01

    Full Text Available Kiat Hwa Chan,1 Wei Hao Lee,2 Shuangmu Zhuo,3 Ming Ni3 1Division of Science, Yale-NUS College, Singapore; 2Department of Chemistry, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA; 3Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China Abstract: The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1 nanofibrils in biomaterials that can interact with cells, 2 nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3 nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected. Keywords: peptides, self-assembly, nanotechnology

  12. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications

    Science.gov (United States)

    Zhang, Heng

    2015-01-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354

  13. Recent advances in glycerol polymers: chemistry and biomedical applications.

    Science.gov (United States)

    Zhang, Heng; Grinstaff, Mark W

    2014-11-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, the underlying chemistry of glycerol that provides access to a range of monomers for subsequent polymerizations is described. Then, the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth are reviewed. Next, several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity are described. Fourth, the growing market opportunity for the use of polymers in medicine is described. Finally, the findings are concluded and summarized, as well as the potential opportunities for continued research efforts are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recent advances in biomedical applications of accelerator mass spectrometry

    Directory of Open Access Journals (Sweden)

    Hah Sang

    2009-06-01

    Full Text Available Abstract The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS, an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1 toxicant and drug metabolism, 2 neuroscience, 3 pharmacokinetics, and 4 nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided.

  15. Engineering β-sheet peptide assemblies for biomedical applications.

    Science.gov (United States)

    Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen

    2016-03-01

    Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.

  16. Chitosan Modification and Pharmaceutical/Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jiali Zhang

    2010-06-01

    Full Text Available Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1 enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2 the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3 synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy.

  17. Recent advances in carbon nanodots: synthesis, properties and biomedical applications

    Science.gov (United States)

    Miao, Peng; Han, Kun; Tang, Yuguo; Wang, Bidou; Lin, Tao; Cheng, Wenbo

    2015-01-01

    Herein, a mini review is presented concerning the most recent research progress of carbon nanodots, which have emerged as one of the most attractive photoluminescent materials. Different synthetic methodologies to achieve advanced functions and better photoluminescence performances are summarized, which are mainly divided into two classes: top-down and bottom-up. The inspiring properties, including photoluminescence emission, chemiluminescence, electrochemical luminescence, peroxidase-like activity and toxicity, are discussed. Moreover, the biomedical applications in biosensing, bioimaging and drug delivery are reviewed.

  18. Micro and nanotechnology for biological and biomedical applications.

    Science.gov (United States)

    Lim, Chwee Teck; Han, Jongyoon; Guck, Jochen; Espinosa, Horacio

    2010-10-01

    This special issue contains some of the current state-of-the-art development and use of micro and nanotechnological tools, devices and techniques for both biological and biomedical research and applications. These include nanoparticles for bioimaging and biosensing, optical and biophotonic techniques for probing diseases at the nanoscale, micro and nano-fabricated tools for elucidating molecular mechanisms of mechanotransduction in cell and molecular biology and cell separation microdevices and techniques for isolating and enriching targeted cells for disease detection and diagnosis. Although some of these works are still at the research stage, there is no doubt that some of the important outcomes will eventually see actual biomedical applications in the not too distant future.

  19. Nanostructured Diamond Device for Biomedical Applications.

    Science.gov (United States)

    Fijalkowski, M; Karczemska, A; Lysko, J M; Zybala, R; KozaneckI, M; Filipczak, P; Ralchenko, V; Walock, M; Stanishevsky, A; Mitura, S

    2015-02-01

    Diamond is increasingly used in biomedical applications because of its unique properties such as the highest thermal conductivity, good optical properties, high electrical breakdown voltage as well as excellent biocompatibility and chemical resistance. Diamond has also been introduced as an excellent substrate to make the functional microchip structures for electrophoresis, which is the most popular separation technique for the determination of analytes. In this investigation, a diamond electrophoretic chip was manufactured by a replica method using a silicon mold. A polycrystalline 300 micron-thick diamond layer was grown by the microwave plasma-assisted CVD (MPCVD) technique onto a patterned silicon substrate followed by the removal of the substrate. The geometry of microstructure, chemical composition, thermal and optical properties of the resulting free-standing diamond electrophoretic microchip structure were examined by CLSM, SFE, UV-Vis, Raman, XRD and X-ray Photoelectron Spectroscopy, and by a modified laser flash method for thermal property measurements.

  20. Optical nanoparticles: synthesis and biomedical application

    Science.gov (United States)

    Nhung Tran, Hong; Nghiem, Thi Ha Lien; Thuy Duong Vu, Thi; Chu, Viet Ha; Huan Le, Quang; Nhung Hoang, Thi My; Thanh Nguyen, Lai; Pham, Duc Minh; Thuan Tong, Kim; Hoa Do, Quang; Vu, Duong; Nghia Nguyen, Trong; Tan Pham, Minh; Nguyen Duong, Cao; Thuy Tran, Thanh; Son Vu, Van; Thuy Nguyen, Thi; Nguyen, Thi Bich Ngoc; Tran, Anh Duc; Thuong Trinh, Thi; Nguyen, Thi Thai An

    2015-01-01

    This paper presents a summary of our results on studies of synthesis and biomedical application of optical nanoparticles. Gold, dye-doped silica based and core-shell multifunctional multilayer (SiO2/Au, Fe3O4/SiO2, Fe3O4/SiO2/Au) water-monodispersed nanoparticles were synthesized by chemical route and surface modified with proteins and biocompatible chemical reagents. The particles were conjugated with antibody or aptamer for specific detecting and imaging bacteria and cancer cells. The photothermal effects of gold nanoshells (SiO2/Au and Fe3O4/SiO2/Au) on cells and tissues were investigated. The nano silver substrates were developed for surface enhanced Raman scattering (SERS) spectroscopy to detect melamine.

  1. Designing fractal nanostructured biointerfaces for biomedical applications.

    Science.gov (United States)

    Zhang, Pengchao; Wang, Shutao

    2014-06-06

    Fractal structures in nature offer a unique "fractal contact mode" that guarantees the efficient working of an organism with an optimized style. Fractal nanostructured biointerfaces have shown great potential for the ultrasensitive detection of disease-relevant biomarkers from small biomolecules on the nanoscale to cancer cells on the microscale. This review will present the advantages of fractal nanostructures, the basic concept of designing fractal nanostructured biointerfaces, and their biomedical applications for the ultrasensitive detection of various disease-relevant biomarkers, such microRNA, cancer antigen 125, and breast cancer cells, from unpurified cell lysates and the blood of patients. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Encapsulated magnetite particles for biomedical application

    CERN Document Server

    Landfester, K

    2003-01-01

    The process of miniemulsification allows the generation of small, homogeneous, and stable droplets containing monomer or polymer precursors and magnetite which are then transferred by polymer reactions to the final polymer latexes, keeping their particular identity without serious exchange kinetics involved. It is shown that the miniemulsion process can excellently be used for the formulation of polymer-coated magnetic nanoparticles which can further be used for biomedical applications. The use of high shear, appropriate surfactants, and the addition of a hydrophobe in order to suppress the influence of Ostwald ripening are key factors for the formation of the small and stable droplets in miniemulsion and will be discussed. Two different approaches based on miniemulsion processes for the encapsulation of magnetite into polymer particles will be presented in detail.

  3. Functional modification of chitosan for biomedical application

    Science.gov (United States)

    Tang, Ruogu

    Chitosan is a linear polysaccharide. Normally commercial chitosan consists of randomly distributed beta-(1-4)-linked D-glucosamine (deacetylated proportion) and N-acetyl-D-glucosamine (acetylated proportion) together. Chitosan has been proved to be a multifunctional biopolymer that presents several unique properties due to free amino groups in the repeating unit therefore chitosan has been widely applied in various areas. To be specific, provided by the excellent biocompatibility, chitosan is expected to be used in biological and medical applications including wound dressing, implants, drug carrier/delivery, etc. In this thesis, we worked on chitosan functionalization for biomedical application. The thesis are composed of three parts: In the first part, we focused on modifying the chitosan thin film, chemically introducing the nitric oxide functional groups on chitosan film. We covalently bonded small molecule diazeniumdiolates onto the chitosan films and examined the antimicrobial function and biocompatibility. Commercial chitosan was cast into films from acidic aqueous solutions. Glutaraldehyde reacted with the chitosan film to introduce aldehyde groups onto the chitosan film (GA-CS film). GA-CS reacted with a small molecule NO donor, NOC-18, to covalently immobilize NONO groups onto the polymer (NO-CS film). The-CHO and [NONO] group were verified by FT IR, UV and Griess reagent. The NO releasing rate in aqueous solution and and thermal stability were studied quantitatively to prove its effectiveness. A series of antimicrobial tests indicated that NO-CS films have multiple functions: 1. It could inhibit the bacteria growth in nutrient rich environment; 2. It could directly inactivate bacteria and biofilm; 3. It could reduce the bacteria adherence on the film surface as well as inhibit biofilm formation. In addition, the NO-CS film was proved to be biocompatible with cell and it was also compatible with other antibiotics like Amoxicillin. In the second part, we

  4. Advances in electronic-nose technologies developed for biomedical applications

    Science.gov (United States)

    Dan Wilson; Manuela. Baietto

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and...

  5. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and

  6. TLC/HPTLC in Biomedical Applications

    Science.gov (United States)

    Mohammad, A.; Moheman, A.

    The main objective of this chapter is to encapsulate the applications of thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC) as used in the analysis of compounds of pharmaceutical importance. The chapter discusses the advantages of using TLC or HPTLC for biomedical applications and summarizes important information on stationary and mobile phases, adopted methodology, sample application, zone detection, and identification and quantification of amino acids and proteins, carbohydrates, lipids, bile acids, drugs, vitamins, and porphyrins in biological matrices such as blood, urine, feces, saliva, cerebrospinal fluid, body tissues, etc. Among the stationary phases, silica gel has been the most preferred layer material in combination of mixed aqueous- organic or multicomponent organic solvent systems as mobile phase. For quantitative determination of analyte in various matrices, densitometry has been more commonly used. According to the literature survey, the interest of chromatographers in using the TLC/HPTLC has been in the following order: drugs > amino acids and proteins > lipids > bile acids > carbohydrates/vitamins > porphyrins.

  7. Biomedical Applications of Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Lorenza Petrini

    2011-01-01

    behaviors, due to the peculiar crystallographic structure of the alloys, assure the recovery of the original shape even after large deformations and the maintenance of a constant applied force in correspondence of significant displacements. These properties, joined with good corrosion and bending resistance, biological and magnetic resonance compatibility, explain the large diffusion, in the last 20 years, of SMA in the production of biomedical devices, in particular for mini-invasive techniques. In this paper a detailed review of the main applications of NiTi alloys in dental, orthopedics, vascular, neurological, and surgical fields is presented. In particular for each device the main characteristics and the advantages of using SMA are discussed. Moreover, the paper underlines the opportunities and the room for new ideas able to enlarge the range of SMA applications. However, it is fundamental to remember that the complexity of the material and application requires a strict collaboration between clinicians, engineers, physicists and chemists for defining accurately the problem, finding the best solution in terms of device design and accordingly optimizing the NiTi alloy properties.

  8. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications.

    Science.gov (United States)

    Kaplan, Jonah; Grinstaff, Mark

    2015-08-28

    Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications.

  9. Magnetic wires in MEMS and bio-medical applications

    International Nuclear Information System (INIS)

    Barbic, Mladen

    2002-01-01

    Magnetic wires of appropriate design have special features making them useful to micro-electromechanical systems and bio-medical applications. Several applications that exploit the properties of magnetic wires are reviewed including: (a) a magnetic micro-manipulation technique that utilizes integrated micro-coils and magnetic micro-wires for localized positioning of micron-sized magnetic objects, (b) integrated micro-coil/micro-wire system operating as a micro-fluidic micro-motor, (c) mechanical tweezers using magneto-static interaction between two magnetic micro-wires, and (d) ultra-high gradient magnetic separation system based on porous membranes partially filled with magnetic wires

  10. Phytofabricated gold nanoparticles and their biomedical applications.

    Science.gov (United States)

    Ahmad, Bashir; Hafeez, Nabia; Bashir, Shumaila; Rauf, Abdur; Mujeeb-Ur-Rehman

    2017-05-01

    In a couple of decades, nanotechnology has become a trending technology owing to its integrated science collection that incorporates variety of fields such as chemistry, physics, medicine, catalytic processes, food processing industries, electronics and energy sectors. One of the emerging fields of nanotechnology that has gained momentous admiration is nano-biotechnology. Nano-biotechnology is an integrated combination of biology with nanotechnology that encompasses the tailoring, and synthesis of small particles that are less than 100nm in size and subsequent exploitation of these particles for their biological applications. Though the variety of physical techniques and chemical procedures are known for the nanoparticles synthesis, biological approach is considered to be the preferred one. Environmental hazards and concerns associated with the physical and chemical approaches of nanoparticles synthesis has added impetus and zenith to the biological approach involving the use of plants and microorganisms. The current review article is focused on the synthesis of plant-derived (phytochemical) gold nanoparticles alongside their scope in biomedical applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Polyurethane biocompatible silver bionanocomposites for biomedical applications

    Science.gov (United States)

    Filip, D.; Macocinschi, D.; Paslaru, E.; Munteanu, B. S.; Dumitriu, R. P.; Lungu, M.; Vasile, C.

    2014-11-01

    Bionanocomposite membranes based on polyurethane (PU), extracellular matrix (EM), and silver nanoparticles (AgNPs) were prepared by applying both solvent casting method and electrospinning/electrospraying method. PU-EM-Ag compositions were electrospun/electrosprayed onto PU membrane to realize improved biocompatible biomaterials. Surface morphological characteristics and wettability properties were investigated by SEM and AFM techniques and water contact angle measurements. Water contact angle depends on surface chemistry and the two methods employed for preparation of biomembranes as well as roughness of the membrane surfaces. Rheological study brings information on electrospinability of the polymer solutions/dispersions. Silver nanoparticles greatly influence the electrospinability of the polymer dispersions because of the increase in dynamic viscosity with the increasing silver content. Native PU and PU incorporated with low contents of AgNPs less than 0.3 % show high cell proliferation and good biocompatibility. The electrospun PU-EM-Ag nanobiocomposite membranes bring the advantage of using of low amounts of bioactive and biocidal components. The obtained silver nanobiocomposite membranes possess good bioactivity and non-cytotoxicity necessary for biomedical device applications. The obtained nanobiocomposite membranes are expected to find application for medical devices such as urinary catheters, wound dressings, etc.

  12. Wireless RF communication in biomedical applications

    International Nuclear Information System (INIS)

    Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon

    2008-01-01

    This paper focuses on wireless transcutaneous RF communication in biomedical applications. It discusses current technology, restrictions and applications and also illustrates possible future developments. It focuses on the application in biotelemetry where the system consists of a transmitter and a receiver with a transmission link in between. The transmitted information can either be a biopotential or a nonelectric value like arterial pressure, respiration, body temperature or pH value. In this paper the use of radio-frequency (RF) communication and identification for those applications is described. Basically, radio-frequency identification or RFID is a technology that is analogous to the working principle of magnetic barcode systems. Unlike magnetic barcodes, passive RFID can be used in extreme climatic conditions—also the tags do not need to be within close proximity of the reader. Our proposed solution is to exploit an exciting new development in making circuits on polymers without the need for battery power. This solution exploits the principle of a surface acoustic wave (SAW) device on a polymer substrate. The SAW device is a set of interdigitated conducting fingers on the polymer substrate. If an appropriate RF signal is sent to the device, the fingers act as microantennas that pick up the signal, and this energy is then converted into acoustic waves that travel across the surface of the polymer substrate. Being a flexible polymer, the acoustic waves cause stresses that can either contract or stretch the material. In our case we mainly focus on an RF controllable microvalve that could ultimately be used for fertility control

  13. Nanoparticle-Based Delivery System for Biomedical Applications of RNAi

    DEFF Research Database (Denmark)

    Yang, Chuanxu

    RNA interference (RNAi) is a post-transcriptional gene silencing process triggered by double-strand RNA, including synthetic short interfering RNA (siRNA) and endogenous microRNA (miRNA). RNAi has attracted great attention for developing a new class of therapeutics, due to its capability to speci......RNA/miRNA and transport them to the action site in the target cells. This thesis describes the development of various nanocarriers for siRNA/miRNA delivery and investigate their potential biomedical applications including: anti-inflammation, tissue engineering and cancer...

  14. Biomedical applications of polypeptide multilayer nanofilms and microcapsules

    Science.gov (United States)

    Rudra, Jai Simha S.

    The past few years have witnessed considerable growth in synthetic polymer chemistry and physics, biomaterials science, and nano-scale engineering. Research on polypeptide multilayer films, coatings, and microcapsules is located at the intersection of these areas and are promising materials for applications in medicine, biotechnology, environmental science. Most envisioned applications of polypeptide multilayers have a biomedical bent. This dissertation on polypeptide multilayer film applications covers key points of polypeptides as materials, means of polymer production, film preparation, film characterization methods, and key points of current research in basic science. Both commercial and designed peptides have been used to fabricate films for in-vitro applications such as antimicrobial coatings and cell culture coatings and also microcapsules for drug delivery applications. Other areas of product development include artificial red blood cells, anisotropic coatings, enantioselective membranes, and artificial viruses.

  15. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  16. Potential applications of microbial surfactants in biomedical sciences.

    Science.gov (United States)

    Singh, Pooja; Cameotra, Swaranjit Singh

    2004-03-01

    The main commercial use of biosurfactants is in pollution remediation because of their ability to stabilize emulsions. This enhances the solubility and availability of hydrophobic pollutants, thus increasing their potential for biodegradation. One useful property of many biosurfactants that has not been reviewed extensively is their antimicrobial activity. Several biosurfactants have strong antibacterial, antifungal and antiviral activity. Other medically relevant uses of biosurfactants include their role as anti-adhesive agents to pathogens, making them useful for treating many diseases and as therapeutic and probiotic agents. Here, we discuss some of the new and exciting applications and related developments of various microbial surfactants in the field of biomedical sciences.

  17. Pressure-tuning FTIR Spectroscopy: Applications to Biomedical Research and Diagnosis

    Science.gov (United States)

    Wong, Patrick T. T.

    2004-08-01

    A pressure-tuning FTIR spectroscopic technology for the investigation of the structural and dynamic properties at the molecular level in biological cells and tissues has been developed in our laboratory. This allowed us to study the molecular basis of various biomedical events including structural and dynamic changes of bio-molecules in diseased tissues and cells. After a brief introduction of this technology and a summary of various biomedical applications of this technology, details of the biomedical applications to the study of structural changes in bio-molecules of human tissues during the neoplastic transition and to the screening of human cervical cancer and precancerous lesions including clinical statistics are given.

  18. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Sera Shin

    2016-02-01

    Full Text Available Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed.

  19. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Science.gov (United States)

    Shin, Sera; Seo, Jungmok; Han, Heetak; Kang, Subin; Kim, Hyunchul; Lee, Taeyoon

    2016-01-01

    Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed. PMID:28787916

  20. Magnesium-titanium alloys for biomedical applications

    Science.gov (United States)

    Hoffmann, Ilona

    Magnesium has been identified as a promising biodegradable implant material because it does not cause systemic toxicity and can reduce stress shielding. However, it corrodes too quickly in the body. Titanium, which is already used ubiquitously for implants, was chosen as the alloying element because of its proven biocompatibility and corrosion resistance in physiological environments. Thus, alloying magnesium with titanium is expected to improve the corrosion resistance of magnesium. Mg-Ti alloys with a titanium content ranging from 5 to 35 at.-% were successfully synthesized by mechanical alloying. Spark plasma sintering was identified as a processing route to consolidate the alloy powders made by ball-milling into bulk material without destroying the alloy structure. This is an important finding as this metastable Mg-Ti alloy can only be heated up to max. 200C° for a limited time without reaching the stable state of separated magnesium and titanium. The superior corrosion behavior of Mg 80-Ti20 alloy in a simulated physiological environment was shown through hydrogen evolution tests, where the corrosion rate was drastically reduced compared to pure magnesium and electrochemical measurements revealed an increased potential and resistance compared to pure magnesium. Cytotoxicity tests on murine pre-osteoblastic cells in vitro confirmed that supernatants made from Mg-Ti alloy were no more cytotoxic than supernatants prepared with pure magnesium. Mg and Mg-Ti alloys can also be used to make novel polymer-metal composites, e.g., with poly(lactic-co-glycolic acid) (PLGA) to avoid the polymer's detrimental pH drop during degradation and alter its degradation pattern. Thus, Mg-Ti alloys can be fabricated and consolidated while achieving improved corrosion resistance and maintaining cytocompatibility. This work opens up the possibility of using Mg-Ti alloys for fracture fixation implants and other biomedical applications. KEYWORDS: Magnesium, titanium, corrosion

  1. Protein-based nanotubes for biomedical applications

    Science.gov (United States)

    Komatsu, Teruyuki

    2012-03-01

    This review presents highlights of our latest results of studies directed at developing protein-based smart nanotubes for biomedical applications. These practical biocylinders were prepared using an alternate layer-by-layer (LbL) assembly of protein and oppositely charged poly(amino acid) into a nanoporous polycarbonate (PC) membrane (pore diameter, 400 nm), with subsequent dissolution of the template. The tube wall typically comprises six layers of poly-l-arginine (PLA) and human serum albumin (HSA) [(PLA/HSA)3]. The obtained (PLA/HSA)3 nanotubes (NTs) can be dispersed in aqueous medium and are hydrated significantly. Several ligands for HSA, such as zinc(ii) protoporphyrin IX (ZnPP), were bound to the HSA component in the cylindrical wall. Similar NTs comprising recombinant HSA mutant, which has a strong binding affinity for ZnPP, captured the ligand more tightly. The Fe3O4-coated NTs can be collected easily by exposure to a magnetic field. The hybrid NTs bearing a single avidin layer as an internal wall captured biotin-labeled nanoparticles into the central channel when their particle size is sufficiently small to enter the pores. The NTs with an antibody surface interior entrapped human hepatitis B virus with size selectivity. It is noteworthy that the infectious Dane particles were encapsulated completely into the hollows. Other HSA-based NTs having an α-glucosidase inner wall hydrolysed a glucopyranoside to yield α-d-glucose. A perspective of the practical use of the protein-based NTs is also described.

  2. Switchable and responsive surfaces and materials for biomedical applications

    CERN Document Server

    Zhang, Johnathan

    2015-01-01

    Surface modification of biomaterials can ultimately determine whether a material is accepted or rejected from the human body, and a responsive surface can further make the material ""smart"" and ""intelligent"". Switchable and Responsive Surfaces and Materials for Biomedical Applications outlines synthetic and biological materials that are responsive under different stimuli, their surface design and modification techniques, and applicability in regenerative medicine/tissue engineering,  drug delivery, medical devices, and biomedical diagnostics. Part one provides a detailed overview of swit

  3. Diode laser based light sources for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André; Marschall, Sebastian; Jensen, Ole Bjarlin

    2013-01-01

    Diode lasers are by far the most efficient lasers currently available. With the ever-continuing improvement in diode laser technology, this type of laser has become increasingly attractive for a wide range of biomedical applications. Compared to the characteristics of competing laser systems, diode...... imaging. This review provides an overview of the latest development of diode laser technology and systems and their use within selected biomedical applications....

  4. Pixel readout electronics for LHC and biomedical applications

    CERN Document Server

    Blanquart, L; Comes, G; Delpierre, P A; Fischer, P; Hausmann, J C; Keil, M; Lindner, Manfred; Meuser, S; Wermes, N

    2000-01-01

    The demanding requirements for pixel readout electronics for high- energy physics experiments and biomedical applications are reviewed. Some examples of the measured analog performance of prototype chips are given. The readout architectures of the PIxel readout for the ATlas experiment (PIRATE) chip suited for LHC experiments and of the multi-picture element counter (MPEC) counting chip targeted for biomedical applications are presented. First results with complete chip-sensor assemblies are also shown. (12 refs).

  5. Development of polyphenolic nanoparticles for biomedical applications

    Science.gov (United States)

    Cheng, Huaitzung Andrew

    enough to be uptaken into mammalian cells. Furthermore, by self-assembling with gadolinium, pseudotannins can effectively attenuate the signal of gadolinium based MRI contrast agents. This in conjunction with oxidation responsive decomplexation could be a viable option for diagnosing the severity and risk of rupture of atherosclerotic plaques. Also, we demonstrate that pegylated compounds can easily be incorporated into pseudotannin nanoparticles to impart cell targeting functionality. The subsequent uptake of pseudotannin nanoparticles into breast cancer cells demonstrated the ability to increase their sensitivity to UV radiation. The creation of synthetic tannin-like polymers leads to directly to making a variety of self-assembling, stimuli responsive, and bioactive nanoparticles well-suited for various biomedical applications.

  6. Responsive polymer brushes for biomedical applications

    NARCIS (Netherlands)

    Akkilic, Namik; de Vos, Wiebe Matthijs; Zhang, Johnathan

    2015-01-01

    The development of biomedical devices, biosensors, and medical implants is critically dependent on the engineering of “smart” surfaces that can adapt or respond to their local environment. The responsive polymer brush can be considered one of the most promising systems to create such smart surfaces.

  7. Harnessing supramolecular peptide nanotechnology in biomedical applications

    OpenAIRE

    Chan, Kiat Hwa; Lee, Wei Hao; Zhuo, Shuangmu; Ni, Ming

    2017-01-01

    Kiat Hwa Chan,1 Wei Hao Lee,2 Shuangmu Zhuo,3 Ming Ni3 1Division of Science, Yale-NUS College, Singapore; 2Department of Chemistry, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA; 3Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China Abstract: The harnessing of peptides in biomedic...

  8. Development of thermal energy storage materials for biomedical applications.

    Science.gov (United States)

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits.

  9. Development of new metallic alloys for biomedical applications.

    Science.gov (United States)

    Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko

    2012-11-01

    New low modulus β-type titanium alloys for biomedical applications are still currently being developed. Strong and enduring β-type titanium alloy with a low Young's modulus are being investigated. A low modulus has been proved to be effective in inhibiting bone atrophy, leading to good bone remodeling in a bone fracture model in the rabbit tibia. Very recently β-type titanium alloys with a self-tunable modulus have been proposed for the construction of removable implants. Nickel-free low modulus β-type titanium alloys showing shape memory and super elastic behavior are also currently being developed. Nickel-free stainless steel and cobalt-chromium alloys for biomedical applications are receiving attention as well. Newly developed zirconium-based alloys for biomedical applications are proving very interesting. Magnesium-based or iron-based biodegradable biomaterials are under development. Further, tantalum, and niobium and its alloys are being investigated for biomedical applications. The development of new metallic alloys for biomedical applications is described in this paper. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Recent progress in biomedical applications of magnetic nanoparticles

    KAUST Repository

    Giouroudi, Ioanna

    2010-06-01

    Magnetic nanoparticles have been proposed for biomedical applications for several years. Various research groups worldwide have focused on improving their synthesis, their characterization techniques and the specific tailoring of their properties. Yet, it is the recent, impressive advances in nanotechnology and biotechnology which caused the breakthrough in their successful application in biomedicine. This paper aims at reviewing some current biomedical applications of magnetic nanoparticles as well as some recent patents in this field. Special emphasis is placed on i) hyperthermia, ii) therapeutics iii) diagnostics. Future prospects are also discussed. © 2010 Bentham Science Publishers Ltd.

  11. Comprehensive review on electrospinning of starch polymer for biomedical applications.

    Science.gov (United States)

    Hemamalini, Thillaipandian; Giri Dev, Venkateshwarapuram Rengaswami

    2018-01-01

    Starch is an emerging polymer in biomedical research area due to its ease of availability, low- cost and biological values. Starch polymer has been used as powder and film in applications such as tissue engineering and hemostatic application. Starch in fibrous form is very difficult to produce due to the branched amylopectin structure. With the advent of electrospinning fibrous form of starch is attempted by various researchers. The present paper reports comprehensive review of attempts made on electrospinning of starch and its potential applications in biomedical and tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  13. [3D visualization and information interaction in biomedical applications].

    Science.gov (United States)

    Pu, F; Fan, Y; Jiang, W; Zhang, M; Mak, A F; Chen, J

    2001-06-01

    3D visualization and virtual reality are important trend in the development of modern science and technology, and as well in the studies on biomedical engineering. This paper presents a computer procedure developed for 3D visualization in biomedical applications. The biomedical models are constructed in slice sequences based on polygon cells and information interaction is realized on the basis of OpenGL selection mode in particular consideration of the specialties in this field such as irregularity in geometry and complexity in material etc. The software developed has functions of 3D model construction and visualization, real-time modeling transformation, information interaction and so on. It could serve as useful platform for 3D visualization in biomedical engineering research.

  14. Nanocellulose in Polymer Composites and Biomedical: Research and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan [ORNL; Tekinalp, Halil L [ORNL; Peter, William H [ORNL; Eberle, Cliff [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL

    2014-01-01

    Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thus been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.

  15. Bioactive Phenothiazines and Benzo[a]phenothiazines: Spectroscopic Studies, and Biological and Biomedical Properties and Applications

    Science.gov (United States)

    Aaron, J. J.; Gaye Seye, M. D.; Trajkovska, S.; Motohashi, N.

    Recent progress in spectroscopic, photophysical, photochemical and analytical studies, as well as in the biological and biomedical properties of bioactive phenothiazines and benzophenothiazines, is reviewed. Their electronic absorption and luminescence properties, and their complexation and interactions in organized media are discussed. Various applications, including analytical studies, relative to phenothiazines and benzophenothiazines are described. Among the important biological and biomedical properties of these compounds, their neurological effects, their antibacterial, antifungal, antiviral, antiparasitic and antitumour activities, and their cytotoxicity are particularly reviewed.

  16. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal

    2017-01-01

    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  17. Engineering artificial machines from designable DNA materials for biomedical applications.

    Science.gov (United States)

    Qi, Hao; Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng; Wang, Lin

    2015-06-01

    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.

  18. Stimuli Responsive Poly(Vinyl Caprolactam Gels for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Kummara Madhusudana Rao

    2016-01-01

    Full Text Available Poly(vinyl caprolactam (PNVCL is one of the most important thermoresponsive polymers because it is similar to poly(N-isopropyl acrylamide. PNVCL precipitates from aqueous solutions in a physiological temperature range (32–34 °C. The use of PNVCL instead of PNIPAM is considered advantageous because of the assumed lower toxicity of PNVCL. PNVCL copolymer gels are sensitive to external stimuli, such as temperature and pH; which gives them a wide range of biomedical applications and consequently attracts considerable scientific interest. This review focuses on the recent studies on PNVCL-based stimuli responsive three dimensional hydrogels (macro, micro, and nano for biomedical applications. This review also covers the future outlooks of PNVCL-based gels for biomedical applications, particularly in the drug delivery field.

  19. Application of nanotechnology in antimicrobial finishing of biomedical textiles

    Science.gov (United States)

    Zille, Andrea; Almeida, Luís; Amorim, Teresa; Carneiro, Noémia; Fátima Esteves, Maria; Silva, Carla J.; Souto, António Pedro

    2014-09-01

    In recent years, the antimicrobial nanofinishing of biomedical textiles has become a very active, high-growth research field, assuming great importance among all available material surface modifications in the textile industry. This review offers the opportunity to update and critically discuss the latest advances and applications in this field. The survey suggests an emerging new paradigm in the production and distribution of nanoparticles for biomedical textile applications based on non-toxic renewable biopolymers such as chitosan, alginate and starch. Moreover, a relationship among metal and metal oxide nanoparticle (NP) size, its concentration on the fabric, and the antimicrobial activity exists, allowing the optimization of antimicrobial functionality.

  20. Stochastic monotony signature and biomedical applications.

    Science.gov (United States)

    Demongeot, Jacques; Galli Carminati, Giuliana; Carminati, Federico; Rachdi, Mustapha

    2015-12-01

    We introduce a new concept, the stochastic monotony signature of a function, made of the sequence of the signs that indicate if the function is increasing or constant (sign +), or decreasing (sign -). If the function results from the averaging of successive observations with errors, the monotony sign is a random binary variable, whose density is studied under two hypotheses for the distribution of errors: uniform and Gaussian. Then, we describe a simple statistical test allowing the comparison between the monotony signatures of two functions (e.g., one observed and the other as reference) and we apply the test to four biomedical examples, coming from genetics, psychology, gerontology, and morphogenesis. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. Polymeric and Ceramic Nanoparticles in Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Aura-Ileana Moreno-Vega

    2012-01-01

    Full Text Available Materials in the nanometer size range may possess unique and beneficial properties, which are very useful for different medical applications including stomatology, pharmacy, and implantology tissue engineering. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. Polymeric and ceramic nanoparticles have been extensively studied as particulate carriers in the pharmaceutical and medical fields, because they show promise as drug delivery systems as a result of their controlled- and sustained-release properties, subcellular size, and biocompatibility with tissue and cells. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents. Nanotechnology is showing promising developments in many areas and may benefit our health and welfare. However, a wide range of ethical issues has been raised by this innovative science. Many authorities believe that these advancements could lead to irreversible disasters if not limited by ethical guidelines.

  2. Beyond KERMA - neutron data for biomedical applications

    International Nuclear Information System (INIS)

    Blomgren, J.; Olsson, N.

    2003-01-01

    Presently, many new applications of fast neutrons are emerging or under development, like dose effects due to cosmic-ray neutrons for airplane crew, fast-neutron cancer therapy, studies of electronic failures induced by cosmic-ray neutrons, and accelerator-driven incineration of nuclear waste and energy production technologies. All these areas would benefit from improved neutron dosimetry. In this paper, the present rapid progress on measurements of double-differential neutron-induced nuclear reaction data are described. With such data at hand, the full response of, in principle, any system, including human tissue, can be calculated in detail. This could potentially revolutionise our understanding of biological effects in tissue due to fast neutrons. (author)

  3. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-08-01

    Full Text Available Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted.

  4. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Science.gov (United States)

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho; Chan, Wai Yee

    2015-01-01

    Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted. PMID:26287217

  5. Applications of Micro-Raman Imaging in Biomedical Research

    NARCIS (Netherlands)

    Otto, Cornelis; de Grauw, C.J.; de Grauw, C.J.; Duindam, J.J.; Duindam, J.J.; Sijtsema, N.M.; Greve, Jan

    1997-01-01

    Recent results are presented of the application of imaging micro-Raman spectrometers in cellular biophysics and biomedical research. Various micro-Raman spectrometers have been developed that are now routinely applied in these fields. Results are presented that were obtained with a linescan Raman

  6. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Rakovich Yury

    2008-01-01

    Full Text Available AbstractNanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  7. Biofuel cells for biomedical applications: colonizing the animal kingdom.

    Science.gov (United States)

    Falk, Magnus; Narváez Villarrubia, Claudia W; Babanova, Sofia; Atanassov, Plamen; Shleev, Sergey

    2013-07-22

    Interdisciplinary research has combined the efforts of many scientists and engineers to gain an understanding of biotic and abiotic electrochemical processes, materials properties, biomedical, and engineering approaches for the development of alternative power-generating and/or energy-harvesting devices, aiming to solve health-related issues and to improve the quality of human life. This review intends to recapitulate the principles of biofuel cell development and the progress over the years, thanks to the contribution of cross-disciplinary researchers that have combined knowledge and innovative ideas to the field. The emergence of biofuel cells, as a response to the demand of electrical power devices that can operate under physiological conditions, are reviewed. Implantable biofuel cells operating inside living organisms have been envisioned for over fifty years, but few reports of implanted devices have existed up until very recently. The very first report of an implanted biofuel cell (implanted in a grape) was published only in 2003 by Adam Heller and his coworkers. This work was a result of earlier scientific efforts of this group to "wire" enzymes to the electrode surface. The last couple of years have, however, seen a multitude of biofuel cells being implanted and operating in different living organisms, including mammals. Herein, the evolution of the biofuel concept, the understanding and employment of catalyst and biocatalyst processes to mimic biological processes, are explored. These potentially green technology biodevices are designed to be applied for biomedical applications to power nano- and microelectronic devices, drug delivery systems, biosensors, and many more. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fabrication of Porous Stainless Steel 316L for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Noor F. Mat

    2017-01-01

    Full Text Available Porous metals are very attractive materials for biomedical application as the physical and mechanical properties of these materials can be tailored similarly to the natural bone. In this work, porous stainless steel 316L has been fabricated by foam replication method. This method offers a lot of advantages including of easy processing technique, very economic, does not involve the use of toxic chemical and capable of producing porous structure that almost similar to natural bone. The porous stainless steel 316L (SS316L samples were prepared by varying the SS316L composition from 40 wt% to 60 wt%. Sintering process was carried out at 1250°C in a vacuum furnace. The microstructure and pore size were observed and determined through Scanning Electron Microscope (SEM. Archimedes method was used to measure the samples density, while compression test was carried out to determine the compressive strength and elastic modulus. The average pore size for samples with 50 wt% and 60 wt% SS316L are 268μm and 299μm respectively. Samples with 40 wt% SS316L experienced the largest shrinkage which is 33% while the sample with 60 wt% SS316L experienced the smallest shrinkage which is 21%. The density and porosity of the porous SS316L with 50 wt% SS316L are 0.43g/cm3 and 93.6% respectively, and for porous SS316L with 60 wt% SS316L are 0.69 g/cm3 and 89.2% respectively. The modulus of elasticity and compressive strength for porous SS316L with 60 wt% SS316L are 0.46 GPa and 56 MPa respectively. All these properties are in the range of the natural bone properties. Besides, the cytotoxicity test showed that this porous SS316L does not have a cytotoxic potential for biomedical implant.

  9. Engineered core-shell nanoparticles for biomedical applications

    OpenAIRE

    Vogt, Carmen Mihaela

    2010-01-01

    The necessity for synthesis of nanoparticles with well controlled size and morphology emerged with the development in recent years of novel advanced applications especially in biomedical related fields. These applications require nanoparticles with more complex architecture such as multifunctional nanoparticles (i.e. core–shell structures) that can carry several components with different embedded functionalities. In this thesis, we developed core–shell nanoparticles (CSNPs) with finely tuned ...

  10. Biomedical and therapeutic applications of biosurfactants

    OpenAIRE

    Rodrigues, L. R.; Teixeira, J. A.

    2010-01-01

    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases and as therapeutic agents due to their antibacterial, antifungal and antiviral activities. Furthermore, their role as anti-adhesive agents against several pathogens illustrate their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction of a large n...

  11. Lensfree Computational Microscopy Tools and their Biomedical Applications

    Science.gov (United States)

    Sencan, Ikbal

    Conventional microscopy has been a revolutionary tool for biomedical applications since its invention several centuries ago. Ability to non-destructively observe very fine details of biological objects in real time enabled to answer many important questions about their structures and functions. Unfortunately, most of these advance microscopes are complex, bulky, expensive, and/or hard to operate, so they could not reach beyond the walls of well-equipped laboratories. Recent improvements in optoelectronic components and computational methods allow creating imaging systems that better fulfill the specific needs of clinics or research related biomedical applications. In this respect, lensfree computational microscopy aims to replace bulky and expensive optical components with compact and cost-effective alternatives through the use of computation, which can be particularly useful for lab-on-a-chip platforms as well as imaging applications in low-resource settings. Several high-throughput on-chip platforms are built with this approach for applications including, but not limited to, cytometry, micro-array imaging, rare cell analysis, telemedicine, and water quality screening. The lack of optical complexity in these lensfree on-chip imaging platforms is compensated by using computational techniques. These computational methods are utilized for various purposes in coherent, incoherent and fluorescent on-chip imaging platforms e.g. improving the spatial resolution, to undo the light diffraction without using lenses, localization of objects in a large volume and retrieval of the phase or the color/spectral content of the objects. For instance, pixel super resolution approaches based on source shifting are used in lensfree imaging platforms to prevent under sampling, Bayer pattern, and aliasing artifacts. Another method, iterative phase retrieval, is utilized to compensate the lack of lenses by undoing the diffraction and removing the twin image noise of in-line holograms

  12. Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Madalina Elena Grigore

    2016-11-01

    Full Text Available This study aims to provide an updated survey of the main synthesis methods of copper oxide (CuO nanoparticles in order to obtain tailored nanosystems for various biomedical applications. The synthesis approach significantly impacts the properties of such nanoparticles and these properties in turn have a significant impact on their biomedical applications. Although not widely investigated as an efficient drug delivery system, CuO nanoparticles have great biological properties including effective antimicrobial action against a wide range of pathogens and also drug resistant bacteria. These properties have led to the development of various approaches with direct applications to the biomedical field, such as tailored surfaces with antimicrobial effect, wound dressings and modified textiles. It is also believed that these nanosystems could represent efficient alternatives in the development of smart systems utilized both for the detection of pathogens and for the treatment of infections.

  13. Multifaceted Biomedical Applications of Functional Graphene Nanomaterials to Coated Substrates, Patterned Arrays and Hybrid Scaffolds

    Directory of Open Access Journals (Sweden)

    Yong Cheol Shin

    2017-11-01

    Full Text Available Because of recent research advances in nanoscience and nanotechnology, there has been a growing interest in functional nanomaterials for biomedical applications, such as tissue engineering scaffolds, biosensors, bioimaging agents and drug delivery carriers. Among a great number of promising candidates, graphene and its derivatives—including graphene oxide and reduced graphene oxide—have particularly attracted plenty of attention from researchers as novel nanobiomaterials. Graphene and its derivatives, two-dimensional nanomaterials, have been found to have outstanding biocompatibility and biofunctionality as well as exceptional mechanical strength, electrical conductivity and thermal stability. Therefore, tremendous studies have been devoted to employ functional graphene nanomaterials in biomedical applications. Herein, we focus on the biological potentials of functional graphene nanomaterials and summarize some of major literature concerning the multifaceted biomedical applications of functional graphene nanomaterials to coated substrates, patterned arrays and hybrid scaffolds that have been reported in recent years.

  14. Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles

    Science.gov (United States)

    Grigore, Madalina Elena; Biscu, Elena Ramona; Holban, Alina Maria; Gestal, Monica Cartelle; Grumezescu, Alexandru Mihai

    2016-01-01

    This study aims to provide an updated survey of the main synthesis methods of copper oxide (CuO) nanoparticles in order to obtain tailored nanosystems for various biomedical applications. The synthesis approach significantly impacts the properties of such nanoparticles and these properties in turn have a significant impact on their biomedical applications. Although not widely investigated as an efficient drug delivery system, CuO nanoparticles have great biological properties including effective antimicrobial action against a wide range of pathogens and also drug resistant bacteria. These properties have led to the development of various approaches with direct applications to the biomedical field, such as tailored surfaces with antimicrobial effect, wound dressings and modified textiles. It is also believed that these nanosystems could represent efficient alternatives in the development of smart systems utilized both for the detection of pathogens and for the treatment of infections. PMID:27916867

  15. Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives

    Science.gov (United States)

    Zhang, Xiaoyong; Wang, Ke; Liu, Meiying; Zhang, Xiqi; Tao, Lei; Chen, Yiwang; Wei, Yen

    2015-07-01

    The development of polymeric luminescent nanomaterials for biomedical applications has recently attracted a large amount of attention due to the remarkable advantages of these materials compared with small organic dyes and fluorescent inorganic nanomaterials. Among these polymeric luminescent nanomaterials, polymeric luminescent nanomaterials based on dyes with aggregation-induced emission (AIE) properties should be of great research interest due to their unique AIE properties, the designability of polymers and their multifunctional potential. In this review, the recent advances in the design and biomedical applications of polymeric luminescent nanomaterials based on AIE dyes is summarized. Various design strategies for incorporation of these AIE dyes into polymeric systems are included. The potential biomedical applications such as biological imaging, and use in biological sensors and theranostic systems of these polymeric AIE-based nanomaterials have also been highlighted. We trust this review will attract significant interest from scientists from different research fields in chemistry, materials, biology and interdisciplinary areas.

  16. Potential biomedical applications of marine algae.

    Science.gov (United States)

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-11-01

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2016-05-01

    Full Text Available Sangiliyandi Gurunathan, Jin-Hoi Kim Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. Keywords: biomedical applications, cancer therapy, drug delivery, graphene, graphene-related materials, tissue engineering, toxicity 

  18. Fabrication of keratin-silica hydrogel for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi; Madhan, Balaraman, E-mail: bmadhan76@yahoo.co.in

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. - Highlights: • Keratin-silica hydrogel has been fabricated using sol–gel technique. • The hydrogel shows appropriate textural properties. • The hydrogel promotes fibroblast cells proliferation. • The hydrogel has potential soft tissue engineering applications like wound healing.

  19. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications.

    Science.gov (United States)

    Moura, Duarte; Mano, João F; Paiva, Maria C; Alves, Natália M

    2016-01-01

    Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications.

  20. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    performance of nanocrystalline diamond films is reviewed from an application-specific perspective, covering topics such as enhancement of cellular adhesion, anti-fouling coatings, non-thrombogenic surfaces, micropatterning of cells and proteins, and immobilization of biomolecules for bioassays. In order...

  1. Nano/micro-scale magnetophoretic devices for biomedical applications

    International Nuclear Information System (INIS)

    Lim, Byeonghwa; Kim, CheolGi; Vavassori, Paolo; Sooryakumar, R

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology. (topical review)

  2. Nano/micro-scale magnetophoretic devices for biomedical applications

    Science.gov (United States)

    Lim, Byeonghwa; Vavassori, Paolo; Sooryakumar, R.; Kim, CheolGi

    2017-01-01

    In recent years there have been tremendous advances in the versatility of magnetic shuttle technology using nano/micro-scale magnets for digital magnetophoresis. While the technology has been used for a wide variety of single-cell manipulation tasks such as selection, capture, transport, encapsulation, transfection, or lysing of magnetically labeled and unlabeled cells, it has also expanded to include parallel actuation and study of multiple bio-entities. The use of nano/micro-patterned magnetic structures that enable remote control of the applied forces has greatly facilitated integration of the technology with microfluidics, thereby fostering applications in the biomedical arena. The basic design and fabrication of various scaled magnets for remote manipulation of individual and multiple beads/cells, and their associated energies and forces that underlie the broad functionalities of this approach, are presented. One of the most useful features enabled by such advanced integrated engineering is the capacity to remotely tune the magnetic field gradient and energy landscape, permitting such multipurpose shuttles to be implemented within lab-on-chip platforms for a wide range of applications at the intersection of cellular biology and biotechnology.

  3. Silkworm Sericin: Properties and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Regina Inês Kunz

    2016-01-01

    Full Text Available Silk sericin is a natural polymer produced by silkworm, Bombyx mori, which surrounds and keeps together two fibroin filaments in silk thread used in the cocoon. The recovery and reuse of sericin usually discarded by the textile industry not only minimizes environmental issues but also has a high scientific and commercial value. The physicochemical properties of the molecule are responsible for numerous applications in biomedicine and are influenced by the extraction method and silkworm lineage, which can lead to variations in molecular weight and amino acid concentration of sericin. The presence of highly hydrophobic amino acids and its antioxidant potential make it possible for sericin to be applied in the food and cosmetic industry. The moisturizing power allows indications as a therapeutic agent for wound healing, stimulating cell proliferation, protection against ultraviolet radiation, and formulating creams and shampoos. The antioxidant activity associated with low digestibility of sericin that expands the application in the medical field, such as antitumour, antimicrobial and anti-inflammatory agent, anticoagulant, acts in colon health, improving constipation and protects the body from obesity through improved plasma lipid profile. In addition, the properties of sericin allow its application as a culture medium and cryopreservation, in tissue engineering and for drug delivery, demonstrating its effective use, as an important biomaterial.

  4. Silkworm Sericin: Properties and Biomedical Applications.

    Science.gov (United States)

    Kunz, Regina Inês; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Natali, Maria Raquel Marçal

    2016-01-01

    Silk sericin is a natural polymer produced by silkworm, Bombyx mori , which surrounds and keeps together two fibroin filaments in silk thread used in the cocoon. The recovery and reuse of sericin usually discarded by the textile industry not only minimizes environmental issues but also has a high scientific and commercial value. The physicochemical properties of the molecule are responsible for numerous applications in biomedicine and are influenced by the extraction method and silkworm lineage, which can lead to variations in molecular weight and amino acid concentration of sericin. The presence of highly hydrophobic amino acids and its antioxidant potential make it possible for sericin to be applied in the food and cosmetic industry. The moisturizing power allows indications as a therapeutic agent for wound healing, stimulating cell proliferation, protection against ultraviolet radiation, and formulating creams and shampoos. The antioxidant activity associated with low digestibility of sericin that expands the application in the medical field, such as antitumour, antimicrobial and anti-inflammatory agent, anticoagulant, acts in colon health, improving constipation and protects the body from obesity through improved plasma lipid profile. In addition, the properties of sericin allow its application as a culture medium and cryopreservation, in tissue engineering and for drug delivery, demonstrating its effective use, as an important biomaterial.

  5. Nanotechnologies, technologies converging and potential biomedical applications

    International Nuclear Information System (INIS)

    Capuano, Vincenzo

    2005-01-01

    The applications of nanotechnology to biology and medicine appear really promising far diagnostics, for various therapeutic approaches and in medical instrumentations. The growing synergism among nanotechnology, biotechnology, information technology and cognitive sciences, their convergence (NBIC) from the nano scale, could involve on next decades great changes in medicine, from a reactive to a predictive and preventive approach. It is expected that NBIC converging technologies could achieve tremendous improvements in human abilities and enhance societal achievements. It appears therefore necessary a careful assessment of related social and ethical implications, in the framework of a constant dialogue between science and society [it

  6. Modelling of Argon Cold Atmospheric Plasmas for Biomedical Applications

    Science.gov (United States)

    Atanasova, M.; Benova, E.; Degrez, G.; van der Mullen, J. A. M.

    2018-02-01

    Plasmas for biomedical applications are one of the newest fields of plasma utilization. Especially high is the interest toward plasma usage in medicine. Promising results are achieved in blood coagulation, wound healing, treatment of some forms of cancer, diabetic complications, etc. However, the investigations of the biomedical applications from biological and medical viewpoint are much more advanced than the studies on the dynamics of the plasma. In this work we aim to address some specific challenges in the field of plasma modelling, arising from biomedical applications - what are the plasma reactive species’ and electrical fields’ spatial distributions as well as their production mechanisms; what are the fluxes and energies of the various components of the plasma delivers to the treated surfaces; what is the gas flow pattern? The focus is on two devices, namely the capacitive coupled plasma jet and the microwave surface wave sustained discharge. The devices are representatives of the so called cold atmospheric plasmas (CAPs). These are discharges characterized by low gas temperature - less than 40°C at the point of application - and non-equilibrium chemistry.

  7. An original architectured NiTi silicone rubber structure for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Rey, T.; Le Cam, J.B.; Chagnon, G.; Favier, D.; Rebouah, M.; Razan, F.; Robin, E.; Didier, P.; Heller, Luděk; Faure, S.; Janouchová, Kateřina

    2014-01-01

    Roč. 45, Dec (2014), s. 184-190 ISSN 0928-4931 Institutional support: RVO:68378271 Keywords : adhesion * interface * NiTi * filled silicone rubber * biomedical applications * architectured composite Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.088, year: 2014

  8. Plasmonic enhancement of scattering and emission of light in nanostructures: from basic science to biomedical applications

    International Nuclear Information System (INIS)

    Gaponenko, Sergey

    2013-01-01

    Advances and challenges of plasmonic enhancement of Raman scattering and fluorescence with metal-dielectric nanostructures are discussed. Theoretical predictions and experimental implementation are presented and compared. Reasonable agreement of experimental data with the theory is outlined. Special attention is given to biomedical applications including fluorescent and Raman immunospectroscopy. (author)

  9. Biomedical research applications of electromagnetically separated enriched stable isotopes

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1982-01-01

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosotope production, labeled compounds, and potential radiopharmaceuticals; (2) nutrition, food science, and pharmacology; (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and Moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and non-radioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Priorities and summaries are based on statements in the references and from answers to a survey conducted in the fall of 1981. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for 26 Mg, 43 Ca, 70 Zn, 76 Se, 78 Se, 102 Pd, 111 Cd, 113 Cd, and 190 Os. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments

  10. Engineering mechanical microenvironment of macrophage and its biomedical applications.

    Science.gov (United States)

    Li, Jing; Li, Yuhui; Gao, Bin; Qin, Chuanguang; He, Yining; Xu, Feng; Yang, Hui; Lin, Min

    2018-03-01

    Macrophages are the most plastic cells in the hematopoietic system and can be widely found in almost all tissues. Recently studies have shown that mechanical cues (e.g., matrix stiffness and stress/strain) can significantly affect macrophage behaviors. Although existing reviews on the physical and mechanical cues that regulate the macrophage's phenotype are available, engineering mechanical microenvironment of macrophages in vitro as well as a comprehensive overview and prospects for their biomedical applications (e.g., tissue engineering and immunotherapy) has yet to be summarized. Thus, this review provides an overview on the existing methods for engineering mechanical microenvironment of macrophages in vitro and then a section on their biomedical applications and further perspectives are presented.

  11. Surface engineering of graphene-based nanomaterials for biomedical applications.

    Science.gov (United States)

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  12. [Flexible print circuit technology application in biomedical engineering].

    Science.gov (United States)

    Jiang, Lihua; Cao, Yi; Zheng, Xiaolin

    2013-06-01

    Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.

  13. Engineered cell manipulation for biomedical application

    CERN Document Server

    Akashi, Misturu; Matsusaki, Michiya

    2014-01-01

    This book is the first to summarize new technologies for engineered cell manipulation. The contents focus on control of cellular functions by nanomaterials and control of three-dimensional cell-cell interactions. Control of cellular functions is important for cell differentiation, maturation, and activation, which generally are controlled by the addition of soluble cytokines or growth factors into cell culture dishes. Target antigen molecules can be efficiently delivered to the cytosol of the dendritic cells using the nanoparticle technique described here, and cellular functions such as dendritic cell maturation can be controlled easily and with precision. This book describes basic preparation of the nanoparticles, activation control of dendritic cells, immune function control, and in vivo application for various vaccination systems. The second type of control,that of cell-cell interaction, is important for tissue engineering in order to develop three-dimensional cellular constructs. To achieve in vitro engin...

  14. Cobalamin-fluorophores' photochemistry and biomedical applications

    Science.gov (United States)

    Rodgers, Zachary Lewis

    As science focuses on the finer details of complex processes occurring in biology, the need for tools responsive to researcher control have become critical to communicate with cellular functions in both a spatial and temporal manner. To this end, light responsive "caging groups" have been used to generate molecular constructs with which researchers can activate using directed irradiation to elicit biological responses where and when they want. This advancement in molecular control has greatly improved our ability to study biological systems in their dynamically intricate form. Most of these photoresponsive moieties perform well within a petri dish, but their application is limited in vivo. Current photochemical tools require high energy light for their activation. Dermal tissue contains bio chromophores that absorb this light and prevents its penetration to less than a few millimeters making photoactivation impossible. However, tissue has an "optical window" in the red and near infrared (600 -- 1000 nm) where light penetrates efficiently to clinically relevant depths. Therefore, researchers have sought long wavelength responsive caging groups but have had little success to date. Herein, I report the development of an entire class of red and near infrared responsive (600 -- 800 nm) caging groups based on Vitamin B12 or cobalamin. Upon modification with a fluorophore antenna, these metal complexes can capture long wavelength light to perform photochemical work in the form of bond scission reactions. The effect is compatible with a range of fluorophores covering the entire near infrared spectrum, and bond scission proceeds rapidly with extremely high efficiencies. In this work, the initial development and characterization of these molecules as photoactivateable groups will be discussed. Furthermore, I will demonstrate how these molecules can be applied for clinical applications, such as drug delivery and tissue scaffold formation, to provide safer and less invasive

  15. A review of engineered zirconia surfaces in biomedical applications

    OpenAIRE

    Yin, Ling; Nakanishi, Yoshitaka; Alao, Abdur-Rasheed; Song, Xiao-Fei; Abduo, Jaafar; Zhang, Yu

    2017-01-01

    Zirconia is widely used for load-bearing functional structures in medicine and dentistry. The quality of engineered zirconia surfaces determines not only the fracture and fatigue behaviour but also the low temperature degradation (ageing sensitivity), bacterial colonization and bonding strength of zirconia devices. This paper reviews the current manufacturing techniques for fabrication of zirconia surfaces in biomedical applications, particularly, in tooth and joint replacements, and influenc...

  16. Stimuli Responsive Poly(Vinyl Caprolactam) Gels for Biomedical Applications

    OpenAIRE

    Kummara Madhusudana Rao; Kummari Subba Venkata Krishna Rao; Chang-Sik Ha

    2016-01-01

    Poly(vinyl caprolactam) (PNVCL) is one of the most important thermoresponsive polymers because it is similar to poly(N-isopropyl acrylamide). PNVCL precipitates from aqueous solutions in a physiological temperature range (32–34 °C). The use of PNVCL instead of PNIPAM is considered advantageous because of the assumed lower toxicity of PNVCL. PNVCL copolymer gels are sensitive to external stimuli, such as temperature and pH; which gives them a wide range of biomedical applications and consequen...

  17. Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields

    CERN Document Server

    Morris, Michael D

    2010-01-01

    The book presents the latest technological advances in Raman spectroscopy that are presently redrawing the landscape of many fields of biomedical and pharmaceutical R&D. Numerous examples are given to illustrate the application of the new methods and compared with established and related techniques. The book is suitable for both new researchers and practitioners in this area as well as for those familiar with the Raman technique but seeking to keep abreast of the latest dramatic advances in this field.

  18. Biomedical applications of gold nanorod-based multifunctional nano-carriers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Shao, Mingqian; Zhang, Song; Liu, Xinli, E-mail: vip.lxl@163.com [QiLu University of Technology, Shandong Provincial Key Laboratory of Microbial Engineering (China)

    2013-09-15

    Due to the good biocompatibility, ease of modification and unique optical properties, gold nanorods (AuNRs) have attracted more and more attentions in biomedical fields. In particular, through surface functionalization, AuNRs can be used as nano-carriers for drugs, probes, nucleic acids, and proteins in cancer treatment. In this review, we summarize the latest progress in biomedical applications of AuNRs-based nano-carriers including those in detection, biocatalysis, imaging, drug, and gene delivery. We also discuss the bioeffects of AuNRs such as in vivo distribution, translocation, localization, metabolism, and toxicity. Finally, we highlight some challenges in future biomedical applications of AuNRs-based nano-carriers.

  19. Biomedical applications of gold nanorod-based multifunctional nano-carriers

    International Nuclear Information System (INIS)

    Wang, Xin; Shao, Mingqian; Zhang, Song; Liu, Xinli

    2013-01-01

    Due to the good biocompatibility, ease of modification and unique optical properties, gold nanorods (AuNRs) have attracted more and more attentions in biomedical fields. In particular, through surface functionalization, AuNRs can be used as nano-carriers for drugs, probes, nucleic acids, and proteins in cancer treatment. In this review, we summarize the latest progress in biomedical applications of AuNRs-based nano-carriers including those in detection, biocatalysis, imaging, drug, and gene delivery. We also discuss the bioeffects of AuNRs such as in vivo distribution, translocation, localization, metabolism, and toxicity. Finally, we highlight some challenges in future biomedical applications of AuNRs-based nano-carriers

  20. Biomedical applications of gold nanorod-based multifunctional nano-carriers

    Science.gov (United States)

    Wang, Xin; Shao, Mingqian; Zhang, Song; Liu, Xinli

    2013-09-01

    Due to the good biocompatibility, ease of modification and unique optical properties, gold nanorods (AuNRs) have attracted more and more attentions in biomedical fields. In particular, through surface functionalization, AuNRs can be used as nano-carriers for drugs, probes, nucleic acids, and proteins in cancer treatment. In this review, we summarize the latest progress in biomedical applications of AuNRs-based nano-carriers including those in detection, biocatalysis, imaging, drug, and gene delivery. We also discuss the bioeffects of AuNRs such as in vivo distribution, translocation, localization, metabolism, and toxicity. Finally, we highlight some challenges in future biomedical applications of AuNRs-based nano-carriers.

  1. Ultra-wideband and 60 GHz communications for biomedical applications

    CERN Document Server

    Yuce, Mehmet R

    2013-01-01

    This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The r

  2. From biomedical-engineering research to clinical application and industrialization

    Science.gov (United States)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  3. Wool fibril sponges with perspective biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Patrucco, A., E-mail: a.patrucco@bi.ismac.cnr.it [CNR-ISMAC, Italian National Research Council, Institute for Macromolecular Studies, Corso G. Pella 16, 13900, Biella (Italy); Cristofaro, F., E-mail: francesco.cristofaro01@universitadipavia.it [Department of Molecular Medicine, INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100, Pavia (Italy); Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Simionati, M., E-mail: m.simionati@bi.ismac.cnr.it [CNR-ISMAC, Italian National Research Council, Institute for Macromolecular Studies, Corso G. Pella 16, 13900, Biella (Italy); Zoccola, M., E-mail: m.zoccola@bi.ismac.cnr.it [CNR-ISMAC, Italian National Research Council, Institute for Macromolecular Studies, Corso G. Pella 16, 13900, Biella (Italy); Bruni, G., E-mail: giovanna.bruni@unipv.it [Department of Chemistry, — Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, 27100, Pavia (Italy); Fassina, L., E-mail: lorenzo.fassina@unipv.it [Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Visai, L., E-mail: livia.visai@unipv.it [Department of Molecular Medicine, INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100, Pavia (Italy); Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S. Boezio, 28, 27100, Pavia (Italy); Magenes, G., E-mail: giovanni.magenes@unipv.it [Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 1, 27100, Pavia (Italy); and others

    2016-04-01

    Sheep's wool was used as a natural source to prepare keratin microfibril sponges for scaffolding, by disruption of the histological structure of the fibres through mild alkali treatment, followed by ultrasonication, casting and salt-leaching. The wool sponges showed highly interconnected porosity (93%) and contain intrinsic sites of cellular recognition that mimic the extracellular matrix (ECM). They displayed good thermal and water stability due to the conversion of disulphide cystine bonds into shorter monosulphide lanthionine intermolecular bonds, but significantly swelled in water, because of the high hydrophilicity and porosity, with a volume increasing up to 38%. Nevertheless, sponges were stable in water without structural changes, with a neutral pH in aqueous media, and showed excellent resilience to repeated compression stresses. According to in vitro biocompatibility assays, wool fibril sponges showed a good cell adhesion and proliferation as proved by MTT, FDA assays and SEM observations. The unique structure of the cortical cell network made by wool keratin proteins with controlled-size macro-porosity suitable for cell guesting, and nutrient feeding, provides an excellent scaffold for future tissue engineering applications. - Highlights: • Scaffolds were prepared from wool exploiting the fibres' histology structure. • The scaffold showed high interconnected micro- and macro-porosity. • The microscopic structure is very similar to the extracellular bone matrix. • Scaffolds reversibly swell in water with high resilience to repeated compression. • Composites were cytocompatible and supported the growth of SAOS-2 cell line.

  4. Imaging systems for biomedical applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Radparvar, M.

    1995-06-06

    Many of the activities of the human body manifest themselves by the presence of a very weak magnetic field outside the body, a field that is so weak that an ultra-sensitive magnetic sensor is needed for specific biomagnetic measurements. Superconducting QUantum Interference Devices (SQUIDs) are extremely sensitive detectors of magnetic flux and have been used extensively to detect the human magnetocardiogram, and magnetoencephalogram. and other biomagnetic signals. In order to utilize a SQUID as a magnetometer, its transfer characteristics should be linearized. This linearization requires extensive peripheral electronics, thus limiting the number of SQUID magnetometer channels in a practical system. The proposed digital SQUID integrates the processing circuitry on the same cryogenic chip as the SQUID magnetometer and eliminates the sophisticated peripheral electronics. Such a system is compact and cost effective, and requires minimal support electronics. Under a DOE-sponsored SBIR program, we designed, simulated, laid out, fabricated, evaluated, and demonstrated a digital SQUID magnetometer. This report summarizes the accomplishments under this program and clearly demonstrates that all of the tasks proposed in the phase II application were successfully completed with confirmed experimental results.

  5. Multifunctional DNA Nanomaterials for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Dick Yan Tam

    2015-01-01

    Full Text Available The rapidly emerging DNA nanotechnology began with pioneer Seeman’s hypothesis that DNA not only can carry genetic information but also can be used as molecular organizer to create well-designed and controllable nanomaterials for applications in materials science, nanotechnology, and biology. DNA-based self-assembly represents a versatile system for nanoscale construction due to the well-characterized conformation of DNA and its predictability in the formation of base pairs. The structural features of nucleic acids form the basis of constructing a wide variety of DNA nanoarchitectures with well-defined shapes and sizes, in addition to controllable permeability and flexibility. More importantly, self-assembled DNA nanostructures can be easily functionalized to construct artificial functional systems with nanometer scale precision for multipurposes. Apparently scientists envision artificial DNA-based nanostructures as tool for drug loading and in vivo targeted delivery because of their abilities in selective encapsulation and stimuli-triggered release of cargo. Herein, we summarize the strategies of creating multidimensional self-assembled DNA nanoarchitectures and review studies investigating their stability, toxicity, delivery efficiency, loading, and control release of cargos in addition to their site-specific targeting and delivery of drug or cargo molecules to cellular systems.

  6. Multifunctional DNA Nano materials for Biomedical Applications

    International Nuclear Information System (INIS)

    Tam, D.Y.; Lo, P.K.; Tam, D.Y.; Lo, P.K.

    2014-01-01

    The rapidly emerging DNA nanotechnology began with pioneer Seeman’s hypothesis that DNA not only can carry genetic information but also can be used as molecular organizer to create well-designed and controllable nanomaterials for applications in materials science, nanotechnology, and biology. DNA-based self-assembly represents a versatile system for nanoscale construction due to the well-characterized conformation of DNA and its predictability in the formation of base pairs. The structural features of nucleic acids form the basis of constructing a wide variety of DNA nanoarchitectures with well-defined shapes and sizes, in addition to controllable permeability and flexibility. More importantly, self-assembled DNA nanostructures can be easily functionalized to construct artificial functional systems with nanometer scale precision for multipurposes. Apparently scientists envision artificial DNA-based nanostructures as tool for drug loading and in vivo targeted delivery because of their abilities in selective encapsulation and stimuli-triggered release of cargo. Herein, we summarize the strategies of creating multidimensional self-assembled DNA nanoarchitectures and review studies investigating their stability, toxicity, delivery efficiency, loading, and control release of cargos in addition to their site-specific targeting and delivery of drug or cargo molecules to cellular systems.

  7. Antibody-Conjugated Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Manuel Arruebo

    2009-01-01

    Full Text Available Nanoscience and Nanotechnology have found their way into the fields of Biotechnology and Medicine. Nanoparticles by themselves offer specific physicochemical properties that they do not exhibit in bulk form, where materials show constant physical properties regardless of size. Antibodies are nanosize biological products that are part of the specific immune system. In addition to their own properties as pathogens or toxin neutralizers, as well as in the recruitment of immune elements (complement, improving phagocytosis, cytotoxicity antibody dependent by natural killer cells, etc., they could carry several elements (toxins, drugs, fluorochroms, or even nanoparticles, etc. and be used in several diagnostic procedures, or even in therapy to destroy a specific target. The conjugation of antibodies to nanoparticles can generate a product that combines the properties of both. For example, they can combine the small size of nanoparticles and their special thermal, imaging, drug carrier, or magnetic characteristics with the abilities of antibodies, such as specific and selective recognition. The hybrid product will show versatility and specificity. In this review, we analyse both antibodies and nanoparticles, focusing especially on the recent developments for antibody-conjugated nanoparticles, offering the researcher an overview of the different applications and possibilities of these hybrid carriers.

  8. Surface Modification of Polymer Substrates for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Oldřich Neděla

    2017-09-01

    Full Text Available While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces—mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

  9. Biomedical device innovation methodology: applications in biophotonics.

    Science.gov (United States)

    Beswick, Daniel M; Kaushik, Arjun; Beinart, Dylan; McGarry, Sarah; Yew, Ming Khoon; Kennedy, Brendan F; Maria, Peter Luke Santa

    2017-12-01

    The process of medical device innovation involves an iterative method that focuses on designing innovative, device-oriented solutions that address unmet clinical needs. This process has been applied to the field of biophotonics with many notable successes. Device innovation begins with identifying an unmet clinical need and evaluating this need through a variety of lenses, including currently existing solutions for the need, stakeholders who are interested in the need, and the market that will support an innovative solution. Only once the clinical need is understood in detail can the invention process begin. The ideation phase often involves multiple levels of brainstorming and prototyping with the aim of addressing technical and clinical questions early and in a cost-efficient manner. Once potential solutions are found, they are tested against a number of known translational factors, including intellectual property, regulatory, and reimbursement landscapes. Only when the solution matches the clinical need, the next phase of building a "to market" strategy should begin. Most aspects of the innovation process can be conducted relatively quickly and without significant capital expense. This white paper focuses on key points of the medical device innovation method and how the field of biophotonics has been applied within this framework to generate clinical and commercial success. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. Biomedical device innovation methodology: applications in biophotonics

    Science.gov (United States)

    Beswick, Daniel M.; Kaushik, Arjun; Beinart, Dylan; McGarry, Sarah; Yew, Ming Khoon; Kennedy, Brendan F.; Maria, Peter Luke Santa

    2018-02-01

    The process of medical device innovation involves an iterative method that focuses on designing innovative, device-oriented solutions that address unmet clinical needs. This process has been applied to the field of biophotonics with many notable successes. Device innovation begins with identifying an unmet clinical need and evaluating this need through a variety of lenses, including currently existing solutions for the need, stakeholders who are interested in the need, and the market that will support an innovative solution. Only once the clinical need is understood in detail can the invention process begin. The ideation phase often involves multiple levels of brainstorming and prototyping with the aim of addressing technical and clinical questions early and in a cost-efficient manner. Once potential solutions are found, they are tested against a number of known translational factors, including intellectual property, regulatory, and reimbursement landscapes. Only when the solution matches the clinical need, the next phase of building a "to market" strategy should begin. Most aspects of the innovation process can be conducted relatively quickly and without significant capital expense. This white paper focuses on key points of the medical device innovation method and how the field of biophotonics has been applied within this framework to generate clinical and commercial success.

  11. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.

    2014-11-10

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  12. Room-temperature atmospheric pressure plasma plume for biomedical applications

    International Nuclear Information System (INIS)

    Laroussi, M.; Lu, X.

    2005-01-01

    As low-temperature nonequilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little ozone is generated and the gas temperature, as measured by emission spectroscopy, remains at room temperature even after hours of operations. The plasma plume can be touched by bare hands and can be directed manually by a user to come in contact with delicate objects and materials including skin and dental gum without causing any heating or painful sensation

  13. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    Science.gov (United States)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface

  14. Novel block, graft and random copolymers for biomedical applications

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Jankova Atanasova, Katja; Tanaka, Masaru

    Despite the simple structure, poly(2-methoxyethyl acrylate) (PMEA) shows excellent blood compatibility [1]. Both the freezing-bound water (intermediate water: preventing the biocomponents from directly contacting the polymer surface) and non-freezing water on the polymer surface play important ro...... copolymers with MMA [4] utilizing ATRP. Here we present other block, graft and random copolymers of MEA intended for biomedical applications. These macromolecular architectures have been constructed by employing controlled radical polymerization methods such as RAFT and ATRP....... roles for this [2]. An artificial lung (oxygenator), already in use, is coated with high MW PMEA prepared by radical polymerization with AIBN [2]. To broaden the possibilities for designing biomedical devices [3] and inspired from these findings we first prepared homo polymers of MEA and their block...

  15. Sensor Fusion and Smart Sensor in Sports and Biomedical Applications

    Science.gov (United States)

    Mendes, José Jair Alves; Vieira, Mário Elias Marinho; Pires, Marcelo Bissi; Stevan, Sergio Luiz

    2016-01-01

    The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports), it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others. PMID:27669260

  16. Sensor Fusion and Smart Sensor in Sports and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    José Jair Alves Mendes Jr.

    2016-09-01

    Full Text Available The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports, it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others.

  17. Polylactic acid (PLA) controlled delivery carriers for biomedical applications.

    Science.gov (United States)

    Tyler, Betty; Gullotti, David; Mangraviti, Antonella; Utsuki, Tadanobu; Brem, Henry

    2016-12-15

    Polylactic acid (PLA) and its copolymers have a long history of safety in humans and an extensive range of applications. PLA is biocompatible, biodegradable by hydrolysis and enzymatic activity, has a large range of mechanical and physical properties that can be engineered appropriately to suit multiple applications, and has low immunogenicity. Formulations containing PLA have also been Food and Drug Administration (FDA)-approved for multiple applications making PLA suitable for expedited clinical translatability. These biomaterials can be fashioned into sutures, scaffolds, cell carriers, drug delivery systems, and a myriad of fabrications. PLA has been the focus of a multitude of preclinical and clinical testing. Three-dimensional printing has expanded the possibilities of biomedical engineering and has enabled the fabrication of a myriad of platforms for an extensive variety of applications. PLA has been widely used as temporary extracellular matrices in tissue engineering. At the other end of the spectrum, PLA's application as drug-loaded nanoparticle drug carriers, such as liposomes, polymeric nanoparticles, dendrimers, and micelles, can encapsulate otherwise toxic hydrophobic anti-tumor drugs and evade systemic toxicities. The clinical translation of these technologies from preclinical experimental settings is an ever-evolving field with incremental advancements. In this review, some of the biomedical applications of PLA and its copolymers are highlighted and briefly summarized. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Layer-by-layer films for biomedical applications

    CERN Document Server

    Picart, Catherine; Voegel, Jean-Claude

    2015-01-01

    The layer-by-layer (LbL) deposition technique is a versatile approach for preparing nanoscale multimaterial films: the fabrication of multicomposite films by the LbL procedure allows the combination of literally hundreds of different materials with nanometer thickness in a single device to obtain novel or superior performance. In the last 15 years the LbL technique has seen considerable developments and has now reached a point where it is beginning to find applications in bioengineering and biomedical engineering. The book gives a thorough overview of applications of the LbL technique in the c

  19. All-optoelectronic continuous wave THz imaging for biomedical applications

    International Nuclear Information System (INIS)

    Siebert, Karsten J; Loeffler, Torsten; Quast, Holger; Thomson, Mark; Bauer, Tobias; Leonhardt, Rainer; Czasch, Stephanie; Roskos, Hartmut G

    2002-01-01

    We present an all-optoelectronic THz imaging system for ex vivo biomedical applications based on photomixing of two continuous-wave laser beams using photoconductive antennas. The application of hyperboloidal lenses is discussed. They allow for f-numbers less than 1/2 permitting better focusing and higher spatial resolution compared to off-axis paraboloidal mirrors whose f-numbers for practical reasons must be larger than 1/2. For a specific histological sample, an analysis of image noise is discussed

  20. Polymers in regenerative medicine biomedical applications from nano- to macro-structures

    CERN Document Server

    Monleon Pradas, Manuel

    2015-01-01

    Biomedical applications of Polymers from Scaffolds toNanostructures The ability of polymers to span wide ranges of mechanicalproperties and morph into desired shapes makes them useful for avariety of applications, including scaffolds, self-assemblingmaterials, and nanomedicines. With an interdisciplinary list ofsubjects and contributors, this book overviews the biomedicalapplications of polymers and focuses on the aspect of regenerativemedicine. Chapters also cover fundamentals, theories, and tools forscientists to apply polymers in the following ways: Matrix protein interactions with synthe

  1. Application of an efficient Bayesian discretization method to biomedical data

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2011-07-01

    Full Text Available Abstract Background Several data mining methods require data that are discrete, and other methods often perform better with discrete data. We introduce an efficient Bayesian discretization (EBD method for optimal discretization of variables that runs efficiently on high-dimensional biomedical datasets. The EBD method consists of two components, namely, a Bayesian score to evaluate discretizations and a dynamic programming search procedure to efficiently search the space of possible discretizations. We compared the performance of EBD to Fayyad and Irani's (FI discretization method, which is commonly used for discretization. Results On 24 biomedical datasets obtained from high-throughput transcriptomic and proteomic studies, the classification performances of the C4.5 classifier and the naïve Bayes classifier were statistically significantly better when the predictor variables were discretized using EBD over FI. EBD was statistically significantly more stable to the variability of the datasets than FI. However, EBD was less robust, though not statistically significantly so, than FI and produced slightly more complex discretizations than FI. Conclusions On a range of biomedical datasets, a Bayesian discretization method (EBD yielded better classification performance and stability but was less robust than the widely used FI discretization method. The EBD discretization method is easy to implement, permits the incorporation of prior knowledge and belief, and is sufficiently fast for application to high-dimensional data.

  2. Olelo: a web application for intuitive exploration of biomedical literature.

    Science.gov (United States)

    Kraus, Milena; Niedermeier, Julian; Jankrift, Marcel; Tietböhl, Sören; Stachewicz, Toni; Folkerts, Hendrik; Uflacker, Matthias; Neves, Mariana

    2017-07-03

    Researchers usually query the large biomedical literature in PubMed via keywords, logical operators and filters, none of which is very intuitive. Question answering systems are an alternative to keyword searches. They allow questions in natural language as input and results reflect the given type of question, such as short answers and summaries. Few of those systems are available online but they experience drawbacks in terms of long response times and they support a limited amount of question and result types. Additionally, user interfaces are usually restricted to only displaying the retrieved information. For our Olelo web application, we combined biomedical literature and terminologies in a fast in-memory database to enable real-time responses to researchers' queries. Further, we extended the built-in natural language processing features of the database with question answering and summarization procedures. Combined with a new explorative approach of document filtering and a clean user interface, Olelo enables a fast and intelligent search through the ever-growing biomedical literature. Olelo is available at http://www.hpi.de/plattner/olelo. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Biomedical text mining and its applications in cancer research.

    Science.gov (United States)

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. New Developments of Ti-Based Alloys for Biomedical Applications

    Science.gov (United States)

    Li, Yuhua; Yang, Chao; Zhao, Haidong; Qu, Shengguan; Li, Xiaoqiang; Li, Yuanyuan

    2014-01-01

    Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications. PMID:28788539

  5. New Developments of Ti-Based Alloys for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yuhua Li

    2014-03-01

    Full Text Available Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications.

  6. Nonlinear aspects of acoustic radiation force in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovsky, Lev, E-mail: Lev.A.Ostrovsky@noaa.gov [NOAA Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305 (United States); Tsyuryupa, Sergey; Sarvazyan, Armen, E-mail: armen@artannlabs.com [Artann Laboratories, Inc., 1459 Lower Ferry Rd., West Trenton, New Jersey,08618 (United States)

    2015-10-28

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  7. Applications of ionizing radiation processing in biomedical engineering and microelectronics

    International Nuclear Information System (INIS)

    Ha Hongfei; Wu Jilan

    1987-01-01

    The applied radiation chemistry has made great contributions to the development of polymeric industrial materials by the characteristic reaction means such as corsslinking, graft copolymerization and low-temperature or solid-phase polymerization, and become an important field on peaceful use of atomic energy. A brief review on the applications of ionizing radiation processing in biomedical engineering and microelectronics is presented. The examples of this techique were the studies on biocompatible and biofunctional polymers for medical use and on resists of lithography in microelectronics. (author)

  8. Biomedical Applications of Mulberry Silk and its Proteins: A Review

    Science.gov (United States)

    Nivedita, S.; Sivaprasad, V.

    2014-04-01

    Silk is a natural fibre used mainly for aesthetic purposes. It has also been used for making surgical sutures for centuries. The recent rediscovery of silk's biological properties have led to new areas of research and utilization in cosmetic, health and medical fields. The silk proteins, fibroin and sericin are processed into biomaterials because of bio-compatibility, bio-degradability, excellent mechanical properties, thermo tolerance and UV protective properties. Silk proteins could be obtained as pure liquids and regenerated in different forms suitable for tissue engineering applications. This paper presents some of the biomedical products and biomaterials made from native, degraded and regenerated silk and their fabrication techniques.

  9. Introduction to fiber optics: Sensors for biomedical applications.

    Science.gov (United States)

    Shah, R Y; Agrawal, Y K

    2011-01-01

    The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.

  10. Biomedical Applications of Thermally Activated Shape Memory Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  11. High-fidelity geometric modeling for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zeyun [Univ. of California, San Diego, CA (United States). Dept. of Mathematics; Holst, Michael J. [Univ. of California, San Diego, CA (United States). Dept. of Mathematics; Andrew McCammon, J. [Univ. of California, San Diego, CA (United States). Dept. of Chemistry and Biochemistry; Univ. of California, San Diego, CA (United States). Dept. of Pharmacology

    2008-05-19

    In this paper, we describe a combination of algorithms for high-fidelity geometric modeling and mesh generation. Although our methods and implementations are application-neutral, our primary target application is multiscale biomedical models that range in scales across the molecular, cellular, and organ levels. Our software toolchain implementing these algorithms is general in the sense that it can take as input a molecule in PDB/PQR forms, a 3D scalar volume, or a user-defined triangular surface mesh that may have very low quality. The main goal of our work presented is to generate high quality and smooth surface triangulations from the aforementioned inputs, and to reduce the mesh sizes by mesh coarsening. Tetrahedral meshes are also generated for finite element analysis in biomedical applications. Experiments on a number of bio-structures are demonstrated, showing that our approach possesses several desirable properties: feature-preservation, local adaptivity, high quality, and smoothness (for surface meshes). Finally, the availability of this software toolchain will give researchers in computational biomedicine and other modeling areas access to higher-fidelity geometric models.

  12. Advances in targeted proteomics and applications to biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Tujin [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Song, Ehwang [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Nie, Song [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Rodland, Karin D. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Liu, Tao [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Qian, Wei-Jun [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA; Smith, Richard D. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA USA

    2016-08-01

    Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074–1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.

  13. Reprint of: Biomedical applications reviewed: Hot topic areas

    International Nuclear Information System (INIS)

    Bradley, D.A.; Wells, K.

    2014-01-01

    Making reference to the British Journal of Radiology and competitor journal titles, we look at the general area of biomedical physics, reviewing some of the associated topics in ionising radiation research attracting interest over the past 2 years. We also reflect on early developments that have paved the way for these endeavours. The talk is illustrated by referring to a number of biomedical physics areas in which this group has been directly involved, including novel imaging techniques that address compositional and structural makeup as well as use of elastically scattered X-ray phase contrast, radiation damage linking to possible pericardial effects in radiotherapy, simulation of microvascularity and oxygenation with a focus of radiation resistant hypoxic tumours, issues of high spatial resolution dosimetry and tissue interface radiotherapy with doses enhanced through use of high atomic number photoelectron conversion media. - Highlights: • Review of recent biomedical ionising radiation research. • Examples of novel imaging techniques addressing compositional and structural makeup among other examples. • Novel spatially fractionated beams in radiotherapy and dosimetric measurements

  14. Recent progress and challenges in nanotechnology for biomedical applications: an insight into the analysis of neurotransmitters.

    Science.gov (United States)

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-01-01

    Nanotechnology offers exciting opportunities and unprecedented compatibilities in manipulating chemical and biological materials at the atomic or molecular scale for the development of novel functional materials with enhanced capabilities. It plays a central role in the recent technological advances in biomedical technology, especially in the areas of disease diagnosis, drug design and drug delivery. In this review, we present the recent trend and challenges in the development of nanomaterials for biomedical applications with a special emphasis on the analysis of neurotransmitters. Neurotransmitters are the chemical messengers which transform information and signals all over the body. They play prime role in functioning of the central nervous system (CNS) and governs most of the metabolic functions including movement, pleasure, pain, mood, emotion, thinking, digestion, sleep, addiction, fear, anxiety and depression. Thus, development of high-performance and user-friendly analytical methods for ultra-sensitive detection of neurotransmitters remain a major challenge in modern biomedical analysis. Nanostructured materials are emerging as a powerful mean for diagnosis of CNS disorders because of their unique optical, size and surface characteristics. This review provides a brief outline on the basic concepts and recent advancements of nanotechnology for biomedical applications, especially in the analysis of neurotransmitters. A brief introduction to the nanomaterials, bionanotechnology and neurotransmitters is also included along with discussions on most of the patents published in these areas.

  15. Biomedical applications of nanodiamonds in imaging and therapy.

    Science.gov (United States)

    Perevedentseva, Elena; Lin, Yu-Chung; Jani, Mona; Cheng, Chia-Liang

    2013-12-01

    Nanodiamonds have attracted remarkable scientific attention for bioimaging and therapeutic applications owing to their low toxicity with many cell lines, convenient surface properties and stable fluorescence without photobleaching. Newer techniques are being applied to enhance fluorescence. Interest is also growing in exploring the possibilities for modifying the nanodiamond surface and functionalities by attaching various biomolecules of interest for interaction with the targets. The potential of Raman spectroscopy and fluorescence properties of nanodiamonds has been explored for bioimaging and drug delivery tracing. The interest in nanodiamonds' biological/medical application appears to be continuing with enhanced focus. In this review an attempt is made to capture the scope, spirit and recent developments in the field of nanodiamonds for biomedical applications.

  16. Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-12-08

    The ability of near-infrared (NIR) light to penetrate tissues deeply and to target malignant sites with high specificity via precise temporal and spatial control of light illumination makes it useful for diagnosing and treating diseases. Owing to their unique biocompatibility, surface chemistry and optical properties, gold nanostructures offer advantages as in vivo NIR photosensitizers. This chapter describes the recent progress in the varied use of NIR-resonant gold nanostructures for NIR-light-mediated diagnostic and therapeutic applications. We begin by describing the unique biological, chemical and physical properties of gold nanostructures that make them excellent candidates for biomedical applications. From here, we make an account of the basic principles involved in the diagnostic and therapeutic applications where gold nanostructures have set foot. Finally, we review recent developments in the fabrication and use of diverse NIR-resonant gold nanostructures for cancer imaging and cancer therapy.

  17. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  18. Synthesis and Biomedical Applications of Copper Sulfide Nanoparticles: From Sensors to Theranostics

    Science.gov (United States)

    Goel, Shreya; Chen, Feng; Cai, Weibo

    2013-01-01

    Copper sulfide (CuS) nanoparticles have attracted increasing attention from biomedical researchers across the globe, because of their intriguing properties which have been mainly explored for energy- and catalysis-related applications to date. This focused review article aims to summarize the recent progress made in the synthesis and biomedical applications of various CuS nanoparticles. After a brief introduction to CuS nanoparticles in the first section, we will provide a concise outline of the various synthetic routes to obtain different morphologies of CuS nanoparticles, which can influence their properties and potential applications. CuS nanoparticles have found broad applications in vitro, especially in the detection of biomolecules, chemicals, and pathogens which will be illustrated in detail. The in vivo uses of CuS nanoparticles have also been investigated in preclinical studies, including molecular imaging with various techniques, cancer therapy based on the photothermal properties of CuS, as well as drug delivery and theranostic applications. Research on CuS nanoparticles will continue to thrive over the next decade, and tremendous opportunities lie ahead for potential biomedical/clinical applications of CuS nanoparticles. PMID:24106015

  19. Electrochemical stability of binary TiNb for biomedical applications

    Science.gov (United States)

    Reyes, K. M.; Kuromoto, N. K.; Alves Claro, A. P. R.; Marino, C. E. B.

    2017-07-01

    The Ti-Nb alloy binary system has been widely studied with regard to biomedical applications due to the high biocompatibility and excellent mechanical properties of the alloys. Regarding physical-chemical stability, Ti-Nb alloys maintain the properties of Ti metal, which is highly resistant to corrosion in aggressive media due to a spontaneous stable oxide layer (TiO2) formed on its surface. The objective of this study was to evaluate the corrosion resistance of the Ti-40Nb alloy in artificial blood. The thermodynamic stability was studied using the open circuit potential technique and the corrosion resistance was assessed by potentiodynamic measurements and electrochemical impedance spectroscopy. The electrochemical results indicated that the Ti-40Nb alloy has high corrosion resistance and good thermodynamic stability, with an OCP of around  -485 mV, and the alloy remained electrochemically stable in potentiodynamic conditions with initial and final potentials of  -1.0 V to  +2.0 Vsce, respectively, in low current densities (~µA cm-2) with an absence of hysteresis, aspure Ti. The results obtained showed that this specific alloy has the potential to be used in biomedical applications.

  20. Utilization of pion production accelerators in biomedical applications

    International Nuclear Information System (INIS)

    Rosen, L.

    1979-01-01

    A discussion is presented of biomedical applications of pion-producing accelerators in a number of areas, but with emphasis on pion therapy for treatment of solid, non-metastasized malignancies. The problem of cancer management is described from the standpoint of the physicist, magnitude of the problem, and its social and economic impact. Barriers to successful treatment are identified, mainly with regard to radiation therapy. The properties and characteristics of π mesons, first postulated on purely theoretical grounds by H. Yukawa are described. It is shown how they can be used to treat human cancer and why they appear to have dramatic advantages over conventional forms of radiation by virtue of the fact that they permit localization of energy deposition, preferentially, in the tumor volume. The Clinton P. Anderson Meson Physics Facility (LAMPF), and its operating characteristics, are briefly described, with emphasis on the biomedical channel. The design of a relatively inexpensive accelerator specifically for pion therapy is described as is also the status of clinical trials using the existing Clinton P. Anderson Meson Physics Facility. The advantages of proton over electron accelerator for the production of high quality, high intensity negative pion beams suitable for radiation therapy of malignancies is also addressed. Other current, medically related applications of LAMPF technology are also discussed

  1. Drug knowledge bases and their applications in biomedical informatics research.

    Science.gov (United States)

    Zhu, Yongjun; Elemento, Olivier; Pathak, Jyotishman; Wang, Fei

    2018-01-03

    Recent advances in biomedical research have generated a large volume of drug-related data. To effectively handle this flood of data, many initiatives have been taken to help researchers make good use of them. As the results of these initiatives, many drug knowledge bases have been constructed. They range from simple ones with specific focuses to comprehensive ones that contain information on almost every aspect of a drug. These curated drug knowledge bases have made significant contributions to the development of efficient and effective health information technologies for better health-care service delivery. Understanding and comparing existing drug knowledge bases and how they are applied in various biomedical studies will help us recognize the state of the art and design better knowledge bases in the future. In addition, researchers can get insights on novel applications of the drug knowledge bases through a review of successful use cases. In this study, we provide a review of existing popular drug knowledge bases and their applications in drug-related studies. We discuss challenges in constructing and using drug knowledge bases as well as future research directions toward a better ecosystem of drug knowledge bases. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Mechanical characterization of Ti-12Mo-13Nb alloy for biomedical application hot swaged and aged

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Sinara Borborema; Rezende, Monica Castro; Almeida, Luiz Henrique de, E-mail: sinara@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Metalurgica e de Materiais; Dille, Jean [Universite Libre de Bruxelles, Brussels (Belgium); Mei, Paulo [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Departamento de Engenharia Mecanica; Baldan, Renato; Nunes, Carlos Angelo [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Departamento de Engenharia de Materiais

    2015-07-01

    Beta titanium alloys were developed for biomedical applications due to the combination of its mechanical properties including low elasticity modulus, high strength, fatigue resistance, good ductility and with excellent corrosion resistance. With this perspective a metastable beta titanium alloy Ti-12Mo-13Nb was developed with the replacement of both vanadium and aluminum from the traditional alloy Ti-6Al-4V. This paper presents the microstructure, mechanical properties of the Ti-12Mo-13Nb hot swaged and aged at 500 deg C for 24 h under high vacuum and then water quenched. The alloy structure was characterized by X-ray diffraction and transmission electron microscopy. Tensile tests were carried out at room temperature. The results show a microstructure consisting of a fine dispersed α phase in a β matrix and good mechanical properties including low elastic modulus. The results indicate that Ti-12Mo-13Nb alloy can be a promising alternative for biomedical application. (author)

  3. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.

    Science.gov (United States)

    Hwang, Geon-Tae; Byun, Myunghwan; Jeong, Chang Kyu; Lee, Keon Jae

    2015-04-02

    The use of inorganic-based flexible piezoelectric thin films for biomedical applications has been actively reported due to their advantages of highly piezoelectric, pliable, slim, lightweight, and biocompatible properties. The piezoelectric thin films on plastic substrates can convert ambient mechanical energy into electric signals, even responding to tiny movements on corrugated surfaces of internal organs and nanoscale biomechanical vibrations caused by acoustic waves. These inherent properties of flexible piezoelectric thin films enable to develop not only self-powered energy harvesters for eliminating batteries of bio-implantable medical devices but also sensitive nanosensors for in vivo diagnosis/therapy systems. This paper provides recent progresses of flexible piezoelectric thin-film harvesters and nanosensors for use in biomedical fields. First, developments of flexible piezoelectric energy-harvesting devices by using high-quality perovskite thin film and innovative flexible fabrication processes are addressed. Second, their biomedical applications are investigated, including self-powered cardiac pacemaker, acoustic nanosensor for biomimetic artificial hair cells, in vivo energy harvester driven by organ movements, and mechanical sensor for detecting nanoscale cellular deflections. At the end, future perspective of a self-powered flexible biomedical system is also briefly discussed with relation to the latest advancements of flexible electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analysis and application of analog electronic circuits to biomedical instrumentation

    CERN Document Server

    Northrop, Robert B

    2012-01-01

    All chapters include an introduction and chapter summary.Sources and Properties of Biomedical SignalsSources of Endogenous Bioelectric SignalsNerve Action PotentialsMuscle Action PotentialsThe ElectrocardiogramOther BiopotentialsElectrical Properties of BioelectrodesExogenous Bioelectric SignalsProperties and Models of Semiconductor Devices Used in Analog Electronic Systemspn Junction DiodesMidfrequency Models for BJT BehaviorMidfrequency Models for Field-Effect TransistorsHigh-Frequency Models for Transistors and Simple Transistor AmplifiersPhotons, Photodiodes, Photoconductors, LEDs, and Las

  5. Multiblock thermoplastic polyurethanes for biomedical and shape memory applications

    Science.gov (United States)

    Gu, Xinzhu

    Polyurethanes are a class of polymers that are capable of tailoring the overall polymer structure and thus final properties by many factors. The great potential in tailoring polymer structures imparts PUs unique mechanical properties and good cytocompatibility, which make them good candidates for many biomedical devices. In this dissertation, three families of multiblock thermoplastic polyurethanes are synthesized and characterized for biomedical and shape memory applications. In the first case described in Chapters 2, 3 and 4, a novel family of multiblock thermoplastic polyurethanes consisting of poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) are presented. These materials were discovered to be very durable, with strain-to-break higher than 1200%. Heat-triggered reversible plasticity shape memory (RPSM) was observed, where the highly deformed samples completely recovered their as-cast shape within one minute when heating above the transition temperature. Instead of conventional "hard" blocks, entanglements, which result from high molecular weight, served as the physical crosslinks in this system, engendering shape recovery and preventing flow. Moreover, water-triggered shape memory effect of PCL-PEG TPUs is explored, wherein water permeated into the initially oriented PEG domains, causing rapid shape recovery toward the equilibrium shape upon contact with liquid water. The recovery behavior is found to be dependent on PEG weight percentage in the copolymers. By changing the material from bulk film to electrospun fibrous mat, recovery speed was greatly accelerated. The rate of water recovery was manipulated through structural variables, including thickness of bulk film and diameter of e-spun webs. A new, yet simple shape memory cycle, "wet-fixing" is also reported, where both the fixing and recovery ratios can be greatly improved. A detailed microstructural study on one particular composition is presented, revealing the evolution of microphase

  6. Chitosan Microgels and Nanoparticles via Electrofluidodynamic Techniques for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Vincenzo Guarino

    2016-01-01

    Full Text Available Electrofluidodynamics techniques (EFDTs are emerging methodologies based on liquid atomization induced by electrical forces to obtain a fine suspension of particles from hundreds of micrometers down to nanometer size. As a function of the characteristic size, these particles are interesting for a wide variety of applications, due to the high scalability of chemical and physical properties in comparison to the bulk form. Here, we propose the optimization of EFDT techniques to design chitosan systems in the form of microgels or nanoparticles for several biomedical applications. Different microscopy techniques (Optical, SEM, TEM have been used to investigate the morphology of chitosan systems at multiple size scale. The proposed study confirms the high versatility and feasibility of EFDTs for creating micro and nano-sized carriers for cells and drug species.

  7. Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.

    Science.gov (United States)

    Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate

    2018-03-14

    Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.

  8. Advances in the Fabrication of Antimicrobial Hydrogels for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Carmen M. González-Henríquez

    2017-02-01

    Full Text Available This review describes, in an organized manner, the recent developments in the elaboration of hydrogels that possess antimicrobial activity. The fabrication of antibacterial hydrogels for biomedical applications that permits cell adhesion and proliferation still remains as an interesting challenge, in particular for tissue engineering applications. In this context, a large number of studies has been carried out in the design of hydrogels that serve as support for antimicrobial agents (nanoparticles, antibiotics, etc.. Another interesting approach is to use polymers with inherent antimicrobial activity provided by functional groups contained in their structures, such as quaternary ammonium salt or hydrogels fabricated from antimicrobial peptides (AMPs or natural polymers, such as chitosan. A summary of the different alternatives employed for this purpose is described in this review, considering their advantages and disadvantages. Finally, more recent methodologies that lead to more sophisticated hydrogels that are able to react to external stimuli are equally depicted in this review.

  9. Upconversion in Nanostructured Materials: From Optical Tuning to Biomedical Applications.

    Science.gov (United States)

    Sun, Tianying; Ai, Fujin; Zhu, Guangyu; Wang, Feng

    2018-02-16

    Photon upconversion that is characterized by high-energy photon emission followed by lower-energy excitation has been conventionally studied in bulk materials for several decades. This unique nonlinear luminescence process has become a subject of great attention since 2000 when upconverted emission was demonstrated in nanostructured crystals. In comparison with their bulk counterparts, nanostructured materials provide more room for optical fine-tuning by allowing flexible compositional integration and structural engineering. Moreover, the high colloidal stability of nanoparticles coupled with high amenability to surface functionalization opens up a number of new applications for upconversion, especially in the fields of biology and life science. In this focus review, we discuss recent developments in upconversion materials through nanostructural design and review emerging biomedical applications that involve these nanostructured upconversion materials. We also attempt to highlight challenging problems of these nanomaterials that constrain further progress in utilizing upconversion processes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Biomedical application of hierarchically built structures based on metal oxides

    Science.gov (United States)

    Korovin, M. S.; Fomenko, A. N.

    2017-12-01

    Nowadays, the use of hierarchically built structures in biology and medicine arouses much interest. The aim of this work is to review and summarize the available literature data about hierarchically organized structures in biomedical application. Nanoparticles can serve as an example of such structures. Medicine holds a special place among various application methods of similar systems. Special attention is paid to inorganic nanoparticles based on different metal oxides and hydroxides, such as iron, zinc, copper, and aluminum. Our investigations show that low-dimensional nanostructures based on aluminum oxides and hydroxides have an inhibitory effect on tumor cells and possess an antimicrobial activity. At the same time, it is obvious that the large-scale use of nanoparticles by humans needs to thoroughly study their properties. Special attention should be paid to the study of nanoparticle interaction with living biological objects. The numerous data show that there is no clear understanding of interaction mechanisms between nanoparticles and various cell types.

  11. Tunable magnetic nanowires for biomedical and harsh environment applications

    KAUST Repository

    Ivanov, Yurii P.

    2016-04-13

    We have synthesized nanowires with an iron core and an iron oxide (magnetite) shell by a facile low-cost fabrication process. The magnetic properties of the nanowires can be tuned by changing shell thicknesses to yield remarkable new properties and multi-functionality. A multi-domain state at remanence can be obtained, which is an attractive feature for biomedical applications, where a low remanence is desirable. The nanowires can also be encoded with different remanence values. Notably, the oxidation process of single-crystal iron nanowires halts at a shell thickness of 10 nm. The oxide shell of these nanowires acts as a passivation layer, retaining the magnetic properties of the iron core even during high-temperature operations. This property renders these core-shell nanowires attractive materials for application to harsh environments. A cell viability study reveals a high degree of biocompatibility of the core-shell nanowires.

  12. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Loo, Yihua; Hauser, Charlotte A E

    2016-01-01

    Three-dimensional (3D) bioprinting is a disruptive technology for creating organotypic constructs for high-throughput screening and regenerative medicine. One major challenge is the lack of suitable bioinks. Short synthetic self-assembling peptides are ideal candidates. Several classes of peptides self-assemble into nanofibrous hydrogels resembling the native extracellular matrix. This is a conducive microenvironment for maintaining cell survival and physiological function. Many peptides also demonstrate stimuli-responsive gelation and tuneable mechanical properties, which facilitates extrusion before dispensing and maintains the shape fidelity of the printed construct in aqueous media. The inherent biocompatibility and biodegradability bodes well for in vivo applications as implantable tissues and drug delivery matrices, while their short length and ease of functionalization facilitates synthesis and customization. By applying self-assembling peptide inks to bioprinting, the dynamic complexity of biological tissue can be recreated, thereby advancing current biomedical applications of peptide hydrogel scaffolds. (paper)

  13. Carboxymethylcellulose hydrogel crosslinked with citric acid for biomedical application

    International Nuclear Information System (INIS)

    Capanema, Nadia S.V.; Mansur, Alexandra A.P.; Mansur, Herman S.; Universidade Federal de Minas Gerais

    2016-01-01

    The carboxymethylcellulose (CMCel) has been extensively used in order application as flexible polymer membrane. Biopolymers crosslinked have been studied to optimize their performance in biomedical applications. In this work, CMCel films with a degree of substitution (DS = 0.77) were prepared by evaporation of solvent and crosslinked with different concentrations of citric acid (CA). The synthesized CMCel was characterized by Infrared Spectroscopy by Fourier Transform X-ray spectroscopy (FTIR), and morphology assessed by scanning electron microscopy (SEM). Morphological analysis performed using the SEM indicated the crosslinked CMCel and not crosslinked with a very smooth and uniform appearance. The FTIR results indicated the modification of existing bands and appearance of a new band 1715 cm -1 suggesting that there has been change in the structure of the crosslinked CMCel. (author)

  14. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.

    Science.gov (United States)

    Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang

    2017-09-18

    The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Trends in biochemical and biomedical applications of mass spectrometry

    Science.gov (United States)

    Gelpi, Emilio

    1992-09-01

    This review attempts an in-depth evaluation of progress and achievements made since the last 11th International Mass Spectrometry Conference in the application of mass spectrometric techniques to biochemistry and biomedicine. For this purpose, scientific contributions in this field at major international meetings have been monitored, together with an extensive appraisal of literature data covering the period from 1988 to 1991. A bibliometric evaluation of the MEDLINE database for this period provides a total of almost 4000 entries for mass spectrometry. This allows a detailed study of literature and geographical sources of the most frequent applications, of disciplines where mass spectrometry is most active and of types of sample and instrumentation most commonly used. In this regard major efforts according to number of publications (over 100 literature reports) are concentrated in countries like Canada, France, Germany, Italy, Japan, Sweden, UK and the USA. Also, most of the work using mass spectrometry in biochemistry and biomedicine is centred on studies on biotransformation, metabolism, pharmacology, pharmacokinetics and toxicology, which have been carried out on samples of blood, urine, plasma and tissue, by order of frequency of use. Human and animal studies appear to be evenly distributed in terms of the number of reports published in the literature in which the authors make use of experimental animals or describe work on human samples. Along these lines, special attention is given to the real usefulness of mass spectrometry (MS) technology in routine medical practice. Thus the review concentrates on evaluating the progress made in disease diagnosis and overall patient care. As regards prevailing techniques, GCMS continues to be the mainstay of the state of the art methods for multicomponent analysis, stable isotope tracer studies and metabolic profiling, while HPLC--MS and tandem MS are becoming increasingly important in biomedical research. However

  16. Current investigations into carbon nanotubes for biomedical application

    International Nuclear Information System (INIS)

    Li Xiaoming; Fan Yubo; Watari, Fumio

    2010-01-01

    The nano-dimensionality of nature has logically given rise to the interest in using nanomaterials in the biomedical field. Currently, a lot of investigations into carbon nanotubes (CNTs), as one of the typical nanomaterials, are being made for biomedical application. In this review, five parts, such as cellular functions induced by CNTs, apatite formation on CNTs, CNT-based tissue engineering scaffold, functionalized CNTs for the delivery of genes and drugs and CNT-based biosensors, are stated, which might indicate that CNTs, with a range of unique properties, appear suited as a biomaterial and may become a useful tool for tissue engineering. However, everything has two parts and CNTs is not an exception. There are still concerns about cytotoxicity and biodegradation of CNTs. Chemical fictionalization may be one of the effective ways to improve the 'disadvantages' and utilize the 'advantages' of CNTs. One of their 'disadvantages', unbiodegradable property, may be utilized by creating monitors in in vivo-engineered tissues or nanosized CNT-based biosensors. Other promising research points, for example proteins adsorbed on CNTs, use of CNTs in combination with other biomaterials to achieve the goals of tissue engineering, mineralization of CNTs and standard toxicological tests for CNTs, are also described in the conclusion and perspectives part. (topical review)

  17. Impedance characterization and modeling of electrodes for biomedical applications.

    Science.gov (United States)

    Franks, Wendy; Schenker, Iwan; Schmutz, Patrik; Hierlemann, Andreas

    2005-07-01

    A low electrode-electrolyte impedance interface is critical in the design of electrodes for biomedical applications. To design low-impedance interfaces a complete understanding of the physical processes contributing to the impedance is required. In this work a model describing these physical processes is validated and extended to quantify the effect of organic coatings and incubation time. Electrochemical impedance spectroscopy has been used to electrically characterize the interface for various electrode materials: platinum, platinum black, and titanium nitride; and varying electrode sizes: 1 cm2, and 900 microm2. An equivalent circuit model comprising an interface capacitance, shunted by a charge transfer resistance, in series with the solution resistance has been fitted to the experimental results. Theoretical equations have been used to calculate the interface capacitance impedance and the solution resistance, yielding results that correspond well with the fitted parameter values, thereby confirming the validity of the equations. The effect of incubation time, and two organic cell-adhesion promoting coatings, poly-L-lysine and laminin, on the interface impedance has been quantified using the model. This demonstrates the benefits of using this model in developing better understanding of the physical processes occurring at the interface in more complex, biomedically relevant situations.

  18. Current investigations into carbon nanotubes for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaoming; Fan Yubo [Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191 (China); Watari, Fumio, E-mail: x.m.li@hotmail.co [Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan)

    2010-04-15

    The nano-dimensionality of nature has logically given rise to the interest in using nanomaterials in the biomedical field. Currently, a lot of investigations into carbon nanotubes (CNTs), as one of the typical nanomaterials, are being made for biomedical application. In this review, five parts, such as cellular functions induced by CNTs, apatite formation on CNTs, CNT-based tissue engineering scaffold, functionalized CNTs for the delivery of genes and drugs and CNT-based biosensors, are stated, which might indicate that CNTs, with a range of unique properties, appear suited as a biomaterial and may become a useful tool for tissue engineering. However, everything has two parts and CNTs is not an exception. There are still concerns about cytotoxicity and biodegradation of CNTs. Chemical fictionalization may be one of the effective ways to improve the 'disadvantages' and utilize the 'advantages' of CNTs. One of their 'disadvantages', unbiodegradable property, may be utilized by creating monitors in in vivo-engineered tissues or nanosized CNT-based biosensors. Other promising research points, for example proteins adsorbed on CNTs, use of CNTs in combination with other biomaterials to achieve the goals of tissue engineering, mineralization of CNTs and standard toxicological tests for CNTs, are also described in the conclusion and perspectives part. (topical review)

  19. Magnetic Force Microscopy of Superparamagnetic Nanoparticles for Biomedical Applications

    Science.gov (United States)

    Nocera, Tanya M.

    In recent years, both synthetic as well as naturally occurring superparamagnetic nanoparticles (SPNs) have become increasingly important in biomedicine. For instance, iron deposits in many pathological tissues are known to contain an accumulation of the superparamagnetic protein, ferritin. Additionally, man-made SPNs have found biomedical applications ranging from cell-tagging in vitro to contrast agents for in vivo diagnostic imaging. Despite the widespread use and occurrence of SPNs, detection and characterization of their magnetic properties, especially at the single-particle level and/or in biological samples, remains a challenge. Magnetic signals arising from SPNs can be complicated by factors such as spatial distribution, magnetic anisotropy, particle aggregation and magnetic dipolar interaction, thereby confounding their analysis. Techniques that can detect SPNs at the single particle level are therefore highly desirable. The goal of this thesis was to develop an analytical microscopy technique, namely magnetic force microscopy (MFM), to detect and spatially localize synthetic and natural SPNs for biomedical applications. We aimed to (1) increase MFM sensitivity to detect SPNs at the single-particle level and (2) quantify and spatially localize iron-ligated proteins (ferritin) in vitro and in biological samples using MFM. Two approaches were employed to improve MFM sensitivity. First, we showed how exploitation of magnetic anisotropy could produce a higher, more uniform MFM signal from single SPNs. Second, we showed how an increase in probe magnetic moment increased both the magnitude and range up to which the MFM signal could be detected from a single SPN. We further showed how MFM could enable accurate quantitative estimation of ferritin content in ferritin-apoferritin mixtures. Finally, we demonstrated how MFM could be used to detect iron/ferritin in serum and animal tissue with spatial resolution and sensitivity surpassing that obtained using

  20. Progress and Application of CRISPR/Cas Technology in Biological and Biomedical Investigation.

    Science.gov (United States)

    Lin, Jiachen; Zhou, Yangzhong; Liu, Jiaqi; Chen, Jia; Chen, Weisheng; Zhao, Sen; Wu, Zhihong; Wu, Nan

    2017-10-01

    Based on the tremendous progress of the understanding on the CRISPR-Cas systems, the application CRISPR/Cas technology has been extended into increasing scenarios in biological and biomedical investigation. The potency of gene editing has been greatly improved by the rapid development of engineered Cas9 variants and modified CRISPR platforms. As advanced sequencing technology identified vast causative genetic basis for human diseases, CRISPR toolkits are now able to mediate precise genetic disruption or correction in vitro and in vivo. In this review, we have discussed the recent development of the CRISPR/Cas gene-editing technology and the extensive applications of the CRISPR platforms in biological and biomedical investigation, including disease modeling in animal and human cell line, development of gene therapy, as well as high-throughput genetic screening. J. Cell. Biochem. 118: 3061-3071, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Bloemen, Maarten; Brullot, Ward; Luong, Tai Thien; Geukens, Nick; Gils, Ann; Verbiest, Thierry

    2012-01-01

    Superparamagnetic iron oxide nanoparticles can provide multiple benefits for biomedical applications in aqueous environments such as magnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality water-dispersible nanoparticles around 10 nm in size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.

  2. Preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications.

    Science.gov (United States)

    Zhao, Wen; Liu, Wenlong; Li, Jiaojiao; Lin, Xiao; Wang, Ying

    2015-02-01

    Animal polysaccharides belong to a class of biological macromolecules. They are natural biopolymers with numerous advantages for biomedical applications, such as biocompatibility, biodegradability, non-antigenicity and non-toxicity. Electrospinning is a versatile and facile technique which can produce continuous fibers with nanoscale from a wide range of natural and synthetic polymers. The review aims to provide an up-to-date overview of the preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications such as tissue engineering, wound healing, and drug delivery. Various animal polysaccharides including chitin and chitosan (CS), hyaluronic acid (HA), heparin and heparan sulfate (HS), and chondroitin sulfate (ChS), are discussed. The challenges and some useful strategies in electrospinning of animal polysaccharides also are summarized. In addition, future study of animal polysaccharides nanofibers by electrospinning is proposed. © 2014 Wiley Periodicals, Inc.

  3. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    Science.gov (United States)

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  4. Advances in polymeric systems for tissue engineering and biomedical applications.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Radioactive ion beams for biomedical research and nuclear medical application

    CERN Document Server

    Beyer, Gerd-Jürgen

    2002-01-01

    The ISOLDE facility at CERN is the world leading on On-Line Isotope Separator installation. The main aspects which makes ISOLDE produced radio-isotopes such valuable for use in biomedical research are: the availability of exotic or uncommon radioisotopes, the high purity and the ion beam quality. A short overview on research strategies, on experimental work and application of ISOLDE produced radionuclides used in the field of biomedicine over a period of more than 2 decades will be given. Special attention will be directed to the radio- lanthanides, because they can be seen as one single element providing the unique possibility to study systematically relationships between molecule parameters and a biological response without changes in the basic tracer molecule. Among those radionuclides we find any radiation properties we wish (single photon emission) suitable for SPECT, positron emission suitable for positron emission tomography (PET), alpha -, beta /sup -/- and Auger electron emission. (21 refs).

  6. Gold-oxoborate nanocomposites and their biomedical applications.

    Science.gov (United States)

    Wybrańska, Katarzyna; Paczesny, Jan; Serejko, Katarzyna; Sura, Karolina; Włodyga, Karolina; Dzięcielewski, Igor; Jones, Samuel T; Śliwa, Agnieszka; Wybrańska, Iwona; Hołyst, Robert; Scherman, Oren A; Fiałkowski, Marcin

    2015-02-25

    A novel inorganic nanocomposite material, called BOA, which has the form of small building blocks composed of gold nanoparticles embedded in a polyoxoborate matrix, is presented. It is demonstrated that cotton wool decorated with the BOA nanocomposite displays strong antibacterial activity toward both Gram-positive and -negative bacteria strains. Importantly, the modified cotton does not release any toxic substances, and the bacteria are killed upon contact with the fibers coated with the BOA. Toxicity tests show that the nanocomposite--in spite of its antiseptic properties--is harmless for mammalian cells. The presented method of surface modification utilizes mild, environmentally friendly fabrication conditions. Thus, it offers a facile approach to obtain durable nontoxic antiseptic coatings for biomedical applications.

  7. Broadband diffuse optical characterization of elastin for biomedical applications.

    Science.gov (United States)

    Konugolu Venkata Sekar, Sanathana; Beh, Joo Sin; Farina, Andrea; Dalla Mora, Alberto; Pifferi, Antonio; Taroni, Paola

    2017-10-01

    Elastin is a key structural protein of dynamic connective tissues widely found in the extracellular matrix of skin, arteries, lungs and ligaments. It is responsible for a range of diseases related to aging of biological tissues. The optical characterization of elastin can open new opportunities for its investigation in biomedical studies. In this work, we present the absorption spectra of elastin using a broadband (550-1350nm) diffuse optical spectrometer. Distortions caused by fluorescence and finite bandwidth of the laser source on estimated absorption were effectively accounted for in measurements and data analysis and compensated. A comprehensive summary and comparison between collagen and elastin is presented, highlighting distinct features for its accurate quantification in biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Emerging chitin and chitosan nanofibrous materials for biomedical applications

    Science.gov (United States)

    Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun

    2014-07-01

    Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.

  9. Design of clover slot antenna for biomedical applications

    Directory of Open Access Journals (Sweden)

    S. Ashok Kumar

    2017-09-01

    Full Text Available A new clover slot antenna operating at 2.45 GHz Industrial, Scientific, and Medical (ISM band for biomedical applications is presented and experimentally verified. By putting a single feed and truncating clover slots with extra perturbation, good performance of polarization can be achieved. Also, the miniaturized size of the proposed antenna is 14 × 12 × 0.8 mm3 by utilizing the clover shaped slots. A broader bandwidth of 2.5 GHz is obtained for reflection coefficient less than −10 dB. In addition, the radiation pattern of proposed antenna exhibits the maximum gain of −6 dBi.

  10. Small animal PET and its applications in biomedical research

    International Nuclear Information System (INIS)

    Qiu Feichan

    2004-01-01

    Positron emission tomography (PET) is a nuclear medical imaging technique that permits the use of positron-labeled molecular imaging probes for non-invasive assays of biochemical processes. As the leading technology in nuclear medicine, PET has extended its applications from the clinical field to the study of small laboratory animals. In recent years, the development of new detector technology has dramatically improved the spatial resolution and image quality of small animal PET scanner, which is being used increasingly as a basic tool in modern biomedical research. In particular, small animal PET will play an important role in drug discovery and development, in the study of small animal models of human diseases, in characterizing gene expression and in many other ways. (authors)

  11. Preparation of natural zeolitic supports for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Tania; Ruiz-Salvador, A. Rabdel [Zeolites Engineering Laboratory, Institute of Materials Science and Technology (IMRE), University of Havana, Vedado, 10400 Havana (Cuba); Velazco, Lya [Electronic Department, Institute of Materials Science and Technology (IMRE), University of Havana, 10400 Havana (Cuba); Menorval, Louis Charles de [Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2, Equipe Agregats, Interfaces et Materiaux pour l' Energie, C.C. 1502, Place Eugene Bataillon, 34095 Montpellier cedex 5 (France); Rivera, Aramis, E-mail: aramis@fisica.uh.cu [Zeolites Engineering Laboratory, Institute of Materials Science and Technology (IMRE), University of Havana, Vedado, 10400 Havana (Cuba)

    2009-12-15

    Considering the biological properties reported for the purified natural clinoptilolite, NZ, we prepared K- and Li-enriched forms aimed at release matrices for biomedical applications. The raw material and the obtained solid samples were characterized by means of atomic absorption spectroscopy, X-ray diffraction, {sup 27}Al and {sup 29}Si MAS nuclear magnetic resonance, and nitrogen adsorption. The results demonstrated the structural stability of the materials after the different transformations applied. The chemical behavior of the samples in bi-distilled water and hydrochloric acid was studied by pH and conductivity measurements. A preliminary study related with the liberation of K and Li in aqueous medium was carried out by atomic absorption spectroscopy. The studies showed that the release of both ions from the solid samples is favored in HCl solutions, and that lithium is released faster than potassium in both dissolution media.

  12. DynAMITe: a wafer scale sensor for biomedical applications

    International Nuclear Information System (INIS)

    Esposito, M; Wells, K; Anaxagoras, T; Fant, A; Allinson, N M; Konstantinidis, A; Speller, R D; Osmond, J P F; Evans, P M

    2011-01-01

    In many biomedical imaging applications Flat Panel Imagers (FPIs) are currently the most common option. However, FPIs possess several key drawbacks such as large pixels, high noise, low frame rates, and excessive image artefacts. Recently Active Pixel Sensors (APS) have gained popularity overcoming such issues and are now scalable up to wafer size by appropriate reticule stitching. Detectors for biomedical imaging applications require high spatial resolution, low noise and high dynamic range. These figures of merit are related to pixel size and as the pixel size is fixed at the time of the design, spatial resolution, noise and dynamic range cannot be further optimized. The authors report on a new rad-hard monolithic APS, named DynAMITe (Dynamic range Adjustable for Medical Imaging Technology), developed by the UK MI-3 Plus consortium. This large area detector (12.8 cm × 12.8 cm) is based on the use of two different diode geometries within the same pixel array with different size pixels (50 μm and 100 μm). Hence the resulting device can possess two inherently different resolutions each with different noise and saturation performance. The small and the large pixel cameras can be reset at different voltages, resulting in different depletion widths. The larger depletion width for the small pixels allows the initial generated photo-charge to be promptly collected, which ensures an intrinsically lower noise and higher spatial resolution. After these pixels reach near saturation, the larger pixels start collecting so offering a higher dynamic range whereas the higher noise floor is not important as at higher signal levels performance is governed by the Poisson noise of the incident radiation beam. The overall architecture and detailed characterization of DynAMITe will be presented in this paper.

  13. Training in radionuclide methodology and applications in biomedical area

    International Nuclear Information System (INIS)

    Signoretta, C.

    1998-01-01

    Full text: Training in the field of radionuclide methodology and applications in biomedical area is important to assure that radionuclide should duly be used without risk for patients or for technicians manipulating them. The National Atomic Energy Commission (CNEA) from its creation is giving training courses of different technical levels to those working in science and technology. The Course on Radionuclide Methodology and application is the most continuous, varied and requested within CNEA. This is a basic course mainly given to Biochemistry and Medicine. Its goal is to give both theoretical and practical knowledge for use and application of radionuclides bearing in mind radiological safety regulations. Personnel from CNEA and Nuclear Regulatory Authority (ARN) carry out teaching. On the other hand, a course for Technicians in Nuclear Medicine is giving supplying knowledge in this field, as well as expertise and practice to attend a responsible Medical Doctor. These curses comprise radionuclide methodology, anatomy, physiology, instrumentation and practical applications in Nuclear Medicine. Statistics concerning these course are giving. (author) [es

  14. Elastomeric networks based on trimethylene carbonate polymers for biomedical applications : physical properties and degradation behaviour

    NARCIS (Netherlands)

    Bat, E.

    2010-01-01

    The number of applications for biomedical technologies is ever-increasing, and there is a need to develop new materials with properties that can conform to the requirements of a specific application. Synthetic polymers are of great importance in the biomedical field as they can be designed to

  15. Harvest: an open platform for developing web-based biomedical data discovery and reporting applications.

    Science.gov (United States)

    Pennington, Jeffrey W; Ruth, Byron; Italia, Michael J; Miller, Jeffrey; Wrazien, Stacey; Loutrel, Jennifer G; Crenshaw, E Bryan; White, Peter S

    2014-01-01

    Biomedical researchers share a common challenge of making complex data understandable and accessible as they seek inherent relationships between attributes in disparate data types. Data discovery in this context is limited by a lack of query systems that efficiently show relationships between individual variables, but without the need to navigate underlying data models. We have addressed this need by developing Harvest, an open-source framework of modular components, and using it for the rapid development and deployment of custom data discovery software applications. Harvest incorporates visualizations of highly dimensional data in a web-based interface that promotes rapid exploration and export of any type of biomedical information, without exposing researchers to underlying data models. We evaluated Harvest with two cases: clinical data from pediatric cardiology and demonstration data from the OpenMRS project. Harvest's architecture and public open-source code offer a set of rapid application development tools to build data discovery applications for domain-specific biomedical data repositories. All resources, including the OpenMRS demonstration, can be found at http://harvest.research.chop.edu.

  16. Biomedical applications of diamond-like carbon coatings: a review.

    Science.gov (United States)

    Roy, Ritwik Kumar; Lee, Kwang-Ryeol

    2007-10-01

    Owing to its superior tribological and mechanical properties with corrosion resistance, biocompatibility, and hemocompatibility, diamond-like carbon (DLC) has emerged as a promising material for biomedical applications. DLC films with various atomic bond structures and compositions are finding places in orthopedic, cardiovascular, and dental applications. Cells grew on to DLC coating without any cytotoxity and inflammation. DLC coatings in orthopedic applications reduced wear, corrosion, and debris formation. DLC coating also reduced thrombogenicity by minimizing the platelet adhesion and activation. However, some contradictory results (Airoldi et al., Am J Cardiol 2004;93:474-477, Taeger et al., Mat-wiss u Werkstofftech 2003;34:1094-1100) were also reported that no significant improvement was observed in the performance of DLC-coated stainless stent or DLC-coated femoral head. This controversy should be discussed based on the detailed information of the coating such as atomic bond structure, composition, and/or electronic structure. In addition, instability of the DLC coating caused by its high level of residual stress and poor adhesion in aqueous environment should be carefully considered. Further in vitro and in vivo studies are thus required to confirm its use for medical devices.

  17. Nanodiamonds as a new horizon for pharmaceutical and biomedical applications.

    Science.gov (United States)

    Chaudhary, Harsiddhi M; Duttagupta, Aindrilla S; Jadhav, Kisan R; Chilajwar, Sai V; Kadam, Vilasrao J

    2015-01-01

    A palpable need for the optimization of therapeutic agents, due to challenges tackled by them such as poor pharmacokinetics and chemoresistance, has steered the journey towards novel interdisciplinary scientific field for emergence of nanostructure materials as a carrier for targeted delivery of therapeutic agents. Amongst various nanostructures, nanodiamonds are rapidly rising as promising nanostructures that are suited especially for various biomedical and imaging applications. Advantage of being biocompatible and ease of surface functionalization for targeting purpose, besides safety which are vacant by nanodiamonds made them a striking nanotool compared to other nonmaterials which seldom offer advantages of both functionality as well as safety. This review outlines the summary of nanodiamonds, regarding their types, methods of preparation, and surface modification. It also portrays the potential applications of nanodiamond as targeted drug delivery of various bioactive agents. Based on photoluminescent and optical property, nanodiamonds are envisioned as an efficient bioimaging nanostructure. Nanodiamonds as a novel platform hold great promise for targeting cancer cells and in-vivo cell imaging. Based upon their inimitable properties and applications nanodiamonds propose an exciting future in field of therapeutics and thus possess vibrant opportunities.

  18. Synthesis optimization of calcium aluminate cement phases for biomedical applications

    International Nuclear Information System (INIS)

    Andrade, T.L.; Santos, G.L.; Oliveira, I.R.; Pandolfelli, V.C.

    2011-01-01

    Calcium aluminate cement (CAC) has been studied as a potential material for applications in the areas of health such as, endodontics and bone reconstruction. These studies have been based on commercial products consisting of a mixture of phases. Improvements can be attained by investigating the synthesis routes of CAC aiming the proper balance between the phases and the control of impurities that may impair its performance for biomedical applications. Thus, the aim of this work was to study the CAC synthesis routes in the Al 2 O 3 -CaCO 3 and Al 2 O 3 -CaO systems, as well as the phase characterization attained by means of X ray analysis. The Al 2 O 3 -CaO route enabled the production of the target phases (CA, CA 2 , C 3 A and C 12 A 7 ) with a higher purity compared to the Al2O3-CaCO3 one. As a result the particular properties of these phases can be evaluated to define a more suitable composition that results in better properties for an endodontic cement and other applications. (author)

  19. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials.

    Science.gov (United States)

    Elieh-Ali-Komi, Daniel; Hamblin, Michael R

    2016-03-01

    Chitin is the most abundant aminopolysaccharide polymer occurring in nature, and is the building material that gives strength to the exoskeletons of crustaceans, insects, and the cell walls of fungi. Through enzymatic or chemical deacetylation, chitin can be converted to its most well-known derivative, chitosan. The main natural sources of chitin are shrimp and crab shells, which are an abundant byproduct of the food-processing industry, that provides large quantities of this biopolymer to be used in biomedical applications. In living chitin-synthesizing organisms, the synthesis and degradation of chitin require strict enzymatic control to maintain homeostasis. Chitin synthase, the pivotal enzyme in the chitin synthesis pathway, uses UDP-N-acetylglucosamine (UDPGlcNAc), produce the chitin polymer, whereas, chitinase enzymes degrade chitin. Bacteria are considered as the major mediators of chitin degradation in nature. Chitin and chitosan, owing to their unique biochemical properties such as biocompatibility, biodegradability, non-toxicity, ability to form films, etc, have found many promising biomedical applications. Nanotechnology has also increasingly applied chitin and chitosan-based materials in its most recent achievements. Chitin and chitosan have been widely employed to fabricate polymer scaffolds. Moreover, the use of chitosan to produce designed-nanocarriers and to enable microencapsulation techniques is under increasing investigation for the delivery of drugs, biologics and vaccines. Each application is likely to require uniquely designed chitosan-based nano/micro-particles with specific dimensions and cargo-release characteristics. The ability to reproducibly manufacture chitosan nano/microparticles that can encapsulate protein cargos with high loading efficiencies remains a challenge. Chitosan can be successfully used in solution, as hydrogels and/or nano/microparticles, and (with different degrees of deacetylation) an endless array of derivatives with

  20. Data science, learning, and applications to biomedical and health sciences.

    Science.gov (United States)

    Adam, Nabil R; Wieder, Robert; Ghosh, Debopriya

    2017-01-01

    The last decade has seen an unprecedented increase in the volume and variety of electronic data related to research and development, health records, and patient self-tracking, collectively referred to as Big Data. Properly harnessed, Big Data can provide insights and drive discovery that will accelerate biomedical advances, improve patient outcomes, and reduce costs. However, the considerable potential of Big Data remains unrealized owing to obstacles including a limited ability to standardize and consolidate data and challenges in sharing data, among a variety of sources, providers, and facilities. Here, we discuss some of these challenges and potential solutions, as well as initiatives that are already underway to take advantage of Big Data. © 2017 New York Academy of Sciences.

  1. Application of nuclear microlocalization techniques to biomedical problems

    International Nuclear Information System (INIS)

    Kraner, H.W.; Jones, K.W.

    1980-10-01

    Ion beams at the Brookhaven 3.5 MV Research Van de Graaff accelerator have been used for elemental analysis and distribution in biomedical samples. Results from several collaborations are presented. Both collimated and uncollimated charged particle beams are used for elemental analysis by measurement of characteristic x-rays (PIXE). A collimated proton beam, using a pinhole collimator (approx. 20 μm) has been used as a particle microprobe in the laboratory ambient. Thick, essentially unprepared, samples can be measured with general elemental sensitivities of 2 H( 3 H,n) 4 He reaction initiated by the triton beam at the accelerator. Alpha particles from the reaction register the deuterium distribution in a plastic track detector. This technique suggests that 3 H may be replaced by the stable isotope 2 H in tracer studies. Studies have included the detection of nonexchangeable 2 H in oocytes and the uptake of deuterated thymidine in blood cells

  2. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nandan K. Das

    2017-07-01

    Full Text Available Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  3. Convolutional Neural Networks for Biomedical Text Classification: Application in Indexing Biomedical Articles.

    Science.gov (United States)

    Rios, Anthony; Kavuluru, Ramakanth

    2015-09-01

    Building high accuracy text classifiers is an important task in biomedicine given the wealth of information hidden in unstructured narratives such as research articles and clinical documents. Due to large feature spaces, traditionally, discriminative approaches such as logistic regression and support vector machines with n-gram and semantic features (e.g., named entities) have been used for text classification where additional performance gains are typically made through feature selection and ensemble approaches. In this paper, we demonstrate that a more direct approach using convolutional neural networks (CNNs) outperforms several traditional approaches in biomedical text classification with the specific use-case of assigning medical subject headings (or MeSH terms) to biomedical articles. Trained annotators at the national library of medicine (NLM) assign on an average 13 codes to each biomedical article, thus semantically indexing scientific literature to support NLM's PubMed search system. Recent evidence suggests that effective automated efforts for MeSH term assignment start with binary classifiers for each term. In this paper, we use CNNs to build binary text classifiers and achieve an absolute improvement of over 3% in macro F-score over a set of selected hard-to-classify MeSH terms when compared with the best prior results on a public dataset. Additional experiments on 50 high frequency terms in the dataset also show improvements with CNNs. Our results indicate the strong potential of CNNs in biomedical text classification tasks.

  4. BioAnnote: a software platform for annotating biomedical documents with application in medical learning environments.

    Science.gov (United States)

    López-Fernández, H; Reboiro-Jato, M; Glez-Peña, D; Aparicio, F; Gachet, D; Buenaga, M; Fdez-Riverola, F

    2013-07-01

    Automatic term annotation from biomedical documents and external information linking are becoming a necessary prerequisite in modern computer-aided medical learning systems. In this context, this paper presents BioAnnote, a flexible and extensible open-source platform for automatically annotating biomedical resources. Apart from other valuable features, the software platform includes (i) a rich client enabling users to annotate multiple documents in a user friendly environment, (ii) an extensible and embeddable annotation meta-server allowing for the annotation of documents with local or remote vocabularies and (iii) a simple client/server protocol which facilitates the use of our meta-server from any other third-party application. In addition, BioAnnote implements a powerful scripting engine able to perform advanced batch annotations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. A biobank management model applicable to biomedical research

    Directory of Open Access Journals (Sweden)

    Patenaude Johane

    2006-04-01

    Full Text Available Abstract Background The work of Research Ethics Boards (REBs, especially when involving genetics research and biobanks, has become more challenging with the growth of biotechnology and biomedical research. Some REBs have even rejected research projects where the use of a biobank with coded samples was an integral part of the study, the greatest fear being the lack of participant protection and uncontrolled use of biological samples or related genetic data. The risks of discrimination and stigmatization are a recurrent issue. In light of the increasing interest in biomedical research and the resulting benefits to the health of participants, it is imperative that practical solutions be found to the problems associated with the management of biobanks: namely, protecting the integrity of the research participants, as well as guaranteeing the security and confidentiality of the participant's information. Methods We aimed to devise a practical and efficient model for the management of biobanks in biomedical research where a medical archivist plays the pivotal role as a data-protection officer. The model had to reduce the burden placed on REBs responsible for the evaluation of genetics projects and, at the same time, maximize the protection of research participants. Results The proposed model includes the following: 1 a means of protecting the information in biobanks, 2 offers ways to provide follow-up information requested about the participants, 3 protects the participant's confidentiality and 4 adequately deals with the ethical issues at stake in biobanking. Conclusion Until a governmental governance body is established in Quebec to guarantee the protection of research participants and establish harmonized guidelines for the management of biobanks in medical research, it is definitely up to REBs to find solutions that the present lack of guidelines poses. The model presented in this article offers a practical solution on a day-to-day basis for REBs

  6. The hemocompatibility of oxidized diamond nanocrystals for biomedical applications.

    Science.gov (United States)

    Li, Hung-Cheng; Hsieh, Feng-Jen; Chen, Ching-Pin; Chang, Ming-Yao; Hsieh, Patrick C H; Chen, Chia-Chun; Hung, Shain-Un; Wu, Che-Chih; Chang, Huan-Cheng

    2013-10-25

    Low-dimensional carbon-based nanomaterials have recently received enormous attention for biomedical applications. However, increasing evidence indicates that they are cytotoxic and can cause inflammatory responses in the body. Here, we show that monocrystalline nanodiamonds (NDs) synthesized by high-pressure-high-temperature (HPHT) methods and purified by air oxidation and strong oxidative acid treatments have excellent hemocompatibility with negligible hemolytic and thrombogenic activities. Cell viability assays with human primary endothelial cells suggested that the oxidized HPHT-NDs (dimensions of 35-500 nm) are non-cytotoxic. No significant elevation of the inflammatory cytokine levels of IL-1β and IL-6 was detected in mice after intravenous injection of the nanocrystals in vivo. Using a hindlimb-ischemia mouse model, we demonstrated that 35-nm NDs after covalent conjugation with polyarginine are useful as a drug delivery vehicle of heparin for prolonged anticoagulation treatment. The present study lays a solid foundation for further therapeutic applications of NDs in biomedicine.

  7. Tissue bank. A new biomedical applications of ionizing radiation

    International Nuclear Information System (INIS)

    Rubio, Tatiana; Ribbeck, Jessica

    1999-01-01

    The entire staff of the Irradiation Section has helped to develop the semi-commercial application of two technological areas of irradiation: sterilization of medical supplies and food preservation. Some biomedical applications, such as the irradiation of whole blood and its components, as well as of different pharmaceutical and cosmetics products have also been routinely carried out. A Center for processing biological tissues has been added recently. At the end of 1996, a Tissue Bank for producing bone and skin grafts was evaluated and approved by the Chilean Nuclear Energy Commission (CCHEN). The first activities began the following year, and cooperation agreements with potential users were signed. At the same time the International Atomic Energy Agency (IAEA) sent an expert to give assistance, who also carried out a surgical operation with irradiated bone grafts in the Hospital del Trabajador. The year finished with the presentation to IAEA of a technical cooperation project, which was subsequently approved. A clean room where the Bank in formation will operate was set up in 1998 and the implementation of the laboratory was started with the support of the IAEA. At present the Bank has produced its first results with irradiated bone grafts, that have been used to close bronchopleural fistulas. By year's end more samples of bone grafts will be produced and sterilized by ionizing radiation, in compliance with the international standards. (author)

  8. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology.

    Science.gov (United States)

    Polizu, Stefania; Savadogo, Oumarou; Poulin, Philippe; Yahia, L'Hocine

    2006-07-01

    One of the facets of nanotechnology applications is the immense opportunities they offer for new developments in medicine and health sciences. Carbon nanotubes (CNTs) have particularly attracted attention for designing new monitoring systems for environment and living cells as well as nanosensors. Carbon nanotubes-based biomaterials are also employed as support for active prosthesis or functional matrices in reparation of parts of the human body. These nanostructures are studied as molecular-level building blocks for the complex and miniaturized medical device, and substrate for stimulation of cellular growth. The CNTs are cylindrical shaped with caged molecules which can act as nanoscale containers for molecular species, well required for biomolecular recognition and drug delivery systems. Endowed with very large aspect ratios, an excellent electrical conductivity and inertness along with mechanical robustness, nanotubes found enormous applications in molecular electronics and bioelectronics. The ballistic electrical behaviour of SWNTs conjugated with functionalization promotes a large variety of biosensors for individual molecules. Actuative response of CNTs is considered very promising feature for nanodevices, micro-robots and artificial muscles. An description of CNTs based biomaterials is attempted in this review, in order to point out their enormous potential for biomedical nanotechnology and nanobiotechnology.

  9. Characterization of a new beta titanium alloy, Ti-12Mo-3Nb, for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, S.B., E-mail: sinara@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalurgica de Materiais, C.P. 68505, Rio de Janeiro (RJ) 21945-970 (Brazil); Centro Universitario de Volta Redonda, Volta Redonda (RJ) (Brazil); Panaino, J.V.P. [Centro Universitario de Volta Redonda, Volta Redonda (RJ) (Brazil); Santos, I.D. [Pontificia Universidade Catolica do Rio de Janeiro, Rio de Janeiro (RJ) (Brazil); Araujo, L.S. [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalurgica de Materiais, C.P. 68505, Rio de Janeiro (RJ) 21945-970 (Brazil); Mei, P.R. [Universidade Estadual de Campinas, Campinas (SP) (Brazil); Almeida, L.H. de [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalurgica de Materiais, C.P. 68505, Rio de Janeiro (RJ) 21945-970 (Brazil); Nunes, C.A. [Universidade de Sao Paulo, Departamento de Engenharia de Materiais, C.P. 116, Lorena (SP) 12.600-970 (Brazil)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer This paper focused on the development of Ti-12Mo-3Nb alloy for it to be used as a bone substitute. Black-Right-Pointing-Pointer The alloy show good mechanical properties and exhibit spontaneous passivity. Black-Right-Pointing-Pointer The Ti-12Mo-3Nb alloy can be a promising alternative for biomedical application. - Abstract: In recent years, different beta titanium alloys have been developed for biomedical applications with a combination of mechanical properties including a low Young's modulus, high strength, fatigue resistance and good ductility with excellent corrosion resistance. From this perspective, a new metastable beta titanium Ti-12Mo-3Nb alloy was developed with the replacement of both vanadium and aluminum from the traditional Ti-6Al-4V alloy. This paper presents the microstructure, mechanical properties and corrosion resistance of the Ti-12Mo-3Nb alloy heat-treated at 950 Degree-Sign C for 1 h. The material was characterized by X-ray diffraction and by scanning electron microscopy. Tensile tests were carried out at room temperature. Corrosion tests were performed using Ringer's solution at 25 Degree-Sign C. The results showed that this alloy could potentially be used for biomedical purposes due to its good mechanical properties and spontaneous passivation.

  10. Semiconductor device-based sensors for gas, chemical, and biomedical applications

    CERN Document Server

    Ren, Fan

    2011-01-01

    Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including or

  11. COEUS: “semantic web in a box” for biomedical applications

    Directory of Open Access Journals (Sweden)

    Lopes Pedro

    2012-12-01

    Full Text Available Abstract Background As the “omics” revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter’s complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. Results COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a “semantic web in a box” approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. Conclusions The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.

  12. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications

    Science.gov (United States)

    Yakoh, Abdulhadee; Pinyorospathum, Chanika; Siangproh, Weena; Chailapakul, Orawon

    2015-01-01

    Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities. PMID:26343676

  13. Applicability of PIXE for multielemental analysis in a biomedical application

    International Nuclear Information System (INIS)

    Shakir, N.S.

    1987-07-01

    The applicability of PIXE for multielemental analysis is demonstrated. The method is used in a major systematic study on hair samples using one target analysis. The pathological state considered is agitated elderly people. The main elements examined are S, K, Ca, Fe, Co, Ni, Cu, Zn, Se, Br, Hg and Pb. The minimum detectable limits are 1-10 ppm using 180 μg of dry hair at 25 μe irradiations for elements between K and Br. The significance of differences between the hair elements in control populations and patients suffering from the pathological conditions are investigated. Investigations of possible linear and multiple-correlations between elements in each population are made. The work indicates that some elements do exhibit variation with pathological state, and the multielement PIXE analysis gives useful information about the subject. (author). 13 refs, 4 figs, 6 tabs

  14. Rational design of nanoparticles for biomedical imaging and photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Haiyan

    2011-07-01

    This thesis aims to rationally design nanoparticles and promote their applications in biomedical imaging and photovoltaic cells. Quantum dots (QDs) are promising fluorescent probes for biomedical imaging. We have fabricated two types of MSA capped QDs: CdTe/ZnSe core/shell QDs synthesized via an aqueous method and CdTe QDs via a hydrothermal method. They present high quantum yields (QYs), narrow emission band widths, high photo- and pH-stability, and low cytotoxicity. QD-IgG probes were produced and applied for labeling breast cancer marker HER2 proteins on MCF-7 cells. For the purpose of single molecule tracking using QDs as fluorescent probes, we use small affibodies instead of antibodies to produce QD-affibody probes. Smaller QD-target protein complexes are obtained using a direct immunofluorescence approach. These QD-affibody probes are developed to study the dynamic motion of single HER2 proteins on A431 cell membranes. Fluorescence blinking in single QDs is harmful for dynamic tracking due to information loss. We have experimentally studied the blinking phenomenon and the mechanism behind. We have discovered an emission bunching effect that two nearby QDs tend to emit light synchronously. The long-range Coulomb potential induced by the negative charge on the QD surface is found to be the major cause for the single QD blinking and the emission bunching in QD pairs. We have studied the in vitro cytotoxicity of CdTe QDs to human umbilical vein endothelial cells (HUVECs). The QDs treatment increases the intracellular reactive oxygen species (ROS) level and disrupts the mitochondrial membrane potential. The protein expression levels indicate that the mitochondria apoptosis is the main cause of HUVCEs apoptosis induced by CdTe QDs. Gold nanorods (GNRs) are scattering probes due to their tunable surface plasmon resonance (SPR) enhanced scattering spectrum. In order to control the yield and morphology of GNRs, we have systematically studied the effects of composition

  15. Phosphate chemical conversion coatings on metallic substrates for biomedical application: a review.

    Science.gov (United States)

    Liu, Bing; Zhang, Xian; Xiao, Gui-yong; Lu, Yu-peng

    2015-02-01

    Phosphate chemical conversion (PCC) technology has been investigated for improving the surface performance of metallic implants in the biomedical field over the last decade. The metallic materials, such as magnesium and its alloys, titanium, pure iron and stainless steel are widely used as orthopedic devices for immobilization of bone fractures in clinic. They were previously studied as metal substrates for PCC coating aiming to modify their biocompatibility and osteoconductivity. Zinc, calcium and zinc-calcium PCC coatings are frequently utilized considering their nature and the end-use. Although PCC coating has been confirmed to potentially improve the bio-performance of metallic implants in vitro and in vivo by many researchers, there are no unified standards or regulations to give quantitative appraisal of its quality and property. As such, an overview of several main phosphate phases together with their properties and behaviors in vitro and in vivo was conducted. The mechanism of phosphating was also briefly discussed. Critical qualities of PCC coating used for biomedical application including corrosion resistance, wettability and bonding strength were analyzed separately. Biological response including in vitro cell investigations and in vivo tissue response were discussed in terms of the cytocompatibility and bioactivity of PCC coating. Further investigations are proposed to develop appropriate performance evaluation measurements by combining conventional technologies and biomedical procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Magneto-harmonic pressure sensor for biomedical applications.

    Science.gov (United States)

    Tan, Ee Lim; Ong, Keat Ghee

    2011-01-01

    A wireless and passive pressure sensor was developed for biomedical applications such as monitoring pressure in an abdominal aortic aneurysm sac after a stenting procedure to detect potential leakage from the stent graft. The sensor, referred to as the magneto-harmonic pressure sensor, was an airtight chamber consisting of a rigid well structure capped with an elastic membrane. A magnetically soft material was placed at the bottom of the well, while a magnetically hard material was attached to the membrane. Under the excitation of a magnetic AC field, the magnetically soft material produced a magnetic field at frequencies higher than the excitation frequency (the higher-order harmonic fields) that can be remotely detected with an external detection system. The pattern of the higher-order harmonic fields was dependent on the magnitude of the magnetic DC field produced by the magnetically hard material. When the ambient pressure varied, the membrane of the sensor deflected, changing the separation distance between the magnetically hard and soft materials. This in turn changed the magnitude of the magnetic DC field, causing a shift in the higher-order harmonic field pattern. This paper describes the design and fabrication of the sensor, and its implementation to mice to evaluate its performance in a biological environment.

  17. Characterization of DBD plasma source for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuchenbecker, M; Vioel, W [University of Applied Sciences and Arts, Faculty of Natural Sciences and Technology, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany); Bibinov, N; Awakowicz, P [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetstr. 150, 44780 Bochum (Germany); Kaemlimg, A; Wandke, D, E-mail: m.kuchenbecker@web.d, E-mail: Nikita.Bibinov@rub.d, E-mail: awakowicz@aept-ruhr-uni-bochum.d, E-mail: vioel@hawk-hhg.d [CINOGY GmbH, Max-Naeder-Str. 15, 37114 Duderstadt (Germany)

    2009-02-21

    The dielectric barrier discharge (DBD) plasma source for biomedical application is characterized using optical emission spectroscopy, plasma-chemical simulation and voltage-current measurements. This plasma source possesses only one electrode covered by ceramic. Human body or some other object with enough high electric capacitance or connected to ground can serve as the opposite electrode. DBD consists of a number of microdischarge channels distributed in the gas gap between the electrodes and on the surface of the dielectric. To characterize the plasma conditions in the DBD source, an aluminium plate is used as an opposite electrode. Electric parameters, the diameter of microdischarge channel and plasma parameters (electron distribution function and electron density) are determined. The gas temperature is measured in the microdischarge channel and calculated in afterglow phase. The heating of the opposite electrode is studied using probe measurement. The gas and plasma parameters in the microdischarge channel are studied at varied distances between electrodes. According to an energy balance study, the input microdischarge electric energy dissipates mainly in heating of electrodes (about 90%) and partially (about 10%) in the production of chemical active species (atoms and metastable molecules).

  18. Poly hydroxybutyrate/ethylcellulose blends for biomedical applications

    International Nuclear Information System (INIS)

    Garvey, Chris J.; Russell, Robert A.; Holden, Peter; Chan, Rodney; Foster, John L.R.; Garamus, Vasil M.; Boue, Francois

    2009-01-01

    Full text: We are investigating blends of a biopolyester, polyhydroxybutyrate (PHB), with a chemical deri of another biologically important polymer (cellulose), ethyl cellulose (EC). PHB has many pr properties which are typical of an engineering thermoplastic as well as being biodegradabl biocompatible. PHB and EC are both suitable for use in bioresorbable structures for biomedical applications. Unfavourable properties of PHB are that it is prone to crystallisation during processing and in environmental conditions, becoming brittle, and is quite expensive to produce. EC has added in blends because it inhibits PHB crystallisation but it is also much cheaper than PHI examine the interaction and interface between the two polymers in the solid phase by small neutron scattering. A more favourable scattering contrast between the two phases is obtain using biodeuterated PHB. Deviations of the interfacial behaviour from the Porod law are an, using the model of Koberstein et al of a diffuse interface [1]. The composition of the blends I physiological degradation has been examined with FTIR spectroscopy and x-ray diffraction.

  19. Diamond thin films: giving biomedical applications a new shine.

    Science.gov (United States)

    Nistor, P A; May, P W

    2017-09-01

    Progress made in the last two decades in chemical vapour deposition technology has enabled the production of inexpensive, high-quality coatings made from diamond to become a scientific and commercial reality. Two properties of diamond make it a highly desirable candidate material for biomedical applications: first, it is bioinert, meaning that there is minimal immune response when diamond is implanted into the body, and second, its electrical conductivity can be altered in a controlled manner, from insulating to near-metallic. In vitro, diamond can be used as a substrate upon which a range of biological cells can be cultured. In vivo , diamond thin films have been proposed as coatings for implants and prostheses. Here, we review a large body of data regarding the use of diamond substrates for in vitro cell culture. We also detail more recent work exploring diamond-coated implants with the main targets being bone and neural tissue. We conclude that diamond emerges as one of the major new biomaterials of the twenty-first century that could shape the way medical treatment will be performed, especially when invasive procedures are required. © 2017 The Authors.

  20. Characterization of Sucrose Thin Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. L. Iconaru

    2011-01-01

    Full Text Available Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11 were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5 torr. Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR, X-ray Photoelectron Spectroscopy (XPS, scanning electron microscopy (SEM, and differential thermal analysis and thermal gravimetric analysis (TG/DTA. The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.

  1. Surfactant double layer stabilized magnetic nanofluids for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Tombacz, E; Hajdu, A; Illes, E; Majzik, A [Department of Colloid Chemistry, University of Szeged (Hungary); Bica, D; Vekas, L [Center of Fundamental and Advanced Technical Research, Romanian Academy-Timisoara Division (Romania)], E-mail: tombacz@chem.u-szeged.hu

    2008-05-21

    Magnetite nanoparticles were coated with surfactant double layers in order to prepare water based magnetic fluids (MFs). The effects of head group (sulfonate, carboxylate) and alkyl chain length (11-17 C atoms) and the combination of surfactants were studied. Adsorption, dynamic light scattering (DLS) and electrophoretic mobility measurements were performed. The quantity of surfactant varied between 0.3 and 0.5 g, i.e. their specific amount ranges over 1.5-2 mmol g{sup -1} magnetite in MFs. The adsorption isotherm of Na oleate on magnetite proved the double layer formation with 2 mmol g{sup -1} saturation value in good harmony with the empirical doses. The effect of diluting MFs, pH and salt concentration was studied. The pH-dependent stability and the salt tolerance of MFs were different owing to the dissociation of the outermost hydrophilic groups and the hydrophobic interactions scaling with the alkyl chain length of surfactant. The hydrophobic interactions are favored only for oleic and myristic acid double layers. In these MFs, aggregation cannot be observed even in fairly dilute systems up to the physiological salt concentration around neutral pH 6-8 favored in biomedical application. The stable oleic and myristic acid double layers can hinder effectively the aggregation of magnetite particles due to the combined steric and electrostatic stabilization.

  2. Isolation and processing of silk proteins for biomedical applications.

    Science.gov (United States)

    Kundu, Banani; Kurland, Nicholas E; Yadavalli, Vamsi K; Kundu, Subhas C

    2014-09-01

    Silk proteins of silkworms are chiefly composed of core fibroin protein and glycoprotein sericin that glues fibroin. Unique mechanical properties, cyto-compatibility and controllable biodegradability facilitate the use of fibroin in biomedical applications. Sericin serves as additive in cosmetic and food industries, as mitotic factor in cell culture media, anti-cancerous drug, anticoagulant and as biocompatible coating. For all these uses; aqueous solutions of silk proteins are preferred. Therefore, an accurate understanding of extraction procedure of silk proteins from their sources is critical. A number of protocols exist, amongst which it is required to settle a precise and easy one with desired yield and least down-stream processing. Here, we report extraction of proteins employing methods mentioned in literature using cocoons of mulberry and nonmulberry silks. This study reveals sodium carbonate salt-boiling system is the most efficient sericin extraction procedure for all silk variants. Lithium bromide is observed as the effective fibroin dissolution system for mulberry silk cocoons; whereas heterogeneous species-dependent result is obtained in case of nonmulberry species. We further show the effect of common post processing on nanoscale morphology of mulberry silk fibroin films. This knowledge eases the adoption and fabrication of silk biomaterials in devices and therapeutic delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications.

    Science.gov (United States)

    Wang, Yongzhong; Fan, Zhen; Shao, Lei; Kong, Xiaowei; Hou, Xianjuan; Tian, Dongrui; Sun, Ying; Xiao, Yazhong; Yu, Li

    2016-01-01

    Owing to peculiar properties of nanobody, including nanoscale size, robust structure, stable and soluble behaviors in aqueous solution, reversible refolding, high affinity and specificity for only one cognate target, superior cryptic cleft accessibility, and deep tissue penetration, as well as a sustainable source, it has been an ideal research tool for the development of sophisticated nanobiotechnologies. Currently, the nanobody has been evolved into versatile research and application tool kits for diverse biomedical and biotechnology applications. Various nanobody-derived formats, including the nanobody itself, the radionuclide or fluorescent-labeled nanobodies, nanobody homo- or heteromultimers, nanobody-coated nanoparticles, and nanobody-displayed bacteriophages, have been successfully demonstrated as powerful nanobiotechnological tool kits for basic biomedical research, targeting drug delivery and therapy, disease diagnosis, bioimaging, and agricultural and plant protection. These applications indicate a special advantage of these nanobody-derived technologies, already surpassing the "me-too" products of other equivalent binders, such as the full-length antibodies, single-chain variable fragments, antigen-binding fragments, targeting peptides, and DNA-based aptamers. In this review, we summarize the current state of the art in nanobody research, focusing on the nanobody structural features, nanobody production approach, nanobody-derived nanobiotechnology tool kits, and the potentially diverse applications in biomedicine and biotechnology. The future trends, challenges, and limitations of the nanobody-derived nanobiotechnology tool kits are also discussed.

  4. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  5. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  6. Statistical physics including applications to condensed matter

    CERN Document Server

    Hermann, Claudine

    2005-01-01

    Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies -- as e.g. semiconductors or lasers -- are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.

  7. Application of nuclear microlocalization techniques to biomedical problems

    Energy Technology Data Exchange (ETDEWEB)

    Kraner, H.W.; Jones, K.W.

    1980-10-01

    Ion beams at the Brookhaven 3.5 MV Research Van de Graaff accelerator have been used for elemental analysis and distribution in biomedical samples. Results from several collaborations are presented. Both collimated and uncollimated charged particle beams are used for elemental analysis by measurement of characteristic x-rays (PIXE). A collimated proton beam, using a pinhole collimator (approx. 20 ..mu..m) has been used as a particle microprobe in the laboratory ambient. Thick, essentially unprepared, samples can be measured with general elemental sensitivities of < 10 ppM. The spatial resolution and elemental sensitivity have proven adequate for many samples of tissue secthons and cell clusters. Specimen damage by charged particle beams is discussed and results of cell irradiations by triton beams are presented. Deuterium localization has been carried out in cell uptake studies using the /sup 2/H(/sup 3/H,n)/sup 4/He reaction initiated by the triton beam at the accelerator. Alpha particles from the reaction register the deuterium distribution in a plastic track detector. This technique suggests that /sup 3/H may be replaced by the stable isotope /sup 2/H in tracer studies. Studies have included the detection of nonexchangeable /sup 2/H in oocytes and the uptake of deuterated thymidine in blood cells.

  8. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications.

    Science.gov (United States)

    Maduraiveeran, Govindhan; Sasidharan, Manickam; Ganesan, Vellaichamy

    2018-04-30

    Introduction of novel functional nanomaterials and analytical technologies signify a foremost possibility for the advance of electrochemical sensor and biosensor platforms/devices for a broad series of applications including biological, biomedical, biotechnological, clinical and medical diagnostics, environmental and health monitoring, and food industries. The design of sensitive and selective electrochemical biological sensor platforms are accomplished conceivably by offering new surface modifications, microfabrication techniques, and diverse nanomaterials with unique properties for in vivo and in vitro medical analysis via relating a sensibly planned electrode/solution interface. The advantageous attributes such as low-cost, miniaturization, energy efficient, easy fabrication, online monitoring, and the simultaneous sensing capability are the driving force towards continued growth of electrochemical biosensing platforms, which have fascinated the interdisciplinary research arenas spanning chemistry, material science, biological science, and medical industries. The electrochemical biosensor platforms have potential applications in the early-stage detection and diagnosis of disease as stout and tunable diagnostic and therapeutic systems. The key aim of this review is to emphasize the newest development in the design of sensing and biosensing platforms based on functional nanomaterials for biological and biomedical applications. High sensitivity and selectivity, fast response, and excellent durability in biological media are all critical aspects which will also be wisely addressed. Potential applications of electrochemical sensor and biosensor platforms based on advanced functional nanomaterials for neuroscience diagnostics, clinical, point-of-care diagnostics and medical industries are also concisely presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Current Developments in Antimicrobial Surface Coatings for Biomedical Applications.

    Science.gov (United States)

    Swartjes, J J T M; Sharma, P K; van Kooten, T G; van der Mei, H C; Mahmoudi, M; Busscher, H J; Rochford, E T J

    2015-01-01

    Bacterial adhesion and subsequent biofilm formation on material surfaces represent a serious problem in society from both an economical and health perspective. Surface coating approaches to prevent bacterial adhesion and biofilm formation are of increased importance due to the increasing prevalence of antibiotic resistant bacterial strains. Effective antimicrobial surface coatings can be based on an anti-adhesive principle that prevents bacteria to adhere, or on bactericidal strategies, killing organisms either before or after contact is made with the surface. Many strategies, however, implement a multifunctional approach that incorporates both of these mechanisms. For anti-adhesive strategies, the use of polymer chains, or hydrogels is preferred, although recently a new class of super-hydrophobic surfaces has been described which demonstrate improved anti-adhesive activity. In addition, bacterial killing can be achieved using antimicrobial peptides, antibiotics, chitosan or enzymes directly bound, tethered through spacer-molecules or encased in biodegradable matrices, nanoparticles and quaternary ammonium compounds. Notwithstanding the ubiquitous nature of the problem of microbial colonization of material surfaces, this review focuses on the recent developments in antimicrobial surface coatings with respect to biomaterial implants and devices. In this biomedical arena, to rank the different coating strategies in order of increasing efficacy is impossible, since this depends on the clinical application aimed for and whether expectations are short- or long term. Considering that the era of antibiotics to control infectious biofilms will eventually come to an end, the future for biofilm control on biomaterial implants and devices is likely with surface-associated modifications that are non-antibiotic related.

  10. Elaboration and characterization of nanostructured biocements for biomedical applications

    Directory of Open Access Journals (Sweden)

    Nelson Heriberto Almeida Camargo

    2007-06-01

    Full Text Available Biocements formed from the composition Ca/P have been studied and developed since 1983. These biomaterials are promissing and have aroused great interest to biomedical surgery applications, fixation of prostheses and filling and reconstruction of bones. They can be employed as an element of load to fix implant and bone structure. In addition, biocements are easily shaped during surgical processes and favor early bone habitation, absorption, osseointegration, and osteoconduction of bone structure into the microstructure of the biocement thus favoring regeneration and reconstruction of bone tissue. This paper aims to develop biocements formed from calcium phosphate through the aqueous precipitation method by means of the dissolution-precipitation reaction, which involves solid/ liquid phase of CaO and phosphoric acid to form the calcium phosphate. The biocements investigated were synthesized when the molar ratios of Ca/P = 1.4, 1.5, 1.6, 1.7 and 1.8. The present results indicate that the aqueous precipitation method allowed nanostructured powder of calcium phosphate to form. Thermal treatment at 1300 °C for 2 hours provided biocements formed from calcium phosphate and hydroxyapatite. The study of hydration behaviour from 1 to 28 days in a solution, which contained 0.4% of sodium phosphate, emphasized phase modification and the presence of a microporous microstructure made of crystalline fibers. It was found that the shape and size of the crystalline fiber had a direct influence on the resulting mechanical properties. Investigating more carefully the behaviour of the specimens with a Ca/P molar ratio of 1.5, there was an increase in the strength value under compression as a function of time so that it reached the maximum value of strength ±45 MPa to specimens that had been hydrated for 28 days.

  11. Biomedical applications of magneto-plasmonic nanoclusters (Conference Presentation)

    Science.gov (United States)

    Sokolov, Konstantin V.; Wu, Chun-Hsien; Cook, Jason; Zal, Tomasz; Emelianov, Stanislav

    2016-03-01

    Perhaps one of the most intriguing aspects of nanotechnology is the ability to create multimodal and multifunctional nanostructures that can open new venues in solving challenging biomedical problems. Here, we present multimodal magneto-plasmonic nanoparticles (MPNs) with a strong red-NIR absorbance, superparamagnetic properties and a high magnetic moment in an external magnetic field. Our design is based on self-assembly of 6 nm primary particles which consist of 5 nm diameter iron-oxide cores coated with a very thin ca. 0.5 nm gold shell. The assembly results in spherical highly uniform MPNs. We developed antibody targeted MPNs to address two highly challenging applications: (i) development of real-time assays for capture, enumeration and characterization of circulating tumor cells (CTCs), and (ii) enhancement of adoptive cell immunotherapy (ACT). Our results showed that MPNs can be used for simultaneous magnetic capture and photoacoustic (PA) detection of cancer cells in whole blood with no laborious processing steps. Furthermore, we demonstrated that MPNs conjugated with anti-CD8 antibodies, which are specific for cytotoxic T cells used in ATC, label CD8+ T cells with high specificity ex vivo and in vivo. Labeled T cells can be easily manipulated by a small magnet in suspension and under flow conditions. In addition, MPNs generate high contrast in MRI and PA imaging with the potential to detect just few cells per imaging voxel. These results show that immunotargeted MPNs can be explored for simultaneous visualization and magnetic guidance of T cell subsets in vivo for cancer treatment.

  12. Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications.

    Science.gov (United States)

    Choi, Andrew; Seo, Kyoung Duck; Kim, Do Wan; Kim, Bum Chang; Kim, Dong Sung

    2017-02-14

    Complex microparticles (MPs) bearing unique characteristics such as well-tailored sizes, various morphologies, and multi-compartments have been attempted to be produced by many researchers in the past decades. However, a conventionally used method of fabricating MPs, emulsion polymerization, has a limitation in achieving the aforementioned characteristics and several approaches such as the microfluidics-assisted (droplet-based microfluidics and flow lithography-based microfluidics), electrohydrodynamics (EHD)-based, centrifugation-based, and template-based methods have been recently suggested to overcome this limitation. The outstanding features of complex MPs engineered through these suggested methods have provided new opportunities for MPs to be applied in a wider range of applications including cell carriers, drug delivery agents, active pigments for display, microsensors, interface stabilizers, and catalyst substrates. Overall, the engineered MPs expose their potential particularly in the field of biomedical engineering as the increased complexity in the engineered MPs fulfills well the requirements of the high-end applications. This review outlines the current trends of newly developed techniques used for engineered MPs fabrication and focuses on the current state of engineered MPs in biomedical applications.

  13. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  14. A Short Overview on the Biomedical Applications of Silica, Alumina and Calcium Phosphate-based Nanostructured Materials.

    Science.gov (United States)

    Ellahioui, Younes; Prashar, Sanjiv; Gómez-Ruiz, Santiago

    2016-01-01

    This article reviews the use of silica, alumina and calcium phosphate-based nanostructured materials with biomedical applications. A short introduction on the use of the materials in Science, Nanotechnology and Health is included followed by a revision of each of the selected materials. A description of the principal synthetic methods used in the preparation of the materials in nanostructured form is included. The most widely used applications in biomedicine are reviewed including, for example drug-delivery, bone regeneration, imaging, sensoring amongst others. Finally, a short description of the toxicity and cytotoxicity associated with each of the materials of this revision is presented. This short literature revision serves to demonstrate the very promising future ahead of nanosystems based on silica, alumina and calcium phosphate for biological and biomedical applications.

  15. Development of Hyaluronic Acid Derivatives for Applications in Biomedical Engineering

    NARCIS (Netherlands)

    Petta, D.

    2018-01-01

    Hyaluronic acid (HA) is a non-sulfated glycosaminoglycan. Ubiquitous in the human body, this natural polymer is widely used in the biomedical research thanks to its unique chemical, physical and biological properties [1-3]. Over forty years of use in clinics makes it one of the most successfully

  16. Application of text mining in the biomedical domain

    NARCIS (Netherlands)

    Fleuren, W.W.M.; Alkema, W.B.L.

    2015-01-01

    In recent years the amount of experimental data that is produced in biomedical research and the number of papers that are being published in this field have grown rapidly. In order to keep up to date with developments in their field of interest and to interpret the outcome of experiments in light of

  17. Design and Fabrication of Tunable Nanoparticles for Biomedical Applications

    Science.gov (United States)

    Sun, Leming

    biomaterials, the sundew-inspired hydrogels demonstrated superior wound healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. While tremendous efforts have been spent in investigating scalable approaches for fabricating nanoparticles, less progress has been made in scalable synthesizing cyclic peptide nanoparticles and nanotubes, despite their great potential for broader biomedical applications. In Chapter 4, tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles using three different methods, phase equilibrium, pH-driven, and pH-sensitive methods were proposed and investigated. The goal is for scalable nano-manufacturing of cyclic peptide nanoparticles and nanotubes with different sizes in large quality by controlling multiple process parameters. The dimensions of self-assembled nanostructures were found to be strongly influenced by the cyclic peptides concentration, side chains modification, pH value, reaction time, stirring intensity, and sonication time. This study proposed an overall strategy to integrate all the parameters to achieve optimal synthesis outputs. AD is associated with the accumulation of insoluble forms of amyloid-beta (Abeta) in plaques in extracellular spaces, as well as in the walls of blood vessels, and aggregation of microtubule protein tau in neurofibrillary tangles in neurons. In Chapter 5, we designed and synthesized a series of fluorescent cyclic peptide nanoparticles that can be used to detect Abeta aggregates in both the cerebrospinal fluid (CSF) and serum, which were obtained from healthy people and AD patients in different disease stages. Our experimental studies indicate that the fluorescence intensities and wavelengths generated from the interactions between the negatively charged

  18. Mesoporous silica nanoparticles for biomedical and catalytical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaoxing [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  19. Prototype client/server application for biomedical text/image retrieval on the Internet

    Science.gov (United States)

    Long, L. Rodney; Berman, Lewis E.; Thoma, George R.

    1996-03-01

    At the Lister Hill National Center for Biomedical Communications, a research and development division of the National Library of Medicine (NLM), a prototype image database retrieval system has been built. This medical information retrieval system (MIRS) is a client/server application which provides Internet access to biomedical databases, including both text search/retrieval and retrieval/display of medical images associated with the text records. The MIRS graphical user interface (GUI) allows a user to formulate queries by simple, intuitive interactions with screen buttons, list boxes, and edit boxes; these interactions create structured query language (SQL) queries, which are submitted to a database manager running at NLM. The result of a MIRS query is a display showing both scrollable text records and scrollable images returned for all of the 'hits' of the query. MIRS is designed as an information-delivery vehicle intended to provide access to multiple collections of medical text and image data. The database used for initial MIRS evaluation consists of national survey data collected by the National Center for Health Statistics, including 17,000 spinal x-ray images. This survey, conducted on a sample of 27,801 persons, collected demographic, socioeconomic, and medical information, including both interview results and results acquired by direct examination by physician.

  20. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bloemen, Maarten, E-mail: maarten.bloemen@fys.kuleuven.be; Brullot, Ward; Luong, Tai Thien [KU Leuven, Department of Chemistry (Belgium); Geukens, Nick [KU Leuven, PharmAbs, The KU Leuven Antibody Center (Belgium); Gils, Ann [KU Leuven, Faculty of Pharmaceutical Sciences (Belgium); Verbiest, Thierry [KU Leuven, Department of Chemistry (Belgium)

    2012-09-15

    Superparamagnetic iron oxide nanoparticles can provide multiple benefits for biomedical applications in aqueous environments such as magnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles' surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality water-dispersible nanoparticles around 10 nm in size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.

  1. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Tobias [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Schoepf, Bernhard [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland); Hofmann, Heinrich [Laboratory of Powder Technology, Institute of Materials, Swiss Federal Institute of Technology, EPFL, 1015 Lausanne (Switzerland); Hofmann, Margarete [MatSearch Pully, Chemin Jean Pavillard, 14, CH-1009 Pully (Switzerland); Rechenberg, Brigitte von [Musculoskeletal Research Unit, Equine Hospital, Vetsuisse Faculty Zurich, University of Zurich, Winterthurerstr. 260, 8057 Zurich (Switzerland)]. E-mail: bvonrechenberg@vetclinics.unizh.ch

    2005-05-15

    Nanoparticles can be used in biomedical applications, where they facilitate laboratory diagnostics, or in medical drug targeting. They are used for in vivo applications such as contrast agent for magnetic resonance imaging (MRI), for tumor therapy or cardiovascular disease. Very promising nanoparticles for these applications are superparamagnetic nanoparticles based on a core consisting of iron oxides (SPION) that can be targeted through external magnets. SPION are coated with biocompatible materials and can be functionalized with drugs, proteins or plasmids. In this review, the characteristics and applications of SPION in the biomedical sector are introduced and discussed.

  2. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  3. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering.

    Science.gov (United States)

    Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui

    2016-02-01

    Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Synthesis and biomedical applications of Cerium oxide nanoparticles – A Review

    Directory of Open Access Journals (Sweden)

    S. Rajeshkumar

    2018-03-01

    Full Text Available A cerium oxide nanoparticles (nanoceria has a wide range of applications in different fields, especially biomedical division. As a matter of concern, it has a major impact on the human health and environment. The aim of this review is to address the different ways of synthesis of nanoceria using chemical and green synthesis methods and characterization and the applications of nanoceria for antioxidant, anticancer, antibacterial activities and toxicological studies including the most recent studies carried out in vivo and in vitro to study the problems. We have exclusively discussed on the toxicology of nanoceria exposed to the general public along with recent advances in the studies of antimicrobial, toxicity and anti-oxidant activity.

  5. Understanding the Structure-Function Relationships of Dendrimers in Environmental and Biomedical Applications

    Science.gov (United States)

    Wang, Bo

    We are living an era wherein nanoparticles (NPs) have been widely applied in our lives. Dendrimers are special polymeric NPs with unique physiochemical properties, which have been intensely explored for a variety of applications. Current studies on dendrimers are bottlenecked by insufficient understandings of their structure and dynamic behaviors from a molecular level. With primarily computational approaches supplemented by many other experimental technics, this dissertation aims to establish structure-function relationships of dendrimers in environmental and biomedical applications. More specifically, it thoroughly investigates the interactions between dendrimers and different biomolecules including carbon-based NPs, metal-based NPs, and proteins/peptides. Those results not only provide profound knowledge for evaluating the impacts of dendrimers on environmental and biological systems but also facilitate designing next-generation functional polymeric nanomaterials. The dissertation is organized as following. Chapter 1 provides an overview of current progresses on dendrimer studies, where methodology of Discrete Molecular Dynamics (DMD), my major research tool, is also introduced. Two directions of utilizing dendrimers will be discussed in following chapters. Chapter 2 will focus on environmental applications of dendrimers, where two back-to-back studies are presented. I will start from describing some interesting observations from experiments i.e. dendrimers dispersed model oil molecules. Then, I will reveal why surface chemistries of dendrimers lead to different remediation efficiencies by computational modelings. Finally, I will demonstrate different scenarios of dendrimer-small molecules association. Chapter 3 is centered on dendrimers in the biomedical applications including two subtopics. In the first topic, we will discuss dendrimers as surfactants that modulating the interactions between proteins and NPs. Some fundamental concepts regarding to NPs

  6. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications.

    Science.gov (United States)

    Panahi, Yunes; Farshbaf, Masoud; Mohammadhosseini, Majid; Mirahadi, Mozhdeh; Khalilov, Rovshan; Saghfi, Siamak; Akbarzadeh, Abolfazl

    2017-06-01

    Liposome is a new nanostructure for the encapsulation and delivery of bioactive agents. There are a lot of bioactive materials that could be incorporated into liposomes including cosmetics, food ingredients, and pharmaceuticals. Liposomes possess particular properties such as biocompatibility, biodegradability; accompanied by their nanosize they have potential applications in nanomedicine, cosmetics, and food industry. Nanoliposome technology offers thrilling chances for food technologists in fields including encapsulation and controlled release of food ingredients, also improved bioavailability and stability of sensitive materials. Amid numerous brilliant new drug and gene delivery systems, liposomes provide an advanced technology to carry active molecules to the specific site of action, and now days, various formulations are in clinical use. In this paper, we provide review of the main physicochemical properties of liposomes, current methods of the manufacturing and introduce some of their usage in food nanotechnology as carrier vehicles of nutrients, enzymes, and food antimicrobials and their applications as drug carriers and gene delivery agents in biomedicine.

  7. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications

    Directory of Open Access Journals (Sweden)

    Wang Y

    2016-07-01

    Full Text Available Yongzhong Wang,1 Zhen Fan,2 Lei Shao,3 Xiaowei Kong,1 Xianjuan Hou,1 Dongrui Tian,1 Ying Sun,1 Yazhong Xiao,1 Li Yu4 1School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People’s Republic of China; 2Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA; 3State Key Laboratory of New Drugs and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, 4Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, People’s Republic of China Abstract: Owing to peculiar properties of nanobody, including nanoscale size, robust structure, stable and soluble behaviors in aqueous solution, reversible refolding, high affinity and specificity for only one cognate target, superior cryptic cleft accessibility, and deep tissue penetration, as well as a sustainable source, it has been an ideal research tool for the development of sophisticated nanobiotechnologies. Currently, the nanobody has been evolved into versatile research and application tool kits for diverse biomedical and biotechnology applications. Various nanobody-derived formats, including the nanobody itself, the radionuclide or fluorescent-labeled nanobodies, nanobody homo- or heteromultimers, nanobody-coated nanoparticles, and nanobody-displayed bacteriophages, have been successfully demonstrated as powerful nanobiotechnological tool kits for basic biomedical research, targeting drug delivery and therapy, disease diagnosis, bioimaging, and agricultural and plant protection. These applications indicate a special advantage of these nanobody-derived technologies, already surpassing the “me-too” products of other equivalent binders, such as the full-length antibodies, single-chain variable fragments, antigen-binding fragments, targeting peptides, and DNA-based aptamers. In

  8. Biomedical applications of radiation force of ultrasound: historical roots and physical basis.

    Science.gov (United States)

    Sarvazyan, Armen P; Rudenko, Oleg V; Nyborg, Wesley L

    2010-09-01

    Radiation force is a universal phenomenon in any wave motion, electromagnetic or acoustic. Although acoustic and electromagnetic waves are both characterized by time variation of basic quantities, they are also both capable of exerting a steady force called radiation force. In 1902, Lord Rayleigh published his classic work on the radiation force of sound, introducing the concept of acoustic radiation pressure, and some years later, further fundamental contributions to the radiation force phenomenon were made by L. Brillouin and P. Langevin. Many of the studies discussing radiation force published before 1990 were related to techniques for measuring acoustic power of therapeutic devices; also, radiation force was one of the factors considered in the search for noncavitational, nonthermal mechanisms of ultrasonic bioeffects. A major surge in various biomedical applications of acoustic radiation force started in the 1990s and continues today. Numerous new applications emerged including manipulation of cells in suspension, increasing the sensitivity of biosensors and immunochemical tests, assessing viscoelastic properties of fluids and biological tissues, elasticity imaging, monitoring ablation of lesions during ablation therapy, targeted drug and gene delivery, molecular imaging and acoustical tweezers. We briefly present in this review the major milestones in the history of radiation force and its biomedical applications. In discussing the physical basis of radiation force and its applications, we present basic equations describing the relationship of radiation stress with parameters of acoustical fields and with the induced motion in the biological media. Momentum and force associated with a plane-traveling wave, equations for nonlinear and nonsteady-state acoustic streams, radiation stress tensor for solids and biological tissues and radiation force acting on particles and microbubbles are considered.

  9. Analysis and application of analog electronic circuits to biomedical instrumentation

    CERN Document Server

    Northrop, Robert B

    2003-01-01

    This book introduces the basic mathematical tools used to describe noise and its propagation through linear systems and provides a basic description of the improvement of signal-to-noise ratio by signal averaging and linear filtering. The text also demonstrates how op amps are the keystone of modern analog signal conditioning systems design, and illustrates their use in isolation and instrumentation amplifiers, active filters, and numerous biomedical instrumentation systems and subsystems. It examines the properties of the ideal op amp and applies this model to the analysis of various circuits

  10. Development of image mappers for hyperspectral biomedical imaging applications.

    Science.gov (United States)

    Kester, Robert T; Gao, Liang; Tkaczyk, Tomasz S

    2010-04-01

    A new design and fabrication method is presented for creating large-format (>100 mirror facets) image mappers for a snapshot hyperspectral biomedical imaging system called an image mapping spectrometer (IMS). To verify this approach a 250 facet image mapper with 25 multiple-tilt angles is designed for a compact IMS that groups the 25 subpupils in a 5 x 5 matrix residing within a single collecting objective's pupil. The image mapper is fabricated by precision diamond raster fly cutting using surface-shaped tools. The individual mirror facets have minimal edge eating, tilt errors of <1 mrad, and an average roughness of 5.4 nm.

  11. Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology

    Directory of Open Access Journals (Sweden)

    Mario Ganau

    2018-02-01

    Full Text Available This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers in patients with traumatic brain injury (TBI, a critical worldwide health problem with an estimated 10 billion people affected annually worldwide. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials. Only experimental articles revolving around the management of TBI, in which the role of new devices based on innovative discoveries coming from the field of nanotechnology and biomedical engineering were highlighted, have been included and analyzed in this study. Based on theresults gathered from this research on innovative methods for genomics, epigenomics, and proteomics, their future application in this field seems promising. Despite the outstanding technical challenges of identifying reliable biosignatures for TBI and the mixed nature of studies herein described (single cells proteomics, biofilms, sensors, etc., the clinical implementation of those discoveries will allow us to gain confidence in the use of advanced neuromonitoring modalities with a potential dramatic improvement in the management of those patients.

  12. Biomedical applications and diagnostics of atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Petrović, Z Lj; Puac, N; Lazović, S; Maletić, D; Spasić, K; Malović, G

    2012-01-01

    Numerous applications of non-equilibrium (cold, low temperature) plasmas require those plasmas to operate at atmospheric pressure. Achieving non-equilibrium at atmospheric pressure is difficult since the ionization growth is very fast at such a high pressure. High degree of ionization on the other hand enables transfer of energy between electrons and ions and further heating of the background neutral gas through collisions between ions and neutrals. Thus, all schemes to produce non-equilibrium plasmas revolve around some form of control of ionization growth. Diagnostics of atmospheric pressure plasmas is difficult and some of the techniques cannot be employed at all. The difficulties stem mostly from the small size. Optical emission spectroscopy and laser absorption spectroscopy require very high resolution in order to resolve the anatomy of the discharges. Mass analysis is not normally applicable for atmospheric pressure plasmas, but recently systems with triple differential pumping have been developed that allow analysis of plasma chemistry at atmospheric pressures which is essential for numerous applications. Application of such systems is, however, not free from problems. Applications in biomedicine require minimum heating of the ambient air. The gas temperature should not exceed 40 degrees C to avoid thermal damage to the living tissues. Thus, plasmas should operate at very low powers and power control is essential. We developed unique derivative probes that allow control of power well below 1 W and studied four different sources, including dielectric barrier discharges, plasma needle, atmospheric pressure jet and micro atmospheric pressure jet. The jet operates in plasma bullet regime if proper conditions are met. Finally, we cover results on treatment of bacteria and human cells as well as treatment of plants by plasmas. Localized delivery of active species by plasmas may lead to a number of medical procedures that may also involve removal of bacteria, fungi

  13. Biomedical applications of ferulic acid encapsulated electrospun nanofibers.

    Science.gov (United States)

    Vashisth, Priya; Kumar, Naresh; Sharma, Mohit; Pruthi, Vikas

    2015-12-01

    Ferulic acid is a ubiquitous phytochemical that holds enormous therapeutic potential but has not gained much consideration in biomedical sector due to its less bioavailability, poor aqueous solubility and physiochemical instability. In present investigation, the shortcomings associated with agro-waste derived ferulic acid were addressed by encapsulating it in electrospun nanofibrous matrix of poly (d,l-lactide-co-glycolide)/polyethylene oxide. Fluorescent microscopic analysis revealed that ferulic acid predominantly resides in the core of PLGA/PEO nanofibers. The average diameters of the PLGA/PEO and ferulic acid encapsulated PLGA/PEO nanofibers were recorded as 125 ± 65.5 nm and 150 ± 79.0 nm, respectively. The physiochemical properties of fabricated nanofibers are elucidated by IR, DSC and NMR studies. Free radical scavenging activity of fabricated nanofibers were estimated using di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed the cytotoxicity of ferulic acid encapsulated nanofibers against hepatocellular carcinoma (HepG2) cells. These ferulic acid encapsulated nanofibers could be potentially explored for therapeutic usage in biomedical sector.

  14. Signal molecules-calcium phosphate coprecipitation and its biomedical application as a functional coating

    International Nuclear Information System (INIS)

    Wang Xiupeng; Ito, Atsuo; Li Xia; Sogo, Yu; Oyane, Ayako

    2011-01-01

    In this review, the current knowledge of signal molecules-calcium phosphate coprecipitation and its biomedical application as a functional coating are described. Although signal molecules regulate a variety of cellular processes, it is difficult to sustain the regulation activity for a long term when the signal molecules are only injected in a free form. The signal molecules-calcium phosphate coprecipitation on a substrate surface is a very promising process to achieve sustained regulation activity of the signal molecules by controlled and localized delivery of the signal molecules to specific body sites (implantation sites). However, the significance of immobilizing signal molecules with calcium phosphate coatings and their biomedical application are not systematically illustrated. For this purpose, the presently existing coprecipitation methods and strategies on biomedical application are summarized and discussed. (topical review)

  15. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  16. Molecular Assembly of Polysaccharide-Based Microcapsules and Their Biomedical Applications.

    Science.gov (United States)

    Feng, Xiyun; Du, Cuiling; Li, Junbai

    2016-08-01

    Advanced multifunctional microcapsules have revealed great potential in biomedical applications owing to their tunable size, shape, surface properties, and stimuli responsiveness. Polysaccharides are one of the most acceptable biomaterials for biomedical applications because of their outstanding virtues such as biocompatibility, biodegradability, and low toxicity. Many efforts have been devoted to investigating novel molecular design and efficient building blocks for polysaccharide-based microcapsules. In this Personal Account, we first summarize the common features of polysaccharides and the main principles of the design and fabrication of polysaccharide-based microcapsules, and further discuss their applications in biomedical areas and perspectives for future research. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation of Magnetic Carbon Nanotubes (Mag-CNTs) for Biomedical and Biotechnological Applications

    Science.gov (United States)

    Masotti, Andrea; Caporali, Andrea

    2013-01-01

    Carbon nanotubes (CNTs) have been widely studied for their potential applications in many fields from nanotechnology to biomedicine. The preparation of magnetic CNTs (Mag-CNTs) opens new avenues in nanobiotechnology and biomedical applications as a consequence of their multiple properties embedded within the same moiety. Several preparation techniques have been developed during the last few years to obtain magnetic CNTs: grafting or filling nanotubes with magnetic ferrofluids or attachment of magnetic nanoparticles to CNTs or their polymeric coating. These strategies allow the generation of novel versatile systems that can be employed in many biotechnological or biomedical fields. Here, we review and discuss the most recent papers dealing with the preparation of magnetic CNTs and their application in biomedical and biotechnological fields. PMID:24351838

  18. Digital signal processing by virtual instrumentation of a MEMS magnetic field sensor for biomedical applications.

    Science.gov (United States)

    Juárez-Aguirre, Raúl; Domínguez-Nicolás, Saúl M; Manjarrez, Elías; Tapia, Jesús A; Figueras, Eduard; Vázquez-Leal, Héctor; Aguilera-Cortés, Luz A; Herrera-May, Agustín L

    2013-11-05

    We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB), a data acquisition (DAQ) card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR) filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF) and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG).

  19. Harvest: a web-based biomedical data discovery and reporting application development platform.

    Science.gov (United States)

    Italia, Michael J; Pennington, Jeffrey W; Ruth, Byron; Wrazien, Stacey; Loutrel, Jennifer G; Crenshaw, E Bryan; Miller, Jeffrey; White, Peter S

    2013-01-01

    Biomedical researchers share a common challenge of making complex data understandable and accessible. This need is increasingly acute as investigators seek opportunities for discovery amidst an exponential growth in the volume and complexity of laboratory and clinical data. To address this need, we developed Harvest, an open source framework that provides a set of modular components to aid the rapid development and deployment of custom data discovery software applications. Harvest incorporates visual representations of multidimensional data types in an intuitive, web-based interface that promotes a real-time, iterative approach to exploring complex clinical and experimental data. The Harvest architecture capitalizes on standards-based, open source technologies to address multiple functional needs critical to a research and development environment, including domain-specific data modeling, abstraction of complex data models, and a customizable web client.

  20. Green Chemistry: Effect of Microwave Irradiationon Synthesis of Chitosan for Biomedical Grade Applications of Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Amri Setyawati

    2016-10-01

    Full Text Available Microwave assisted chitosan synthesis as biodegradable material for biomedical application has been done. The purpose of this research is to synthesis of chitosan with high DD and low molecular weight using microwave energy, the study of reaction conditions include parameters of power and reaction time. Chitosan was prepared by deacetylation of chitin with 60% NaOH solution. Conventional method has been done by reflux for 90minutes, resulting chitosan with DD of 79.5%, 72.6% yields and molecular weight 6051 g/mol. Green chemistry method using microwave radiation at 800 Watts for 5 minutes has produced chitosan with highest DD, yield and molecular weight of 86%, 75% and 3797 g/mole respectively. Synthesis of Chitosan by microwave radiation method can save 10x electrical energy for the reaction, also rapidly and effectively to produce chitosan with low molecular weight compared to conventional methods

  1. Fabricating Water Dispersible Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications through Ligand Exchange and Direct Conjugation

    Directory of Open Access Journals (Sweden)

    Tina Lam

    2016-05-01

    Full Text Available Stable superparamagnetic iron oxide nanoparticles (SPIONs, which can be easily dispersed in an aqueous medium and exhibit high magnetic relaxivities, are ideal candidates for biomedical applications including contrast agents for magnetic resonance imaging. We describe a versatile methodology to render water dispersibility to SPIONs using tetraethylene glycol (TEG-based phosphonate ligands, which are easily introduced onto SPIONs by either a ligand exchange process of surface-anchored oleic-acid (OA molecules or via direct conjugation. Both protocols confer good colloidal stability to SPIONs at different NaCl concentrations. A detailed characterization of functionalized SPIONs suggests that the ligand exchange method leads to nanoparticles with better magnetic properties but higher toxicity and cell death, than the direct conjugation methodology.

  2. Recent achievements in the use of radiation polymerization and grafting for biomedical applications

    International Nuclear Information System (INIS)

    Carenza, Mario

    1992-01-01

    Papers mainly published in the last few years on radiation processing of polymeric systems for biomedical applications carried out in different laboratories are reviewed. Radiation-induced polymerization to obtain hydrogels as carriers for immobilization of bioactive agents and for controlled release of drugs is described. Radiation modification of polymers by graft copolymerization and/or crosslinking for the same purposes is also reported. The second part of the paper deals with the work recently carried out in the author's laboratory. Radiation-induced polymerization at low temperatures to obtain matrices susceptible to entrap drugs, including peptides and proteins, is discussed. Radiation grafting of hydrophilic monomers onto relatively new inorganic polymers, i.e. polyphosphazenes, and the properties of such modified polymeric materials, together with their biocompatibility, are summarized. (author)

  3. Digital Signal Processing by Virtual Instrumentation of a MEMS Magnetic Field Sensor for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Héctor Vázquez-Leal

    2013-11-01

    Full Text Available We present a signal processing system with virtual instrumentation of a MEMS sensor to detect magnetic flux density for biomedical applications. This system consists of a magnetic field sensor, electronic components implemented on a printed circuit board (PCB, a data acquisition (DAQ card, and a virtual instrument. It allows the development of a semi-portable prototype with the capacity to filter small electromagnetic interference signals through digital signal processing. The virtual instrument includes an algorithm to implement different configurations of infinite impulse response (IIR filters. The PCB contains a precision instrumentation amplifier, a demodulator, a low-pass filter (LPF and a buffer with operational amplifier. The proposed prototype is used for real-time non-invasive monitoring of magnetic flux density in the thoracic cage of rats. The response of the rat respiratory magnetogram displays a similar behavior as the rat electromyogram (EMG.

  4. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    Science.gov (United States)

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-11-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  5. Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies.

    Science.gov (United States)

    van Dijk, Maarten; Rijkers, Dirk T S; Liskamp, Rob M J; van Nostrum, Cornelus F; Hennink, Wim E

    2009-11-01

    In this review, the synthesis and application of biomedical and pharmaceutical polymers synthesized via the copper(I)-catalyzed alkyne-azide cycloaddition, the thiol-ene reaction, or a combination of both click reactions are discussed. Since the introduction of both "click" methods, numerous articles have disclosed new approaches for the synthesis of polymers with different architectures, e.g., block and graft copolymers, dendrimers, and hydrogels, for pharmaceutical and biomedical applications. By describing selected examples, an overview is given of the possibilities and limitations that these two "click" methods may offer.

  6. Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching

    Science.gov (United States)

    Lee, Jae Koo; Kim, Myoung Soo; Byun, June Ho; Kim, Kyong Tai; Kim, Gyoo Cheon; Park, Gan Young

    2011-08-01

    Low temperature atmospheric pressure plasmas have attracted great interests and they have been widely applied to biomedical applications to interact with living tissues, cells, and bacteria due to their non-thermal property. This paper reviews the biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Gold nanoparticles conjugated with cancer-specific antibodies have been introduced to cancerous cells to enhance selective killing of cells, and the mechanism of cell apoptosis induced by plasma has been investigated. Tooth exposed to helium plasma jet with hydrogen peroxide has become brighter and the productions of hydroxyl radicals from hydrogen peroxide have been enhanced by plasma exposure.

  7. A review of microwave-induced thermoacoustic imaging: Excitation source, data acquisition system and biomedical applications

    Directory of Open Access Journals (Sweden)

    Yongsheng Cui

    2017-07-01

    Full Text Available Microwave-induced thermoacoustic imaging (TAI is a noninvasive modality based on the differences in microwave absorption of various biological tissues. TAI has been extensively researched in recent years, and several studies have revealed that TAI possesses advantages such as high resolution, high contrast, high imaging depth and fast imaging speed. In this paper, we reviewed the development of the TAI technique, its excitation source, data acquisition system and biomedical applications. It is believed that TAI has great potential applications in biomedical research and clinical study.

  8. Magnetic microfluidic platform for biomedical applications using magnetic nanoparticles

    KAUST Repository

    Stipsitz, Martin

    2015-05-01

    Microfluidic platforms are well-suited for biomedical analysis and usually consist of a set of units which guarantee the manipulation, detection and recognition of bioanalyte in a reliable and flexible manner. Additionally, the use of magnetic fields for perfoming the aforementioned tasks has been steadily gainining interest. This is due to the fact that magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the diagnostic system. In combination with these applied magnetic fields, magnetic nanoparticles are used. In this paper, we present some of our most recent results in research towards a) microfluidic diagnostics using MR sensors and magnetic particles and b) single cell analysis using magnetic particles. We have successfully manipulated magnetically labeled bacteria and measured their response with integrated GMR sensors and we have also managed to separate magnetically labeled jurkat cells for single cell analysis. © 2015 Trans Tech Publications, Switzerland.

  9. Surface functionalization and biomedical applications based on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Yakimova, R; Petoral, R M Jr; Yazdi, G R; Vahlberg, C; Spetz, A Lloyd; Uvdal, K [Department of Physics, Chemistry and Biology, Linkoeping University, SE-58183 Linkoeping (Sweden)

    2007-10-21

    The search for materials and systems, capable of operating long term under physiological conditions, has been a strategy for many research groups during the past years. Silicon carbide (SiC) is a material, which can meet the demands due to its high biocompatibility, high inertness to biological tissues and to aggressive environment, and the possibility to make all types of electronic devices. This paper reviews progress in biomedical and biosensor related research on SiC. For example, less biofouling and platelet aggregation when exposed to blood is taken advantage of in a variety of medical implantable materials while the robust semiconducting properties can be explored in surface functionalized bioelectronic devices. (review article)

  10. Biomedical applications of medium energy particle beams at LAMPF

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1978-01-01

    At LAMPF an 800-MeV proton accelerator is used to produce intense beams of secondary protons, pi mesons, and muons which are being employed in several areas of biomedical research. The primary proton beam is used to produce short-lived radioisotopes of clinical interest. Carefully tailored secondary proton beams are used to obtain density reconstructions of samples with a dose much less than that required by x-ray CT scanners. The elemental composition of tissue samples is being determined non-destructively with muonic x-ray analysis. Finally, an extensive program, with physical, biological, and clinical components, is underway to evaluate negative pi mesons for use in cancer radiotherapy. The techniques used in these experiments and recent results are described

  11. Application of text mining in the biomedical domain.

    Science.gov (United States)

    Fleuren, Wilco W M; Alkema, Wynand

    2015-03-01

    In recent years the amount of experimental data that is produced in biomedical research and the number of papers that are being published in this field have grown rapidly. In order to keep up to date with developments in their field of interest and to interpret the outcome of experiments in light of all available literature, researchers turn more and more to the use of automated literature mining. As a consequence, text mining tools have evolved considerably in number and quality and nowadays can be used to address a variety of research questions ranging from de novo drug target discovery to enhanced biological interpretation of the results from high throughput experiments. In this paper we introduce the most important techniques that are used for a text mining and give an overview of the text mining tools that are currently being used and the type of problems they are typically applied for. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Novel PLA-Based Conductive Polymer Composites for Biomedical Applications

    Science.gov (United States)

    Shah, Aziurah Mohd; Kadir, Mohammed Rafiq Abdul; Razak, Saiful Izwan Abd

    2017-12-01

    In this study, the electrical conductivity of polylactic acid (PLA)-based composites has been improved using polyaniline (PANI) with two different solvents: dodecylbenzene sulfonic acid and citric acid. The effects of various factors including PLA quantity, solvent concentration, type of solvent and thickness on the resistivity were investigated using the design of experiments. The experimental plan was based on irregular fraction design to develop the regression models. The results revealed that the proposed mathematical models were sufficient and could describe the performance of resistivity of PLA within the limits of a factor. The findings also indicated that thickness had the most significant effect on the resistivity of PLA, while the effect of the type of solvent was of least significance. Moreover, it was illustrated that, by incorporating two different solvents into PANI, the resistivity could be changed for further applications.

  13. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  14. Carbon-Nanotube-Based Electrodes for Biomedical Applications

    Science.gov (United States)

    Li, Jun; Meyyappan, M.

    2008-01-01

    A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge

  15. Design of double-walled carbon nanotubes for biomedical applications

    Science.gov (United States)

    Neves, V.; Heister, E.; Costa, S.; Tîlmaciu, C.; Flahaut, E.; Soula, B.; Coley, H. M.; McFadden, J.; Silva, S. R. P.

    2012-09-01

    Double-walled carbon nanotubes (DWNTs) prepared by catalytic chemical vapour deposition were functionalized in such a way that they were optimally designed as a nano-vector for the delivery of small interfering RNA (siRNA), which is of great interest for biomedical research and drug development. DWNTs were initially oxidized and coated with a polypeptide (Poly(Lys:Phe)), which was then conjugated to thiol-modified siRNA using a heterobifunctional cross-linker. The obtained oxDWNT-siRNA was characterized by Raman spectroscopy inside and outside a biological environment (mammalian cells). Uptake of the custom-designed nanotubes was not associated with detectable biochemical perturbations in cultured cells, but transfection of cells with DWNTs loaded with siRNA targeting the green fluorescent protein (GFP) gene, serving as a model system, as well as with therapeutic siRNA targeting the survivin gene, led to a significant gene silencing effect, and in the latter case a resulting apoptotic effect in cancer cells.

  16. Functionality of porous silicon particles: Surface modification for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gallach, D.; Recio Sanchez, G.; Munoz Noval, A. [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Biomateriales, Bioingenieria y Nanomedicina (CIBERbbn) (Spain); Manso Silvan, M., E-mail: miguel.manso@uam.es [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Biomateriales, Bioingenieria y Nanomedicina (CIBERbbn) (Spain); Ceccone, G. [Institute for Health and Consumer Protection, European Commission, 21020 Ispra (Italy); Martin Palma, R.J.; Torres Costa, V.; Martinez Duart, J.M. [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Biomateriales, Bioingenieria y Nanomedicina (CIBERbbn) (Spain)

    2010-05-25

    Porous silicon-based particles (PSps) with tailored physical and biological properties have recently attracted great attention given their biomedical potential. Within this context, the objective of the present work is to optimize the experimental parameters for the formation of biofunctional mesoporous PSps. Their functionality has been studied on the one hand by analyzing the fluorescence characteristics, such as tunable narrow band emission and fluorescence aging for PSps with different molecular capping. With regard to the biofunctional characteristics, two different molecular end-capping processes have been assayed: antifouling polyethylene glycol (PEG) and polar binding amino silanes (APTS), which were evaluated by X-ray photoelectron spectroscopy (XPS). Both PEG and APTS binding to the particles could be confirmed from the analysis of Si 2p and C 1s XPS core level spectra. The finding that these PSp-molecule conjugates allow the reduction of fluorescence degradation with time in solution is of interest for the development of cellular or tissue markers. From the morphological point of view, PEG termination is of special interest allowing the PSps after an ultrasonic treatment to get spherical shapes in the micron scale. The functionality as solid state dyes is preliminarily evaluated by direct fluorescence imaging.

  17. Functionality of porous silicon particles: Surface modification for biomedical applications

    International Nuclear Information System (INIS)

    Gallach, D.; Recio Sanchez, G.; Munoz Noval, A.; Manso Silvan, M.; Ceccone, G.; Martin Palma, R.J.; Torres Costa, V.; Martinez Duart, J.M.

    2010-01-01

    Porous silicon-based particles (PSps) with tailored physical and biological properties have recently attracted great attention given their biomedical potential. Within this context, the objective of the present work is to optimize the experimental parameters for the formation of biofunctional mesoporous PSps. Their functionality has been studied on the one hand by analyzing the fluorescence characteristics, such as tunable narrow band emission and fluorescence aging for PSps with different molecular capping. With regard to the biofunctional characteristics, two different molecular end-capping processes have been assayed: antifouling polyethylene glycol (PEG) and polar binding amino silanes (APTS), which were evaluated by X-ray photoelectron spectroscopy (XPS). Both PEG and APTS binding to the particles could be confirmed from the analysis of Si 2p and C 1s XPS core level spectra. The finding that these PSp-molecule conjugates allow the reduction of fluorescence degradation with time in solution is of interest for the development of cellular or tissue markers. From the morphological point of view, PEG termination is of special interest allowing the PSps after an ultrasonic treatment to get spherical shapes in the micron scale. The functionality as solid state dyes is preliminarily evaluated by direct fluorescence imaging.

  18. Analytical techniques in biomedical stable isotope applications : (isotope ratio) mass spectrometry or infrared spectrometry?

    NARCIS (Netherlands)

    Stellaard, F; Elzinga, H

    2005-01-01

    An overview is presented of biomedical applications of stable isotopes in general, but mainly focused on the activities of the Center for Liver, Digestive and Metabolic Diseases of the University Medical Center Groningen. The aims of metabolic studies in the areas of glucose, fat, cholesterol and

  19. ANTIMICROBIAL REAGENTS AS FUNCTIONAL FINISHING FOR TEXTILES INTENDED FOR BIOMEDICAL APPLICATIONS. I. SYNTHETIC ORGANIC COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Madalina Zanoaga

    2014-06-01

    Full Text Available This article offers an overview of some contemporary antimicrobial (biocides and biostatics agents used as functional finishing for textiles intended for biomedical applications. It reviews only synthetic agents, namely quaternary ammonium compounds, halogenated phenols, polybiguanides, N-halamines, and renewable peroxides, as a part of an extensive study currently in progress.

  20. TiNi shape memory alloy coated with tungsten : A novel approach for biomedical applications

    NARCIS (Netherlands)

    Li, Huafang; Zheng, Yufeng; Pei, Y. T.; de Hosson, Jeff

    This study explores the use of DC magnetron sputtering tungsten thin films for surface modification of TiNi shape memory alloy (SMA) targeting for biomedical applications. SEM, AFM and automatic contact angle meter instrument were used to determine the surface characteristics of the tungsten thin

  1. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.

    Science.gov (United States)

    Luo, Zhentao; Zheng, Kaiyuan; Xie, Jianping

    2014-05-25

    Gold and silver nanoclusters or Au/Ag NCs with core sizes smaller than 2 nm have been an attractive frontier of nanoparticle research because of their unique physicochemical properties such as well-defined molecular structure, discrete electronic transitions, quantized charging, and strong luminescence. As a result of these unique properties, ultrasmall size, and good biocompatibility, Au/Ag NCs have great potential for a variety of biomedical applications, such as bioimaging, biosensing, antimicrobial agents, and cancer therapy. In this feature article, we will first discuss some critical biological considerations, such as biocompatibility and renal clearance, of Au/Ag NCs that are applied for biomedical applications, leading to some design criteria for functional Au/Ag NCs in the biological settings. According to these biological considerations, we will then survey some efficient synthetic strategies for the preparation of protein- and peptide-protected Au/Ag NCs with an emphasis on our recent contributions in this fast-growing field. In the last part, we will highlight some potential biomedical applications of these protein- and peptide-protected Au/Ag NCs. It is believed that with continued efforts to understand the interactions of biomolecule-protected Au/Ag NCs with the biological systems, scientists can largely realize the great potential of Au/Ag NCs for biomedical applications, which could finally pave their way towards clinical use.

  2. Optical coherence tomography—current technology and applications in clinical and biomedical research

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Sander, Birgit; Mogensen, Mette

    2011-01-01

    such as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal...

  3. Elastic modulus, microplastic properties and durability of titanium alloys for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Betekhtin, V. I.; Kolobov, Yu. R.; Golosova, O. A.; Dvořák, Jiří; Sklenička, Václav; Kardashev, B. K.; Kadomtsev, A. G.; Narykova, M. V.; Ivanov, M. B.

    2016-01-01

    Roč. 45, 1-2 (2016), s. 42-51 ISSN 1606-5131 Institutional support: RVO:68081723 Keywords : Creep * Elastic moduli * Plastic flow * Beta-type titanium alloys * Biomedical applications Subject RIV: JG - Metallurgy Impact factor: 2.500, year: 2016

  4. Filtration track membranes and their biomedical applications; Trekowe membrany filtracyjne oraz ich zastosowania biomedyczne

    Energy Technology Data Exchange (ETDEWEB)

    Buczkowski, M.; Wawszczak, D.; Starosta, W. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The characteristics of track filtration membranes has been performed. The investigation of radiation resistance has been carried out for different types of polymer foil used as a membrane material. Biomedical applications of track filtration membranes have been presented and discussed. 10 refs, 10 figs.

  5. Powder Metallurgy Preparation of Co-Based Alloys for Biomedical Applications

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Novák, P.; Mlynár, J.; Vojtěch, D.; Kubatík, Tomáš František; Málek, J.

    2015-01-01

    Roč. 128, č. 4 (2015), s. 597-601 ISSN 0587-4246. [International Symposium on Physics of Materials (ISPMA) /13./. Prague, 31.08.2014-04.09.2014] Institutional support: RVO:61389021 Keywords : powder metallurgy * mechanical properties * biomedical applications Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.525, year: 2015

  6. Multifunctional polymeric nanoconstructs for biomedical applications (Conference Presentation)

    Science.gov (United States)

    Decuzzi, Paolo

    2016-09-01

    Multifunctional nanoconstructs are particle-based nano-scale systems designed for the `smart' delivery of therapeutic and imaging agents. The Laboratory of Nanotechnology for Precision Medicine at the Italian Institute of Technology synthesizes polymeric nanoconstructs with different sizes, ranging from a few tens of nanometers to a few microns; shapes, including spherical, cubical and discoidal; surface properties, with positive, negative, neutral coatings; and mechanical stiffness, varying from that of cells to rigid, inorganic materials, such as iron oxide. These are the 4S parameters - size, shape, surface, stiffness - which can be precisely tuned in the synthesis process enabling disease- and patient-specific designs of multifunctional nanoconstructs. In this lecture, the application of these nanoconstructs to the detection and treatment of cancer lesions and cardiovascular diseases, such as thrombosis and atherosclerosis, is discussed. The contribution of the 4S parameters in modulating nanoconstruct sequestration by the mononuclear phagocyte system, organ specific accumulation, and blood longevity is also critically presented. These polymeric nanoconstructs can be loaded with a variety of therapeutic payloads - anti-cancer molecules (docetaxel, paclitaxel, doxorubicin), anti-inflammatory molecules (curcumin, diclofenac, celecoxib) and small biologicals (peptides, siRNAs, miRNAs); and imaging agents - optical probes; Gd and iron oxide nanoparticles for MR imaging; and radio-isotopes for Nuclear Imaging.

  7. Plasmon assisted optical trapping: fundamentals and biomedical applications

    Science.gov (United States)

    Serafetinides, Alexandros A.; Makropoulou, Mersini; Tsigaridas, Georgios N.; Gousetis, Anastasios

    2015-01-01

    The field of optical trapping has dramatically grown due to implementation in various arenas including physics, biology, medicine and nanotechnology. Certainly, optical tweezers are an invaluable tool to manipulate a variation of particles, such as small dielectric spheres, cells, bacteria, chromosomes and even genes, by highly focused laser beams through microscope. As the main disadvantage of the conventional optical trapping systems is the diffraction limit of the incident light, plasmon assisted nanotrapping is reported as a suitable technique for trapping sub-wavelength metallic or dielectric particles. In this work, firstly, we report briefly on the basic theory of plasmon excitation, focusing on the interaction of nanoscale metallic structures with laser light. Secondly, experimental and numerical simulation results are also presented, demonstrating enhancement of the trapping efficiency of glass or SiO2 substrates, coated with Au and Ag nanostructures, with or without nanoparticles. The optical forces were calculated by measuring the particle's escape velocity calibration method. Finally, representative applications of plasmon assisted optical trapping are reviewed, from cancer therapeutics to fundamental biology and cell nanosurgery.

  8. Ion beam modification of surfaces for biomedical applications

    International Nuclear Information System (INIS)

    Sommerfeld, Jana

    2014-01-01

    Human life expectancy increased significantly within the last century. Hence, medical care must ever be improved. Optimizing artificial replacements such as hip joints or stents etc. is of special interest. For this purpose, new materials are constantly developed or known ones modified. This work focused on the possibility to change the chemistry and topography of biomedically relevant materials such as diamond-like carbon (DLC) and titanium dioxide (TiO 2 ) by means of ion beam irradiation. Mass-separated ion beam deposition was used in order to synthesize DLC layers with a high sp 3 content (> 70%), a sufficiently smooth surface (RMS<1 nm) and a manageable film thickness (50 nm). The chemistry of the DLC layers was changed by ion beam doping with different ion species (Ag,Ti) and concentrations. Additionally, the surface topography of silicon and titanium dioxide was altered by ion beam irradiation under non-perpendicular angle of incidence. The created periodic wave structures (so-called ripples) were characterized and their dependency on the ion energy was investigated. Moreover, ripples on silicon were covered with a thin DLC layer in order to create DLC ripples. The biocompatibility of all samples was investigated by adsorption experiments. For this purpose, human plasma fibrinogen (HPF) was used due to its ambiphilic character, which allows the protein to assume different conformations on materials with different hydrophilicities. Moreover, HPF is a crucial factor in the blood coagulation process. This work comes to the conclusion that the interaction of both, the surface chemistry and topography, has a strong influence on the adsorption behavior of HPF and thus the biocompatibility of a material. Both factors can be specifically tuned by means of ion beam irradiation.

  9. Biomedical applications on the GRID efficient management of parallel jobs

    CERN Document Server

    Moscicki, Jakub T; Lee Hurng Chun; Lin, S C; Pia, Maria Grazia

    2004-01-01

    Distributed computing based on the Master-Worker and PULL interaction model is applicable to a number of applications in high energy physics, medical physics and bio-informatics. We demonstrate a realistic medical physics use-case of a dosimetric system for brachytherapy using distributed Grid resources. We present the efficient techniques for running parallel jobs in a case of the BLAST, a gene sequencing application, as well as for the Monte Carlo simulation based on Geant4. We present a strategy for improving the runtime performance and robustness of the jobs as well as for the minimization of the development time needed to migrate the applications to a distributed environment.

  10. Polarized angular dependent light scattering from plasmonic nanoparticles: Modeling, measurements, and biomedical applications

    Science.gov (United States)

    Fu, Kun

    Several significant applications have been realized for light scattering in biomedical imaging. In order to improve imaging results with light scattering-based techniques, a variety of nanoparticles have been investigated as contrast agents, including gold nanoshells. As a method for studying the optical properties of plasmonic gold nanoparticles used as contrast agents for molecular imaging, we developed an automated goniometer instrumentation system. This system, which allows us to specifically study polarized angular-dependent light scattering of plasmonic nanoparticles, allowed us to perform a series of theoretical and experimental step-wise studies. The basic optical properties of the following gold nanoparticles were progressively investigated: (1) bare nanoshells at multipolar plasmonic resonances, (2) nanoshells with PEG modifications, (3) surface-textured nanoshells and (4) immunotargeted nanoshells (nanoshell-antibody bioconjugates) for cancer imaging. Based on the results from these studies, a new technique was developed to quantitatively measure the number of immunotargeted nanoparticles that bind to HER2-positive SKBR3 human breast cancer cells. Preliminary studies of determining the minimal incubation time of immunotargeted nanoshells with SKBR3 cells were also carried out to evaluate the potential clinical application of using gold nanoshells intraoperatively. We, therefore, anticipate that our findings will provide the theoretical groundwork required for further studies aimed at optimizing the application of plasmonic nanoparticles in scattering-based optical imaging techniques.

  11. Tailoring peptide amphiphiles and their assemblies for biomedical applications

    Science.gov (United States)

    Lin, Brian

    Peptide amphiphiles (PAs) are molecules composed of a peptide conjugated to a hydrophobic moiety, commonly a fatty acid. They closely resemble the structure of naturally occurring lipopeptides, produced by microbes as signaling and antimicrobial agents. The amphiphilic nature of PAs in concert with the large number of discovered functional peptides inspired scientists to exploit this molecular architecture for producing synthetic self-assembled bioactive materials. PA assemblies are sought after for a wide breadth of applications including disease therapy, regenerative medicine, and catalysis. However, with PAs, the peptide chemistry is a double-edged sword. The peptide component contributes significantly to both the activity and self-assembly. The physiochemical properties of different PAs lead to unique aggregation stability and morphological characteristics which are unpredictable, a priori. Therefore it is challenging to design bioactive PAs and control their self-assembly, simultaneously. This limitation slows the development of PAs for medical use. In this dissertation, methods to control the self-assembly of PAs and the effects of acylating a functional peptide will be discussed. In one part, efforts to direct the self-assembly of PAs into small spherical aggregates, a morphology infrequently observed, will be described. In another section, a strategy to control the stability of PA assemblies will be discussed. In the last section, a pH-responsive membrane perturbing peptide was modified with fatty acid tails and the properties of the resulting PAs will be presented. This dissertation provides some fundamental insight for the use and design of PA self-assemblies.

  12. Biomedical and Microbiological Applications of Bio-Based Porous Materials: A Review

    Directory of Open Access Journals (Sweden)

    T. M. S. Udenni Gunathilake

    2017-04-01

    Full Text Available Extensive employment of biomaterials in the areas of biomedical and microbiological applications is considered to be of prime importance. As expected, oil based polymer materials were gradually replaced by natural or synthetic biopolymers due to their well-known intrinsic characteristics such as biodegradability, non-toxicity and biocompatibility. Literature on this subject was found to be expanding, especially in the areas of biomedical and microbiological applications. Introduction of porosity into a biomaterial broadens the scope of applications. In addition, increased porosity can have a beneficial effect for the applications which exploit their exceptional ability of loading, retaining and releasing of fluids. Different applications require a unique set of pore characteristics in the biopolymer matrix. Various pore morphologies have different characteristics and contribute different performances to the biopolymer matrix. Fabrication methods for bio-based porous materials more related to the choice of material. By choosing the appropriate combination of fabrication technique and biomaterial employment, one can obtain tunable pore characteristic to fulfill the requirements of desired application. In our previous review, we described the literature related to biopolymers and fabrication techniques of porous materials. This paper we will focus on the biomedical and microbiological applications of bio-based porous materials.

  13. Preparation, microstructures, mechanical properties, and cytocompatibility of TiMn alloys for biomedical applications.

    Science.gov (United States)

    Zhang, Faming; Weidmann, Arne; Nebe, J Barbara; Beck, Ulrich; Burkel, Eberhard

    2010-08-01

    The titanium-manganese (TiMn) alloys have been extensively used in aerospace and hydrogen storage. In this study, the TiMn alloys with various manganese contents ranging from 2 to 12 wt % were prepared by using mechanical alloying and spark plasma sintering (SPS) techniques. The microstructures, mechanical properties including hardness, elastic modulus and ductility, cytotoxicity and cell proliferation properties of the TiMn alloys were investigated to explore their biomedical applications. The addition of manganese to the titanium reduced the alpha to beta transformation temperature and was confirmed as a beta stabilizer element. The manganese increased the relative density of the alloy and thus high density TiMn alloys with alpha+beta structure were prepared by using SPS at 700 degrees C. The hardness increased significantly ranging from 2.4 GPa (Ti2Mn) to 5.28 GPa (Ti12Mn) and the elastic modulus ranging from 83.3 GPa (Ti2Mn) to 122 GPa (Ti12Mn), the ductility decreased ranging from 21.3% (Ti2Mn) to 11.7% (Ti12Mn) with increasing manganese content in the Ti. Concentrations of Mn below 8 wt % in titanium reveal negligible effects on the metabolic activity and the cell proliferation of human osteoblasts. The Mn could be used in lower concentrations as an alloying element for biomedical titanium. The Ti2Mn, Ti5Mn, and Ti8Mn alloys with supervisor mechanical properties and acceptable cytocompatibility have a potential for use as bone substitutes and dental implants.

  14. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges.

    Science.gov (United States)

    Pfister, Bryan J; Gordon, Tessa; Loverde, Joseph R; Kochar, Arshneel S; Mackinnon, Susan E; Cullen, D Kacy

    2011-01-01

    Damage to the peripheral nervous system is surprisingly common and occurs primarily from trauma or a complication of surgery. Although recovery of nerve function occurs in many mild injuries, outcomes are often unsatisfactory following severe trauma. Nerve repair and regeneration presents unique clinical challenges and opportunities, and substantial contributions can be made through the informed application of biomedical engineering strategies. This article reviews the clinical presentations and classification of nerve injuries, in addition to the state of the art for surgical decision-making and repair strategies. This discussion presents specific challenges that must be addressed to realistically improve the treatment of nerve injuries and promote widespread recovery. In particular, nerve defects a few centimeters in length use a sensory nerve autograft as the standard technique; however, this approach is limited by the availability of donor nerve and comorbidity associated with additional surgery. Moreover, we currently have an inadequate ability to noninvasively assess the degree of nerve injury and to track axonal regeneration. As a result, wait-and-see surgical decisions can lead to undesirable and less successful "delayed" repair procedures. In this fight for time, degeneration of the distal nerve support structure and target progresses, ultimately blunting complete functional recovery. Thus, the most pressing challenges in peripheral nerve repair include the development of tissue-engineered nerve grafts that match or exceed the performance of autografts, the ability to noninvasively assess nerve damage and track axonal regeneration, and approaches to maintain the efficacy of the distal pathway and targets during the regenerative process. Biomedical engineering strategies can address these issues to substantially contribute at both the basic and applied levels, improving surgical management and functional recovery following severe peripheral nerve injury.

  15. Spintronic microfluidic platform for biomedical and environmental applications

    Science.gov (United States)

    Cardoso, F. A.; Martins, V. C.; Fonseca, L. P.; Germano, J.; Sousa, L. A.; Piedade, M. S.; Freitas, P. P.

    2010-09-01

    Faster, more sensitive and easy to operate biosensing devices still are a need at important areas such as biomedical diagnostics, food control and environmental monitoring. Recently, spintronic-devices have emerged as a promising alternative to the existent technologies [1-3]. A number of advantages, namely high sensitivity, easy integration, miniaturization, scalability, robustness and low cost make these devices potentially capable of responding to the existent technological need. In parallel, the field of microfluidics has shown great advances [4]. Microfluidic systems allow the analysis of small sample volumes (from micro- down to pico-liters), often by automate sample processing with the ability to integrate several steps into a single device (analyte amplification, concentration, separation and/or labeling), all in a reduced assay time (minutes to hours) and affordable cost. The merging of these two technologies, magnetoresistive biochips and microfluidics, will enable the development of highly competitive devices. This work reports the integration of a magnetoresistive biochip with a microfluidic system inside a portable and autonomous electronic platform aiming for a fully integrated device. A microfluidic structure fabricated in polydimethylsiloxane with dimensions of W: 0.5mm, H: 0.1mm, L: 10mm, associated to a mechanical system to align and seal the channel by pressure is presented (Fig. 1) [5]. The goal is to perform sample loading and transportation over the chip and simultaneously control the stringency and uniformity of the wash-out process. The biochip output is acquired by an electronic microsystem incorporating the circuitry to control, address and read-out the 30 spin-valve sensors sequentially (Fig. 1) [2]. This platform is being applied to the detection of water-borne microbial pathogens (e.g. Salmonella and Escherichia coli) and genetic diseases diagnosis (e.g. cystic fibrosis) through DNA hybridization assays. Open chamber measurements were

  16. Nuclear techniques for trace element analysis. PIXE and its applications to biomedical samples

    International Nuclear Information System (INIS)

    Cata-Danil, I.; Moro, R.; Gialanella, G.

    1996-01-01

    Problems in understanding the role of trace elements in the functioning of life processes are discussed. A brief review of the state of the PIXE technique is given. Principles and recent advances in beam systems, instrumentation and sample handling are covered. A rather comprehensive list of references regarding varies methodological aspects and biomedical applications is given. Some applications are discussed. In particular, preliminary results of an investigation regarding pediatric obesity are presented. (author) 5 tabs., 21 refs

  17. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells

    OpenAIRE

    Jung-Hwan Lee; Seog-Jin Seo

    2016-01-01

    The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting atten...

  18. Design, Microfabrication and Characterization of a Power Delivery System for new Biomedical Applications

    Directory of Open Access Journals (Sweden)

    CARUSO Massimo

    2017-05-01

    Full Text Available This paper presents the design, microfabrication and characterization of a wireless power delivery system capable of driving a surface acoustic wave sensor (SAW for biomedical applications. The system consists of two planar, spiral-square microcoils, which have been geometrically optimized in order to maximize the quality factor Q. The integration of the SAW - microcoil system into artificial implant sites will allow a real-time biofilm growth monitoring and treatment, providing countless advantages to the related medical applications.

  19. Amperometric and impedance monitoring systems for biomedical applications

    CERN Document Server

    Punter-Villagrasa, Jaime; del Campo, Francisco J; Miribel, Pere

    2017-01-01

    The book presents the conception and realization of a pervasive electronic architecture for electrochemical applications, focusing on electronic instrumentation design and device development, particularly in electrochemical Point-of-Care and Lab-on-a-Chip devices, covering examples based on amperometric (DC) and impedance detection (AC) techniques. The presented electronics combine tailored front-end instrumentation and back-end data post-processing, enabling applications in different areas, and across a variety of techniques, analytes, transducers and environments. It addresses how the electronics are designed and implemented with special interest in the flow process: starting from electronic circuits and electrochemical biosensor design to a final validation and implementation for specific applications. Similarly, other important aspects are discussed throughout the book, such as electrochemical techniques, different analytes, targets, electronics reliability and robustness. The book also describes the use ...

  20. Micro and nanofluidic devices for environmental and biomedical applications

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.; van den Berg, Albert

    2004-01-01

    During the last decade, an increasing amount of pocket-size chemistry equipment based on the so-called 'lab-on-a-chip'approach has become available. Besides the popular application in the analysis of biological macromolecules, such chips in combination with portable electronic equipment are

  1. Porous titanium for biomedical applications : development, characterization and biological evaluation

    NARCIS (Netherlands)

    Li Jiaping, L.

    2007-01-01

    Metallic biomaterials have so far shown the greatest potential to be the basis of implants for long-term load-bearing orthopedic and dental applications, owing to their excellent mechanical strength when compared to alternative biomaterials, such as polymers and ceramics. Particularly titanium and

  2. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications

    International Nuclear Information System (INIS)

    Brahatheeswaran, Dhandayuthapani; Mathew, Anila; Aswathy, Ravindran Girija; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Sakthikumar, D; Venugopal, K

    2012-01-01

    Nanomedicine utilizes engineered nanodevices and nanostructures for monitoring, repair, construction and control of human biological systems at the molecular level. In this study, we investigated the feasibility and potential of zein nanofiber as a delivery vehicle for curcumin in biomedical applications. By optimizing the electrospinning parameters, ultrafine zein fluorescence nanofibers containing curcumin were developed with interconnected fibrous networks. We found that these nanofibers show an increase in fluorescence due to the incorporation of curcumin. The morphology and material properties of the resulting multifunctional nanofiber including the surface area were examined by a field emission-scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and confocal microscopy. The surface area and pore size were characterized by N 2 adsorption–desorption isotherm. SEM and fluorescence images showed that the uniform fibers with smooth surface had an average diameter of about 310 nm. An in vitro degradation study showed significant morphological changes. The in vitro evaluations suggested that the curcumin incorporated zein nanofibers showed sustained release of curcumin and maintained its free radical scavenging ability. It provides an attractive structure for the attachment and growth of fibroblast as cell culture surfaces. The results demonstrate that the curcumin loaded zein nanofiber could be a good candidate for soft tissue engineering scaffolds and has the potential for further applications in drug delivery system. (paper)

  3. Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities.

    Science.gov (United States)

    Zheng, Xiao-Shan; Jahn, Izabella Jolan; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2018-05-15

    To achieve an insightful look within biomolecular processes on the cellular level, the development of diseases as well as the reliable detection of metabolites and pathogens, a modern analytical tool is needed that is highly sensitive, molecular-specific and exhibits fast detection. Surface-enhanced Raman spectroscopy (SERS) is known to meet these requirements and, within this review article, the recent progress of label-free SERS in biological and biomedical applications is summarized and discussed. This includes the detection of biomolecules such as metabolites, nucleic acids and proteins. Further, the characterization and identification of microorganisms has been achieved by label-free SERS-based approaches. Eukaryotic cells can be characterized by SERS in order to gain information about the outer cell wall or to detect intracellular molecules and metabolites. The potential of SERS for medically relevant detection schemes is emphasized by the label-free detection of tissue, the investigation of body fluids as well as applications for therapeutic and illicit drug monitoring. The review article is concluded with an evaluation of the recent progress and current challenges in order to highlight the direction of label-free SERS in the future. Copyright © 2018. Published by Elsevier B.V.

  4. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications.

    Science.gov (United States)

    Woźniak, Anna; Malankowska, Anna; Nowaczyk, Grzegorz; Grześkowiak, Bartosz F; Tuśnio, Karol; Słomski, Ryszard; Zaleska-Medynska, Adriana; Jurga, Stefan

    2017-06-01

    Metallic nanoparticles, in particular gold nanoparticles (AuNPs), offer a wide spectrum of applications in biomedicine. A crucial issue is their cytotoxicity, which depends greatly on various factors, including morphology of nanoparticles. Because metallic nanoparticles have an effect on cell membrane integrity, their shape and size may affect the viability of cells, due to their different geometries as well as physical and chemical interactions with cell membranes. Variations in the size and shape of gold nanoparticles may indicate particular nanoparticle morphologies that provide strong cytotoxicity effects. Synthesis of different sized and shaped bare AuNPs was performed with spherical (~ 10 nm), nanoflowers (~ 370 nm), nanorods (~ 41 nm), nanoprisms (~ 160 nm) and nanostars (~ 240 nm) morphologies. These nanostructures were characterized and interacting with cancer (HeLa) and normal (HEK293T) cell lines and cell viability tests were performed by WST-1 tests and fluorescent live/dead cell imaging experiments. It was shown that various shapes and sizes of gold nanostructures may affect the viability of the cells. Gold nanospheres and nanorods proved to be more toxic than star, flower and prism gold nanostructures. This may be attributed to their small size and aggregation process. This is the first report concerning a comparison of cytotoxic profile in vitro with a wide spectrum of bare AuNPs morphology. The findings show their possible use in biomedical applications.

  5. A Cost-Effective Fluorescence Mini-Microscope with Adjustable Magnifications for Biomedical Applications

    Science.gov (United States)

    Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali

    2015-01-01

    We have designed and fabricated a miniature microscope from off-the-shelf components and webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters such as cell/tissue viability (e.g. Live/Dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60X, achieves a resolution as high as microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread applications in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required. PMID:26282117

  6. A cost-effective fluorescence mini-microscope for biomedical applications.

    Science.gov (United States)

    Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali

    2015-01-01

    We have designed and fabricated a miniature microscope from off-the-shelf components and a webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters, such as cell/tissue viability (e.g. live/dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60×, achieves a resolution as high as microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including, but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread application in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required.

  7. Advances in the biomedical application of polymer-functionalized carbon nanotubes.

    Science.gov (United States)

    Soleyman, Rouhollah; Hirbod, Sorina; Adeli, Mohsen

    2015-05-01

    Nowadays, carbon nanotubes (CNTs) have attracted the attention of scientists because of their unique electronic, magnetic, optical, mechanical, and chemical properties. However, their poor solubility in solvents, especially in water, limits their applications in several promising fields such as biomedicine, biomedical imaging, and cancer therapy. The attachment of hydrophilic segments to CNTs is a very efficient method for overcoming this problem. This review covers the latest advances in the synthesis of water-soluble CNTs with an emphasis on the molecular structure of various categories of hydrophilic molecules/macromolecules which have been grafted onto the surface of CNTs. Indeed, from the viewpoint of chemical synthesis, covalent bonding of several water-soluble molecules/macromolecules including small water-soluble organic molecules, linear, hyperbranched and dendritic polymers/biopolymers, glycoconjugate molecules/polymers as well as biomolecules onto the surface of CNTs has been deeply surveyed. Moreover, the most recent and interesting bio-applications of polymer-functionalized water-soluble CNTs have been properly reviewed.

  8. Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities

    Science.gov (United States)

    Zheng, Xiao-Shan; Jahn, Izabella Jolan; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2018-05-01

    To achieve an insightful look within biomolecular processes on the cellular level, the development of diseases as well as the reliable detection of metabolites and pathogens, a modern analytical tool is needed that is highly sensitive, molecular-specific and exhibits fast detection. Surface-enhanced Raman spectroscopy (SERS) is known to meet these requirements and, within this review article, the recent progress of label-free SERS in biological and biomedical applications is summarized and discussed. This includes the detection of biomolecules such as metabolites, nucleic acids and proteins. Further, the characterization and identification of microorganisms has been achieved by label-free SERS-based approaches. Eukaryotic cells can be characterized by SERS in order to gain information about the outer cell wall or to detect intracellular molecules and metabolites. The potential of SERS for medically relevant detection schemes is emphasized by the label-free detection of tissue, the investigation of body fluids as well as applications for therapeutic and illicit drug monitoring. The review article is concluded with an evaluation of the recent progress and current challenges in order to highlight the direction of label-free SERS in the future.

  9. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications.

    Science.gov (United States)

    Fadeel, Bengt; Garcia-Bennett, Alfonso E

    2010-03-08

    The development of nanoparticles for biomedical applications including medical imaging and drug delivery is currently undergoing a dramatic expansion. However, as the range of nanoparticle types and applications increases, it is also clear that the potential toxicities of these novel materials and the properties driving such toxic responses must also be understood. Indeed, a detailed assessment of the factors that influence the biocompatibility and/or toxicity of nanoparticles is crucial for the safe and sustainable development of the emerging nanotechnologies. This review summarizes some of the recent developments in the field of nanomedicine with particular emphasis on inorganic nanoparticles for drug delivery. The synthesis routes, physico-chemical characteristics, and cytotoxic properties of inorganic nanoparticles are thus explored and lessons learned from the toxicological investigation of three common types of engineered nanomaterials of titania, gold, and mesoporous silica are discussed. Emphasis is placed on the recognition versus non-recognition of engineered nanomaterials by the immune system, the primary surveillance system against microorganisms and particles, which, in turn, is intimately linked to the issue of targeted drug delivery using such nanomaterials as carrier systems. Copyright 2009 Elsevier B.V. All rights reserved.

  10. A special issue on reviews in biomedical applications of nanomaterials, tissue engineering, stem cells, bioimaging, and toxicity.

    Science.gov (United States)

    Nalwa, Hari Singh

    2014-10-01

    This second special issue of the Journal of Biomedical Nanotechnology in a series contains another 30 state-of-the-art reviews focused on the biomedical applications of nanomaterials, biosensors, bone tissue engineering, MRI and bioimaging, single-cell detection, stem cells, endothelial progenitor cells, toxicity and biosafety of nanodrugs, nanoparticle-based new therapeutic approaches for cancer, hepatic and cardiovascular disease.

  11. Adaptive Buck-Boost Converter for RF Energy Harvesting and Transfer in Biomedical Applications

    NARCIS (Netherlands)

    Campos Martins, G.; Serdijn, W.A.

    2017-01-01

    The continuous improvement in reducing the power consumption of electronic devices, including biomedical ones, makes the use of energy harvesting systems instead of batteries attractive. Conventionally, energy harvesting systems are optimized to operate in a single worst-case scenario. However, it

  12. Recent progresses in biomedical applications of aptamer-functionalized systems.

    Science.gov (United States)

    Ding, Fei; Gao, Yangguang; He, Xianran

    2017-09-15

    Aptamers, known as "chemical antibodies" are screened via a combinational technology of systematic evolution of ligands by exponential enrichment (SELEX). Due to their specific targeting ability, high binding affinity, low immunogenicity and easy modification, aptamer-functionalized systems have been extensively applied in various fields and exhibit favorable results. However, there is still a long way for them to be commercialized, and few aptamer-functionalized systems have yet successfully entered clinical and industrial use. Thus, it is necessary to overview the recent research progresses of aptamer-functionalized systems for the researchers to improve or design novel and better aptamer-functionalized systems. In this review, we first introduce the recent progresses of aptamer-functionalized systems' applications in biosensing, targeted drug delivery, gene therapy and cancer cell imaging, followed by a discussion of the challenges faced with extensive applications of aptamer-functionalized systems and speculation of the future prospects of them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Silicon photomultipliers and their bio-medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Eugene [Institute for Theoretical and Experimental Physics (ITEP), B.Cheremushkinskaya 25, Moscow 117218 (Russian Federation) and Forimtech S.A., Route de Malagnou 32, Geneva 1208 (Switzerland)]. E-mail: grigoriev@forimtech.ch; Akindinov, Alexander [Institute for Theoretical and Experimental Physics (ITEP), B.Cheremushkinskaya 25, Moscow 117218 (Russian Federation); Breitenmoser, Marco [Forimtech S.A., Route de Malagnou 32, Geneva 1208 (Switzerland); Buono, Stefano [Advanced Accelerator Applications S.A (AAA), 20 rue Diesel, 01630 St. Genis Pouilly (France); Charbon, Edoardo [Ecole Politechnique Federale de Lausanne (EPFL), AQUA Group, Lausanne 1015 (Switzerland); Niclass, Cristiano [Ecole Politechnique Federale de Lausanne (EPFL), AQUA Group, Lausanne 1015 (Switzerland); Desforges, Iris [Forimtech S.A., Route de Malagnou 32, Geneva 1208 (Switzerland); Rocca, Roberto [Advanced Accelerator Applications S.A (AAA), 20 rue Diesel, 01630 St. Genis Pouilly (France)

    2007-02-01

    Single Photon Avalanche Diodes (SPADs) have been used for photon counting since the 1960s, but only in the recent decade multi-pixel structures based on SPAD-arrays and silicon photomultipliers have been developed. These devices are finding more and more applications in many fields, where detection of light at the level of a single photon is needed. Due to their exclusive properties (fast response, low operating voltage, single photon sensitivity at room temperature, extremely high gain, stability, compactness, robustness and low price), such sensors are successfully replacing traditional vacuum photomultipliers in many devices. The paper briefly describes the state of the art and suggests some new applications in biology and medicine.

  14. Recent progress in biomedical applications of persistent luminescence nanoparticles.

    Science.gov (United States)

    Wang, Jie; Ma, Qinqin; Wang, Yingqian; Shen, Haijing; Yuan, Quan

    2017-05-18

    Persistent luminescence nanoparticles (PLNPs) are an emerging group of promising luminescent materials that can remain luminescent after the excitation ceases. In the past decade, PLNPs with intriguing optical properties have been developed and their applications in biomedicine have been widely studied. Due to the ultra-long decay time of persistent luminescence, autofluorescence interference in biosensing and bioimaging can be efficiently eliminated. Moreover, PLNPs can remain luminescent for hours, making them valuable in bio-tracing. Also, persistent luminescence imaging can guide cancer therapy with a high signal-to-noise ratio (SNR) and superior sensitivity. Briefly, PLNPs are demonstrated to be a newly-emerging class of functional materials with unprecedented advantages in biomedicine. In this review, we summarized recent advances in the preparation of PLNPs and the applications of PLNPs in biosensing, bioimaging and cancer therapy.

  15. Mechanical Properties of Titanium Foam for Biomedical Applications

    Science.gov (United States)

    Kashef, Sadaf; Lin, Jianguo; Hodgson, Peter D.; Yan, Wenyi

    Understanding the mechanical behaviour of pure titanium (Ti) foam is crucial for the design and development of Ti foam-based load-bearing implants. In this work, pure titanium foam is fabricated by a powder metallurgical process using the space-holder technique with a spacer size of 500 to 800 µm. Experimental data from static compression testing on the Ti foam are presented. The application of theoretical formulae to predict Young's modulus and yield strength of titanium foams is also discussed. A foam with 63% porosity, 87 ± 5 MPa yield strength, and 6.5 ± 1.3 GPa Young's modulus is found to be appropriate for a number of dental and orthopaedic applications.

  16. Antibody Modeling and Structure Analysis. Application to biomedical problems.

    OpenAIRE

    Chailyan, Anna

    2013-01-01

    Background The usefulness of antibodies and antibody derived artificial constructs in various medical and biochemical applications has made them a prime target for protein engineering, modelling, and structure analysis. The huge number of known antibody sequences, that far outpaces the number of solved structures, raises the need for reliable automatic methods of antibody structure prediction. Antibodies have a very characteristic molecular structure that is reflected in their modelli...

  17. In-situ gelling polymers for biomedical applications

    CERN Document Server

    2015-01-01

    This book presents the research involving in situ gelling polymers and can be used as a guidebook for academics, industrialists and postgraduates interested in this area. This work summaries the academic contributions from the top authorities in the field and explore the fundamental principles of in situ gelling polymeric networks, along with examples of their major applications. This book aims to provide an up-to-date resource of in situ gelling polymer research.

  18. Recent advances in biomedical applications of accelerator mass spectrometry

    Directory of Open Access Journals (Sweden)

    Turteltaub Kenneth W

    2009-12-01

    Full Text Available Abstract After publication of our article, it was noted that we inadvertently failed to include the complete list of authors. The full list, including co-authors, has now been added and the Authors' contributions and Competing interests sections modified accordingly.

  19. Peptide protected gold clusters: chemical synthesis and biomedical applications.

    Science.gov (United States)

    Yuan, Qing; Wang, Yaling; Zhao, Lina; Liu, Ru; Gao, Fuping; Gao, Liang; Gao, Xueyun

    2016-06-16

    Bridging the gap between atoms and nanoparticles, noble metal clusters with atomic precision continue to attract considerable attention due to their important applications in catalysis, energy transformation, biosensing and biomedicine. Greatly different to common chemical synthesis, a one-step biomimetic synthesis of peptide-conjugated metal clusters has been developed to meet the demand of emerging bioapplications. Under mild conditions, multifunctional peptides containing metal capturing, reactive and targeting groups are rationally designed and elaborately synthesized to fabricate atomically precise peptide protected metal clusters. Among them, peptide-protected Au Cs (peptide-Au Cs) possess a great deal of exceptional advantages such as nanometer dimensions, high photostability, good biocompatibility, accurate chemical formula and specific protein targeting capacity. In this review article, we focus on the recent advances in potential theranostic fields by introducing the rising progress of peptide-Au Cs for biological imaging, biological analysis and therapeutic applications. The interactions between Au Cs and biological systems as well as potential mechanisms are also our concerned theme. We expect that the rapidly growing interest in Au Cs-based theranostic applications will attract broader concerns across various disciplines.

  20. CHITOSAN: ANTIBACTERIAL ACTIVITY AND PERSPECTIVES OF THE BIOMEDICAL APPLICATION

    Directory of Open Access Journals (Sweden)

    Sukhodub L.B.

    2014-10-01

    in the Gram-negative bacteria outer membrane are held together by electrostatic interactions with divalent metals. This cations may compete with CS, that also disturb the cell functions. Some authors reported that CS binds to DNA and inhibits RNA synthesis. Significant role in antibacterial activity belongs to the physical and chemical properties of Chitosan, including its cationic structure, molecular weight, degree of the deacetylation, concentration. Owing to the high content of amino and carboxyl groups, Chitosan can form chelate complexes with metals. Silver (Ag ion antimicrobial activity against Gram-negative and Gram-positive bacteria is well known. Complexes Chitosan-Silver are used in medicine for example as part of the protective coatings on metal implants in dentistry and orthopedics in order to reduce the risk of postoperative infection. The antibacterial activity of the Silver-Chitosan-doped hydroxyapatite (HA coating was examined using spectrophotometry by measuring the optical density of the culture medium E.coli АТСС 25922 containing the experimental samples. After 48 hours immersion of the substrate in medium, concentration of microbial cells (C, CFU/ml was decreased from log 7 to log 4,8, what is evidence of the coating antibacterial activity.It was studied the ability of the biomaterials based on HA with Chitosan and Silver content to influence the adhesive properties of E. coli АТСС 25922 and S. aureus АТСС 25923. It was proved that under Ag+ ions action, added to the coating material, the adhesive index for E.coli decreases in relation to formalinized ram erythrocytes on 17 % as compared to control sample (pure HA and the adhesive index for S. aureus – on 13 %. Also was found that chitosan as a component of bioactive coating decreases the adhesive index E. coli on 29 %, and those for S. aureus on 22 %.Thus, from this short overview follows the conclusion that CS can be used in medicine as a very perspective antimicrobial agent. Also

  1. Exploration of Global Trend on Biomedical Application of Polyhydroxyalkanoate (PHA): A Patent Survey.

    Science.gov (United States)

    Ponnaiah, Paulraj; Vnoothenei, Nagiah; Chandramohan, Muruganandham; Thevarkattil, Mohamed Javad Pazhayakath

    2018-01-30

    Polyhydroxyalkanoates are bio-based, biodegradable naturally occurring polymers produced by a wide range of organisms, from bacteria to higher mammals. The properties and biocompatibility of PHA make it possible for a wide spectrum of applications. In this context, we analyze the potential applications of PHA in biomedical science by exploring the global trend through the patent survey. The survey suggests that PHA is an attractive candidate in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. In our present study, we explored patents associated with various biomedical applications of polyhydroxyalkanoates. Patent databases of European Patent Office, United States Patent and Trademark Office and World Intellectual Property Organization were mined. We developed an intensive exploration approach to eliminate overlapping patents and sort out significant patents. We demarcated the keywords and search criterions and established search patterns for the database request. We retrieved documents within the recent 6 years, 2010 to 2016 and sort out the collected data stepwise to gather the most appropriate documents in patent families for further scrutiny. By this approach, we retrieved 23,368 patent documents from all the three databases and the patent titles were further analyzed for the relevance of polyhydroxyalkanoates in biomedical applications. This ensued in the documentation of approximately 226 significant patents associated with biomedical applications of polyhydroxyalkanoates and the information was classified into six major groups. Polyhydroxyalkanoates has been patented in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. There are many avenues through which PHA & PHB could be

  2. Nano technologies, technologies converging and potential biomedical applications

    International Nuclear Information System (INIS)

    Capuano, V.

    2005-01-01

    The applications of nano technology to biology and medicine appear really promising for diagnostics, for various therapeutic approaches and in medical instrumentations. The growing synergism among nano technology, biotechnology, information technology and cognitive sciences, their convergence (NBIC) from the nano scale, could involve on next decades great changes in medicine, from a reactive to a predictive and preventive approach. It is expected that NBIC converging technologies could achieve tremendous improvements in human abilities and enhance societal achievement of related social and ethical implications, in the framework of a constant dialogue between science and society [it

  3. Light-emitting diodes - Their potential in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Naichia Gary; Wu, Chia-Hao [College of Applied Sciences, MingDao University, 369 Wen-Hua Road, Peetou, Changhua 52345 (China); Cheng, Ta Chih [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Hseuh-Fu Rd., Nei-Pu Hsiang, Pingtung 91201 (China)

    2010-10-15

    The rapid development of high brightness light-emitting diodes (LEDs) makes feasible the use of LEDs, among other light sources (such as laser, intense pulse light and other incoherent light systems), for medical treatment and light therapy. This paper provides a general review on red, green, blue, ultraviolet LED applications in photo rejuvenation and medical treatments of a variety of physical abnormalities, as well as the relief of stress, circadian rhythm disorders, and seasonal affective disorder. The review, concentrated in the papers published after 1990, intends to show that LEDs are well qualified to succeed its more energy demanding counterparts in the named areas and beyond. (author)

  4. Tracking chemical changes in a live cell: Biomedical applications of SR-FTIR spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-07-25

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). We will then present several examples demonstrating the application potentials of SR-FTIR spectromicroscopy in biomedical research. These will include monitoring living cells progressing through the cell cycle, including death, and cells reacting to dilute concentrations of toxins.

  5. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them

    Directory of Open Access Journals (Sweden)

    Qinyuan Chai

    2017-01-01

    Full Text Available Hydrogels are hydrophilic, three-dimensional networks that are able to absorb large quantities of water or biological fluids, and thus have the potential to be used as prime candidates for biosensors, drug delivery vectors, and carriers or matrices for cells in tissue engineering. In this critical review article, advantages of the hydrogels that overcome the limitations from other types of biomaterials will be discussed. Hydrogels, depending on their chemical composition, are responsive to various stimuli including heating, pH, light, and chemicals. Two swelling mechanisms will be discussed to give a detailed understanding of how the structure parameters affect swelling properties, followed by the gelation mechanism and mesh size calculation. Hydrogels prepared from natural materials such as polysaccharides and polypeptides, along with different types of synthetic hydrogels from the recent reported literature, will be discussed in detail. Finally, attention will be given to biomedical applications of different kinds of hydrogels including cell culture, self-healing, and drug delivery.

  6. Tracking chemical changes in a live cell: Biomedical applications of SR-FTIR spectromicroscopy

    International Nuclear Information System (INIS)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). We will then present several examples demonstrating the application potentials of SR-FTIR spectromicroscopy in biomedical research. These will include monitoring living cells progressing through the cell cycle, including death, and cells reacting to dilute concentrations of toxins

  7. Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects.

    Science.gov (United States)

    Chimene, David; Alge, Daniel L; Gaharwar, Akhilesh K

    2015-12-02

    Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Here, we focus on state-of-the-art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly fluorescent and superparamagnetic nanosystem for biomedical applications

    Science.gov (United States)

    Cabrera, Mariana P.; E Cabral Filho, Paulo; Silva, Camila M. C. M.; Oliveira, Rita M.; Geraldes, Carlos F. G. C.; Castro, M. Margarida C. A.; Costa, Benilde F. O.; Henriques, Marta S. C.; Paixão, José A.; Carvalho, Luiz B., Jr.; Santos, Beate S.; Hallwass, Fernando; Fontes, Adriana; Pereira, Giovannia A. L.

    2017-07-01

    This work reports on highly fluorescent and superparamagnetic bimodal nanoparticles (BNPs) obtained by a simple and efficient method as probes for fluorescence analysis and/or contrast agents for MRI. These promising BNPs with small dimensions (ca. 17 nm) consist of superparamagnetic iron oxide nanoparticles (SPIONs) covalently bound with CdTe quantum dots (ca. 3 nm). The chemical structure of the magnetic part of BNPs is predominantly magnetite, with minor goethite and maghemite contributions, as shown by Mössbauer spectroscopy, which is compatible with the x-ray diffraction data. Their size evaluation by different techniques showed that the SPION derivatization process, in order to produce the BNPs, does not lead to a large size increase. The BNPs saturation magnetization, when corrected for the organic content of the sample, is ca. 68 emu g-1, which is only slightly reduced relative to the bare nanoparticles. This indicates that the SPION surface functionalization does not change considerably the magnetic properties. The BNP aqueous suspensions presented stability, high fluorescence, high relaxivity ratio (r 2/r 1 equal to 25) and labeled efficiently HeLa cells as can be seen by fluorescence analysis. These BNP properties point to their applications as fluorescent probes as well as negative T 2-weighted MRI contrast agents. Moreover, their potential magnetic response could also be used for fast bioseparation applications.

  9. Phytofabrication of bioinduced silver nanoparticles for biomedical applications

    Science.gov (United States)

    Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv

    2015-01-01

    Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. PMID:26648715

  10. Nanoparticle-Based Delivery System for Biomedical Applications of RNAi

    DEFF Research Database (Denmark)

    Yang, Chuanxu

    RNA interference (RNAi) is a post-transcriptional gene silencing process triggered by double-strand RNA, including synthetic short interfering RNA (siRNA) and endogenous microRNA (miRNA). RNAi has attracted great attention for developing a new class of therapeutics, due to its capability...... to specifically inhibit the expression of virtually any gene with high efficiency, including the “undruggable” targets. To activate the RNAi pathway, siRNA or miRNA molecules must be transported into the cytoplasm of target cells. However, various barriers impede the transportation of these fragile macromolecules...

  11. Nanogels for Pharmaceutical and Biomedical Applications and Their Fabrication Using 3D Printing Technologies

    Directory of Open Access Journals (Sweden)

    Hyunah Cho

    2018-02-01

    Full Text Available Nanogels are hydrogels formed by connecting nanoscopic micelles dispersed in an aqueous medium, which give an opportunity for incorporating hydrophilic payloads to the exterior of the micellar networks and hydrophobic payloads in the core of the micelles. Biomedical and pharmaceutical applications of nanogels have been explored for tissue regeneration, wound healing, surgical device, implantation, and peroral, rectal, vaginal, ocular, and transdermal drug delivery. Although it is still in the early stages of development, due to the increasing demands of precise nanogel production to be utilized for personalized medicine, biomedical applications, and specialized drug delivery, 3D printing has been explored in the past few years and is believed to be one of the most precise, efficient, inexpensive, customizable, and convenient manufacturing techniques for nanogel production.

  12. Nanogels for Pharmaceutical and Biomedical Applications and Their Fabrication Using 3D Printing Technologies

    Science.gov (United States)

    Cho, Hyunah; Jammalamadaka, Udayabhanu

    2018-01-01

    Nanogels are hydrogels formed by connecting nanoscopic micelles dispersed in an aqueous medium, which give an opportunity for incorporating hydrophilic payloads to the exterior of the micellar networks and hydrophobic payloads in the core of the micelles. Biomedical and pharmaceutical applications of nanogels have been explored for tissue regeneration, wound healing, surgical device, implantation, and peroral, rectal, vaginal, ocular, and transdermal drug delivery. Although it is still in the early stages of development, due to the increasing demands of precise nanogel production to be utilized for personalized medicine, biomedical applications, and specialized drug delivery, 3D printing has been explored in the past few years and is believed to be one of the most precise, efficient, inexpensive, customizable, and convenient manufacturing techniques for nanogel production. PMID:29462901

  13. Synthesis of a novel biodegradable and electroactive polyphosphazene for biomedical application

    International Nuclear Information System (INIS)

    Zhang Qingsong; Yan Yuhua; Li Shipu; Feng Tao

    2009-01-01

    To prepare one electroactive and biodegradable biomaterial for biomedical application, a new synthetic strategy was developed to synthesize a novel electrically conductive biodegradable polyphosphazene polymer containing parent aniline pentamer (PAP) and glycine ethyl ester (GEE) as side chains by a nucleophilic substitution reaction. The electrical conductivity of the polymer is ∼2 x 10 -5 S cm -1 in the semiconducting region upon preliminarily protonic-doped experiment. The degradation and RSC96 Schwann cells experiments in vitro prove that the polymer is biodegradable and beneficial to the cell adhesion and proliferation. The as-synthesized polymer also shows good solubility in common organic solvent and good film-forming properties. This new type of polymer has potential applications as scaffolds for neuronal and cardiovascular tissue engineering or other biomedical devices that require electroactivity.

  14. Recent Advances of Graphene-based Hybrids with Magnetic Nanoparticles for Biomedical Applications.

    Science.gov (United States)

    Alegret, Nuria; Criado, Alejandro; Prato, Maurizio

    2017-01-01

    The utilization of graphene-based nanomaterials combined with magnetic nanoparticles offers key benefits in the modern biomedicine. In this minireview, we focus on the most recent advances in hybrids of magnetic graphene derivatives for biomedical applications. We initially analyze the several methodologies employed for the preparation of graphene-based composites with magnetic nanoparticles, more specifically the kind of linkage between the two components. In the last section, we focus on the biomedical applications where these magnetic-graphene hybrids are essential and pay special attention on how the addition of graphene improves the resulting devices in magnetic resonance imaging, controlled drug delivery, magnetic photothermal therapy and cellular separation and isolation. Finally, we highlight the use of these magnetic hybrids as multifunctional material that will lead to a next generation of theranostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications

    International Nuclear Information System (INIS)

    Du, Fengyi; Zhang, Miaomiao; Li, Xiaofeng; Jiang, Xinyi; Li, Zhang; Hua, Ye; Shao, Genbao; Jin, Jie; Shao, Qixiang; Gong, Aihua; Li, Jianan; Zhou, Ming

    2014-01-01

    Carbon quantum dots (CDs) are promising nanomaterials in biomedical, photocatalytical and photoelectronic applications. However, determining how to explore an ideal precursor for a renewable carbon resource is still an interesting challenge. Here, for the first time, we report that renewable wastes of bagasse as a new precursor were prepared for fluorescent CDs by a hydrothermal carbonization (HTC) process. The characterization results show that such bagasse-derived CDs are monodispersed, contain quasi spherical particles with a diameter of about 1.8 nm and exhibit favorable photoluminescence properties, super-high photostability and good dispersibility in water. Most importantly, bagasse-derived CDs have good biocompatibility and can be easily and quickly internalized by living cancer cells; they can also be used for multicolour biolabeling and bioimaging in cancer cells. It is suggested that bagasse-derived CDs might have potential applications in biomedical and photoelectronic fields. (paper)

  16. PLA/chitosan/keratin composites for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, Constantin Edi, E-mail: etanase@live.com [Faculty of Medical Bioengineering, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi (Romania); Spiridon, Iuliana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2014-07-01

    Novel composites based on PLA, chitosan and keratin was obtained via blend preparation. The goal of this contribution was to evaluate mechanical and in vitro behavior of the composites. The results point out composites with improved Young modulus and decreased tensile strength, significant increase in hardness (compared to PLA) and a good uptake of the surface properties. Biological assessments using human osteosarcoma cell line on these composites indicate a good viability/proliferation outcome. Hence preliminary results regarding mechanical behavior and in vitro osteoblast response suggest that these composites might have prospective application in medical field. - Highlights: • PLA, chitosan and keratin composites are prepared by blend preparation. • PLA, chitosan and keratin composites present improved mechanical properties and water uptake compare to PLA. • PLA, chitosan and keratin composites present good in vitro behavior.

  17. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    spectroscopy and imaging, and fluorescence measurements. A major challenge in diode laser technology is to obtain high-power laser emission at wavelengths green spectral range is of high importance, for example, in dermatology or for direct pumping of ultrashort pulsed lasers...... in conjunction with optical coherence tomography, two-photon microscopy or coherent anti-Stokes Raman scattering microscopy. In order to provide high-power green diode laser emission, nonlinear frequency conversion of state-of-the-art near-infrared diode lasers represents a necessary means. However, the obtained...... output power of frequency doubled single emitters is limited by thermal effects potentially resulting in laser degradation and failure. In this work new concepts for power scaling of visible diode laser systems are introduced that help to overcome current limitations and enhance the application potential...

  18. Preparation and Characterization of Bimodal Magnetofluorescent Nanoprobes for Biomedical Application

    International Nuclear Information System (INIS)

    Lei Jie-Mei; Xu Xiao-Liang; Liu Ling; Yin Nai-Qiang; Zhu Li-Xin

    2012-01-01

    Magnetic-fluorescent bifunctional Fe 3 O 4 /SiO 2 -CdTeS nanocomposites are synthesized. Fe 3 O 4 superparamagnetic nanoparticles are firstly prepared through the thermal decomposition of Fe oleate precursors and coated with a mesoporous silica shell using the Stöber method, and the silica surface is then modified with positively charged amino groups by adding 3-aminopropyltrimethoxysilane. Finally, negatively charged CdTeS quantum dots are linked and assembled onto the positively charged surface of Fe 3 O 4 /SiO 2 through electrostatic interactions. X-ray diffraction, transmission electron microscopy, photoluminescence spectroscopy, and magnetometry are applied to characterize the nanocomposites. The results show that the bifunctional nanocomposites combine the optical properties of near-infrared CdTeS quantum dots with the superparamagnetic properties of Fe 3 O 4 perfectly, expressing the potential application as a biocompatible magnetofuorescent nanoprobe for in vivo labelling

  19. Preparation and characterization of mucilage polysaccharide for biomedical applications.

    Science.gov (United States)

    Archana, G; Sabina, K; Babuskin, S; Radhakrishnan, K; Fayidh, Mohammed A; Babu, P Azhagu Saravana; Sivarajan, M; Sukumar, M

    2013-10-15

    In the present investigation, the polysaccharide/mucilage from waste of Abelmoscus esculentus by modification in hot extraction using two different solvents (Acetone, Methanol) were extracted, characterized and further compared with seaweed polysaccharide for their potential applications. The percentage yield, emulsifying capacity and swelling index of this mucilage were determined. The macro algae and okra waste, gave high % yield (22.2% and 8.6% respectively) and good emulsifying capacity (EC%=52.38% and 54.76% respectively) with acetone, compared to methanol (11.3% and 0.28%; EC%=50%) (PH=7) while swelling index was greater with methanol than acetone extracts respectively. The infrared (I.R.) spectrum of the samples was recorded to investigate the chemical structure of mucilage. Thermal analysis of the mucilage was done with TGA (Thermal Gravimetric Analyzer) and DSC (Differential Scanning Calorimeter) which showed both okra and algal polysaccharide were thermostable hydrogels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Phytofabrication of bioinduced silver nanoparticles for biomedical applications

    Directory of Open Access Journals (Sweden)

    Ahmad N

    2015-11-01

    Full Text Available Nabeel Ahmad,1 Sharad Bhatnagar,1 Syed Salman Ali,2 Rajiv Dutta3 1School of Biotechnology, 2School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput, Moradabad, Uttar Pradesh, India; 3Institute of Bio-Science and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India Abstract: Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus. Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. Keywords: silver nanoparticles, green synthesis, anti-inflammatory, analgesic, animal model study, antibacterial

  1. An original architectured NiTi silicone rubber structure for biomedical applications

    OpenAIRE

    Rey, Thierry; Le Cam, Jean-Benoit; Chagnon, Grégory; Favier, Denis; Rebouah, Marie; Razan, Florence; Robin, Eric; Didier, Pierre; Heller, Ludek; Faure, S; Janouchova, K

    2014-01-01

    International audience; This paper deals with composite structures for biomedical applications. For this purpose, an architectured tubular structure composed of Nickel Titanium (NiTi) Shape Memory Alloy (SMA) and silicone rubber was fabricated. One of the main interest of such structures is to ensure a good adhesion between its two constitutive materials. A previous study of the authors (Rey et al., 2014) has shown that the adhesion between NiTi and silicone rubber can be improved by an adhes...

  2. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  3. Photosensitive Layer-by-Layer Assemblies Containing Azobenzene Groups: Synthesis and Biomedical Applications

    OpenAIRE

    Uichi Akiba; Daichi Minaki; Jun-ichi Anzai

    2017-01-01

    This review provides an overview of the syntheses of photosensitive layer-by-layer (LbL) films and microcapsules modified with azobenzene derivatives and their biomedical applications. Photosensitive LbL films and microcapsules can be prepared by alternate deposition of azobenzene-bearing polymers and counter polymers on the surface of flat substrates and microparticles, respectively. Azobenzene residues in the films and microcapsules exhibit trans-to-cis photoisomerization under UV light, wh...

  4. Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses

    OpenAIRE

    Manuel Guillermo Rojas Cortés; Bibiana Margarita Vallejo Díaz; Jairo Ernesto Perilla Perilla

    2008-01-01

    Biopolymers have been widely studied for use in pharmaceutical applications. They have been used for modifying drug release, orientating a drug towards its therapeutic target, penetrating physiological barriers (tissues and cells) and protecting unstable therapeutic agents against physiological conditions which are present in a less invasive administration routes. The importance of biopolymers in designing new biomedical devices must thus be stressed, es-pecially when a pharmaceutical substan...

  5. Silver nanoparticles in X-ray biomedical applications

    International Nuclear Information System (INIS)

    Mattea, Facundo; Vedelago, José; Malano, Francisco; Gomez, Cesar; Strumia, Miriam C.

    2017-01-01

    The fluorescence of silver nanoparticles or ions can be used for detection and dose enhancement purposes in X-ray irradiation applications. This study is focused on the full integration of the chemical synthesis of silver nanoparticles suitable for dosimetric and radiological purposes with characteristics that can be exploited in radiotherapy and radiodiagnostic. A narrow size distribution and a compatible stabilizing agent is often desired in order to obtain homogeneous behaviors in nanoparticle suspension. With the method proposed in this study, nanoparticles ranging from 5 to 20 nm were obtained. The fluorescence of aqueous suspensions of silver nanoparticles has been measured experimentally and simulated with the Monte Carlo PENELOPE code for different silver concentrations and geometrical configurations. Finally, the feasibility of using these nanoparticles for the elaboration of Fricke gel dosimeters has been tested obtaining a dose enhancement when compared with the same material irradiated below the silver K-edge. - Highlights: • A method to compare NP's fluorescence in simulations and experiments was developed. • Silver nanoparticles suitable for typical dosimetry systems were synthesized. • Concentration and depth of a Ag doped volume was measured with X-ray fluorescence. • A feasibility test of Ag NPs in Fricke gel dosimetry was performed. • Good agreement between Monte Carlo simulations and experiments was obtained.

  6. Periodical Microstructures Based on Novel Piezoelectric Material for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Giedrius Janusas

    2015-12-01

    Full Text Available A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated. Results showed that a designed novel cantilever-type element is able to generate a voltage of up to 80 µV at 50 Hz frequency. To use this element for sensing purposes, a four micron periodical microstructure was imprinted. Silver nanoparticles were precipitated on the grating to increase the sensitivity of the designed element, i.e., Surface Plasmon Resonance (SPR effect appears in the element. To tackle some issues (a lack of sensitivity, signal delays the element must have certain electronic and optical properties. One possible solution, proposed in this paper, is a combination of piezoelectricity and SPR in a single element.

  7. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications.

    Science.gov (United States)

    Inès, Mnif; Dhouha, Ghribi

    2015-10-30

    Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively. Rhamnolipids, trehalolipids, mannosylerythritol-lipids and cellobiose lipids are among the most popular glycolipids. Moreover, their ability to form pores and destabilize biological membrane permits their use in biomedicine as antibacterial, antifungal and hemolytic agents. Their antiviral and antitumor effects enable their use in pharmaceutic as therapeutic agents. Also, glycolipids can inhibit the bioadhesion of pathogenic bacteria enabling their use as anti-adhesive agents and for disruption of biofilm formation and can be used in cosmetic industry. Moreover, they have great potential application in industry as detergents, wetting agents and for flotation. Furthermore, glycolipids can act at the surface and can modulate enzyme activity permitting the enhancement or the inhibition of the activity of certain enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications.

    Science.gov (United States)

    Oliveira, Weslley F; Arruda, Isabel R S; Silva, Germana M M; Machado, Giovanna; Coelho, Luana C B B; Correia, Maria T S

    2017-12-01

    Titanium (Ti) and its alloys are extensively used in the manufacture of implants because they have biocompatibility. The production of a nanostructured surface can be achieved by means of titanium dioxide nanotubes (TNTs) which can have dimensions equivalent to the nanometric components of human bone, in addition to increasing the efficiency of such implants. The search is ongoing for ways to improve the performance of these TNTs in terms of their functionalization through coating these nanotubular matrices with biomolecules. The biocompatibility of the functionalized TNTs can be improved by promoting rapid osseointegration, by preventing the adhesion of bacteria on such surfaces and/or by promoting a more sustained local release of drugs that are loaded into such TNTs. In addition to the implants, these nanotubular matrices have been used in the manufacture of high-performance biosensors capable of immobilizing principally enzymes on their surfaces, which has possible use in disease diagnosis. The objective of this review is to show the main techniques of immobilization of biomolecules in TNTs, evidencing the most recent applications of bioactive molecules that have been functionalized in the nanotubular matrices for use in implants and biosensors. This surveillance also proposes a new class of biomolecules that can be used to functionalize these nanostructured surfaces, lectins. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Feasibility of telemammography as biomedical application for breast imaging

    Science.gov (United States)

    Beckerman, Barbara G.; Batsell, Stephen G.; MacIntyre, Lawrence P.; Sarraf, Hamed S.; Gleason, Shaun S.; Schnall, Mitchell D.

    1999-07-01

    Mammographic screening is an important tool in the early detection of breast cancer. The migration of mammography from the current mode of x-ray mammography using a film screen image detector and display to a digital technology provides an opportunity to improve access and performance of breast cancer screening. The sheer size and volume of the typical screening exam, the need to have previous screening data readily available, and the need to view other breast imaging data together to provide a common consensus and to plan treatment, make telemammography an ideal application for breast imaging. For telemammography to be a viable option, it must overcome the technical challenges related to transmission, archiving, management, processing and retrieval of large data sets. Researchers from the University of Pennsylvania, the University of Chicago and Lockheed Martin Energy Systems/Oak Ridge National Laboratory have developed a framework for transmission of large-scale medical images over high-speed networks, leveraged existing high-speed networks between research and medical facilities; tested the feasibility of point-to-point transmission of mammographic images in a near-real time environment; evaluated network performance and transmission scenarios; and investigated the impact of image preprocessing on an experimental computer-aided diagnosis system. Results of the initial study are reported here.

  10. Grating-based tomography applications in biomedical engineering

    Science.gov (United States)

    Schulz, Georg; Thalmann, Peter; Khimchenko, Anna; Müller, Bert

    2017-10-01

    For the investigation of soft tissues or tissues consisting of soft and hard tissues on the microscopic level, hard X-ray phase tomography has become one of the most suitable imaging techniques. Besides other phase contrast methods grating interferometry has the advantage of higher sensitivity than inline methods and the quantitative results. One disadvantage of the conventional double-grating setup (XDGI) compared to inline methods is the limitation of the spatial resolution. This limitation can be overcome by removing the analyser grating resulting in a single-grating setup (XSGI). In order to verify the performance of XSGI concerning contrast and spatial resolution, a quantitative comparison of XSGI and XDGI tomograms of a human nerve was performed. Both techniques provide sufficient contrast to allow for the distinction of tissue types. The spatial resolution of the two-fold binned XSGI data set is improved by a factor of two in comparison to XDGI which underlies its performance in tomography of soft tissues. Another application for grating-based X-ray phase tomography is the simultaneous visualization of soft and hard tissues of a plaque-containing coronary artery. The simultaneous visualization of both tissues is important for the segmentation of the lumen. The segmented data can be used for flow simulations in order to obtain information about the three-dimensional wall shear stress distribution needed for the optimization of mechano-sensitive nanocontainers used for drug delivery.

  11. Low modulus Ti–Nb–Hf alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    González, M., E-mail: Marta.Gonzalez.Colominas@upc.edu [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Peña, J. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Gil, F.J.; Manero, J.M. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN (Spain)

    2014-09-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to reduce stress shielding effect and to enhance bone remodeling in implants used to substitute failed hard tissue. For biomaterial application, investigation on the mechanical behavior, the corrosion resistance and the cell response is required. The new Ti25Nb16Hf alloy was studied before and after 95% cold rolling (95% C.R.). The mechanical properties were determined by tensile testing and its corrosion behavior was analyzed by potentiostatic equipment in Hank's solution at 37 °C. The cell response was studied by means of cytotoxicity evaluation, cell adhesion and proliferation measurements. The stress–strain curves showed the lowest elastic modulus (42 GPa) in the cold worked alloy and high tensile strength, similar to that of Ti6Al4V. The new alloy exhibited better corrosion resistance in terms of open circuit potential (E{sub OCP}), but was similar in terms of corrosion current density (i{sub CORR}) compared to Ti grade II. Cytotoxicity studies revealed that the chemical composition of the alloy does not induce cytotoxic activity. Cell studies in the new alloy showed a lower adhesion and a higher proliferation compared to Ti grade II presenting, therefore, mechanical features similar to those of human cortical bone and, simultaneously, a good cell response. - Highlights: • Presents low elastic modulus and high strength and elastic deformability. • Exhibits good biocompatibility in terms of cytotoxicity and cell response. • Corrosion resistance of this alloy is good, similar to that of Ti grade II. • Potential candidate for implants used to substitute failed hard tissue.

  12. Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations

    Science.gov (United States)

    Santos, Catherine M.; Mangadlao, Joey; Ahmed, Farid; Leon, Alex; Advincula, Rigoberto C.; Rodrigues, Debora F.

    2012-10-01

    Materials possessing excellent bacterial toxicity, while presenting low cytotoxicity to human cells, are strong candidates for biomaterials applications. In this study, we present the fabrication of a nanocomposite containing poly(N-vinylcarbazole) (PVK) and graphene (G) in solutions and thin films. Highly dispersed PVK-G (97-3 w/w%) solutions in various organic and aqueous solvents were prepared by solution mixing and sonication methods. The thermal properties and morphology of the new composite were analyzed using thermal gravimetry analysis (TGA) and atomic force microscopy (AFM), respectively. PVK-G films were immobilized onto indium tin oxide (ITO) substrates via electrodeposition. AFM was used to characterize the resulting topography of the nanocomposite thin films, while cyclic voltammetry and UV-vis were used to monitor their successful electrodeposition. The antimicrobial properties of the electrodeposited PVK-G films and solution-based PVK-G were investigated against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis). Microbial growth after exposure to the nanocomposite, metabolic assay and live-dead assay of the bacterial solutions exposed to PVK-G presented fewer viable and active bacteria than those exposed to pure PVK or pure graphene solutions. The PVK-G film inhibited about 80% of biofilm surface coverage whereas the PVK- and G-modified surfaces allowed biofilm formation over almost the whole coated surface (i.e. > 80%). The biocompatibility of the prepared PVK-G solutions on NIH 3T3 cells was evaluated using the MTS cell proliferation assay. A 24 h exposure of the PVK-G nanocomposite to the NIH 3T3 cells presented ˜80% cell survival.

  13. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    Science.gov (United States)

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future. © 2015 American Society for Nutrition.

  14. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications.

    Science.gov (United States)

    Gunduz, O; Gode, C; Ahmad, Z; Gökçe, H; Yetmez, M; Kalkandelen, C; Sahin, Y M; Oktar, F N

    2014-07-01

    The fabrication and characterization of bovine hydroxyapatite (BHA) and cerium oxide (CeO2) composites are presented. CeO2 (at varying concentrations 1, 5 and 10wt%) were added to calcinated BHA powder. The resulting mixtures were shaped into green cylindrical samples by powder pressing (350MPa) followed by sintering in air (1000-1300°C for 4h). Density, Vickers microhardness (HV), compression strength, scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies were performed on the products. The sintering behavior, microstructural characteristics and mechanical properties were evaluated. Differences in the sintering temperature (for 1wt% CeO2 composites) between 1200 and 1300°C, show a 3.3% increase in the microhardness (564 and 582.75HV, respectively). Composites prepared at 1300°C demonstrate the greatest compression strength with comparable results for 5 and 10wt% CeO2 content (106 and 107MPa) which are significantly better than those for 1wt% and those that do not include any CeO2 (90 and below 60MPa, respectively). The results obtained suggest optimal parameters to be used in preparation of BHA and CeO2 composites, while also highlighting the potential of such materials in several biomedical engineering applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Biomedical applications of green synthesized Nobel metal nanoparticles.

    Science.gov (United States)

    Khan, Zia Ul Haq; Khan, Amjad; Chen, Yongmei; Shah, Noor S; Muhammad, Nawshad; Khan, Arif Ullah; Tahir, Kamran; Khan, Faheem Ullah; Murtaza, Behzad; Hassan, Sadaf Ul; Qaisrani, Saeed Ahmad; Wan, Pingyu

    2017-08-01

    Synthesis of Nobel metal nanoparticles, play a key role in the field of medicine. Plants contain a substantial number of organic constituents, like phenolic compounds and various types of glycosides that help in synthesis of metal nanoparticles. Synthesis of metal nanoparticles by green method is one of the best and environment friendly methods. The major significance of the green synthesis is lack of toxic by-products produced during metal nanoparticle synthesis. The nanoparticles, synthesized by green method show various significant biological activities. Most of the research articles report the synthesized nanoparticles to be active against gram positive and gram negative bacteria. Some of these bacteria include Escherichia coli, Bacillus subtilis, Klebsiella pneumonia and Pseudomonas fluorescens. The synthesized nanoparticles also show significant antifungal activity against Trichophyton simii, Trichophyton mentagrophytes and Trichophyton rubrum as well as different types of cancer cells such as breast cancer cell line. They also exhibit significant antioxidant activity. The activities of these Nobel metal nano-particles mainly depend on the size and shape. The particles of small size with large surface area show good activity in the field of medicine. The synthesized nanoparticles are also active against leishmanial diseases. This research article explores in detail the green synthesis of the nanoparticles and their uses thereof. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  17. ICNBME-2013: 2. international conference on nanotechnologies and biomedical engineering; German-Moldovan workshop on novel nanomaterials for electronic, photonic and biomedical applications. Proceedings

    International Nuclear Information System (INIS)

    Tiginyanu, Ion; Sontea, Victor

    2013-01-01

    This book includes articles which cover a vast range of subjects, such as: nano technologies and nano materials, micro- and nano-objects, nanostructured and highly integrated systems, biophysics, biomedical instrumentation and devices, biomaterials, medical imaging, information technologies for health care, tele medicine, etc.

  18. ICNBME-2011: International Conference on Nanotechnologies and Biomedical Engineering; German-Moldovan Workshop on Novel Nanomaterials for Electronic, Photonic and Biomedical Applications. Proceedings

    International Nuclear Information System (INIS)

    Tiginyanu, Ion; Sontea, Victor

    2011-01-01

    This book includes articles which cover a vast range of subjects, such as: nano technologies and nano materials, micro- and nano-objects, nanostructured and highly integrated systems, biophysics, biomedical instrumentation and devices, biomaterials, medical imaging, information technologies for health care, tele medicine, etc.

  19. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering.

    Science.gov (United States)

    Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid

    2014-01-01

    Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields.

  20. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications

    KAUST Repository

    Croissant, Jonas G.

    2017-11-30

    Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer\\'s disease therapy.

  1. Big Data Application in Biomedical Research and Health Care: A Literature Review

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care. PMID:26843812

  2. Big Data Application in Biomedical Research and Health Care: A Literature Review.

    Science.gov (United States)

    Luo, Jake; Wu, Min; Gopukumar, Deepika; Zhao, Yiqing

    2016-01-01

    Big data technologies are increasingly used for biomedical and health-care informatics research. Large amounts of biological and clinical data have been generated and collected at an unprecedented speed and scale. For example, the new generation of sequencing technologies enables the processing of billions of DNA sequence data per day, and the application of electronic health records (EHRs) is documenting large amounts of patient data. The cost of acquiring and analyzing biomedical data is expected to decrease dramatically with the help of technology upgrades, such as the emergence of new sequencing machines, the development of novel hardware and software for parallel computing, and the extensive expansion of EHRs. Big data applications present new opportunities to discover new knowledge and create novel methods to improve the quality of health care. The application of big data in health care is a fast-growing field, with many new discoveries and methodologies published in the last five years. In this paper, we review and discuss big data application in four major biomedical subdisciplines: (1) bioinformatics, (2) clinical informatics, (3) imaging informatics, and (4) public health informatics. Specifically, in bioinformatics, high-throughput experiments facilitate the research of new genome-wide association studies of diseases, and with clinical informatics, the clinical field benefits from the vast amount of collected patient data for making intelligent decisions. Imaging informatics is now more rapidly integrated with cloud platforms to share medical image data and workflows, and public health informatics leverages big data techniques for predicting and monitoring infectious disease outbreaks, such as Ebola. In this paper, we review the recent progress and breakthroughs of big data applications in these health-care domains and summarize the challenges, gaps, and opportunities to improve and advance big data applications in health care.

  3. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    Pawar, S.H.; Khyalappa, R.J.; Yakhmi, J.V.

    2009-01-01

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  4. Recent Advances in the Synthesis and Biomedical Applications of Nanocomposite Hydrogels

    Directory of Open Access Journals (Sweden)

    Umile Gianfranco Spizzirri

    2015-10-01

    Full Text Available Hydrogels sensitive to electric current are usually made of polyelectrolytes and undergo erosion, swelling, de-swelling or bending in the presence of an applied electric field. The electrical conductivity of many polymeric materials used for the fabrication of biomedical devices is not high enough to achieve an effective modulation of the functional properties, and thus, the incorporation of conducting materials (e.g., carbon nanotubes and nanographene oxide was proposed as a valuable approach to overcome this limitation. By coupling the biological and chemical features of both natural and synthetic polymers with the favourable properties of carbon nanostructures (e.g., cellular uptake, electromagnetic and magnetic behaviour, it is possible to produce highly versatile and effective nanocomposite materials. In the present review, the recent advances in the synthesis and biomedical applications of electro-responsive nanocomposite hydrogels are discussed.

  5. Liquid Crystals, PIV and IR-Photography in Selected Technical and Biomedical Applications

    Science.gov (United States)

    Stasiek, Jan; Jewartowski, Marcin

    2017-10-01

    Thermochromic liquid crystals (TLC), Particle Image Velocimetry (PIV), Infrared Imaging Themography (IR) and True-Colour Digital Image Processing (TDIP) have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. These four tools (based on the desktop computers) have come together during the past two decades to produce a powerful advanced experimental technique as a judgment of quality of information that cannot be obtained from any other imaging procedure. The brief summary of the history of this technique is reviewed, principal methods and tools are described and some examples are presented. With this objective, a new experimental technique have been developed and applied to the study of heat and mass transfer and for biomedical diagnosis. Automated evaluation allows determining the heat and flow visualisation and locate the area of suspicious tissue of human body.

  6. Preparation of TiMn alloy by mechanical alloying and spark plasma sintering for biomedical applications

    Science.gov (United States)

    Zhang, F.; Weidmann, A.; Nebe, B. J.; Burkel, E.

    2009-01-01

    TiMn alloy was prepared by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS) technique for exploration of biomedical applications. The microstructures, mechanical properties and cytotoxicity of the TiMn alloys were investigated in comparison with the pure Ti and Mn metals. Ti8Mn and Ti12Mn alloys with high relative density (99%) were prepared by mechanical alloying for 60 h and SPS at 700 °C for 5 min. The doping of Mn in Ti has decreased the transformation temperature from α to β phase, increased the relative density and enhanced the hardness of the Ti metal significantly. The Ti8Mn alloys showed 86% cell viability which was comparable to that of the pure Ti (93%). The Mn can be used as a good alloying element for biomedical Ti metal, and the Ti8Mn alloy could have a potential use as bone substitutes and dental implants.

  7. Polymer/ceramic wireless MEMS pressure sensors for harsh environments: High temperature and biomedical applications

    Science.gov (United States)

    Fonseca, Michael A.

    2007-12-01

    This dissertation presents an investigation of miniaturized sensors, designed to wirelessly measure pressure in harsh environments such as high temperature and biomedical applications. Current wireless microelectromechanical systems (MEMS) pressure sensors are silicon-based and have limited high temperature operation, require internal power sources, or have limited packaging technology that restricts their use in harsh environments. Sensor designs in this work are based on passive LC resonant circuits to achieve wireless telemetry without the need for active circuitry or internal power sources. A cavity, which is embedded into the substrate, is bound by two pressure-deformable plates that include a parallel-plate capacitor. Deflection of the plates from applied pressure changes the capacitance, thus, the resonance frequency varies and is a function of the applied pressure. The LC resonant circuit and pressure-deformable plates are fabricated into a monolithic housing that servers as the final device package (i.e. intrinsically packaged). This co-integration of device and package offers increased robustness and the ability to operate wirelessly in harsh environments. To intrinsically packaged devices, the fabrication approach relies on techniques developed for MEMS and leverage established lamination-based manufacturing processes, such as ceramic and flexible-circuit-board (flex-circuit) packaging technologies. The sensor concept is further developed by deriving the electromechanical model describing the sensor behavior. The model is initially divided into the electromagnetic model, used to develop the passive wireless telemetry, and the mechanical model, used to develop the pressure dependence of the sensor, which are then combined to estimate the sensor resonance frequency dependence as a function of applied pressure. The derived analytical model allows parametric optimization of sensor designs. The sensor concept is demonstrated in two applications: high

  8. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications.

    Science.gov (United States)

    Esfand, R; Tomalia, D A.

    2001-04-01

    Poly(amidoamine) (PAMAM) dendrimers are the first complete dendrimer family to be synthesized, characterized and commercialized. Based on this extensive activity, they are recognized as a unique new class of synthetic nanostructures. Dendrimers allow the precise control of size, shape and placement of functional groups that is desirable for many life science applications. From this perspective, this review focuses on crucial properties of biomimetic dendrimers that will broaden the potential for their use as macromolecular vectors in novel drug delivery and biomedical applications.

  9. Biomedical Journals and the World Wide Web.

    Science.gov (United States)

    Schoonbaert, Dirk

    1998-01-01

    Discusses the publication of biomedical journals on the Internet. Highlights include pros and cons of electronic publishing; the Global Health Network at the University of Pittsburgh; the availability of biomedical journals on the World Wide Web; current applications, including access to journal contents tables and electronic delivery of full-text…

  10. Introduction to applied statistical signal analysis guide to biomedical and electrical engineering applications

    CERN Document Server

    Shiavi, Richard

    2007-01-01

    Introduction to Applied Statistical Signal Analysis is designed for the experienced individual with a basic background in mathematics, science, and computer. With this predisposed knowledge, the reader will coast through the practical introduction and move on to signal analysis techniques, commonly used in a broad range of engineering areas such as biomedical engineering, communications, geophysics, and speech.Introduction to Applied Statistical Signal Analysis intertwines theory and implementation with practical examples and exercises. Topics presented in detail include: mathematical

  11. Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications.

    Science.gov (United States)

    Alshatwi, Ali A; Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan

    2015-02-01

    Synthetic forms of silica have low biocompatibility, whereas biogenic forms have myriad beneficial effects in current toxicological applications. Among the various sources of biogenic silica, rice husk is considered a valuable agricultural biomass material and a cost-effective resource that can provide biogenic silica for biomedical applications. In the present study, highly pure biogenic silica nanoparticles (bSNPs) were successfully harvested from rice husks using acid digestion under pressurized conditions at 120°C followed by a calcination process. The obtained bSNPs were subjected to phase identification analysis using X-ray diffraction, which revealed the amorphous nature of the bSNPs. The morphologies of the bSNPs were observed using transmission electron microscopy (TEM), which revealed spherical particles 10 to 30 nm in diameter. Furthermore, the biocompatibility of the bSNPs with human lung fibroblast cells (hLFCs) was investigated using a viability assay and assessing cellular morphological changes, intracellular ROS generation, mitochondrial transmembrane potential and oxidative stress-related gene expression. Our results revealed that the bSNPs did not have any significant incompatibility in these in vitro cell-based approaches. These preliminary findings suggest that bSNPs are biocompatible, could be the best alternative to synthetic forms of silica and are applicable to food additive and biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.

    Science.gov (United States)

    Zhu, Guizhi; Hu, Rong; Zhao, Zilong; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2013-11-06

    DNA nanotechnology has been extensively explored to assemble various functional nanostructures for versatile applications. Mediated by Watson-Crick base-pairing, these DNA nanostructures have been conventionally assembled through hybridization of many short DNA building blocks. Here we report the noncanonical self-assembly of multifunctional DNA nanostructures, termed as nanoflowers (NFs), and the versatile biomedical applications. These NFs were assembled from long DNA building blocks generated via rolling circle replication (RCR) of a designer template. NF assembly was driven by liquid crystallization and dense packaging of building blocks, without relying on Watson-Crick base-pairing between DNA strands, thereby avoiding the otherwise conventional complicated DNA sequence design. NF sizes were readily tunable in a wide range, by simply adjusting such parameters as assembly time and template sequences. NFs were exceptionally resistant to nuclease degradation, denaturation, or dissociation at extremely low concentration, presumably resulting from the dense DNA packaging in NFs. The exceptional biostability is critical for biomedical applications. By rational design, NFs can be readily incorporated with myriad functional moieties. All these properties make NFs promising for versatile applications. As a proof-of-principle demonstration, in this study, NFs were integrated with aptamers, bioimaging agents, and drug loading sites, and the resultant multifunctional NFs were demonstrated for selective cancer cell recognition, bioimaging, and targeted anticancer drug delivery.

  13. 34 CFR 661.20 - What must an application include?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What must an application include? 661.20 Section 661.20 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION BUSINESS AND INTERNATIONAL EDUCATION PROGRAM How Does One Apply for a...

  14. 34 CFR 429.20 - What must an application include?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What must an application include? 429.20 Section 429.20 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION BILINGUAL VOCATIONAL MATERIALS, METHODS, AND TECHNIQUES PROGRAM...

  15. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.

    Science.gov (United States)

    Xue, Yan; Mou, Zihao; Xiao, Huining

    2017-10-12

    Nanocellulose, extracted from the most abundant biomass material cellulose, has proved to be an environmentally friendly material with excellent mechanical performance owing to its unique nano-scaled structure, and has been used in a variety of applications as engineering and functional materials. The great biocompatibility and biodegradability, in particular, render nanocellulose promising in biomedical applications. In this review, the structure, treatment technology and properties of three different nanocellulose categories, i.e., nanofibrillated cellulose (NFC), nanocrystalline cellulose (NCC) and bacterial nanocellulose (BNC), are introduced and compared. The cytotoxicity, biocompatibility and frontier applications in biomedicine of the three nanocellulose categories were the focus and are detailed in each section. Future prospects concerning the cytotoxicity, applications and industrial production of nanocellulose are also discussed in the last section.

  16. Status and possibilities for biomedical applications at the Instituto de Pesquisas Energeticas e Nucleares/Sao Paulo-Brazil

    International Nuclear Information System (INIS)

    Mastro, N.L. del.

    1989-02-01

    Radiation applications in the area of biological sciences at our institution aim in the first place at the preservation and improvement of health through the development of research directed to diagnosis and therapeutics. The multiple aspects of biotechnology turn possible also classical and new applications of great importance for the community. The biomedical radiation applications performed particularly at the IPEN are summarized. (author) [pt

  17. Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly.

    Science.gov (United States)

    Wu, Yaobin; Wang, Ling; Zhao, Xin; Hou, Sen; Guo, Baolin; Ma, Peter X

    2016-10-01

    Mimicking native functional dynamics for traditional biomaterials such as thermoset elastomers is limited due to their lack of responsiveness to biological stimuli and difficulties to incorporate biofunctionalities. Furthermore, the mechanical fracture of traditional thermoset elastomers caused by irreversible covalent bond rupture would lead to their permanent loss of properties. To overcome these challenges, degradable self-healed supramolecular bioelastomers are designed by an elastic poly(glycerol sebacate) (PGS) backbone and multiple hydrogen-bonding ureido-pyrimidinone (UPy) grafts. These supramolecular elastic polymers exhibit efficient self-healing, rapid shape-memory abilities and highly tunable mechanical properties due to the dynamic supramolecular interactions, and perform a good biocompatibility in vitro and a mild host response in vivo. By combining modular approaches, these supramolecular bioelastomers have been further assembled into a multifunctional platform to expand their applications in different biomedical fields. These include a complex 3D scaffold with shape-memory capacity and anisotropic mechanical properties, a controllable drug delivery model via a layer-by-layer technique, a surface antibacterial composite by physical modification, and a spatial oriented cell co-culture system via incorporating different cell-laden self-healing films, demonstrating their potential as building blocks in a wide range of biomedical applications where dynamic properties and biological functions are desired. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Frequency-Division Multiplexing for Electrical Impedance Tomography in Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yair Granot

    2007-01-01

    Full Text Available Electrical impedance tomography (EIT produces an image of the electrical impedance distribution of tissues in the body, using electrodes that are placed on the periphery of the imaged area. These electrodes inject currents and measure voltages and from these data, the impedance can be computed. Traditional EIT systems usually inject current patterns in a serial manner which means that the impedance is computed from data collected at slightly different times. It is usually also a time-consuming process. In this paper, we propose a method for collecting data concurrently from all of the current patterns in biomedical applications of EIT. This is achieved by injecting current through all of the current injecting electrodes simultaneously, and measuring all of the resulting voltages at once. The signals from various current injecting electrodes are separated by injecting different frequencies through each electrode. This is called frequency-division multiplexing (FDM. At the voltage measurement electrodes, the voltage related to each current injecting electrode is isolated by using Fourier decomposition. In biomedical applications, using different frequencies has important implications due to dispersions as the tissue's electrical properties change with frequency. Another significant issue arises when we are recording data in a dynamic environment where the properties change very fast. This method allows simultaneous measurements of all the current patterns, which may be important in applications where the tissue changes occur in the same time scale as the measurement. We discuss the FDM EIT method from the biomedical point of view and show results obtained with a simple experimental system.

  19. Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications

    International Nuclear Information System (INIS)

    Memic, Adnan; Aldhahri, Musab; Alhadrami, Hani A; Hussain, M Asif; Al Nowaiser, Fozia; Al-Hazmi, Faten; Oklu, Rahmi; Khademhosseini, Ali

    2016-01-01

    The incorporation of nanomaterials in hydrogels (hydrated networks of crosslinked polymers) has emerged as a useful method for generating biomaterials with tailored functionality. With the available engineering approaches it is becoming much easier to fabricate nanocomposite hydrogels that display improved performance across an array of electrical, mechanical, and biological properties. In this review, we discuss the fundamental aspects of these materials as well as recent developments that have enabled their application. Specifically, we highlight synthesis and fabrication, and the choice of nanomaterials for multifunctionality as ways to overcome current material property limitations. In addition, we review the use of nanocomposite hydrogels within the framework of biomedical and pharmaceutical disciplines. (paper)

  20. Production cross-sections for charged particle interactions in matter relevant to bio-medical applications

    International Nuclear Information System (INIS)

    Reading, D.H.

    1978-01-01

    Pion, proton and heavy ion beams are used extensively in bio-medical applications, the attraction being the high proportion of heavily ionizing short range secondaries localized at the stopping region, giving rise to a greater dose being deposited at the end of the range. However interactions in flight reduce the advantage either by deflection or absorption and thus the dose measurement is insufficient to model biological effects due to the changing radiation quality. Experimental investigations of such interactions are here reviewed and the experimental data arising examined in respect of input to models for radiobiology and treatment planning. 78 references. (U.K.)

  1. A PLZT Novel Sensor with Pt Implanted for Biomedical Application: Cardiac Micropulses Detection on Human Skin

    OpenAIRE

    González-Morán, Carlos O.; Miranda-Hernández, José G.; Flores Cuautle, José de Jesús Agustín; Suaste-Gómez, Ernesto; Herrera-Hernández, Héctor

    2017-01-01

    Advances in sensors for biomedical applications have been a great motivation. In this research, a PLZT (lead lanthanum zirconate titanate) novel sensor with platinum wire implanted in its longitudinal section was developed through of the synthesis process based on powder technology. The raw materials as lead (PbO), lanthanum (La2O3), zircon (ZrO2), and titanium (TiO2) were used in the formation of the chemical composition (62.8% PbO, 4.5% La2O3, 24.2% ZrO2, and 8.5% TiO2). Then, these powders...

  2. A Self-Referenced Optical Intensity Sensor Network Using POFBGs for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Alberto Tapetado Moraleda

    2014-12-01

    Full Text Available This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG and polymer FBGs (POFBG is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.

  3. The Application of Biomedical Engineering Techniques to the Diagnosis and Management of Tropical Diseases: A Review

    Directory of Open Access Journals (Sweden)

    Fatimah Ibrahim

    2015-03-01

    Full Text Available This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas. Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications.

  4. Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery.

    Science.gov (United States)

    Gonzalez, Graciela H; Tahsin, Tasnia; Goodale, Britton C; Greene, Anna C; Greene, Casey S

    2016-01-01

    Precision medicine will revolutionize the way we treat and prevent disease. A major barrier to the implementation of precision medicine that clinicians and translational scientists face is understanding the underlying mechanisms of disease. We are starting to address this challenge through automatic approaches for information extraction, representation and analysis. Recent advances in text and data mining have been applied to a broad spectrum of key biomedical questions in genomics, pharmacogenomics and other fields. We present an overview of the fundamental methods for text and data mining, as well as recent advances and emerging applications toward precision medicine. © The Author 2015. Published by Oxford University Press.

  5. Optical coherence tomography-current technology and applications in clinical and biomedical research

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Sander, Birgit; Mogensen, Mette

    2011-01-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. By mapping the local reflectivity, OCT visualizes the morphology of the sample. In addition, functional properties...... such as birefringence, motion, or the distributions of certain substances can be detected with high spatial resolution. Its main field of application is biomedical imaging and diagnostics. In ophthalmology, OCT is accepted as a clinical standard for diagnosing and monitoring the treatment of a number of retinal...

  6. 3D UWB Magnitude-Combined Tomographic Imaging for Biomedical Applications. Algorithm Validation

    Directory of Open Access Journals (Sweden)

    S. Capdevila

    2011-06-01

    Full Text Available Biomedical microwave imaging is a topic of continuous research for its potential in different areas especially in breast cancer detection. In this paper, 3D UWB Magnitude-Combined tomographic algorithm is assessed for this recurrent application, but also for a more challenging one such as brain stroke detection. With the UWB Magnitude-Combined concept, the algorithm can take advantage of both the efficiency of Fourier Diffraction Theorem-based tomographic formulation and the robustness and image quality improvement provided by a multi-frequency combination.

  7. The application of biomedical engineering techniques to the diagnosis and management of tropical diseases: a review.

    Science.gov (United States)

    Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Faisal, Tarig; Neuman, Michael

    2015-03-23

    This paper reviews a number of biomedical engineering approaches to help aid in the detection and treatment of tropical diseases such as dengue, malaria, cholera, schistosomiasis, lymphatic filariasis, ebola, leprosy, leishmaniasis, and American trypanosomiasis (Chagas). Many different forms of non-invasive approaches such as ultrasound, echocardiography and electrocardiography, bioelectrical impedance, optical detection, simplified and rapid serological tests such as lab-on-chip and micro-/nano-fluidic platforms and medical support systems such as artificial intelligence clinical support systems are discussed. The paper also reviewed the novel clinical diagnosis and management systems using artificial intelligence and bioelectrical impedance techniques for dengue clinical applications.

  8. The Applications of Gold Nanoparticle-Initialed Chemiluminescence in Biomedical Detection

    Science.gov (United States)

    Liu, Zezhong; Zhao, Furong; Gao, Shandian; Shao, Junjun; Chang, Huiyun

    2016-10-01

    Chemiluminescence technique as a novel detection method has gained much attention in recent years owning to the merits of high sensitivity, wider linear ranges, and low background signal. Similarly, nanotechnology especially for gold nanoparticles has emerged as detection tools due to their unique physical and chemical properties. Recently, it has become increasingly popular to couple gold nanoparticles with chemiluminescence technique in biological agents' detection. In this review, we describe the superiority of both chemiluminescence and gold nanoparticles and conclude the different applications of gold nanoparticle-initialed chemiluminescence in biomedical detection.

  9. A self-referenced optical intensity sensor network using POFBGs for biomedical applications.

    Science.gov (United States)

    Tapetado Moraleda, Alberto; Sánchez Montero, David; Webb, David J; Vázquez García, Carmen

    2014-12-12

    This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.

  10. Recent progress in technological improvement and biomedical applications of the clustered regularly interspaced short palindromic repeats/cas system

    Directory of Open Access Journals (Sweden)

    Yanlan Li

    2017-01-01

    Full Text Available The adaptive immune systems of clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated genes (Cas selectively destroy nonnative DNA and defend almost all archaea and about half of the bacteria against infections. In the past years, the system has been genetically engineered to a powerful genome editing tool for a wide variety of organisms. Recently, many progresses have been made in the CRISPR-Cas systems. These improvements include applications in editing multiple genes, correcting mutation genes with one base difference, targeting nondividing cells, reducing off-target, and editing RNAs. The biomedical applications of the technology are to edit not only cells but also embryos in clinical settings. In this review, we briefly introduce the improvements of CRISPR-Cas9 gene editing methods and summarize the recent advances of this technology.

  11. Microstructures, mechanical properties and cytotoxicity of low cost beta Ti-Mn alloys for biomedical applications.

    Science.gov (United States)

    Santos, Pedro Fernandes; Niinomi, Mitsuo; Cho, Ken; Nakai, Masaaki; Liu, Huihong; Ohtsu, Naofumi; Hirano, Mitsuhiro; Ikeda, Masahiko; Narushima, Takayuki

    2015-10-01

    The microstructures, mechanical properties and biocompatibility of low cost β-type Ti-(6-18)Mn alloys were investigated after solution treatment. Ti-9 Mn exhibits the best combination of tensile strength and elongation among the fabricated alloys, and its performance is comparable to or superior to those of Ti-6Al-4V ELI (Ti-64 ELI) in terms of every parameter evaluated. A hardness of 338 HV, a Young's modulus of 94 GPa, a 0.2% proof stress of 1023 MPa, an ultimate tensile strength of 1048 MPa and elongation of 19% were obtained for Ti-9 Mn. Furthermore, the cell viability and metallic ion release ratios are comparable to those of commercially pure titanium, making this alloy promising for biomedical applications. The Young's modulus is also lower than that of Ti-64 ELI (110 GPa), which can possibly reduce the stress shielding effect in implanted patients. This study evaluates mechanical and biological performance of low cost solution treated β-type Ti-(6, 9, 13 and 18 mass%)Mn alloys. It includes alloys containing a Mn content range higher than most previously published works (which is around or lower than 8 mass%). Furthermore, the effects of the ω phase and the β phase stability of the alloys over some mechanical properties and microstructures are discussed. Ion release behavior under simulated body fluids and cell viability are also evaluated. For the case of the Ti-9 Mn, a mechanical and biological performance that is comparable to or superior than that of the widely used Ti-6Al-4V ELI and commercially pure Ti was observed. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Silver-doped nanocomposite carbon coatings (Ag-DLC) for biomedical applications - Physiochemical and biological evaluation

    Science.gov (United States)

    Bociaga, Dorota; Komorowski, Piotr; Batory, Damian; Szymanski, Witold; Olejnik, Anna; Jastrzebski, Krzysztof; Jakubowski, Witold

    2015-11-01

    The formation of bacteria biofilm on the surface of medical products is a major clinical issue nowadays. Highly adaptive ability of bacteria to colonize the surface of biomaterials causes a lot of infections. This study evaluates samples of the AISI 316 LVM with special nanocomposite silver-doped (by means of ion implantation) diamond-like carbon (DLC) coating prepared by hybrid RF/MS PACVD (radio frequency/magnetron sputtering plasma assisted chemical vapour deposition) deposition technique in order to improve the physicochemical and biological properties of biomaterials and add new features such as antibacterial properties. The aim of the following work was to evaluate antimicrobial efficacy and biocompatibility of gradient a-C:H/Ti + Ag coatings in relation to the physiochemical properties of the surface and chemical composition of coating. For this purpose, samples were tested in live/dead test using two cell strains: human endothelial cells (Ea.hy926) and osteoblasts-like cells (Saos-2). For testing bactericidal activity of the coatings, an exponential growth phase of Escherichia coli strain DH5α was used as a model microorganism. Surface condition and its physicochemical properties were investigated using SEM, AFM and XPS. Examined coatings showed a uniformity of silver ions distribution in the amorphous DLC matrix, good biocompatibility in contact with mammalian cells and an increased level of bactericidal properties. What is more, considering very good mechanical parameters of these Ag including gradient a-C:H/Ti coatings, they constitute an excellent material for biomedical application in e.g. orthopedics or dentistry.

  13. Graphene Field Effect Transistors for Biomedical Applications: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Rhiannan Forsyth

    2017-07-01

    Full Text Available Since the discovery of the two-dimensional (2D carbon material, graphene, just over a decade ago, the development of graphene-based field effect transistors (G-FETs has become a widely researched area, particularly for use in point-of-care biomedical applications. G-FETs are particularly attractive as next generation bioelectronics due to their mass-scalability and low cost of the technology’s manufacture. Furthermore, G-FETs offer the potential to complete label-free, rapid, and highly sensitive analysis coupled with a high sample throughput. These properties, coupled with the potential for integration into portable instrumentation, contribute to G-FETs’ suitability for point-of-care diagnostics. This review focuses on elucidating the recent developments in the field of G-FET sensors that act on a bioaffinity basis, whereby a binding event between a bioreceptor and the target analyte is transduced into an electrical signal at the G-FET surface. Recognizing and quantifying these target analytes accurately and reliably is essential in diagnosing many diseases, therefore it is vital to design the G-FET with care. Taking into account some limitations of the sensor platform, such as Debye–Hükel screening and device surface area, is fundamental in developing improved bioelectronics for applications in the clinical setting. This review highlights some efforts undertaken in facing these limitations in order to bring G-FET development for biomedical applications forward.

  14. Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications.

    Science.gov (United States)

    Longo, Dario Livio; Stefania, Rachele; Aime, Silvio; Oraevsky, Alexander

    2017-08-07

    Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.

  15. Low density biodegradable shape memory polyurethane foams for embolic biomedical applications

    Science.gov (United States)

    Singhal, Pooja; Small, Ward; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J; Wilson, Thomas S

    2014-01-01

    Low density shape memory polymer foams hold significant interest in the biomaterials community for their potential use in minimally invasive embolic biomedical applications. The unique shape memory behavior of these foams allows them to be compressed to a miniaturized form, which can be delivered to an anatomical site via a transcatheter process, and thereafter actuated to embolize the desired area. Previous work in this field has described the use of a highly covalently crosslinked polymer structure for maintaining excellent mechanical and shape memory properties at the application-specific ultra low densities. This work is aimed at further expanding the utility of these biomaterials, as implantable low density shape memory polymer foams, by introducing controlled biodegradability. A highly covalently crosslinked network structure was maintained by use of low molecular weight, symmetrical and polyfunctional hydroxyl monomers such as Polycaprolactone triol (PCL-t, Mn 900 g), N,N,N0,N0-Tetrakis (hydroxypropyl) ethylenediamine (HPED), and Tris (2-hydroxyethyl) amine (TEA). Control over the degradation rate of the materials was achieved by changing the concentration of the degradable PCL-t monomer, and by varying the material hydrophobicity. These porous SMP materials exhibit a uniform cell morphology and excellent shape recovery, along with controllable actuation temperature and degradation rate. We believe that they form a new class of low density biodegradable SMP scaffolds that can potentially be used as “smart” non-permanent implants in multiple minimally invasive biomedical applications. PMID:24090987

  16. Virgin olive oil blended polyurethane micro/nanofibers ornamented with copper oxide nanocrystals for biomedical applications.

    Science.gov (United States)

    Amna, Touseef; Hassan, M Shamshi; Yang, Jieun; Khil, Myung-Seob; Song, Ki-Duk; Oh, Jae-Don; Hwang, Inho

    2014-01-01

    Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU), developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide-olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil-copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for biomedical applications in the near future.

  17. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    2016-01-01

    Full Text Available The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs- based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks.

  18. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lee, Jung-Hwan; Seo, Seog-Jin

    2016-01-01

    The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks.

  19. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Fuli Zhao

    2015-12-01

    Full Text Available Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed.

  20. Near-infrared (NIR) emitting conjugated polymers for biomedical applications (Presentation Recording)

    Science.gov (United States)

    Repenko, Tatjana; Kuehne, Alexander J. C.

    2015-10-01

    Fluorescent biomedical markers of today such as dye-infiltrated colloids, microgels and quantum dots suffer from fast bleaching, lack surface functionality (for targets or pharmaceutical agents) and potentially leach heavy metals in case of quantum dots (e.g. Cd). By contrast, conjugated polymer particles are non-cytotoxic, exhibit reduced bleaching, as the entire particle consists of fluorophore, they are hydrophobic and show high quantum yields. Consequently, conjugated polymer particles represent ideal materials for biological applications and imaging. However currently, conjugated polymer particles for biomedical imaging usually lack near-infrared (NIR) emission and are polydisperse. Fluorescent agents with emission in the NIR spectrum are interesting for biomedical applications due to their low photo-damage towards biological species and the ability of NIR radiation to penetrate deep into biological tissue.. I will present the development and synthesis of new conjugated polymers particles with fluorescence in the NIR spectral region for bio-imaging and clinical diagnosis. The particle synthesis proceeds in a one-step Pd or Ni-catalyzed dispersion polymerization of functional NIR emitters. The resulting monodisperse conjugated polymer particles are obtained as a dispersion in a non-hazardous solvent. Different sizes in the sub-micrometer range with a narrow size distribution can be produced. Furthermore biological recognition motifs can be easily attached to the conjugated polymers via thiol-yne click-chemistry providing specific tumor targeting without quenching of the fluorescence. References [1] Kuehne AJC, Gather MC, Sprakel J., Nature Commun. 2012, 3, 1088. [2] Repenko T, Fokong S, De Laporte L, Go D, Kiessling F, Lammers T, Kuehne AJC.,Chem Commun 2015, accepted.

  1. Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications

    International Nuclear Information System (INIS)

    Kenjereš, Saša

    2014-01-01

    We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called 'bad' cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is

  2. Study on the Nanomechanical and Nanotribological Behaviors of PEEK and CFRPEEK for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jian Song

    2018-02-01

    Full Text Available This study was to investigate the nanomechanical and nanotribological properties of polyether ether ketone (PEEK-based composites for biomedical applications and to gain a fundamental understanding of the effects of carbon fibers in carbon-fiber-reinforced PEEK (CFRPEEK on the mechanical properties and wear performance in a microscale. Nanoindentation tests with a Berkovich indenter and nanoscratch experiments with a diamond stylus were performed on PEEK and CFRPEEK samples. The nanowear features and mechanisms of the tested samples were analyzed using 3D white-light interfering profilometry and scanning electron microscopy (SEM. The obtained results indicated that the reinforced carbon fibers increased the nanohardness and elastic modulus and decreased the friction coefficient and wear rate of PEEK. Different to many existing studies where a constant load was used in a nanoscratch test and the normal load was a key factor influencing the scratch performances of the tested specimens, stick–slip phenomena were observed on both PEEK and CFRPEEK in the nanoscratch tests with load increasing progressively. In constant load conditions, it was found that the major nanowear mechanisms of PEEK are adhesion, abrasion, and plastic deformation, while the nanowear mechanisms of CFRPEEK are dominated by severe adhesive wear, abrasive wear and mild fatigue. CFRPEEK has demonstrated superior nanomechanical and nanotribological performances, and hence can be considered a potential candidate for biomedical applications.

  3. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications

    Science.gov (United States)

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R.

    2016-01-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0–87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI. PMID:27005428

  4. Review: the potential impact of surface crystalline states of titanium for biomedical applications.

    Science.gov (United States)

    Barthes, Julien; Ciftci, Sait; Ponzio, Florian; Knopf-Marques, Helena; Pelyhe, Liza; Gudima, Alexandru; Kientzl, Imre; Bognár, Eszter; Weszl, Miklós; Kzhyshkowska, Julia; Vrana, Nihal Engin

    2018-05-01

    In many biomedical applications, titanium forms an interface with tissues, which is crucial to ensure its long-term stability and safety. In order to exert control over this process, titanium implants have been treated with various methods that induce physicochemical changes at nano and microscales. In the past 20 years, most of the studies have been conducted to see the effect of topographical and physicochemical changes of titanium surface after surface treatments on cells behavior and bacteria adhesion. In this review, we will first briefly present some of these surface treatments either chemical or physical and we explain the biological responses to titanium with a specific focus on adverse immune reactions. More recently, a new trend has emerged in titanium surface science with a focus on the crystalline phase of titanium dioxide and the associated biological responses. In these recent studies, rutile and anatase are the major two polymorphs used for biomedical applications. In the second part of this review, we consider this emerging topic of the control of the crystalline phase of titanium and discuss its potential biological impacts. More in-depth analysis of treatment-related surface crystalline changes can significantly improve the control over titanium/host tissue interface and can result in considerable decreases in implant-related complications, which is currently a big burden on the healthcare system.

  5. Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses

    Directory of Open Access Journals (Sweden)

    Manuel Guillermo Rojas Cortés

    2008-01-01

    Full Text Available Biopolymers have been widely studied for use in pharmaceutical applications. They have been used for modifying drug release, orientating a drug towards its therapeutic target, penetrating physiological barriers (tissues and cells and protecting unstable therapeutic agents against physiological conditions which are present in a less invasive administration routes. The importance of biopolymers in designing new biomedical devices must thus be stressed, es-pecially when a pharmaceutical substance must be incorporated into a polymer matrix. A new generation of alterna-tives for human health has thus been generated by designing pharmaceutical therapeutic systems in line with the concept of “integrated custom-made product design”. This document reviews the trends concerning using biopoly-mers for designing products having pharmaceutical and biomedical applications. The paper also introduces the elements which should be mastered by engineers for obtaining material which can be used in the health field and tries to provide a reference point regarding the state of the art in this specific field of knowledge.

  6. Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications.

    Science.gov (United States)

    Bhardwaj, Nandana; Rajkhowa, Rangam; Wang, Xungai; Devi, Dipali

    2015-11-01

    Silk fibroin has been widely employed in various forms as biomaterials for biomedical applications due to its superb biocompatibility and tunable degradation and mechanical properties. Herein, silk fibroin microparticles of non-mulberry silkworm species (Antheraea assamensis, Antheraea mylitta and Philosamia ricini) were fabricated via a top-down approach using a combination of wet-milling and spray drying techniques. Microparticles of mulberry silkworm (Bombyx mori) were also utilized for comparative studies. The fabricated microparticles were physico-chemically characterized for size, stability, morphology, chemical composition and thermal properties. The silk fibroin microparticles of all species were porous (∼5μm in size) and showed nearly spherical morphology with rough surface as revealed from dynamic light scattering and microscopic studies. Non-mulberry silk microparticles maintained the typical silk-II structure with β-sheet secondary conformation with higher thermal stability. Additionally, non-mulberry silk fibroin microparticles supported enhanced cell adhesion, spreading and viability of mouse fibroblasts than mulberry silk fibroin microparticles (pcytotoxicity studies. Furthermore, in vitro drug release from the microparticles showed a significantly sustained release over 3 weeks. Taken together, this study demonstrates promising attributes of non-mulberry silk fibroin microparticles as a potential drug delivery vehicle/micro carrier for diverse biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications.

    Science.gov (United States)

    Ellis, Matthew A; Grandinetti, Giovanna; Fichter, Katye M; Fichter, Kathryn M

    2016-02-06

    Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd(2+) ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications.

  8. Toxicity, toxicokinetics and biodistribution of dextran stabilized Iron oxide Nanoparticles for biomedical applications.

    Science.gov (United States)

    Remya, N S; Syama, S; Sabareeswaran, A; Mohanan, P V

    2016-09-10

    Advancement in the field of nanoscience and technology has alarmingly raised the call for comprehending the potential health effects caused by deliberate or unintentional exposure to nanoparticles. Iron oxide magnetic nanoparticles have an increasing number of biomedical applications and hence a complete toxicological profile of the nanomaterial is therefore a mandatory requirement prior to its intended usage to ensure safety and to minimize potential health hazards upon its exposure. The present study elucidates the toxicity of in house synthesized Dextran stabilized iron oxide nanoparticles (DINP) in a regulatory perspective through various routes of exposure, its associated molecular, immune, genotoxic, carcinogenic effects and bio distribution profile. Synthesized ferrite nanomaterials were successfully coated with dextran (nanoparticles with dextran helps in improvising particle stability in biological environments. The nanoparticles do not seem to induce oxidative stress mediated toxicological effects, nor altered physiological process or behavior changes or visible pathological lesions. Furthermore no anticipated health hazards are likely to be associated with the use of DINP and could be concluded that the synthesized DINP is nontoxic/safe to be used for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Molecular Design of Bioinspired Nanostructures for Biomedical Applications: Synthesis, Self-Assembly and Functional Properties

    Science.gov (United States)

    Xu, Hesheng Victor; Zheng, Xin Ting; Mok, Beverly Yin Leng; Ibrahim, Salwa Ali; Yu, Yong; Tan, Yen Nee

    2016-08-01

    Biomolecules are the nanoscale building blocks of cells, which play multifaceted roles in the critical biological processes such as biomineralization in a living organism. In these processes, the biological molecules such as protein and nucleic acids use their exclusive biorecognition properties enabled from their unique chemical composition, shape and function to initiate a cascade of cellular events. The exceptional features of these biomolecules, coupled with the recent advancement in nanotechnology, have led to the emergence of a new research field that focuses on the molecular design of bioinspired nanostructures that inherit the extraordinary function of natural biomaterials. These “bioinspired” nanostructures could be formulated by biomimetic approaches through either self-assembling of biomolecules or acting as a biomolecular template/precursor to direct the synthesis of nanocomposite. In either situation, the resulting nanomaterials exhibit phenomenal biocompatibility, superb aqueous solubility and excellent colloidal stability, branding them exceptionally desirable for both in vitro and in vivo biomedical applications. In this review, we will present the recent developments in the preparation of “bioinspired” nanostructures through biomimetic self-assembly and biotemplating synthesis, as well as highlight their functional properties and potential applications in biomedical diagnostics and therapeutic delivery. Lastly, we will conclude this topic with some personal perspective on the challenges and future outlooks of the “bioinspired” nanostructures for nanomedicine.

  10. Layer-by-layer assembly for biomedical applications in the last decade

    International Nuclear Information System (INIS)

    Gentile, P; Carmagnola, I; Nardo, T; Chiono, V

    2015-01-01

    In the past two decades, the design and manufacture of nanostructured materials has been of tremendous interest to the scientific community for their application in the biomedical field. Among the available techniques, layer-by-layer (LBL) assembly has attracted considerable attention as a convenient method to fabricate functional coatings. Nowadays, more than 1000 scientific papers are published every year, tens of patents have been deposited and some commercial products based on LBL technology have become commercially available. LBL presents several advantages, such as (1): a precise control of the coating properties; (2) environmentally friendly, mild conditions and low-cost manufacturing; (3) versatility for coating all available surfaces; (4) obtainment of homogeneous film with controlled thickness; and (5) incorporation and controlled release of biomolecules/drugs. This paper critically reviews the scientific challenge of the last 10 years—functionalizing biomaterials by LBL to obtain appropriate properties for biomedical applications, in particular in tissue engineering (TE). The analysis of the state-of-the-art highlights the current techniques and the innovative materials for scaffold and medical device preparation that are opening the way for the preparation of LBL-functionalized substrates capable of modifying their surface properties for modulating cell interaction to improve substitution, repair or enhancement of tissue function. (topical review)

  11. Layer-by-layer assembly for biomedical applications in the last decade.

    Science.gov (United States)

    Gentile, P; Carmagnola, I; Nardo, T; Chiono, V

    2015-10-23

    In the past two decades, the design and manufacture of nanostructured materials has been of tremendous interest to the scientific community for their application in the biomedical field. Among the available techniques, layer-by-layer (LBL) assembly has attracted considerable attention as a convenient method to fabricate functional coatings. Nowadays, more than 1000 scientific papers are published every year, tens of patents have been deposited and some commercial products based on LBL technology have become commercially available. LBL presents several advantages, such as (1): a precise control of the coating properties; (2) environmentally friendly, mild conditions and low-cost manufacturing; (3) versatility for coating all available surfaces; (4) obtainment of homogeneous film with controlled thickness; and (5) incorporation and controlled release of biomolecules/drugs. This paper critically reviews the scientific challenge of the last 10 years--functionalizing biomaterials by LBL to obtain appropriate properties for biomedical applications, in particular in tissue engineering (TE). The analysis of the state-of-the-art highlights the current techniques and the innovative materials for scaffold and medical device preparation that are opening the way for the preparation of LBL-functionalized substrates capable of modifying their surface properties for modulating cell interaction to improve substitution, repair or enhancement of tissue function.

  12. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications

    Science.gov (United States)

    Shete, P. B.; Patil, R. M.; Tiwale, B. M.; Pawar, S. H.

    2015-03-01

    Fe3O4 magnetic nanoparticles (MNPs) have proved their tremendous potential to be used for various biomedical applications. Oleic acid (OA) is widely used in ferrite nanoparticle synthesis because it can form a dense protective monolayer, thereby producing highly uniform and monodispersed particles. Capping agents such as oleic acid are often used because they form a protective monolayer, which is strongly bonded to the surface of nanoparticles. This is necessary for making monodisperse and highly uniform MNPs. Coating of Fe3O4 MNPs with OA makes the particles dispersible only in organic solvents and consequently limits their use for biomedical applications. Hence, in this work, the OA coated MNPs were again functionalized with chitosan (CS), in order to impart hydrophilicity on their surface. All the morphological, magnetic, colloidal and cytotoxic characteristics of the resulting core-shells were studied thoroughly. Their heating induction ability was studied to predict their possible use in hyperthermia therapy of cancer. Specific absorption rate was found to be increased than that of bare MNPs.

  13. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.

    Science.gov (United States)

    Shi, Donglu; Sadat, M E; Dunn, Andrew W; Mast, David B

    2015-05-14

    Iron oxide exhibits fascinating physical properties especially in the nanometer range, not only from the standpoint of basic science, but also for a variety of engineering, particularly biomedical applications. For instance, Fe3O4 behaves as superparamagnetic as the particle size is reduced to a few nanometers in the single-domain region depending on the type of the material. The superparamagnetism is an important property for biomedical applications such as magnetic hyperthermia therapy of cancer. In this review article, we report on some of the most recent experimental and theoretical studies on magnetic heating mechanisms under an alternating (AC) magnetic field. The heating mechanisms are interpreted based on Néel and Brownian relaxations, and hysteresis loss. We also report on the recently discovered photoluminescence of Fe3O4 and explain the emission mechanisms in terms of the electronic band structures. Both optical and magnetic properties are correlated to the materials parameters of particle size, distribution, and physical confinement. By adjusting these parameters, both optical and magnetic properties are optimized. An important motivation to study iron oxide is due to its high potential in biomedical applications. Iron oxide nanoparticles can be used for MRI/optical multimodal imaging as well as the therapeutic mediator in cancer treatment. Both magnetic hyperthermia and photothermal effect has been utilized to kill cancer cells and inhibit tumor growth. Once the iron oxide nanoparticles are up taken by the tumor with sufficient concentration, greater localization provides enhanced effects over disseminated delivery while simultaneously requiring less therapeutic mass to elicit an equal response. Multi-modality provides highly beneficial co-localization. For magnetite (Fe3O4) nanoparticles the co-localization of diagnostics and therapeutics is achieved through magnetic based imaging and local hyperthermia generation through magnetic field or photon

  14. Hyperthermia in low aspect-ratio magnetic nanotubes for biomedical applications

    Science.gov (United States)

    Gutierrez-Guzman, D. F.; Lizardi, L. I.; Otálora, J. A.; Landeros, P.

    2017-03-01

    A simple model for the magnetization reversal process of low aspect-ratio ferromagnetic nanotubes (MNTs) is presented. Because of advantages over other geometries, these structures are interesting for biomedical applications, such as magnetic hyperthermia cancer therapy, where the heat released during magnetic reversal is used to destroy tumors. For example, the tubular geometry provides two independent functional surfaces that may be selectively manipulated and also gives a storage cavity. Owing to their large surface to weight ratio and low mass density, MNTs are not decanted by gravity. We calculated magnetic phase diagrams, energy barriers, nucleation fields, and the amount of dissipated heat and specific absorption rate for magnetite nanotubes. The geometrical parameters were varied, and simple formulae were used to optimize the tube response under alternating excitation, as required for magnetic hyperthermia applications.

  15. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    Science.gov (United States)

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biomedical applications of synthetic, biodegradable polymers for the development of anti-infective strategies.

    Science.gov (United States)

    Bertesteanu, Serban; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Printza, Atnanasia G; Marie-Paule, Thill; Grumezescu, Valentina; Mihaela, Vlad; Lazar, Veronica; Grigore, Raluca

    2014-01-01

    The emergence of antibiotic resistance in microbial strains is representing one of the major threats to public health worldwide, due to the decreased or total cancelling of the available antibiotics effectiveness, correlated with the slow development of novel antibiotics. Due to their excellent biodegradability and biocompatibility, the synthetic polymers could find a lot of biomedical applications, such as the development of biomaterials with optimized properties and of drug delivery systems. This review is focusing on the applications of synthetic, biodegradable polymers for the improvement of antiinfective therapeutic and prophylactic agents (i.e., antimicrobial and anti-inflammatory agents and vaccines) activity, as well as for the design of biomaterials with increased biocompatibility and resistance to microbial colonization.

  17. Advancement and applications of peptide phage display technology in biomedical science.

    Science.gov (United States)

    Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung

    2016-01-19

    Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

  18. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective

    Science.gov (United States)

    Angioletti-Uberti, Stefano

    2017-11-01

    Functionalised nanoparticles for biomedical applications represents an incredibly exciting and rapidly growing field of research. Considering the complexity of the nano-bio interface, an important question is to what extent can theory and simulations be used to study these systems in a realistic, meaningful way. In this review, we will argue for a positive answer to this question. Approaching the issue from a "Soft Matter" perspective, we will consider those properties of functionalised nanoparticles that can be captured within a classical description. We will thus not concentrate on optical and electronic properties, but rather on the way nanoparticles' interactions with the biological environment can be tuned by functionalising their surface and exploited in different contexts relevant to applications. In particular, we wish to provide a critical overview of theoretical and computational coarse-grained models, developed to describe these interactions and present to the readers some of the latest results in this fascinating area of research.

  19. Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Alshatwi, Ali A.; Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan

    2015-01-01

    Synthetic forms of silica have low biocompatibility, whereas biogenic forms have myriad beneficial effects in current toxicological applications. Among the various sources of biogenic silica, rice husk is considered a valuable agricultural biomass material and a cost-effective resource that can provide biogenic silica for biomedical applications. In the present study, highly pure biogenic silica nanoparticles (bSNPs) were successfully harvested from rice husks using acid digestion under pressurized conditions at 120 °C followed by a calcination process. The obtained bSNPs were subjected to phase identification analysis using X-ray diffraction, which revealed the amorphous nature of the bSNPs. The morphologies of the bSNPs were observed using transmission electron microscopy (TEM), which revealed spherical particles 10 to 30 nm in diameter. Furthermore, the biocompatibility of the bSNPs with human lung fibroblast cells (hLFCs) was investigated using a viability assay and assessing cellular morphological changes, intracellular ROS generation, mitochondrial transmembrane potential and oxidative stress-related gene expression. Our results revealed that the bSNPs did not have any significant incompatibility in these in vitro cell-based approaches. These preliminary findings suggest that bSNPs are biocompatible, could be the best alternative to synthetic forms of silica and are applicable to food additive and biomedical applications. - Highlights: • Simple, rapid and convenient process • Amorphous and spherical with 10–30 nm size SiO 2 nanoparticles were fabricated. • Biogenic silica nanoparticles showed biocompatibility. • bSNPs are an alternative to synthetic forms of silica

  20. Processing and surface modification of novel natural-origin architectures aimed for biomedical applications

    Science.gov (United States)

    Silva, Simone dos Santos

    In the last decades, tissue engineering has emerged as a potential therapeutical tool aimed at developing substitutes that are able to restore proper function of the damaged organs/tissues. Nature-inspired routes involving natural origin polymer-based systems represent an attractive alternative to produce novel materials by mimicking the tissue environment required for tissue regeneration. Moreover, further modifications of these systems allow the adjustment of their properties in accordance with the requirements for successful biomedical applications. The main goal of the present thesis is to develop and modify natural origin polymer-based systems using simple methodologies such as sol-gel, surface modification by means of plasma treatment and blending of chitosan with proteins (soy protein isolate and silk fibroin). A sol-gel method was used to improve the bulk properties of chitosan by the incorporation of an inorganic component at the sub-nanometric level. Chitosan/siloxane hybrid materials were synthesised, where essentially urea bridges covalently bond the chitosan to the polysiloxane network. These bifunctional materials exhibit interesting photoluminescence features and a bioactive behaviour. In most situations in the biomedical field, the surface of a biomaterial is in direct contact with living tissues. Therefore, the surface characteristics play a fundamental role on the implant biocompatibility. In this thesis, nitrogen and argon plasma treatment was applied on chitosan membranes in order to improve their surface properties. The applied modifications promoted differences on surface chemistry, wettability and roughness, which reflected in a significant improvement of fibroblast adhesion and proliferation onto chitosan membranes. Besides the surface modification, blending of chitosan with proteins such as soy protein isolate and silk fibroin was also used to modify the bulk properties of chitosan. In situ cross-linking with glutaraldehyde solutions was

  1. Current Developments on Optical Feedback Interferometry as an All-Optical Sensor for Biomedical Applications

    Science.gov (United States)

    Perchoux, Julien; Quotb, Adam; Atashkhooei, Reza; Azcona, Francisco J.; Ramírez-Miquet, Evelio E.; Bernal, Olivier; Jha, Ajit; Luna-Arriaga, Antonio; Yanez, Carlos; Caum, Jesus; Bosch, Thierry; Royo, Santiago

    2016-01-01

    Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications. PMID:27187406

  2. Photosensitive Layer-by-Layer Assemblies Containing Azobenzene Groups: Synthesis and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2017-10-01

    Full Text Available This review provides an overview of the syntheses of photosensitive layer-by-layer (LbL films and microcapsules modified with azobenzene derivatives and their biomedical applications. Photosensitive LbL films and microcapsules can be prepared by alternate deposition of azobenzene-bearing polymers and counter polymers on the surface of flat substrates and microparticles, respectively. Azobenzene residues in the films and microcapsules exhibit trans-to-cis photoisomerization under UV light, which causes changes in the physical or chemical properties of the LbL assemblies. Therefore, azobenzene-functionalized LbL films and microcapsules have been used for the construction of photosensitive biomedical devices. For instance, cell adhesion on the surface of a solid can be controlled by UV light irradiation by coating the surface with azobenzene-containing LbL films. In another example, the ion permeability of porous materials coated with LbL films can be regulated by UV light irradiation. Furthermore, azobenzene-containing LbL films and microcapsules have been used as carriers for drug delivery systems sensitive to light. UV light irradiation triggers permeability changes in the LbL films and/or decomposition of the microcapsules, which results in the release of encapsulated drugs and proteins.

  3. A Study of Hybrid Composite Hydroxyapatite (HA-Geopolymers as a Material for Biomedical Application

    Directory of Open Access Journals (Sweden)

    Saleha

    2017-01-01

    Full Text Available The main purpose of this research is to study the physical properties and microstructure characters of hybrid composites HA-geopolymers as a material for biomedical application. Hybrid composite HA–geopolymers were produced through alkaline activation method of metakaolin as a matrix and HA as the filler. HA was synthesized from eggshell particles by using a precipitation method. The addition of HA in metakaolin paste was varied from 0.5%, 1.0%, 1.5%, and 2.0% relative the weight of metakaolin. FTIR was used to examine the absorption bands the composites. X-ray diffraction (XRD was used to study the crystal structure of the starting and the resulting materials. Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS was used to investigate the surface morphology of the composites. The thermal properties of the samples was examined by means of Differential Scanning Calorimetry (DSC. Capacitance measurement was conducted to investigate the bioactive properties of HA. The study results suggest that hybrid composite HA-geopolymers has a potential to be applied as a biomedical such as biosensor material.

  4. Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications.

    Science.gov (United States)

    Lin, Chin-Feng; Zhu, Jin-De

    2012-03-01

    Hilbert-Huang transformation, wavelet transformation, and Fourier transformation are the principal time-frequency analysis methods. These transformations can be used to discuss the frequency characteristics of linear and stationary signals, the time-frequency features of linear and non-stationary signals, the time-frequency features of non-linear and non-stationary signals, respectively. The Hilbert-Huang transformation is a combination of empirical mode decomposition and Hilbert spectral analysis. The empirical mode decomposition uses the characteristics of signals to adaptively decompose them to several intrinsic mode functions. Hilbert transforms are then used to transform the intrinsic mode functions into instantaneous frequencies, to obtain the signal's time-frequency-energy distributions and features. Hilbert-Huang transformation-based time-frequency analysis can be applied to natural physical signals such as earthquake waves, winds, ocean acoustic signals, mechanical diagnosis signals, and biomedical signals. In previous studies, we examined Hilbert-Huang transformation-based time-frequency analysis of the electroencephalogram FPI signals of clinical alcoholics, and 'sharp I' wave-based Hilbert-Huang transformation time-frequency features. In this paper, we discuss the application of Hilbert-Huang transformation-based time-frequency analysis to biomedical signals, such as electroencephalogram, electrocardiogram signals, electrogastrogram recordings, and speech signals.

  5. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    Science.gov (United States)

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chemical and Colloidal Stability of Carboxylated Core-Shell Magnetite Nanoparticles Designed for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    László Tiszlavicz

    2013-07-01

    Full Text Available Despite the large efforts to prepare super paramagnetic iron oxide nanoparticles (MNPs for biomedical applications, the number of FDA or EMA approved formulations is few. It is not known commonly that the approved formulations in many instances have already been withdrawn or discontinued by the producers; at present, hardly any approved formulations are produced and marketed. Literature survey reveals that there is a lack for a commonly accepted physicochemical practice in designing and qualifying formulations before they enter in vitro and in vivo biological testing. Such a standard procedure would exclude inadequate formulations from clinical trials thus improving their outcome. Here we present a straightforward route to assess eligibility of carboxylated MNPs for biomedical tests applied for a series of our core-shell products, i.e., citric acid, gallic acid, poly(acrylic acid and poly(acrylic acid-co-maleic acid coated MNPs. The discussion is based on physicochemical studies (carboxylate adsorption/desorption, FTIR-ATR, iron dissolution, zeta potential, particle size, coagulation kinetics and magnetization measurements and involves in vitro and in vivo tests. Our procedure can serve as an example to construct adequate physico-chemical selection strategies for preparation of other types of core-shell nanoparticles as well.

  7. A novel application of the S-transform in removing powerline interference from biomedical signals

    International Nuclear Information System (INIS)

    Huang, Chien-Chun; Young, Ming-Shing; Liang, Sheng-Fu; Shaw, Fu-Zen

    2009-01-01

    Powerline interference always disturbs recordings of biomedical signals. Numerous methods have been developed to reduce powerline interference. However, most of these techniques not only reduce the interference but also attenuate the 60 Hz power of the biomedical signals themselves. In the present study, we applied the S-transform, which provides an absolute phase of each frequency in a multi-resolution time–frequency analysis, to reduce 60 Hz interference. According to results from an electrocardiogram (ECG) to which a simulated 60 Hz noise was added, the S-transform de-noising process restored a power spectrum identical to that of the original ECG coincident with a significant reduction in the 60 Hz interference. Moreover, the S-transform de-noised the signal in an intensity-independent manner when reducing the 60 Hz interference. In both a real ECG signal from the MIT database and natural brain activity contaminated with 60 Hz interference, the S-transform also displayed superior merit to a notch filter in the aspect of reducing noise and preserving the signal. Based on these data, a novel application of the S-transform for removing powerline interference is established

  8. Electrospun Polycaprolactone/lignin-based Nanocomposite as a Novel Tissue Scaffold for Biomedical Applications.

    Science.gov (United States)

    Salami, Mohammad Ali; Kaveian, Faranak; Rafienia, Mohammad; Saber-Samandari, Saeed; Khandan, Amirsalar; Naeimi, Mitra

    2017-01-01

    Biopolymer scaffolds have received great interest in academic and industrial environment because of their supreme characteristics like biological, mechanical, chemical, and cost saving in the biomedical science. There are various attempts for incorporation of biopolymers with cheap natural micro- or nanoparticles like lignin (Lig), alginate, and gums to prepare new materials with enhanced properties. In this work, the electrospinning (ELS) technique as a promising cost-effective method for producing polymeric scaffold fibers was used, which mimics extracellular matrix structure for soft tissue engineering applications. Nanocomposites of Lig and polycaprolactone (PCL) scaffold produced with ELS technique. Nanocomposite containings (0, 5, 10, and 15 wt.%) of Lig were prepared with addition of Lig powder into the PCL solution while stirring at the room temperature. The bioactivity, swelling properties, morphological and mechanical tests were conducted for all the samples to investigate the nanocomposite scaffold features. The results showed that scaffold with 10 wt.% Lig have appropriate porosity, biodegradation, minimum fiber diameter, optimum pore size as well as enhanced tensile strength, and young modulus compared with pure PCL. Degradation test performed through immersion of samples in the phosphate-buffer saline showed that degradation of PCL nanocomposites could accelerate up to 10% due to the addition of Lig. Electrospun PCL-Lig scaffold enhanced the biological response of the cells with the mechanical signals. The prepared nanocomposite scaffold can choose for potential candidate in the biomedical science.

  9. The preparation of metal–organic frameworks and their biomedical application

    Directory of Open Access Journals (Sweden)

    Liu R

    2016-03-01

    Full Text Available Rong Liu,1,2 Tian Yu,1 Zheng Shi,1 Zhiyong Wang3 1School of Medicine and Nursing, Chengdu University, Chengdu, 2Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 3Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China Abstract: The development of a safe and targetable drug carrier is a major challenge. An efficient delivery system should protect cargo from degradation and cleanup, and control of drug release in the target site. Metal–organic frameworks (MOFs, consisting of metal ions and a variety of organic ligands, have been applied for drug delivery due to their distinct structure. In this review, we summarized the synthesis strategies of MOFs, especially emphasizing the methods of pore creation in frameworks, which were based on recent literatures. Subsequently, the controlled size, biocompatibility, drug releasing performances, and imaging of MOFs were discussed, which would pave the road for the application in drug-delivery systems. Keywords: metal-organic frameworks, pore creation, the controlled size, biocompatibility, drug releasing performances, imaging

  10. [Fulfilment of the criteria about scientific authorship in Spanish biomedical and health science journals included in Journal Citation Reports].

    Science.gov (United States)

    Ruiz-Pérez, Rafael; Marcos-Cartagena, Diego; Delgado López-Cózar, Emilio

    2010-01-01

    Scientific journals have been recognized to have the authority to register both the ownership of ideas and the validity of published knowledge. This paper explores the extent to which the editorial policies of journals contribute to ensure the accuracy of scientific authorship. Cross-sectional study of scientific authorship criteria used by 23 Spanish medical journals included in Journal Citation Reports 2008 and evaluation of their fulfilment to the uniformity requirements URM of ICMJE. Criteria have been structured in observational items and six levels of fulfilment have been established in order to quantify its adjustment to URM. 52% of journals do not make a reference to URM, 39% only provides some information on the conditions to be respected by the signatories of an article and only 26% (6 magazines) comply with URM. 61% of the journals declare information regarding the responsibility contracted by authors. 35% of the journals give some type guidelines as to the number of authors but no one mentions signature order. As for acknowledgments and corresponding address instructions, 61% declare it but 30,4% only properly formulate their aims. Only 48% of the journals include one or some instructions related with scientific authorship. Results coincide with those of other studies. Despite the existence of an international standard such as URM, authorship criteria provided by journals are scarce and uneven. The assertion that URM is universally well-known by medical journals is questioned.

  11. Evaluation of Ni-free Zr–Cu–Fe–Al bulk metallic glass for biomedical implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Zhang, Wei [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); Kai, Wu [Institute of Materials Engineering, National Taiwan Ocean University, Keelung, Taiwan (China); Liaw, Peter K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN (United States); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2014-02-15

    Highlights: ► A Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} bulk metallic glass (BMG) with 50 GPa elastic modulus was used. ► This Ni-free Zr-based BMG had lower metal ion release rate than the commercial Ti. ► This Ni-free Zr-based BMG had better proteins adsorption than the commercial Ti. ► This Ni-free Zr-based BMG has a high potential for biomedical implant applications. -- Abstract: This study was conducted to investigate the surface characteristics, including the chemical composition, metal ion release, protein adsorption, and cell adhesion, of a Ni-free Zr-based (Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10}) bulk metallic glass (BMG) with low elastic modulus for biomedical implant applications. X-ray photoelectron spectroscopy was used to identify the surface chemical composition and the protein (albumin and fibronectin) adsorption of the specimen. The metal ions released from the specimen in simulated blood plasma and artificial saliva solutions were measured using an inductively coupled plasma-mass spectrometer. The cell adhesion, in terms of the morphology, focal adhesion complex, and skeletal arrangement, of human bone marrow mesenchymal stem cells was evaluated using scanning electron microscope observations and immunofluorescent staining. For comparison purposes, the above-mentioned tests were also carried out on the widely used biomedical metal, Ti. The results showed that the main component on the outermost surface of the amorphous Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG was ZrO{sub 2} with small amounts of Cu, Al, and Fe oxides. The released metal ions from Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG were well below the critical concentrations that cause negative biological effects. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG had a greater adsorption capacity for albumin and fibronectin than that of commercial biomedical Ti. The Zr{sub 62.5}Cu{sub 22.5}Fe{sub 5}Al{sub 10} BMG surface showed an attached cell number similar

  12. Virgin olive oil blended polyurethane micro/nanofibers ornamented with copper oxide nanocrystals for biomedical applications

    Directory of Open Access Journals (Sweden)

    Amna T

    2014-02-01

    Full Text Available Touseef Amna,1 M Shamshi Hassan,2 Jieun Yang,1 Myung-Seob Khil,2 Ki-Duk Song,3 Jae-Don Oh,3 Inho Hwang1 1Department of Animal Sciences and Biotechnology, 2Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju, South Korea; 3Genomic Informatics Center, Hankyong National University, Anseong, South Korea Abstract: Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU, developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM, energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide–olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil–copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for

  13. Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data

    Directory of Open Access Journals (Sweden)

    Viswanath Satish

    2012-02-01

    Full Text Available Abstract Background Dimensionality reduction (DR enables the construction of a lower dimensional space (embedding from a higher dimensional feature space while preserving object-class discriminability. However several popular DR approaches suffer from sensitivity to choice of parameters and/or presence of noise in the data. In this paper, we present a novel DR technique known as consensus embedding that aims to overcome these problems by generating and combining multiple low-dimensional embeddings, hence exploiting the variance among them in a manner similar to ensemble classifier schemes such as Bagging. We demonstrate theoretical properties of consensus embedding which show that it will result in a single stable embedding solution that preserves information more accurately as compared to any individual embedding (generated via DR schemes such as Principal Component Analysis, Graph Embedding, or Locally Linear Embedding. Intelligent sub-sampling (via mean-shift and code parallelization are utilized to provide for an efficient implementation of the scheme. Results Applications of consensus embedding are shown in the context of classification and clustering as applied to: (1 image partitioning of white matter and gray matter on 10 different synthetic brain MRI images corrupted with 18 different combinations of noise and bias field inhomogeneity, (2 classification of 4 high-dimensional gene-expression datasets, (3 cancer detection (at a pixel-level on 16 image slices obtained from 2 different high-resolution prostate MRI datasets. In over 200 different experiments concerning classification and segmentation of biomedical data, consensus embedding was found to consistently outperform both linear and non-linear DR methods within all applications considered. Conclusions We have presented a novel framework termed consensus embedding which leverages ensemble classification theory within dimensionality reduction, allowing for application to a wide range

  14. Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls

    Directory of Open Access Journals (Sweden)

    Sun L

    2016-12-01

    Full Text Available Linlin Sun,1,2 Chunli Zheng,3 Thomas J Webster1,2,4 1Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Pharmaceutical Research Institute, China Pharmaceutical University, Nanjing, People’s Republic of China; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Over the last several decades, a great number of advances have been made in the area of self-assembled supramolecules for regenerative medicine. Such advances have involved the design, preparation, and characterization of brand new self-assembled peptide nanomaterials for a variety of applications. Among all biomolecules considered for self-assembly applications, peptides have attracted a great deal of attention as building blocks for bottom-up fabrication, due to their versatility, ease of manufacturing, low costs, tunable structures, and versatile properties. Herein, some of the more exciting new designs of self-assembled peptides and their associated unique features are reviewed and several promising applications of how self-assembled peptides are advancing drug delivery, tissue engineering, antibacterial therapy, and biosensor device applications are highlighted. Keywords: self-assembly, peptides, biomedical applications, drug delivery, antibacterial therapy, biosensor devices

  15. Synthesis and Characterization of Smart Block Copolymers for Biomineralization and Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanapathipillai, Mathumai [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    moieties depends on the pH of the solution. Polymers with polyzwitterions, anions and cations have been shown to exhibit pH responsive self assembly. Other stimuli responsive polymers include glucose sensitive polymers, calcium ion-sensitive polymers and so on. Progress in living radical polymerization (LRP) methods [10] has made it possible for the facile synthesis of these block copolymer systems with controlled molecular weights and well defined architectures. The overall theme of this work is to develop novel smart block copolymers for biomineralization and biomedical applications. Synthesis and characterization of self-assembling thermoreversible ionic block copolymers as templates in biomimetic nanocomposite synthesis using a bottom-up approach is a novel contribution in this respect. Further, we have extended these families of copolymers to include block copolymer-peptide conjugates to enhance biological specificity. Future directions on this work will focus on enhancing the polymer templating properties for biomineralization by expanding the family of block copolymers with organic polypeptides and biological polypeptide scaffolds as well as a detailed understanding of the polymer-inorganic nanocomposites at the molecular level using small angle scattering analysis. Glucose responsive polymer hydrogels for drug delivery, polymer-ligand conjugates for non-viral therapy and thermoresponsive injectable photocrosslinkable hydrogels for posttraumatic arthritis cartilage healing are other applications of these novel copolymers synthesized in our work.

  16. The physics of semiconductors an introduction including nanophysics and applications

    CERN Document Server

    Grundmann, Marius

    2016-01-01

    The 3rd edition of this successful textbook contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, carbon-based nanostructures and transparent conductive oxides. The text derives explicit formulas for many results to support better under...

  17. The Physics of Semiconductors An Introduction Including Nanophysics and Applications

    CERN Document Server

    Grundmann, Marius

    2010-01-01

    The Physics of Semiconductors contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors. The text derives explicit formulas for many results to support better understanding of the topics. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from a highly regarded two...

  18. Microstructure and thermal diffusivity in hydroxyapatite, dense bone and metals for biomedical applications

    International Nuclear Information System (INIS)

    Mendez, M.; Diaz G, J.A.I.; Calderon, A.

    2007-01-01

    Full text: We report X-Ray diffraction and SEM analysis in hydroxyapatite obtained in powder form, as well as a SEM analysis in titanium, 316l stainless steel and dense bone in longitudinal and transversal cutting. Moreover, we realized a thermal diffusivity measurement in these materials in order to obtain the thermal compatibility between them. We use the photoacoustic technique in heat transmission configuration in order to obtain the thermal diffusivity values in the samples. Our results show a good thermal compatibility (74%) between hydroxyapatite and bone. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications. (Author)

  19. Hydrogels from Biopolymer Hybrid for Biomedical, Food, and Functional Food Applications

    Directory of Open Access Journals (Sweden)

    Robert C. Spiro

    2012-04-01

    Full Text Available Hybrid hydrogels from biopolymers have been applied for various indications across a wide range of biomedical, pharmaceutical, and functional food industries. In particular, hybrid hydrogels synthesized from two biopolymers have attracted increasing attention. The inclusion of a second biopolymer strengthens the stability of resultant hydrogels and enriches its functionalities by bringing in new functional groups or optimizing the micro-environmental conditions for certain biological and biochemical processes. This article presents approaches that have been used by our groups to synthesize biopolymer hybrid hydrogels for effective uses for immunotherapy, tissue regeneration, food and functional food applications. The research has achieved some challenging results, such as stabilizing physical structure, increasing mucoadhesiveness, and the creation of an artificial extracellular matrix to aid in guiding tissue differentiation.

  20. Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Paula S. [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil)], E-mail: pferreira@lnls.br; Martins, Tatiana M. [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil); Instituto de Fisica Gleb Wataghin (IFGW), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165, CEP 13083-970, Campinas-SP (Brazil); D' Souza-Li, Lilia [Laboratorio de Endocrinologia Pediatrica da Faculdade de Ciencias Medicas (FCM), UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Li, Li M. [Departamento de Neurologia da FCM, UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Metze, Konradin; Adam, Randall L. [Grupo interdisciplinar ' Patologia Analitica Celular' , Departamento de Anatomia Patologica da FCM, UNICAMP, Caixa Postal 6111, CEP 13083-970, Campinas-SP (Brazil); Knobel, Marcelo [Instituto de Fisica Gleb Wataghin (IFGW), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6165, CEP 13083-970, Campinas-SP (Brazil); Zanchet, Daniela [Laboratorio Nacional de Luz Sincrotron (LNLS), Caixa Postal 6192, CEP 13083-970, Campinas-SP (Brazil)

    2008-05-01

    The present work reports the synthesis, characterization and properties of magnetic iron oxide nanoparticles for biomedical applications, correlating the nanoscale tunabilities in terms of size, structure, and magnetism. Magnetic nanoparticles in different conditions were prepared through thermal decomposition of Fe(acac){sub 3} in the presence of 1,2 hexadecanodiol (reducing agent) and oleic acid and oleylamine (ligands) in a hot organic solvent. The 2,3-dimercaptosuccinic acid (DMSA) was exchanged onto the nanocrystal surface making the particles stable in water. Nanoparticles were characterized by X-ray diffraction (XRD) measurements, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Preliminary tests of incorporation of these nanoparticles in cells and their magnetic resonance image (MRI) were also carried out. The magnetization characterizations were made by isothermal magnetic measurements.