WorldWideScience

Sample records for biomechanical multibody model

  1. Biomechanical Analysis and Evaluation Technology Using Human Multi-Body Dynamic Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Hyuk; Shin, June Ho; Khurelbaatar, Tsolmonbaatar [Kyung Hee University, Yongin (Korea, Republic of)

    2011-10-15

    This paper presents the biomechanical analysis and evaluation technology of musculoskeletal system by multi-body human dynamic model and 3-D motion capture data. First, medical image based geometric model and material properties of tissue were used to develop the human dynamic model and 3-D motion capture data based motion analysis techniques were develop to quantify the in-vivo joint kinematics, joint moment, joint force, and muscle force. Walking and push-up motion was investigated using the developed model. The present model and technologies would be useful to apply the biomechanical analysis and evaluation of human activities.

  2. Masticatory biomechanics in the rabbit: a multi-body dynamics analysis.

    Science.gov (United States)

    Watson, Peter J; Gröning, Flora; Curtis, Neil; Fitton, Laura C; Herrel, Anthony; McCormack, Steven W; Fagan, Michael J

    2014-10-06

    Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbit skull. A model has been constructed through the combination of manual dissection and three-dimensional imaging techniques (magnetic resonance imaging and micro-computed tomography). Individual muscles are represented with multiple layers, thus more accurately modelling muscle fibres with complex lines of action. Model validity was sought through comparing experimentally measured maximum incisor bite forces with those predicted by the model. Simulations of molar biting highlighted the ability of the masticatory system to alter recruitment of two muscle groups, in order to generate shearing or crushing movements. Molar shearing is capable of processing a food bolus in all three orthogonal directions, whereas molar crushing and incisor biting are predominately directed vertically. Simulations also show that the masticatory system is adapted to process foods through several cycles with low muscle activations, presumably in order to prevent rapidly fatiguing fast fibres during repeated chewing cycles. Our study demonstrates the usefulness of a validated multi-body dynamics model for investigating feeding biomechanics in the rabbit, and shows the potential for complementing and eventually reducing in vivo experiments.

  3. Modelamento Multicorpo do Sistema Musculoesquelético/Multibody modeling of the Musculoskeletal System

    Directory of Open Access Journals (Sweden)

    José Elias Tomazini

    2012-12-01

    Full Text Available Vários sistemas podem ser tratados com formalismos multicorpos: mecanismos de máquinas em geral, robôs industriais e manipuladores, estruturas espaciais, motores e, ainda, sistemas biomecânicos. A locomoção ou marcha humana e animal podem ser estudadas através de formalismos multicorpos.Nos últimos anos, diversos trabalhos relacionados à biomecânica, e utilizando formalismos multicorpos, têm sido apresentados. Muitos estudos in vitro e in vivo têm sido realizados, objetivando descrever o potencial de sobrecarga nas articulações do corpo humano e de modelos animais. O objetivo desta revisão foi apresentar estudos envolvendo o modelamento matemático aplicado à bioengenharia, biomecânica e engenharia biomédica. Conclui-se que o modelamento matemático é uma ferramenta muito útil, barata e não invasiva que vem contribuir nos estudos envolvendo o sistema multicorpo mecânico e complexo, que é o corpo humano. Several systems can be treated with multibody formalisms: mechanisms of general machinery, industrial robots and manipulators, space structures, engines, and also biomechanical systems. The locomotion or human gait can be studied using multibody formalisms. Several studies related to biomechanics, and using multibody formalisms, have been presented in recent years. Many studies in vitro and in vivo have been carried out, aiming to describe the potential overload in the joints of the human body and animal models. The aim of this review was to present studies involving mathematical modeling applied to bioengineering, biomechanics and biomedical engineering. We have concluded that mathematical modeling is a useful, inexpensive and noninvasive tool which comes to contribute in studies involving the mechanical and complex multibody system which is the human body.

  4. ECCOMAS Thematic Conference on Multibody Dynamics

    CERN Document Server

    Multibody Dynamics : Computational Methods and Applications

    2016-01-01

    This book includes selected papers from the ECCOMAS Thematic Conference on Multibody Dynamics, that took place in Barcelona, Spain, from June 29 to July 2, 2015. By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical systems,and nanotechnologies.

  5. Conference on Multibody Dynamics

    CERN Document Server

    Multibody Dynamics : Computational Methods and Applications

    2014-01-01

    By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical applications and nano-technologies. The chapters of this volume are based on the revised and extended versions of the selected scientific papers from amongst 255 original contributions that have been accepted to be presented within the program of the distinguished international ECCOMAS conference. It reflects state-of-the-art in the advances of multibody dynamics, providing excellent insight in the recen...

  6. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.

    Science.gov (United States)

    El Habachi, Aimad; Moissenet, Florent; Duprey, Sonia; Cheze, Laurence; Dumas, Raphaël

    2015-07-01

    Sensitivity analysis is a typical part of biomechanical models evaluation. For lower limb multi-body models, sensitivity analyses have been mainly performed on musculoskeletal parameters, more rarely on the parameters of the joint models. This study deals with a global sensitivity analysis achieved on a lower limb multi-body model that introduces anatomical constraints at the ankle, tibiofemoral, and patellofemoral joints. The aim of the study was to take into account the uncertainty of parameters (e.g. 2.5 cm on the positions of the skin markers embedded in the segments, 5° on the orientation of hinge axis, 2.5 mm on the origin and insertion of ligaments) using statistical distributions and propagate it through a multi-body optimisation method used for the computation of joint kinematics from skin markers during gait. This will allow us to identify the most influential parameters on the minimum of the objective function of the multi-body optimisation (i.e. the sum of the squared distances between measured and model-determined skin marker positions) and on the joint angles and displacements. To quantify this influence, a Fourier-based algorithm of global sensitivity analysis coupled with a Latin hypercube sampling is used. This sensitivity analysis shows that some parameters of the motor constraints, that is to say the distances between measured and model-determined skin marker positions, and the kinematic constraints are highly influencing the joint kinematics obtained from the lower limb multi-body model, for example, positions of the skin markers embedded in the shank and pelvis, parameters of the patellofemoral hinge axis, and parameters of the ankle and tibiofemoral ligaments. The resulting standard deviations on the joint angles and displacements reach 36° and 12 mm. Therefore, personalisation, customisation or identification of these most sensitive parameters of the lower limb multi-body models may be considered as essential.

  7. Flexible Multibody Systems Models Using Composite Materials Components

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambr'osio, Jorge A. C.; Leal, Rog'erio Pereira

    2004-01-01

    The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of composite materials, which may be laminated and anisotropic. The deformation of any structural member must be elastic and linear, when described in a coordinate frame fixed to one or more material points of its domain, regardless of the complexity of its geometry. To achieve the proposed flexible multibody formulation, a finite element model for each flexible body is used. For the beam composite material elements, the sections properties are found using an asymptotic procedure that involves a two-dimensional finite element analysis of their cross-section. The equations of motion of the flexible multibody system are solved using an augmented Lagrangian formulation and the accelerations and velocities are integrated in time using a multi-step multi-order integration algorithm based on the Gear method

  8. Evolution of the DeNOC-based dynamic modelling for multibody systems

    Directory of Open Access Journals (Sweden)

    S. K. Saha

    2013-01-01

    Full Text Available Dynamic modelling of a multibody system plays very essential role in its analyses. As a result, several methods for dynamic modelling have evolved over the years that allow one to analyse multibody systems in a very efficient manner. One such method of dynamic modelling is based on the concept of the Decoupled Natural Orthogonal Complement (DeNOC matrices. The DeNOC-based methodology for dynamics modelling, since its introduction in 1995, has been applied to a variety of multibody systems such as serial, parallel, general closed-loop, flexible, legged, cam-follower, and space robots. The methodology has also proven useful for modelling of proteins and hyper-degree-of-freedom systems like ropes, chains, etc. This paper captures the evolution of the DeNOC-based dynamic modelling applied to different type of systems, and its benefits over other existing methodologies. It is shown that the DeNOC-based modelling provides deeper understanding of the dynamics of a multibody system. The power of the DeNOC-based modelling has been illustrated using several numerical examples.

  9. Multibody system dynamics, robotics and control

    CERN Document Server

    Gerstmayr, Johannes

    2013-01-01

    The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.

  10. Modeling Multibody Systems with Uncertainties. Part I: Theoretical and Computational Aspects

    International Nuclear Information System (INIS)

    Sandu, Adrian; Sandu, Corina; Ahmadian, Mehdi

    2006-01-01

    This study explores the use of generalized polynomial chaos theory for modeling complex nonlinear multibody dynamic systems in the presence of parametric and external uncertainty. The polynomial chaos framework has been chosen because it offers an efficient computational approach for the large, nonlinear multibody models of engineering systems of interest, where the number of uncertain parameters is relatively small, while the magnitude of uncertainties can be very large (e.g., vehicle-soil interaction). The proposed methodology allows the quantification of uncertainty distributions in both time and frequency domains, and enables the simulations of multibody systems to produce results with 'error bars'. The first part of this study presents the theoretical and computational aspects of the polynomial chaos methodology. Both unconstrained and constrained formulations of multibody dynamics are considered. Direct stochastic collocation is proposed as less expensive alternative to the traditional Galerkin approach. It is established that stochastic collocation is equivalent to a stochastic response surface approach. We show that multi-dimensional basis functions are constructed as tensor products of one-dimensional basis functions and discuss the treatment of polynomial and trigonometric nonlinearities. Parametric uncertainties are modeled by finite-support probability densities. Stochastic forcings are discretized using truncated Karhunen-Loeve expansions. The companion paper 'Modeling Multibody Dynamic Systems With Uncertainties. Part II: Numerical Applications' illustrates the use of the proposed methodology on a selected set of test problems. The overall conclusion is that despite its limitations, polynomial chaos is a powerful approach for the simulation of multibody systems with uncertainties

  11. Dynamics of underactuated multibody systems modeling, control and optimal design

    CERN Document Server

    Seifried, Robert

    2014-01-01

    Underactuated multibody systems are intriguing mechatronic systems, as they possess fewer control inputs than degrees of freedom. Some examples are modern light-weight flexible robots and articulated manipulators with passive joints. This book investigates such underactuated multibody systems from an integrated perspective. This includes all major steps from the modeling of rigid and flexible multibody systems, through nonlinear control theory, to optimal system design. The underlying theories and techniques from these different fields are presented using a self-contained and unified approach and notation system. Subsequently, the book focuses on applications to large multibody systems with multiple degrees of freedom, which require a combination of symbolical and numerical procedures. Finally, an integrated, optimization-based design procedure is proposed, whereby both structural and control design are considered concurrently. Each chapter is supplemented by illustrated examples.

  12. Modeling multibody systems with uncertainties. Part II: Numerical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sandu, Corina, E-mail: csandu@vt.edu; Sandu, Adrian; Ahmadian, Mehdi [Virginia Polytechnic Institute and State University, Mechanical Engineering Department (United States)

    2006-04-15

    This study applies generalized polynomial chaos theory to model complex nonlinear multibody dynamic systems operating in the presence of parametric and external uncertainty. Theoretical and computational aspects of this methodology are discussed in the companion paper 'Modeling Multibody Dynamic Systems With Uncertainties. Part I: Theoretical and Computational Aspects .In this paper we illustrate the methodology on selected test cases. The combined effects of parametric and forcing uncertainties are studied for a quarter car model. The uncertainty distributions in the system response in both time and frequency domains are validated against Monte-Carlo simulations. Results indicate that polynomial chaos is more efficient than Monte Carlo and more accurate than statistical linearization. The results of the direct collocation approach are similar to the ones obtained with the Galerkin approach. A stochastic terrain model is constructed using a truncated Karhunen-Loeve expansion. The application of polynomial chaos to differential-algebraic systems is illustrated using the constrained pendulum problem. Limitations of the polynomial chaos approach are studied on two different test problems, one with multiple attractor points, and the second with a chaotic evolution and a nonlinear attractor set. The overall conclusion is that, despite its limitations, generalized polynomial chaos is a powerful approach for the simulation of multibody dynamic systems with uncertainties.

  13. Modeling multibody systems with uncertainties. Part II: Numerical applications

    International Nuclear Information System (INIS)

    Sandu, Corina; Sandu, Adrian; Ahmadian, Mehdi

    2006-01-01

    This study applies generalized polynomial chaos theory to model complex nonlinear multibody dynamic systems operating in the presence of parametric and external uncertainty. Theoretical and computational aspects of this methodology are discussed in the companion paper 'Modeling Multibody Dynamic Systems With Uncertainties. Part I: Theoretical and Computational Aspects .In this paper we illustrate the methodology on selected test cases. The combined effects of parametric and forcing uncertainties are studied for a quarter car model. The uncertainty distributions in the system response in both time and frequency domains are validated against Monte-Carlo simulations. Results indicate that polynomial chaos is more efficient than Monte Carlo and more accurate than statistical linearization. The results of the direct collocation approach are similar to the ones obtained with the Galerkin approach. A stochastic terrain model is constructed using a truncated Karhunen-Loeve expansion. The application of polynomial chaos to differential-algebraic systems is illustrated using the constrained pendulum problem. Limitations of the polynomial chaos approach are studied on two different test problems, one with multiple attractor points, and the second with a chaotic evolution and a nonlinear attractor set. The overall conclusion is that, despite its limitations, generalized polynomial chaos is a powerful approach for the simulation of multibody dynamic systems with uncertainties

  14. Multibody Systems

    DEFF Research Database (Denmark)

    Wagner, Falko Jens

    1999-01-01

    Multibody Systems is one area, in which methods for solving DAEs are of special interst. This chapter is about multibody systems, why they result in DAE systems and what kind of problems that can arise when dealing with multibody systems and formulating their corresponding DAE system....

  15. Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sensors

    Directory of Open Access Journals (Sweden)

    Armando Viviano Razionale

    2013-02-01

    Full Text Available In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces through the digitalization of both patients’ mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning.

  16. Simbody: multibody dynamics for biomedical research.

    Science.gov (United States)

    Sherman, Michael A; Seth, Ajay; Delp, Scott L

    Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.

  17. Multibody dynamical modeling for spacecraft docking process with spring-damper buffering device: A new validation approach

    Science.gov (United States)

    Daneshjou, Kamran; Alibakhshi, Reza

    2018-01-01

    In the current manuscript, the process of spacecraft docking, as one of the main risky operations in an on-orbit servicing mission, is modeled based on unconstrained multibody dynamics. The spring-damper buffering device is utilized here in the docking probe-cone system for micro-satellites. Owing to the impact occurs inevitably during docking process and the motion characteristics of multibody systems are remarkably affected by this phenomenon, a continuous contact force model needs to be considered. Spring-damper buffering device, keeping the spacecraft stable in an orbit when impact occurs, connects a base (cylinder) inserted in the chaser satellite and the end of docking probe. Furthermore, by considering a revolute joint equipped with torsional shock absorber, between base and chaser satellite, the docking probe can experience both translational and rotational motions simultaneously. Although spacecraft docking process accompanied by the buffering mechanisms may be modeled by constrained multibody dynamics, this paper deals with a simple and efficient formulation to eliminate the surplus generalized coordinates and solve the impact docking problem based on unconstrained Lagrangian mechanics. By an example problem, first, model verification is accomplished by comparing the computed results with those recently reported in the literature. Second, according to a new alternative validation approach, which is based on constrained multibody problem, the accuracy of presented model can be also evaluated. This proposed verification approach can be applied to indirectly solve the constrained multibody problems by minimum required effort. The time history of impact force, the influence of system flexibility and physical interaction between shock absorber and penetration depth caused by impact are the issues followed in this paper. Third, the MATLAB/SIMULINK multibody dynamic analysis software will be applied to build impact docking model to validate computed results and

  18. A Large-Scale Multibody Manipulator Soft Sensor Model and Experiment Validation

    Directory of Open Access Journals (Sweden)

    Wu Ren

    2014-01-01

    Full Text Available Stress signal is difficult to obtain in the health monitoring of multibody manipulator. In order to solve this problem, a soft sensor method is presented. In the method, stress signal is considered as dominant variable and angle signal is regarded as auxiliary variable. By establishing the mathematical relationship between them, a soft sensor model is proposed. In the model, the stress information can be deduced by angle information which can be easily measured for such structures by experiments. Finally, test of ground and wall working conditions is done on a multibody manipulator test rig. The results show that the stress calculated by the proposed method is closed to the test one. Thus, the stress signal is easier to get than the traditional method. All of these prove that the model is correct and the method is feasible.

  19. Null Space Integration Method for Constrained Multibody Systems with No Constraint Violation

    International Nuclear Information System (INIS)

    Terze, Zdravko; Lefeber, Dirk; Muftic, Osman

    2001-01-01

    A method for integrating equations of motion of constrained multibody systems with no constraint violation is presented. A mathematical model, shaped as a differential-algebraic system of index 1, is transformed into a system of ordinary differential equations using the null-space projection method. Equations of motion are set in a non-minimal form. During integration, violations of constraints are corrected by solving constraint equations at the position and velocity level, utilizing the metric of the system's configuration space, and projective criterion to the coordinate partitioning method. The method is applied to dynamic simulation of 3D constrained biomechanical system. The simulation results are evaluated by comparing them to the values of characteristic parameters obtained by kinematics analysis of analyzed motion based unmeasured kinematics data

  20. ECCOMAS Thematic Conference on Multibody Dynamics

    CERN Document Server

    Fisette, Paul; Multibody Dynamics : Computational Methods and Applications

    2013-01-01

    This volume provides the international multibody dynamics community with an up-to-date view on the state of the art in this rapidly growing field of research which now plays a central role in the modeling, analysis, simulation and optimization of mechanical systems in a variety of fields and for a wide range of industrial applications. This book contains selected contributions delivered at the ECCOMAS Thematic Conference on Multibody Dynamics, which was held in Brussels, Belgium and organized by the Université catholique de Louvain, from 4th to 7th July 2011.  Each paper reflects the State-of-Art in the application of Multibody Dynamics to different areas of engineering. They are enlarged and revised versions of the communications, which were enhanced in terms of self-containment and tutorial quality by the authors. The result is a comprehensive text that constitutes a valuable reference for researchers and design engineers which helps to appraise the potential for the application of multibody dynamics meth...

  1. A multibody motorcycle model with rigid-ring tyres: formulation and validation

    Science.gov (United States)

    Leonelli, Luca; Mancinelli, Nicolò

    2015-06-01

    The aim of this paper is the development and validation of a three-dimensional multibody motorcycle model including a rigid-ring tyre model, taking into account both the slopes and elevation of the road surface. In order to achieve accurate assessment of ride and handling performances of a road racing motorcycle, a tyre model capable of reproducing the dynamic response to actual road excitation is required. While a number of vehicle models with such feature are available for car application, the extension to the motorcycle modelling has not been addressed yet. To do so, a novel parametrisation for the general motorcycle kinematics is proposed, using a mixed reference point and relative coordinates approach. The resulting description, developed in terms of dependent coordinates, makes it possible to include the rigid-ring kinematics as well as road elevation and slopes, without affecting computational efficiency. The equations of motion for the whole multibody system are derived symbolically and the constraint equations arising from the dependent coordinate formulation are handled using the position and velocity vector projection technique. The resulting system of equations is integrated in time domain using a standard ordinary differential equation (ODE) algorithm. Finally, the model is validated with respect to experimentally measured data in both time and frequency domains.

  2. Multi-Body Ski Jumper Model with Nonlinear Dynamic Inversion Muscle Control for Trajectory Optimization

    Directory of Open Access Journals (Sweden)

    Patrick Piprek

    2018-02-01

    Full Text Available This paper presents an approach to model a ski jumper as a multi-body system for an optimal control application. The modeling is based on the constrained Newton-Euler-Equations. Within this paper the complete multi-body modeling methodology as well as the musculoskeletal modeling is considered. For the musculoskeletal modeling and its incorporation in the optimization model, we choose a nonlinear dynamic inversion control approach. This approach uses the muscle models as nonlinear reference models and links them to the ski jumper movement by a control law. This strategy yields a linearized input-output behavior, which makes the optimal control problem easier to solve. The resulting model of the ski jumper can then be used for trajectory optimization whose results are compared to literature jumps. Ultimately, this enables the jumper to get a very detailed feedback of the flight. To achieve the maximal jump length, exact positioning of his body with respect to the air can be displayed.

  3. Modeling of the condyle elements within a biomechanical knee model

    DEFF Research Database (Denmark)

    Ribeiro, Ana; Rasmussen, John; Flores, Paulo

    2012-01-01

    The development of a computational multibody knee model able to capture some of the fundamental properties of the human knee articulation is presented. This desideratum is reached by including the kinetics of the real knee articulation. The research question is whether an accurate modeling of the...

  4. Numerical methods in multibody dynamics

    CERN Document Server

    Eich-Soellner, Edda

    1998-01-01

    Today computers play an important role in the development of complex mechanical systems, such as cars, railway vehicles or machines. Efficient simulation of these systems is only possible when based on methods that explore the strong link between numerics and computational mechanics. This book gives insight into modern techniques of numerical mathematics in the light of an interesting field of applications: multibody dynamics. The important interaction between modeling and solution techniques is demonstrated by using a simplified multibody model of a truck. Different versions of this mechanical model illustrate all key concepts in static and dynamic analysis as well as in parameter identification. The book focuses in particular on constrained mechanical systems. Their formulation in terms of differential-algebraic equations is the backbone of nearly all chapters. The book is written for students and teachers in numerical analysis and mechanical engineering as well as for engineers in industrial research labor...

  5. Active vibration control of spatial flexible multibody systems

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambrósio, Jorge A. C.; Roseiro, Luis M.; Amaro, A.; Vasques, C. M. A.

    2013-01-01

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  6. Active vibration control of spatial flexible multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Maria Augusta, E-mail: augusta.neto@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Ambrosio, Jorge A. C., E-mail: jorge@dem.ist.utl.pt [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal); Roseiro, Luis M., E-mail: lroseiro@isec.pt [Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Mecanica (Portugal); Amaro, A., E-mail: ana.amaro@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Vasques, C. M. A., E-mail: cvasques@inegi.up.pt [Universidade do Porto, INEGI-Instituto de Engenharia Mecanica e Gestao Industrial (Portugal)

    2013-06-15

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  7. Hard real-time multibody simulations using ARM-based embedded systems

    Energy Technology Data Exchange (ETDEWEB)

    Pastorino, Roland, E-mail: roland.pastorino@kuleuven.be, E-mail: rpastorino@udc.es; Cosco, Francesco, E-mail: francesco.cosco@kuleuven.be; Naets, Frank, E-mail: frank.naets@kuleuven.be; Desmet, Wim, E-mail: wim.desmet@kuleuven.be [KU Leuven, PMA division, Department of Mechanical Engineering (Belgium); Cuadrado, Javier, E-mail: javicuad@cdf.udc.es [Universidad de La Coruña, Laboratorio de Ingeniería Mecánica (Spain)

    2016-05-15

    The real-time simulation of multibody models on embedded systems is of particular interest for controllers and observers such as model predictive controllers and state observers, which rely on a dynamic model of the process and are customarily executed in electronic control units. This work first identifies the software techniques and tools required to easily write efficient code for multibody models to be simulated on ARM-based embedded systems. Automatic Programming and Source Code Translation are the two techniques that were chosen to generate source code for multibody models in different programming languages. Automatic Programming is used to generate procedural code in an intermediate representation from an object-oriented library and Source Code Translation is used to translate the intermediate representation automatically to an interpreted language or to a compiled language for efficiency purposes. An implementation of these techniques is proposed. It is based on a Python template engine and AST tree walkers for Source Code Generation and on a model-driven translator for the Source Code Translation. The code is translated from a metalanguage to any of the following four programming languages: Python-Numpy, Matlab, C++-Armadillo, C++-Eigen. Two examples of multibody models were simulated: a four-bar linkage with multiple loops and a 3D vehicle steering system. The code for these examples has been generated and executed on two ARM-based single-board computers. Using compiled languages, both models could be simulated faster than real-time despite the low resources and performance of these embedded systems. Finally, the real-time performance of both models was evaluated when executed in hard real-time on Xenomai for both embedded systems. This work shows through measurements that Automatic Programming and Source Code Translation are valuable techniques to develop real-time multibody models to be used in embedded observers and controllers.

  8. Hard real-time multibody simulations using ARM-based embedded systems

    International Nuclear Information System (INIS)

    Pastorino, Roland; Cosco, Francesco; Naets, Frank; Desmet, Wim; Cuadrado, Javier

    2016-01-01

    The real-time simulation of multibody models on embedded systems is of particular interest for controllers and observers such as model predictive controllers and state observers, which rely on a dynamic model of the process and are customarily executed in electronic control units. This work first identifies the software techniques and tools required to easily write efficient code for multibody models to be simulated on ARM-based embedded systems. Automatic Programming and Source Code Translation are the two techniques that were chosen to generate source code for multibody models in different programming languages. Automatic Programming is used to generate procedural code in an intermediate representation from an object-oriented library and Source Code Translation is used to translate the intermediate representation automatically to an interpreted language or to a compiled language for efficiency purposes. An implementation of these techniques is proposed. It is based on a Python template engine and AST tree walkers for Source Code Generation and on a model-driven translator for the Source Code Translation. The code is translated from a metalanguage to any of the following four programming languages: Python-Numpy, Matlab, C++-Armadillo, C++-Eigen. Two examples of multibody models were simulated: a four-bar linkage with multiple loops and a 3D vehicle steering system. The code for these examples has been generated and executed on two ARM-based single-board computers. Using compiled languages, both models could be simulated faster than real-time despite the low resources and performance of these embedded systems. Finally, the real-time performance of both models was evaluated when executed in hard real-time on Xenomai for both embedded systems. This work shows through measurements that Automatic Programming and Source Code Translation are valuable techniques to develop real-time multibody models to be used in embedded observers and controllers.

  9. Applications of Lie Group Theory to the Modeling and Control of Multibody Systems

    International Nuclear Information System (INIS)

    Mladenova, Clementina D.

    1999-01-01

    This paper reviews our research activities concerning the modeling and control of rigid and elastic joint multibody mechanical systems, including some investigations into nonholonomic systems. Bearing in mind the different parameterizations of the rotation group in three-dimensional space SO(3), and the fact that the properties of the parameterization more or less influence the efficiency of the dynamics model, here the so-called vector parameter is used for parallel considerations of rigid body motion and of rigid and elastic joint multibody mechanical systems. Besides the fundamental role of this study, the vector-parameter approach is efficient in its computational aspect and quite convenient for real time simulation and control. The consideration of the mechanical system on the configuration space of pure vector parameters with a group structure opens the possibilities for the Lie group theory to be applied in problems of dynamics and control

  10. Prediction of railway induced ground vibration through multibody and finite element modelling

    Directory of Open Access Journals (Sweden)

    G. Kouroussis

    2013-04-01

    Full Text Available The multibody approach is now recognized as a reliable and mature computer aided engineering tool. Namely, it is commonly used in industry for the design of road or railway vehicles. The paper presents a framework developed for predicting the vibrations induced by railway transportation. Firstly, the vehicle/track subsystem is simulated, on the basis of the home-made C++ library EasyDyn, by mixing the multibody model of the vehicle and the finite element model of the track, coupled to each other through the wheel/rail contact forces. Only the motion in the vertical plane is considered, assuming a total symmetry between left and right rails. This first step produces the time history of the forces exerted by the ballast on the foundation, which are then applied to a full 3-D FEM model of the soil, defined under the commercial software ABAQUS. The paper points out the contribution of the pitch motion of the bogies and carbodies which were neglected in previous publications, as well as the interest of the so-called coupled-lumped mass model (CLM to represent the influence of the foundation in the track model. The potentialities of the model are illustrated on the example of the Thalys high-speed train, riding at 300 km h−1 on the Belgian site of Mévergnies.

  11. Rigid multibody system dynamics with uncertain rigid bodies

    Energy Technology Data Exchange (ETDEWEB)

    Batou, A., E-mail: anas.batou@univ-paris-est.fr; Soize, C., E-mail: christian.soize@univ-paris-est.fr [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS (France)

    2012-03-15

    This paper is devoted to the construction of a probabilistic model of uncertain rigid bodies for multibody system dynamics. We first construct a stochastic model of an uncertain rigid body by replacing the mass, the center of mass, and the tensor of inertia by random variables. The prior probability distributions of the stochastic model are constructed using the maximum entropy principle under the constraints defined by the available information. The generators of independent realizations corresponding to the prior probability distribution of these random quantities are further developed. Then several uncertain rigid bodies can be linked to each other in order to calculate the random response of a multibody dynamical system. An application is proposed to illustrate the theoretical development.

  12. Developments of multibody system dynamics: computer simulations and experiments

    International Nuclear Information System (INIS)

    Yoo, Wan-Suk; Kim, Kee-Nam; Kim, Hyun-Woo; Sohn, Jeong-Hyun

    2007-01-01

    It is an exceptional success when multibody dynamics researchers Multibody System Dynamics journal one of the most highly ranked journals in the last 10 years. In the inaugural issue, Professor Schiehlen wrote an interesting article explaining the roots and perspectives of multibody system dynamics. Professor Shabana also wrote an interesting article to review developments in flexible multibody dynamics. The application possibilities of multibody system dynamics have grown wider and deeper, with many application examples being introduced with multibody techniques in the past 10 years. In this paper, the development of multibody dynamics is briefly reviewed and several applications of multibody dynamics are described according to the author's research results. Simulation examples are compared to physical experiments, which show reasonableness and accuracy of the multibody formulation applied to real problems. Computer simulations using the absolute nodal coordinate formulation (ANCF) were also compared to physical experiments; therefore, the validity of ANCF for large-displacement and large-deformation problems was shown. Physical experiments for large deformation problems include beam, plate, chain, and strip. Other research topics currently being carried out in the author's laboratory are also briefly explained

  13. On the modeling of the intervertebral joint in multibody models for the spine

    International Nuclear Information System (INIS)

    Christophy, Miguel; Curtin, Maurice; Faruk Senan, Nur Adila; Lotz, Jeffrey C.; O’Reilly, Oliver M.

    2013-01-01

    The need to develop feasible computational musculoskeletal models of the spine has led to the development of several multibody models. Central features in these works are models for the ligaments, muscles, and intervertebral joint. The purpose of the present paper is to show how experimental measurements of joint stiffnesses can be properly incorporated using a bushing element. The required refinements to existing bushing force functions in musculoskeletal software platforms are discussed and further implemented using a SpineBushing element specific to the intervertebral joint. Four simple lumbar spine models are then used to illustrate the accompanying improvements. Electronic supplemental material for this article includes a complementary review of formulations of stiffness matrices for the intervertebral joint

  14. Investigating the running abilities of Tyrannosaurus rex using stress-constrained multibody dynamic analysis

    Directory of Open Access Journals (Sweden)

    William I. Sellers

    2017-07-01

    Full Text Available The running ability of Tyrannosaurus rex has been intensively studied due to its relevance to interpretations of feeding behaviour and the biomechanics of scaling in giant predatory dinosaurs. Different studies using differing methodologies have produced a very wide range of top speed estimates and there is therefore a need to develop techniques that can improve these predictions. Here we present a new approach that combines two separate biomechanical techniques (multibody dynamic analysis and skeletal stress analysis to demonstrate that true running gaits would probably lead to unacceptably high skeletal loads in T. rex. Combining these two approaches reduces the high-level of uncertainty in previous predictions associated with unknown soft tissue parameters in dinosaurs, and demonstrates that the relatively long limb segments of T. rex—long argued to indicate competent running ability—would actually have mechanically limited this species to walking gaits. Being limited to walking speeds contradicts arguments of high-speed pursuit predation for the largest bipedal dinosaurs like T. rex, and demonstrates the power of multiphysics approaches for locomotor reconstructions of extinct animals.

  15. The biomechanical role of the chondrocranium and sutures in a lizard cranium.

    Science.gov (United States)

    Jones, Marc E H; Gröning, Flora; Dutel, Hugo; Sharp, Alana; Fagan, Michael J; Evans, Susan E

    2017-12-01

    The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biomechanical role of sutures despite evidence that they alter strain distribution. Here, we examine the role of both the sutures and the chondrocranium in the South American tegu lizard Salvator merianae We use multi-body dynamics analysis (MDA) to provide realistic loading conditions for anterior and posterior unilateral biting and a detailed finite element model to examine strain magnitude and distribution. We find that strains within the chondrocranium are greatest during anterior biting and are primarily tensile; also that strain within the cranium is not greatly reduced by the presence of the chondrocranium unless it is given the same material properties as bone. This result contradicts previous suggestions that the anterior portion (the nasal septum) acts as a supporting structure. Inclusion of sutures to the cranium model not only increases overall strain magnitudes but also leads to a more complex distribution of tension and compression rather than that of a beam under sagittal bending. © 2017 The Authors.

  16. First order sensitivity analysis of flexible multibody systems using absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Pi Ting; Zhang Yunqing; Chen Liping

    2012-01-01

    Design sensitivity analysis of flexible multibody systems is important in optimizing the performance of mechanical systems. The choice of coordinates to describe the motion of multibody systems has a great influence on the efficiency and accuracy of both the dynamic and sensitivity analysis. In the flexible multibody system dynamics, both the floating frame of reference formulation (FFRF) and absolute nodal coordinate formulation (ANCF) are frequently utilized to describe flexibility, however, only the former has been used in design sensitivity analysis. In this article, ANCF, which has been recently developed and focuses on modeling of beams and plates in large deformation problems, is extended into design sensitivity analysis of flexible multibody systems. The Motion equations of a constrained flexible multibody system are expressed as a set of index-3 differential algebraic equations (DAEs), in which the element elastic forces are defined using nonlinear strain-displacement relations. Both the direct differentiation method and adjoint variable method are performed to do sensitivity analysis and the related dynamic and sensitivity equations are integrated with HHT-I3 algorithm. In this paper, a new method to deduce system sensitivity equations is proposed. With this approach, the system sensitivity equations are constructed by assembling the element sensitivity equations with the help of invariant matrices, which results in the advantage that the complex symbolic differentiation of the dynamic equations is avoided when the flexible multibody system model is changed. Besides that, the dynamic and sensitivity equations formed with the proposed method can be efficiently integrated using HHT-I3 method, which makes the efficiency of the direct differentiation method comparable to that of the adjoint variable method when the number of design variables is not extremely large. All these improvements greatly enhance the application value of the direct differentiation

  17. Multiscale modeling in biomechanics and mechanobiology

    CERN Document Server

    Hwang, Wonmuk; Kuhl, Ellen

    2015-01-01

    Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models.   Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these...

  18. Multibody dynamic analysis using a rotation-free shell element with corotational frame

    Science.gov (United States)

    Shi, Jiabei; Liu, Zhuyong; Hong, Jiazhen

    2018-03-01

    Rotation-free shell formulation is a simple and effective method to model a shell with large deformation. Moreover, it can be compatible with the existing theories of finite element method. However, a rotation-free shell is seldom employed in multibody systems. Using a derivative of rigid body motion, an efficient nonlinear shell model is proposed based on the rotation-free shell element and corotational frame. The bending and membrane strains of the shell have been simplified by isolating deformational displacements from the detailed description of rigid body motion. The consistent stiffness matrix can be obtained easily in this form of shell model. To model the multibody system consisting of the presented shells, joint kinematic constraints including translational and rotational constraints are deduced in the context of geometric nonlinear rotation-free element. A simple node-to-surface contact discretization and penalty method are adopted for contacts between shells. A series of analyses for multibody system dynamics are presented to validate the proposed formulation. Furthermore, the deployment of a large scaled solar array is presented to verify the comprehensive performance of the nonlinear shell model.

  19. Soft Tissue Biomechanical Modeling for Computer Assisted Surgery

    CERN Document Server

    2012-01-01

      This volume focuses on the biomechanical modeling of biological tissues in the context of Computer Assisted Surgery (CAS). More specifically, deformable soft tissues are addressed since they are the subject of the most recent developments in this field. The pioneering works on this CAS topic date from the 1980's, with applications in orthopaedics and biomechanical models of bones. More recently, however, biomechanical models of soft tissues have been proposed since most of the human body is made of soft organs that can be deformed by the surgical gesture. Such models are much more complicated to handle since the tissues can be subject to large deformations (non-linear geometrical framework) as well as complex stress/strain relationships (non-linear mechanical framework). Part 1 of the volume presents biomechanical models that have been developed in a CAS context and used during surgery. This is particularly new since most of the soft tissues models already proposed concern Computer Assisted Planning, with ...

  20. Biomechanical interpretation of a free-breathing lung motion model

    International Nuclear Information System (INIS)

    Zhao Tianyu; White, Benjamin; Lamb, James; Low, Daniel A; Moore, Kevin L; Yang Deshan; Mutic, Sasa; Lu Wei

    2011-01-01

    The purpose of this paper is to develop a biomechanical model for free-breathing motion and compare it to a published heuristic five-dimensional (5D) free-breathing lung motion model. An ab initio biomechanical model was developed to describe the motion of lung tissue during free breathing by analyzing the stress–strain relationship inside lung tissue. The first-order approximation of the biomechanical model was equivalent to a heuristic 5D free-breathing lung motion model proposed by Low et al in 2005 (Int. J. Radiat. Oncol. Biol. Phys. 63 921–9), in which the motion was broken down to a linear expansion component and a hysteresis component. To test the biomechanical model, parameters that characterize expansion, hysteresis and angles between the two motion components were reported independently and compared between two models. The biomechanical model agreed well with the heuristic model within 5.5% in the left lungs and 1.5% in the right lungs for patients without lung cancer. The biomechanical model predicted that a histogram of angles between the two motion components should have two peaks at 39.8° and 140.2° in the left lungs and 37.1° and 142.9° in the right lungs. The data from the 5D model verified the existence of those peaks at 41.2° and 148.2° in the left lungs and 40.1° and 140° in the right lungs for patients without lung cancer. Similar results were also observed for the patients with lung cancer, but with greater discrepancies. The maximum-likelihood estimation of hysteresis magnitude was reported to be 2.6 mm for the lung cancer patients. The first-order approximation of the biomechanical model fit the heuristic 5D model very well. The biomechanical model provided new insights into breathing motion with specific focus on motion trajectory hysteresis.

  1. Nonlinear Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian

    individually and next couple them by use of joints. This gives a high level of modelling flexibility, where parts of the structure with relative ease can be interchanged to analyze other possibilities in a design process, or if a higher detail level is wanted for some components. In a multibody formulation...... turbine blade with large nonlinear displacements it has shown most favorable to use the end points in the substructure for updating the moving frames. For speeding up dynamical simulations for use in e.g. active control or parameter studies, system reduction of substructures in the multibody formulation...... element parameters also can determine e.g. torsional stiffness and the position of the shear center. The method makes use of three node triangular elements where the different material layers in the blade profile are taken into consideration. The results are compared to a similar tool which makes use...

  2. Entropic Measure of Epistemic Uncertainties in Multibody System Models by Axiomatic Design

    Directory of Open Access Journals (Sweden)

    Francesco Villecco

    2017-06-01

    Full Text Available In this paper, the use of the MaxInf Principle in real optimization problems is investigated for engineering applications, where the current design solution is actually an engineering approximation. In industrial manufacturing, multibody system simulations can be used to develop new machines and mechanisms by using virtual prototyping, where an axiomatic design can be employed to analyze the independence of elements and the complexity of connections forming a general mechanical system. In the classic theories of Fisher and Wiener-Shannon, the idea of information is a measure of only probabilistic and repetitive events. However, this idea is broader than the probability alone field. Thus, the Wiener-Shannon’s axioms can be extended to non-probabilistic events and it is possible to introduce a theory of information for non-repetitive events as a measure of the reliability of data for complex mechanical systems. To this end, one can devise engineering solutions consistent with the values of the design constraints analyzing the complexity of the relation matrix and using the idea of information in the metric space. The final solution gives the entropic measure of epistemic uncertainties which can be used in multibody system models, analyzed with an axiomatic design.

  3. Attitude coordination of multi-HUG formation based on multibody system theory

    Science.gov (United States)

    Xue, Dong-yang; Wu, Zhi-liang; Qi, Er-mai; Wang, Yan-hui; Wang, Shu-xin

    2017-04-01

    Application of multiple hybrid underwater gliders (HUGs) is a promising method for large scale, long-term ocean survey. Attitude coordination has become a requisite for task execution of multi-HUG formation. In this paper, a multibody model is presented for attitude coordination among agents in the HUG formation. The HUG formation is regarded as a multi-rigid body system. The interaction between agents in the formation is described by artificial potential field (APF) approach. Attitude control torque is composed of a conservative torque generated by orientation potential field and a dissipative term related with angular velocity. Dynamic modeling of the multibody system is presented to analyze the dynamic process of the HUG formation. Numerical calculation is carried out to simulate attitude synchronization with two kinds of formation topologies. Results show that attitude synchronization can be fulfilled based on the multibody method described in this paper. It is also indicated that different topologies affect attitude control quality with respect to energy consumption and adjusting time. Low level topology should be adopted during formation control scheme design to achieve a better control effect.

  4. Substructured multibody molecular dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  5. Comparison between vertical acceleration data from acquired signals and multibody model for an off-road vehicle

    Directory of Open Access Journals (Sweden)

    Cristian Padilha Fontoura

    2018-02-01

    Full Text Available SAE Mini Baja competitions require efforts in developing a reliable vehicle project that enables their teams to manage time and resources wisely. Vehicle simulations are one the best ways to deal with these conditions and prevent failure during a test. This work outlines the methodology that was carried out for validating the multibody dynamics model of a Mini Baja vehicle through vertical acceleration data acquisition. The data was acquired with the vehicle in different sets of obstacles, based on those seen in previously held competitions. Simulation was done through ADAMS/Car, with the vehicle’s multibody model being simulated in different three-dimensional roads, counterpart to those where data acquisition took place. Simulation data, when compared to acquired acceleration signals for most of the obstacles, exhibited equivalence. Additional data computation revealed that the spectra in the frequency domain presented most severe loads concentrated between 0 and 20 Hz, incoming mostly from road unevenness. Gathering such data, by the presented approach can assist future analyses and guide the Baja Team in defining an improved project by predicting its dynamic behavior.

  6. Modelling of joints with clearance and friction in multibody dynamic simulation of automotive differentials

    OpenAIRE

    Virlez, Geoffrey; Bruls, Olivier; Tromme, Emmanuel; Duysinx, Pierre

    2012-01-01

    Defects in kinematic joints can sometimes highly influence the simulation response of the whole multibody system within which these joints are included. For instance, the clearance, the friction, the lubrication and the flexibility affect the transient behaviour, reduce the component life and produce noise and vibration for classical joints such as prismatic, cylindric or universal joint. In this work, a new 3D cylindrical joint model which accounts for the clearance, the misalignment and the...

  7. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    Science.gov (United States)

    Fu, Yao; Song, Jeong-Hoon

    2014-08-01

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.

  8. Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid

    Science.gov (United States)

    Hu, Wei; Tian, Qiang; Hu, HaiYan

    2018-04-01

    As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.

  9. The medical simulation markup language - simplifying the biomechanical modeling workflow.

    Science.gov (United States)

    Suwelack, Stefan; Stoll, Markus; Schalck, Sebastian; Schoch, Nicolai; Dillmann, Rüdiger; Bendl, Rolf; Heuveline, Vincent; Speidel, Stefanie

    2014-01-01

    Modeling and simulation of the human body by means of continuum mechanics has become an important tool in diagnostics, computer-assisted interventions and training. This modeling approach seeks to construct patient-specific biomechanical models from tomographic data. Usually many different tools such as segmentation and meshing algorithms are involved in this workflow. In this paper we present a generalized and flexible description for biomechanical models. The unique feature of the new modeling language is that it not only describes the final biomechanical simulation, but also the workflow how the biomechanical model is constructed from tomographic data. In this way, the MSML can act as a middleware between all tools used in the modeling pipeline. The MSML thus greatly facilitates the prototyping of medical simulation workflows for clinical and research purposes. In this paper, we not only detail the XML-based modeling scheme, but also present a concrete implementation. Different examples highlight the flexibility, robustness and ease-of-use of the approach.

  10. A Coupled Helicopter Rotor/Fuselage Dynamics Model Using Finite Element Multi-body

    Directory of Open Access Journals (Sweden)

    Cheng Qi-you

    2016-01-01

    Full Text Available To develop a coupled rotor/flexible fuselage model for vibration reduction studies, the equation of coupled rotor-fuselage is set up based on the theory of multi-body dynamics, and the dynamic analysis model is established with the software MSC.ADMAS and MSC.NASTRAN. The frequencies and vibration acceleration responses of the system are calculated with the model of coupled rotor-fuselage, and the results are compared with those of uncoupled modeling method. Analysis results showed that compared with uncoupled model, the dynamic characteristic obtained by the model of coupled rotor-fuselage are some different. The intrinsic frequency of rotor is increased with the increase of rotational velocities. The results also show that the flying speed has obvious influence on the vibration acceleration responses of the fuselage. The vibration acceleration response in the vertical direction is much higher at the low speed and high speed flight conditions.

  11. Emulating facial biomechanics using multivariate partial least squares surrogate models.

    Science.gov (United States)

    Wu, Tim; Martens, Harald; Hunter, Peter; Mithraratne, Kumar

    2014-11-01

    A detailed biomechanical model of the human face driven by a network of muscles is a useful tool in relating the muscle activities to facial deformations. However, lengthy computational times often hinder its applications in practical settings. The objective of this study is to replace precise but computationally demanding biomechanical model by a much faster multivariate meta-model (surrogate model), such that a significant speedup (to real-time interactive speed) can be achieved. Using a multilevel fractional factorial design, the parameter space of the biomechanical system was probed from a set of sample points chosen to satisfy maximal rank optimality and volume filling. The input-output relationship at these sampled points was then statistically emulated using linear and nonlinear, cross-validated, partial least squares regression models. It was demonstrated that these surrogate models can mimic facial biomechanics efficiently and reliably in real-time. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Biomechanically Excited SMD Model of a Walking Pedestrian

    DEFF Research Database (Denmark)

    Zhang, Mengshi; Georgakis, Christos T.; Chen, Jun

    2016-01-01

    Through their biomechanical properties, pedestrians interact with the structures they occupy. Although this interaction has been recognized by researchers, pedestrians' biomechanical properties have not been fully addressed. In this paper, a spring-mass-damper (SMD) system, with a pair of biomech......Through their biomechanical properties, pedestrians interact with the structures they occupy. Although this interaction has been recognized by researchers, pedestrians' biomechanical properties have not been fully addressed. In this paper, a spring-mass-damper (SMD) system, with a pair...... produced the pedestrian's center of mass (COM) trajectories from the captured motion markers. The vertical COM trajectory was approximated to be the pedestrian SMD dynamic responses under the excitation of biomechanical forces. SMD model parameters of a pedestrian for a specific walking frequency were...... estimated from a known walking frequency and the pedestrian's weight, assuming that pedestrians always walk in displacement resonance and retain a constant damping ratio of 0.3. Thus, biomechanical forces were extracted using the measured SMD dynamic responses and the estimated SMD parameters. Extracted...

  13. Dynamics and Embedded Internet of Things Input Shaping Control for Overhead Cranes Transporting Multibody Payloads

    Directory of Open Access Journals (Sweden)

    Gerardo Peláez

    2018-06-01

    Full Text Available Input shaping is an Optimal Control feedforward strategy whose ability to define how and when a flexible dynamical system defined by Ordinary Differential Equations (ODEs and computer controlled would move into its operative space, without command induced unwanted dynamics, has been exhaustively demonstrated. This work examines the issue of Embedded Internet of Things (IoT Input Shaping with regard to real time control of multibody oscillatory systems whose dynamics are better described by differential algebraic equations (DAEs. An overhead crane hanging a double link multibody payload has been appointed as a benchmark case; it is a multibody, multimode system. This might be worst scenario to implement Input Shaping. The reasons can be found in the wide array of constraints that arise. Firstly, the reliability of the multibody model was tested on a Functional Mock-Up Interface (FMI with the two link payload suspended from the trolley by comparing the experimental video tapping signals in time domain faced with the signals extracted from the multibody model. The FFTs of the simulated and the experimental signal contain the same frequency harmonics only with somewhat different power due to the real world light damping in the joints. The application of this approach may be extended to other cases i.e., the usefulness of mobile hydraulic cranes is limited because the payload is supported by an overhead cable under tension that allows oscillation to occur during crane motion. If the payload size is not negligible small when compared with the cable length may introduce an additional oscillatory mode that creates a multibody double pendulum. To give the insight into the double pendulum dynamics by Lagrangian methods two slender rods as payloads are analyzed dealing with the overhead crane and a composite revolute-revolute joint is proposed to model the cable of the hydraulic crane, both assumptions facilitates an affordable analysis. This allows

  14. Dynamics and Embedded Internet of Things Input Shaping Control for Overhead Cranes Transporting Multibody Payloads.

    Science.gov (United States)

    Peláez, Gerardo; Vaugan, Joshua; Izquierdo, Pablo; Rubio, Higinio; García-Prada, Juan Carlos

    2018-06-04

    Input shaping is an Optimal Control feedforward strategy whose ability to define how and when a flexible dynamical system defined by Ordinary Differential Equations (ODEs) and computer controlled would move into its operative space, without command induced unwanted dynamics, has been exhaustively demonstrated. This work examines the issue of Embedded Internet of Things (IoT) Input Shaping with regard to real time control of multibody oscillatory systems whose dynamics are better described by differential algebraic equations (DAEs). An overhead crane hanging a double link multibody payload has been appointed as a benchmark case; it is a multibody, multimode system. This might be worst scenario to implement Input Shaping. The reasons can be found in the wide array of constraints that arise. Firstly, the reliability of the multibody model was tested on a Functional Mock-Up Interface (FMI) with the two link payload suspended from the trolley by comparing the experimental video tapping signals in time domain faced with the signals extracted from the multibody model. The FFTs of the simulated and the experimental signal contain the same frequency harmonics only with somewhat different power due to the real world light damping in the joints. The application of this approach may be extended to other cases i.e., the usefulness of mobile hydraulic cranes is limited because the payload is supported by an overhead cable under tension that allows oscillation to occur during crane motion. If the payload size is not negligible small when compared with the cable length may introduce an additional oscillatory mode that creates a multibody double pendulum. To give the insight into the double pendulum dynamics by Lagrangian methods two slender rods as payloads are analyzed dealing with the overhead crane and a composite revolute-revolute joint is proposed to model the cable of the hydraulic crane, both assumptions facilitates an affordable analysis. This allows developing a general

  15. Linking rigid multibody systems via controllable thin fluid films

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    , this paper gives a theoretical contribution to the combined fields of fluid–structure interaction and vibration control. The methodology is applied to a reciprocating linear compressor, where the dynamics of the mechanical components are described with help of multibody dynamics. The crank is linked......This work deals with the mathematical modelling of multibody systems interconnected via thin fluid films. The dynamics of the fluid films can be actively controlled by means of different types of actuators, allowing significant vibration reduction of the system components. In this framework...... to the rotor via a thin fluid film, where the hydrodynamic pressure is described by the Reynolds equation, which is modified to accommodate the controllable lubrication conditions. The fluid film forces are coupled to the set of nonlinear equations that describes the dynamics of the reciprocating linear...

  16. Constraint Embedding Technique for Multibody System Dynamics

    Science.gov (United States)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with

  17. Parallel Evolutionary Optimization of Multibody Systems with Application to Railway Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Peter [University of Erlangen-Nuremberg, Institute of Applied Mechanics (Germany)], E-mail: eberhard@ltm.uni-erlangen.de; Dignath, Florian [University of Stuttgart, Institute B of Mechanics (Germany)], E-mail: fd@mechb.uni-stuttgart.de; Kuebler, Lars [University of Erlangen-Nuremberg, Institute of Applied Mechanics (Germany)], E-mail: kuebler@ltm.uni-erlangen.de

    2003-03-15

    The optimization of multibody systems usually requires many costly criteria computations since the equations of motion must be evaluated by numerical time integration for each considered design. For actively controlled or flexible multibody systems additional difficulties arise as the criteria may contain non-differentiable points or many local minima. Therefore, in this paper a stochastic evolution strategy is used in combination with parallel computing in order to reduce the computation times whilst keeping the inherent robustness. For the parallelization a master-slave approach is used in a heterogeneous workstation/PC cluster. The pool-of-tasks concept is applied in order to deal with the frequently changing workloads of different machines in the cluster. In order to analyze the performance of the parallel optimization method, the suspension of an ICE passenger coach, modeled as an elastic multibody system, is optimized simultaneously with regard to several criteria including vibration damping and a criterion related to safety against derailment. The iterative and interactive nature of a typical optimization process for technical systems is emphasized.

  18. Parallel Evolutionary Optimization of Multibody Systems with Application to Railway Dynamics

    International Nuclear Information System (INIS)

    Eberhard, Peter; Dignath, Florian; Kuebler, Lars

    2003-01-01

    The optimization of multibody systems usually requires many costly criteria computations since the equations of motion must be evaluated by numerical time integration for each considered design. For actively controlled or flexible multibody systems additional difficulties arise as the criteria may contain non-differentiable points or many local minima. Therefore, in this paper a stochastic evolution strategy is used in combination with parallel computing in order to reduce the computation times whilst keeping the inherent robustness. For the parallelization a master-slave approach is used in a heterogeneous workstation/PC cluster. The pool-of-tasks concept is applied in order to deal with the frequently changing workloads of different machines in the cluster. In order to analyze the performance of the parallel optimization method, the suspension of an ICE passenger coach, modeled as an elastic multibody system, is optimized simultaneously with regard to several criteria including vibration damping and a criterion related to safety against derailment. The iterative and interactive nature of a typical optimization process for technical systems is emphasized

  19. Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model

    Science.gov (United States)

    Wang, Jianhong; Qin, Datong; Ding, Yi

    A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.

  20. CISM Advanced School on Crashworthiness : Energy Management and Occupant Protection

    CERN Document Server

    2001-01-01

    From the fundamentals of impact mechanics and biomechanics to modern analysis and design techniques in impact energy management and occupant protection this book provides an overview of the application of nonlinear finite elements, conceptual modeling and multibody procedures, impact biomechanics, injury mechanisms, occupant mathematical modeling, and human surrogates in crashworthiness.

  1. Validation of flexible multibody dynamics beam formulations using benchmark problems

    NARCIS (Netherlands)

    Bauchau, O.A.; Wu, Genyong; Betsch, P.; Cardona, A.; Gerstmayr, J.; Jonker, Jan B.; Masarati, P.; Sonneville, V.

    2016-01-01

    As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the

  2. Finite Element Multibody Simulation of a Breathing Crack in a Rotor with a Cohesive Zone Model

    OpenAIRE

    Liong, Rugerri Toni; Proppe, Carsten

    2013-01-01

    The breathing mechanism of a transversely cracked shaft and its influence on a rotor system that appears due to shaft weight and inertia forces is studied. The presence of a crack reduces the stiffness of the rotor system and introduces a stiffness variation during the revolution of the shaft. Here, 3D finite element (FE) model and multibody simulation (MBS) are introduced to predict and to analyse the breathing mechanism on a transverse cracked shaft. It is based on a cohesive zone model (CZ...

  3. Partition method and experimental validation for impact dynamics of flexible multibody system

    Science.gov (United States)

    Wang, J. Y.; Liu, Z. Y.; Hong, J. Z.

    2018-06-01

    The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one of the main difficulties in many engineering applications. The numerical approaches being used widely in impact analysis are mainly from two fields: multibody system dynamics (MBS) and computational solid mechanics (CSM). Approaches based on MBS provide a more efficient yet less accurate analysis of the contact/impact problems, while approaches based on CSM are well suited for particularly high accuracy needs, yet require very high computational effort. To bridge the gap between accuracy and efficiency in the dynamic simulation of a flexible multibody system with contacts/impacts, a partition method is presented considering that the contact body is divided into two parts, an impact region and a non-impact region. The impact region is modeled using the finite element method to guarantee the local accuracy, while the non-impact region is modeled using the modal reduction approach to raise the global efficiency. A three-dimensional rod-plate impact experiment is designed and performed to validate the numerical results. The principle for how to partition the contact bodies is proposed: the maximum radius of the impact region can be estimated by an analytical method, and the modal truncation orders of the non-impact region can be estimated by the highest frequency of the signal measured. The simulation results using the presented method are in good agreement with the experimental results. It shows that this method is an effective formulation considering both accuracy and efficiency. Moreover, a more complicated multibody impact problem of a crank slider mechanism is investigated to strengthen this conclusion.

  4. Sub-discretized surface model with application to contact mechanics in multi-body simulation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S; Williams, J

    2008-02-28

    The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.

  5. Multibody system dynamics and mechatronics. Plenary lecture

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, M.H.; Hirsch, K. [Duisburg-Essen Univ., Duisburg (Germany). Faculty of Engineering

    2006-02-15

    Mechatronics as an interdisciplinary combination of domains of mechanical engineering, electrical engineering, electronics, and computer science has developed in industry and universities since the eighties of the last century, and it is meanwhile fully established in many technical areas. The main focus of the mechatronic approach is to extend and to complete the design process of mechanical and more general engineering systems by incorporating from the very beginning sensors and controllers - which includes also the required information processing - and thus being able to generate partly intelligent products. The components and modules of such systems originate from mechanical engineering, from electrical engineering or from other engineering domains. Methods for describing and designing these components and modules are based in the fields of applied mechanics, electrical engineering, system theory, control and automation theory, and information processing. In particular, in mechatronic systems like robots, manipulation systems, machine tools, or all kinds of vehicles, the multibody systems approach offers a powerful tool to model the mechanical properties of the system in an appropriate manner. In this paper, methodologies for the development of formalisms and software for modeling and simulation of multibody and mechatronic systems will be presented and illustrated by examples from automotive systems and robotics. (orig.)

  6. Biomedical Imaging and Computational Modeling in Biomechanics

    CERN Document Server

    Iacoviello, Daniela

    2013-01-01

    This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and iomedical imaging and computational modeling in cardiovascular disease.   The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis.

  7. Research on The Construction of Flexible Multi-body Dynamics Model based on Virtual Components

    Science.gov (United States)

    Dong, Z. H.; Ye, X.; Yang, F.

    2018-05-01

    Focus on the harsh operation condition of space manipulator, which cannot afford relative large collision momentum, this paper proposes a new concept and technology, called soft-contact technology. In order to solve the problem of collision dynamics of flexible multi-body system caused by this technology, this paper also proposes the concepts of virtual components and virtual hinges, and constructs flexible dynamic model based on virtual components, and also studies on its solutions. On this basis, this paper uses NX to carry out model and comparison simulation for space manipulator in 3 different modes. The results show that using the model of multi-rigid body + flexible body hinge + controllable damping can make effective control on amplitude for the force and torque caused by target satellite collision.

  8. Linked-List-Based Multibody Dynamics (MBDyn) Engine

    Science.gov (United States)

    MacLean, John; Brain, Thomas; Wuiocho, Leslie; Huynh, An; Ghosh, Tushar

    2012-01-01

    This new release of MBDyn is a software engine that calculates the dynamics states of kinematic, rigid, or flexible multibody systems. An MBDyn multibody system may consist of multiple groups of articulated chains, trees, or closed-loop topologies. Transient topologies are handled through conservation of energy and momentum. The solution for rigid-body systems is exact, and several configurable levels of nonlinear term fidelity are available for flexible dynamics systems. The algorithms have been optimized for efficiency and can be used for both non-real-time (NRT) and real-time (RT) simulations. Interfaces are currently compatible with NASA's Trick Simulation Environment. This new release represents a significant advance in capability and ease of use. The two most significant new additions are an application programming interface (API) that clarifies and simplifies use of MBDyn, and a link-list infrastructure that allows a single MBDyn instance to propagate an arbitrary number of interacting groups of multibody top ologies. MBDyn calculates state and state derivative vectors for integration using an external integration routine. A Trickcompatible interface is provided for initialization, data logging, integration, and input/output.

  9. Multibody simulations of trolleybus vertical dynamics and influences of spring-damper structural elements

    Directory of Open Access Journals (Sweden)

    Polach P.

    2008-11-01

    Full Text Available Vertical dynamic properties of the ŠKODA 21 Tr low-floor trolleybus were investigated on an artificial test track when driving with a real vehicle and when simulating driving with a multibody model along a virtual test track. Driving along the artificial test track was aimed to determine vertical dynamic properties of the real trolleybus and on the basis of them to verify computer trolleybus models. Time histories and extreme values of the air springs relative deflections are the monitored quantities. Due to differences of the experiments and the computer simulations results the influences of the characteristics of the spring-damper structural elements of the axles suspension and the radial characteristics of the tires used in the trolleybus multibody model on the extreme values of the monitored quantities are evaluated.

  10. Exploration of molecular interactions in cholesterol superlattices: effect of multibody interactions.

    Science.gov (United States)

    Huang, Juyang

    2002-08-01

    Experimental evidences have indicated that cholesterol may adapt highly regular lateral distributions (i.e., superlattices) in a phospholipid bilayer. We investigated the formations of superlattices at cholesterol mole fraction of 0.154, 0.25, 0.40, and 0.5 using Monte Carlo simulation. We found that in general, conventional pairwise-additive interactions cannot produce superlattices. Instead, a multibody (nonpairwise) interaction is required. Cholesterol superlattice formation reveals that although the overall interaction between cholesterol and phospholipids is favorable, it contains two large opposing components: an interaction favoring cholesterol-phospholipid mixing and an unfavorable acyl chain multibody interaction that increases nonlinearly with the number of cholesterol contacts. The magnitudes of interactions are in the order of kT. The physical origins of these interactions can be explained by our umbrella model. They most likely come from the requirement for polar phospholipid headgroups to cover the nonpolar cholesterol to avoid the exposure of cholesterol to water and from the sharp decreasing of acyl chain conformation entropy due to cholesterol contact. This study together with our previous work demonstrate that the driving force of cholesterol-phospholipid mixing is a hydrophobic interaction, and multibody interactions dominate others over a wide range of cholesterol concentration.

  11. Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research.

    Science.gov (United States)

    Erdemir, Ahmet; Hunter, Peter J; Holzapfel, Gerhard A; Loew, Leslie M; Middleton, John; Jacobs, Christopher R; Nithiarasu, Perumal; Löhner, Rainlad; Wei, Guowei; Winkelstein, Beth A; Barocas, Victor H; Guilak, Farshid; Ku, Joy P; Hicks, Jennifer L; Delp, Scott L; Sacks, Michael; Weiss, Jeffrey A; Ateshian, Gerard A; Maas, Steve A; McCulloch, Andrew D; Peng, Grace C Y

    2018-02-01

    The role of computational modeling for biomechanics research and related clinical care will be increasingly prominent. The biomechanics community has been developing computational models routinely for exploration of the mechanics and mechanobiology of diverse biological structures. As a result, a large array of models, data, and discipline-specific simulation software has emerged to support endeavors in computational biomechanics. Sharing computational models and related data and simulation software has first become a utilitarian interest, and now, it is a necessity. Exchange of models, in support of knowledge exchange provided by scholarly publishing, has important implications. Specifically, model sharing can facilitate assessment of reproducibility in computational biomechanics and can provide an opportunity for repurposing and reuse, and a venue for medical training. The community's desire to investigate biological and biomechanical phenomena crossing multiple systems, scales, and physical domains, also motivates sharing of modeling resources as blending of models developed by domain experts will be a required step for comprehensive simulation studies as well as the enhancement of their rigor and reproducibility. The goal of this paper is to understand current perspectives in the biomechanics community for the sharing of computational models and related resources. Opinions on opportunities, challenges, and pathways to model sharing, particularly as part of the scholarly publishing workflow, were sought. A group of journal editors and a handful of investigators active in computational biomechanics were approached to collect short opinion pieces as a part of a larger effort of the IEEE EMBS Computational Biology and the Physiome Technical Committee to address model reproducibility through publications. A synthesis of these opinion pieces indicates that the community recognizes the necessity and usefulness of model sharing. There is a strong will to facilitate

  12. Roller-chain Drives Mechanics using Multibody Dynamics Tools

    DEFF Research Database (Denmark)

    Ambrosio, Jorge A. C.; Hansen, John Michael

    1999-01-01

    An integrated model for the simulation of roller-chain drives based on a multibody dynamics methodology is presented here in order to describeits complex dynamic behavior. The chain is modeled by masses lumped at the roller locations and connected by translational spring-damper elements in order ...... engagement on the sprockets responsible for the polygonal effect is thoroughly analyzed and the induced impulsive forces developed during that action are treated by a strategy where kinematic constraints between sprockets and rollers are added and deleted....

  13. Sensitivity of Tumor Motion Simulation Accuracy to Lung Biomechanical Modeling Approaches and Parameters

    OpenAIRE

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional com...

  14. Computational biomechanics for medicine imaging, modeling and computing

    CERN Document Server

    Doyle, Barry; Wittek, Adam; Nielsen, Poul; Miller, Karol

    2016-01-01

    The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This volume comprises eighteen of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, UK, Switzerland, Scotland, France and Russia. Some of the interesting topics discussed are: tailored computational models; traumatic brain injury; soft-tissue mechanics; medical image analysis; and clinically-relevant simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.

  15. State and force observers based on multibody models and the indirect Kalman filter

    Science.gov (United States)

    Sanjurjo, Emilio; Dopico, Daniel; Luaces, Alberto; Naya, Miguel Ángel

    2018-06-01

    The aim of this work is to present two new methods to provide state observers by combining multibody simulations with indirect extended Kalman filters. One of the methods presented provides also input force estimation. The observers have been applied to two mechanism with four different sensor configurations, and compared to other multibody-based observers found in the literature to evaluate their behavior, namely, the unscented Kalman filter (UKF), and the indirect extended Kalman filter with simplified Jacobians (errorEKF). The new methods have some more computational cost than the errorEKF, but still much less than the UKF. Regarding their accuracy, both are better than the errorEKF. The method with input force estimation outperforms also the UKF, while the method without force estimation achieves results almost identical to those of the UKF. All the methods have been implemented as a reusable MATLAB® toolkit which has been released as Open Source in https://github.com/MBDS/mbde-matlab.

  16. Effect of material property heterogeneity on biomechanical modeling of prostate under deformation

    International Nuclear Information System (INIS)

    Samavati, Navid; McGrath, Deirdre M; Ménard, Cynthia; Jewett, Michael A S; Van der Kwast, Theo; Brock, Kristy K

    2015-01-01

    Biomechanical model based deformable image registration has been widely used to account for prostate deformation in various medical imaging procedures. Biomechanical material properties are important components of a biomechanical model. In this study, the effect of incorporating tumor-specific material properties in the prostate biomechanical model was investigated to provide insight into the potential impact of material heterogeneity on the prostate deformation calculations. First, a simple spherical prostate and tumor model was used to analytically describe the deformations and demonstrate the fundamental effect of changes in the tumor volume and stiffness in the modeled deformation. Next, using a clinical prostate model, a parametric approach was used to describe the variations in the heterogeneous prostate model by changing tumor volume, stiffness, and location, to show the differences in the modeled deformation between heterogeneous and homogeneous prostate models. Finally, five clinical prostatectomy examples were used in separately performed homogeneous and heterogeneous biomechanical model based registrations to describe the deformations between 3D reconstructed histopathology images and ex vivo magnetic resonance imaging, and examine the potential clinical impact of modeling biomechanical heterogeneity of the prostate. The analytical formulation showed that increasing the tumor volume and stiffness could significantly increase the impact of the heterogeneous prostate model in the calculated displacement differences compared to the homogeneous model. The parametric approach using a single prostate model indicated up to 4.8 mm of displacement difference at the tumor boundary compared to a homogeneous model. Such differences in the deformation of the prostate could be potentially clinically significant given the voxel size of the ex vivo MR images (0.3  ×  0.3  ×  0.3 mm). However, no significant changes in the registration accuracy were

  17. Modelling biomechanics of bark patterning in grasstrees.

    Science.gov (United States)

    Dale, Holly; Runions, Adam; Hobill, David; Prusinkiewicz, Przemyslaw

    2014-09-01

    Bark patterns are a visually important characteristic of trees, typically attributed to fractures occurring during secondary growth of the trunk and branches. An understanding of bark pattern formation has been hampered by insufficient information regarding the biomechanical properties of bark and the corresponding difficulties in faithfully modelling bark fractures using continuum mechanics. This study focuses on the genus Xanthorrhoea (grasstrees), which have an unusual bark-like structure composed of distinct leaf bases connected by sticky resin. Due to its discrete character, this structure is well suited for computational studies. A dynamic computational model of grasstree development was created. The model captures both the phyllotactic pattern of leaf bases during primary growth and the changes in the trunk's width during secondary growth. A biomechanical representation based on a system of masses connected by springs is used for the surface of the trunk, permitting the emergence of fractures during secondary growth to be simulated. The resulting fracture patterns were analysed statistically and compared with images of real trees. The model reproduces key features of grasstree bark patterns, including their variability, spanning elongated and reticulate forms. The patterns produced by the model have the same statistical character as those seen in real trees. The model was able to support the general hypothesis that the patterns observed in the grasstree bark-like layer may be explained in terms of mechanical fractures driven by secondary growth. Although the generality of the results is limited by the unusual structure of grasstree bark, it supports the hypothesis that bark pattern formation is primarily a biomechanical phenomenon.

  18. Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements

    International Nuclear Information System (INIS)

    Garcia-Vallejo, D.; Mayo, J.; Escalona, J. L.; Dominguez, J.

    2008-01-01

    Multibody systems generally contain solids with appreciable deformations and which decisively influence the dynamics of the system. These solids have to be modeled by means of special formulations for flexible solids. At the same time, other solids are of such a high stiffness that they may be considered rigid, which simplifies their modeling. For these reasons, for a rigid-flexible multibody system, two types of formulations coexist in the equations of the system. Among the different possibilities provided in the literature on the material, the formulation in natural coordinates and the formulation in absolute nodal coordinates are utilized in this paper to model the rigid and flexible solids, respectively. This paper contains a mixed formulation based on the possibility of sharing coordinates between a rigid solid and a flexible solid. The global mass matrix of the system is shown to be constant and, in addition, many of the constraint equations obtained upon utilizing these formulations are linear and can be eliminated

  19. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    Science.gov (United States)

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  20. Tree branching: Leonardo da Vinci's rule versus biomechanical models.

    Science.gov (United States)

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.

  1. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  2. A new version of transfer matrix method for multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Rui, Xiaoting, E-mail: ruixt@163.net [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Bestle, Dieter, E-mail: bestle@b-tu.de [Brandenburg University of Technology, Engineering Mechanics and Vehicle Dynamics (Germany); Zhang, Jianshu, E-mail: zhangdracpa@sina.com; Zhou, Qinbo, E-mail: zqb912-new@163.com [Nanjing University of Science and Technology, Institute of Launch Dynamics (China)

    2016-10-15

    In order to avoid the global dynamics equations and increase the computational efficiency for multibody system dynamics (MSD), the transfer matrix method of multibody system (MSTMM) has been developed and applied very widely in research and engineering in recent 20 years. It differs from ordinary methods in multibody system dynamics with respect to the feature that there is no need for a global dynamics equation, and it uses low-order matrices for high computational efficiency. For linear systems, MSTMM is exact even if continuous elements like beams are involved. The discrete time MSTMM, however, has to use local linearization. In order to release the method from such approximations, a new version of MSTMM is presented in this paper where translational and angular accelerations, on the one hand, and internal forces and moments, on the other hand, are used as state variables. Already linear relationships among these quantities are utilized, which results in new element transfer matrices and algorithms making the study of multibody systems as simple as the study of single bodies. The proposed approach also allows combining MSTMM with any general numerical integration procedure. Some numerical examples of MSD are given to demonstrate the proposed method.

  3. Virtual design software for mechanical system dynamics using transfer matrix method of multibody system and its application

    Directory of Open Access Journals (Sweden)

    Hai-gen Yang

    2015-09-01

    Full Text Available The complex mechanical systems such as high-speed trains, multiple launch rocket system, self-propelled artillery, and industrial robots are becoming increasingly larger in scale and more complicated in structure. Designing these products often requires complex model design, multibody system dynamics calculation, and analysis of large amounts of data repeatedly. In recent 20 years, the transfer matrix method of multibody system has been widely applied in engineering fields and welcomed at home and in abroad for the following features: without global dynamic equations of the system, low orders of involved system matrices, high computational efficiency, and high programming. In order to realize the rapid and visual simulation for complex mechanical system virtual design using transfer matrix method of multibody system, a virtual design software named MSTMMSim is designed and implemented. In the MSTMMSim, the transfer matrix method of multibody system is used as the solver for dynamic modeling and calculation; the Open CASCADE is used for solid geometry modeling. Various auxiliary analytical tools such as curve plot and animation display are provided in the post-processor to analyze and process the simulation results. Two numerical examples are given to verify the validity and accuracy of the software, and a multiple launch rocket system engineering example is given at the end of this article to show that the software provides a powerful platform for complex mechanical systems simulation and virtual design.

  4. Biomechanical model-based displacement estimation in micro-sensor motion capture

    International Nuclear Information System (INIS)

    Meng, X L; Sun, S Y; Wu, J K; Zhang, Z Q; 3 Building, 21 Heng Mui Keng Terrace (Singapore))" data-affiliation=" (Department of Electrical and Computer Engineering, National University of Singapore (NUS), 02-02-10 I3 Building, 21 Heng Mui Keng Terrace (Singapore))" >Wong, W C

    2012-01-01

    In micro-sensor motion capture systems, the estimation of the body displacement in the global coordinate system remains a challenge due to lack of external references. This paper proposes a self-contained displacement estimation method based on a human biomechanical model to track the position of walking subjects in the global coordinate system without any additional supporting infrastructures. The proposed approach makes use of the biomechanics of the lower body segments and the assumption that during walking there is always at least one foot in contact with the ground. The ground contact joint is detected based on walking gait characteristics and used as the external references of the human body. The relative positions of the other joints are obtained from hierarchical transformations based on the biomechanical model. Anatomical constraints are proposed to apply to some specific joints of the lower body to further improve the accuracy of the algorithm. Performance of the proposed algorithm is compared with an optical motion capture system. The method is also demonstrated in outdoor and indoor long distance walking scenarios. The experimental results demonstrate clearly that the biomechanical model improves the displacement accuracy within the proposed framework. (paper)

  5. Multibody neutrino exchange in a neutron star neutrino sea and border effects

    CERN Document Server

    Abada, A; Rodríguez-Quintero, J; Abada, As

    1998-01-01

    The interaction due to the exchange of massless neutrinos between neutrons is a long-range force. Border effects on this multibody exchange inside a dense core are studied and computed analytically in 1 + 1 dimensions. We demonstrate in this work that a proper treatment of the star's border effect automatically incorporates the condensate contribution as a consequence of the appropriate boundary conditions for the neutrino Feynman propagator inside the star. The total multibody exchange contribution is infrared-safe and vanishes exactly in 1 + 1 dimensions. The general conclusion of this work is that the border effect does not modify the result that neutrino exchange is infrared-safe. This toy model prepares the ground and gives the tools for the study of the realistic 3 + 1 star.

  6. Biological variability in biomechanical engineering research: Significance and meta-analysis of current modeling practices.

    Science.gov (United States)

    Cook, Douglas; Julias, Margaret; Nauman, Eric

    2014-04-11

    Biological systems are characterized by high levels of variability, which can affect the results of biomechanical analyses. As a review of this topic, we first surveyed levels of variation in materials relevant to biomechanics, and compared these values to standard engineered materials. As expected, we found significantly higher levels of variation in biological materials. A meta-analysis was then performed based on thorough reviews of 60 research studies from the field of biomechanics to assess the methods and manner in which biological variation is currently handled in our field. The results of our meta-analysis revealed interesting trends in modeling practices, and suggest a need for more biomechanical studies that fully incorporate biological variation in biomechanical models and analyses. Finally, we provide some case study example of how biological variability may provide valuable insights or lead to surprising results. The purpose of this study is to promote the advancement of biomechanics research by encouraging broader treatment of biological variability in biomechanical modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Evolution of Flexible Multibody Dynamics for Simulation Applications Supporting Human Spaceflight

    Science.gov (United States)

    Huynh, An; Brain, Thomas A.; MacLean, John R.; Quiocho, Leslie J.

    2016-01-01

    During the course of transition from the Space Shuttle and International Space Station programs to the Orion and Journey to Mars exploration programs, a generic flexible multibody dynamics formulation and associated software implementation has evolved to meet an ever changing set of requirements at the NASA Johnson Space Center (JSC). Challenging problems related to large transitional topologies and robotic free-flyer vehicle capture/ release, contact dynamics, and exploration missions concept evaluation through simulation (e.g., asteroid surface operations) have driven this continued development. Coupled with this need is the requirement to oftentimes support human spaceflight operations in real-time. Moreover, it has been desirable to allow even more rapid prototyping of on-orbit manipulator and spacecraft systems, to support less complex infrastructure software for massively integrated simulations, to yield further computational efficiencies, and to take advantage of recent advances and availability of multi-core computing platforms. Since engineering analysis, procedures development, and crew familiarity/training for human spaceflight is fundamental to JSC's charter, there is also a strong desire to share and reuse models in both the non-realtime and real-time domains, with the goal of retaining as much multibody dynamics fidelity as possible. Three specific enhancements are reviewed here: (1) linked list organization to address large transitional topologies, (2) body level model order reduction, and (3) parallel formulation/implementation. This paper provides a detailed overview of these primary updates to JSC's flexible multibody dynamics algorithms as well as a comparison of numerical results to previous formulations and associated software.

  8. How to combine binary collision approximation and multi-body potential for molecular dynamics

    International Nuclear Information System (INIS)

    Saito, Seiki; Nakamura, Hiroaki; Takayama, Arimichi; Ito, Atsushi M.; Kenmotsu, Takahiro

    2010-01-01

    Our group has been developing a hybrid simulation of the molecular dynamics (MD) and the binary collision approximation (BCA) simulation. One of the main problems of this hybridization model is that the multi-body potential suddenly appears at the moment when the simulation method switches from the BCA to the MD. This instantaneously emerged multi-body potential causes the acceleration or deceleration of atoms of the system. To solve this problem, the kinetic energy of atoms should be corrected to conserve the total energy in the system. This paper gives the solution. The hybrid simulation for hydrogen atom injection into a graphite material is executed in order to demonstrate the solution. (author)

  9. Event-based scenario manager for multibody dynamics simulation of heavy load lifting operations in shipyards

    Directory of Open Access Journals (Sweden)

    Sol Ha

    2016-01-01

    Full Text Available This paper suggests an event-based scenario manager capable of creating and editing a scenario for shipbuilding process simulation based on multibody dynamics. To configure various situation in shipyards and easily connect with multibody dynamics, the proposed method has two main concepts: an Actor and an Action List. The Actor represents the anatomic unit of action in the multibody dynamics and can be connected to a specific component of the dynamics kernel such as the body and joint. The user can make a scenario up by combining the actors. The Action List contains information for arranging and executing the actors. Since the shipbuilding process is a kind of event-based sequence, all simulation models were configured using Discrete EVent System Specification (DEVS formalism. The proposed method was applied to simulations of various operations in shipyards such as lifting and erection of a block and heavy load lifting operation using multiple cranes.

  10. Criteria of benchmark selection for efficient flexible multibody system formalisms

    Directory of Open Access Journals (Sweden)

    Valášek M.

    2007-10-01

    Full Text Available The paper deals with the selection process of benchmarks for testing and comparing efficient flexible multibody formalisms. The existing benchmarks are briefly summarized. The purposes for benchmark selection are investigated. The result of this analysis is the formulation of the criteria of benchmark selection for flexible multibody formalisms. Based on them the initial set of suitable benchmarks is described. Besides that the evaluation measures are revised and extended.

  11. Correlation of breast image alignment using biomechanical modelling

    Science.gov (United States)

    Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2009-02-01

    Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.

  12. Emulating facial biomechanics using multivariate partial least squares surrogate models

    OpenAIRE

    Martens, Harald; Wu, Tim; Hunter, Peter; Mithraratne, Kumar

    2014-01-01

    This is the author’s final, accepted and refereed manuscript to the article. Locked until 2015-05-06 A detailed biomechanical model of the human face driven by a network of muscles is a useful tool in relating the muscle activities to facial deformations. However, lengthy computational times often hinder its applications in practical settings. The objective of this study is to replace precise but computationally demanding biomechanical model by a much faster multivariate meta-mode...

  13. Validation of Multibody Program to Optimize Simulated Trajectories II Parachute Simulation with Interacting Forces

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.

    2009-01-01

    A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.

  14. 6 DOF articulated-arm robot and mobile platform: Dynamic modelling as Multibody System and its validation via Experimental Modal Analysis.

    Science.gov (United States)

    Toledo Fuentes, A.; Kipfmueller, M.; José Prieto, M. A.

    2017-10-01

    Mobile manipulators are becoming a key instrument to increase the flexibility in industrial processes. Some of their requirements include handling of objects with different weights and sizes and their “fast” transportation, without jeopardizing production workers and machines. The compensation of forces affecting the system dynamic is therefore needed to avoid unwanted oscillations and tilting by sudden accelerations and decelerations. One general solution may be the implementation of external positioning elements to active stabilize the system. To accomplish the approach, the dynamic behavior of a robotic arm and a mobile platform was investigated to develop the stabilization mechanism using multibody simulations. The methodology used was divided into two phases for each subsystem: their natural frequencies and modal shapes were obtained using experimental modal analyses. Then, based on these experimental results, multibody simulation models (MBS) were set up and its dynamical parameters adjusted. Their modal shapes together with their obtained natural frequencies allowed a quantitative and qualitative analysis. In summary, the MBS models were successfully validated with the real subsystems, with a maximal percentage error of 15%. These models will serve as the basis for future steps in the design of the external actuators and its control strategy using a co-simulation tool.

  15. Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics

    CERN Document Server

    2016-01-01

    This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...

  16. Gear fatigue damage for a 500 kW wind turbine exposed to increasing turbulence using a flexible multibody model

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix; Pedersen, Niels Leergaard; Sørensen, Jens Nørkær

    2014-01-01

    This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind eld, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Dierent turbulence levels...... and therefore increased fatigue damage levels. This article contributes to a better understanding of gear fatigue damage when turbulence is increased (e.g. in the center of large wind farms or at places where turbulence is pronounced)....

  17. Searches for $CP$ violation in multi-body charm decays and studies of radiation damage in the LHCb VELO detector

    CERN Document Server

    Chen, Shanzhen; Gersabeck, Marco

    This thesis presents two searches for direct charge-parity ($CP$) violation in multi-body decays in the charm-sector at LHCb, the development of techniques for performing model-independent searches for direct $CP$ violation in multi-body decays, and the development of studies of radiation damage effects in the LHCb vertex detector. LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. The detector includes a high precision vertex detector surrounding the $pp$ interaction region made with silicon strip sensors. Studies of the effects of radiation damage in LHC run-2 for the operation of this detector are presented and the determination of the operational bias voltages of the silicon strip sensors is discussed. An unbinned model independent technique for $CP$ violation searches in multi-body decays called the energy test is used for the first time. The selection and treatment of the coordinates used to describe the phase-space of the de...

  18. On the constraints violation in forward dynamics of multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Filipe [University of Minho, Department of Mechanical Engineering (Portugal); Souto, António P. [University of Minho, Department of Textile Engineering (Portugal); Flores, Paulo, E-mail: pflores@dem.uminho.pt [University of Minho, Department of Mechanical Engineering (Portugal)

    2017-04-15

    It is known that the dynamic equations of motion for constrained mechanical multibody systems are frequently formulated using the Newton–Euler’s approach, which is augmented with the acceleration constraint equations. This formulation results in the establishment of a mixed set of partial differential and algebraic equations, which are solved in order to predict the dynamic behavior of general multibody systems. The classical solution of the equations of motion is highly prone to constraints violation because the position and velocity constraint equations are not fulfilled. In this work, a general and comprehensive methodology to eliminate the constraints violation at the position and velocity levels is offered. The basic idea of the described approach is to add corrective terms to the position and velocity vectors with the intent to satisfy the corresponding kinematic constraint equations. These corrective terms are evaluated as a function of the Moore–Penrose generalized inverse of the Jacobian matrix and of the kinematic constraint equations. The described methodology is embedded in the standard method to solve the equations of motion based on the technique of Lagrange multipliers. Finally, the effectiveness of the described methodology is demonstrated through the dynamic modeling and simulation of different planar and spatial multibody systems. The outcomes in terms of constraints violation at the position and velocity levels, conservation of the total energy and computational efficiency are analyzed and compared with those obtained with the standard Lagrange multipliers method, the Baumgarte stabilization method, the augmented Lagrangian formulation, the index-1 augmented Lagrangian, and the coordinate partitioning method.

  19. Computational biomechanics

    International Nuclear Information System (INIS)

    Ethier, C.R.

    2004-01-01

    Computational biomechanics is a fast-growing field that integrates modern biological techniques and computer modelling to solve problems of medical and biological interest. Modelling of blood flow in the large arteries is the best-known application of computational biomechanics, but there are many others. Described here is work being carried out in the laboratory on the modelling of blood flow in the coronary arteries and on the transport of viral particles in the eye. (author)

  20. Model Reduction in Co-Rotated Multi-Body Dynamics Based on the Dual Craig-Bampton Method

    NARCIS (Netherlands)

    Weerathunge Kadawathagedara, S.T.; Rixen, D.J.

    2011-01-01

    A new reduction method for dynamical analsis of multi-body systems is presented in this paper. It fundamentally differs from the ones previously published in the way kinematical constraints are handled. Our approach is based on component mode synthesis, but the specificity of articulated mechanism,

  1. Static analysis of large-scale multibody system using joint coordinates and spatial algebra operator.

    Science.gov (United States)

    Omar, Mohamed A

    2014-01-01

    Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.

  2. Verification, Validation and Credibility Assessment of a Computational Model of the Advanced Resistive Exercise Device (ARED)

    Science.gov (United States)

    Werner, C. R.; Humphreys, B. T.; Mulugeta, L.

    2014-01-01

    The Advanced Resistive Exercise Device (ARED) is the resistive exercise device used by astronauts on the International Space Station (ISS) to mitigate bone loss and muscle atrophy due to extended exposure to microgravity (micro g). The Digital Astronaut Project (DAP) has developed a multi-body dynamics model of biomechanics models for use in spaceflight exercise physiology research and operations. In an effort to advance model maturity and credibility of the ARED model, the DAP performed verification, validation and credibility (VV and C) assessment of the analyses of the model in accordance to NASA-STD-7009 'Standards for Models and Simulations'.

  3. Recursive thoughts on the simulation of the flexible multibody dynamics of slender offshore structures

    Science.gov (United States)

    Schilder, J.; Ellenbroek, M.; de Boer, A.

    2017-12-01

    In this work, the floating frame of reference formulation is used to create a flexible multibody model of slender offshore structures such as pipelines and risers. It is shown that due to the chain-like topology of the considered structures, the equation of motion can be expressed in terms of absolute interface coordinates. In the presented form, kinematic constraint equations are satisfied explicitly and the Lagrange multipliers are eliminated from the equations. Hence, the structures can be conveniently coupled to finite element or multibody models of for example seabed and vessel. The chain-like topology enables the efficient use of recursive solution procedures for both transient dynamic analysis and equilibrium analysis. For this, the transfer matrix method is used. In order to improve the convergence of the equilibrium analysis, the analytical solution of an ideal catenary is used as an initial configuration, reducing the number of required iterations.

  4. Fluid-structure interaction-based biomechanical perception model for tactile sensing.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available The reproduced tactile sensation of haptic interfaces usually selectively reproduces a certain object attribute, such as the object's material reflected by vibration and its surface shape by a pneumatic nozzle array. Tactile biomechanics investigates the relation between responses to an external load stimulus and tactile perception and guides the design of haptic interface devices via a tactile mechanism. Focusing on the pneumatic haptic interface, we established a fluid-structure interaction-based biomechanical model of responses to static and dynamic loads and conducted numerical simulation and experiments. This model provides a theoretical basis for designing haptic interfaces and reproducing tactile textures.

  5. Efficient approach for simulating response of multi-body structure in reactor core subjected to seismic loading

    International Nuclear Information System (INIS)

    Zhang Hongkun; Cen Song; Wang Haitao; Cheng Huanyu

    2012-01-01

    An efficient 3D approach is proposed for simulating the complicated responses of the multi-body structure in reactor core under seismic loading. By utilizing the rigid-body and connector functions of the software Abaqus, the multi-body structure of the reactor core is simplified as a mass-point system interlinked by spring-dashpot connectors. And reasonable schemes are used for determining various connector coefficients. Furthermore, a scripting program is also complied for the 3D parametric modeling. Numerical examples show that, the proposed method can not only produce the results which satisfy the engineering requirements, but also improve the computational efficiency more than 100 times. (authors)

  6. A biomechanical model of mammographic compressions.

    Science.gov (United States)

    Chung, J H; Rajagopal, V; Nielsen, P M F; Nash, M P

    2008-02-01

    A number of biomechanical models have been proposed to improve nonrigid registration techniques for multimodal breast image alignment. A deformable breast model may also be useful for overcoming difficulties in interpreting 2D X-ray projections (mammograms) of 3D volumes (breast tissues). If a deformable model could accurately predict the shape changes that breasts undergo during mammography, then the model could serve to localize suspicious masses (visible in mammograms) in the unloaded state, or in any other deformed state required for further investigations (such as biopsy or other medical imaging modalities). In this paper, we present a validation study that was conducted in order to develop a biomechanical model based on the well-established theory of continuum mechanics (finite elasticity theory with contact mechanics) and demonstrate its use for this application. Experimental studies using gel phantoms were conducted to test the accuracy in predicting mammographic-like deformations. The material properties of the gel phantom were estimated using a nonlinear optimization process, which minimized the errors between the experimental and the model-predicted surface data by adjusting the parameter associated with the neo-Hookean constitutive relation. Two compressions (the equivalent of cranio-caudal and medio-lateral mammograms) were performed on the phantom, and the corresponding deformations were recorded using a MRI scanner. Finite element simulations were performed to mimic the experiments using the estimated material properties with appropriate boundary conditions. The simulation results matched the experimental recordings of the deformed phantom, with a sub-millimeter root-mean-square error for each compression state. Having now validated our finite element model of breast compression, the next stage is to apply the model to clinical images.

  7. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters.

    Science.gov (United States)

    Tehrani, Joubin Nasehi; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu; Wang, Jing

    2015-11-21

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney-Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney-Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney-Rivlin material model along left-right, anterior-posterior, and superior-inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation.

  8. Study on Parallel Processing for Efficient Flexible Multibody Analysis based on Subsystem Synthesis Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jong-Boo; Song, Hajun; Kim, Sung-Soo [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2017-06-15

    Flexible multibody simulations are widely used in the industry to design mechanical systems. In flexible multibody dynamics, deformation coordinates are described either relatively in the body reference frame that is floating in the space or in the inertial reference frame. Moreover, these deformation coordinates are generated based on the discretization of the body according to the finite element approach. Therefore, the formulation of the flexible multibody system always deals with a huge number of degrees of freedom and the numerical solution methods require a substantial amount of computational time. Parallel computational methods are a solution for efficient computation. However, most of the parallel computational methods are focused on the efficient solution of large-sized linear equations. For multibody analysis, we need to develop an efficient formulation that could be suitable for parallel computation. In this paper, we developed a subsystem synthesis method for a flexible multibody system and proposed efficient parallel computational schemes based on the OpenMP API in order to achieve efficient computation. Simulations of a rotating blade system, which consists of three identical blades, were carried out with two different parallel computational schemes. Actual CPU times were measured to investigate the efficiency of the proposed parallel schemes.

  9. A novel biomechanical model assessing continuous orthodontic archwire activation

    Science.gov (United States)

    Canales, Christopher; Larson, Matthew; Grauer, Dan; Sheats, Rose; Stevens, Clarke; Ko, Ching-Chang

    2013-01-01

    Objective The biomechanics of a continuous archwire inserted into multiple orthodontic brackets is poorly understood. The purpose of this research was to apply the birth-death technique to simulate insertion of an orthodontic wire and consequent transfer of forces to the dentition in an anatomically accurate model. Methods A digital model containing the maxillary dentition, periodontal ligament (PDL), and surrounding bone was constructed from human computerized tomography data. Virtual brackets were placed on four teeth (central and lateral incisors, canine and first premolar), and a steel archwire (0.019″ × 0.025″) with a 0.5 mm step bend to intrude the lateral incisor was virtually inserted into the bracket slots. Forces applied to the dentition and surrounding structures were simulated utilizing the birth-death technique. Results The goal of simulating a complete bracket-wire system on accurate anatomy including multiple teeth was achieved. Orthodontic force delivered by the wire-bracket interaction was: central incisor 19.1 N, lateral incisor 21.9 N, and canine 19.9 N. Loading the model with equivalent point forces showed a different stress distribution in the PDL. Conclusions The birth-death technique proved to be a useful biomechanical simulation method for placement of a continuous archwire in orthodontic brackets. The ability to view the stress distribution throughout proper anatomy and appliances advances understanding of orthodontic biomechanics. PMID:23374936

  10. Two-Segment Foot Model for the Biomechanical Analysis of Squat

    OpenAIRE

    Panero, E.; Gastaldi, L.; Rapp, W.

    2017-01-01

    Squat exercise is acquiring interest in many fields, due to its benefits in improving health and its biomechanical similarities to a wide range of sport motions and the recruitment of many body segments in a single maneuver. Several researches had examined considerable biomechanical aspects of lower limbs during squat, but not without limitations. The main goal of this study focuses on the analysis of the foot contribution during a partial body weight squat, using a two-segment foot model tha...

  11. Sensitivity of tumor motion simulation accuracy to lung biomechanical modeling approaches and parameters

    International Nuclear Information System (INIS)

    Tehrani, Joubin Nasehi; Wang, Jing; Yang, Yin; Werner, Rene; Lu, Wei; Low, Daniel; Guo, Xiaohu

    2015-01-01

    Finite element analysis (FEA)-based biomechanical modeling can be used to predict lung respiratory motion. In this technique, elastic models and biomechanical parameters are two important factors that determine modeling accuracy. We systematically evaluated the effects of lung and lung tumor biomechanical modeling approaches and related parameters to improve the accuracy of motion simulation of lung tumor center of mass (TCM) displacements. Experiments were conducted with four-dimensional computed tomography (4D-CT). A Quasi-Newton FEA was performed to simulate lung and related tumor displacements between end-expiration (phase 50%) and other respiration phases (0%, 10%, 20%, 30%, and 40%). Both linear isotropic and non-linear hyperelastic materials, including the neo-Hookean compressible and uncoupled Mooney–Rivlin models, were used to create a finite element model (FEM) of lung and tumors. Lung surface displacement vector fields (SDVFs) were obtained by registering the 50% phase CT to other respiration phases, using the non-rigid demons registration algorithm. The obtained SDVFs were used as lung surface displacement boundary conditions in FEM. The sensitivity of TCM displacement to lung and tumor biomechanical parameters was assessed in eight patients for all three models. Patient-specific optimal parameters were estimated by minimizing the TCM motion simulation errors between phase 50% and phase 0%. The uncoupled Mooney–Rivlin material model showed the highest TCM motion simulation accuracy. The average TCM motion simulation absolute errors for the Mooney–Rivlin material model along left-right, anterior–posterior, and superior–inferior directions were 0.80 mm, 0.86 mm, and 1.51 mm, respectively. The proposed strategy provides a reliable method to estimate patient-specific biomechanical parameters in FEM for lung tumor motion simulation. (paper)

  12. Comparative multibody dynamics analysis of falls from playground climbing frames

    OpenAIRE

    Forero Rueda, Manuel A.; Gilchrist, M. D.

    2009-01-01

    This paper shows the utility of multibody dynamics in evaluating changes in injury related parameters of the head and lower limbs of children following falls from playground climbing frames. A particular fall case was used as a starting point to analyze the influence of surface properties, posture of the body at impact, and intermediate collisions against the climbing frame before impacting the ground. Simulations were made using the 6-year-old pedestrian MADYMO rigid body model and scaled he...

  13. Multibody Dynamic Stress Simulation of Rigid-Flexible Shovel Crawler Shoes

    Directory of Open Access Journals (Sweden)

    Samuel Frimpong

    2016-06-01

    Full Text Available Electric shovels are used in surface mining operations to achieve economic production capacities. The capital investments and operating costs associated with the shovels deployed in the Athabasca oil sands formation are high due to the abrasive conditions. The shovel crawler shoes interact with sharp and abrasive sand particles, and, thus, are subjected to high transient dynamic stresses. These high stresses cause wear and tear leading to crack initiation, propagation and premature fatigue failure. The objective of this paper is to develop a model to characterize the crawler stresses and deformation for the P&H 4100C BOSS during propel and loading using rigid-flexible multi-body dynamic theory. A 3-D virtual prototype model of the rigid-flexible crawler track assembly and its interactions with oil sand formation is simulated to capture the model dynamics within multibody dynamics software MSC ADAMS. The modal and stress shapes and modal loads due to machine weight for each flexible crawler shoes are generated from finite element analysis (FEA. The modal coordinates from the simulation are combined with mode and stress shapes using modal superposition method to calculate real-time stresses and deformation of flexible crawler shoes. The results show a maximum von Mises stress value of 170 MPa occurring in the driving crawler shoe during the propel motion. This study provides a foundation for the subsequent fatigue life analysis of crawler shoes for extending crawler service life.

  14. Quantitative modelling of the biomechanics of the avian syrinx

    DEFF Research Database (Denmark)

    Elemans, Coen P. H.; Larsen, Ole Næsbye; Hoffmann, Marc R.

    2003-01-01

    We review current quantitative models of the biomechanics of bird sound production. A quantitative model of the vocal apparatus was proposed by Fletcher (1988). He represented the syrinx (i.e. the portions of the trachea and bronchi with labia and membranes) as a single membrane. This membrane acts...

  15. Elastic Multibody Dynamics A Direct Ritz Approach

    CERN Document Server

    Bremer, H

    2008-01-01

    This textbook is an introduction to and exploration of a number of core topics in the field of applied mechanics: On the basis of Lagrange's Principle, a Central Equation of Dynamics is presented which yields a unified view on existing methods. From these, the Projection Equation is selected for the derivation of the motion equations of holonomic and of non-holonomic systems. The method is applied to rigid multibody systems where the rigid body is defined such that, by relaxation of the rigidity constraints, one can directly proceed to elastic bodies. A decomposition into subsystems leads to a minimal representation and to a recursive representation, respectively, of the equations of motion. Applied to elastic multibody systems one obtains, along with the use of spatial operators, a straight-on procedure for the interconnected partial and ordinary differential equations and the corresponding boundary conditions. The spatial operators are eventually applied to a RITZ series for approximation. The resulting equ...

  16. Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, Stefan von [Institute of Robotics and Mechatronics, German Aerospace Center (DLR) (Germany)], E-mail: stefan.von.dombrowski@dlr.de

    2002-11-15

    To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined.

  17. Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates

    International Nuclear Information System (INIS)

    Dombrowski, Stefan von

    2002-01-01

    To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined

  18. Multi-body simulation of a canine hind limb: model development, experimental validation and calculation of ground reaction forces

    Directory of Open Access Journals (Sweden)

    Wefstaedt Patrick

    2009-11-01

    Full Text Available Abstract Background Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS- model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods The anatomical geometries of the MBS-model have been established using computer tomography- (CT- and magnetic resonance imaging- (MRI- data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion As a result the vertical ground reaction forces (z-direction calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in

  19. Recursive thoughts on the simulation of the flexible multibody dynamics of slender offshore structures

    NARCIS (Netherlands)

    Schilder, Jurnan Paul; Ellenbroek, Marcellinus Hermannus Maria; de Boer, A.

    2017-01-01

    In this work, the floating frame of reference formulation is used to create a flexible multibody model of slender offshore structures such as pipelines and risers. It is shown that due to the chain-like topology of the considered structures, the equation of motion can be expressed in terms of

  20. A combined multibody and finite element approach for dynamic interaction analysis of high-speed train and railway structure including post-derailment behavior during an earthquake

    International Nuclear Information System (INIS)

    Tanabe, M; Wakui, H; Sogabe, M; Matsumoto, N; Tanabe, Y

    2010-01-01

    A combined multibody and finite element approach is given to solve the dynamic interaction of a Shinkansen train (high-speed train in Japan) and the railway structure including post-derailment during an earthquake effectively. The motion of the train is expressed in multibody dynamics. Efficient mechanical models to express interactions between wheel and track structure including post-derailment are given. Rail and track elements expressed in multibody dynamics and FEM are given to solve contact problems between wheel and long railway components effectively. The motion of a railway structure is modeled with various finite elements and rail and track elements. The computer program has been developed for the dynamic interaction analysis of a Shinkansen train and railway structure including post derailment during an earthquake. Numerical examples are demonstrated.

  1. Hand Posture Prediction Using Neural Networks within a Biomechanical Model

    Directory of Open Access Journals (Sweden)

    Marta C. Mora

    2012-10-01

    Full Text Available This paper proposes the use of artificial neural networks (ANNs in the framework of a biomechanical hand model for grasping. ANNs enhance the model capabilities as they substitute estimated data for the experimental inputs required by the grasping algorithm used. These inputs are the tentative grasping posture and the most open posture during grasping. As a consequence, more realistic grasping postures are predicted by the grasping algorithm, along with the contact information required by the dynamic biomechanical model (contact points and normals. Several neural network architectures are tested and compared in terms of prediction errors, leading to encouraging results. The performance of the overall proposal is also shown through simulation, where a grasping experiment is replicated and compared to the real grasping data collected by a data glove device.

  2. Graphic-based musculoskeletal model for biomechanical analyses and animation.

    Science.gov (United States)

    Chao, Edmund Y S

    2003-04-01

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.

  3. Unconditionally Energy Stable Implicit Time Integration: Application to Multibody System Analysis and Design

    DEFF Research Database (Denmark)

    Chen, Shanshin; Tortorelli, Daniel A.; Hansen, John Michael

    1999-01-01

    of ordinary diffferential equations is employed to avoid the instabilities associated with the direct integrations of differential-algebraic equations. To extend the unconditional stability of the implicit Newmark method to nonlinear dynamic systems, a discrete energy balance is enforced. This constraint......Advances in computer hardware and improved algorithms for multibody dynamics over the past decade have generated widespread interest in real-time simulations of multibody mechanics systems. At the heart of the widely used algorithms for multibody dynamics are a choice of coordinates which define...... the kinmatics of the system, and a choice of time integrations algorithms. The current approach uses a non-dissipative implict Newmark method to integrate the equations of motion defined in terms of the independent joint coordinates of the system. The reduction of the equations of motion to a minimal set...

  4. System Theory Aspects of Multi-Body Dynamics.

    Science.gov (United States)

    1978-08-18

    systems are described from a system theory point of view. Various system theory concepts and research topics which have applicability to this class of...systems are identified and briefly described. The subject of multi-body dynamics is presented in a vector space setting and is related to system theory concepts. (Author)

  5. Nonlinear dynamic analysis of flexible multibody systems

    Science.gov (United States)

    Bauchau, Olivier A.; Kang, Nam Kook

    1991-01-01

    Two approaches are developed to analyze the dynamic behavior of flexible multibody systems. In the first approach each body is modeled with a modal methodology in a local non-inertial frame of reference, whereas in the second approach, each body is modeled with a finite element methodology in the inertial frame. In both cases, the interaction among the various elastic bodies is represented by constraint equations. The two approaches were compared for accuracy and efficiency: the first approach is preferable when the nonlinearities are not too strong but it becomes cumbersome and expensive to use when many modes must be used. The second approach is more general and easier to implement but could result in high computation costs for a large system. The constraints should be enforced in a time derivative fashion for better accuracy and stability.

  6. Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system

    Science.gov (United States)

    Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun

    2018-05-01

    In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.

  7. Computational modeling in biomechanics

    CERN Document Server

    Mofrad, Mohammad

    2010-01-01

    This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics. It includes unique chapters on ab initio quantum mechanical, molecular dynamic and scale coupling methods..

  8. High resolution extremity CT for biomechanics modeling

    International Nuclear Information System (INIS)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-01-01

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling

  9. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  10. Dr Dapertutto's biomechanics

    Directory of Open Access Journals (Sweden)

    Stojmenović Dragan

    2015-01-01

    Full Text Available The subject matter of the research is the basic models of Meyerhold's biomechanics, which were used to define its theoretical principles. Professor Meyerhold, the theatrical leader of an eccentric stream, with which he changed the modern understanding of the theatre, established the technique of biomechanics by analysing the calculated type of movement. The analysis determines the answers to the questions: What kind of influence does Taylor's 'scientific management of work' have on defining the principles of Meyerhold's techniques of biomechanics? Which aesthetic models of stage movement were some of the basic subjects of Meyerhold's research? Meyerhold's theatrical work has been researched by a number of theatre theorists. However, how much does his work influence the film medium?.

  11. The biomechanics of upper extremity kinematic and kinetic modeling: applications to rehabilitation engineering.

    Science.gov (United States)

    Slavens, Brooke A; Harris, Gerald F

    2008-01-01

    Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.

  12. Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise

    Science.gov (United States)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.

    2017-01-01

    INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include

  13. A review on application of finite element modelling in bone biomechanics

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Parashar

    2016-09-01

    Full Text Available In the past few decades the finite element modelling has been developed as an effective tool for modelling and simulation of the biomedical engineering system. Finite element modelling (FEM is a computational technique which can be used to solve the biomedical engineering problems based on the theories of continuum mechanics. This paper presents the state of art review on finite element modelling application in the four areas of bone biomechanics, i.e., analysis of stress and strain, determination of mechanical properties, fracture fixation design (implants, and fracture load prediction. The aim of this review is to provide a comprehensive detail about the development in the area of application of FEM in bone biomechanics during the last decades. It will help the researchers and the clinicians alike for the better treatment of patients and future development of new fixation designs.

  14. Implicit gas-kinetic unified algorithm based on multi-block docking grid for multi-body reentry flows covering all flow regimes

    Science.gov (United States)

    Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu

    2016-12-01

    Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single

  15. A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.

    Science.gov (United States)

    Kim, Joo H; Roberts, Dustyn

    2015-09-01

    Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Planar reorientation maneuvers of space multibody systems using internal controls

    Science.gov (United States)

    Reyhanoglu, Mahmut; Mcclamroch, N. H.

    1992-01-01

    In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum. We demonstrate that large-angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver, and the corresponding control strategies, are described.

  17. Are cranial biomechanical simulation data linked to known diets in extant taxa? A method for applying diet-biomechanics linkage models to infer feeding capability of extinct species.

    Directory of Open Access Journals (Sweden)

    Zhijie Jack Tseng

    Full Text Available Performance of the masticatory system directly influences feeding and survival, so adaptive hypotheses often are proposed to explain craniodental evolution via functional morphology changes. However, the prevalence of "many-to-one" association of cranial forms and functions in vertebrates suggests a complex interplay of ecological and evolutionary histories, resulting in redundant morphology-diet linkages. Here we examine the link between cranial biomechanical properties for taxa with different dietary preferences in crown clade Carnivora, the most diverse clade of carnivorous mammals. We test whether hypercarnivores and generalists can be distinguished based on cranial mechanical simulation models, and how such diet-biomechanics linkages relate to morphology. Comparative finite element and geometric morphometrics analyses document that predicted bite force is positively allometric relative to skull strain energy; this is achieved in part by increased stiffness in larger skull models and shape changes that resist deformation and displacement. Size-standardized strain energy levels do not reflect feeding preferences; instead, caniform models have higher strain energy than feliform models. This caniform-feliform split is reinforced by a sensitivity analysis using published models for six additional taxa. Nevertheless, combined bite force-strain energy curves distinguish hypercarnivorous versus generalist feeders. These findings indicate that the link between cranial biomechanical properties and carnivoran feeding preference can be clearly defined and characterized, despite phylogenetic and allometric effects. Application of this diet-biomechanics linkage model to an analysis of an extinct stem carnivoramorphan and an outgroup creodont species provides biomechanical evidence for the evolution of taxa into distinct hypercarnivorous and generalist feeding styles prior to the appearance of crown carnivoran clades with similar feeding preferences.

  18. Gear fatigue damage for a 500 kW wind turbine exposed to increasing turbulence using a flexible multibody model

    Directory of Open Access Journals (Sweden)

    Martin Felix Jørgensen

    2014-04-01

    Full Text Available This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind field, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Different turbulence levels are considered and the accumulated fatigue damage levels are compared. An example where the turbulence/fatigue sensitivity could be important, is in the middle of a big wind farm. Interior wind turbines in large wind farms will always operate in the wake of other wind turbines, causing increased turbulence and therefore increased fatigue damage levels. This article contributes to a better understanding of gear fatigue damage when turbulence is increased (e.g. in the center of large wind farms or at places where turbulence is pronounced.

  19. Computational biomechanics for medicine from algorithms to models and applications

    CERN Document Server

    Joldes, Grand; Nielsen, Poul; Doyle, Barry; Miller, Karol

    2017-01-01

    This volume comprises the latest developments in both fundamental science and patient-specific applications, discussing topics such as: cellular mechanics; injury biomechanics; biomechanics of heart and vascular system; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations. With contributions from researchers world-wide, the Computational Biomechanics for Medicine series of titles provides an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements.

  20. First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs.

    Directory of Open Access Journals (Sweden)

    Jorge Cubo

    Full Text Available Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older.

  1. First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs.

    Science.gov (United States)

    Cubo, Jorge; Woodward, Holly; Wolff, Ewan; Horner, John R

    2015-01-01

    Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae) exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older.

  2. Comparative multibody dynamics analysis of falls from playground climbing frames.

    Science.gov (United States)

    Forero Rueda, M A; Gilchrist, M D

    2009-10-30

    This paper shows the utility of multibody dynamics in evaluating changes in injury related parameters of the head and lower limbs of children following falls from playground climbing frames. A particular fall case was used as a starting point to analyze the influence of surface properties, posture of the body at impact, and intermediate collisions against the climbing frame before impacting the ground. Simulations were made using the 6-year-old pedestrian MADYMO rigid body model and scaled head contact characteristics. Energy absorbing surfaces were shown to reduce injury severity parameters by up to 30-80% of those of rigid surfaces, depending on impact posture and surface. Collisions against components of a climbing frame during a fall can increase injury severity of the final impact of the head with the ground by more than 90%. Negligible changes are associated with lower limb injury risks when different surfacing materials are used. Computer reconstructions of actual falls that are intended to quantify the severity of physical injuries rely on accurate knowledge of initial conditions prior to falling, intermediate kinematics of the fall and the orientation of the body when it impacts against the ground. Multibody modelling proved to be a valuable tool to analyze the quality of eyewitness information and analyze the relative injury risk associated with changes in components influencing fall injuries from playground climbing frames. Such simulations can also support forensic investigations by evaluating alternative hypotheses for the sequence of kinematic motion of falls which result in known injuries.

  3. Validation of flexible multibody dynamics beam formulations using benchmark problems

    Energy Technology Data Exchange (ETDEWEB)

    Bauchau, Olivier A., E-mail: obauchau@umd.edu [University of Maryland (United States); Betsch, Peter [Karlsruhe Institute of Technology (Germany); Cardona, Alberto [CIMEC (UNL/Conicet) (Argentina); Gerstmayr, Johannes [Leopold-Franzens Universität Innsbruck (Austria); Jonker, Ben [University of Twente (Netherlands); Masarati, Pierangelo [Politecnico di Milano (Italy); Sonneville, Valentin [Université de Liège (Belgium)

    2016-05-15

    As the need to model flexibility arose in multibody dynamics, the floating frame of reference formulation was developed, but this approach can yield inaccurate results when elastic displacements becomes large. While the use of three-dimensional finite element formulations overcomes this problem, the associated computational cost is overwhelming. Consequently, beam models, which are one-dimensional approximations of three-dimensional elasticity, have become the workhorse of many flexible multibody dynamics codes. Numerous beam formulations have been proposed, such as the geometrically exact beam formulation or the absolute nodal coordinate formulation, to name just two. New solution strategies have been investigated as well, including the intrinsic beam formulation or the DAE approach. This paper provides a systematic comparison of these various approaches, which will be assessed by comparing their predictions for four benchmark problems. The first problem is the Princeton beam experiment, a study of the static large displacement and rotation behavior of a simple cantilevered beam under a gravity tip load. The second problem, the four-bar mechanism, focuses on a flexible mechanism involving beams and revolute joints. The third problem investigates the behavior of a beam bent in its plane of greatest flexural rigidity, resulting in lateral buckling when a critical value of the transverse load is reached. The last problem investigates the dynamic stability of a rotating shaft. The predictions of eight independent codes are compared for these four benchmark problems and are found to be in close agreement with each other and with experimental measurements, when available.

  4. Evaluating the reliability of multi-body mechanisms: A method considering the uncertainties of dynamic performance

    International Nuclear Information System (INIS)

    Wu, Jianing; Yan, Shaoze; Zuo, Ming J.

    2016-01-01

    Mechanism reliability is defined as the ability of a certain mechanism to maintain output accuracy under specified conditions. Mechanism reliability is generally assessed by the classical direct probability method (DPM) derived from the first order second moment (FOSM) method. The DPM relies strongly on the analytical form of the dynamic solution so it is not applicable to multi-body mechanisms that have only numerical solutions. In this paper, an indirect probability model (IPM) is proposed for mechanism reliability evaluation of multi-body mechanisms. IPM combines the dynamic equation, degradation function and Kaplan–Meier estimator to evaluate mechanism reliability comprehensively. Furthermore, to reduce the amount of computation in practical applications, the IPM is simplified into the indirect probability step model (IPSM). A case study of a crank–slider mechanism with clearance is investigated. Results show that relative errors between the theoretical and experimental results of mechanism reliability are less than 5%, demonstrating the effectiveness of the proposed method. - Highlights: • An indirect probability model (IPM) is proposed for mechanism reliability evaluation. • The dynamic equation, degradation function and Kaplan–Meier estimator are used. • Then the simplified form of indirect probability model is proposed. • The experimental results agree well with the predicted results.

  5. Biomechanics trends in modeling and simulation

    CERN Document Server

    Ogden, Ray

    2017-01-01

    The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls ...

  6. Biomechanical Strain Exacerbates Inflammation on a Progeria-on-a-Chip Model

    NARCIS (Netherlands)

    Ribas, J.; Zhang, Y.S.; Pitrez, P.R.; Leijten, Jeroen Christianus Hermanus; Miscuglio, M.; Rouwkema, Jeroen; Dokmeci, M.R.; Nissan, X.; Ferreira, L.; Khademhosseini, A.

    2017-01-01

    A progeria-on-a-chip model is engineered to recapitulate the biomechanical dynamics of vascular disease and aging. The model shows an exacerbated injury response to strain and is rescued by pharmacological treatments. The progeria-on-a-chip is expected to drive the discovery of new drugs and to

  7. General background and approach to multibody dynamics for space applications

    Science.gov (United States)

    Santini, Paolo; Gasbarri, Paolo

    2009-06-01

    Multibody dynamics for space applications is dictated by space environment such as space-varying gravity forces, orbital and attitude perturbations, control forces if any. Several methods and formulations devoted to the modeling of flexible bodies undergoing large overall motions were developed in recent years. Most of these different formulations were aimed to face one of the main problems concerning the analysis of spacecraft dynamics namely the reduction of computer simulation time. By virtue of this, the use of symbolic manipulation, recursive formulation and parallel processing algorithms were proposed. All these approaches fall into two categories, the one based on Newton/Euler methods and the one based on Lagrangian methods; both of them have their advantages and disadvantages although in general, Newtonian approaches lend to a better understanding of the physics of problems and in particular of the magnitude of the reactions and of the corresponding structural stresses. Another important issue which must be addressed carefully in multibody space dynamics is relevant to a correct choice of kinematics variables. In fact, when dealing with flexible multibody system the resulting equations include two different types of state variables, the ones associated with large (rigid) displacements and the ones associated with elastic deformations. These two sets of variables have generally two different time scales if we think of the attitude motion of a satellite whose period of oscillation, due to the gravity gradient effects, is of the same order of magnitude as the orbital period, which is much bigger than the one associated with the structural vibration of the satellite itself. Therefore, the numerical integration of the equations of the system represents a challenging problem. This was the abstract and some of the arguments that Professor Paolo Santini intended to present for the Breakwell Lecture; unfortunately a deadly disease attacked him and shortly took him

  8. Planar multibody dynamics formulation, programming and applications

    CERN Document Server

    Nikravesh, Parviz E

    2007-01-01

    Introduction Multibody Mechanical Systems Types of Analyses Methods of Formulation Computer Programming Application Examples Unit System Remarks Preliminaries Reference Axes Scalars and Vectors Matrices Vector, Array, and Matrix Differentiation Equations and Expressions Remarks Problems Fundamentals of Kinematics A Particle Kinematics of a Rigid Body Definitions Remarks Problems Fundamentals of Dynamics Newton's Laws of Motion Dynamics of a Body Force Elements Applied Forces Reaction Force Remarks Problems Point-Coordinates: Kinematics Multipoint

  9. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  10. Dynamic analysis of multibody system immersed in a fluid medium

    International Nuclear Information System (INIS)

    Wu, R.W.; Liu, L.K.; Levy, S.

    1977-01-01

    This paper is concerned primarily with the development and evaluation of an analysis method for the reponse prediction of immersed systems to seismic and other dynamic excitations. For immersed multibody systems, the hydrodynamic interaction causes coupled motion among the solid bodies. Also, under intense external excitations, impact between bodies may occur. The complex character of such systems inhibit the use of conventional analytical solutions in closed form. Therefore, approximate numerical schemes have been devised. For an incompressible, inviscid fluid, the hydrodynamic forces exerted by the fluid on solid bodies are determined to be linearly proportional to the acceleration of the vibrating solid bodies; i.e., the presence of the fluid only affects the inertia of the solid body system. A finite element computer program has been developed for computing this hydrodynamic (or added) mass effect. This program can be used to determine the hydrodynamic mass of a two-dimensional fluid field with solid bodies of arbitrary geometry. Triangular elements and linear pressure interpolation function are used to discretize the fluid region. The component element method is used to determine the dynamic response of the multibody system to externally applied mechanical loading or support excitation. The present analysis method for predicting the dynamic response of submerged multibody system is quite general and pertains to any number of solid bodies. However in this paper, its application is demonstrated only for 4 and 25 body systems. (Auth.)

  11. Biomechanical models of damage and healing processes for voice health

    DEFF Research Database (Denmark)

    Granados Corsellas, Alba; Brunskog, Jonas; Jacobsen, Finn

    2013-01-01

    the vocal-fold plane are available. This data is used to improve existing continuum biomechanical models of the vocal-folds by analyzing the injury processes. The project is expected to result in methods that objectively demonstrate the impact of high voice-load on voice. A detailed description...

  12. Study of the railway vehicle suspension using the multibody method

    Directory of Open Access Journals (Sweden)

    Gheorghe GHITA

    2011-12-01

    Full Text Available The article presents a mathematical model for the study of a passenger coach hunting motion using the multibody approach. The model comprises the lateral displacement, rolling and yawing motions for the main constitutive elements: axles, bogies and case. The equation system is written applying energetic methods. The forced vibrations determined by the irregular profile of the tracks are considered. The wheel – rail contact forces are expressed using the creepage coefficients established according to Kalker's linear theory. The equations system is solved through numeric methods using specialized calculus programs. The response of the system – passenger coach on a tangent track, the critical speed and the influence of the constructive characteristics of the coach on its performances are determined.

  13. Development of a Dynamic Biomechanical Model for Load Carriage: Phase 4, Parts A and B: Development of a Dynamic Biomechanical Model Version 2 of Human Load Carriage

    National Research Council Canada - National Science Library

    Reid, S. A; Bryant, J. T; Stevenson, J. M; Abdoli, M

    2005-01-01

    ... on human health and mobility. This research is directed at creating a method of determining several of the biomechanical factors to be used as inputs to the Load Conditions Limit model as described in DRDC report...

  14. Canine stifle joint biomechanics associated with tibial plateau leveling osteotomy predicted by use of a computer model.

    Science.gov (United States)

    Brown, Nathan P; Bertocci, Gina E; Marcellin-Little, Denis J

    2014-07-01

    To evaluate effects of tibial plateau leveling osteotomy (TPLO) on canine stifle joint biomechanics in a cranial cruciate ligament (CrCL)-deficient stifle joint by use of a 3-D computer model simulating the stance phase of gait and to compare biomechanics in TPLO-managed, CrCL-intact, and CrCL-deficient stifle joints. Computer simulations of the pelvic limb of a Golden Retriever. A previously developed computer model of the canine pelvic limb was used to simulate TPLO stabilization to achieve a tibial plateau angle (TPA) of 5° (baseline value) in a CrCL-deficient stifle joint. Sensitivity analysis was conducted for tibial fragment rotation of 13° to -3°. Ligament loads, relative tibial translation, and relative tibial rotation were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. TPLO with a 5° TPA converted cranial tibial translation to caudal tibial translation and increased loads placed on the remaining stifle joint ligaments, compared with results for a CrCL-intact stifle joint. Lateral collateral ligament load was similar, medial collateral ligament load increased, and caudal cruciate ligament load decreased after TPLO, compared with loads for a CrCL-deficient stifle joint. Relative tibial rotation after TPLO was similar to that of a CrCL-deficient stifle joint. Stifle joint biomechanics were affected by TPLO fragment rotation. In the model, stifle joint biomechanics were partially improved after TPLO, compared with CrCL-deficient stifle joint biomechanics, but TPLO did not fully restore CrCL-intact stifle joint biomechanics. Overrotation of the tibial fragment negatively influenced stifle joint biomechanics by increasing caudal tibial translation.

  15. An Improved Rigid Multibody Model for the Dynamic Analysis of the Planetary Gearbox in a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Wenguang Yang

    2016-01-01

    Full Text Available This paper proposes an improved rigid multibody model for the dynamic analysis of the planetary gearbox in a wind turbine. The improvements mainly include choosing the inertia frame as the reference frame of the carrier, the ring, and the sun and adding a new degree of freedom for each planet. An element assembly method is introduced to build the model, and a time-varying mesh stiffness model is presented. A planetary gear study case is employed to verify the validity of the improved model. Comparisons between the improvement model and the traditional model show that the natural characteristics are very close; the improved model can obtain the right equivalent moment of inertia of the planetary gear in the transient simulation, and all the rotation speeds satisfy the transmission relationships well; harmonic resonance and resonance modulation phenomena can be found in their vibration signals. The improved model is applied in a multistage gearbox dynamics analysis to reveal the prospects of the model. Modal analysis and transient analysis with and without time-varying mesh stiffness considered are conducted. The rotation speeds from the transient analysis are consistent with the theory, and resonance modulation can be found in the vibration signals.

  16. Identification of the contribution of contact and aerial biomechanical parameters in acrobatic performance.

    Directory of Open Access Journals (Sweden)

    Diane Haering

    Full Text Available Teaching acrobatic skills with a minimal amount of repetition is a major challenge for coaches. Biomechanical, statistical or computer simulation tools can help them identify the most determinant factors of performance. Release parameters, change in moment of inertia and segmental momentum transfers were identified in the prediction of acrobatics success. The purpose of the present study was to evaluate the relative contribution of these parameters in performance throughout expertise or optimisation based improvements. The counter movement forward in flight (CMFIF was chosen for its intrinsic dichotomy between the accessibility of its attempt and complexity of its mastery.Three repetitions of the CMFIF performed by eight novice and eight advanced female gymnasts were recorded using a motion capture system. Optimal aerial techniques that maximise rotation potential at regrasp were also computed. A 14-segment-multibody-model defined through the Rigid Body Dynamics Library was used to compute recorded and optimal kinematics, and biomechanical parameters. A stepwise multiple linear regression was used to determine the relative contribution of these parameters in novice recorded, novice optimised, advanced recorded and advanced optimised trials. Finally, fixed effects of expertise and optimisation were tested through a mixed-effects analysis.Variation in release state only contributed to performances in novice recorded trials. Moment of inertia contribution to performance increased from novice recorded, to novice optimised, advanced recorded, and advanced optimised trials. Contribution to performance of momentum transfer to the trunk during the flight prevailed in all recorded trials. Although optimisation decreased transfer contribution, momentum transfer to the arms appeared.Findings suggest that novices should be coached on both contact and aerial technique. Inversely, mainly improved aerial technique helped advanced gymnasts increase their

  17. Coupled Immunological and Biomechanical Model of Emphysema Progression

    Directory of Open Access Journals (Sweden)

    Mario Ceresa

    2018-04-01

    Full Text Available Chronic Obstructive Pulmonary Disease (COPD is a disabling respiratory pathology, with a high prevalence and a significant economic and social cost. It is characterized by different clinical phenotypes with different risk profiles. Detecting the correct phenotype, especially for the emphysema subtype, and predicting the risk of major exacerbations are key elements in order to deliver more effective treatments. However, emphysema onset and progression are influenced by a complex interaction between the immune system and the mechanical properties of biological tissue. The former causes chronic inflammation and tissue remodeling. The latter influences the effective resistance or appropriate mechanical response of the lung tissue to repeated breathing cycles. In this work we present a multi-scale model of both aspects, coupling Finite Element (FE and Agent Based (AB techniques that we would like to use to predict the onset and progression of emphysema in patients. The AB part is based on existing biological models of inflammation and immunological response as a set of coupled non-linear differential equations. The FE part simulates the biomechanical effects of repeated strain on the biological tissue. We devise a strategy to couple the discrete biological model at the molecular /cellular level and the biomechanical finite element simulations at the tissue level. We tested our implementation on a public emphysema image database and found that it can indeed simulate the evolution of clinical image biomarkers during disease progression.

  18. From time series analysis to a biomechanical multibody model of the human eye

    International Nuclear Information System (INIS)

    Pascolo, P.; Carniel, R.

    2009-01-01

    A mechanical model of the human eye is presented aimed at estimating the level of muscular activation. The applicability of the model in the biomedical field is discussed. Human eye movements studied in the laboratory are compared with the ones produced by a virtual eye described in kinematical terms and subject to the dynamics of six actuators, as many as the muscular systems devoted to the eye motion control. The definition of an error function between the experimental and the numerical response and the application of a suitable law that links activation and muscular force are at the base of the proposed methodology. The aim is the definition of a simple conceptual tool that could help the specialist in the diagnosis of potential physiological disturbances of saccadic and nystagmic movements but can also be extended in a second phase when more sophisticated data become available. The work is part of a collaboration between the Functional Mechanics Laboratory of the University and the Neurophysiopatology Laboratory of the 'S. Maria della Misericordia' Hospital in Udine, Italy.

  19. Computer Models in Biomechanics From Nano to Macro

    CERN Document Server

    Kuhl, Ellen

    2013-01-01

    This book contains a collection of papers that were presented at the IUTAM Symposium on “Computer Models in Biomechanics: From Nano to Macro” held at Stanford University, California, USA, from August 29 to September 2, 2011. It contains state-of-the-art papers on: - Protein and Cell Mechanics: coarse-grained model for unfolded proteins, collagen-proteoglycan structural interactions in the cornea, simulations of cell behavior on substrates - Muscle Mechanics: modeling approaches for Ca2+–regulated smooth muscle contraction, smooth muscle modeling using continuum thermodynamical frameworks, cross-bridge model describing the mechanoenergetics of actomyosin interaction, multiscale skeletal muscle modeling - Cardiovascular Mechanics: multiscale modeling of arterial adaptations by incorporating molecular mechanisms, cardiovascular tissue damage, dissection properties of aortic aneurysms, intracranial aneurysms, electromechanics of the heart, hemodynamic alterations associated with arterial remodeling followin...

  20. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs

    Science.gov (United States)

    Torres-Moreno, José Luis; Blanco-Claraco, José Luis; Giménez-Fernández, Antonio; Sanjurjo, Emilio; Naya, Miguel Ángel

    2016-01-01

    This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs). Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics. PMID:26959027

  1. Development Model of Basic Technique Skills Training Shot-Put Obrien Style Based Biomechanics Review

    Directory of Open Access Journals (Sweden)

    danang rohmat hidayanto

    2018-03-01

    Full Text Available The background of this research is the unavailability of learning model of basic technique technique of O'Brien style force that integrated in skill program based on biomechanics study which is used as a reference to build the basic technique skill of the O'Brien style force among students. The purpose of this study is to develop a model of basic-style technique of rejecting the O'Brien-style shot put based on biomechanical studies for beginner levels, including basic prefix technique, glide, final stage, repulsion, further motion and repulsion performance of O'Brien style, all of which arranged in a medium that is easily accessible whenever, by anyone and anywhere, especially in SMK Negeri 1 Kalijambe Sragen . The research method used is "Reasearch and Developement" approach. "Preliminary studies show that 43.0% of respondents considered that the O'Brien style was very important to be developed with a model of skill-based exercise based on biomechanics, as many as 40.0% ressponden stated that it is important to be developed with biomechanics based learning media. Therefore, it is deemed necessary to develop the learning media of the O'Brien style-based training skills based on biomechanical studies. Development of media starts from the design of the storyboard and script form that will be used as media. The design of this model is called the draft model. Draft models that have been prepared are reviewed by the multimedia expert and the O'Brien style expert to get the product's validity. A total of 78.24% of experts declare a viable product with some input. In small groups with n = 6, earned value 72.2% was obtained or valid enough to be tested in large groups. In the large group test with n = 12,values obtained 70.83% or quite feasible to be tested in the field. In the field test, experimental group was prepared with treatment according to media and control group with free treatment. From result of counting of significance test can be

  2. Attitude and Configuration Control of Flexible Multi-Body Spacecraft

    Science.gov (United States)

    Cho, Sung-Ki; Cochran, John E., Jr.

    2002-06-01

    Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

  3. Attitude and Configuration Control of Flexible Multi-Body Spacecraft

    Directory of Open Access Journals (Sweden)

    Sungki Cho

    2002-06-01

    Full Text Available Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

  4. Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification.

    Science.gov (United States)

    Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J

    2018-07-01

    Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.

  5. Problems of Sport Biomechanics and Robotics

    Directory of Open Access Journals (Sweden)

    Wlodzimierz S. Erdmann

    2013-02-01

    Full Text Available This paper presents many common areas of interest of different specialists. There are problems described from sport, biomechanics, sport biomechanics, sport engineering, robotics, biomechanics and robotics, sport biomechanics and robotics. There are many approaches to sport from different sciences and engineering. Robotics is a relatively new area and has had moderate attention from sport specialists. The aim of this paper is to present several areas necessary to develop sport robots based on biomechanics and also to present different types of sport robots: serving balls, helping to provide sports training, substituting humans during training, physically participating in competitions, physically participating in competitions against humans, serving as models of real sport performance, helping organizers of sport events and robot toys. Examples of the application of robots in sports communities are also given.

  6. Physical essence of the multibody contact-sliding at atomic scale

    Science.gov (United States)

    Han, Xuesong

    2014-01-01

    Investigation the multibody contact-sliding occurred at atomic discrete contact spot will play an important role in determine the origin of tribology behavior and evaluates the micro-mechanical property of nanomaterials and thus optimizing the design of surface texture. This paper carries out large scale parallel molecular dynamics simulation on contact-sliding at atomic scale to uncover the special physical essence. The research shows that some kind of force field exists between nanodot pair and the interaction can be expressed by the linear combination of exponential function while the effective interaction distance limited in 1 angstrom for nanodot with several tens of nanometer diameter. The variation tendency about the interaction force between nanodot array is almost the same between nanodot pairs and thus the interaction between two nanodot array can be characterized by parallel mechanical spring. Multibody effect which dominates the interaction between atoms or molecules will gradually diminish with the increasing of length scales.

  7. 4th International Plant Biomechanics Conference Proceedings (Abstracts)

    Energy Technology Data Exchange (ETDEWEB)

    Frank W. Telewski; Lothar H. Koehler; Frank W. Ewers

    2003-07-20

    The 4th International Plant Biomechanics Conference facilitated an interdisciplinary exchange between scientists, engineers, and educators addressing the major questions encountered in the field of Plant Biomechanics. Subjects covered by the conference include: Evolution; Ecology; Mechanoreception; Cell Walls; Genetic Modification; Applied Biomechanics of Whole Plants, Plant Products, Fibers & Composites; Fluid Dynamics; Wood & Trees; Fracture Mechanics; Xylem Pressure & Water Transport; Modeling; and Introducing Plant Biomechanics in Secondary School Education.

  8. A Component Mode Synthesis Algorithm for Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.

    2009-01-01

    A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part of the mot......A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part...... of the motion of the substructure. The system reduction is based on a component mode synthesis method, where the response of the internal degrees of freedom of the substructure is described as the quasi-static response induced by the boundary degrees of freedom via the constraint modes superimposed...

  9. Adherence Evaluation of a MacPherson Suspension under EuSAMA Norm in a Mathematical Model and one Multibody

    Directory of Open Access Journals (Sweden)

    Juan J. Arbeláez-Toro

    2013-11-01

    Full Text Available A computational simulation is Implemented, in order to response to a problem of dynamics associated With The assessment of adherence in suspension systems. The process begins with the lifting of the most representative geometries of a MacPherson system of a Nissan Sentra B13, where each of the devices is created and assembled into a CAD software to give a dynamic solution on a CAE multibody package. Afterwards a mathematical model was created whose differential equations are generated substantiated on Newton's second law and this are resolved using Matlab-Simulink applications. Once the model developing process is over, the variables are fed with accurate information of the studied vehicle to obtain the graphs that give an answer to EuSAMA (European Shock Absorber Manufacturers Association test protocol for the adherence analysis. The results presented show the reliability of the developed models when compared with the experimental test; furthermore, it demonstrates that the decrease of the damping coefficient compromises the vehicle´s adherence on the track, affecting its stability and maneuverability.

  10. Ergonomic Models of Anthropometry, Human Biomechanics and Operator-Equipment Interfaces

    Science.gov (United States)

    Kroemer, Karl H. E. (Editor); Snook, Stover H. (Editor); Meadows, Susan K. (Editor); Deutsch, Stanley (Editor)

    1988-01-01

    The Committee on Human Factors was established in October 1980 by the Commission on Behavioral and Social Sciences and Education of the National Research Council. The committee is sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Institute for the Behavioral and Social Sciences, the National Aeronautics and Space Administration, and the National Science Foundation. The workshop discussed the following: anthropometric models; biomechanical models; human-machine interface models; and research recommendations. A 17-page bibliography is included.

  11. Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling.

    Science.gov (United States)

    Karanasiou, Georgia S; Papafaklis, Michail I; Conway, Claire; Michalis, Lampros K; Tzafriri, Rami; Edelman, Elazer R; Fotiadis, Dimitrios I

    2017-04-01

    Coronary stents have revolutionized the treatment of coronary artery disease. Improvement in clinical outcomes requires detailed evaluation of the performance of stent biomechanics and the effectiveness as well as safety of biomaterials aiming at optimization of endovascular devices. Stents need to harmonize the hemodynamic environment and promote beneficial vessel healing processes with decreased thrombogenicity. Stent design variables and expansion properties are critical for vessel scaffolding. Drug-elution from stents, can help inhibit in-stent restenosis, but adds further complexity as drug release kinetics and coating formulations can dominate tissue responses. Biodegradable and bioabsorbable stents go one step further providing complete absorption over time governed by corrosion and erosion mechanisms. The advances in computing power and computational methods have enabled the application of numerical simulations and the in silico evaluation of the performance of stent devices made up of complex alloys and bioerodible materials in a range of dimensions and designs and with the capacity to retain and elute bioactive agents. This review presents the current knowledge on stent biomechanics, stent fatigue as well as drug release and mechanisms governing biodegradability focusing on the insights from computational modeling approaches.

  12. FUNDAMENTALS OF BIOMECHANICS

    Directory of Open Access Journals (Sweden)

    Duane Knudson

    2007-09-01

    Full Text Available DESCRIPTION This book provides a broad and in-depth theoretical and practical description of the fundamental concepts in understanding biomechanics in the qualitative analysis of human movement. PURPOSE The aim is to bring together up-to-date biomechanical knowledge with expert application knowledge. Extensive referencing for students is also provided. FEATURES This textbook is divided into 12 chapters within four parts, including a lab activities section at the end. The division is as follows: Part 1 Introduction: 1.Introduction to biomechanics of human movement; 2.Fundamentals of biomechanics and qualitative analysis; Part 2 Biological/Structural Bases: 3.Anatomical description and its limitations; 4.Mechanics of the musculoskeletal system; Part 3 Mechanical Bases: 5.Linear and angular kinematics; 6.Linear kinetics; 7.Angular kinetics; 8.Fluid mechanics; Part 4 Application of Biomechanics in Qualitative Analysis :9.Applying biomechanics in physical education; 10.Applying biomechanics in coaching; 11.Applying biomechanics in strength and conditioning; 12.Applying biomechanics in sports medicine and rehabilitation. AUDIENCE This is an important reading for both student and educators in the medicine, sport and exercise-related fields. For the researcher and lecturer it would be a helpful guide to plan and prepare more detailed experimental designs or lecture and/or laboratory classes in exercise and sport biomechanics. ASSESSMENT The text provides a constructive fundamental resource for biomechanics, exercise and sport-related students, teachers and researchers as well as anyone interested in understanding motion. It is also very useful since being clearly written and presenting several ways of examples of the application of biomechanics to help teach and apply biomechanical variables and concepts, including sport-related ones

  13. Online Kinematic and Dynamic-State Estimation for Constrained Multibody Systems Based on IMUs

    Directory of Open Access Journals (Sweden)

    José Luis Torres-Moreno

    2016-03-01

    Full Text Available This article addresses the problems of online estimations of kinematic and dynamic states of a mechanism from a sequence of noisy measurements. In particular, we focus on a planar four-bar linkage equipped with inertial measurement units (IMUs. Firstly, we describe how the position, velocity, and acceleration of all parts of the mechanism can be derived from IMU signals by means of multibody kinematics. Next, we propose the novel idea of integrating the generic multibody dynamic equations into two variants of Kalman filtering, i.e., the extended Kalman filter (EKF and the unscented Kalman filter (UKF, in a way that enables us to handle closed-loop, constrained mechanisms, whose state space variables are not independent and would normally prevent the direct use of such estimators. The proposal in this work is to apply those estimators over the manifolds of allowed positions and velocities, by means of estimating a subset of independent coordinates only. The proposed techniques are experimentally validated on a testbed equipped with encoders as a means of establishing the ground-truth. Estimators are run online in real-time, a feature not matched by any previous procedure of those reported in the literature on multibody dynamics.

  14. On the inference of function from structure using biomechanical modelling and simulation of extinct organisms

    Science.gov (United States)

    Hutchinson, John R.

    2012-01-01

    Biomechanical modelling and simulation techniques offer some hope for unravelling the complex inter-relationships of structure and function perhaps even for extinct organisms, but have their limitations owing to this complexity and the many unknown parameters for fossil taxa. Validation and sensitivity analysis are two indispensable approaches for quantifying the accuracy and reliability of such models or simulations. But there are other subtleties in biomechanical modelling that include investigator judgements about the level of simplicity versus complexity in model design or how uncertainty and subjectivity are dealt with. Furthermore, investigator attitudes toward models encompass a broad spectrum between extreme credulity and nihilism, influencing how modelling is conducted and perceived. Fundamentally, more data and more testing of methodology are required for the field to mature and build confidence in its inferences. PMID:21666064

  15. Augmentation of tendon healing with butyric acid-impregnated sutures: biomechanical evaluation in a rabbit model.

    Science.gov (United States)

    Leek, Bryan T; Tasto, James P; Tibor, Lisa M; Healey, Robert M; Freemont, Anthony; Linn, Michael S; Chase, Derek E; Amiel, David

    2012-08-01

    Butyric acid (BA) has been shown to be angiogenic and to enhance transcriptional activity in tissue. These properties of BA have the potential to augment biological healing of a repaired tendon. To evaluate this possibility both biomechanically and histologically in an animal tendon repair model. Controlled laboratory study. A rabbit Achilles tendon healing model was used to evaluate the biomechanical strength and histological properties at 6 and 12 weeks after repair. Unilateral tendon defects were created in the middle bundle of the Achilles tendon of each rabbit, which were repaired equivalently with either Ultrabraid BA-impregnated sutures or control Ultrabraid sutures. After 6 weeks, BA-impregnated suture repairs had a significantly increased (P Tendons repaired with BA-impregnated sutures demonstrated improved biomechanical properties at 6 weeks relative to control sutures, suggesting a neoangiogenic mechanism of enhanced healing through an increased myofibroblast presence. These findings demonstrate that a relatively simple alteration of suture material may augment early tendon healing to create a stronger repair construct during this time.

  16. Current computational modelling trends in craniomandibular biomechanics and their clinical implications.

    Science.gov (United States)

    Hannam, A G

    2011-03-01

    Computational models of interactions in the craniomandibular apparatus are used with increasing frequency to study biomechanics in normal and abnormal masticatory systems. Methods and assumptions in these models can be difficult to assess by those unfamiliar with current practices in this field; health professionals are often faced with evaluating the appropriateness, validity and significance of models which are perhaps more familiar to the engineering community. This selective review offers a foundation for assessing the strength and implications of a craniomandibular modelling study. It explores different models used in general science and engineering and focuses on current best practices in biomechanics. The problem of validation is considered at some length, because this is not always fully realisable in living subjects. Rigid-body, finite element and combined approaches are discussed, with examples of their application to basic and clinically relevant problems. Some advanced software platforms currently available for modelling craniomandibular systems are mentioned. Recent studies of the face, masticatory muscles, tongue, craniomandibular skeleton, temporomandibular joint, dentition and dental implants are reviewed, and the significance of non-linear and non-isotropic material properties is emphasised. The unique challenges in clinical application are discussed, and the review concludes by posing some questions which one might reasonably expect to find answered in plausible modelling studies of the masticatory apparatus. © 2010 Blackwell Publishing Ltd.

  17. Path lumping: An efficient algorithm to identify metastable path channels for conformational dynamics of multi-body systems

    Science.gov (United States)

    Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui

    2017-07-01

    Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.

  18. Biomechanical Evaluations of Hip Fracture Using Finite Element Model that Models Individual Differences of Femur

    OpenAIRE

    田中, 英一; TANAKA, Eiichi; 山本, 創太; YAMAMOTO, Sota; 坂本, 誠二; SAKAMOTO, Seiji; 中西, 孝文; NAKANISHI, Takafumi; 原田, 敦; HARADA, Atsushi; 水野, 雅士; MIZUNO, Masashi

    2004-01-01

    This paper is concerned with an individual finite element modeling system for femur and biomechanical evaluations of the influences of loading conditions, bone shape and bone density on risks of hip fracture. Firstly, a method to construct an individual finite element model by morphological parameters that represent femoral shapes was developed. Using the models with different shapes constructed by this method, the effects of fall direction, posture of upper body, femur shape and bone density...

  19. Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Long, E-mail: L.Wu-1@tudelft.nl [Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering (Netherlands); Tiso, Paolo, E-mail: ptiso@ethz.ch [ETH Zürich, Institute for Mechanical Systems (Switzerland)

    2016-04-15

    An effective reduction technique is presented for flexible multibody systems, for which the elastic deflection could not be considered small. We consider here the planar beam systems undergoing large elastic rotations, in the floating frame description. The proposed method enriches the classical linear reduction basis with modal derivatives stemming from the derivative of the eigenvalue problem. Furthermore, the Craig–Bampton method is applied to couple the different reduced components. Based on the linear projection, the configuration-dependent internal force can be expressed as cubic polynomials in the reduced coordinates. Coefficients of these polynomials can be precomputed for efficient runtime evaluation. The numerical results show that the modal derivatives are essential for the correct approximation of the nonlinear elastic deflection with respect to the body reference. The proposed reduction method constitutes a natural and effective extension of the classical linear modal reduction in the floating frame.

  20. Fusion of intraoperative force sensoring, surface reconstruction and biomechanical modeling

    Science.gov (United States)

    Röhl, S.; Bodenstedt, S.; Küderle, C.; Suwelack, S.; Kenngott, H.; Müller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2012-02-01

    Minimally invasive surgery is medically complex and can heavily benefit from computer assistance. One way to help the surgeon is to integrate preoperative planning data into the surgical workflow. This information can be represented as a customized preoperative model of the surgical site. To use it intraoperatively, it has to be updated during the intervention due to the constantly changing environment. Hence, intraoperative sensor data has to be acquired and registered with the preoperative model. Haptic information which could complement the visual sensor data is still not established. In addition, biomechanical modeling of the surgical site can help in reflecting the changes which cannot be captured by intraoperative sensors. We present a setting where a force sensor is integrated into a laparoscopic instrument. In a test scenario using a silicone liver phantom, we register the measured forces with a reconstructed surface model from stereo endoscopic images and a finite element model. The endoscope, the instrument and the liver phantom are tracked with a Polaris optical tracking system. By fusing this information, we can transfer the deformation onto the finite element model. The purpose of this setting is to demonstrate the principles needed and the methods developed for intraoperative sensor data fusion. One emphasis lies on the calibration of the force sensor with the instrument and first experiments with soft tissue. We also present our solution and first results concerning the integration of the force sensor as well as accuracy to the fusion of force measurements, surface reconstruction and biomechanical modeling.

  1. Anthropometry and biomechanics: characteristics, principles and anthropometric models

    Directory of Open Access Journals (Sweden)

    Saray Giovana dos Santos

    2000-12-01

    Full Text Available Due to the importance of interdisciplinarity and multidisciplinarity to the complex analysis of human movement, and in an attempt to seek to bring Kinanthropometry and Biomechanics closer together, throughanthropometry, this review article was compiled in order to: present the historical evolution of anthropometry and the theoretical presuppositions on which its anthropometric models are based; to present anthropometry as a method for measurement in biomechanics; to describe the role and scope of anthropometry in biomechanics by discussing some of its applications and contributions. Initially, an analysis is made of historical and conceptual aspects and anthropometric models are presented and characterized together with their theoretical presuppositions and limitations. Anthropometry is then analyzed in the context of the different methods for measuring in biomechanics, studying its position within the process of analyzing human movement as a prerequisite of kinemetry and dynamometry and also of synchronized analysis. What follows is a refl ection on the role and scope of anthropometry within the analysis of movement, with examples from drawn from several studies, and an identifi cation of their respective contributions. Finally, some considerations resulting from this refl ection are presented; the degree of development of anthropometric models is identifi ed and the constant pursuit for improvement over recent years, with the use of ever more sophisticated techniques, is demonstrated. RESUMO Face à importância da inter e da multidisciplinariedade na complexa análise do movimento humano e no intuito de buscar a aproximação da Cineantropometria e da Biomecânica, através da antropometria, realizou-se este estudo de revisão com o objetivo de apresentar a evolução histórica da antropometria e os pressupostos teóricos de seus modelos antropométricos; apresentar a antropometria enquanto método de medição em biomecânica; descrever

  2. The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics

    International Nuclear Information System (INIS)

    Leyendecker, Sigrid; Betsch, Peter; Steinmann, Paul

    2008-01-01

    In the present work, the unified framework for the computational treatment of rigid bodies and nonlinear beams developed by Betsch and Steinmann (Multibody Syst. Dyn. 8, 367-391, 2002) is extended to the realm of nonlinear shells. In particular, a specific constrained formulation of shells is proposed which leads to the semi-discrete equations of motion characterized by a set of differential-algebraic equations (DAEs). The DAEs provide a uniform description for rigid bodies, semi-discrete beams and shells and, consequently, flexible multibody systems. The constraints may be divided into two classes: (i) internal constraints which are intimately connected with the assumption of rigidity of the bodies, and (ii) external constraints related to the presence of joints in a multibody framework. The present approach thus circumvents the use of rotational variables throughout the whole time discretization, facilitating the design of energy-momentum methods for flexible multibody dynamics. After the discretization has been completed a size-reduction of the discrete system is performed by eliminating the constraint forces. Numerical examples dealing with a spatial slider-crank mechanism and with intersecting shells illustrate the performance of the proposed method

  3. Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions

    Science.gov (United States)

    Butler, Jason E.; Shaqfeh, Eric S. G.

    2005-01-01

    Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.

  4. Two-Segment Foot Model for the Biomechanical Analysis of Squat.

    Science.gov (United States)

    Panero, E; Gastaldi, L; Rapp, W

    2017-01-01

    Squat exercise is acquiring interest in many fields, due to its benefits in improving health and its biomechanical similarities to a wide range of sport motions and the recruitment of many body segments in a single maneuver. Several researches had examined considerable biomechanical aspects of lower limbs during squat, but not without limitations. The main goal of this study focuses on the analysis of the foot contribution during a partial body weight squat, using a two-segment foot model that considers separately the forefoot and the hindfoot. The forefoot and hindfoot are articulated by the midtarsal joint. Five subjects performed a series of three trials, and results were averaged. Joint kinematics and dynamics were obtained using motion capture system, two force plates closed together, and inverse dynamics techniques. The midtarsal joint reached a dorsiflexion peak of 4°. Different strategies between subjects revealed 4° supination and 2.5° pronation of the forefoot. Vertical GRF showed 20% of body weight concentrated on the forefoot and 30% on the hindfoot. The percentages varied during motion, with a peak of 40% on the hindfoot and correspondently 10% on the forefoot, while the traditional model depicted the unique constant 50% value. Ankle peak of plantarflexion moment, power absorption, and power generation was consistent with values estimated by the one-segment model, without statistical significance.

  5. Two-Segment Foot Model for the Biomechanical Analysis of Squat

    Directory of Open Access Journals (Sweden)

    E. Panero

    2017-01-01

    Full Text Available Squat exercise is acquiring interest in many fields, due to its benefits in improving health and its biomechanical similarities to a wide range of sport motions and the recruitment of many body segments in a single maneuver. Several researches had examined considerable biomechanical aspects of lower limbs during squat, but not without limitations. The main goal of this study focuses on the analysis of the foot contribution during a partial body weight squat, using a two-segment foot model that considers separately the forefoot and the hindfoot. The forefoot and hindfoot are articulated by the midtarsal joint. Five subjects performed a series of three trials, and results were averaged. Joint kinematics and dynamics were obtained using motion capture system, two force plates closed together, and inverse dynamics techniques. The midtarsal joint reached a dorsiflexion peak of 4°. Different strategies between subjects revealed 4° supination and 2.5° pronation of the forefoot. Vertical GRF showed 20% of body weight concentrated on the forefoot and 30% on the hindfoot. The percentages varied during motion, with a peak of 40% on the hindfoot and correspondently 10% on the forefoot, while the traditional model depicted the unique constant 50% value. Ankle peak of plantarflexion moment, power absorption, and power generation was consistent with values estimated by the one-segment model, without statistical significance.

  6. Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit

    Science.gov (United States)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises

  7. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    Science.gov (United States)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  8. Computational Biomechanics Theoretical Background and BiologicalBiomedical Problems

    CERN Document Server

    Tanaka, Masao; Nakamura, Masanori

    2012-01-01

    Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics...

  9. Finite-size effects on multibody neutrino exchange

    CERN Document Server

    Abada, A; Rodríguez-Quintero, J; Abada, As

    1998-01-01

    The effect of multibody massless neutrino exchanges between neutrons inside a finite-size neutron star is studied. We use an effective Lagrangian, which incorporates the effect of the neutrons on the neutrinos. Following Schwinger, it is shown that the total interaction energy density is computed by comparing the zero point energy of the neutrino sea with and without the star. It has already been shown that in an infinite-size star the total energy due to neutrino exchange vanishes exactly. The opposite claim that massless neutrino exchange would produce a huge energy is due to an improper summation of an infrared-divergent quantity. The same vanishing of the total energy has been proved exactly in the case of a finite star in a one-dimensional toy model. Here we study the three-dimensional case. We first consider the effect of a sharp star border, assumed to be a plane. We find that there is a non- vanishing of the zero point energy density difference between the inside and the outside due to the refraction ...

  10. Search for Exclusive Multibody Non-DD Decays at the ψ(3770) Resonance

    International Nuclear Information System (INIS)

    Huang, G.S.; Miller, D.H.; Pavlunin, V.; Sanghi, B.; Shipsey, I.P.J.; Adams, G.S.; Cravey, M.; Cummings, J.P.; Danko, I.; Napolitano, J.; He, Q.; Muramatsu, H.; Park, C.S.; Thorndike, E.H.; Coan, T.E.; Gao, Y.S.; Liu, F.; Artuso, M.; Boulahouache, C.; Blusk, S.

    2006-01-01

    Using data collected at the ψ(3770) resonance with the CLEO-c detector at the Cornell e + e - storage ring, we present searches for 25 charmless decay modes of the ψ(3770), mostly multibody final states. No evidence for charmless decays is found

  11. Biomechanics of compensatory mechanisms in spinal-pelvic complex

    Science.gov (United States)

    Ivanov, D. V.; Hominets, V. V.; Kirillova, I. V.; Kossovich, L. Yu; Kudyashev, A. L.; Teremshonok, A. V.

    2018-04-01

    3D geometric solid computer model of spinal-pelvic complex was constructed on the basis of computed tomography and full body X-ray in standing position data. The constructed model was used for biomechanical analysis of compensatory mechanisms arising in the spine with anteversion and retroversion of the pelvis. The results of numerical biomechanical 3D modeling are in good agreement with the clinical data.

  12. Constraint Embedding for Multibody System Dynamics

    Science.gov (United States)

    Jain, Abhinandan

    2009-01-01

    This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.

  13. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model

    NARCIS (Netherlands)

    Eskes, M.; Balm, A.J.M.; van Alphen, M.J.A.; Smeele, L.E.; Stavness, I.; van der Heijden, F.

    2018-01-01

    Purpose: Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional

  14. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model

    NARCIS (Netherlands)

    Eskes, Merijn; Balm, Alfons J. M.; van Alphen, Maarten J. A.; Smeele, Ludi E.; Stavness, Ian; van der Heijden, Ferdinand

    2018-01-01

    Purpose Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional

  15. Development of Viscoelastic Multi-Body Simulation and Impact Response Analysis of a Ballasted Railway Track under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Daisuke Nishiura

    2017-06-01

    Full Text Available Simulation of a large number of deformable bodies is often difficult because complex high-level modeling is required to address both multi-body contact and viscoelastic deformation. This necessitates the combined use of a discrete element method (DEM and a finite element method (FEM. In this study, a quadruple discrete element method (QDEM was developed for dynamic analysis of viscoelastic materials using a simpler algorithm compared to the standard FEM. QDEM easily incorporates the contact algorithm used in DEM. As the first step toward multi-body simulation, the fundamental performance of QDEM was investigated for viscoelastic analysis. The amplitude and frequency of cantilever elastic vibration were nearly equal to those obtained by the standard FEM. A comparison of creep recovery tests with an analytical solution showed good agreement between them. In addition, good correlation between the attenuation degree and the real physical viscosity was confirmed for viscoelastic vibration analysis. Therefore, the high accuracy of QDEM in the fundamental analysis of infinitesimal viscoelastic deformations was verified. Finally, the impact response of a ballast and sleeper under cyclic loading on a railway track was analyzed using QDEM as an application of deformable multi-body dynamics. The results showed that the vibration of the ballasted track was qualitatively in good agreement with the actual measurements. Moreover, the ballast layer with high friction reduced the ballasted track deterioration. This study suggests that QDEM, as an alternative to DEM and FEM, can provide deeper insights into the contact dynamics of a large number of deformable bodies.

  16. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.

    Science.gov (United States)

    Zhu, Yanhe; Zhang, Guoan; Zhang, Chao; Liu, Gangfeng; Zhao, Jie

    2015-01-01

    This paper introduces novel modern equipment-a lower extremity exoskeleton, which can implement the mutual complement and the interaction between human intelligence and the robot's mechanical strength. In order to provide a reference for the exoskeleton structure and the drive unit, the human biomechanics were modeled and analyzed by LifeModeler and Adams software to derive each joint kinematic parameter. The control was designed to implement the zero-force interaction between human and exoskeleton. Furthermore, simulations were performed to verify the control and assist effect. In conclusion, the system scheme of lower extremity exoskeleton is demonstrated to be feasible.

  17. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  18. Modeling of the incudo-malleolar joint within a biomechanical model of the human ear

    Energy Technology Data Exchange (ETDEWEB)

    Ihrle, Sebastian; Eiber, Albrecht; Eberhard, Peter, E-mail: peter.eberhard@itm.uni-stuttgart.de [University of Stuttgart, Institute of Engineering and Computational Mechanics (Germany)

    2017-04-15

    Under large quasi-static loads, the incudo-malleolar joint (IM joint), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. To investigate the influence of the behavior of the IM joint, a detailed simulation model of the IM-complex is created. Mathematical modeling of the IM joint behavior under quasi-static excitation requires adequate modeling of the mechanics of the diarthrodial joint. Therefore, the geometry of the articular surfaces, the ligaments, as well as their viscoelastic properties have to be included in the model. The contact of the articular surfaces is implemented using a penalty based contact formulation utilizing the geometric information obtained from micro computer tomography (micro-CT) scans. The ligaments of the joint capsule are modeled by distributing force elements along the joint capsule, with the position and orientation derived from the micro-CT scans. It is shown that the effects which were observed in measurements on human temporal bones are described adequately by the model, if the contact of the articular surfaces and the preload of the viscoelastic fibers are taken into account in the simulation model. In the following, the detailed model is implemented in an elastic multibody system of the entire ear. The model allows the study of different quasi-static load cases of the ossicles, such as it occurs in the reconstruction of the middle ear and form the basis for future simulative studies of sound transmission in natural or reconstructed ears.

  19. Modeling of the incudo-malleolar joint within a biomechanical model of the human ear

    International Nuclear Information System (INIS)

    Ihrle, Sebastian; Eiber, Albrecht; Eberhard, Peter

    2017-01-01

    Under large quasi-static loads, the incudo-malleolar joint (IM joint), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. To investigate the influence of the behavior of the IM joint, a detailed simulation model of the IM-complex is created. Mathematical modeling of the IM joint behavior under quasi-static excitation requires adequate modeling of the mechanics of the diarthrodial joint. Therefore, the geometry of the articular surfaces, the ligaments, as well as their viscoelastic properties have to be included in the model. The contact of the articular surfaces is implemented using a penalty based contact formulation utilizing the geometric information obtained from micro computer tomography (micro-CT) scans. The ligaments of the joint capsule are modeled by distributing force elements along the joint capsule, with the position and orientation derived from the micro-CT scans. It is shown that the effects which were observed in measurements on human temporal bones are described adequately by the model, if the contact of the articular surfaces and the preload of the viscoelastic fibers are taken into account in the simulation model. In the following, the detailed model is implemented in an elastic multibody system of the entire ear. The model allows the study of different quasi-static load cases of the ossicles, such as it occurs in the reconstruction of the middle ear and form the basis for future simulative studies of sound transmission in natural or reconstructed ears.

  20. Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate

    DEFF Research Database (Denmark)

    Cronskar, Marie; Rasmussen, John; Tinnsten, Mats

    2015-01-01

    This paper addresses the various treatment options for clavicle fractures by means of computational models, more precisely cases with a need for internal fixation: non-unions and certain complex fractures. The motivation for the work is that treatment can be enhanced by a better understanding...... of the loading of the clavicle and fixation device. This study aimed to develop a method for realistic simulation of stresses in the bone and fixation device in the case of a fractured clavicle. A finite element (FE) mesh of the clavicle geometry was created from computer tomography (CT) data and imported...... into the FE solver where the model was subjected to muscle forces and other boundary conditions from a multibody musculoskeletal model performing a typical activity of daily life. A reconstruction plate and screws were also imported into the model. The combination models returned stresses and displacements...

  1. Digital Astronaut Project Biomechanical Models: Biomechanical Modeling of Squat, Single-Leg Squat and Heel Raise Exercises on the Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem

    2015-01-01

    The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on

  2. Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Directory of Open Access Journals (Sweden)

    Howell David S

    2003-02-01

    Full Text Available Abstract Background Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. Methods To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8 with 0.6% dl-homocysteine (hCySH for the first 8 weeks of life in comparison to controls (n = 10, and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. Results hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca2+/PO43- and lower Ca2+/CO32- molar ratios than in controls. Mineral crystallization was unchanged. Conclusion In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic

  3. A model partitioning method based on dynamic decoupling for the efficient simulation of multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, Alessandro Vittorio, E-mail: alessandro.papadopoulos@control.lth.se [Lund University, Department of Automatic Control (Sweden); Leva, Alberto, E-mail: alberto.leva@polimi.it [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria (Italy)

    2015-06-15

    The presence of different time scales in a dynamic model significantly hampers the efficiency of its simulation. In multibody systems the fact is particularly relevant, as the mentioned time scales may be very different, due, for example, to the coexistence of mechanical components controled by electronic drive units, and may also appear in conjunction with significant nonlinearities. This paper proposes a systematic technique, based on the principles of dynamic decoupling, to partition a model based on the time scales that are relevant for the particular simulation studies to be performed and as transparently as possible for the user. In accordance with said purpose, peculiar to the technique is its neat separation into two parts: a structural analysis of the model, which is general with respect to any possible simulation scenario, and a subsequent decoupled integration, which can conversely be (easily) tailored to the study at hand. Also, since the technique does not aim at reducing but rather at partitioning the model, the state space and the physical interpretation of the dynamic variables are inherently preserved. Moreover, the proposed analysis allows us to define some novel indices relative to the separability of the system, thereby extending the idea of “stiffness” in a way that is particularly keen to its use for the improvement of simulation efficiency, be the envisaged integration scheme monolithic, parallel, or even based on cosimulation. Finally, thanks to the way the analysis phase is conceived, the technique is naturally applicable to both linear and nonlinear models. The paper contains a methodological presentation of the proposed technique, which is related to alternatives available in the literature so as to evidence the peculiarities just sketched, and some application examples illustrating the achieved advantages and motivating the major design choice from an operational viewpoint.

  4. Unified Approach to the Biomechanics of Dental Implantology

    Science.gov (United States)

    Grenoble, D. E.; Knoell, A. C.

    1973-01-01

    The human need for safe and effective dental implants is well-recognized. Although many implant designs have been tested and are in use today, a large number have resulted in clinical failure. These failures appear to be due to biomechanical effects, as well as biocompatibility and surgical factors. A unified approach is proposed using multidisciplinary systems technology, for the study of the biomechanical interactions between dental implants and host tissues. The approach progresses from biomechanical modeling and analysis, supported by experimental investigations, through implant design development, clinical verification, and education of the dental practitioner. The result of the biomechanical modeling, analysis, and experimental phases would be the development of scientific design criteria for implants. Implant designs meeting these criteria would be generated, fabricated, and tested in animals. After design acceptance, these implants would be tested in humans, using efficient and safe surgical and restorative procedures. Finally, educational media and instructional courses would be developed for training dental practitioners in the use of the resulting implants.

  5. Biomechanics of Wheat/Barley Straw and Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

  6. Flexible joints in structural and multibody dynamics

    Directory of Open Access Journals (Sweden)

    O. A. Bauchau

    2013-02-01

    Full Text Available Flexible joints, sometimes called bushing elements or force elements, are found in all structural and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or on experimental measurements. If the joint undergoes finite deformations, identification of its stiffness characteristics is not so simple, specially if the joint is itself a complex system. When finite deformations occur, the definition of deformation measures becomes a critical issue. This paper proposes a family of tensorial deformation measures suitable for elastic bodies of finite dimension. These families are generated by two parameters that can be used to modify the constitutive behavior of the joint, while maintaining the tensorial nature of the deformation measures. Numerical results demonstrate the objectivity of the deformations measures, a feature that is not shared by the deformations measures presently used in the literature. The impact of the choice of the two parameters on the constitutive behavior of the flexible joint is also investigated.

  7. Advances in Chimera Grid Tools for Multi-Body Dynamics Simulations and Script Creation

    Science.gov (United States)

    Chan, William M.

    2004-01-01

    This viewgraph presentation contains information about (1) Framework for multi-body dynamics - Geometry Manipulation Protocol (GMP), (2) Simulation procedure using Chimera Grid Tools (CGT) and OVERFLOW-2 (3) Further recent developments in Chimera Grid Tools OVERGRID, Grid modules, Script library and (4) Future work.

  8. Why National Biomechanics Day?

    Science.gov (United States)

    DeVita, Paul

    2018-04-11

    National Biomechanics Day (NBD) seeks to expand the influence and impact of Biomechanics on our society by expanding the awareness of Biomechanics among young people. NBD will manifest this goal through worldwide, synchronized and coordinated celebrations and demonstrations of all things Biomechanics with high school students. NBD invites all Biomechanists to participate in NBD 2018, http://nationalbiomechanicsday.asbweb.org/. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A 3D Finite Element Method for Flexible Multibody Systems

    International Nuclear Information System (INIS)

    Gerstmayr, Johannes; Schoeberl, Joachim

    2006-01-01

    An efficient finite element (FE) formulation for the simulation of multibody systems is derived from Hamilton's principle. According to the classical assumptions of multibody systems, a large rotation formulation has been chosen, where large rotations and large displacements, but only small deformations of the single bodies are taken into account. The strain tensor is linearized with respect to a co-rotated frame. The present approach uses absolute coordinates for the degrees of freedom and forms an alternative to the floating frame of reference formulation that is based on relative coordinates and describes deformation with respect to a co-rotated frame. Due to the modified strain tensor, the present formulation distinguishes significantly from standard nodal based nonlinear FE methods. Constraints are defined in integral form for every pair of surfaces of two bodies. This leads to a small number of constraint equations and avoids artificial stress singularities. The resulting mass and stiffness matrices are constant apart from a transformation based on a single rotation matrix for each body. The particular structure of this transformation allows to prevent from the usually expensive factorization of the system Jacobian within implicit time--integration methods. The present method has been implemented and tested with the FE-package NGSolve and specific 3D examples are verified with a standard beam formulation

  10. Clinical, biomechanical and morphological assessment of anterior cruciate ligament Kevlar®-based artificial prosthesis in rabbit model.

    Science.gov (United States)

    de la Garza-Castro, Santiago; González-Rivera, Carlos E; Vílchez-Cavazos, Félix; Morales-Avalos, Rodolfo; Barrera-Flores, Francisco J; Elizondo-Omaña, Rodrigo E; Soto-Dominguez, Adolfo; Acosta-Olivo, Carlos; Mendoza-Lemus, Oscar F

    2017-07-27

    The aim of this study was to evaluate the clinical, biomechanical and morphological characteristics of a Kevlar®-based prosthetic ligament as a synthetic graft of the anterior cruciate ligament (ACL) in an experimental animal model in rabbits. A total of 27 knees of rabbits randomly divided into 3 groups (control, ACL excision and ACL replacement with a Kevlar® prosthesis) were analyzed using clinical, biomechanical and morphological tests at 6, 12 and 18 weeks postprocedure. The mean displacement in mechanical testing was 0.73 ± 0.06 mm, 1.58 ± 0.19 mm and 0.94 ± 0.20 mm for the control, ACL excision and ACL replacement with synthetic prosthesis groups, respectively. The results showed an improvement in the stability of the knee with the use of the Kevlar® synthetic prosthesis in the biomechanical testing (p0.05), between the replacement group and the control group. The histological study revealed a good morphological adaptation of the synthetic material to the knee. This study proposes a new animal model for the placement and evaluation of Kevlar®-based synthetic ACL implants. The studied prosthesis showed promising behavior in the clinical and biomechanical tests and in the histological analysis. This study lays the foundation for further basic and clinical studies of artificial ACL prostheses using this material.

  11. CURRENT CONCEPTS IN BIOMECHANICAL INTERVENTIONS FOR PATELLOFEMORAL PAIN

    Science.gov (United States)

    Meira, Erik P.

    2016-01-01

    Patellofemoral pain (PFP) has historically been a complex and enigmatic issue. Many of the factors thought to relate to PFP remain after patients' symptoms have resolved making their clinical importance difficult to determine. The tissue homeostasis model proposed by Dye in 2005 can assist with understanding and implementing biomechanical interventions for PFP. Under this model, the goal of interventions for PFP should be to re-establish patellofemoral joint (PFJ) homeostasis through a temporary alteration of load to the offended tissue, followed by incrementally restoring the envelope of function to the baseline level or higher. High levels of PFJ loads, particularly in the presence of an altered PFJ environment, are thought to be a factor in the development of PFP. Clinical interventions often aim to alter the biomechanical patterns that are thought to result in elevated PFJ loads while concurrently increasing the load tolerance capabilities of the tissue through therapeutic exercise. Biomechanics may play a role in PFJ load modification not only when addressing proximal and distal components, but also when considering the involvement of more local factors such as the quadriceps musculature. Biomechanical considerations should consider the entire kinetic chain including the hip and the foot/ankle complex, however the beneficial effects of these interventions may not be the result of long-term biomechanical changes. Biomechanical alterations may be achieved through movement retraining, but the interventions likely need to be task-specific to alter movement patterns. The purpose of this commentary is to describe biomechanical interventions for the athlete with PFP to encourage a safe and complete return to sport. Level of Evidence 5 PMID:27904791

  12. Teaching undergraduate biomechanics with Just-in-Time Teaching.

    Science.gov (United States)

    Riskowski, Jody L

    2015-06-01

    Biomechanics education is a vital component of kinesiology, sports medicine, and physical education, as well as for many biomedical engineering and bioengineering undergraduate programmes. Little research exists regarding effective teaching strategies for biomechanics. However, prior work suggests that student learning in undergraduate physics courses has been aided by using the Just-in-Time Teaching (JiTT). As physics understanding plays a role in biomechanics understanding, the purpose of study was to evaluate the use of a JiTT framework in an undergraduate biomechanics course. This two-year action-based research study evaluated three JiTT frameworks: (1) no JiTT; (2) mathematics-based JiTT; and (3) concept-based JiTT. A pre- and post-course assessment of student learning used the biomechanics concept inventory and a biomechanics concept map. A general linear model assessed differences between the course assessments by JiTT framework in order to evaluate learning and teaching effectiveness. The results indicated significantly higher learning gains and better conceptual understanding in a concept-based JiTT course, relative to a mathematics-based JiTT or no JiTT course structure. These results suggest that a course structure involving concept-based questions using a JiTT strategy may be an effective method for engaging undergraduate students and promoting learning in biomechanics courses.

  13. Invertebrate biomechanics.

    Science.gov (United States)

    Patek, S N; Summers, A P

    2017-05-22

    Invertebrate biomechanics focuses on mechanical analyses of non-vertebrate animals, which at root is no different in aim and technique from vertebrate biomechanics, or for that matter the biomechanics of plants and fungi. But invertebrates are special - they are fabulously diverse in form, habitat, and ecology and manage this without the use of hard, internal skeletons. They are also numerous and, in many cases, tractable in an experimental and field setting. In this Primer, we will probe three axes of invertebrate diversity: worms (Phylum Annelida), spiders (Class Arachnida) and insects (Class Insecta); three habitats: subterranean, terrestrial and airborne; and three integrations with other fields: ecology, engineering and evolution. Our goal is to capture the field of invertebrate biomechanics, which has blossomed from having a primary focus on discoveries at the interface of physics and biology to being inextricably linked with integrative challenges that span biology, physics, mathematics and engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A method to investigate the biomechanical alterations in Perthes’ disease by hip joint contact modeling

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Skytte, Tina Lercke; Traberg, Marie Sand

    2017-01-01

    for the preoperative planning to obtain stress relief for the highly stressed areas in the malformed hip. This single-patient study demonstrated that the biomechanical alterations in Perthes’ disease can be evaluated individually by patient-specific finite element contact modeling using MRI. A multi-patient study...... was to develop a method to investigate the biomechanical alterations in Perthes’ disease by finite element (FE ) contact modeling using MRI. The MRI data of a unilateral Perthes’ case was obtained to develop the three-dimensional FE model of the hip joint. The stress and contact pressure patterns...... in the unaffected hip were well distrib uted. Elevated concentrations of stress and contact pressure were found in the Perthes’ hip. The highest femoral cartilagev on Mises stress 3.9 MPa and contact pressure 5.3 M P a were found in the Perthes’ hip, whereas 2.4 M P a and 4.9 MP a in the healthy hip, respectively...

  15. Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics

    Directory of Open Access Journals (Sweden)

    Dewy C. van der Valk

    2018-05-01

    Full Text Available In calcific aortic valve disease (CAVD, microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV leaflets, which consist of three (biomechanically distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs. We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA/methacrylated hyaluronic acid (HAMA hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively. The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD.

  16. Heat flux expressions that satisfy the conservation laws in atomistic system involving multibody potentials

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yao, E-mail: Yao.Fu@colorado.edu; Song, Jeong-Hoon, E-mail: JH.Song@colorado.edu

    2015-08-01

    Heat flux expressions are derived for multibody potential systems by extending the original Hardy's methodology and modifying Admal & Tadmor's formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i.e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic–continuum bridging.

  17. Heat flux expressions that satisfy the conservation laws in atomistic system involving multibody potentials

    International Nuclear Information System (INIS)

    Fu, Yao; Song, Jeong-Hoon

    2015-01-01

    Heat flux expressions are derived for multibody potential systems by extending the original Hardy's methodology and modifying Admal & Tadmor's formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i.e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic–continuum bridging

  18. Gait biomechanics in the era of data science.

    Science.gov (United States)

    Ferber, Reed; Osis, Sean T; Hicks, Jennifer L; Delp, Scott L

    2016-12-08

    Data science has transformed fields such as computer vision and economics. The ability of modern data science methods to extract insights from large, complex, heterogeneous, and noisy datasets is beginning to provide a powerful complement to the traditional approaches of experimental motion capture and biomechanical modeling. The purpose of this article is to provide a perspective on how data science methods can be incorporated into our field to advance our understanding of gait biomechanics and improve treatment planning procedures. We provide examples of how data science approaches have been applied to biomechanical data. We then discuss the challenges that remain for effectively using data science approaches in clinical gait analysis and gait biomechanics research, including the need for new tools, better infrastructure and incentives for sharing data, and education across the disciplines of biomechanics and data science. By addressing these challenges, we can revolutionize treatment planning and biomechanics research by capitalizing on the wealth of knowledge gained by gait researchers over the past decades and the vast, but often siloed, data that are collected in clinical and research laboratories around the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Research Techniques in Biomechanics.

    Science.gov (United States)

    Ward, Terry

    Biomechanics involves the biological human beings interacting with his/her mechanical environment. Biomechanics research is being done in connection with sport, physical education, and general motor behavior, and concerns mechanics independent of implements. Biomechanics research falls in the following two general categories: (1) that specific…

  20. Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation.

    Science.gov (United States)

    Richard, Vincent; Cappozzo, Aurelio; Dumas, Raphaël

    2017-09-06

    Estimating joint kinematics from skin-marker trajectories recorded using stereophotogrammetry is complicated by soft tissue artefact (STA), an inexorable source of error. One solution is to use a bone pose estimator based on multi-body kinematics optimisation (MKO) embedding joint constraints to compensate for STA. However, there is some debate over the effectiveness of this method. The present study aimed to quantitatively assess the degree of agreement between reference (i.e., artefact-free) knee joint kinematics and the same kinematics estimated using MKO embedding six different knee joint models. The following motor tasks were assessed: level walking, hopping, cutting, running, sit-to-stand, and step-up. Reference knee kinematics was taken from pin-marker or biplane fluoroscopic data acquired concurrently with skin-marker data, made available by the respective authors. For each motor task, Bland-Altman analysis revealed that the performance of MKO varied according to the joint model used, with a wide discrepancy in results across degrees of freedom (DoFs), models and motor tasks (with a bias between -10.2° and 13.2° and between -10.2mm and 7.2mm, and with a confidence interval up to ±14.8° and ±11.1mm, for rotation and displacement, respectively). It can be concluded that, while MKO might occasionally improve kinematics estimation, as implemented to date it does not represent a reliable solution to the STA issue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Interpreting locomotor biomechanics from the morphology of human footprints.

    Science.gov (United States)

    Hatala, Kevin G; Wunderlich, Roshna E; Dingwall, Heather L; Richmond, Brian G

    2016-01-01

    Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprint's overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the

  2. Biomechanics of occlusion--implications for oral rehabilitation.

    Science.gov (United States)

    Peck, C C

    2016-03-01

    The dental occlusion is an important aspect of clinical dentistry; there are diverse functional demands ranging from highly precise tooth contacts to large crushing forces. Further, there are dogmatic, passionate and often diverging views on the relationship between the dental occlusion and various diseases and disorders including temporomandibular disorders, non-carious cervical lesions and tooth movement. This study provides an overview of the biomechanics of the masticatory system in the context of the dental occlusion's role in function. It explores the adaptation and precision of dental occlusion, its role in bite force, jaw movement, masticatory performance and its influence on the oro-facial musculoskeletal system. Biomechanics helps us better understand the structure and function of biological systems and consequently an understanding of the forces on, and displacements of, the dental occlusion. Biomechanics provides insight into the relationships between the dentition, jaws, temporomandibular joints, and muscles. Direct measurements of tooth contacts and forces are difficult, and biomechanical models have been developed to better understand the relationship between the occlusion and function. Importantly, biomechanical research will provide knowledge to help correct clinical misperceptions and inform better patient care. The masticatory system demonstrates a remarkable ability to adapt to a changing biomechanical environment and changes to the dental occlusion or other components of the musculoskeletal system tend to be well tolerated. © 2015 John Wiley & Sons Ltd.

  3. Creation of an in vitro biomechanical model of the trachea using rapid prototyping.

    Science.gov (United States)

    Walenga, Ross L; Longest, P Worth; Sundaresan, Gobalakrishnan

    2014-06-03

    Previous in vitro models of the airways are either rigid or, if flexible, have not matched in vivo compliance characteristics. Rapid prototyping provides a quickly evolving approach that can be used to directly produce in vitro airway models using either rigid or flexible polymers. The objective of this study was to use rapid prototyping to directly produce a flexible hollow model that matches the biomechanical compliance of the trachea. The airway model consisted of a previously developed characteristic mouth-throat region, the trachea, and a portion of the main bronchi. Compliance of the tracheal region was known from a previous in vivo imaging study that reported cross-sectional areas over a range of internal pressures. The compliance of the tracheal region was matched to the in vivo data for a specific flexible resin by iteratively selecting the thicknesses and other dimensions of tracheal wall components. Seven iterative models were produced and illustrated highly non-linear expansion consisting of initial rapid size increase, a transition region, and continued slower size increase as pressure was increased. Thickness of the esophageal interface membrane and initial trachea indention were identified as key parameters with the final model correctly predicting all phases of expansion within a value of 5% of the in vivo data. Applications of the current biomechanical model are related to endotracheal intubation and include determination of effective mucus suctioning and evaluation of cuff sealing with respect to gases and secretions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Low-Back Biomechanics and Static Stability During Isometric Pushing

    Science.gov (United States)

    Granata, Kevin P.; Bennett, Bradford C.

    2006-01-01

    Pushing and pulling tasks are increasingly prevalent in industrial workplaces. Few studies have investigated low-back biomechanical risk factors associated with pushing, and we are aware of none that has quantified spinal stability during pushing exertions. Data recorded from 11 healthy participants performing isometric pushing exertions demonstrated that trunk posture, vector force direction of the applied load, and trunk moment were influenced (p pushing task, and foot position. A biomechanical model was used to analyze the posture and hand force data gathered from the pushing exertions. Model results indicate that pushing exertions provide significantly (p pushing exertions. If one maintains stability by means of cocontraction, additional spinal load is thereby created, increasing the risk of overload injury. Thus it is important to consider muscle cocontraction when evaluating the biomechanics of pushing exertions. Potential applications of this research include improved assessment of biomechanical risk factors for the design of industrial pushing tasks. PMID:16435695

  5. A review of biomechanics of the shoulder and biomechanical concepts of rotator cuff repair

    Directory of Open Access Journals (Sweden)

    Nobuyuki Yamamoto

    2015-01-01

    Full Text Available In this article, we describe the basic knowledge about shoulder biomechanics, which is thought to be useful for surgeons. Some clinical reports have described that the excellent outcome after cuff repair without acromioplasty and a limited acromioplasty might be enough for subacromial decompression. It was biomechanically demonstrated that a 10-mm medial shift of the tendon repair site has a minimum effect on biomechanics. Many biomechanical studies reported that the transosseous equivalent repair was superior to other techniques, although the tendon may lose its inherent elasticity. We herein introduce our recent experiment data and latest information on biomechanics.

  6. Applications of biomechanics for prevention of work-related musculoskeletal disorders.

    Science.gov (United States)

    Garg, Arun; Kapellusch, Jay M

    2009-01-01

    This paper summarises applications of biomechanical principles and models in industry to control musculoskeletal disorders of the low back and upper extremity. Applications of 2-D and 3-D biomechanical models to estimate compressive force on the low back, the strength requirements of jobs, application of guidelines for overhead work and application of strain index and threshold limit value to address distal upper extremity musculoskeletal disorders are presented. Several case studies applied in the railroad industry, manufacturing, healthcare and warehousing are presented. Finally, future developments needed for improved biomechanical applications in industry are discussed. The information presented will be of value to practising ergonomists to recognise how biomechanics has played a significant role in identifying causes of musculoskeletal disorders and controlling them in the workplace. In particular, the information presented will help practising ergonomists with how physical stresses can be objectively quantified.

  7. Study on the Dynamics of Laser Gyro Strapdown Inertial Measurement Unit System Based on Transfer Matrix Method for Multibody System

    Directory of Open Access Journals (Sweden)

    Gangli Chen

    2013-01-01

    Full Text Available The dynamic test precision of the strapdown inertial measurement unit (SIMU is the basis of estimating accurate motion of various vehicles such as warships, airplanes, spacecrafts, and missiles. So, it is paid great attention in the above fields to increase the dynamic precision of SIMU by decreasing the vibration of the vehicles acting on the SIMU. In this paper, based on the transfer matrix method for multibody system (MSTMM, the multibody system dynamics model of laser gyro strapdown inertial measurement unit (LGSIMU is developed; the overall transfer equation of the system is deduced automatically. The computational results show that the frequency response function of the LGSIMU got by the proposed method and Newton-Euler method have good agreements. Further, the vibration reduction performance and the attitude error responses under harmonic and random excitations are analyzed. The proposed method provides a powerful technique for studying dynamics of LGSIMU because of using MSTMM and its following features: without the global dynamics equations of the system, high programming, low order of system matrix, and high computational speed.

  8. Biomechanical modelling and evaluation of construction jobs for performance improvement.

    Science.gov (United States)

    Parida, Ratri; Ray, Pradip Kumar

    2012-01-01

    Occupational risk factors, such as awkward posture, repetition, lack of rest, insufficient illumination and heavy workload related to construction-related MMH activities may cause musculoskeletal disorders and poor performance of the workers, ergonomic design of construction worksystems was a critical need for improving their health and safety wherein a dynamic biomechanical models were required to be empirically developed and tested at a construction site of Tata Steel, the largest steel making company of India in private sector. In this study, a comprehensive framework is proposed for biomechanical evaluation of shovelling and grinding under diverse work environments. The benefit of such an analysis lies in its usefulness in setting guidelines for designing such jobs with minimization of risks of musculoskeletal disorders (MSDs) and enhancing correct methods of carrying out the jobs leading to reduced fatigue and physical stress. Data based on direct observations and videography were collected for the shovellers and grinders over a number of workcycles. Compressive forces and moments for a number of segments and joints are computed with respect to joint flexion and extension. The results indicate that moments and compressive forces at L5/S1 link are significant for shovellers while moments at elbow and wrist are significant for grinders.

  9. Biomechanics and mechanobiology in functional tissue engineering

    Science.gov (United States)

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  10. Biomechanics in Schools.

    Science.gov (United States)

    Vincent, J. F. V.

    1980-01-01

    Examines current usage of the term "biomechanics" and emphasizes the importance of differentiating between structure and material. Describes current prolects in biomechanics and lists four points about the educational significance of the field. (GS)

  11. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration

    Energy Technology Data Exchange (ETDEWEB)

    Neylon, J., E-mail: jneylon@mednet.ucla.edu; Qi, X.; Sheng, K.; Low, D. A.; Kupelian, P.; Santhanam, A. [Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095 (United States); Staton, R.; Pukala, J.; Manon, R. [Department of Radiation Oncology, M.D. Anderson Cancer Center, Orlando, 1440 South Orange Avenue, Orlando, Florida 32808 (United States)

    2015-01-15

    Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside a given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may

  12. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration

    International Nuclear Information System (INIS)

    Neylon, J.; Qi, X.; Sheng, K.; Low, D. A.; Kupelian, P.; Santhanam, A.; Staton, R.; Pukala, J.; Manon, R.

    2015-01-01

    Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside a given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may

  13. Initial stress in biomechanical models of atherosclerotic plaques

    NARCIS (Netherlands)

    Speelman, L.; Akyildiz, A.C.; Adel, den B.; Wentzel, J.J.; Steen, van der A.F.W.; Virmani, R.; Weerd, van der L.; Jukema, J.W.; Poelmann, R.E.; Brummelen, van E.H.; Gijsen, F.J.H.

    2011-01-01

    Rupture of atherosclerotic plaques is the underlying cause for the majority of acute strokes and myocardial infarctions. Rupture of the plaque occurs when the stress in the plaque exceeds the strength of the material locally. Biomechanical stress analyses are commonly based on pressurized

  14. Gingival Recessions and Biomechanics

    DEFF Research Database (Denmark)

    Laursen, Morten Godtfredsen

    Gingival recessions and biomechanics “Tissue is the issue, but bone sets the tone.“ A tooth outside the cortical plate can result in loss of bone and development of a gingival recession. The presentation aims to show biomechanical considerations in relation to movement of teeth with gingival...... by moving the root back in the alveolus. The tooth movement is accompanied by bone gain and thus increase the success rate for soft tissue augmentation. The choice of biomechanical system influences the treatment outcome. If a standard straight wire appliance is used, a biomechanical dilemma can arise...

  15. Biomechanics of the thorax - research evidence and clinical expertise.

    Science.gov (United States)

    Lee, Diane Gail

    2015-07-01

    Understanding the biomechanics of the thorax is critical for understanding its role in multiple conditions since the thorax is part of many integrated systems including the musculoskeletal, respiratory, cardiac, digestive and urogynecological. The thorax is also an integrated system within itself and an element of the whole body/person. Therefore, understanding the biomechanics of the thorax is fundamental to all forms of treatment for multiple conditions. The interpretation of movement examination findings depends on one's view of optimal biomechanics and the influential factors. This article will provide a synopsis of the current state of research evidence as well as observations from clinical experience pertaining to the biomechanics of the thorax in order to help clinicians organise this knowledge and facilitate evidence-based and informed management of the, often complex, patient with or without thoracic pain and impairment. The integrated systems model (ISM) will be introduced as a way to determine when the noted biomechanical findings are relevant to a patient's clinical presentation.

  16. GPU accelerated tandem traversal of blocked bounding volume hierarchy collision detection for multibody dynamics

    DEFF Research Database (Denmark)

    Damkjær, Jesper; Erleben, Kenny

    2009-01-01

    and a simultaneous descend in the tandem traversal. The data structure design and traversal are highly specialized for exploiting the parallel threads in the NVIDIA GPUs. As proof-of-concept we demonstrate a GPU implementation for a multibody dynamics simulation, showing an approximate speedup factor of up to 8...

  17. System Reduction in Nonlinear Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.; Rubak, Rune

    2007-01-01

    In this paper the system reduction in nonlinear multibody dynamics of wind turbines is investigated for various updating schemes of the moving frame of reference. In one case, the moving frame of reference is updated to a stiff body, relative to which the elastic deformations are fixed at one end....... In the other case, the stiff body motion is defined as the chord line connecting the end points of the beam, and the elastic deformations are simply supported at the end points. The system reduction is performed by discretizing the spatial motion into a set of rigid body modes and linear elastic eigenmodes...

  18. Simulations, Imaging, and Modeling: A Unique Theme for an Undergraduate Research Program in Biomechanics.

    Science.gov (United States)

    George, Stephanie M; Domire, Zachary J

    2017-07-01

    As the reliance on computational models to inform experiments and evaluate medical devices grows, the demand for students with modeling experience will grow. In this paper, we report on the 3-yr experience of a National Science Foundation (NSF) funded Research Experiences for Undergraduates (REU) based on the theme simulations, imaging, and modeling in biomechanics. While directly applicable to REU sites, our findings also apply to those creating other types of summer undergraduate research programs. The objective of the paper is to examine if a theme of simulations, imaging, and modeling will improve students' understanding of the important topic of modeling, provide an overall positive research experience, and provide an interdisciplinary experience. The structure of the program and the evaluation plan are described. We report on the results from 25 students over three summers from 2014 to 2016. Overall, students reported significant gains in the knowledge of modeling, research process, and graduate school based on self-reported mastery levels and open-ended qualitative responses. This theme provides students with a skill set that is adaptable to other applications illustrating the interdisciplinary nature of modeling in biomechanics. Another advantage is that students may also be able to continue working on their project following the summer experience through network connections. In conclusion, we have described the successful implementation of the theme simulation, imaging, and modeling for an REU site and the overall positive response of the student participants.

  19. The biomechanics study of rabbit osteoporosis models treated by 99Tcm-MDP combined with GuKangLing

    International Nuclear Information System (INIS)

    Gao Kejia; Zhao Guoding; Ye Zhiwei; Mei Xiaogang; Tian Yingmin; Yan Chushun; Wang Wei; Li Wei; Cai Zhengyu; Song Haiping

    2011-01-01

    Objective: To study the bone biomechanics of the rabbit osteoporosis models induced by dexamethasone sodium phosphate injection (DX) using a combined treatment modality of 99 Tc-MDP and GuKangLing. Methods: Rabbits were intramuscularly injected with DX (2 mg/kg) twice a week for 6 weeks. The animal osteoporosis model group (Group C) and normal group (Group A) were compared to confirm the model was available. Another control group (Group B), the osteoporosis control group (Group D) were set for the comparison at the end of the experiment. The 99 Tc-MDP therapy group (Group E), GuKangLing therapy group (Group F) and 99 Tc-MDP plus GuKangLing therapy group (Group G) were included in the study. The treatment lasted for 16 weeks. The bone biomechanics, cytopathology bone histomorphology, bone mineral density (BMD), X-ray, CT, bone scintigraphy and serum bone alkaline phosphatase (BALP) and P (bone gla protein) were chosen as the markers or methods to evaluate the treatment results (excellent, effective and invalid). The analysis of variance (ANOVA) and t-test were used for group comparison analysis. Results: Cytopathology result indicated that there was no bone trabecular destruction in Group A. However, there was distinct bone destruction in Group C. The bone biomechanics (left femur head (265.914 ±52.773) N, L 4 (369.671 ±94.919) N), BMD (left femur (0.238 ±0.016) g/cm 2 , L 4 (0.236 ±0.016) g/cm 2 ) and bone histomorphology ((66.230 ± 10.848)%) in Group C reduced clearly as compared with Group A ((405.343±55.410) N, (750.870±53.718) N, (0.294±0.017) g/cm 2 , (0.302±0.023) g/cm 2 , (131.500 ± 21.846)%) (t ≥4.550, all P<0.01). Radionuclide bone scan also showed that the uptake of tracers was higher by the main arthrosis in Group C than that in Group A. Vertebra was not clearly visualized on bone scan image. There were significant differences between Group A and Group C in serum BALP and P ((45.000±7.303) vs (12.485 ±1.512) U/L, (0.168±0.018) vs (0.115

  20. Biomechanics of an orthosis-managed cranial cruciate ligament-deficient canine stifle joint predicted by use of a computer model.

    Science.gov (United States)

    Bertocci, Gina E; Brown, Nathan P; Mich, Patrice M

    2017-01-01

    OBJECTIVE To evaluate effects of an orthosis on biomechanics of a cranial cruciate ligament (CrCL)-deficient canine stifle joint by use of a 3-D quasistatic rigid-body pelvic limb computer model simulating the stance phase of gait and to investigate influences of orthosis hinge stiffness (durometer). SAMPLE A previously developed computer simulation model for a healthy 33-kg 5-year-old neutered Golden Retriever. PROCEDURES A custom stifle joint orthosis was implemented in the CrCL-deficient pelvic limb computer simulation model. Ligament loads, relative tibial translation, and relative tibial rotation in the orthosis-stabilized stifle joint (baseline scenario; high-durometer hinge]) were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. Sensitivity analysis was conducted to evaluate the influence of orthosis hinge stiffness on model outcome measures. RESULTS The orthosis decreased loads placed on the caudal cruciate and lateral collateral ligaments and increased load placed on the medial collateral ligament, compared with loads for the CrCL-intact stifle joint. Ligament loads were decreased in the orthosis-managed CrCL-deficient stifle joint, compared with loads for the CrCL-deficient stifle joint. Relative tibial translation and rotation decreased but were not eliminated after orthosis management. Increased orthosis hinge stiffness reduced tibial translation and rotation, whereas decreased hinge stiffness increased internal tibial rotation, compared with values for the baseline scenario. CONCLUSIONS AND CLINICAL RELEVANCE Stifle joint biomechanics were improved following orthosis implementation, compared with biomechanics of the CrCL-deficient stifle joint. Orthosis hinge stiffness influenced stifle joint biomechanics. An orthosis may be a viable option to stabilize a CrCL-deficient canine stifle joint.

  1. An introduction to biomechanics solids and fluids, analysis and design

    CERN Document Server

    Humphrey, Jay D

    2004-01-01

    Designed to meet the needs of undergraduate students, Introduction to Biomechanics takes the fresh approach of combining the viewpoints of both a well-respected teacher and a successful student. With an eye toward practicality without loss of depth of instruction, this book seeks to explain the fundamental concepts of biomechanics. With the accompanying web site providing models, sample problems, review questions and more, Introduction to Biomechanics provides students with the full range of instructional material for this complex and dynamic field.

  2. Future of crash dummies and biomechanical mathematical models

    NARCIS (Netherlands)

    Wismans, J.S.H.M.

    2000-01-01

    Thorough knowledge of the characteristics of the human body and its behaviour under extreme loading conditions is essential in order to prevent the serious consequences of road and other accidents. This field of research is called injury or impact biomechanics. In order to study the human body

  3. Aerodynamic and Mechanical System Modelling

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix

    This thesis deals with mechanical multibody-systems applied to the drivetrain of a 500 kW wind turbine. Particular focus has been on gearbox modelling of wind turbines. The main part of the present project involved programming multibody systems to investigate the connection between forces, moments...

  4. Vesicle biomechanics in a time-varying magnetic field.

    Science.gov (United States)

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (biomechanics under a time-varying magnetic field. Biological effects of clinical TMS are not likely to occur via alteration of the biomechanics of brain

  5. Generating Facial Expressions Using an Anatomically Accurate Biomechanical Model.

    Science.gov (United States)

    Wu, Tim; Hung, Alice; Mithraratne, Kumar

    2014-11-01

    This paper presents a computational framework for modelling the biomechanics of human facial expressions. A detailed high-order (Cubic-Hermite) finite element model of the human head was constructed using anatomical data segmented from magnetic resonance images. The model includes a superficial soft-tissue continuum consisting of skin, the subcutaneous layer and the superficial Musculo-Aponeurotic system. Embedded within this continuum mesh, are 20 pairs of facial muscles which drive facial expressions. These muscles were treated as transversely-isotropic and their anatomical geometries and fibre orientations were accurately depicted. In order to capture the relative composition of muscles and fat, material heterogeneity was also introduced into the model. Complex contact interactions between the lips, eyelids, and between superficial soft tissue continuum and deep rigid skeletal bones were also computed. In addition, this paper investigates the impact of incorporating material heterogeneity and contact interactions, which are often neglected in similar studies. Four facial expressions were simulated using the developed model and the results were compared with surface data obtained from a 3D structured-light scanner. Predicted expressions showed good agreement with the experimental data.

  6. Robust augmented reality registration method for localization of solid organs' tumors using CT-derived virtual biomechanical model and fluorescent fiducials.

    Science.gov (United States)

    Kong, Seong-Ho; Haouchine, Nazim; Soares, Renato; Klymchenko, Andrey; Andreiuk, Bohdan; Marques, Bruno; Shabat, Galyna; Piechaud, Thierry; Diana, Michele; Cotin, Stéphane; Marescaux, Jacques

    2017-07-01

    Augmented reality (AR) is the fusion of computer-generated and real-time images. AR can be used in surgery as a navigation tool, by creating a patient-specific virtual model through 3D software manipulation of DICOM imaging (e.g., CT scan). The virtual model can be superimposed to real-time images enabling transparency visualization of internal anatomy and accurate localization of tumors. However, the 3D model is rigid and does not take into account inner structures' deformations. We present a concept of automated AR registration, while the organs undergo deformation during surgical manipulation, based on finite element modeling (FEM) coupled with optical imaging of fluorescent surface fiducials. Two 10 × 1 mm wires (pseudo-tumors) and six 10 × 0.9 mm fluorescent fiducials were placed in ex vivo porcine kidneys (n = 10). Biomechanical FEM-based models were generated from CT scan. Kidneys were deformed and the shape changes were identified by tracking the fiducials, using a near-infrared optical system. The changes were registered automatically with the virtual model, which was deformed accordingly. Accuracy of prediction of pseudo-tumors' location was evaluated with a CT scan in the deformed status (ground truth). In vivo: fluorescent fiducials were inserted under ultrasound guidance in the kidney of one pig, followed by a CT scan. The FEM-based virtual model was superimposed on laparoscopic images by automatic registration of the fiducials. Biomechanical models were successfully generated and accurately superimposed on optical images. The mean measured distance between the estimated tumor by biomechanical propagation and the scanned tumor (ground truth) was 0.84 ± 0.42 mm. All fiducials were successfully placed in in vivo kidney and well visualized in near-infrared mode enabling accurate automatic registration of the virtual model on the laparoscopic images. Our preliminary experiments showed the potential of a biomechanical model with fluorescent

  7. Modeling the Biomechanical Influence of Epilaryngeal Stricture on the Vocal Folds: A Low-Dimensional Model of Vocal-Ventricular Fold Coupling

    Science.gov (United States)

    Moisik, Scott R.; Esling, John H.

    2014-01-01

    Purpose: Physiological and phonetic studies suggest that, at moderate levels of epilaryngeal stricture, the ventricular folds impinge upon the vocal folds and influence their dynamical behavior, which is thought to be responsible for constricted laryngeal sounds. In this work, the authors examine this hypothesis through biomechanical modeling.…

  8. Biomechanical and Hemodynamic Measures of Right Ventricular Diastolic Function: Translating Tissue Biomechanics to Clinical Relevance.

    Science.gov (United States)

    Jang, Sae; Vanderpool, Rebecca R; Avazmohammadi, Reza; Lapshin, Eugene; Bachman, Timothy N; Sacks, Michael; Simon, Marc A

    2017-09-12

    Right ventricular (RV) diastolic function has been associated with outcomes for patients with pulmonary hypertension; however, the relationship between biomechanics and hemodynamics in the right ventricle has not been studied. Rat models of RV pressure overload were obtained via pulmonary artery banding (PAB; control, n=7; PAB, n=5). At 3 weeks after banding, RV hemodynamics were measured using a conductance catheter. Biaxial mechanical properties of the RV free wall myocardium were obtained to extrapolate longitudinal and circumferential elastic modulus in low and high strain regions (E 1 and E 2 , respectively). Hemodynamic analysis revealed significantly increased end-diastolic elastance (E ed ) in PAB (control: 55.1 mm Hg/mL [interquartile range: 44.7-85.4 mm Hg/mL]; PAB: 146.6 mm Hg/mL [interquartile range: 105.8-155.0 mm Hg/mL]; P =0.010). Longitudinal E 1 was increased in PAB (control: 7.2 kPa [interquartile range: 6.7-18.1 kPa]; PAB: 34.2 kPa [interquartile range: 18.1-44.6 kPa]; P =0.018), whereas there were no significant changes in longitudinal E 2 or circumferential E 1 and E 2 . Last, wall stress was calculated from hemodynamic data by modeling the right ventricle as a sphere: stress=Pressure×radius2×thickness. RV pressure overload in PAB rats resulted in an increase in diastolic myocardial stiffness reflected both hemodynamically, by an increase in E ed , and biomechanically, by an increase in longitudinal E 1 . Modest increases in tissue biomechanical stiffness are associated with large increases in E ed . Hemodynamic measurements of RV diastolic function can be used to predict biomechanical changes in the myocardium. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Development of an anisotropic beam finite element for composite wind turbine blades in multibody system

    DEFF Research Database (Denmark)

    Kim, Taeseong; Hansen, Anders Melchior; Branner, Kim

    2013-01-01

    In this paper a new anisotropic beam finite element for composite wind turbine blades is developed and implemented into the aeroelastic nonlinear multibody code, HAWC2, intended to be used to investigate if use of anisotropic material layups in wind turbine blades can be tailored for improved...

  10. Biomechanical analysis of the camelid cervical intervertebral disc

    Directory of Open Access Journals (Sweden)

    Dean K. Stolworthy

    2015-01-01

    Full Text Available Chronic low back pain (LBP is a prevalent global problem, which is often correlated with degenerative disc disease. The development and use of good, relevant animal models of the spine may improve treatment options for this condition. While no animal model is capable of reproducing the exact biology, anatomy, and biomechanics of the human spine, the quality of a particular animal model increases with the number of shared characteristics that are relevant to the human condition. The purpose of this study was to investigate the camelid (specifically, alpaca and llama cervical spine as a model of the human lumbar spine. Cervical spines were obtained from four alpacas and four llamas and individual segments were used for segmental flexibility/biomechanics and/or morphology/anatomy studies. Qualitative and quantitative data were compared for the alpaca and llama cervical spines, and human lumbar specimens in addition to other published large animal data. Results indicate that a camelid cervical intervertebral disc (IVD closely approximates the human lumbar disc with regard to size, spinal posture, and biomechanical flexibility. Specifically, compared with the human lumbar disc, the alpaca and llama cervical disc size are approximately 62%, 83%, and 75% with regard to area, depth, and width, respectively, and the disc flexibility is approximately 133%, 173%, and 254%, with regard to range of motion (ROM in axial-rotation, flexion-extension, and lateral-bending, respectively. These results, combined with the clinical report of disc degeneration in the llama lower cervical spine, suggest that the camelid cervical spine is potentially well suited for use as an animal model in biomechanical studies of the human lumbar spine.

  11. Influence of Orthotropy on Biomechanics of Peri-Implant Bone in Complete Mandible Model with Full Dentition

    Directory of Open Access Journals (Sweden)

    Xi Ding

    2014-01-01

    Full Text Available Objective. The study was to investigate the impact of orthotropic material on the biomechanics of dental implant, based on a detailed mandible with high geometric and mechanical similarity. Materials and Methods. Multiple data sources were used to elaborate detailed biological structures and implant CAD models. In addition, an extended orthotropic material assignment methodology based on harmonic fields was used to handle the alveolar ridge region to generate compatible orthotropic fields. The influence of orthotropic material was compared with the commonly used isotropic model and simplified orthotropic model. Results. The simulation results showed that the values of stress and strain on the implant-bone interface almost increased in the orthotropic model compared to the isotropic case, especially for the cancellous bone. However, the local stress concentration was more obvious in the isotropic case compared to that in orthotropic case. The simple orthotropic model revealed irregular stress and strain distribution, compared to the isotropic model and the real orthotropic model. The influence of orthotropy was little on the implant, periodontal ligament, tooth enamel, and dentin. Conclusion. The orthotropic material has significant effect on stress and strain of implant-bone interface in the mandible, compared with the isotropic simulation. Real orthotropic mechanical properties of mandible should be emphasized in biomechanical studies of dental implants.

  12. Biomechanics-based in silico medicine: the manifesto of a new science.

    Science.gov (United States)

    Viceconti, Marco

    2015-01-21

    In this perspective article we discuss the role of contemporary biomechanics in the light of recent applications such as the development of the so-called Virtual Physiological Human technologies for physiology-based in silico medicine. In order to build Virtual Physiological Human (VPH) models, computer models that capture and integrate the complex systemic dynamics of living organisms across radically different space-time scales, we need to re-formulate a vast body of existing biology and physiology knowledge so that it is formulated as a quantitative hypothesis, which can be expressed in mathematical terms. Once the predictive accuracy of these models is confirmed against controlled experiments and against clinical observations, we will have VPH model that can reliably predict certain quantitative changes in health status of a given patient, but also, more important, we will have a theory, in the true meaning this word has in the scientific method. In this scenario, biomechanics plays a very important role, biomechanics is one of the few areas of life sciences where we attempt to build full mechanistic explanations based on quantitative observations, in other words, we investigate living organisms like physical systems. This is in our opinion a Copernican revolution, around which the scope of biomechanics should be re-defined. Thus, we propose a new definition for our research domain "Biomechanics is the study of living organisms as mechanistic systems". Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Biomechanics of the thorax – research evidence and clinical expertise

    Science.gov (United States)

    Lee, Diane Gail

    2015-01-01

    Understanding the biomechanics of the thorax is critical for understanding its role in multiple conditions since the thorax is part of many integrated systems including the musculoskeletal, respiratory, cardiac, digestive and urogynecological. The thorax is also an integrated system within itself and an element of the whole body/person. Therefore, understanding the biomechanics of the thorax is fundamental to all forms of treatment for multiple conditions. The interpretation of movement examination findings depends on one's view of optimal biomechanics and the influential factors. This article will provide a synopsis of the current state of research evidence as well as observations from clinical experience pertaining to the biomechanics of the thorax in order to help clinicians organise this knowledge and facilitate evidence-based and informed management of the, often complex, patient with or without thoracic pain and impairment. The integrated systems model (ISM) will be introduced as a way to determine when the noted biomechanical findings are relevant to a patient's clinical presentation. PMID:26309383

  14. Theoretical Considerations and a Mathematical Model for the Analysis of the Biomechanical Response of Human Keratinized Oral Mucosa

    Directory of Open Access Journals (Sweden)

    Aikaterini Tsaira

    2016-08-01

    Full Text Available Removable complete and partial dentures are supported by the residual alveolar ridges consisting of mucosa, submucosa, periosteum and bone. An understanding of the biomechanical behavior of the oral mucosa is essential in order to improve the denture-bearing foundations for complete and partially edentulous patients. The purpose of this paper was to examine the biomechanical behavior of the soft tissues supporting a removable denture and develop a model for that reason. Keratinized oral mucosa blocks with their underlying bone were harvested from the maxillary palatal area adjacent to the edentulous ridges of a cadaver. The compressive response of the oral mucosa was tested by using atomic force microscopy. The specimens were first scanned in order their topography to be obtained. The mechanical properties of the specimens were tested using a single crystal silicon pyramidal tip, which traversed towards the keratinized oral mucosa specimens. Loading-unloading cycles were registered and four mathematical models were tested using MATLAB to note which one approximates the force-displacement curve as close as possible: a. spherical, b. conical, c. third order polynomial, d. Murphy (fourth order polynomial, non-linear Hertzian based. The third order polynomial model showed the best accuracy in representing the force-displacement data of the tested specimens. A model was developed in order to analyze the biomechanical behavior of the human oral keratinized mucosa and obtain information about its mechanical properties.

  15. Surface-based prostate registration with biomechanical regularization

    Science.gov (United States)

    van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.

    2013-03-01

    Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.

  16. MO-AB-BRA-09: Development and Evaluation of a Biomechanical Modeling-Assisted CBCT Reconstruction Technique (Bio-Recon)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Nasehi Tehrani, J; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To develop a Bio-recon technique by incorporating the biomechanical properties of anatomical structures into the deformation-based CBCT reconstruction process. Methods: Bio-recon reconstructs the CBCT by deforming a prior high-quality CT/CBCT using a deformation-vector-field (DVF). The DVF is solved through two alternating steps: 2D–3D deformation and finite-element-analysis based biomechanical modeling. 2D–3D deformation optimizes the DVF through an ‘intensity-driven’ approach, which updates the DVF to minimize intensity mismatches between the acquired projections and the simulated projections from the deformed CBCT. In contrast, biomechanical modeling optimizes the DVF through a ‘biomechanical-feature-driven’ approach, which updates the DVF based on the biophysical properties of anatomical structures. In general, Biorecon extracts the 2D–3D deformation-optimized DVF at high-contrast structure boundaries, and uses it as the boundary condition to drive biomechanical modeling to optimize the overall DVF, especially at low-contrast regions. The optimized DVF is fed back into the 2D–3D deformation for further optimization, which forms an iterative loop. The efficacy of Bio-recon was evaluated on 11 lung patient cases, each with a prior CT and a new CT. Cone-beam projections were generated from the new CTs to reconstruct CBCTs, which were compared with the original new CTs for evaluation. 872 anatomical landmarks were also manually identified by a clinician on both the prior and new CTs to track the lung motion, which was used to evaluate the DVF accuracy. Results: Using 10 projections for reconstruction, the average (± s.d.) relative errors of reconstructed CBCTs by the clinical FDK technique, the 2D–3D deformation-only technique and Bio-recon were 46.5±5.9%, 12.0±2.3% and 10.4±1.3%, respectively. The average residual errors of DVF-tracked landmark motion by the 2D–3D deformation-only technique and Bio-recon were 5.6±4.3mm and 3.1±2

  17. MO-AB-BRA-09: Development and Evaluation of a Biomechanical Modeling-Assisted CBCT Reconstruction Technique (Bio-Recon)

    International Nuclear Information System (INIS)

    Zhang, Y; Nasehi Tehrani, J; Wang, J

    2016-01-01

    Purpose: To develop a Bio-recon technique by incorporating the biomechanical properties of anatomical structures into the deformation-based CBCT reconstruction process. Methods: Bio-recon reconstructs the CBCT by deforming a prior high-quality CT/CBCT using a deformation-vector-field (DVF). The DVF is solved through two alternating steps: 2D–3D deformation and finite-element-analysis based biomechanical modeling. 2D–3D deformation optimizes the DVF through an ‘intensity-driven’ approach, which updates the DVF to minimize intensity mismatches between the acquired projections and the simulated projections from the deformed CBCT. In contrast, biomechanical modeling optimizes the DVF through a ‘biomechanical-feature-driven’ approach, which updates the DVF based on the biophysical properties of anatomical structures. In general, Biorecon extracts the 2D–3D deformation-optimized DVF at high-contrast structure boundaries, and uses it as the boundary condition to drive biomechanical modeling to optimize the overall DVF, especially at low-contrast regions. The optimized DVF is fed back into the 2D–3D deformation for further optimization, which forms an iterative loop. The efficacy of Bio-recon was evaluated on 11 lung patient cases, each with a prior CT and a new CT. Cone-beam projections were generated from the new CTs to reconstruct CBCTs, which were compared with the original new CTs for evaluation. 872 anatomical landmarks were also manually identified by a clinician on both the prior and new CTs to track the lung motion, which was used to evaluate the DVF accuracy. Results: Using 10 projections for reconstruction, the average (± s.d.) relative errors of reconstructed CBCTs by the clinical FDK technique, the 2D–3D deformation-only technique and Bio-recon were 46.5±5.9%, 12.0±2.3% and 10.4±1.3%, respectively. The average residual errors of DVF-tracked landmark motion by the 2D–3D deformation-only technique and Bio-recon were 5.6±4.3mm and 3.1±2

  18. Rabbit Achilles tendon full transection model - wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery.

    Science.gov (United States)

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G; Giovanoli, Pietro; Buschmann, Johanna

    2016-09-15

    After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. © 2016. Published by The Company of Biologists Ltd.

  19. Biomechanics principles and practices

    CERN Document Server

    Peterson, Donald R

    2014-01-01

    Presents Current Principles and ApplicationsBiomedical engineering is considered to be the most expansive of all the engineering sciences. Its function involves the direct combination of core engineering sciences as well as knowledge of nonengineering disciplines such as biology and medicine. Drawing on material from the biomechanics section of The Biomedical Engineering Handbook, Fourth Edition and utilizing the expert knowledge of respected published scientists in the application and research of biomechanics, Biomechanics: Principles and Practices discusses the latest principles and applicat

  20. Soft tissue artifact compensation in knee kinematics by multi-body optimization: Performance of subject-specific knee joint models.

    Science.gov (United States)

    Clément, Julien; Dumas, Raphaël; Hagemeister, Nicola; de Guise, Jaques A

    2015-11-05

    Soft tissue artifact (STA) distort marker-based knee kinematics measures and make them difficult to use in clinical practice. None of the current methods designed to compensate for STA is suitable, but multi-body optimization (MBO) has demonstrated encouraging results and can be improved. The goal of this study was to develop and validate the performance of knee joint models, with anatomical and subject-specific kinematic constraints, used in MBO to reduce STA errors. Twenty subjects were recruited: 10 healthy and 10 osteoarthritis (OA) subjects. Subject-specific knee joint models were evaluated by comparing dynamic knee kinematics recorded by a motion capture system (KneeKG™) and optimized with MBO to quasi-static knee kinematics measured by a low-dose, upright, biplanar radiographic imaging system (EOS(®)). Errors due to STA ranged from 1.6° to 22.4° for knee rotations and from 0.8 mm to 14.9 mm for knee displacements in healthy and OA subjects. Subject-specific knee joint models were most effective in compensating for STA in terms of abduction-adduction, inter-external rotation and antero-posterior displacement. Root mean square errors with subject-specific knee joint models ranged from 2.2±1.2° to 6.0±3.9° for knee rotations and from 2.4±1.1 mm to 4.3±2.4 mm for knee displacements in healthy and OA subjects, respectively. Our study shows that MBO can be improved with subject-specific knee joint models, and that the quality of the motion capture calibration is critical. Future investigations should focus on more refined knee joint models to reproduce specific OA knee geometry and physiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization

    Science.gov (United States)

    Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin

    This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.

  2. A novel biomechanical analysis of gait changes in the MPTP mouse model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Werner J. Geldenhuys

    2015-08-01

    Full Text Available Parkinson’s disease (PD is an age-associated neurodegenerative disorder hallmarked by a loss of mesencephalic dopaminergic neurons. Accurate recapitulation of the PD movement phenotype in animal models of the disease is critical for understanding disease etiology and developing novel therapeutic treatments. However, most existing behavioral assays currently applied to such animal models fail to adequately detect and subsequently quantify the subtle changes associated with the progressive stages of PD. In this study, we used a video-based analysis system to develop and validate a novel protocol for tracking locomotor performance in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of PD. We anticipated that (1 treated mice should use slower, shorter, and less frequent strides and (2 that gait deficits should monotonically increase following MPTP administration, as the effects of neurodegeneration become manifest. Video-based biomechanical analyses, utilizing behavioral measures motivated by the comparative biomechanics literature, were used to quantify gait dynamics over a seven-day period following MPTP treatment. Analyses revealed shuffling behaviors consistent with the gait symptoms of advanced PD in humans. Here we also document dramatic gender-based differences in locomotor performance during the progression of the MPTP-induced lesion, despite male and female mice showing similar losses of striatal dopaminergic cells following MPTP administration. Whereas female mice appeared to be protected against gait deficits, males showed multiple changes in gait kinematics, consistent with the loss of locomotor agility and stability. Overall, these data show that the novel video analysis protocol presented here is a robust method capable of detecting subtle changes in gait biomechanics in a mouse model of PD. Our findings indicate that this method is a useful means by which to easily and economically screen preclinical therapeutic

  3. An Efficient Method for Synthesis of Planar Multibody Systems including Shape of Bodies as Design Variables

    DEFF Research Database (Denmark)

    Hansen, Michael R.; Hansen, John Michael

    1998-01-01

    A point contact joint has been developed and implemented in a joint coordinate based planar multibody dynamics analysis program that also supports revolute and translational joints. Further, a segment library for the definition of the contours of the point contact joints has been integrated...

  4. Qualitative biomechanical principles for application in coaching.

    Science.gov (United States)

    Knudson, Duane

    2007-01-01

    Many aspects of human movements in sport can be readily understood by Newtonian rigid-body mechanics. Many of these laws and biomechanical principles, however, are counterintuitive to a lot of people. There are also several problems in the application of biomechanics to sports, so the application of biomechanics in the qualitative analysis of sport skills by many coaches has been limited. Biomechanics scholars have long been interested in developing principles that facilitate the qualitative application of biomechanics to improve movement performance and reduce the risk of injury. This paper summarizes the major North American efforts to establish a set of general biomechanical principles of movement, and illustrates how principles can be used to improve the application of biomechanics in the qualitative analysis of sport technique. A coach helping a player with a tennis serve is presented as an example. The standardization of terminology for biomechanical principles is proposed as an important first step in improving the application ofbiomechanics in sport. There is also a need for international cooperation and research on the effectiveness of applying biomechanical principles in the coaching of sport techniques.

  5. Efficient methodology for multibody simulations with discontinuous changes in system definition

    International Nuclear Information System (INIS)

    Mukherjee, Rudranarayan M.; Anderson, Kurt S.

    2007-01-01

    A new method is presented for accurately and efficiently simulating multi-scale multibody systems with discontinuous changes in system definitions as encountered in adaptive switching between models with different resolutions as well as models with different system topologies. An example of model resolution change is a transition of a system from a discrete particle model to a reduced order articulated multi-rigid body model. The discontinuous changes in system definition may be viewed as an instantaneous change (release or impulsive application of) the system constraints. The method uses a spatial impulse-momentum formulation in a divide and conquer scheme. The approach utilizes a hierarchic assembly-disassembly process by traversing the system topology in a binary tree map to solve for the jumps in the system generalized speeds and the constraint impulsive loads in linear and logarithmic cost in serial and parallel implementations, respectively. The method is applicable for systems in serial chain as well as kinematical loop topologies. The coupling between the unilateral and bilateral constraints is handled efficiently through the use of kinematic joint definitions. The equations of motion for the system are produced in a hierarchic sub-structured form. This has the advantage that changes in sub-structure definitions/models results in a change to the system equations only within the associated sub-structure. This allows for significant changes in model types and definitions without having to reformulate the equations for the whole system

  6. Evaluation of constraint stabilization procedures for multibody dynamical systems

    Science.gov (United States)

    Park, K. C.; Chiou, J. C.

    1987-01-01

    Comparative numerical studies of four constraint treatment techniques for the simulation of general multibody dynamic systems are presented, and results are presented for the example of a classical crank mechanism and for a simplified version of the seven-link manipulator deployment problem. The staggered stabilization technique (Park, 1986) is found to yield improved accuracy and robustness over Baumgarte's (1972) technique, the singular decomposition technique (Walton and Steeves, 1969), and the penalty technique (Lotstedt, 1979). Furthermore, the staggered stabilization technique offers software modularity, and the only data each solution module needs to exchange with the other is a set of vectors plus a common module to generate the gradient matrix of the constraints, B.

  7. Development of a multi-body nonlinear model for a seat-occupant system

    Science.gov (United States)

    Azizi, Yousof

    -degree of freedom foam-mass model which is also the simplest model of seat-occupant systems. The steady-state response of the system when it is subjected to harmonic base excitation was studied using the incremental harmonic balance method. The incremental harmonic balance method was used to reduce the time required to generate the steady-state response of the system. The incremental harmonic balance method was used to reduce the time required to generate the steady-state response of the system. Experiments are conducted on a single-degree of freedom foam-mass system subjected to harmonic base excitation. Initially, the simulated response predictions were found to deviate from the experimental results. The foam-mass model was then modified to incorporate rate dependency of foam parameters resulting in response predictions that were in good agreement with experimental results. In the second part of this research, the dynamic response of a seat-occupant system was examined through a more realistic planar multi-body seat-occupant model. A constraint Lagrangian formulation was used to derive the governing equations for the seat-occupant model. First, the governing equations were solved numerically to obtain the occupant transient response, the occupant's H-Point location and the interfacial pressure distribution. Variations in the H-Point location and the seat-occupant pressure distribution with changes in the seat-occupant parameters, including the seat geometry and the occupant's characteristics, were studied. The estimated pressure was also investigated experimentally and was found to match with the results obtained using the seat-occupant model. Next, the incremental harmonic balance method was modified and used to obtain the occupant's steady-state response when the seat-occupant system was subjected to harmonic base excitation at different frequencies. The system frequency response and mode shapes at different frequencies were also obtained and compared to the previously

  8. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery

    Directory of Open Access Journals (Sweden)

    Gabriella Meier Bürgisser

    2016-09-01

    Full Text Available After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization, or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization, while in the other groups (3 and 12 weeks a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011, and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points. Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand.

  9. Rabbit Achilles tendon full transection model – wound healing, adhesion formation and biomechanics at 3, 6 and 12 weeks post-surgery

    Science.gov (United States)

    Meier Bürgisser, Gabriella; Calcagni, Maurizio; Bachmann, Elias; Fessel, Gion; Snedeker, Jess G.; Giovanoli, Pietro

    2016-01-01

    ABSTRACT After tendon rupture repair, two main problems may occur: re-rupture and adhesion formation. Suitable non-murine animal models are needed to study the healing tendon in terms of biomechanical properties and extent of adhesion formation. In this study 24 New Zealand White rabbits received a full transection of the Achilles tendon 2 cm above the calcaneus, sutured with a 4-strand Becker suture. Post-surgical analysis was performed at 3, 6 and 12 weeks. In the 6-week group, animals received a cast either in a 180 deg stretched position during 6 weeks (adhesion provoking immobilization), or were re-casted with a 150 deg position after 3 weeks (adhesion inhibiting immobilization), while in the other groups (3 and 12 weeks) a 180 deg position cast was applied for 3 weeks. Adhesion extent was analyzed by histology and ultrasound. Histopathological scoring was performed according to a method by Stoll et al. (2011), and the main biomechanical properties were assessed. Histopathological scores increased as a function of time, but did not reach values of healthy tendons after 12 weeks (only around 15 out of 20 points). Adhesion provoking immobilization led to an adhesion extent of 82.7±9.7%, while adhesion inhibiting immobilization led to 31.9±9.8% after 6 weeks. Biomechanical properties increased over time, however, they did not reach full strength nor elastic modulus at 12 weeks post-operation. Furthermore, the rabbit Achilles tendon model can be modulated in terms of adhesion formation to the surrounding tissue. It clearly shows the different healing stages in terms of histopathology and offers a suitable model regarding biomechanics because it exhibits similar biomechanics as the human flexor tendons of the hand. PMID:27635037

  10. Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.

    Science.gov (United States)

    Weston, Eric B; Aurand, Alexander; Dufour, Jonathan S; Knapik, Gregory G; Marras, William S

    2018-06-01

    Though biomechanically determined guidelines exist for lifting, existing recommendations for pushing and pulling were developed using a psychophysical approach. The current study aimed to establish objective hand force limits based on the results of a biomechanical assessment of the forces on the lumbar spine during occupational pushing and pulling activities. Sixty-two subjects performed pushing and pulling tasks in a laboratory setting. An electromyography-assisted biomechanical model estimated spinal loads, while hand force and turning torque were measured via hand transducers. Mixed modelling techniques correlated spinal load with hand force or torque throughout a wide range of exposures in order to develop biomechanically determined hand force and torque limits. Exertion type, exertion direction, handle height and their interactions significantly influenced dependent measures of spinal load, hand force and turning torque. The biomechanically determined guidelines presented herein are up to 30% lower than comparable psychophysically derived limits and particularly more protective for straight pushing. Practitioner Summary: This study utilises a biomechanical model to develop objective biomechanically determined push/pull risk limits assessed via hand forces and turning torque. These limits can be up to 30% lower than existing psychophysically determined pushing and pulling recommendations. Practitioners should consider implementing these guidelines in both risk assessment and workplace design moving forward.

  11. The Effect of Phospholipids (Surfactant on Adhesion and Biomechanical Properties of Tendon: A Rat Achilles Tendon Repair Model

    Directory of Open Access Journals (Sweden)

    T. Kursat Dabak

    2015-01-01

    Full Text Available Adhesion of the tendon is a major challenge for the orthopedic surgeon during tendon repair. Manipulation of biological environment is one of the concepts to prevent adhesion. Lots of biochemicals have been studied for this purpose. We aimed to determine the effect of phospholipids on adhesion and biomechanical properties of tendon in an animal tendon repair model. Seventy-two Wistar rats were divided into 4 groups. Achilles tendons of rats were cut and repaired. Phospholipids were applied at two different dosages. Tendon adhesion was determined histopathologically and biomechanical test was performed. At macroscopic evaluation of adhesion, there are statistically significant differences between multiple-dose phospholipid injection group and Control group and also hyaluronic acid group and Control group (p0.008. Ultimate strength was highest at hyaluronic acid injection group and lowest at multiple-dose phospholipid injection group. Single-dose phospholipids (surfactant application may have a beneficial effect on the tendon adhesion. Although multiple applications of phospholipids seem the most effective regime to reduce the tendon adhesion among groups, it deteriorated the biomechanical properties of tendon.

  12. Evaluation of Nitinol staples for the Lapidus arthrodesis in a reproducible biomechanical model

    Directory of Open Access Journals (Sweden)

    Nicholas Alexander Russell

    2015-12-01

    Full Text Available While the Lapidus procedure is a widely accepted technique for treatment of hallux valgus, the optimal fixation method to maintain joint stability remains controversial. The purpose of this study was to evaluate the biomechanical properties of new Shape Memory Alloy staples arranged in different configurations in a repeatable 1st Tarsometatarsal arthrodesis model. Ten sawbones models of the whole foot (n=5 per group were reconstructed using a single dorsal staple or two staples in a delta configuration. Each construct was mechanically tested in dorsal four-point bending, medial four-point bending, dorsal three-point bending and plantar cantilever bending with the staples activated at 37°C. The peak load, stiffness and plantar gapping were determined for each test. Pressure sensors were used to measure the contact force and area of the joint footprint in each group. There was a significant (p < 0.05 increase in peak load in the two staple constructs compared to the single staple constructs for all testing modalities. Stiffness also increased significantly in all tests except dorsal four-point bending. Pressure sensor readings showed a significantly higher contact force at time zero and contact area following loading in the two staple constructs (p < 0.05. Both groups completely recovered any plantar gapping following unloading and restored their initial contact footprint. The biomechanical integrity and repeatability of the models was demonstrated with no construct failures due to hardware or model breakdown. Shape memory alloy staples provide fixation with the ability to dynamically apply and maintain compression across a simulated arthrodesis following a range of loading conditions.

  13. Optical spectroscopic characterization of human meniscus biomechanical properties

    Science.gov (United States)

    Ala-Myllymäki, Juho; Danso, Elvis K.; Honkanen, Juuso T. J.; Korhonen, Rami K.; Töyräs, Juha; Afara, Isaac O.

    2017-12-01

    This study investigates the capacity of optical spectroscopy in the visible (VIS) and near-infrared (NIR) spectral ranges for estimating the biomechanical properties of human meniscus. Seventy-two samples obtained from the anterior, central, and posterior locations of the medial and lateral menisci of 12 human cadaver joints were used. The samples were subjected to mechanical indentation, then traditional biomechanical parameters (equilibrium and dynamic moduli) were calculated. In addition, strain-dependent fibril network modulus and permeability strain-dependency coefficient were determined via finite-element modeling. Subsequently, absorption spectra were acquired from each location in the VIS (400 to 750 nm) and NIR (750 to 1100 nm) spectral ranges. Partial least squares regression, combined with spectral preprocessing and transformation, was then used to investigate the relationship between the biomechanical properties and spectral response. The NIR spectral region was observed to be optimal for model development (83.0%≤R2≤90.8%). The percentage error of the models are: Eeq (7.1%), Edyn (9.6%), Eɛ (8.4%), and Mk (8.9%). Thus, we conclude that optical spectroscopy in the NIR range is a potential method for rapid and nondestructive evaluation of human meniscus functional integrity and health in real time during arthroscopic surgery.

  14. Biomechanics and tennis.

    Science.gov (United States)

    Elliott, B

    2006-05-01

    Success in tennis requires a mix of player talent, good coaching, appropriate equipment, and an understanding of those aspects of sport science pertinent to the game. This paper outlines the role that biomechanics plays in player development from sport science and sport medicine perspectives. Biomechanics is a key area in player development because all strokes have a fundamental mechanical structure and sports injuries primarily have a mechanical cause.

  15. Analysis on Biomechanical Characteristics of Post-operational Vertebral C5-C6 Segments

    Directory of Open Access Journals (Sweden)

    Heqiang Tian

    2016-03-01

    Full Text Available Both anterior cervical decompression and fusion (ACDF and artificial cervical disc replacement (ACDR have obvious advantages in the treatment of cervical spondylosis. To analyze the operation results, it is absolutely necessary to study the biomechanics of the movement range of post-operational vertebral C5-C6 segments, especially the biomechanical characteristics in cervical tissues in actual movements. In this study, using the human vertebral 3D graph gained by imaging diagnosis (CT, a vertebral solid model is established by the 3D reconstruction algorithm and reverse engineering technology. After that, with cervical soft tissue structure added to the solid model and set with a joint contact mechanism, a finite element model with a complete, accurate cervical C5-C6 kinematic unit is constructed, based on relevant physiological anatomical knowledge. This model includes vertebral segments, an intervertebral disc, ligament and zygopophysis in the cervical C5-C6 kinematic unit. In the created vertebral finite element model, the model is amended, referring to ACDF and ACDR, and the load and constraint are applied to a normal group, a fusion group and a displacement group, so as to analyze the biomechanical characteristics of the cervical vertebra after ACDF and ACDR. By comparing the finite element simulation results of different surgeries, this paper is intended to evaluate the functions and biomechanical behaviors of the post-operational vertebra, and explore the influence of the operation on the biomechanical stability of the cervical vertebra. This will provide theoretical guidance for implementation and optimization of ACDF and ACDR.

  16. The history of biomechanics in total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Jan Van Houcke

    2017-01-01

    Full Text Available Biomechanics of the hip joint describes how the complex combination of osseous, ligamentous, and muscular structures transfers the weight of the body from the axial skeleton into the appendicular skeleton of the lower limbs. Throughout history, several biomechanical studies based on theoretical mathematics, in vitro, in vivo as well as in silico models have been successfully performed. The insights gained from these studies have improved our understanding of the development of mechanical hip pathologies such as osteoarthritis, hip fractures, and developmental dysplasia of the hip. The main treatment of end-stage degeneration of the hip is total hip arthroplasty (THA. The increasing number of patients undergoing this surgical procedure, as well as their demand for more than just pain relief and leading an active lifestyle, has challenged surgeons and implant manufacturers to deliver higher function as well as longevity with the prosthesis. The science of biomechanics has played and will continue to play a crucial and integral role in achieving these goals. The aim of this article, therefore, is to present to the readers the key concepts in biomechanics of the hip and their application to THA.

  17. Confidence crisis of results in biomechanics research.

    Science.gov (United States)

    Knudson, Duane

    2017-11-01

    Many biomechanics studies have small sample sizes and incorrect statistical analyses, so reporting of inaccurate inferences and inflated magnitude of effects are common in the field. This review examines these issues in biomechanics research and summarises potential solutions from research in other fields to increase the confidence in the experimental effects reported in biomechanics. Authors, reviewers and editors of biomechanics research reports are encouraged to improve sample sizes and the resulting statistical power, improve reporting transparency, improve the rigour of statistical analyses used, and increase the acceptance of replication studies to improve the validity of inferences from data in biomechanics research. The application of sports biomechanics research results would also improve if a larger percentage of unbiased effects and their uncertainty were reported in the literature.

  18. Radiographic, densitometric, and biomechanical effects of recombinant canine somatotropin in an unstable ostectomy gap model of bone healing in dogs

    International Nuclear Information System (INIS)

    Millis, D.L.; Wilkens, B.E.; Daniel, G.B.; Hubner, K.; Mathews, A.; Buonomo, F.C.; Patell, K.R.; Weigel, J.P.

    1998-01-01

    Objective: To determine the effect of recombinant canine somatotropin (STH) on radiographic, densitometric, and biomechanical aspects of bone healing using an unstable ostectomy gap model. Study Design: After an ostectomy of the midshaft radius, bone healing was evaluated over an 8-week period in control dogs (n = 4) and dogs receiving recombinant canine STH (n = 4). Animals Or Sample Population: Eight sexually intact female Beagle dogs, 4 to 5 years old. Methods: Bone healing was evaluated by qualitative and quantitative evaluation of serial radiographs every 2 weeks. Terminal dual-energy x-ray absorptiometry and three-point bending biomechanical testing were also performed. Results: Dogs receiving STH had more advanced radiographic healing of ostectomy sites. Bone area, bone mineral content, and bone density were two to five times greater at the ostectomy sites of treated dogs. Ultimate load at failure and stiffness were three and five times greater in dogs receiving STH. Conclusions: Using the ostectomy gap model, recombinant canine STH enhanced the radiographic, densitometric, and biomechanical aspects of bone healing in dogs. Clinical Relevance: Dogs at risk for delayed healing of fractures may benefit from treatment with recombinant canine STH

  19. Scleral Biomechanics in the Aging Monkey Eye

    Science.gov (United States)

    Girard, Michaël J. A.; Suh, J-K. Francis; Bottlang, Michael; Burgoyne, Claude F.; Downs, J. Crawford

    2010-01-01

    Purpose To investigate the age-related differences in the inhomogeneous, anisotropic, nonlinear biomechanical properties of posterior sclera from old (22.9 ± 5.3 years) and young (1.5 ± 0.7 years) rhesus monkeys. Methods The posterior scleral shell of each eye was mounted on a custom-built pressurization apparatus, then intraocular pressure (IOP) was elevated from 5 to 45 mmHg while the 3D displacements of the scleral surface were measured using speckle interferometry. Each scleral shell geometry was digitally reconstructed from data generated by a 3D digitizer (topography) and 20 MHz ultrasounds (thickness). An inverse finite element (FE) method incorporating a fiber-reinforced constitutive model was used to extract a unique set of biomechanical properties for each eye. Displacements, thickness, stress, strain, tangent modulus, structural stiffness, and preferred collagen fiber orientation were mapped for each posterior sclera. Results The model yielded 3-D deformations of posterior sclera that matched well with those observed experimentally. The posterior sclera exhibited inhomogeneous, anisotropic, nonlinear mechanical behavior. The sclera was significantly thinner (p = 0.038), and tangent modulus and structural stiffness were significantly higher in old monkeys (p biomechanics, and potentially contribute to age-related susceptibility to glaucomatous vision loss. PMID:19494203

  20. Arch index and running biomechanics in children aged 10-14 years.

    Science.gov (United States)

    Hollander, Karsten; Stebbins, Julie; Albertsen, Inke Marie; Hamacher, Daniel; Babin, Kornelia; Hacke, Claudia; Zech, Astrid

    2018-03-01

    While altered foot arch characteristics (high or low) are frequently assumed to influence lower limb biomechanics and are suspected to be a contributing factor for injuries, the association between arch characteristics and lower limb running biomechanics in children is unclear. Therefore, the aim of this study was to investigate the relationship between a dynamically measured arch index and running biomechanics in healthy children. One hundred and one children aged 10-14 years were included in this study and underwent a biomechanical investigation. Plantar distribution (Novel, Emed) was used to determine the dynamic arch index and 3D motion capture (Vicon) to measure running biomechanics. Linear mixed models were established to determine the association between dynamic arch index and foot strike patterns, running kinematics, kinetics and temporal-spatial outcomes. No association was found between dynamic arch index and rate of rearfoot strikes (p = 0.072). Of all secondary outcomes, only the foot progression angle was associated with the dynamic arch index (p = 0.032) with greater external rotation in lower arched children. Overall, we found only few associations between arch characteristics and running biomechanics in children. However, altered foot arch characteristics are of clinical interest. Future studies should focus on detailed foot biomechanics and include clinically diagnosed high and low arched children. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. CP violation in multibody decays of beauty baryons

    Energy Technology Data Exchange (ETDEWEB)

    Durieux, Gauthier

    2016-08-15

    Beauty baryons are being observed in large numbers in the LHCb detector. The rich kinematic distributions of their multibody decays are therefore becoming accessible and provide us with new opportunities to search for CP violation. We analyse the angular distributions of some three- and four-body decays of spin-1/2 baryons using the Jacob-Wick helicity formalism. The asymmetries that provide access to small differences of CP-odd phases between decay amplitudes of identical CP-even phases are notably discussed. The understanding gained on processes featuring specific resonant intermediate states allows us to establish which asymmetries are relevant for what purpose. It is for instance shown that some CP-odd angular asymmetries measured by the LHCb collaboration in the Λ{sub b}→Λφ→pπ K{sup +}K{sup -} decay are expected to vanish identically.

  2. Brillouin microscopy: assessing ocular tissue biomechanics.

    Science.gov (United States)

    Yun, Seok Hyun; Chernyak, Dimitri

    2018-07-01

    Assessment of corneal biomechanics has been an unmet clinical need in ophthalmology for many years. Many researchers and clinicians have identified corneal biomechanics as source of variability in refractive procedures and one of the main factors in keratoconus. However, it has been difficult to accurately characterize corneal biomechanics in patients. The recent development of Brillouin light scattering microscopy heightens the promise of bringing biomechanics into the clinic. The aim of this review is to overview the progress and discuss prospective applications of this new technology. Brillouin microscopy uses a low-power near-infrared laser beam to determine longitudinal modulus or mechanical compressibility of tissue by analyzing the return signal spectrum. Human clinical studies have demonstrated significant difference in the elastic properties of normal corneas versus corneas diagnosed with mild and severe keratoconus. Clinical data have also shown biomechanical changes after corneal cross-linking treatment of keratoconus patients. Brillouin measurements of the crystalline lens and sclera have also been demonstrated. Brillouin microscopy is a promising technology under commercial development at present. The technique enables physicians to characterize the biomechanical properties of ocular tissues.

  3. MO-C-17A-03: A GPU-Based Method for Validating Deformable Image Registration in Head and Neck Radiotherapy Using Biomechanical Modeling

    International Nuclear Information System (INIS)

    Neylon, J; Min, Y; Qi, S; Kupelian, P; Santhanam, A

    2014-01-01

    Purpose: Deformable image registration (DIR) plays a pivotal role in head and neck adaptive radiotherapy but a systematic validation of DIR algorithms has been limited by a lack of quantitative high-resolution groundtruth. We address this limitation by developing a GPU-based framework that provides a systematic DIR validation by generating (a) model-guided synthetic CTs representing posture and physiological changes, and (b) model-guided landmark-based validation. Method: The GPU-based framework was developed to generate massive mass-spring biomechanical models from patient simulation CTs and contoured structures. The biomechanical model represented soft tissue deformations for known rigid skeletal motion. Posture changes were simulated by articulating skeletal anatomy, which subsequently applied elastic corrective forces upon the soft tissue. Physiological changes such as tumor regression and weight loss were simulated in a biomechanically precise manner. Synthetic CT data was then generated from the deformed anatomy. The initial and final positions for one hundred randomly-chosen mass elements inside each of the internal contoured structures were recorded as ground truth data. The process was automated to create 45 synthetic CT datasets for a given patient CT. For instance, the head rotation was varied between +/− 4 degrees along each axis, and tumor volumes were systematically reduced up to 30%. Finally, the original CT and deformed synthetic CT were registered using an optical flow based DIR. Results: Each synthetic data creation took approximately 28 seconds of computation time. The number of landmarks per data set varied between two and three thousand. The validation method is able to perform sub-voxel analysis of the DIR, and report the results by structure, giving a much more in depth investigation of the error. Conclusions: We presented a GPU based high-resolution biomechanical head and neck model to validate DIR algorithms by generating CT equivalent 3D

  4. Computer simulation of human motion in sports biomechanics.

    Science.gov (United States)

    Vaughan, C L

    1984-01-01

    This chapter has covered some important aspects of the computer simulation of human motion in sports biomechanics. First the definition and the advantages and limitations of computer simulation were discussed; second, research on various sporting activities were reviewed. These activities included basic movements, aquatic sports, track and field athletics, winter sports, gymnastics, and striking sports. This list was not exhaustive and certain material has, of necessity, been omitted. However, it was felt that a sufficiently broad and interesting range of activities was chosen to illustrate both the advantages and the pitfalls of simulation. It is almost a decade since Miller [53] wrote a review chapter similar to this one. One might be tempted to say that things have changed radically since then--that computer simulation is now a widely accepted and readily applied research tool in sports biomechanics. This is simply not true, however. Biomechanics researchers still tend to emphasize the descriptive type of study, often unfortunately, when a little theoretical explanation would have been more helpful [29]. What will the next decade bring? Of one thing we can be certain: The power of computers, particularly the readily accessible and portable microcomputer, will expand beyond all recognition. The memory and storage capacities will increase dramatically on the hardware side, and on the software side the trend will be toward "user-friendliness." It is likely that a number of software simulation packages designed specifically for studying human motion [31, 96] will be extensively tested and could gain wide acceptance in the biomechanics research community. Nevertheless, a familiarity with Newtonian and Lagrangian mechanics, optimization theory, and computers in general, as well as practical biomechanical insight, will still be a prerequisite for successful simulation models of human motion. Above all, the biomechanics researcher will still have to bear in mind that

  5. Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: Radiographic-biomechanical correlation

    International Nuclear Information System (INIS)

    Sartoris, D.J.; Resnick, D.; Holmes, R.E.; Tencer, A.F.; Texas Univ., Dallas; Mooney, V.

    1986-01-01

    Radiographic and biomechanical assessment of a new type of bone graft substitute derived from reef-building sea coral was performed in a canine metaphyseal defect model. Blocks of this material and autogenous iliac crest graft were implanted, respectively, into the right and left proximal tibial metaphyses of eight dogs. Qualitative and quantitative radiographic evaluation was performed in the immediate postoperative period and at 6 months after surgery. Biomechanical testing was carried out on all grafts following harvest at 6 months, as well as on nonimplanted coralline hydroxyapatite and autogenous iliac cancellous bone. In contrast to autografts, incorporation of coralline implants was characterized by predictable osseous growth and apposition with preservation of intrinsic architecture. Greater percent increase in radiography density, higher ultimate compressive strength, and lower stiffness with incorporation were documented advantages of coralline hydroxyapatite over autogenous graft. Densitometric measurements correlated moderately with strength for both types of graft material (r=0.65). These promising results have important implications to the clinical application of coralline hydroxyapatite bone graft substitutes as an alternative to autogenous grafting. (orig.)

  6. Decoupled form and function in disparate herbivorous dinosaur clades

    Science.gov (United States)

    Lautenschlager, Stephan; Brassey, Charlotte A.; Button, David J.; Barrett, Paul M.

    2016-05-01

    Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.

  7. Decoupled form and function in disparate herbivorous dinosaur clades.

    Science.gov (United States)

    Lautenschlager, Stephan; Brassey, Charlotte A; Button, David J; Barrett, Paul M

    2016-05-20

    Convergent evolution, the acquisition of morphologically similar traits in unrelated taxa due to similar functional demands or environmental factors, is a common phenomenon in the animal kingdom. Consequently, the occurrence of similar form is used routinely to address fundamental questions in morphofunctional research and to infer function in fossils. However, such qualitative assessments can be misleading and it is essential to test form/function relationships quantitatively. The parallel occurrence of a suite of morphologically convergent craniodental characteristics in three herbivorous, phylogenetically disparate dinosaur clades (Sauropodomorpha, Ornithischia, Theropoda) provides an ideal test case. A combination of computational biomechanical models (Finite Element Analysis, Multibody Dynamics Analysis) demonstrate that despite a high degree of morphological similarity between representative taxa (Plateosaurus engelhardti, Stegosaurus stenops, Erlikosaurus andrewsi) from these clades, their biomechanical behaviours are notably different and difficult to predict on the basis of form alone. These functional differences likely reflect dietary specialisations, demonstrating the value of quantitative biomechanical approaches when evaluating form/function relationships in extinct taxa.

  8. Structure and thermodynamics of a mixture of patchy and spherical colloids: A multi-body association theory with complete reference fluid information

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G., E-mail: wgchap@rice.edu [Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251 (United States)

    2016-08-21

    A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium. The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.

  9. Modelling and Analysis on Biomechanical Dynamic Characteristics of Knee Flexion Movement under Squatting

    Directory of Open Access Journals (Sweden)

    Jianping Wang

    2014-01-01

    Full Text Available The model of three-dimensional (3D geometric knee was built, which included femoral-tibial, patellofemoral articulations and the bone and soft tissues. Dynamic finite element (FE model of knee was developed to simulate both the kinematics and the internal stresses during knee flexion. The biomechanical experimental system of knee was built to simulate knee squatting using cadaver knees. The flexion motion and dynamic contact characteristics of knee were analyzed, and verified by comparing with the data from in vitro experiment. The results showed that the established dynamic FE models of knee are capable of predicting kinematics and the contact stresses during flexion, and could be an efficient tool for the analysis of total knee replacement (TKR and knee prosthesis design.

  10. Joint kinematics estimation using a multi-body kinematics optimisation and an extended Kalman filter, and embedding a soft tissue artefact model.

    Science.gov (United States)

    Bonnet, Vincent; Richard, Vincent; Camomilla, Valentina; Venture, Gentiane; Cappozzo, Aurelio; Dumas, Raphaël

    2017-09-06

    To reduce the impact of the soft tissue artefact (STA) on the estimate of skeletal movement using stereophotogrammetric and skin-marker data, multi-body kinematics optimisation (MKO) and extended Kalman filters (EKF) have been proposed. This paper assessed the feasibility and efficiency of these methods when they embed a mathematical model of the STA and simultaneously estimate the ankle, knee and hip joint kinematics and the model parameters. A STA model was used that provides an estimate of the STA affecting the marker-cluster located on a body segment as a function of the kinematics of the adjacent joints. The MKO and the EKF were implemented with and without the STA model. To assess these methods, intra-cortical pin and skin markers located on the thigh, shank, and foot of three subjects and tracked during the stance phase of running were used. Embedding the STA model in MKO and EKF reduced the average RMS of marker tracking from 12.6 to 1.6mm and from 4.3 to 1.9mm, respectively, showing that a STA model trial-specific calibration is feasible. Nevertheless, with the STA model embedded in MKO, the RMS difference between the estimated and the reference joint kinematics determined from the pin markers slightly increased (from 2.0 to 2.1deg) On the contrary, when the STA model was embedded in the EKF, this RMS difference was slightly reduced (from 2.0 to 1.7deg) thus showing a better potentiality of this method to attenuate STA effects and improve the accuracy of joint kinematics estimate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Structural biomechanics of the craniomaxillofacial skeleton under maximal masticatory loading: Inferences and critical analysis based on a validated computational model.

    Science.gov (United States)

    Pakdel, Amir R; Whyne, Cari M; Fialkov, Jeffrey A

    2017-06-01

    The trend towards optimizing stabilization of the craniomaxillofacial skeleton (CMFS) with the minimum amount of fixation required to achieve union, and away from maximizing rigidity, requires a quantitative understanding of craniomaxillofacial biomechanics. This study uses computational modeling to quantify the structural biomechanics of the CMFS under maximal physiologic masticatory loading. Using an experimentally validated subject-specific finite element (FE) model of the CMFS, the patterns of stress and strain distribution as a result of physiological masticatory loading were calculated. The trajectories of the stresses were plotted to delineate compressive and tensile regimes over the entire CMFS volume. The lateral maxilla was found to be the primary vertical buttress under maximal bite force loading, with much smaller involvement of the naso-maxillary buttress. There was no evidence that the pterygo-maxillary region is a buttressing structure, counter to classical buttress theory. The stresses at the zygomatic sutures suggest that two-point fixation of zygomatic complex fractures may be sufficient for fixation under bite force loading. The current experimentally validated biomechanical FE model of the CMFS is a practical tool for in silico optimization of current practice techniques and may be used as a foundation for the development of design criteria for future technologies for the treatment of CMFS injury and disease. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics

    Science.gov (United States)

    Hua, Yi; Voorhees, Andrew P.; Sigal, Ian A.

    2018-01-01

    Purpose To model the sensitivity of the optic nerve head (ONH) biomechanical environment to acute variations in IOP, cerebrospinal fluid pressure (CSFP), and central retinal artery blood pressure (BP). Methods We extended a previously published numerical model of the ONH to include 24 factors representing tissue anatomy and mechanical properties, all three pressures, and constraints on the optic nerve (CON). A total of 8340 models were studied to predict factor influences on 98 responses in a two-step process: a fractional factorial screening analysis to identify the 16 most influential factors, followed by a response surface methodology to predict factor effects in detail. Results The six most influential factors were, in order: IOP, CON, moduli of the sclera, lamina cribrosa (LC) and dura, and CSFP. IOP and CSFP affected different aspects of ONH biomechanics. The strongest influence of CSFP, more than twice that of IOP, was on the rotation of the peripapillary sclera. CSFP had similar influence on LC stretch and compression to moduli of sclera and LC. On some ONHs, CSFP caused large retrolamina deformations and subarachnoid expansion. CON had a strong influence on LC displacement. BP overall influence was 633 times smaller than that of IOP. Conclusions Models predict that IOP and CSFP are the top and sixth most influential factors on ONH biomechanics. Different IOP and CSFP effects suggest that translaminar pressure difference may not be a good parameter to predict biomechanics-related glaucomatous neuropathy. CON may drastically affect the responses relating to gross ONH geometry and should be determined experimentally. PMID:29332130

  13. Biomechanical comparison of single-row, double-row, and transosseous-equivalent repair techniques after healing in an animal rotator cuff tear model.

    Science.gov (United States)

    Quigley, Ryan J; Gupta, Akash; Oh, Joo-Han; Chung, Kyung-Chil; McGarry, Michelle H; Gupta, Ranjan; Tibone, James E; Lee, Thay Q

    2013-08-01

    The transosseous-equivalent (TOE) rotator cuff repair technique increases failure loads and contact pressure and area between tendon and bone compared to single-row (SR) and double-row (DR) repairs, but no study has investigated if this translates into improved healing in vivo. We hypothesized that a TOE repair in a rabbit chronic rotator cuff tear model would demonstrate a better biomechanical profile than SR and DR repairs after 12 weeks of healing. A two-stage surgical procedure was performed on 21 New Zealand White Rabbits. The right subscapularis tendon was transected and allowed to retract for 6 weeks to simulate a chronic tear. Repair was done with the SR, DR, or TOE technique and allowed to heal for 12 weeks. Cyclic loading and load to failure biomechanical testing was then performed. The TOE repair showed greater biomechanical characteristics than DR, which in turn were greater than SR. These included yield load (p repair of a chronic, retracted rotator cuff tear, the TOE technique was the strongest biomechanical construct after healing followed by DR with SR being the weakest. Copyright © 2013 Orthopaedic Research Society.

  14. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    Science.gov (United States)

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  15. A three-dimensional finite element model for biomechanical analysis of the hip.

    Science.gov (United States)

    Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe

    2013-11-01

    The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.

  16. Biomechanics of Pediatric Manual Wheelchair Mobility.

    Science.gov (United States)

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Tarima, Sergey; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI.

  17. Evaluation of Nitinol Staples for the Lapidus Arthrodesis in a Reproducible Biomechanical Model.

    Science.gov (United States)

    Russell, Nicholas A; Regazzola, Gianmarco; Aiyer, Amiethab; Nomura, Tomohiro; Pelletier, Matthew H; Myerson, Mark; Walsh, William R

    2015-01-01

    While the Lapidus procedure is a widely accepted technique for treatment of hallux valgus, the optimal fixation method to maintain joint stability remains controversial. The purpose of this study is to evaluate the biomechanical properties of new shape memory alloy (SMA) staples arranged in different configurations in a repeatable first tarsometatarsal arthrodesis model. Ten sawbones models of the whole foot (n = 5 per group) were reconstructed using a single dorsal staple or two staples in a delta configuration. Each construct was mechanically tested non-destructively in dorsal four-point bending, medial four-point bending, dorsal three-point bending, and plantar cantilever bending with the staples activated at 37°C. The peak load (newton), stiffness (newton per millimeter), and plantar gapping (millimeter) were determined for each test. Pressure sensors were used to measure the contact force and area of the joint footprint in each group. There was a statistically significant increase in peak load in the two staple constructs compared to the single staple constructs for all testing modalities with P values range from 0.016 to 0.000. Stiffness also increased significantly in all tests except dorsal four-point bending. Pressure sensor readings showed a significantly higher contact force at time zero (P = 0.037) and contact area following loading in the two staple constructs (P = 0.045). Both groups completely recovered any plantar gapping following unloading and restored their initial contact footprint. The biomechanical integrity and repeatability of the models was demonstrated with no construct failures due to hardware or model breakdown. SMA staples provide fixation with the ability to dynamically apply and maintain compression across a simulated arthrodesis following a range of loading conditions.

  18. Substructuring of multibody systems for numerical transfer path analysis in internal combustion engines

    Science.gov (United States)

    Acri, Antonio; Offner, Guenter; Nijman, Eugene; Rejlek, Jan

    2016-10-01

    Noise legislations and the increasing customer demands determine the Noise Vibration and Harshness (NVH) development of modern commercial vehicles. In order to meet the stringent legislative requirements for the vehicle noise emission, exact knowledge of all vehicle noise sources and their acoustic behavior is required. Transfer path analysis (TPA) is a fairly well established technique for estimating and ranking individual low-frequency noise or vibration contributions via the different transmission paths. Transmission paths from different sources to target points of interest and their contributions can be analyzed by applying TPA. This technique is applied on test measurements, which can only be available on prototypes, at the end of the designing process. In order to overcome the limits of TPA, a numerical transfer path analysis methodology based on the substructuring of a multibody system is proposed in this paper. Being based on numerical simulation, this methodology can be performed starting from the first steps of the designing process. The main target of the proposed methodology is to get information of noise sources contributions of a dynamic system considering the possibility to have multiple forces contemporary acting on the system. The contributions of these forces are investigated with particular focus on distribute or moving forces. In this paper, the mathematical basics of the proposed methodology and its advantages in comparison with TPA will be discussed. Then, a dynamic system is investigated with a combination of two methods. Being based on the dynamic substructuring (DS) of the investigated model, the methodology proposed requires the evaluation of the contact forces at interfaces, which are computed with a flexible multi-body dynamic (FMBD) simulation. Then, the structure-borne noise paths are computed with the wave based method (WBM). As an example application a 4-cylinder engine is investigated and the proposed methodology is applied on the

  19. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation

    Science.gov (United States)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.

    2016-01-01

    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  20. A multi-body vehicle for moving inside cluttered nuclear environment

    International Nuclear Information System (INIS)

    Littmann, F.; Chameaud, H.

    1994-01-01

    The paper presents the result of the TALOS (Technologies for Advanced locomotion Systems) programme. The general aim of the TALOS was to prove the feasibility of multi-body articulated vehicles for intervention missions in nuclear plant were high payload volume and mass are required, combined with great geometrical and obstacles constraints. This programme was based on one hand on the TLV (Train Like Vehicle) concept, developed by CEA ( Atomic Energy Commission) and on the other hand on the KfK experience on locomotion. The main difficulties of this programme were to find the mechanical linkage concept and the locomotion concept, and also to build an integrated mockup with linkage and locomotion concepts. (TEC). 4 refs., 5 figs

  1. A multi-body vehicle for moving inside cluttered nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Littmann, F.; Chameaud, H. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes et Systemes Avances; Dorn, J. [Kernforschungszentrum Karlsruhe GmbH (Germany)

    1994-12-31

    The paper presents the result of the TALOS (Technologies for Advanced locomotion Systems) programme. The general aim of the TALOS was to prove the feasibility of multi-body articulated vehicles for intervention missions in nuclear plant were high payload volume and mass are required, combined with great geometrical and obstacles constraints. This programme was based on one hand on the TLV (Train Like Vehicle) concept, developed by CEA ( Atomic Energy Commission) and on the other hand on the KfK experience on locomotion. The main difficulties of this programme were to find the mechanical linkage concept and the locomotion concept, and also to build an integrated mockup with linkage and locomotion concepts. (TEC). 4 refs., 5 figs.

  2. Editorial Commentary: All-Suture Anchors, Foam Blocks, and Biomechanical Testing.

    Science.gov (United States)

    Brand, Jefferson C

    2017-06-01

    Barber's biomechanical work is well known to Arthroscopy's readers as thorough, comprehensive, and inclusive of new designs as they become available. In "All-Suture Anchors: Biomechanical Analysis of Pullout Strength, Displacement, and Failure Mode," the latest iteration, Barber and Herbert test all-suture anchors in both porcine femurs and biphasic foam. While we await in vivo clinical trials that compare all-suture anchors to currently used anchors, Barber and Herbert have provided data to inform anchor choice, and using their biomechanical data at time zero from all-suture anchor trials in an animal model, we can determine the anchors' feasibility for human clinical investigations. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  3. Biomechanical analysis technique choreographic movements (for example, "grand battman jete"

    Directory of Open Access Journals (Sweden)

    Batieieva N.P.

    2015-04-01

    Full Text Available Purpose : biomechanical analysis of the execution of choreographic movement "grand battman jete". Material : the study involved students (n = 7 of the department of classical choreography faculty of choreography. Results : biomechanical analysis of choreographic movement "grand battman jete" (classic exercise, obtained kinematic characteristics (path, velocity, acceleration, force of the center of mass (CM bio parts of the body artist (foot, shin, thigh. Built bio kinematic model (phase. The energy characteristics - mechanical work and kinetic energy units legs when performing choreographic movement "grand battman jete". Conclusions : It was found that the ability of an athlete and coach-choreographer analyze the biomechanics of movement has a positive effect on the improvement of choreographic training of qualified athletes in gymnastics (sport, art, figure skating and dance sports.

  4. Biomechanical analysis of double poling in elite cross-country skiers.

    Science.gov (United States)

    Holmberg, Hans-Christer; Lindinger, Stefan; Stöggl, Thomas; Eitzlmair, Erich; Müller, Erich

    2005-05-01

    To further the understanding of double poling (DP) through biomechanical analysis of upper and lower body movements during DP in cross-country (XC) skiing at racing speed. Eleven elite XC skiers performed DP at 85% of their maximal DP velocity (V85%) during roller skiing at 1 degrees inclination on a treadmill. Pole and plantar ground reaction forces, joint angles (elbow, hip, knee, and ankle), cycle characteristics, and electromyography (EMG) of upper and lower body muscles were analyzed. 1) Pole force pattern with initial impact force peak and the following active force peak (PPF) correlated to V85%, (r = 0.66, P biomechanical aspects. Future research should further investigate the relationship between biomechanical and physiological variables and elaborate training models to improve DP performance.

  5. System Reduction in Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.

    2009-01-01

    Abstract A system reduction scheme is devised related to a multibody formulation from which the dynamic response of a wind turbine is determined. In this formulation each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure....... The Ritz bases spanning the reduced system comprises of rigid body modes and some dynamic low-frequency elastic eigenmodes compatible to the kinematic constraints of the related substructure. The high-frequency elastic modes are presumed to cause merely quasi-static displacements, and thus are included...... in the expansion via a quasi-static correction. The results show that by using the derived reduction scheme it is only necessary with 2 dynamical modes for the blade substructure when the remaining modes are treated as quasi-static. Moreover, it is shown that it has little to none effect if the gyroscopic...

  6. A Biomechanical Modeling Study of the Effects of the Orbicularis Oris Muscle and Jaw Posture on Lip Shape

    Science.gov (United States)

    Stavness, Ian; Nazari, Mohammad Ali; Perrier, Pascal; Demolin, Didier; Payan, Yohan

    2013-01-01

    Purpose: The authors' general aim is to use biomechanical models of speech articulators to explore how possible variations in anatomical structure contribute to differences in articulatory strategies and phone systems across human populations. Specifically, they investigated 2 issues: (a) the link between lip muscle anatomy and variability in…

  7. Numerical Simulation of Some Biomechanical Problems

    Czech Academy of Sciences Publication Activity Database

    Nedoma, Jiří; Klézl, Z.; Fousek, J.; Kestřánek, Zdeněk; Stehlík, J.

    2003-01-01

    Roč. 61, 3-6 (2003), s. 283-295 ISSN 0378-4754. [MODELLING 2001. IMACS Conference on Mathematical Modelling and Computational Methods in Mechanics, Physics , Biomechanics and Geodynamics /2./. Pilsen, 19.06.2001-25.06.2001] Institutional research plan: AV0Z1030915 Keywords : non-linear elasticity * contact problems * variational inequality * finite element method * wrist * spine * fracture Subject RIV: BA - General Mathematics Impact factor: 0.558, year: 2003

  8. Toward characterization of craniofacial biomechanics.

    Science.gov (United States)

    Szwedowski, Tomasz D; Whyne, Cari M; Fialkov, Jeffrey A

    2010-01-01

    Surgical reconstruction of craniofacial deformities has advanced significantly in recent years. However, unlike orthopedic surgery of the appendicular skeleton, the biomechanical characterization of the human craniofacial skeleton (CFS) has yet to be elucidated. Attempts to simplify facial skeletal structure into straightforward mechanical device analogies have been insufficient in delineating craniofacial biomechanics. Advanced computational engineering analysis methods offer the potential to accurately and completely define the internal mechanical environment of the CFS. This study developed a finite element (FE) model in the I-deas 10 FEM software package of a preserved cadaveric human CFS and compared the predictions of this model against in vitro strain measurement of simulated occlusal loading forces from a single masseter muscle. The FE model applied shell element modeling to capture the behavior of the thin cortical bone that may play an important role in stabilizing the facial structures against functional loads. In vitro testing included strain measurements at 12 locations for a total of 16 independent channels with less than 150 N of tensile force applied through the masseter muscle into the zygomatic arch origin at 4 different orientations, with 3 trials of 500 recorded data points for each loading orientation. Linear regression analysis yielded a moderate prediction (r = 0.57) between the model and experimentally measured strains. Exclusion of strain comparisons in regions that required greater modeling assumptions greatly improved the correlation (r = 0.70). Future validation studies will benefit from improved placement of strain gauges as guided by FE model predicted strain patterns.

  9. A review of biomechanically informed breast image registration

    International Nuclear Information System (INIS)

    Hipwell, John H; Vavourakis, Vasileios; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J; Han, Lianghao

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice. (topical review)

  10. Systems biomechanics of the cell

    CERN Document Server

    Maly, Ivan V

    2013-01-01

    Systems Biomechanics of the Cell attempts to outline systems biomechanics of the cell as an emergent and promising discipline. The new field owes conceptually to cell mechanics, organism-level systems biomechanics, and biology of biochemical systems. Its distinct methodology is to elucidate the structure and behavior of the cell by analyzing the unintuitive collective effects of elementary physical forces that interact within the heritable cellular framework. The problematics amenable to this approach includes the variety of cellular activities that involve the form and movement of the cell body and boundary (nucleus, centrosome, microtubules, cortex, and membrane). Among the elementary system effects in the biomechanics of the cell, instability of symmetry, emergent irreversibility, and multiperiodic dissipative motion can be noted. Research results from recent journal articles are placed in this unifying framework. It is suggested that the emergent discipline has the potential to expand the spectrum of ques...

  11. Development of esMOCA Biomechanic, Motion Capture Instrumentation for Biomechanics Analysis

    Science.gov (United States)

    Arendra, A.; Akhmad, S.

    2018-01-01

    This study aims to build motion capture instruments using inertial measurement unit sensors to assist in the analysis of biomechanics. Sensors used are accelerometer and gyroscope. Estimation of orientation sensors is done by digital motion processing in each sensor nodes. There are nine sensor nodes attached to the upper limbs. This sensor is connected to the pc via a wireless sensor network. The development of kinematics and inverse dynamamic models of the upper limb is done in simulink simmechanic. The kinematic model receives streaming data of sensor nodes mounted on the limbs. The output of the kinematic model is the pose of each limbs and visualized on display. The dynamic inverse model outputs the reaction force and reaction moment of each joint based on the limb motion input. Model validation in simulink with mathematical model of mechanical analysis showed results that did not differ significantly

  12. Mathematical foundations of biomechanics.

    Science.gov (United States)

    Niederer, Peter F

    2010-01-01

    The aim of biomechanics is the analysis of the structure and function of humans, animals, and plants by means of the methods of mechanics. Its foundations are in particular embedded in mathematics, physics, and informatics. Due to the inherent multidisciplinary character deriving from its aim, biomechanics has numerous connections and overlapping areas with biology, biochemistry, physiology, and pathophysiology, along with clinical medicine, so its range is enormously wide. This treatise is mainly meant to serve as an introduction and overview for readers and students who intend to acquire a basic understanding of the mathematical principles and mechanics that constitute the foundation of biomechanics; accordingly, its contents are limited to basic theoretical principles of general validity and long-range significance. Selected examples are included that are representative for the problems treated in biomechanics. Although ultimate mathematical generality is not in the foreground, an attempt is made to derive the theory from basic principles. A concise and systematic formulation is thereby intended with the aim that the reader is provided with a working knowledge. It is assumed that he or she is familiar with the principles of calculus, vector analysis, and linear algebra.

  13. Development and validation of a human biomechanical model for rib fracture and thorax injuries in blunt impact.

    Science.gov (United States)

    Cai, Zhihua; Lan, Fengchong; Chen, Jiqing

    2015-07-01

    From 1990 to approximately 50,000-120,000 people die annually of road traffic accidents in China. Traffic accidents are the main cause of death of Chinese adults aged 15-45 years. This study aimed to determine the biomechanical response and injury tolerance of the human body in traffic accidents. The subject was a 35-year-old male with a height of 170 cm, weight of 70 kg and Chinese characteristics at the 50th percentile. Geometry was generated by computed tomography and magnetic resonance imaging. A human-body biomechanical model was then developed. The model featured in great detail the main anatomical characteristics of skeletal tissues, soft tissues and internal organs, including the head, neck, shoulder, thoracic cage, abdomen, spine, pelvis, pleurae and lungs, heart, aorta, arms, legs, and other muscle tissues and skeletons. The material properties of all tissues in the human body model were obtained from the literature. Material properties were developed in the LS-DYNA code to simulate the mechanical behaviour of the biological tissues in the human body. The model was validated against cadaver responses to frontal and side impact. The predicted model response reasonably agreed with the experimental data, and the model can further be used to evaluate thoracic injury in real-world crashes. We believe that the transportation industry can use numerical models in the future to simultaneously reduce physical testing and improve automotive safety.

  14. CT-derived Biomechanical Metrics Improve Agreement Between Spirometry and Emphysema

    Science.gov (United States)

    Bhatt, Surya P.; Bodduluri, Sandeep; Newell, John D.; Hoffman, Eric A.; Sieren, Jessica C.; Han, Meilan K.; Dransfield, Mark T.; Reinhardt, Joseph M.

    2016-01-01

    Rationale and Objectives Many COPD patients have marked discordance between FEV1 and degree of emphysema on CT. Biomechanical differences between these patients have not been studied. We aimed to identify reasons for the discordance between CT and spirometry in some patients with COPD. Materials and Methods Subjects with GOLD stage I–IV from a large multicenter study (COPDGene) were arranged by percentiles of %predicted FEV1 and emphysema on CT. Three categories were created using differences in percentiles: Catspir with predominant airflow obstruction/minimal emphysema, CatCT with predominant emphysema/minimal airflow obstruction, and Catmatched with matched FEV1 and emphysema. Image registration was used to derive Jacobian determinants, a measure of lung elasticity, anisotropy and strain tensors, to assess biomechanical differences between groups. Regression models were created with the above categories as outcome variable, adjusting for demographics, scanner type, quantitative CT-derived emphysema, gas trapping, and airway thickness (Model 1), and after adding biomechanical CT metrics (Model 2). Results Jacobian determinants, anisotropy and strain tensors were strongly associated with FEV1. With Catmatched as control, Model 2 predicted Catspir and CatCT better than Model 1 (Akaike Information Criterion, AIC 255.8 vs. 320.8). In addition to demographics, the strongest independent predictors of FEV1 were Jacobian mean (β= 1.60,95%CI = 1.16 to 1.98; p<0.001), coefficient of variation (CV) of Jacobian (β= 1.45,95%CI = 0.86 to 2.03; p<0.001) and CV strain (β= 1.82,95%CI = 0.68 to 2.95; p = 0.001). CVs of Jacobian and strain are both potential markers of biomechanical lung heterogeneity. Conclusions CT-derived measures of lung mechanics improve the link between quantitative CT and spirometry, offering the potential for new insights into the linkage between regional parenchymal destruction and global decrement in lung function in COPD patients. PMID:27055745

  15. The Biomechanical Role of Scaffolds in Augmented Rotator Cuff Tendon Repairs

    Science.gov (United States)

    2012-01-01

    The biomechanical role of scaffolds in augmented rotator cuff tendon repairs Amit Aurora, D Enga,b, Jesse A. McCarron, MDc, Antonie J. van den Bogert...used for rotator cuff repair augmentation; however, the appropriate scaffold material properties and/or surgical application techniques for achieving...The model predicts that the biomechanical performance of a rotator cuff repair can be modestly increased by augmenting the repair with a scaffold that

  16. Advanced Computational Methods in Bio-Mechanics.

    Science.gov (United States)

    Al Qahtani, Waleed M S; El-Anwar, Mohamed I

    2018-04-15

    A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons' ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering. Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems. Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era.

  17. Recent software developments for biomechanical assessment

    Science.gov (United States)

    Greaves, John O. B.

    1990-08-01

    While much of the software developed in research laboratories is narrow in focus and suited for a specific experiment, some of it is broad enough and of high enough quality to be useful to others in solving similar problems. Several biomechanical assessment packages are now beginning to emerge, including: * 3D research biomechanics (5- and 6-DOF) with kinematics, kinetics, 32-channel analog data subsystem, and project management. * 3D full-body gait analysis with kinematics, kinetics, EMG charts, and force plate charts. * 2D dynamic rear-foot assessment. * 2D occupational biomechanics lifting task and personnel assessments. * 2D dynamic gait analysis. * Multiple 2D dynamic spine assessments. * 2D sport and biomechanics assessments with kinematics and kinetics. * 2D and 3D equine gait assessments.

  18. Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)

    Science.gov (United States)

    Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise

  19. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.

    Science.gov (United States)

    May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe

    2011-10-01

    Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Experimental validation of flexible multibody dynamics beam formulations

    Energy Technology Data Exchange (ETDEWEB)

    Bauchau, Olivier A., E-mail: olivier.bauchau@sjtu.edu.cn; Han, Shilei [University of Michigan-Shanghai Jiao Tong University Joint Institute (China); Mikkola, Aki; Matikainen, Marko K. [Lappeenranta University of Technology, Department of Mechanical Engineering (Finland); Gruber, Peter [Austrian Center of Competence in Mechatronics GmbH (Austria)

    2015-08-15

    In this paper, the accuracies of the geometrically exact beam and absolute nodal coordinate formulations are studied by comparing their predictions against an experimental data set referred to as the “Princeton beam experiment.” The experiment deals with a cantilevered beam experiencing coupled flap, lag, and twist deformations. In the absolute nodal coordinate formulation, two different beam elements are used. The first is based on a shear deformable approach in which the element kinematics is described using two nodes. The second is based on a recently proposed approach featuring three nodes. The numerical results for the geometrically exact beam formulation and the recently proposed three-node absolute nodal coordinate formulation agree well with the experimental data. The two-node beam element predictions are similar to those of linear beam theory. This study suggests that a careful and thorough evaluation of beam elements must be carried out to assess their ability to deal with the three-dimensional deformations typically found in flexible multibody systems.

  1. Modeling Analysis of Biomechanical Changes of Middle Ear and Cochlea in Otitis Media

    Science.gov (United States)

    Gan, Rong Z.; Zhang, Xiangming; Guan, Xiying

    2011-11-01

    A comprehensive finite element (FE) model of the human ear including the ear canal, middle ear, and spiral cochlea was developed using histological sections of human temporal bone. The cochlea was modeled with three chambers separated by the basilar membrane and Reissner's membrane and filled with perilymphatic fluid. The viscoelastic material behavior was applied to middle ear soft tissues based on dynamic measurements of tissues in our lab. The model was validated using the experimental data obtained in human temporal bones and then used to simulate various stages of otitis media (OM) including the changes of morphology, mechanical properties, pressure, and fluid level in the middle ear. Function alterations of the middle ear and cochlea in OM were derived from the model and compared with the measurements from temporal bones. This study indicates that OM can be simulated in the FE model to predict the hearing loss induced by biomechanical changes of the middle ear and cochlea.

  2. A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis

    OpenAIRE

    Masataka, SUZUKI; Yoshihiko, YAMAZAKI; Yumiko, TANIGUCHI; Department of Psychology, Kinjo Gakuin University; Department of Health and Physical Education, Nagoya Institute of Technology; College of Human Life and Environment, Kinjo Gakuin University

    2003-01-01

    SUZUKI,M., YAMAZAKI,Y. and TANIGUCHI,Y., A Biomechanical Model of Single-joint Arm Movement Control Based on the Equilibrium Point Hypothesis. Adv. Exerc. Sports Physiol., Vol.9, No.1 pp.7-25, 2003. According to the equilibrium point hypothesis of motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction among moving equilibrium point, reflex feedback and muscle mechanical properties. This approach is attractive as it obviates the n...

  3. Radiation combined injury models to study the effects of interventions and wound biomechanics.

    Science.gov (United States)

    Zawaski, Janice A; Yates, Charles R; Miller, Duane D; Kaffes, Caterina C; Sabek, Omaima M; Afshar, Solmaz F; Young, Daniel A; Yang, Yunzhi; Gaber, M Waleed

    2014-12-01

    In the event of a nuclear detonation, a considerable number of projected casualties will suffer from combined radiation exposure and burn and/or wound injury. Countermeasure assessment in the setting of radiation exposure combined with dermal injury is hampered by a lack of animal models in which the effects of interventions have been characterized. To address this need, we used two separate models to characterize wound closure. The first was an open wound model in mice to study the effect of wound size in combination with whole-body 6 Gy irradiation on the rate of wound closure, animal weight and survival (morbidity). In this model the addition of interventions, wound closure, subcutaneous vehicle injection, topical antiseptic and topical antibiotics were studied to measure their effect on healing and survival. The second was a rat closed wound model to study the biomechanical properties of a healed wound at 10 days postirradiation (irradiated with 6 or 7.5 Gy). In addition, complete blood counts were performed and wound pathology by staining with hematoxylin and eosin, trichrome, CD68 and Ki67. In the mouse open wound model, we found that wound size and morbidity were positively correlated, while wound size and survival were negatively correlated. Regardless of the wound size, the addition of radiation exposure delayed the healing of the wound by approximately 5-6 days. The addition of interventions caused, at a minimum, a 30% increase in survival and improved mean survival by ∼9 days. In the rat closed wound model we found that radiation exposure significantly decreased all wound biomechanical measurements as well as white blood cell, platelet and red blood cell counts at 10 days post wounding. Also, pathological changes showed a loss of dermal structure, thickening of dermis, loss of collagen/epithelial hyperplasia and an increased density of macrophages. In conclusion, we have characterized the effect of a changing wound size in combination with radiation

  4. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.

    Science.gov (United States)

    Barre, Arnaud; Armand, Stéphane

    2014-04-01

    C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. An ocular biomechanic model for dynamic simulation of different eye movements.

    Science.gov (United States)

    Iskander, J; Hossny, M; Nahavandi, S; Del Porto, L

    2018-04-11

    Simulating and analysing eye movement is useful for assessing visual system contribution to discomfort with respect to body movements, especially in virtual environments where simulation sickness might occur. It can also be used in the design of eye prosthesis or humanoid robot eye. In this paper, we present two biomechanic ocular models that are easily integrated into the available musculoskeletal models. The model was previously used to simulate eye-head coordination. The models are used to simulate and analyse eye movements. The proposed models are based on physiological and kinematic properties of the human eye. They incorporate an eye-globe, orbital suspension tissues and six muscles with their connective tissues (pulleys). Pulleys were incorporated in rectus and inferior oblique muscles. The two proposed models are the passive pulleys and the active pulleys models. Dynamic simulations of different eye movements, including fixation, saccade and smooth pursuit, are performed to validate both models. The resultant force-length curves of the models were similar to the experimental data. The simulation results show that the proposed models are suitable to generate eye movement simulations with results comparable to other musculoskeletal models. The maximum kinematic root mean square error (RMSE) is 5.68° and 4.35° for the passive and active pulley models, respectively. The analysis of the muscle forces showed realistic muscle activation with increased muscle synergy in the active pulley model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Application of stabilization techniques in the dynamic analysis of multibody systems

    Directory of Open Access Journals (Sweden)

    Hajžman M.

    2007-11-01

    Full Text Available This paper is intended to the discussion of possible methods for the solution of the motion equations of constrained multibody systems. They can be formulated in the form of differential-algebraic equations and their numerical solution brings the problems of constraint violation and numerical stability. Therefore special methods were proposed to handle these problems. Various approaches for the numerical solution of equations are briefly reviewed and the application of the Baumgarte’s stabilization method on testing examples is shown. The paper was motivated by the effort to find the suitable solution methods for the equations of motion in the form of differentialalgebraic equations using the MATLAB standard computational system.

  7. Biomechanics in dermatology: Recent advances and future directions.

    Science.gov (United States)

    Lewinson, Ryan T; Haber, Richard M

    2017-02-01

    Biomechanics is increasingly being recognized as an important research area in dermatology. To highlight only a few examples, biomechanics has contributed to the development of novel topical therapies for aesthetic and medical purposes, enhanced our understanding of the pathogenesis of plantar melanoma, and provided insight into the epidemiology of psoriatic disease. This article summarizes the findings from recent studies to demonstrate the important role that biomechanics may have in dermatologic disease and therapy and places these biomechanical findings in a clinical context for the practicing physician. In addition, areas for future biomechanics research and development in dermatology are discussed. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Biomechanics of Spider Silks

    Science.gov (United States)

    2006-03-02

    water and deformation conditions. Such fibres [Nexia ’ biosteel ’ silk ] were spun from recombinant silk ’cloned’ from Spidroin II and indeed show 67...SUBTITLE 5. FUNDING NUMBERS Biomechanics of Spider Silks F49620-03-1-0111 6. AUTHOR(S) Fritz Vollrath 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Perform Pro, WHSIDIOR, Oct 94 COVER SHEET FINAL (3rd Year) Report to AFOSR on: BIOMECHANICS OF SPIDER SILKS Fritz Vollrath, Oxford University, England

  9. An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part Two: Multibody Systems

    Directory of Open Access Journals (Sweden)

    Pål Johan From

    2012-04-01

    Full Text Available This paper presents the explicit dynamic equations of multibody mechanical systems. This is the second paper on this topic. In the first paper the dynamics of a single rigid body from the Boltzmann--Hamel equations were derived. In this paper these results are extended to also include multibody systems. We show that when quasi-velocities are used, the part of the dynamic equations that appear from the partial derivatives of the system kinematics are identical to the single rigid body case, but in addition we get terms that come from the partial derivatives of the inertia matrix, which are not present in the single rigid body case. We present for the first time the complete and correct derivation of multibody systems based on the Boltzmann--Hamel formulation of the dynamics in Lagrangian form where local position and velocity variables are used in the derivation to obtain the singularity-free dynamic equations. The final equations are written in global variables for both position and velocity. The main motivation of these papers is to allow practitioners not familiar with differential geometry to implement the dynamic equations of rigid bodies without the presence of singularities. Presenting the explicit dynamic equations also allows for more insight into the dynamic structure of the system. Another motivation is to correct some errors commonly found in the literature. Unfortunately, the formulation of the Boltzmann-Hamel equations used here are presented incorrectly. This has been corrected by the authors, but we present here, for the first time, the detailed mathematical details on how to arrive at the correct equations. We also show through examples that using the equations presented here, the dynamics of a single rigid body is reduced to the standard equations on a Lagrangian form, for example Euler's equations for rotational motion and Euler--Lagrange equations for free motion.

  10. Morphological and biomechanical remodeling of the hepatic portal vein in a swine model of portal hypertension.

    Science.gov (United States)

    He, Xi-Ju; Huang, Tie-Zhu; Wang, Pei-Jun; Peng, Xing-Chun; Li, Wen-Chun; Wang, Jun; Tang, Jie; Feng, Na; Yu, Ming-Hua

    2012-02-01

    To obtain the morphological and biomechanical remodeling of portal veins in swine with portal hypertension (PHT), so as to provide some mechanical references and theoretical basis for clinical practice about PHT. Twenty white pigs were used in this study, 14 of them were subjected to both carbon tetrachloride- and pentobarbital-containing diet to induce experimental liver cirrhosis and PHT, and the remaining animals served as the normal controls. The morphological remodeling of portal veins was observed. Endothelial nitric oxide synthase expression profile in the vessel wall was assessed at both mRNA and protein level. The biomechanical changes of the hepatic portal veins were evaluated through assessing the following indicators: the incremental elastic modulus, pressure-strain elastic modulus, volume elastic modulus, and the incremental compliance. The swine PHT model was successfully established. The percentages for the microstructural components and the histological data significantly changed in the experimental group. Endothelial nitric oxide synthase expression was significantly downregulated in the portal veins of the experimental group. Three incremental elastic moduli (the incremental elastic modulus, pressure-strain elastic modulus, and volume elastic modulus) of the portal veins from PHT animals were significantly larger than those of the controls (P portal vein decreased. Our study suggests that the morphological and biomechanical properties of swine hepatic portal veins change significantly during the PHT process, which may play a critical role in the development of PHT and serve as potential therapeutic targets during clinical practice. Copyright © 2012 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.

  11. An Evidence-Based Videotaped Running Biomechanics Analysis.

    Science.gov (United States)

    Souza, Richard B

    2016-02-01

    Running biomechanics play an important role in the development of injuries. Performing a running biomechanics analysis on injured runners can help to develop treatment strategies. This article provides a framework for a systematic video-based running biomechanics analysis plan based on the current evidence on running injuries, using 2-dimensional (2D) video and readily available tools. Fourteen measurements are proposed in this analysis plan from lateral and posterior video. Identifying simple 2D surrogates for 3D biomechanic variables of interest allows for widespread translation of best practices, and have the best opportunity to impact the highly prevalent problem of the injured runner. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Augmentation of Distal Biceps Repair With an Acellular Dermal Graft Restores Native Biomechanical Properties in a Tendon-Deficient Model.

    Science.gov (United States)

    Conroy, Christine; Sethi, Paul; Macken, Craig; Wei, David; Kowalsky, Marc; Mirzayan, Raffy; Pauzenberger, Leo; Dyrna, Felix; Obopilwe, Elifho; Mazzocca, Augustus D

    2017-07-01

    The majority of distal biceps tendon injuries can be repaired in a single procedure. In contrast, complete chronic tears with severe tendon substance deficiency and retraction often require tendon graft augmentation. In cases with extensive partial tears of the distal biceps, a human dermal allograft may be used as an alternative to restore tendon thickness and biomechanical integrity. Dermal graft augmentation will improve load to failure compared with nonaugmented repair in a tendon-deficient model. Controlled laboratory study. Thirty-six matched specimens were organized into 1 of 4 groups: native tendon, native tendon with dermal graft augmentation, tendon with an attritional defect, and tendon with an attritional defect repaired with a graft. To mimic a chronic attritional biceps lesion, a defect was created by a complete tear, leaving 30% of the tendon's width intact. The repair technique in all groups consisted of cortical button and interference screw fixation. All specimens underwent cyclical loading for 3000 cycles and were then tested to failure; gap formation and peak load at failure were documented. The mean (±SD) load to failure (320.9 ± 49.1 N vs 348.8 ± 77.6 N, respectively; P = .38) and gap formation (displacement) (1.8 ± 1.4 mm vs 1.6 ± 1.1 mm, respectively; P = .38) did not differ between the native tendon groups with and without graft augmentation. In the tendon-deficient model, the mean load to failure was significantly improved with graft augmentation compared with no graft augmentation (282.1 ± 83.8 N vs 199.7 ± 45.5 N, respectively; P = .04), while the mean gap formation was significantly reduced (1.2 ± 1.0 mm vs 2.7 ± 1.4 mm, respectively; P = .04). The mean load to failure of the deficient tendon with graft augmentation (282.1 N) compared with the native tendon (348.8 N) was not significantly different ( P = .12). This indicates that the native tendon did not perform differently from the grafted deficient tendon. In a tendon

  13. Modeling the impact of prostate edema on LDR brachytherapy: a Monte Carlo dosimetry study based on a 3D biphasic finite element biomechanical model

    Science.gov (United States)

    Mountris, K. A.; Bert, J.; Noailly, J.; Rodriguez Aguilera, A.; Valeri, A.; Pradier, O.; Schick, U.; Promayon, E.; Gonzalez Ballester, M. A.; Troccaz, J.; Visvikis, D.

    2017-03-01

    Prostate volume changes due to edema occurrence during transperineal permanent brachytherapy should be taken under consideration to ensure optimal dose delivery. Available edema models, based on prostate volume observations, face several limitations. Therefore, patient-specific models need to be developed to accurately account for the impact of edema. In this study we present a biomechanical model developed to reproduce edema resolution patterns documented in the literature. Using the biphasic mixture theory and finite element analysis, the proposed model takes into consideration the mechanical properties of the pubic area tissues in the evolution of prostate edema. The model’s computed deformations are incorporated in a Monte Carlo simulation to investigate their effect on post-operative dosimetry. The comparison of Day1 and Day30 dosimetry results demonstrates the capability of the proposed model for patient-specific dosimetry improvements, considering the edema dynamics. The proposed model shows excellent ability to reproduce previously described edema resolution patterns and was validated based on previous findings. According to our results, for a prostate volume increase of 10-20% the Day30 urethra D10 dose metric is higher by 4.2%-10.5% compared to the Day1 value. The introduction of the edema dynamics in Day30 dosimetry shows a significant global dose overestimation identified on the conventional static Day30 dosimetry. In conclusion, the proposed edema biomechanical model can improve the treatment planning of transperineal permanent brachytherapy accounting for post-implant dose alterations during the planning procedure.

  14. Hill’s and Huxley’s muscle models - tools for simulations in biomechanics

    Directory of Open Access Journals (Sweden)

    Jovanović Kosta

    2015-01-01

    Full Text Available Numerous mathematical models of human skeletal muscles have been developed. However, none of them is adopted as a general one and each of them is suggested for some specific purpose. This topic is essential in humanoid robotics, since we firstly need to understand how human moves and acts in order to exploit human movement patterns in robotics and design human like actuators. Simulations in biomechanics are intensively used in research of locomotion, safe human-robot interaction, development of novel robotic actuators, biologically inspired control algorithms, etc. This paper presents two widely adopted muscle models (Hill’s and Huxley’s model, elaborates their features and demonstrates trade-off between their accuracy and efficiency of computer simulations. The simulation setup contains mathematical representation of passive muscle structures as well as mathematical model of an elastic tendon as a series elastic actuation element. Advanced robot control techniques point out energy consumption as one of the key issues. Therefore, energy store and release mechanism in elastic elements in both tendon and muscle, based on the simulation models, are considered. [Projekat Ministarstva nauke Republike Srbije, br. TR35003 and br. OS175016

  15. Developmental dysplasia of the hip: A computational biomechanical model of the path of least energy for closed reduction.

    Science.gov (United States)

    Zwawi, Mohammed A; Moslehy, Faissal A; Rose, Christopher; Huayamave, Victor; Kassab, Alain J; Divo, Eduardo; Jones, Brendan J; Price, Charles T

    2017-08-01

    This study utilized a computational biomechanical model and applied the least energy path principle to investigate two pathways for closed reduction of high grade infantile hip dislocation. The principle of least energy when applied to moving the femoral head from an initial to a final position considers all possible paths that connect them and identifies the path of least resistance. Clinical reports of severe hip dysplasia have concluded that reduction of the femoral head into the acetabulum may occur by a direct pathway over the posterior rim of the acetabulum when using the Pavlik harness, or by an indirect pathway with reduction through the acetabular notch when using the modified Hoffman-Daimler method. This computational study also compared the energy requirements for both pathways. The anatomical and muscular aspects of the model were derived using a combination of MRI and OpenSim data. Results of this study indicate that the path of least energy closely approximates the indirect pathway of the modified Hoffman-Daimler method. The direct pathway over the posterior rim of the acetabulum required more energy for reduction. This biomechanical analysis confirms the clinical observations of the two pathways for closed reduction of severe hip dysplasia. The path of least energy closely approximated the modified Hoffman-Daimler method. Further study of the modified Hoffman-Daimler method for reduction of severe hip dysplasia may be warranted based on this computational biomechanical analysis. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1799-1805, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.

  16. [RESEARCH PROGRESS OF BIOMECHANICS OF PROXIMAL ROW CARPAL INSTABILITY].

    Science.gov (United States)

    Guo, Jinhai; Huang, Fuguo

    2015-01-01

    To review the research progress of the biomechanics of proximal row carpal instability (IPRC). The related literature concerning IPRC was extensively reviewed. The biomechanical mechanism of the surrounding soft tissue in maintaining the stability of the proximal row carpal (PRC) was analyzed, and the methods to repair or reconstruct the stability and function of the PRC were summarized from two aspects including basic biomechanics and clinical biomechanics. The muscles and ligaments of the PRC are critical to its stability. Most scholars have reached a consensus about biomechanical mechanism of the PRC, but there are still controversial conclusions on the biomechanics mechanism of the surrounding soft tissue to stability of distal radioulnar joint when the triangular fibrocartilage complex are damaged and the biomechanics mechanism of the scapholunate ligament. At present, there is no unified standard about the methods to repair or reconstruct the stability and function of the PRC. So, it is difficult for clinical practice. Some strides have been made in the basic biomechanical study on muscle and ligament and clinical biomechanical study on the methods to repair or reconstruct the stability and function of PRC, but it will be needed to further study the morphology of carpal articular surface and the adjacent articular surface, the pressure of distal carpals to proximal carpal and so on.

  17. Biomechanical comparison of expanded polytetrafluoroethylene (ePTFE) and PTFE interpositional patches and direct tendon-to-bone repair for massive rotator cuff tears in an ovine model.

    Science.gov (United States)

    McKeown, Andrew Dj; Beattie, Rebekah F; Murrell, George Ac; Lam, Patrick H

    2016-01-01

    Massive irreparable rotator cuff tears are a difficult problem. Modalities such as irrigation and debridement, partial repair, tendon transfer and grafts have been utilized with high failure rates and mixed results. Synthetic interpositional patch repairs are a novel and increasingly used approach. The present study aimed to examine the biomechanical properties of common synthetic materials for interpositional repairs in contrast to native tendon. Six ovine tendons, six polytetrafluoroethylene (PTFE) felt sections and six expanded PTFE (ePTFE) patch sections were pulled-to-failure to analyze their biomechanical and material properties. Six direct tendon-to-bone surgical method repairs, six interpositional PTFE felt patch repairs and six interpositional ePTFE patch repairs were also constructed in ovine shoulders and pulled-to-failure to examine the biomechanical properties of each repair construct. Ovine tendon had higher load-to-failure (591 N) and had greater stiffness (108 N/mm) than either PTFE felt (296 N, 28 N/mm) or ePTFE patch sections (323 N, 34 N/mm). Both PTFE felt and ePTFE repair techniques required greater load-to-failure (225 N and 177 N, respectively) than direct tendon-to-bone surgical repairs (147 N) in ovine models. Synthetic materials lacked several biomechanical properties, including strength and stiffness, compared to ovine tendon. Interpositional surgical repair models with these materials were significantly stronger than direct tendon-to-bone model repairs.

  18. Biomechanically acquired foot types

    International Nuclear Information System (INIS)

    Weissman, S.D.

    1989-01-01

    Over the years, orthopedics of the foot has gone through many stages and phases, each of which has spawned a whole vocabulary of its own. According the author, today we are in the biomechanical age, which represents a step forward in understanding the mechanisms governing the functions of the lower extremity. A great deal of scientific research on the various foot types and pathological entities is now being performed. This paper discusses how, from a radiographic point of view, a knowledge of certain angular relationships must be achieved before one can perform a biomechanical evaluation. In order to validate the gross clinical findings, following an examination of a patient, a biomechanical evaluation can be performed on the radiographs taken. It must be remembered, however, that x-rays are never the sole means of making a diagnosis. They are just one of many findings that must be put together to arrive at a pertinent clinical assessment or diagnosis

  19. Integrated biomechanical and topographical surface characterization (IBTSC)

    Energy Technology Data Exchange (ETDEWEB)

    Löberg, Johanna, E-mail: Johanna.Loberg@dentsply.com [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Mattisson, Ingela [Dentsply Implants, Box 14, SE-431 21 Mölndal (Sweden); Ahlberg, Elisabet [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg (Sweden)

    2014-01-30

    In an attempt to reduce the need for animal studies in dental implant applications, a new model has been developed which combines well-known surface characterization methods with theoretical biomechanical calculations. The model has been named integrated biomechanical and topographical surface characterization (IBTSC), and gives a comprehensive description of the surface topography and the ability of the surface to induce retention strength with bone. IBTSC comprises determination of 3D-surface roughness parameters by using 3D-scanning electron microscopy (3D-SEM) and atomic force microscopy (AFM), and calculation of the ability of different surface topographies to induce retention strength in bone by using the local model. Inherent in this integrated approach is the use of a length scale analysis, which makes it possible to separate different size levels of surface features. The IBTSC concept is tested on surfaces with different level of hierarchy, induced by mechanical as well as chemical treatment. Sequential treatment with oxalic and hydrofluoric acid results in precipitated nano-sized features that increase the surface roughness and the surface slope on the sub-micro and nano levels. This surface shows the highest calculated shear strength using the local model. The validity, robustness and applicability of the IBTSC concept are demonstrated and discussed.

  20. Design of a Passive Exoskeleton for the Upper Extremity through Co-simulation with a Biomechanical Human Arm Model

    DEFF Research Database (Denmark)

    Zhou, Lelai; Bai, Shaoping; Rasmussen, John

    2013-01-01

    An approach of designing exoskeletons on the basis of simulation of the exoskeleton and a human body model is proposed in this paper. The new approach, addressing the problem of physical human-exoskeleton interactions, models and simulates the mechanics for both the exoskeleton and the human body......, which allows designers to analyze and evaluate an exoskeleton for its functioning, effectively. A simulation platform is developed by integrating a biomechanical model of human body and the exoskeleton. With the proposed approach, two types of exoskeletons with gravity compensating capability...

  1. Biomechanical investigation of different surgical strategies for the treatment of rib fractures using a three-dimensional human respiratory model.

    Science.gov (United States)

    Shih, Kao-Shang; Truong, Thanh An; Hsu, Ching-Chi; Hou, Sheng-Mou

    2017-11-02

    Rib fracture is a common injury and can result in pain during respiration. Conservative treatment of rib fracture is applied via mechanical ventilation. However, ventilator-associated complications frequently occur. Surgical fixation is another approach to treat rib fractures. Unfortunately, this surgical treatment is still not completely defined. Past studies have evaluated the biomechanics of the rib cage during respiration using a finite element method, but only intact conditions were modelled. Thus, the purpose of this study was to develop a realistic numerical model of the human rib cage and to analyse the biomechanical performance of intact, injured and treated rib cages. Three-dimensional finite element models of the human rib cage were developed. Respiratory movement of the human rib cage was simulated to evaluate the strengths and limitations of different scenarios. The results show that a realistic human respiratory movement can be simulated and the predicted results were closely related to previous study (correlation coefficient>0.92). Fixation of two fractured ribs significantly decreased the fixation index (191%) compared to the injured model. This fixation may provide adequate fixation stability as well as reveal lower bone stress and implant stress compared with the fixation of three or more fractured ribs.

  2. Can biomechanical variables predict improvement in crouch gait?

    Science.gov (United States)

    Hicks, Jennifer L.; Delp, Scott L.; Schwartz, Michael H.

    2011-01-01

    Many patients respond positively to treatments for crouch gait, yet surgical outcomes are inconsistent and unpredictable. In this study, we developed a multivariable regression model to determine if biomechanical variables and other subject characteristics measured during a physical exam and gait analysis can predict which subjects with crouch gait will demonstrate improved knee kinematics on a follow-up gait analysis. We formulated the model and tested its performance by retrospectively analyzing 353 limbs of subjects who walked with crouch gait. The regression model was able to predict which subjects would demonstrate ‘improved’ and ‘unimproved’ knee kinematics with over 70% accuracy, and was able to explain approximately 49% of the variance in subjects’ change in knee flexion between gait analyses. We found that improvement in stance phase knee flexion was positively associated with three variables that were drawn from knowledge about the biomechanical contributors to crouch gait: i) adequate hamstrings lengths and velocities, possibly achieved via hamstrings lengthening surgery, ii) normal tibial torsion, possibly achieved via tibial derotation osteotomy, and iii) sufficient muscle strength. PMID:21616666

  3. A theoretical analysis of hemodynamic and biomechanical alterations in intracranial AVMs after radiosurgery

    International Nuclear Information System (INIS)

    Lo, E.H.

    1993-01-01

    Stereotactic radiosurgery is being increasingly used to treat intracranial arteriovenous malformations (AVMs). However, successful radiosurgery may involve latent periods of 1-2 years prior to AVM obliteration. This latent period include states of altered flow patterns that may not influence hemorrhage probabilities. The probability of hemorrhage is likely to be related to the degree of biomechanical stress across the AVM shunt walls. This paper describes a theoretical analysis of the altered hemodynamics and biomechanical stresses within AVM shunts post-radiosurgery. The mathematical model is comprised of linked flow compartments that represent the AVM and adjacent normal vasculature. As obliteration of the irradiated shunts occurs, changes in flow rates and pressure gradients are calculated based on first order fluid dynamics. Stress on the AVM shunt walls is calculated based on tangential forces due to intramural pressure. Two basic models are presented: a distribution of shunts with fixed thin walls subject to step-function obliteration, and a distribution of shunts subject to luminal obliteration from slowly thickening walls. Variations on these models are analyzed, including sequential, selective and random shunt obliteration, and uniform or Poisson distributions of shunt radii. Model I reveals that the range of pressure alterations in the radiosurgically-treated AVM include the possibility of transient increases in the total biomechanical stress within the shunt walls prior to obliteration. Model II demonstrates that uniform luminal narrowing via thickened walls should lead to reduced transmural stresses. The precise temporal pattern of AVM flow decrease and biomechanical stress reduction depends on the selection of shunts that are obliterated. 34 refs., 5 figs., 1 tab

  4. Cycling biomechanics: a literature review.

    Science.gov (United States)

    Wozniak Timmer, C A

    1991-01-01

    Submitted in partial fulfillment for a Master of Science degree at the University of Pittsburgh, School of Health Related Professions, Pittsburgh, PA 1.5213 This review of current literature on cycling biomechanics emphasizes lower extremity muscle actions and joint excursions, seat height, pedal position, pedaling rate, force application, and pedaling symmetry. Guidelines are discussed for optimal seat height, pedal position, and pedaling rate. Force application in the power and recovery phases of cycling and the relationship of force application to pedaling symmetry are discussed. The need for a biomechanical approach to cycling exists since a great deal of the literature is primarily physiologic in nature. The purpose of this review is to make cyclists and their advisors aware of the biomechanics of cycling and guidelines to follow. This approach is also important because cycling is a very common form of exercise prescribed by physical therapists for clinic or home programs. Biomechanical aspects of cycling should be considered by cyclists at any level of participation and by physical therapists in order for goal-oriented, efficient cycling to occur. J Orthop Sports Phys Ther 1991;14(3):106-113.

  5. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    Science.gov (United States)

    Ravera, Emiliano Pablo; Catalfamo Formento, Paola Andrea; José Crespo, Marcos; Andrés Braidot, Ariel

    2011-12-01

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  6. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    International Nuclear Information System (INIS)

    Ravera, Emiliano Pablo; Catalfamo Formento, Paola Andrea; Crespo, Marcos José; Braidot, Ariel Andrés

    2011-01-01

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  7. Simulation of facial expressions using person-specific sEMG signals controlling a biomechanical face model.

    Science.gov (United States)

    Eskes, Merijn; Balm, Alfons J M; van Alphen, Maarten J A; Smeele, Ludi E; Stavness, Ian; van der Heijden, Ferdinand

    2018-01-01

    Functional inoperability in advanced oral cancer is difficult to assess preoperatively. To assess functions of lips and tongue, biomechanical models are required. Apart from adjusting generic models to individual anatomy, muscle activation patterns (MAPs) driving patient-specific functional movements are necessary to predict remaining functional outcome. We aim to evaluate how volunteer-specific MAPs derived from surface electromyographic (sEMG) signals control a biomechanical face model. Muscle activity of seven facial muscles in six volunteers was measured bilaterally with sEMG. A triple camera set-up recorded 3D lip movement. The generic face model in ArtiSynth was adapted to our needs. We controlled the model using the volunteer-specific MAPs. Three activation strategies were tested: activating all muscles [Formula: see text], selecting the three muscles showing highest muscle activity bilaterally [Formula: see text]-this was calculated by taking the mean of left and right muscles and then selecting the three with highest variance-and activating the muscles considered most relevant per instruction [Formula: see text], bilaterally. The model's lip movement was compared to the actual lip movement performed by the volunteers, using 3D correlation coefficients [Formula: see text]. The correlation coefficient between simulations and measurements with [Formula: see text] resulted in a median [Formula: see text] of 0.77. [Formula: see text] had a median [Formula: see text] of 0.78, whereas with [Formula: see text] the median [Formula: see text] decreased to 0.45. We demonstrated that MAPs derived from noninvasive sEMG measurements can control movement of the lips in a generic finite element face model with a median [Formula: see text] of 0.78. Ultimately, this is important to show the patient-specific residual movement using the patient's own MAPs. When the required treatment tools and personalisation techniques for geometry and anatomy become available, this may

  8. Thermodynamics of mixtures of patchy and spherical colloids of different sizes: A multi-body association theory with complete reference fluid information

    Science.gov (United States)

    Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G.

    2017-04-01

    We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.

  9. Global models for the biomechanics of green plants: 1

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1990-12-01

    The paper considers the biomechanics of green plants for Reynolds number flow in the stem. In particular, it is assumed that the stem is cylindrical and the flow fully-developed. So that if the aspect ratio is defined as the ratio of the stem radius to its length, then when the aspect ratio is small analytical solutions have been developed for the concentration, temperature and the axial velocity. The process of translocation and transpiration are discussed quantitatively. (author). 4 refs, 2 figs

  10. GENERAL APROACH TO MODELING NONLINEAR AMPLITUDE AND FREQUENCY DEPENDENT HYSTERESIS EFFECTS BASED ON EXPERIMENTAL RESULTS

    Directory of Open Access Journals (Sweden)

    Christopher Heine

    2014-08-01

    Full Text Available A detailed description of the rubber parts’ properties is gaining in importance in the current simulation models of multi-body simulation. One application example is a multi-body simulation of the washing machine movement. Inside the washing machine, there are different force transmission elements, which consist completely or partly of rubber. Rubber parts or, generally, elastomers usually have amplitude-dependant and frequency-dependent force transmission properties. Rheological models are used to describe these properties. A method for characterization of the amplitude and frequency dependence of such a rheological model is presented within this paper. Within this method, the used rheological model can be reduced or expanded in order to illustrate various non-linear effects. An original result is given with the automated parameter identification. It is fully implemented in Matlab. Such identified rheological models are intended for subsequent implementation in a multi-body model. This allows a significant enhancement of the overall model quality.

  11. Weak decays of doubly heavy baryons. Multi-body decay channels

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yu-Ji; Wang, Wei; Xing, Ye; Xu, Ji [Shanghai Jiao Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, MOE Key Laboratory for Particle Physics, Astrophysics and Cosmology, School of Physics and Astronomy, Shanghai (China)

    2018-01-15

    The newly-discovered Ξ{sub cc}{sup ++} decays into the Λ{sub c}{sup +}K{sup -}π{sup +}π{sup +}, but the experimental data has indicated that this decay is not saturated by any two-body intermediate state. In this work, we analyze the multi-body weak decays of doubly heavy baryons Ξ{sub cc}, Ω{sub cc}, Ξ{sub bc}, Ω{sub bc}, Ξ{sub bb} and Ω{sub bb}, in particular the three-body nonleptonic decays and four-body semileptonic decays. We classify various decay modes according to the quark-level transitions and present an estimate of the typical branching fractions for a few golden decay channels. Decay amplitudes are then parametrized in terms of a few SU(3) irreducible amplitudes. With these amplitudes, we find a number of relations for decay widths, which can be examined in future. (orig.)

  12. Technique of the biomechanical analysis of execution of upward jump piked

    Directory of Open Access Journals (Sweden)

    Nataliya Batieieva

    2016-12-01

    Full Text Available Purpose: the biomechanical analysis of execution of upward jump piked. Material & Methods: the following methods of the research were used: theoretical analysis and synthesis of data of special scientific and methodical literature; photographing, video filming, biomechanical computer analysis, pedagogical observation. Students (n=8 of the chair of national choreography of the department of choreographic art of Kiev national university of culture and art took part in carrying out the biomechanical analysis of execution of upward jump piked. Results: the biomechanical analysis of execution of upward jump piked is carried out, the kinematic characteristics (way, speed, acceleration, effort of the general center of weight (GCW and center of weight (CW of biolinks of body of the executor are received (feet, shins, hips, shoulder, forearm, hands. Biokinematic models (phases are constructed. Power characteristics are defined – mechanical work and kinetic energy of links of legs and hands at execution of upward jump piked. Conclusions: it is established that the technique of execution of upward jump piked considerably influences the level of technical training of the qualified sportsmen in gymnastics (sports, in aerobic gymnastics (aerobics, diving and dancing sports.

  13. Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy.

    Directory of Open Access Journals (Sweden)

    Michael Döllinger

    Full Text Available Human voice is generated in the larynx by the two oscillating vocal folds. Owing to the limited space and accessibility of the larynx, endoscopic investigation of the actual phonatory process in detail is challenging. Hence the biomechanics of the human phonatory process are still not yet fully understood. Therefore, we adapt a mathematical model of the vocal folds towards vocal fold oscillations to quantify gender and age related differences expressed by computed biomechanical model parameters.The vocal fold dynamics are visualized by laryngeal high-speed videoendoscopy (4000 fps. A total of 33 healthy young subjects (16 females, 17 males and 11 elderly subjects (5 females, 6 males were recorded. A numerical two-mass model is adapted to the recorded vocal fold oscillations by varying model masses, stiffness and subglottal pressure. For adapting the model towards the recorded vocal fold dynamics, three different optimization algorithms (Nelder-Mead, Particle Swarm Optimization and Simulated Bee Colony in combination with three cost functions were considered for applicability. Gender differences and age-related kinematic differences reflected by the model parameters were analyzed.The biomechanical model in combination with numerical optimization techniques allowed phonatory behavior to be simulated and laryngeal parameters involved to be quantified. All three optimization algorithms showed promising results. However, only one cost function seems to be suitable for this optimization task. The gained model parameters reflect the phonatory biomechanics for men and women well and show quantitative age- and gender-specific differences. The model parameters for younger females and males showed lower subglottal pressures, lower stiffness and higher masses than the corresponding elderly groups. Females exhibited higher subglottal pressures, smaller oscillation masses and larger stiffness than the corresponding similar aged male groups. Optimizing

  14. Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy.

    Science.gov (United States)

    Döllinger, Michael; Gómez, Pablo; Patel, Rita R; Alexiou, Christoph; Bohr, Christopher; Schützenberger, Anne

    2017-01-01

    Human voice is generated in the larynx by the two oscillating vocal folds. Owing to the limited space and accessibility of the larynx, endoscopic investigation of the actual phonatory process in detail is challenging. Hence the biomechanics of the human phonatory process are still not yet fully understood. Therefore, we adapt a mathematical model of the vocal folds towards vocal fold oscillations to quantify gender and age related differences expressed by computed biomechanical model parameters. The vocal fold dynamics are visualized by laryngeal high-speed videoendoscopy (4000 fps). A total of 33 healthy young subjects (16 females, 17 males) and 11 elderly subjects (5 females, 6 males) were recorded. A numerical two-mass model is adapted to the recorded vocal fold oscillations by varying model masses, stiffness and subglottal pressure. For adapting the model towards the recorded vocal fold dynamics, three different optimization algorithms (Nelder-Mead, Particle Swarm Optimization and Simulated Bee Colony) in combination with three cost functions were considered for applicability. Gender differences and age-related kinematic differences reflected by the model parameters were analyzed. The biomechanical model in combination with numerical optimization techniques allowed phonatory behavior to be simulated and laryngeal parameters involved to be quantified. All three optimization algorithms showed promising results. However, only one cost function seems to be suitable for this optimization task. The gained model parameters reflect the phonatory biomechanics for men and women well and show quantitative age- and gender-specific differences. The model parameters for younger females and males showed lower subglottal pressures, lower stiffness and higher masses than the corresponding elderly groups. Females exhibited higher subglottal pressures, smaller oscillation masses and larger stiffness than the corresponding similar aged male groups. Optimizing numerical models

  15. WE-AB-BRA-02: Development of Biomechanical Models to Describe Dose-Volume Response to Liver Stereotactic Body Radiation Therapy (SBRT) Patients

    International Nuclear Information System (INIS)

    McCulloch, M; Polan, D; Feng, M; Lawrence, T; Haken, R Ten; Brock, K

    2015-01-01

    Purpose: Previous studies have shown that radiotherapy treatment for liver metastases causes marked liver hypertrophy in areas receiving low dose and atrophy/fibrosis in areas receiving high dose. The purpose of this work is to develop and evaluate a biomechanical model-based dose-response model to describe these liver responses to SBRT. Methods: In this retrospective study, a biomechanical model-based deformable registration algorithm, Morfeus, was expanded to include dose-based boundary conditions. Liver and tumor volumes were contoured on the planning images and CT/MR images three months post-RT and converted to finite element models. A thermal expansion-based relationship correlating the delivered dose and volume response was generated from 22 patients previously treated. This coefficient, combined with the planned dose, was applied as an additional boundary condition to describe the volumetric response of the liver of an additional cohort of metastatic liver patients treated with SBRT. The accuracy of the model was evaluated based on overall volumetric liver comparisons and the target registration error (TRE) using the average deviations in positions of identified vascular bifurcations on each set of registered images, with a target accuracy of the 2.5mm isotropic dose grid (vector dimension 4.3mm). Results: The thermal expansion coefficient models the volumetric change of the liver to within 3%. The accuracy of Morfeus with dose-expansion boundary conditions a TRE of 5.7±2.8mm compared to 11.2±3.7mm using rigid registration and 8.9±0.28mm using Morfeus with only spatial boundary conditions. Conclusion: A biomechanical model has been developed to describe the volumetric and spatial response of the liver to SBRT. This work will enable the improvement of correlating functional imaging with delivered dose, the mapping of the delivered dose from one treatment onto the planning images for a subsequent treatment, and will further provide information to assist

  16. The biomechanics of seed germination.

    Science.gov (United States)

    Steinbrecher, Tina; Leubner-Metzger, Gerhard

    2017-02-01

    From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study

    International Nuclear Information System (INIS)

    Han, Zhaolong; Li, Jiasong; Singh, Manmohan; Wu, Chen; Liu, Chih-hao; Wang, Shang; Idugboe, Rita; Raghunathan, Raksha; Sudheendran, Narendran; Larin, Kirill V; Aglyamov, Salavat R; Twa, Michael D

    2015-01-01

    We present a systematic analysis of the accuracy of five different methods for extracting the biomechanical properties of soft samples using optical coherence elastography (OCE). OCE is an emerging noninvasive technique, which allows assessment of biomechanical properties of tissues with micrometer spatial resolution. However, in order to accurately extract biomechanical properties from OCE measurements, application of a proper mechanical model is required. In this study, we utilize tissue-mimicking phantoms with controlled elastic properties and investigate the feasibilities of four available methods for reconstructing elasticity (Young’s modulus) based on OCE measurements of an air-pulse induced elastic wave. The approaches are based on the shear wave equation (SWE), the surface wave equation (SuWE), Rayleigh-Lamb frequency equation (RLFE), and finite element method (FEM), Elasticity values were compared with uniaxial mechanical testing. The results show that the RLFE and the FEM are more robust in quantitatively assessing elasticity than the other simplified models. This study provides a foundation and reference for reconstructing the biomechanical properties of tissues from OCE data, which is important for the further development of noninvasive elastography methods. (paper)

  18. Biomechanical and histological effects of augmented soft tissue mobilization therapy on achilles tendinopathy in a rabbit model.

    Science.gov (United States)

    Imai, Kan; Ikoma, Kazuya; Chen, Qingshan; Zhao, Chunfeng; An, Kai-Nan; Gay, Ralph E

    2015-02-01

    Augmented soft tissue mobilization (ASTM) has been used to treat Achilles tendinopathy and is thought to promote collagen fiber realignment and hasten tendon regeneration. The objective of this study was to evaluate the biomechanical and histological effects of ASTM therapy on rabbit Achilles tendons after enzymatically induced injury. This study was a non-human bench controlled research study using a rabbit model. Both Achilles tendons of 12 rabbits were injected with collagenase to produce tendon injury simulating Achilles tendinopathy. One side was then randomly allocated to receive ASTM, while the other received no treatment (control). ASTM was performed on the Achilles tendon on postoperative days 21, 24, 28, 31, 35, and 38. Tendons were harvested 10 days after treatment and examined with dynamic viscoelasticity and light microscopy. Cross-sectional area in the treated tendons was significantly greater than in controls. Storage modulus tended to be lower in the treated tendons but elasticity was not significantly increased. Loss modulus was significantly lower in the treated tendons. There was no significant difference found in tangent delta (loss modulus/storage modulus). Microscopy of control tendons showed that the tendon fibers were wavy and type III collagen was well stained. The tendon fibers of the augmented soft tissue mobilization treated tendons were not wavy and type III collagen was not prevalent. Biomechanical and histological findings showed that the Achilles tendons treated with ASTM had better recovery of biomechanical function than did control tendons. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  19. GENERAL APROACH TO MODELING NONLINEAR AMPLITUDE AND FREQUENCY DEPENDENT HYSTERESIS EFFECTS BASED ON EXPERIMENTAL RESULTS

    OpenAIRE

    Christopher Heine; Markus Plagemann

    2014-01-01

    A detailed description of the rubber parts’ properties is gaining in importance in the current simulation models of multi-body simulation. One application example is a multi-body simulation of the washing machine movement. Inside the washing machine, there are different force transmission elements, which consist completely or partly of rubber. Rubber parts or, generally, elastomers usually have amplitude-dependant and frequency-dependent force transmission properties. Rheological models are u...

  20. Applied Biomechanics in an Instructional Setting

    Science.gov (United States)

    Hudson, Jackie L.

    2006-01-01

    Biomechanics is the science of how people move better, meaning more skillfully and more safely. This article places more emphasis on skill rather than safety, though there are many parallels between them. It shares a few features of the author's paradigm of applied biomechanics and discusses an integrated approach toward a middle school football…

  1. Biomechanical Remodeling of the Diabetic Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Liao, Donghua; Yang, Jian

    2010-01-01

    several years, several studies demonstrated that experimental diabetes induces GI morphological and biomechanical remodeling. Following the development of diabetes, the GI wall becomes thicker and the stiffness of the GI wall increases in a time-dependent manner. It is well known that mechanosensitive...... the biomechanical environment of the mechanosensitive nerve endings, therefore, the structure as well as the tension, stress and strain distribution in the GI wall is important for the sensory and motor function. Biomechanical remodeling of diabetic GI tract including alterations of residual strain and increase...

  2. Optic nerve head biomechanics in aging and disease.

    Science.gov (United States)

    Downs, J Crawford

    2015-04-01

    This nontechnical review is focused upon educating the reader on optic nerve head biomechanics in both aging and disease along two main themes: what is known about how mechanical forces and the resulting deformations are distributed in the posterior pole and ONH (biomechanics) and what is known about how the living system responds to those deformations (mechanobiology). We focus on how ONH responds to IOP elevations as a structural system, insofar as the acute mechanical response of the lamina cribrosa is confounded with the responses of the peripapillary sclera, prelaminar neural tissues, and retrolaminar optic nerve. We discuss the biomechanical basis for IOP-driven changes in connective tissues, blood flow, and cellular responses. We use glaucoma as the primary framework to present the important aspects of ONH biomechanics in aging and disease, as ONH biomechanics, aging, and the posterior pole extracellular matrix (ECM) are thought to be centrally involved in glaucoma susceptibility, onset and progression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Biomechanics of Gender Difference and Whiplash Injury: Designing Safer Car Seats for Women

    Directory of Open Access Journals (Sweden)

    J. Mordaka

    2003-01-01

    Full Text Available Female car users are reported to have a higher incidence of soft tissue neck injuries in low speed rear-end collisions than males, and they apparently take longer to recover. This paper addresses the whiplash problem by developing a biomechanical FEM (Finite Element Method model of the 50th and the 5th percentile female cervical spines, based on the earlier published male model created at the Nottingham Trent University. This model relies on grafting a detailed biomechanical model of the neck and head onto a standard HYBRID III dummy model. The overall philosophy of the investigation was to see if females responded essentially as scaled down males from the perspective of rear end collisions. It was found that detailed responses varied significantly with gender and it became clear that females cannot be modelled as scaled-down males, thus confirming the need for separate male and female biomechanical models and a revision of car test programmes and regulations which are currently based on the average male. Further investigation is needed to quantify the gender differences and then recommendations can be made for changes to the design of car seats and head restraints in order to reduce the risk of soft tissue injury to women.

  4. A hybrid biomechanical intensity based deformable image registration of lung 4DCT

    International Nuclear Information System (INIS)

    Samavati, Navid; Velec, Michael; Brock, Kristy

    2015-01-01

    Deformable image registration (DIR) has been extensively studied over the past two decades due to its essential role in many image-guided interventions (IGI). IGI demands a highly accurate registration that maintains its accuracy across the entire region of interest. This work evaluates the improvement in accuracy and consistency by refining the results of Morfeus, a biomechanical model-based DIR algorithm.A hybrid DIR algorithm is proposed based on, a biomechanical model–based DIR algorithm and a refinement step based on a B-spline intensity-based algorithm. Inhale and exhale reconstructions of four-dimensional computed tomography (4DCT) lung images from 31 patients were initially registered using the biomechanical DIR by modeling contact surface between the lungs and the chest cavity. The resulting deformations were then refined using the intensity-based algorithm to reduce any residual uncertainties. Important parameters in the intensity-based algorithm, including grid spacing, number of pyramids, and regularization coefficient, were optimized on 10 randomly-chosen patients (out of 31). Target registration error (TRE) was calculated by measuring the Euclidean distance of common anatomical points on both images after registration. For each patient a minimum of 30 points/lung were used.Grid spacing of 8 mm, 5 levels of grid pyramids, and regularization coefficient of 3.0 were found to provide optimal results on 10 randomly chosen patients. Overall the entire patient population (n = 31), the hybrid method resulted in mean ± SD (90th%) TRE of 1.5 ± 1.4 (2.9) mm compared to 3.1 ± 1.9 (5.6) using biomechanical DIR and 2.6 ± 2.5 (6.1) using intensity-based DIR alone.The proposed hybrid biomechanical modeling intensity based algorithm is a promising DIR technique which could be used in various IGI procedures. The current investigation shows the efficacy of this approach for the registration of 4DCT images of the lungs with average accuracy of 1.5

  5. Computational biomechanics for medicine fundamental science and patient-specific applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2014-01-01

    One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This latest installment comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland, and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations.

  6. Biomechanics: basic and applied research

    International Nuclear Information System (INIS)

    Bergmann, G.; Rohlmann, A.; Koelbel, R.

    1987-01-01

    This volume presents the state of the art in biomechanics. The most recent achievements of biomechanical research in the fields of orthopaedics, dynamics of the musculoskeletal system, hard and soft tissues, rehabilitation, sports, cardiovascular problems and research methodology have been selected and edited by a distinguished panel of reviewers. The material is such that the volume will serve as a reference for many years for bioengineers, sports scientists, clinicians and clinical researchers in rehabilitation, orthopaedics and cardiovascular surgery

  7. Measuring $CP$ violation and mixing in charm with inclusive self-conjugate multibody decay modes

    CERN Document Server

    Malde, S.; Wilkinson, G.

    2015-05-28

    Time-dependent studies of inclusive charm decays to multibody self-conjugate final states can be used to determine the indirect $CP$-violating observable $A_\\Gamma$ and the mixing observable $y_{CP}$, provided that the fractional $CP$-even content of the final state, $F_+$, is known. This approach can yield significantly improved sensitivity compared with the conventional method that relies on decays to $CP$ eigenstates. In particular, $D \\to \\pi^+\\pi^-\\pi^0$ appears to be an especially powerful channel, given its relatively large branching fraction and the high value of $F_+$ that has recently been measured at charm threshold.

  8. CAD – CAM PROCEDURE USING FOR RAPID PROTOTYPING WITH APPLICATION IN BIOMECHANICS

    Directory of Open Access Journals (Sweden)

    BRAUN Barbu

    2015-06-01

    Full Text Available The paper presents a new and efficient method for modeling some components with application in Biomechanics. It is shown the way in which this method could be successfully applied for orthopedic shoes, namely for foot insoles to correct any plantar deformities. The main advantages of the proposed method refer to low costs, successfully applying for different products for Biomechanics. The prototyped models via CAD/CAM method allowed a rapid and efficient improvement of their design. Another advantage refer to the fact that these can be properly and efficiently tested before prototyping by the point of view of mechanical stress, due to prior simulations, eliminating all costs meaning wastes or adjustments.

  9. Topology optimization of a flexible multibody system with variable-length bodies described by ALE–ANCF

    DEFF Research Database (Denmark)

    Sun, Jialiang; Tian, Qiang; Hu, Haiyan

    2018-01-01

    Recent years have witnessed the application of topology optimization to flexible multibody systems (FMBS) so as to enhance their dynamic performances. In this study, an explicit topology optimization approach is proposed for an FMBS with variable-length bodies via the moving morphable components...... (MMC). Using the arbitrary Lagrangian–Eulerian (ALE) formulation, the thin plate elements of the absolute nodal coordinate formulation (ANCF) are used to describe the platelike bodies with variable length. For the thin plate element of ALE–ANCF, the elastic force and additional inertial force, as well...

  10. Sixth Computational Biomechanics for Medicine Workshop

    CERN Document Server

    Nielsen, Poul MF; Miller, Karol; Computational Biomechanics for Medicine : Deformation and Flow

    2012-01-01

    One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Deformation and Flow collects the papers from the Sixth Computational Biomechanics for Medicine Workshop held in Toronto in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.

  11. Twenty-year trends of authorship and sampling in applied biomechanics research.

    Science.gov (United States)

    Knudson, Duane

    2012-02-01

    This study documented the trends in authorship and sampling in applied biomechanics research published in the Journal of Applied Biomechanics and ISBS Proceedings. Original research articles of the 1989, 1994, 1999, 2004, and 2009 volumes of these serials were reviewed, excluding reviews, modeling papers, technical notes, and editorials. Compared to 1989 volumes, the mean number of authors per paper significantly increased (35 and 100%, respectively) in the 2009 volumes, along with increased rates of hyperauthorship, and a decline in rates of single authorship. Sample sizes varied widely across papers and did not appear to change since 1989.

  12. A biomechanical assessment to evaluate breed differences in normal porcine medial collateral ligaments.

    Science.gov (United States)

    Germscheid, Niccole M; Thornton, Gail M; Hart, David A; Hildebrand, Kevin A

    2011-02-24

    Little information is available on the role of genetic factors and heredity in normal ligament behaviour and their ability to heal. Assessing these factors is challenging because of the lack of suitable animal models. Therefore, the purpose of this study was to develop a porcine model in order to evaluate and compare the biomechanical differences of normal medial collateral ligaments (MCLs) between Yorkshire (YK) and red Duroc (RD) breeds. It was hypothesized that biomechanical differences would not exist between normal YK and RD MCLs. Comparisons between porcine and human MCL were also made. A biomechanical testing apparatus and protocol specific to pig MCL were developed. Ligaments were subjected to cyclic and static creep tests and then elongated to failure. Pig MCL morphology, geometry, and low- and high-load mechanical behaviour were assessed. The custom-designed apparatus and protocol were sufficiently sensitive to detect mechanical property differences between breeds as well as inter-leg differences. The results reveal that porcine MCL is comparable in both shape and size to human MCL and exhibits similar structural and material failure properties, thus making it a feasible model. Comparisons between RD and YK breeds revealed that age-matched RD pigs weigh more, have larger MCL cross-sectional area, and have lower MCL failure stress than YK pigs. The effect of weight may have influenced MCL geometrical and biomechanical properties, and consequently, the differences observed may be due to breed type and/or animal weight. In conclusion, the pig serves as a suitable large animal model for genetic-related connective tissue studies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. The application of finite element analysis in the skull biomechanics and dentistry.

    Science.gov (United States)

    Prado, Felippe Bevilacqua; Rossi, Ana Cláudia; Freire, Alexandre Rodrigues; Ferreira Caria, Paulo Henrique

    2014-01-01

    Empirical concepts describe the direction of the masticatory stress dissipation in the skull. The scientific evidence of the trajectories and the magnitude of stress dissipation can help in the diagnosis of the masticatory alterations and the planning of oral rehabilitation in the different areas of Dentistry. The Finite Element Analysis (FEA) is a tool that may reproduce complex structures with irregular geometries of natural and artificial tissues of the human body because it uses mathematical functions that enable the understanding of the craniofacial biomechanics. The aim of this study was to review the literature on the advantages and limitations of FEA in the skull biomechanics and Dentistry study. The keywords of the selected original research articles were: Finite element analysis, biomechanics, skull, Dentistry, teeth, and implant. The literature review was performed in the databases, PUBMED, MEDLINE and SCOPUS. The selected books and articles were between the years 1928 and 2010. The FEA is an assessment tool whose application in different areas of the Dentistry has gradually increased over the past 10 years, but its application in the analysis of the skull biomechanics is scarce. The main advantages of the FEA are the realistic mode of approach and the possibility of results being based on analysis of only one model. On the other hand, the main limitation of the FEA studies is the lack of anatomical details in the modeling phase of the craniofacial structures and the lack of information about the material properties.

  14. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    Science.gov (United States)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  15. Biomechanics of subcellular structures by non-invasive Brillouin microscopy

    Science.gov (United States)

    Antonacci, Giuseppe; Braakman, Sietse

    2016-11-01

    Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p biomechanics and its role in pathophysiology.

  16. Neck muscle biomechanics and neural control.

    Science.gov (United States)

    Fice, Jason Bradley; Siegmund, Gunter P; Blouin, Jean-Sebastien

    2018-04-18

    The mechanics, morphometry, and geometry of our joints, segments and muscles are fundamental biomechanical properties intrinsic to human neural control. The goal of our study was to investigate if the biomechanical actions of individual neck muscles predicts their neural control. Specifically, we compared the moment direction & variability produced by electrical stimulation of a neck muscle (biomechanics) to their preferred activation direction & variability (neural control). Subjects sat upright with their head fixed to a 6-axis load cell and their torso restrained. Indwelling wire electrodes were placed into the sternocleidomastoid (SCM), splenius capitis (SPL), and semispinalis capitis (SSC) muscles. The electrically stimulated direction was defined as the moment direction produced when a current (2-19mA) was passed through each muscle's electrodes. Preferred activation direction was defined as the vector sum of the spatial tuning curve built from RMS EMG when subjects produced isometric moments at 7.5% and 15% of their maximum voluntary contraction (MVC) in 26 3D directions. The spatial tuning curves at 15% MVC were well-defined (unimodal, pbiomechanics but, as activation increases, biomechanical constraints in part dictate the activation of synergistic neck muscles.

  17. On seed physiology, biomechanics and plant phenology in Eragrostis tef

    NARCIS (Netherlands)

    Delden, van S.H.

    2011-01-01

    • Key words: Teff (Eragrostis tef (Zuccagni) Trotter), germination, temperature, model, leaf appearance, phyllochron, development rate, lodging, biomechanics, safety factor, flowering, heading, day length, photoperiod.

    • Background Teff (Eragrostis tef (Zuccagni) Trotter) is a C4 annual

  18. Biomechanical implications of lumbar spinal ligament transection.

    Science.gov (United States)

    Von Forell, Gregory A; Bowden, Anton E

    2014-11-01

    Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.

  19. Biomechanical studies: science (f)or common sense?

    NARCIS (Netherlands)

    Mellema, Jos J.; Doornberg, Job N.; Guitton, Thierry G.; Ring, David; van der Zwan, A. L.; Spoor, A. B.; van Vugt, A. B.; Armstrong, A. D.; Shrivastava, A.; Wahegaonkar, A. L.; Shafritz, A. B.; Adams, J.; Ilyas, A.; Vochteloo, A. J. H.; Castillo, A. P.; Basak, A.; Andreas, P.; Barquet, A.; Kristan, A.; Berner, A.; Ranade, A. B.; Ashish, S.; Terrono, A. L.; Jubel, A.; Frieman, B.; Bamberger, H. B.; van den Bekerom, M. P. J.; Belangero, W. D.; Hearon, B. F.; Boler, J. M.; Walter, F. L.; Boyer, M.; Wills, B. P. D.; Broekhuyse, H.; Buckley, R.; Watkins, B.; Sears, B. W.; Calfee, R. P.; Ekholm, C.; Fernandes, C. H.; Swigart, C.; Cassidy, C.; Wilson, C. J.; Bainbridge, L. C.; Wilson, C.; Eygendaal, D.; Goslings, J. C.; Schep, N.; Kloen, P.; Haverlag, R.

    2014-01-01

    It is our impression that many biomechanical studies invest substantial resources studying the obvious: that more and larger metal is stronger. The purpose of this study is to evaluate if a subset of biomechanical studies comparing fixation constructs just document common sense. Using a web-based

  20. The Influence of Lower Extremity Lean Mass on Landing Biomechanics During Prolonged Exercise.

    Science.gov (United States)

    Montgomery, Melissa M; Tritsch, Amanda J; Cone, John R; Schmitz, Randy J; Henson, Robert A; Shultz, Sandra J

    2017-08-01

      The extent to which lower extremity lean mass (LELM) relative to total body mass influences one's ability to maintain safe landing biomechanics during prolonged exercise when injury incidence increases is unknown.   To examine the influence of LELM on (1) pre-exercise lower extremity biomechanics and (2) changes in biomechanics during an intermittent exercise protocol (IEP) and (3) determine whether these relationships differ by sex. We hypothesized that less LELM would predict higher-risk baseline biomechanics and greater changes toward higher-risk biomechanics during the IEP.   Cohort study.   Controlled laboratory.   A total of 59 athletes (30 men: age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg; 29 women: age = 20.6 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) participated.   Before completing an individualized 90-minute IEP designed to mimic a soccer match, participants underwent dual-energy x-ray absorptiometry testing for LELM.   Three-dimensional lower extremity biomechanics were measured during drop-jump landings before the IEP and every 15 minutes thereafter. A previously reported principal components analysis reduced 40 biomechanical variables to 11 factors. Hierarchical linear modeling analysis then determined the extent to which sex and LELM predicted the baseline score and the change in each factor over time.   Lower extremity lean mass did not influence baseline biomechanics or the changes over time. Sex influenced the biomechanical factor representing knee loading at baseline (P = .04) and the changes in the anterior cruciate ligament-loading factor over time (P = .03). The LELM had an additional influence only on women who possessed less LELM (P = .03 and .02, respectively).   Lower extremity lean mass influenced knee loading during landing in women but not in men. The effect appeared to be stronger in women with less LELM. Continually decreasing knee loading over time may reflect a

  1. DYNAMIC MAGNIFICATION OF BIOMECHANICAL SYSTEM MOTION

    Directory of Open Access Journals (Sweden)

    A. E. Pokatilov

    2017-01-01

    Full Text Available Methods for estimation of dynamic magnification pertaining to motion in biomechanics have been developed and approbаted in the paper. It has been ascertained that widely-used characteristics for evaluation of motion influence on mechanisms and machinery such as a dynamic coefficient and acceleration capacity factor become irrelevant while investigating human locomotion under elastic support conditions. The reason is an impossibility to compare human motion in case when there is a contact with elastic and rigid supports because while changing rigidity of the support exercise performing technique is also changing. In this case the technique still depends on a current state of a specific sportsman. Such situation is observed in sports gymnastics. Structure of kinematic and dynamic models for human motion has been investigated in the paper. It has been established that properties of an elastic support are reflected in models within two aspects: in an explicit form, when models have parameters of dynamic deformation for a gymnastic apparatus, and in an implicit form, when we have numerically changed parameters of human motion. The first part can be evaluated quantitatively while making comparison with calculations made in accordance with complete models. For this reason notions of selected and complete models have been introduced in the paper. It has been proposed to specify models for support and models of biomechanical system that represent models pertaining only to human locomotor system. It has been revealed that the selected models of support in kinematics and dynamics have structural difference. Kinematics specifies only parameters of elastic support deformation and dynamics specifies support parameters in an explicit form and additionally in models of human motion in an explicit form as well. Quantitative estimation of a dynamic motion magnification in kinematics and dynamics models has been given while using computing experiment for grand

  2. Role of Aquaporin 0 in lens biomechanics.

    Science.gov (United States)

    Sindhu Kumari, S; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G; Menon, Anil G; Mathias, Richard T; Varadaraj, Kulandaiappan

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5(-/-)), AQP0 KO (heterozygous KO: AQP0(+/-); homozygous KO: AQP0(-/-); all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0(+/-) lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to confer

  3. CT-derived Biomechanical Metrics Improve Agreement Between Spirometry and Emphysema.

    Science.gov (United States)

    Bhatt, Surya P; Bodduluri, Sandeep; Newell, John D; Hoffman, Eric A; Sieren, Jessica C; Han, Meilan K; Dransfield, Mark T; Reinhardt, Joseph M

    2016-10-01

    Many patients with chronic obstructive pulmonary disease (COPD) have marked discordance between forced expiratory volume in 1 second (FEV1) and degree of emphysema on computed tomography (CT). Biomechanical differences between these patients have not been studied. We aimed to identify reasons for the discordance between CT and spirometry in some patients with COPD. Subjects with Global initiative for chronic Obstructive Lung Disease stages I-IV from a large multicenter study (The Genetic Epidemiology of COPD) were arranged by percentiles of %predicted FEV1 and emphysema on CT. Three categories were created using differences in percentiles: Catspir with predominant airflow obstruction/minimal emphysema, CatCT with predominant emphysema/minimal airflow obstruction, and Catmatched with matched FEV1 and emphysema. Image registration was used to derive Jacobian determinants, a measure of lung elasticity, anisotropy, and strain tensors, to assess biomechanical differences between groups. Regression models were created with the previously mentioned categories as outcome variable, adjusting for demographics, scanner type, quantitative CT-derived emphysema, gas trapping, and airway thickness (model 1), and after adding biomechanical CT metrics (model 2). Jacobian determinants, anisotropy, and strain tensors were strongly associated with FEV1. With Catmatched as control, model 2 predicted Catspir and CatCT better than model 1 (Akaike information criterion 255.8 vs. 320.8). In addition to demographics, the strongest independent predictors of FEV1 were Jacobian mean (β = 1.60,95%confidence intervals [CI] = 1.16 to 1.98; P spirometry, offering the potential for new insights into the linkage between regional parenchymal destruction and global decrement in lung function in patients with COPD. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  4. New tools for Content Innovation and data sharing: Enhancing reproducibility and rigor in biomechanics research.

    Science.gov (United States)

    Guilak, Farshid

    2017-03-21

    We are currently in one of the most exciting times for science and engineering as we witness unprecedented growth in our computational and experimental capabilities to generate new data and models. To facilitate data and model sharing, and to enhance reproducibility and rigor in biomechanics research, the Journal of Biomechanics has introduced a number of tools for Content Innovation to allow presentation, sharing, and archiving of methods, models, and data in our articles. The tools include an Interactive Plot Viewer, 3D Geometric Shape and Model Viewer, Virtual Microscope, Interactive MATLAB Figure Viewer, and Audioslides. Authors are highly encouraged to make use of these in upcoming journal submissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biomechanical analysis of rollator walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Larsen, Peter K; Pedersen, Gitte

    2006-01-01

    The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects.......The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....

  6. Role of Aquaporin 0 in lens biomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu Kumari, S.; Gupta, Neha [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); Shiels, Alan [Washington University School of Medicine, St. Louis, MO (United States); FitzGerald, Paul G. [Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA (United States); Menon, Anil G. [University of Cincinnati College of Medicine, Cincinnati, OH (United States); Mathias, Richard T. [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States); Varadaraj, Kulandaiappan, E-mail: kulandaiappan.varadaraj@stonybrook.edu [Physiology and Biophysics, Stony Brook University, Stony Brook, NY (United States); SUNY Eye Institute, NY (United States)

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5{sup −/−}), AQP0 KO (heterozygous KO: AQP0{sup +/−}; homozygous KO: AQP0{sup −/−}; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0{sup +/−} lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and

  7. Role of Aquaporin 0 in lens biomechanics

    International Nuclear Information System (INIS)

    Sindhu Kumari, S.; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G.; Menon, Anil G.; Mathias, Richard T.; Varadaraj, Kulandaiappan

    2015-01-01

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5 −/− ), AQP0 KO (heterozygous KO: AQP0 +/− ; homozygous KO: AQP0 −/− ; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0 +/− lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to

  8. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  9. Dual-task and anticipation impact lower limb biomechanics during a single-leg cut with body borne load.

    Science.gov (United States)

    Seymore, Kayla D; Cameron, Sarah E; Kaplan, Jonathan T; Ramsay, John W; Brown, Tyler N

    2017-12-08

    This study quantified how a dual cognitive task impacts lower limb biomechanics during anticipated and unanticipated single-leg cuts with body borne load. Twenty-four males performed anticipated and unanticipated cuts with and without a dual cognitive task with three load conditions: no load (∼6 kg), medium load (15% of BW), and heavy load (30% of BW). Lower limb biomechanics were submitted to a repeated measures linear mixed model to test the main and interaction effects of load, anticipation, and dual task. With body borne load, participants increased peak stance (PS) hip flexion (p = .004) and hip internal rotation (p = .001) angle, and PS hip flexion (p = .001) and internal rotation (p = .018), and knee flexion (p = .016) and abduction (p = .001) moments. With the dual task, participants decreased PS knee flexion angle (p biomechanical adaptations thought to increase risk of musculoskeletal injury, but neither anticipation nor dual task exaggerated those biomechanical adaptations. With a dual task, participants adopted biomechanics known to increase injury risk; whereas, participants used lower limb biomechanics thought to decrease injury risk during unanticipated cuts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Recent microfluidic devices for studying gamete and embryo biomechanics.

    Science.gov (United States)

    Lai, David; Takayama, Shuichi; Smith, Gary D

    2015-06-25

    The technical challenges of biomechanic research such as single cell analysis at a high monetary cost, labor, and time for just a small number of measurements is a good match to the strengths of microfluidic devices. New scientific discoveries in the fertilization and embryo development process, of which biomechanics is a major subset of interest, is crucial to fuel the continual improvement of clinical practice in assisted reproduction. The following review will highlight some recent microfluidic devices tailored for gamete and embryo biomechanics where biomimicry arises as a major theme of microfluidic device design and function, and the application of fundamental biomechanic principles are used to improve outcomes of cryopreservation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Lingual biomechanics, case selection and success

    Directory of Open Access Journals (Sweden)

    Sanjay Labh

    2016-01-01

    Full Text Available Deeper understanding of lingual biomechanics is prerequisite for success with lingual appliance. The difference between labial and lingual force system must be understood and kept in mind during treatment planning, especially anchorage planning, and extraction decision-making. As point of application of force changes, it completely changes the force system in all planes. This article describes lingual biomechanics, anchorage planning, diagnostic considerations, treatment planning, and case selection criteria in lingual orthodontics.

  12. A knee-mounted biomechanical energy harvester with enhanced efficiency and safety

    Science.gov (United States)

    Chen, Chao; Chau, Li Yin; Liao, Wei-Hsin

    2017-06-01

    Energy harvesting is becoming a major limiting issue for many portable devices. When undertaking any activity, the human body generates a significant amount of biomechanical energy, which can be collected by means of a portable energy harvester. This energy provides a method of powering portable devices such as prosthetic limbs. In this paper, a knee-mounted energy harvester with enhanced efficiency and safety is proposed and developed to convert mechanical energy into electricity during human motion. This device can change the bi-directional knee input into uni-directional rotation for an electromagnetic generator using a specially designed transmission system. Without the constraint of induced impact on the human body, this device can harvest biomechanical energy from both knee flexion and extension, improving the harvesting efficiency over previous single-direction energy harvesters. It can also provide protection from device malfunction, and increase the safety of current biomechanical energy harvesters. A highly compact and light prototype is developed taking into account human kinematics. The biomechanical energy harvesting system is also modeled and analyzed. The prototype is tested under different conditions including walking, running and climbing stairs, to evaluate the energy harvesting performance and effect on the human gait. The experimental results show that the prototype can harvest an average power of 3.6 W at 1.5 m s-1 walking speed, which is promising for portable electronic devices.

  13. [Three-dimensional finite element modeling and biomechanical simulation for evaluating and improving postoperative internal instrumentation of neck-thoracic vertebral tumor en bloc resection].

    Science.gov (United States)

    Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu

    2015-04-07

    To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.

  14. Error-transparent evolution: the ability of multi-body interactions to bypass decoherence

    International Nuclear Information System (INIS)

    Vy, Os; Jacobs, Kurt; Wang Xiaoting

    2013-01-01

    We observe that multi-body interactions, unlike two-body interactions, can implement any unitary operation on an encoded system in such a way that the evolution is uninterrupted by noise that the encoding is designed to protect against. Such ‘error-transparent’ evolution is distinct from that usually considered in quantum computing, as the latter is merely correctable. We prove that the minimum body-ness required to protect (i) a qubit from a single type of Pauli error, (ii) a target qubit from a controller with such errors and (iii) a single qubit from all errors is three-body, four-body and five-body, respectively. We also discuss applications to computing, coherent feedback control and quantum metrology. Finally, we evaluate the performance of error-transparent evolution for some examples using numerical simulations. (paper)

  15. MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics.

    Science.gov (United States)

    Young, Heather M; Eddy, Rachel L; Parraga, Grace

    2017-09-29

    The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Important learning factors in high- and low-achieving students in undergraduate biomechanics.

    Science.gov (United States)

    Hsieh, ChengTu; Knudson, Duane

    2017-07-21

    The purpose of the present study was to document crucial factors associated with students' learning of biomechanical concepts, particularly between high- and-low achieving students. Students (N = 113) from three introductory biomechanics classes at two public universities volunteered for the study. Two measures of students' learning were obtained, final course grade and improvement on the Biomechanics Concept Inventory version 3 administered before and after the course. Participants also completed a 15-item questionnaire documenting student learning characteristics, effort, and confidence. Partial correlations controlling for all other variables in the study, confirmed previous studies that students' grade point average (p biomechanics, (p biomechanics concepts. Students' confidence when encountering difficult biomechanics concepts was also significantly (p biomechanics and confidence in solving relevant professional problems in order to improve learning for both low- and high-ability students.

  17. Artificial playing surfaces research: a review of medical, engineering and biomechanical aspects.

    Science.gov (United States)

    Dixon, S J; Batt, M E; Collop, A C

    1999-05-01

    In this paper, current knowledge of artificial playing surfaces is reviewed. Research status in the fields of sports medicine, engineering and biomechanics is described. A multidisciplinary approach to the study of artificial sports surface properties is recommended. The development of modelling techniques to characterise fundamental material properties is described as the most appropriate method for the unique specification of material properties such as stiffness and damping characteristics. It is suggested that the systematic manipulation of fundamental surface material properties in biomechanics research will allow the identification of subject responses to clearly defined surface variation. It is suggested that subjects should be grouped according to characteristic behaviour on specific sports surfaces. It is speculated that future biomechanics research will identify subject criterion related to differing group responses. The literature evidence of interactions between sports shoes and sports surfaces leads to the suggestion that sports shoe and sports surface companies should work together in the development of ideal shoe - surface combinations for particular groups of subjects.

  18. An improved lower leg multibody model

    NARCIS (Netherlands)

    Cappon, H.J.; Kroonenberg, A.J. van den; Happee, R.; Wismans, J.S.H.M.

    1999-01-01

    Injuries to the lower extremities are among the most serious, non life threatening injuries occuring nowadays. In order to investigate and predict the occurence of injuries, biofidelic research tools, like mathematical human body models are needed. The model of the lower extremity, presented here,

  19. Biomechanics of footwear.

    Science.gov (United States)

    Snijders, C J

    1987-07-01

    This article discusses biomechanical principles that indicate a number of basic design criteria for shoes and the properties of good footwear in terms of normal daily activities at home, at school, and at work. These properties also apply to normal occupational footwear and safety footwear.

  20. Changes in fatigue, multiplanar knee laxity, and landing biomechanics during intermittent exercise.

    Science.gov (United States)

    Shultz, Sandra J; Schmitz, Randy J; Cone, John R; Henson, Robert A; Montgomery, Melissa M; Pye, Michele L; Tritsch, Amanda J

    2015-05-01

    Knee laxity increases during exercise. However, no one, to our knowledge, has examined whether these increases contribute to higher-risk landing biomechanics during prolonged, fatiguing exercise. To examine associations between changes in fatigue (measured as sprint time [SPTIME]), multiplanar knee laxity (anterior-posterior [APLAX], varus-valgus [VVLAX] knee laxity, and internal-external rotation [IERLAX]) knee laxity and landing biomechanics during prolonged, intermittent exercise. Descriptive laboratory study. Laboratory and gymnasium. A total of 30 male (age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg) and 29 female (age = 20.5 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) competitive athletes. A 90-minute intermittent exercise protocol (IEP) designed to simulate the physiologic and biomechanical demands of a soccer match. We measured SPTIME, APLAX, and landing biomechanics before and after warm-up, every 15 minutes during the IEP, and every 15 minutes for 1 hour after the IEP. We measured VVLAX and IERLAX before and after the warm-up, at 45 and 90 minutes during the IEP, and at 30 minutes after the IEP. We used hierarchical linear modeling to examine associations between exercise-related changes in SPTIME and knee laxity with exercise-related changes in landing biomechanics while controlling for initial (before warm-up) knee laxity. We found that SPTIME had a more global effect on landing biomechanics in women than in men, resulting in a more upright landing and a reduction in landing forces and out-of-plane motions about the knee. As APLAX increased with exercise, women increased their knee internal-rotation motion (P = .02), and men increased their hip-flexion motion and energy-absorption (P = .006) and knee-extensor loads (P = .04). As VVLAX and IERLAX increased, women went through greater knee-valgus motion and dorsiflexion and absorbed more energy at the knee (P ≤ .05), whereas men were positioned in greater hip

  1. BIOMECHANIC EVALUATION OF CARPENTRY WORKERS IN THE DISTRITO FEDERAL, BRAZIL

    Directory of Open Access Journals (Sweden)

    Nilton Cesar Fiedler

    2010-08-01

    Full Text Available The aim of this study was the biomechanical assessment of carpentry woodworkers, located in Brasília, DF. It was filmed the profile of each worker during the performance of his activities in the carpentry and the forces involved in the work were assessed. The image of each woodworker was congealed to accomplish the measurement of articulation angles. The data were submitted to the software of posture analysis “Winowas” (OWAS Method and to the biomechanic model of posture prognosis and static forces, developed by Michigan University. The OWAS method showed that, for all machines and carpentries assessed, the worst posture occurred when the worker lifted and placed the pieces of wood on the floor and during the feeding in the smoother. The tridimensional biomechanic model registered the worst posture in different phases of the work cycle. In the first one, there were problems in all articulations, except the hips, when placing the pieces on the floor from the smoother. In the second one, there were problems in all articulations, except the elbows and the L5-S1 column disc, by feeding the surface planer. The third one, the ankles were the most injured when feeding the smoother, the surface planer, the circular saw and the band saw. According to the results, the woodworkers should try to eliminate the constant work standing upright, use auxiliary machinery to handle pieces of wood, reduce the load during feeding the machines and improve postures.

  2. Biomechanics Strategies for Space Closure in Deep Overbite

    Directory of Open Access Journals (Sweden)

    Harryanto Wijaya

    2013-07-01

    Full Text Available Space closure is an interesting aspect of orthodontic treatment related to principles of biomechanics. It should be tailored individually based on patient’s diagnosis and treatment plan. Understanding the space closure biomechanics basis leads to achieve the desired treatment objective. Overbite deepening and losing posterior anchorage are the two most common unwanted side effects in space closure. Conventionally, correction of overbite must be done before space closure resulted in longer treatment. Application of proper space closure biomechanics strategies is necessary to achieve the desired treatment outcome. This cases report aimed to show the space closure biomechanics strategies that effectively control the overbite as well as posterior anchorage in deep overbite patients without increasing treatment time. Two patients who presented with class II division 1 malocclusion were treated with fixed orthodontic appliance. The primary strategies included extraction space closure on segmented arch that employed two-step space closure, namely single canine retraction simultaneously with incisors intrusion followed by enmasse retraction of four incisors by using differential moment concept. These strategies successfully closed the space, corrected deep overbite and controlled posterior anchorage simultaneously so that the treatment time was shortened. Biomechanics strategies that utilized were effective to achieve the desired treatment outcome.

  3. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    Directory of Open Access Journals (Sweden)

    Laura J. Lambert

    2016-10-01

    Full Text Available Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap, is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA, glucose tolerance testing (GTT, insulin tolerance testing (ITT, microcomputed tomography (µCT, and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research.

  4. Biomechanical Strength of Retrograde Fixation in Proximal Third Scaphoid Fractures.

    Science.gov (United States)

    Daly, Charles A; Boden, Allison L; Hutton, William C; Gottschalk, Michael B

    2018-04-01

    Current techniques for fixation of proximal pole scaphoid fractures utilize antegrade fixation via a dorsal approach endangering the delicate vascular supply of the dorsal scaphoid. Volar and dorsal approaches demonstrate equivalent clinical outcomes in scaphoid wrist fractures, but no study has evaluated the biomechanical strength for fractures of the proximal pole. This study compares biomechanical strength of antegrade and retrograde fixation for fractures of the proximal pole of the scaphoid. A simulated proximal pole scaphoid fracture was produced in 22 matched cadaveric scaphoids, which were then assigned randomly to either antegrade or retrograde fixation with a cannulated headless compression screw. Cyclic loading and load to failure testing were performed and screw length, number of cycles, and maximum load sustained were recorded. There were no significant differences in average screw length (25.5 mm vs 25.6 mm, P = .934), average number of cyclic loading cycles (3738 vs 3847, P = .552), average load to failure (348 N vs 371 N, P = .357), and number of catastrophic failures observed between the antegrade and retrograde fixation groups (3 in each). Practical equivalence between the 2 groups was calculated and the 2 groups were demonstrated to be practically equivalent (upper threshold P = .010). For this model of proximal pole scaphoid wrist fractures, antegrade and retrograde screw configuration have been proven to be equivalent in terms of biomechanical strength. With further clinical study, we hope surgeons will be able to make their decision for fixation technique based on approaches to bone grafting, concern for tenuous blood supply, and surgeon preference without fear of poor biomechanical properties.

  5. Optimization of a quarter-car suspension model coupled with the driver biomechanical effects

    Science.gov (United States)

    Kuznetsov, Alexey; Mammadov, Musa; Sultan, Ibrahim; Hajilarov, Eldar

    2011-06-01

    In this paper a Human-Vehicle-Road (HVR) model, comprising a quarter-car and a biomechanical representation of the driver, is employed for the analysis. Differential equations are provided to describe the motions of various masses under the influence of a harmonic road excitation. These equations are, subsequently, solved to obtain a closed form mathematical expression for the steady-state vertical acceleration measurable at the vehicle-human interface. The solution makes it possible to find optimal parameters for the vehicle suspension system with respect to a specified ride comfort level. The quantitative definition given in the ISO 2631 standard for the ride comfort level is adopted in this paper for the optimization procedure. Numerical examples, based on actually measured road profiles, are presented to prove the validity of the proposed approach and its suitability for the problem at hand.

  6. Double-row vs single-row rotator cuff repair: a review of the biomechanical evidence.

    Science.gov (United States)

    Wall, Lindley B; Keener, Jay D; Brophy, Robert H

    2009-01-01

    A review of the current literature will show a difference between the biomechanical properties of double-row and single-row rotator cuff repairs. Rotator cuff tears commonly necessitate surgical repair; however, the optimal technique for repair continues to be investigated. Recently, double-row repairs have been considered an alternative to single-row repair, allowing a greater coverage area for healing and a possibly stronger repair. We reviewed the literature of all biomechanical studies comparing double-row vs single-row repair techniques. Inclusion criteria included studies using cadaveric, animal, or human models that directly compared double-row vs single-row repair techniques, written in the English language, and published in peer reviewed journals. Identified articles were reviewed to provide a comprehensive conclusion of the biomechanical strength and integrity of the repair techniques. Fifteen studies were identified and reviewed. Nine studies showed a statistically significant advantage to a double-row repair with regards to biomechanical strength, failure, and gap formation. Three studies produced results that did not show any statistical advantage. Five studies that directly compared footprint reconstruction all demonstrated that the double-row repair was superior to a single-row repair in restoring anatomy. The current literature reveals that the biomechanical properties of a double-row rotator cuff repair are superior to a single-row repair. Basic Science Study, SRH = Single vs. Double Row RCR.

  7. Microgravity-Driven Optic Nerve/Sheath Biomechanics Simulations

    Science.gov (United States)

    Ethier, C. R.; Feola, A.; Myers, J. G.; Nelson, E.; Raykin, J.; Samuels, B.

    2016-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a concern for long-duration space flight. Current thinking suggests that the ocular changes observed in VIIP syndrome are related to cephalad fluid shifts resulting in altered fluid pressures [1]. In particular, we hypothesize that increased intracranial pressure (ICP) drives connective tissue remodeling of the posterior eye and optic nerve sheath (ONS). We describe here finite element (FE) modeling designed to understand how altered pressures, particularly altered ICP, affect the tissues of the posterior eye and optic nerve sheath (ONS) in VIIP. METHODS: Additional description of the modeling methodology is provided in the companion IWS abstract by Feola et al. In brief, a geometric model of the posterior eye and optic nerve, including the ONS, was created and the effects of fluid pressures on tissue deformations were simulated. We considered three ICP scenarios: an elevated ICP assumed to occur in chronic microgravity, and ICP in the upright and supine positions on earth. Within each scenario we used Latin hypercube sampling (LHS) to consider a range of ICPs, ONH tissue mechanical properties, intraocular pressures (IOPs) and mean arterial pressures (MAPs). The outcome measures were biomechanical strains in the lamina cribrosa, optic nerve and retina; here we focus on peak values of these strains, since elevated strain alters cell phenotype and induce tissue remodeling. In 3D, the strain field can be decomposed into three orthogonal components, denoted as first, second and third principal strains. RESULTS AND CONCLUSIONS: For baseline material properties, increasing ICP from 0 to 20 mmHg significantly changed strains within the posterior eye and ONS (Fig. 1), indicating that elevated ICP affects ocular tissue biomechanics. Notably, strains in the lamina cribrosa and retina became less extreme as ICP increased; however, within the optic nerve, the occurrence of such extreme strains greatly increased as

  8. Biomechanical analysis of press-extension technique on degenerative lumbar with disc herniation and staggered facet joint

    Directory of Open Access Journals (Sweden)

    Hong-gen Du

    2016-05-01

    Full Text Available This study investigates the effect of a new Chinese massage technique named “press-extension” on degenerative lumbar with disc herniation and facet joint dislocation, and provides a biomechanical explanation of this massage technique. Self-developed biomechanical software was used to establish a normal L1–S1 lumbar 3D FE model, which integrated the spine CT and MRI data-based anatomical structure. Then graphic technique is utilized to build a degenerative lumbar FE model with disc herniation and facet joint dislocation. According to the actual press-extension experiments, mechanic parameters are collected to set boundary condition for FE analysis. The result demonstrated that press-extension techniques bring the annuli fibrosi obvious induction effect, making the central nucleus pulposus forward close, increasing the pressure in front part. Study concludes that finite element modelling for lumbar spine is suitable for the analysis of press-extension technique impact on lumbar intervertebral disc biomechanics, to provide the basis for the disease mechanism of intervertebral disc herniation using press-extension technique.

  9. Scale-Independent Biomechanical Optimization

    National Research Council Canada - National Science Library

    Schutte, J. F; Koh, B; Reinbolt, J. A; Haftka, R. T; George, A; Fregly, B. J

    2003-01-01

    ...: the Particle Swarm Optimizer (PSO). They apply this method to the biomechanical system identification problem of finding positions and orientations of joint axes in body segments through the processing of experimental movement data...

  10. Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses.

    Science.gov (United States)

    Steele, Katherine M; Tresch, Matthew C; Perreault, Eric J

    2015-04-01

    Matrix factorization algorithms are commonly used to analyze muscle activity and provide insight into neuromuscular control. These algorithms identify low-dimensional subspaces, commonly referred to as synergies, which can describe variation in muscle activity during a task. Synergies are often interpreted as reflecting underlying neural control; however, it is unclear how these analyses are influenced by biomechanical and task constraints, which can also lead to low-dimensional patterns of muscle activation. The aim of this study was to evaluate whether commonly used algorithms and experimental methods can accurately identify synergy-based control strategies. This was accomplished by evaluating synergies from five common matrix factorization algorithms using muscle activations calculated from 1) a biomechanically constrained task using a musculoskeletal model and 2) without task constraints using random synergy activations. Algorithm performance was assessed by calculating the similarity between estimated synergies and those imposed during the simulations; similarities ranged from 0 (random chance) to 1 (perfect similarity). Although some of the algorithms could accurately estimate specified synergies without biomechanical or task constraints (similarity >0.7), with these constraints the similarity of estimated synergies decreased significantly (0.3-0.4). The ability of these algorithms to accurately identify synergies was negatively impacted by correlation of synergy activations, which are increased when substantial biomechanical or task constraints are present. Increased variability in synergy activations, which can be captured using robust experimental paradigms that include natural variability in motor activation patterns, improved identification accuracy but did not completely overcome effects of biomechanical and task constraints. These results demonstrate that a biomechanically constrained task can reduce the accuracy of estimated synergies and highlight

  11. Lumbar Spine Musculoskeletal Physiology and Biomechanics During Simulated Military Operations

    Science.gov (United States)

    2016-06-01

    AWARD NUMBER: W81XWH-13-2-0043 TITLE: Lumbar Spine Musculoskeletal Physiology and Biomechanics During Simulated Military Operations PRINCIPAL...31May2016 4. TITLE AND SUBTITLE Lumbar Spine Musculoskeletal Physiology and Biomechanics 5a. CONTRACT NUMBER During Simulated Military Operations 5b... Biomechanics , Cincinnati, 2015. § Website(s) or other Internet site(s) § Nothing to report § Technologies or techniques § Nothing to report

  12. Biomechanical forces promote embryonic haematopoiesis

    Science.gov (United States)

    Adamo, Luigi; Naveiras, Olaia; Wenzel, Pamela L.; McKinney-Freeman, Shannon; Mack, Peter J.; Gracia-Sancho, Jorge; Suchy-Dicey, Astrid; Yoshimoto, Momoko; Lensch, M. William; Yoder, Mervin C.; García-Cardeña, Guillermo; Daley, George Q.

    2009-01-01

    Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system1,2. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3–5), a master regulator of haematopoiesis, and give rise to haematopoietic cells4. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential6. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells7,concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the paraaortic splanchnopleura/aorta–gonads–mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling8, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development. PMID:19440194

  13. Biomechanics of the brain

    CERN Document Server

    Miller, Karol

    2011-01-01

    With contributions from scientists at major institutions, this book presents an introduction to brain anatomy for engineers and scientists. It provides, for the first time, a comprehensive resource in the field of brain biomechanics.

  14. Radiological features and biomechanical patterns in Perthes disease

    International Nuclear Information System (INIS)

    Choo, B.S.; Hogg, A.D.C.; Burwell, R.G.; Moulton, A.; Worthington, B.S.

    1990-01-01

    This paper examines the relationship between radiologic features and biomechanical patterns in Perthes disease as shown in finite element models. A two-dimensional finite element model of a child's hip that allowed for movement at the joint line was loaded to simulate normal heel strike. The finite element method is a computer-based technique of mathematical modeling that permits calculation of the magnitude and direction of stresses, deformation, and dynamic behavior of continuous structures. In the normal hip model, maximum compressive stresses occur superolaterally and inferomedially in the femoral head, corresponding to the radiographic features of flattening and increased tear drop distance, attributable to cartilage thickening, seen in Perthes disease

  15. Biomechanical and psychosocial work exposures and musculoskeletal symptoms among vineyard workers.

    Science.gov (United States)

    Bernard, Christophe; Courouve, Laurène; Bouée, Stéphane; Adjémian, Annie; Chrétien, Jean-Claude; Niedhammer, Isabelle

    2011-01-01

    This study explored the associations between biomechanical and psychosocial work factors and musculoskeletal symptoms in vineyard workers. This cross-sectional study was based on a random sample of 2,824 male and 1,123 female vineyard workers in France. Data were collected using a self-administered questionnaire. Neck/shoulder, back and upper and lower extremity symptoms were evaluated using the Nordic questionnaire. Biomechanical exposures included 15 tasks related to vineyard activities. Psychosocial work factors included effort-reward imbalance and overcommitment, measured using the effort-reward imbalance model, and low job control and insufficient material means. Statistical analysis was performed using logistic regression analysis, and the results were adjusted for age, body mass index, educational level, work status and years in vineyard. Pruning-related factors increased the risk of upper extremity pain for both genders, of back pain for men and of neck/shoulder and lower extremity pain for women. Driving increased the risk of neck/shoulder and back pain among men. Psychosocial work factors, which were insufficient material means, overcommitment (both genders), effort-reward imbalance (men) and low job control (women), were associated with musculoskeletal symptoms, back and upper extremity pain for both genders and neck/shoulder and lower extremity pain for men. These results underlined that both biomechanical and psychosocial work factors may play a role in musculoskeletal pain among vineyard workers. Prevention policies focusing on both biomechanical and psychosocial work exposures may be useful to prevent musculoskeletal symptoms.

  16. Artificial intelligence in sports biomechanics: new dawn or false hope?

    Science.gov (United States)

    Bartlett, Roger

    2006-12-15

    This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques') and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key PointsExpert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis.Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear.Other AI applications, including Evolutionary Computation, have received little attention.

  17. [Advances on biomechanics and kinematics of sprain of ankle joint].

    Science.gov (United States)

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.

  18. The Influence of Artificial Cervical Disc Prosthesis Height on the Cervical Biomechanics: A Finite Element Study.

    Science.gov (United States)

    Yuan, Wei; Zhang, Haiping; Zhou, Xiaoshu; Wu, Weidong; Zhu, Yue

    2018-05-01

    Artificial cervical disc replacement is expected to maintain normal cervical biomechanics. At present, the effect of the Prestige LP prosthesis height on cervical biomechanics has not been thoroughly studied. This finite element study of the cervical biomechanics aims to predict how the parameters, like range of motion (ROM), adjacent intradiscal pressure, facet joint force, and bone-implant interface stress, are affected by different heights of Prestige LP prostheses. The finite element model of intact cervical spine (C3-C7) was obtained from our previous study, and the model was altered to implant Prestige LP prostheses at the C5-C6 level. The effects of the height of 5, 6, and 7 mm prosthesis replacement on ROM, adjacent intradiscal pressure, facet joint force, as well as the distribution of bone-implant interface stress were examined. ROM, adjacent intradiscal pressure, and facet joint force increased with the prosthesis height, whereas ROM and facet joint force decreased at C5-C6. The maximal stress on the inferior surface of the prostheses was greater than that on the superior surface, and the stresses increased with the prosthesis height. The biomechanical changes were slightly affected by the height of 5 and 6 mm prostheses, but were strongly affected by the 7-mm prosthesis. An appropriate height of the Prestige LP prosthesis can preserve normal ROM, adjacent intradiscal pressure, and facet joint force. Prostheses with a height of ≥2 mm than normal can lead to marked changes in the cervical biomechanics and bone-implant interface stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Three-dimensional biomechanical properties of human vocal folds: Parameter optimization of a numerical model to match in vitro dynamics

    Science.gov (United States)

    Yang, Anxiong; Berry, David A.; Kaltenbacher, Manfred; Döllinger, Michael

    2012-01-01

    The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. PMID:22352511

  20. Factors Related to Students' Learning of Biomechanics Concepts

    Science.gov (United States)

    Hsieh, ChengTu; Smith, Jeremy D.; Bohne, Michael; Knudson, Duane

    2012-01-01

    The purpose of this study was to replicate and expand a previous study to identify the factors that affect students' learning of biomechanical concepts. Students were recruited from three universities (N = 149) located in the central and western regions of the United States. Data from 142 students completing the Biomechanics Concept Inventory…

  1. Biomechanical tactics of chiral growth in emergent aquatic macrophytes

    Science.gov (United States)

    Zhao, Zi-Long; Zhao, Hong-Ping; Li, Bing-Wei; Nie, Ben-Dian; Feng, Xi-Qiao; Gao, Huajian

    2015-01-01

    Through natural selection, many plant organs have evolved optimal morphologies at different length scales. However, the biomechanical strategies for different plant species to optimize their organ structures remain unclear. Here, we investigate several species of aquatic macrophytes living in the same natural environment but adopting distinctly different twisting chiral morphologies. To reveal the principle of chiral growth in these plants, we performed systematic observations and measurements of morphologies, multiscale structures, and mechanical properties of their slender emergent stalks or leaves. Theoretical modeling of pre-twisted beams in bending and buckling indicates that the different growth tactics of the plants can be strongly correlated with their biomechanical functions. It is shown that the twisting chirality of aquatic macrophytes can significantly improve their survivability against failure under both internal and external loads. The theoretical predictions for different chiral configurations are in excellent agreement with experimental measurements. PMID:26219724

  2. ARTIFICIAL INTELLIGENCE IN SPORTS BIOMECHANICS: NEW DAWN OR FALSE HOPE?

    Directory of Open Access Journals (Sweden)

    Roger Bartlett

    2006-12-01

    Full Text Available This article reviews developments in the use of Artificial Intelligence (AI in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques' and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics.

  3. The Undergraduate Biomechanics Experience at Iowa State University.

    Science.gov (United States)

    Francis, Peter R.

    This paper discusses the objectives of a program in biomechanics--the analysis of sports skills and movement--and the evolution of the biomechanics program at Iowa State University. The primary objective of such a course is to provide the student with the basic tools necessary for adequate analysis of human movement, with special emphasis upon…

  4. A scalable platform for biomechanical studies of tissue cutting forces

    International Nuclear Information System (INIS)

    Valdastri, P; Tognarelli, S; Menciassi, A; Dario, P

    2009-01-01

    This paper presents a novel and scalable experimental platform for biomechanical analysis of tissue cutting that exploits a triaxial force-sensitive scalpel and a high resolution vision system. Real-time measurements of cutting forces can be used simultaneously with accurate visual information in order to extract important biomechanical clues in real time that would aid the surgeon during minimally invasive intervention in preserving healthy tissues. Furthermore, the in vivo data gathered can be used for modeling the viscoelastic behavior of soft tissues, which is an important issue in surgical simulator development. Thanks to a modular approach, this platform can be scaled down, thus enabling in vivo real-time robotic applications. Several cutting experiments were conducted with soft porcine tissues (lung, liver and kidney) chosen as ideal candidates for biopsy procedures. The cutting force curves show repeated self-similar units of localized loading followed by unloading. With regards to tissue properties, the depth of cut plays a significant role in the magnitude of the cutting force acting on the blade. Image processing techniques and dedicated algorithms were used to outline the surface of the tissues and estimate the time variation of the depth of cut. The depth of cut was finally used to obtain the normalized cutting force, thus allowing comparative biomechanical analysis

  5. Biomechanics research in ski jumping, 1991-2006.

    Science.gov (United States)

    Schwameder, Hermann

    2008-01-01

    In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.

  6. 1st International Conference of IFToMM Italy

    CERN Document Server

    Gasparetto, Alessandro

    2017-01-01

    This volume contains the Proceedings of the First International Conference of IFToMM Italy (IFIT2016), held at the University of Padova, Vicenza, Italy, on December 1-2, 2016. The book contains contributions on the latest advances on Mechanism and Machine Science. The fifty-nine papers deal with such topics as biomechanical engineering, history of mechanism and machine science, linkages and mechanical controls, multi-body dynamics, reliability, robotics and mechatronics, transportation machinery, tribology, and vibrations.

  7. Teaching motor skills by means of biomechanical analysis of the motion: the physiological basis and applied information technologies

    Directory of Open Access Journals (Sweden)

    Razuvanova A.V.

    2016-01-01

    Full Text Available The article proves the possibility of training athletes using motor skills on the basis of biomechanical analysis of movements with application of information technologies. Motion Tracking – digital single frame shooting photography – is proposed as a method for biomechanical analysis. The relevance of this method is conditioned by the results of the study of a repulsion phase in the performing of the standing jump by athletes of different qualifications. The conclusion about the importance of an optimal model of a jump based on biomechanical analysis is given, and the formation of athletes’ skills, using information technologies and the principle of urgent information, is discussed.

  8. Applied dynamics

    CERN Document Server

    Schiehlen, Werner

    2014-01-01

    Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.

  9. The systematics of the deexcitation of hot nuclei and the onset of multibody decay

    International Nuclear Information System (INIS)

    Bowman, D.R.; Peaslee, G.F.; Colonna, N.

    1989-03-01

    Results from the asymmetric reactions 80 and 100 MeV/uLa + C are presented and compared to earlier work with the same system at 18 and 50 MeV/u. Fragment-fragment correlations, cross sections, and distributions in velocity space indicate the continued dominance of a quasi-binary decay mechanism with increased emission of light charged particles. The distributions in velocity also indicate a progression toward a ''fireball'' type of reaction mechanism. However, the angular distributions of the emitted fragments are incompatible with statistical production mechanisms that have successfully explained the lower energy results, and indicate the dynamical nature of the emission process. Dalitz plots of triple complex fragment coincidences are presented in order to investigate the nature of the multibody decays. 18 refs., 9 figs

  10. Effects of sex and obesity on gait biomechanics before and six months after total knee arthroplasty: A longitudinal cohort study.

    Science.gov (United States)

    Paterson, K L; Sosdian, L; Hinman, R S; Wrigley, T V; Kasza, J; Dowsey, M; Choong, P; Bennell, K L

    2018-03-01

    Gait biomechanics, sex, and obesity can contribute to suboptimal outcomes from primary total knee arthroplasty. The aims of this study were to i) determine if sex and/or obesity influence the amount of change in gait biomechanics from pre-surgery to six months post-surgery and; ii) assess if gait returns to normal in men and women. Three-dimensional gait analysis was performed on 43 patients undergoing primary total knee arthroplasty for knee osteoarthritis (pre- and six months post-operative) and 40 asymptomatic controls. Mixed linear regression models were fit to assess which factors influenced change in gait biomechanics within the arthroplasty cohort, and interaction terms were included to assess if biomechanics returned to normal following surgery. Male peak knee adduction moment (p biomechanics after arthroplasty. Men retained abnormal gait patterns after surgery, whilst women did not. Further research should determine the long-term implications of gait abnormalities seen in men after arthroplasty. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Validation of an experimental polyurethane model for biomechanical studies on implant supported prosthesis - tension tests

    Directory of Open Access Journals (Sweden)

    Mariane Miyashiro

    2011-06-01

    Full Text Available OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5. RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20 for PU-1, 347.90 MPa (SD=109.54 for PU-2 and 304.64 MPa (SD=25.48 for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.

  12. [The development of an oral biomechanical testing instrument].

    Science.gov (United States)

    Zhang, X H; Sun, X D; Lin, Z

    2000-03-01

    An oral biomechanical testing instrument, which is portable, powered with batteries and controlled by single chip microcomputer, was described. The instrument was characterized by its multichannel, high accuracy, low power dissipation, wide rage of force measurement and stable performance. It can be used for acquisiting, displaying and storing data. And it may be expected to be an ideal instrument for oral biomechanical measurements.

  13. Translating ocular biomechanics into clinical practice: current state and future prospects.

    Science.gov (United States)

    Girard, Michaël J A; Dupps, William J; Baskaran, Mani; Scarcelli, Giuliano; Yun, Seok H; Quigley, Harry A; Sigal, Ian A; Strouthidis, Nicholas G

    2015-01-01

    Biomechanics is the study of the relationship between forces and function in living organisms and is thought to play a critical role in a significant number of ophthalmic disorders. This is not surprising, as the eye is a pressure vessel that requires a delicate balance of forces to maintain its homeostasis. Over the past few decades, basic science research in ophthalmology mostly confirmed that ocular biomechanics could explain in part the mechanisms involved in almost all major ophthalmic disorders such as optic nerve head neuropathies, angle closure, ametropia, presbyopia, cataract, corneal pathologies, retinal detachment and macular degeneration. Translational biomechanics in ophthalmology, however, is still in its infancy. It is believed that its use could make significant advances in diagnosis and treatment. Several translational biomechanics strategies are already emerging, such as corneal stiffening for the treatment of keratoconus, and more are likely to follow. This review aims to cultivate the idea that biomechanics plays a major role in ophthalmology and that the clinical translation, lead by collaborative teams of clinicians and biomedical engineers, will benefit our patients. Specifically, recent advances and future prospects in corneal, iris, trabecular meshwork, crystalline lens, scleral and lamina cribrosa biomechanics are discussed.

  14. Corneal biomechanical properties from air-puff corneal deformation imaging

    Science.gov (United States)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  15. Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement.

    Science.gov (United States)

    Yekutieli, Yoram; Sagiv-Zohar, Roni; Aharonov, Ranit; Engel, Yaakov; Hochner, Binyamin; Flash, Tamar

    2005-08-01

    The octopus arm requires special motor control schemes because it consists almost entirely of muscles and lacks a rigid skeletal support. Here we present a 2D dynamic model of the octopus arm to explore possible strategies of movement control in this muscular hydrostat. The arm is modeled as a multisegment structure, each segment containing longitudinal and transverse muscles and maintaining a constant volume, a prominent feature of muscular hydrostats. The input to the model is the degree of activation of each of its muscles. The model includes the external forces of gravity, buoyancy, and water drag forces (experimentally estimated here). It also includes the internal forces generated by the arm muscles and the forces responsible for maintaining a constant volume. Using this dynamic model to investigate the octopus reaching movement and to explore the mechanisms of bend propagation that characterize this movement, we found the following. 1) A simple command producing a wave of muscle activation moving at a constant velocity is sufficient to replicate the natural reaching movements with similar kinematic features. 2) The biomechanical mechanism that produces the reaching movement is a stiffening wave of muscle contraction that pushes a bend forward along the arm. 3) The perpendicular drag coefficient for an octopus arm is nearly 50 times larger than the tangential drag coefficient. During a reaching movement, only a small portion of the arm is oriented perpendicular to the direction of movement, thus minimizing the drag force.

  16. Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis

    Science.gov (United States)

    Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2011-08-01

    Although glucocorticoids are frequently prescribed for the symptomatic management of inflammatory disorders such as rheumatoid arthritis, extended glucocorticoid exposure is the leading cause of physician-induced osteoporosis and leaves patients at a high risk of fracture. To study the biochemical effects of glucocorticoid exposure and how they might affect biomechanical properties of the bone, Raman spectra were acquired from ex vivo tibiae of glucocorticoid- and placebo-treated wild-type mice and a transgenic mouse model of rheumatoid arthritis. Statistically significant spectral differences were observed due to both treatment regimen and mouse genotype. These differences are attributed to changes in the overall bone mineral composition, as well as the degree of phosphate mineralization in tibial cortical bone. In addition, partial least squares regression was used to generate a Raman-based prediction of each tibia's biomechanical strength as quantified by a torsion test. The Raman-based predictions were as accurate as those produced by microcomputed tomography derived parameters, and more accurate than the clinically-used parameter of bone mineral density. These results suggest that Raman spectroscopy could be a valuable tool for monitoring bone biochemistry in studies of bone diseases such as osteoporosis, including tests of drugs being developed to combat these diseases.

  17. Comparing handrim biomechanics for treadmill and overground wheelchair propulsion

    Science.gov (United States)

    Kwarciak, Andrew M.; Turner, Jeffrey T.; Guo, Liyun; Richter, W. Mark

    2010-01-01

    Study design Cross-sectional study. Objectives To compare handrim biomechanics recorded during overground propulsion to those recorded during propulsion on a motor-driven treadmill. Setting Biomechanics laboratory. Methods Twenty-eight manual wheelchair users propelled their own wheelchairs, at a self-selected speed, on a low-pile carpet and on a wheelchair accessible treadmill. Handrim biomechanics were recorded with an OptiPush instrumented wheelchair wheel. Results Across the two conditions, all handrim biomechanics were found to be similar and highly correlated (r > 0.85). Contact angle, peak force, average force, and peak axle moment differed by 1.6% or less across the two conditions. While not significant, power output and cadence tended to be slightly higher for the treadmill condition (3.5% and 3.6%, respectively), due to limitations in adjusting the treadmill grade. Conclusion Based on the results of this study, a motor-driven treadmill can serve as a valid surrogate for overground studies of wheelchair propulsion. PMID:21042332

  18. Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications.

    Science.gov (United States)

    Corazza, Stefano; Gambaretto, Emiliano; Mündermann, Lars; Andriacchi, Thomas P

    2010-04-01

    A novel approach for the automatic generation of a subject-specific model consisting of morphological and joint location information is described. The aim is to address the need for efficient and accurate model generation for markerless motion capture (MMC) and biomechanical studies. The algorithm applied and expanded on previous work on human shapes space by embedding location information for ten joint centers in a subject-specific free-form surface. The optimal locations of joint centers in the 3-D mesh were learned through linear regression over a set of nine subjects whose joint centers were known. The model was shown to be sufficiently accurate for both kinematic (joint centers) and morphological (shape of the body) information to allow accurate tracking with MMC systems. The automatic model generation algorithm was applied to 3-D meshes of different quality and resolution such as laser scans and visual hulls. The complete method was tested using nine subjects of different gender, body mass index (BMI), age, and ethnicity. Experimental training error and cross-validation errors were 19 and 25 mm, respectively, on average over the joints of the ten subjects analyzed in the study.

  19. The Biomechanics of Cervical Spondylosis

    Directory of Open Access Journals (Sweden)

    Lisa A. Ferrara

    2012-01-01

    Full Text Available Aging is the major risk factor that contributes to the onset of cervical spondylosis. Several acute and chronic symptoms can occur that start with neck pain and may progress into cervical radiculopathy. Eventually, the degenerative cascade causes desiccation of the intervertebral disc resulting in height loss along the ventral margin of the cervical spine. This causes ventral angulation and eventual loss of lordosis, with compression of the neural and vascular structures. The altered posture of the cervical spine will progress into kyphosis and continue if the load balance and lordosis is not restored. The content of this paper will address the physiological and biomechanical pathways leading to cervical spondylosis and the biomechanical principles related to the surgical correction and treatment of kyphotic progression.

  20. Additional Tension Screws Improve Stability in Elastic Stable Intramedullary Nailing: Biomechanical Analysis of a Femur Spiral Fracture Model.

    Science.gov (United States)

    Zachert, Gregor; Rapp, Marion; Eggert, Rebecca; Schulze-Hessing, Maaike; Gros, Nina; Stratmann, Christina; Wendlandt, Robert; Kaiser, Martin M

    2015-08-01

    For pediatric femoral shaft fractures, elastic stable intramedullary nailing (ESIN) is an accepted method of treatment. But problems regarding stability with shortening or axial deviation are well known in complex fracture types and heavier children. Biomechanical in vitro testing was performed to determine whether two modified osteosyntheses with an additional tension screw fixation or screw fixation alone without nails could significantly improve the stability in comparison to classical ESIN. A total of 24 synthetic adolescent-sized femoral bone models (Sawbones, 4th generation; Vashon, Washington, United States) with an identical spiral fracture (length 100 mm) were used. All grafts underwent retrograde fixation with two C-shaped steel nails (2C). Of the 24, 8 osteosyntheses were supported by one additional tension screw (2C1S) and another 8 by two screws (2S) in which the intramedullary nails were removed before testing. Each configuration underwent biomechanical testing in 4-point bending, external rotation (ER) and internal rotation (IR). Furthermore, the modifications were tested in axial physiological 9 degrees position for shifting and dynamic compression as well as dynamic load. Both screw configurations (2C1S and 2S) demonstrated a significantly higher stability in comparison to the 2C configuration in 4-point bending (anterior-posterior, 0.95 Nm/mm [2C] spiral fracture model, the stability of ESIN could be significantly improved by two modifications with additional tension screws. If transferred in clinical practice, these modifications might offer earlier weight bearing and less problems of shortening or axial deviation. Georg Thieme Verlag KG Stuttgart · New York.

  1. Biomechanics of the elbow joint in tennis players and relation to pathology.

    Science.gov (United States)

    Eygendaal, Denise; Rahussen, F Th G; Diercks, R L

    2007-11-01

    Elbow injuries constitute a sizeable percentage of tennis injuries. A basic understanding of biomechanics of tennis and analysis of the forces, loads and motions of the elbow during tennis will improve the understanding of the pathophysiology of these injuries. All different strokes in tennis have a different repetitive biomechanical nature that can result in tennis-related injuries. In this article, a biomechanically-based evaluation of tennis strokes is presented. This overview includes all tennis-related pathologies of the elbow joint, whereby the possible relation of biomechanics to pathology is analysed, followed by treatment recommendations.

  2. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review.

    Science.gov (United States)

    Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António

    2014-04-11

    In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Modeling the biomechanics of swine mastication--an inverse dynamics approach.

    Science.gov (United States)

    Basafa, Ehsan; Murphy, Ryan J; Gordon, Chad R; Armand, Mehran

    2014-08-22

    A novel reconstructive alternative for patients with severe facial structural deformity is Le Fort-based, face-jaw-teeth transplantation (FJTT). To date, however, only ten surgeries have included underlying skeletal and jaw-teeth components, all yielding sub-optimal results and a need for a subsequent revision surgery, due to size mismatch and lack of precise planning. Numerous studies have proven swine to be appropriate candidates for translational studies including pre-operative planning of transplantation. An important aspect of planning FJTT is determining the optimal muscle attachment sites on the recipient's jaw, which requires a clear understanding of mastication and bite mechanics in relation to the new donated upper and/or lower jaw. A segmented CT scan coupled with data taken from literature defined a biomechanical model of mandible and jaw muscles of a swine. The model was driven using tracked motion and external force data of one cycle of chewing published earlier, and predicted the muscle activation patterns as well as temporomandibular joint (TMJ) reaction forces and condylar motions. Two methods, polynomial and min/max optimization, were used for solving the muscle recruitment problem. Similar performances were observed between the two methods. On average, there was a mean absolute error (MAE) of <0.08 between the predicted and measured activation levels of all muscles, and an MAE of <7 N for TMJ reaction forces. Simulated activations qualitatively followed the same patterns as the reference data and there was very good agreement for simulated TMJ forces. The polynomial optimization produced a smoother output, suggesting that it is more suitable for studying such motions. Average MAE for condylar motion was 1.2mm, which reduced to 0.37 mm when the input incisor motion was scaled to reflect the possible size mismatch between the current and original swine models. Results support the hypothesis that the model can be used for planning of facial

  4. Masticatory System Biomechanical Photoelastic Simulation fot the Comparision of the Conventional and Uni-Lock Systems in Mandibular Osteosynthesis

    Directory of Open Access Journals (Sweden)

    Jose Luis Cebrian Carretero

    2017-08-01

    Full Text Available The biomechanical consequences of the interaction between titanium trauma plates and screws and the fractured mandible are still a matter of investigation. The mathematical and biomechanical models that have been developed show limitations and the experimental studies are not able to reproduce muscle forces and internal stress distributions in the bone-implant interface and mandibular structure. In the present article we show a static simulator of the masticatory system to demonstrate in epoxy resin mandibular models, by means of 3D (three-dimensional photoelasticity, the stress distribution using different osteosynthesis methods in the mandibular angle fractures. The results showed that the simulator and 3D photoelasticity were a useful method to study interactions between bone and osteosynthesis materials. The “Lock” systems can be considered the most favourable method due to their stress distribution in the epoxy resin mandible. 3D photoelasticity in epoxy resin models is a useful method to evaluate stress distribution for biomechanical studies. Regarding to mandibular osteosynthesis, “lock” plates offer the most favourable stress distribution due to being less aggressive to the bone

  5. [Research Progress and Prospect of Applications of Finite Element Method in Lumbar Spine Biomechanics].

    Science.gov (United States)

    Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang

    2016-12-01

    Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.

  6. In vitro method for assessing the biomechanics of the patellofemoral joint following total knee arthroplasty.

    Science.gov (United States)

    Coles, L G; Gheduzzi, S; Miles, A W

    2014-12-01

    The patellofemoral joint is a common site of pain and failure following total knee arthroplasty. A contributory factor may be adverse patellofemoral biomechanics. Cadaveric investigations are commonly used to assess the biomechanics of the joint, but are associated with high inter-specimen variability and often cannot be carried out at physiological levels of loading. This study aimed to evaluate the suitability of a novel knee simulator for investigating patellofemoral joint biomechanics. This simulator specifically facilitated the extended assessment of patellofemoral joint biomechanics under physiological levels of loading. The simulator allowed the knee to move in 6 degrees of freedom under quadriceps actuation and included a simulation of the action of the hamstrings. Prostheses were implanted on synthetic bones and key soft tissues were modelled with a synthetic analogue. In order to evaluate the physiological relevance and repeatability of the simulator, measurements were made of the quadriceps force and the force, contact area and pressure within the patellofemoral joint using load cells, pressure-sensitive film, and a flexible pressure sensor. The results were in agreement with those previously reported in the literature, confirming that the simulator is able to provide a realistic physiological loading situation. Under physiological loading, average standard deviations of force and area measurements were substantially lower and comparable to those reported in previous cadaveric studies, respectively. The simulator replicates the physiological environment and has been demonstrated to allow the initial investigation of factors affecting patellofemoral biomechanics following total knee arthroplasty. © IMechE 2014.

  7. Material parameter identification and inverse problems in soft tissue biomechanics

    CERN Document Server

    Evans, Sam

    2017-01-01

    The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.

  8. A biomechanical triphasic approach to the transport of nondilute solutions in articular cartilage.

    Science.gov (United States)

    Abazari, Alireza; Elliott, Janet A W; Law, Garson K; McGann, Locksley E; Jomha, Nadr M

    2009-12-16

    Biomechanical models for biological tissues such as articular cartilage generally contain an ideal, dilute solution assumption. In this article, a biomechanical triphasic model of cartilage is described that includes nondilute treatment of concentrated solutions such as those applied in vitrification of biological tissues. The chemical potential equations of the triphasic model are modified and the transport equations are adjusted for the volume fraction and frictional coefficients of the solutes that are not negligible in such solutions. Four transport parameters, i.e., water permeability, solute permeability, diffusion coefficient of solute in solvent within the cartilage, and the cartilage stiffness modulus, are defined as four degrees of freedom for the model. Water and solute transport in cartilage were simulated using the model and predictions of average concentration increase and cartilage weight were fit to experimental data to obtain the values of the four transport parameters. As far as we know, this is the first study to formulate the solvent and solute transport equations of nondilute solutions in the cartilage matrix. It is shown that the values obtained for the transport parameters are within the ranges reported in the available literature, which confirms the proposed model approach.

  9. Vehicle response-based track geometry assessment using multi-body simulation

    Science.gov (United States)

    Kraft, Sönke; Causse, Julien; Coudert, Frédéric

    2018-02-01

    The assessment of the geometry of railway tracks is an indispensable requirement for safe rail traffic. Defects which represent a risk for the safety of the train have to be identified and the necessary measures taken. According to current standards, amplitude thresholds are applied to the track geometry parameters measured by recording cars. This geometry-based assessment has proved its value but suffers from the low correlation between the geometry parameters and the vehicle reactions. Experience shows that some defects leading to critical vehicle reactions are underestimated by this approach. The use of vehicle responses in the track geometry assessment process allows identifying critical defects and improving the maintenance operations. This work presents a vehicle response-based assessment method using multi-body simulation. The choice of the relevant operation conditions and the estimation of the simulation uncertainty are outlined. The defects are identified from exceedances of track geometry and vehicle response parameters. They are then classified using clustering methods and the correlation with vehicle response is analysed. The use of vehicle responses allows the detection of critical defects which are not identified from geometry parameters.

  10. Biomechanical factors associated with the risk of knee injury when ...

    African Journals Online (AJOL)

    Objectives. To systematically assess the literature investigating biomechanical knee injury risk factors when an individual lands from a jump. Data sources. Four electronic databases were searched for peer-reviewed English journals containing landing biomechanical studies published over 14 years (1990 - 2003).

  11. Research on simulation calculation method of biomechanical characteristics of C1-3 motion segment damage mechanism

    Directory of Open Access Journals (Sweden)

    HUANG Ju-ying

    2013-11-01

    Full Text Available Objective To develop the finite element model (FEM of cervical spinal C1-3 motion segment, and to make biomechanical finite element analysis (FEA on C1-3 motion segment and thus simulate the biomechanical characteristics of C1-3 motion segment in distraction violence, compression violence, hyperextension violence and hyperflexion violence. Methods According to CT radiological data of a healthy adult, the vertebrae and intervertebral discs of cervical spinal C1-3 motion segment were respectively reconstructed by Mimics 10.01 software and Geomagic 10.0 software. The FEM of C1-3 motion segment was reconstructed by attaching the corresponding material properties of cervical spine in Ansys software. The biomechanical characteristics of cervical spinal C1-3 motion segment model were simulated under the 4 loadings of distraction violence, compression violence, hyperextension violence and hyperflexion violence by finite element method. Results In the loading of longitudinal stretch, the stress was relatively concentrated in the anterior arch of atlas, atlantoaxial joint and C3 lamina and spinous process. In the longitudinal compressive loads, the maximum stress of the upper cervical spine was located in the anterior arch of atlas. In the loading of hyperextension moment, the stress was larger in the massa lateralis atlantis, the lateral and posterior arch junction of atlas, the posterior arch nodules of the atlas, superior articular surface of axis and C2 isthmus. In the loading of hyperflexion moment, the stress was relatively concentrated in the odontoid process of axis, the posterior arch of atlas, the posterior arch nodules of atlas, C2 isthmic and C2 inferior articular process. Conclusion Finite element biomechanical testing of C1-3 motion segment can predict the biomechanical mechanism of upper cervical spine injury.

  12. Dynamic multibody modeling for tethered space elevators

    Science.gov (United States)

    Williams, Paul

    2009-08-01

    This paper presents a fundamental modeling strategy for dealing with powered and propelled bodies moving along space tethers. The tether is divided into a large number of discrete masses, which are connected by viscoelastic springs. The tether is subject to the full range of forces expected in Earth orbit in a relatively simple manner. Two different models of the elevator dynamics are presented. In order to capture the effect of the elevator moving along the tether, the elevator dynamics are included as a separate body in both models. One model treats the elevator's motion dynamically, where propulsive and friction forces are applied to the elevator body. The second model treats the elevator's motion kinematically, where the distance along the tether is determined by adjusting the lengths of tether on either side of the elevator. The tether model is used to determine optimal configurations for the space elevator. A modal analysis of two different configurations is presented which show that the fundamental mode of oscillation is a pendular one around the anchor point with a period on the order of 160 h for the in-plane motion, and 24 h for the out-of-plane motion. Numerical simulation results of the effects of the elevator moving along the cable are presented for different travel velocities and different elevator masses.

  13. The effect of intraosseous injection of calcium sulfate on microstructure and biomechanics of osteoporotic lumbar vertebrae in sheep

    Directory of Open Access Journals (Sweden)

    Da LIU

    2014-10-01

    Full Text Available Objective To investigate the effect of calcium sulfate (CS on improvement of microstructure and biomechanical performance of osteoporotic lumbar vertebrae in sheep. Methods Osteoporosis model was reproduced in 8 female sheep by bilateral ovariectomy and methylprednisolone administration. Then the lumbar vertebrae (L1-L4 in each sheep were randomly divided into CS group and blank group (2 vertebrae in each sheep. CS was injected into the vertebral bodies through the pedicle in CS group, and no treatment was given in blank group. All of the animals were sacrificed 3 months later, and vertebrae L1-L4 were harvested. The microstructure and biomechanical performance of vertebral bodies were assessed by micro-CT scanning, histological observation and biomechanical test. Results After ovariectomy and methylprednisolone administration, the mean bone mineral density of the lumbar vertebrae in the sheep was significantly decreased (>25% compared with that before induction (P<0.05, demonstrating a successful reproduction of osteoporosis model. Three months after injection, it was shown that CS was completely degraded without any remnant in the bone tissue. The quality of the bone tissue (trabecular number and tissue mineral density in CS group was significantly better than that in blank group (P<0.05, and the biomechanical performance in CS group was significantly superior to that in blank group (P<0.05. Conclusions  Local injection of CS could significantly improve the microstructure and biomechanical performance of osteoporotic vertebrae, and it may decrease the risk of fracture of patients with osteoporosis. DOI: 10.11855/j.issn.0577-7402.2014.09.02

  14. Computational biomechanics for medicine new approaches and new applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2015-01-01

    The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologiesand advancements. Thisvolumecomprises twelve of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, France, Spain and Switzerland. Some of the interesting topics discussed are:real-time simulations; growth and remodelling of soft tissues; inverse and meshless solutions; medical image analysis; and patient-specific solid mechanics simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.

  15. An Investigation of Two Finite Element Modeling Solutions for Biomechanical Simulation Using a Case Study of a Mandibular Bone.

    Science.gov (United States)

    Liu, Yun-Feng; Fan, Ying-Ying; Dong, Hui-Yue; Zhang, Jian-Xing

    2017-12-01

    The method used in biomechanical modeling for finite element method (FEM) analysis needs to deliver accurate results. There are currently two solutions used in FEM modeling for biomedical model of human bone from computerized tomography (CT) images: one is based on a triangular mesh and the other is based on the parametric surface model and is more popular in practice. The outline and modeling procedures for the two solutions are compared and analyzed. Using a mandibular bone as an example, several key modeling steps are then discussed in detail, and the FEM calculation was conducted. Numerical calculation results based on the models derived from the two methods, including stress, strain, and displacement, are compared and evaluated in relation to accuracy and validity. Moreover, a comprehensive comparison of the two solutions is listed. The parametric surface based method is more helpful when using powerful design tools in computer-aided design (CAD) software, but the triangular mesh based method is more robust and efficient.

  16. Trampoline-related injuries in children: a preliminary biomechanical model of multiple users.

    Science.gov (United States)

    Menelaws, Simon; Bogacz, Andrew R; Drew, Tim; Paterson, Brodie C

    2011-07-01

    The recent popularity of domestic trampolines has seen a corresponding increase in injured children. Most injuries happen on the trampoline mat when there are multiple users present. This study sought to examine and simulate the forces and energy transferred to a child's limbs when trampolining with another person of greater mass. The study used a computational biomechanical model. The simulation demonstrated that when two masses bounce out of phase on a trampoline, a transfer of kinetic energy from the larger mass to the smaller mass is likely to occur. It predicted that when an 80 kg adult is on a trampoline with a 25 kg child, the energy transfer is equivalent to the child falling 2.8 m onto a solid surface. Additionally, the rate of loading on the child's bones and ligaments is greater than that on the accompanying adult. Current guidelines are clear that more than one user on a trampoline at a time is a risk factor for serious injury; however, the majority of injuries happen in this scenario. The model predicted that there are high energy transfers resulting in serious fracture and ligamentous injuries to children and that this could be equated to equivalent fall heights. This provides a clear take-home message, which can be conveyed to parents to reduce the incidence of trampoline-related injuries.

  17. Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications

    Science.gov (United States)

    Ambrósio, Jr, Renato; Correia, Fernando Faria; Lopes, Bernardo; Salomão, Marcella Q.; Luz, Allan; Dawson, Daniel G.; Elsheikh, Ahmed; Vinciguerra, Riccardo; Vinciguerra, Paolo; Roberts, Cynthia J.

    2017-01-01

    Background: Ectasia development occurs due to a chronic corneal biomechanical decompensation or weakness, resulting in stromal thinning and corneal protrusion. This leads to corneal steepening, increase in astigmatism, and irregularity. In corneal refractive surgery, the detection of mild forms of ectasia pre-operatively is essential to avoid post-operative progressive ectasia, which also depends on the impact of the procedure on the cornea. Method: The advent of 3D tomography is proven as a significant advancement to further characterize corneal shape beyond front surface topography, which is still relevant. While screening tests for ectasia had been limited to corneal shape (geometry) assessment, clinical biomechanical assessment has been possible since the introduction of the Ocular Response Analyzer (Reichert Ophthalmic Instruments, Buffalo, USA) in 2005 and the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) in 2010. Direct clinical biomechanical evaluation is recognized as paramount, especially in detection of mild ectatic cases and characterization of the susceptibility for ectasia progression for any cornea. Conclusions: The purpose of this review is to describe the current state of clinical evaluation of corneal biomechanics, focusing on the most recent advances of commercially available instruments and also on future developments, such as Brillouin microscopy. PMID:28932334

  18. Matrix Metalloproteinase 9 (MMP-9 Regulates Vein Wall Biomechanics in Murine Thrombus Resolution.

    Directory of Open Access Journals (Sweden)

    Khanh P Nguyen

    Full Text Available Deep venous thrombosis is a common vascular problem with long-term complications including post-thrombotic syndrome. Post-thrombotic syndrome consists of leg pain, swelling and ulceration that is related to incomplete or maladaptive resolution of the venous thrombus as well as loss of compliance of the vein wall. We examine the role of metalloproteinase-9 (MMP-9, a gene important in extracellular remodeling in other vascular diseases, in mediating thrombus resolution and biomechanical changes of the vein wall.The effects of targeted deletion of MMP-9 were studied in an in vivo murine model of thrombus resolution using the FVB strain of mice. MMP-9 expression and activity significantly increased on day 3 after DVT. The lack of MMP-9 impaired thrombus resolution by 27% and this phenotype was rescued by the transplantation of wildtype bone marrow cells. Using novel biomechanical techniques, we demonstrated that the lack of MMP-9 significantly decreased thrombus-induced loss of vein wall compliance. Biomechanical analysis of the contribution of individual structural components showed that MMP-9 affected the elasticity of the extracellular matrix and collagen-elastin fibers. Biochemical and histological analyses correlated with these biomechanical effects as thrombi of mice lacking MMP-9 had significantly fewer macrophages and collagen as compared to those of wildtype mice.MMP-9 mediates thrombus-induced loss of vein wall compliance by increasing stiffness of the extracellular matrix and collagen-elastin fibers during thrombus resolution. MMP-9 also mediates macrophage and collagen content of the resolving thrombus and bone-marrow derived MMP-9 plays a role in resolution of thrombus mass. These disparate effects of MMP-9 on various aspects of thrombus illustrate the complexity of individual protease function on biomechanical and morphometric aspects of thrombus resolution.

  19. Matrix Metalloproteinase 9 (MMP-9) Regulates Vein Wall Biomechanics in Murine Thrombus Resolution

    Science.gov (United States)

    Nguyen, Khanh P.; McGilvray, Kirk C.; Puttlitz, Christian M.; Mukhopadhyay, Subhradip; Chabasse, Christine; Sarkar, Rajabrata

    2015-01-01

    Objective Deep venous thrombosis is a common vascular problem with long-term complications including post-thrombotic syndrome. Post-thrombotic syndrome consists of leg pain, swelling and ulceration that is related to incomplete or maladaptive resolution of the venous thrombus as well as loss of compliance of the vein wall. We examine the role of metalloproteinase-9 (MMP-9), a gene important in extracellular remodeling in other vascular diseases, in mediating thrombus resolution and biomechanical changes of the vein wall. Methods and Results The effects of targeted deletion of MMP-9 were studied in an in vivo murine model of thrombus resolution using the FVB strain of mice. MMP-9 expression and activity significantly increased on day 3 after DVT. The lack of MMP-9 impaired thrombus resolution by 27% and this phenotype was rescued by the transplantation of wildtype bone marrow cells. Using novel biomechanical techniques, we demonstrated that the lack of MMP-9 significantly decreased thrombus-induced loss of vein wall compliance. Biomechanical analysis of the contribution of individual structural components showed that MMP-9 affected the elasticity of the extracellular matrix and collagen-elastin fibers. Biochemical and histological analyses correlated with these biomechanical effects as thrombi of mice lacking MMP-9 had significantly fewer macrophages and collagen as compared to those of wildtype mice. Conclusions MMP-9 mediates thrombus-induced loss of vein wall compliance by increasing stiffness of the extracellular matrix and collagen-elastin fibers during thrombus resolution. MMP-9 also mediates macrophage and collagen content of the resolving thrombus and bone-marrow derived MMP-9 plays a role in resolution of thrombus mass. These disparate effects of MMP-9 on various aspects of thrombus illustrate the complexity of individual protease function on biomechanical and morphometric aspects of thrombus resolution. PMID:26406902

  20. An Anatomic and Biomechanical Comparison of Bankart Repair Configurations.

    Science.gov (United States)

    Judson, Christopher H; Voss, Andreas; Obopilwe, Elifho; Dyrna, Felix; Arciero, Robert A; Shea, Kevin P

    2017-11-01

    Suture anchor repair for anterior shoulder instability can be performed using a number of different repair techniques, but none has been proven superior in terms of anatomic and biomechanical properties. Purpose/Hypothesis: The purpose was to compare the anatomic footprint coverage and biomechanical characteristics of 4 different Bankart repair techniques: (1) single row with simple sutures, (2) single row with horizontal mattress sutures, (3) double row with sutures, and (4) double row with labral tape. The hypotheses were as follows: (1) double-row techniques would improve the footprint coverage and biomechanical properties compared with single-row techniques, (2) horizontal mattress sutures would increase the footprint coverage compared with simple sutures, and (3) repair techniques with labral tape and sutures would not show different biomechanical properties. Controlled laboratory study. Twenty-four fresh-frozen cadaveric specimens were dissected. The native labrum was removed and the footprint marked and measured. Repair for each of the 4 groups was performed, and the uncovered footprint was measured using a 3-dimensional digitizer. The strength of the repair sites was assessed using a servohydraulic testing machine and a digital video system to record load to failure, cyclic displacement, and stiffness. The double-row repair techniques with sutures and labral tape covered 73.4% and 77.0% of the footprint, respectively. These percentages were significantly higher than the footprint coverage achieved by single-row repair techniques using simple sutures (38.1%) and horizontal mattress sutures (32.8%) ( P row and double-row groups or between the simple suture and horizontal mattress suture techniques. Likewise, there was no difference in the biomechanical properties of the double-row repair techniques with sutures versus labral tape. Double-row repair techniques provided better coverage of the native footprint of the labrum but did not provide superior

  1. Biomechanical response of human spleen in tensile loading.

    Science.gov (United States)

    Kemper, Andrew R; Santago, Anthony C; Stitzel, Joel D; Sparks, Jessica L; Duma, Stefan M

    2012-01-10

    Blunt splenic injuries are most frequently caused as a result of motor vehicle collisions and are associated with high mortality rates. In order to accurately assess the risk of automotive related spleen injuries using tools such as finite element models, tissue level tolerance values and suitable material models must be developed and validated based on appropriate biomechanical data. This study presents a total of 41 tension tests performed on spleen parenchyma coupons and 29 tension tests performed on spleen capsule/parenchyma coupons. Standard dog-bone coupons were obtained from fresh human spleen and tested within 48 h of death. Each coupon was tested once to failure at one of the four loading rates to investigate the effects of rate dependence. Load and acceleration data were obtained at each of the specimen grips. High-speed video and optical markers placed on the specimens were used to measure local displacement. Failure stress and strain were calculated at the location of failure in the gage length of the coupon. The results of the study showed that both the spleen parenchyma and the capsule are rate dependent, with higher loading rates yielding higher failure stresses and lower failure strains. The results also show that the failure stress of the splenic capsule is significantly greater than that of the underlying parenchyma. Overall, this study provides novel biomechanical data that demonstrate the rate dependent tissue level tolerance values of human spleen tissue in tensile loading, which can aid in the improvement of finite element models used to assess injury risk in blunt trauma. Published by Elsevier Ltd.

  2. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations

    Science.gov (United States)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.

    2010-01-01

    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  3. Platelet biomechanics, platelet bioenergetics, and applications to clinical practice and translational research.

    Science.gov (United States)

    George, Mitchell J; Bynum, James; Nair, Prajeeda; Cap, Andrew P; Wade, Charles E; Cox, Charles S; Gill, Brijesh S

    2018-07-01

    The purpose of this review is to explore the relationship between platelet bioenergetics and biomechanics and how this relationship affects the clinical interpretation of platelet function devices. Recent experimental and technological advances highlight platelet bioenergetics and biomechanics as alternative avenues for collecting clinically relevant data. Platelet bioenergetics drive energy production for key biomechanical processes like adhesion, spreading, aggregation, and contraction. Platelet function devices like thromboelastography, thromboelastometry, and aggregometry measure these biomechanical processes. Platelet storage, stroke, sepsis, trauma, or the activity of antiplatelet drugs alters measures of platelet function. However, the specific mechanisms governing these alterations in platelet function and how they relate to platelet bioenergetics are still under investigation.

  4. Dinosaur biomechanics

    Science.gov (United States)

    Alexander, R. McNeill

    2006-01-01

    Biomechanics has made large contributions to dinosaur biology. It has enabled us to estimate both the speeds at which dinosaurs generally moved and the maximum speeds of which they may have been capable. It has told us about the range of postures they could have adopted, for locomotion and for feeding, and about the problems of blood circulation in sauropods with very long necks. It has made it possible to calculate the bite forces of predators such as Tyrannosaurus, and the stresses they imposed on its skull; and to work out the remarkable chewing mechanism of hadrosaurs. It has shown us how some dinosaurs may have produced sounds. It has enabled us to estimate the effectiveness of weapons such as the tail spines of Stegosaurus. In recent years, techniques such as computational tomography and finite element analysis, and advances in computer modelling, have brought new opportunities. Biomechanists should, however, be especially cautious in their work on animals known only as fossils. The lack of living specimens and even soft tissues oblige us to make many assumptions. It is important to be aware of the often wide ranges of uncertainty that result. PMID:16822743

  5. Measurement system for an in-vitro characterization of the biomechanics and hemodynamics of arterial bifurcations

    International Nuclear Information System (INIS)

    Suárez-Bagnasco, D; Balay, G; Negreira, C A; Cymberknop, L; Armentano, R L

    2013-01-01

    Arterial behaviour in-vivo is influenced, amongst other factors, by the interaction between blood flow and the arterial wall endothelium, and the biomechanical properties of the arterial wall. This interaction plays an important role in pathogenic mechanisms of cardiovascular diseases such as atherosclerosis and arteriosclerosis. To quantify these interactions both from biomechanical and hemodynamical standpoints, a complete characterization and modelling of the arterial wall, blood flow, shear wall and circumferential wall stresses are needed. The development of a new multi-parameter measurement system (distances, pressures, flows, velocity profiles, temperature, viscosity) for an in-vitro characterization of the biomechanics and hemodynamics in arterial bifurcations (specially in carotid bifurcations) is described. This set-up represents an improvement relative to previous set-ups developed by the group FCIEN-FMED and is presently under development. Main subsystems interactions and environment-system interactions were identified and compensated to improve system's performance. Several interesting problems related with signal acquisition using a variety of sensors and some experimental results are shown and briefly discussed. Experimental data allow construction of meshes and parameter estimation of the biomechanical properties of the arterial wall, as well as boundary conditions, all suitable to be employed in CFD and FSI numerical simulation.

  6. In vivo biomechanical evaluation of a novel angle-stable interlocking nail design in a canine tibial fracture model.

    Science.gov (United States)

    Déjardin, Loïc M; Cabassu, Julien B; Guillou, Reunan P; Villwock, Mark; Guiot, Laurent P; Haut, Roger C

    2014-03-01

    To compare clinical outcome and callus biomechanical properties of a novel angle stable interlocking nail (AS-ILN) and a 6 mm bolted standard ILN (ILN6b) in a canine tibial fracture model. Experimental in vivo study. Purpose-bred hounds (n = 11). A 5 mm mid-diaphyseal tibial ostectomy was stabilized with an AS-ILN (n = 6) or an ILN6b (n = 5). Orthopedic examinations and radiographs were performed every other week until clinical union (18 weeks). Paired tibiae were tested in torsion until failure. Callus torsional strength and toughness were statistically compared and failure mode described. Total and cortical callus volumes were computed and statistically compared from CT slices of the original ostectomy gap. Statistical significance was set at P dogs (P dogs by 10 weeks and in 3/5 ILN6b dogs at 18 weeks. Callus mechanical properties were significantly greater in AS-ILN than ILN6b specimens by 77% (failure torque) and 166% (toughness). Failure occurred by acute spiral (control and AS-ILN) or progressive transverse fractures (ILN6b). Cortical callus volume was 111% greater in AS-ILN than ILN6b specimens (P < .05). Earlier functional recovery, callus strength and remodeling suggest that the AS-ILN provides a postoperative biomechanical environment more conducive to bone healing than a comparable standard ILN. © Copyright 2014 by The American College of Veterinary Surgeons.

  7. Heading Control System for a Multi-body Vehicle with a Virtual Test Driver

    Directory of Open Access Journals (Sweden)

    POSTALCIOGLU OZGEN, S.

    2010-08-01

    Full Text Available This paper includes a Heading Control (HC system for a multi-body vehicle. HC system helps reducing the required torque from the driver and improves the lane keeping efficiency. HC system is important for safety and driver comfort in traffic. The controller performance is examined on a virtual test drive platform. The optimal control theory is applied to HC system and examined on a curved path and under a side wind disturbance. Different assistance levels are applied to see the characteristics of the controller with different virtual test drivers. The results are analyzed based on three performance indices; lane keeping performance (LKP index, assist torque performance (ATP index and driver torque performance (DTP index. As seen from the results while using HC system the lateral displacement decreases as the lane keeping performance increases and the driver torque performance decreases as the assist torque performance increases.

  8. The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.

    2009-01-01

    Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462

  9. Energetics, Biomechanics, and Performance in Masters' Swimmers: A Systematic Review.

    Science.gov (United States)

    Ferreira, Maria I; Barbosa, Tiago M; Costa, Mário J; Neiva, Henrique P; Marinho, Daniel A

    2016-07-01

    Ferreira, MI, Barbosa, TM, Costa, MJ, Neiva, HP, and Marinho, DA. Energetics, biomechanics, and performance in masters' swimmers: a systematic review. J Strength Cond Res 30(7): 2069-2081, 2016-This study aimed to summarize evidence on masters' swimmers energetics, biomechanics, and performance gathered in selected studies. An expanded search was conducted on 6 databases, conference proceedings, and department files. Fifteen studies were selected for further analysis. A qualitative evaluation of the studies based on the Quality Index (QI) was performed by 2 independent reviewers. The studies were thereafter classified into 3 domains according to the reported data: performance (10 studies), energetics (4 studies), and biomechanics (6 studies). The selected 15 articles included in this review presented low QI scores (mean score, 10.47 points). The biomechanics domain obtained higher QI (11.5 points), followed by energetics and performance (10.6 and 9.9 points, respectively). Stroke frequency (SF) and stroke length (SL) were both influenced by aging, although SF is more affected than SL. Propelling efficiency (ηp) decreased with age. Swimming performance declined with age. The performance declines with age having male swimmers deliver better performances than female counterparts, although this difference tends to be narrow in long-distance events. One single longitudinal study is found in the literature reporting the changes in performance over time. The remaining studies are cross-sectional designs focusing on the energetics and biomechanics. Overall, biomechanics parameters, such as SF, SL, and ηp, tend to decrease with age. This review shows the lack of a solid body of knowledge (reflected in the amount and quality of the articles published) on the changes in biomechanics, energetics, and performance of master swimmers over time. The training programs for this age-group should aim to preserve the energetics as much as possible and, concurrently, improve the

  10. MRI to X-ray mammography intensity-based registration with simultaneous optimisation of pose and biomechanical transformation parameters.

    Science.gov (United States)

    Mertzanidou, Thomy; Hipwell, John; Johnsen, Stian; Han, Lianghao; Eiben, Bjoern; Taylor, Zeike; Ourselin, Sebastien; Huisman, Henkjan; Mann, Ritse; Bick, Ulrich; Karssemeijer, Nico; Hawkes, David

    2014-05-01

    Determining corresponding regions between an MRI and an X-ray mammogram is a clinically useful task that is challenging for radiologists due to the large deformation that the breast undergoes between the two image acquisitions. In this work we propose an intensity-based image registration framework, where the biomechanical transformation model parameters and the rigid-body transformation parameters are optimised simultaneously. Patient-specific biomechanical modelling of the breast derived from diagnostic, prone MRI has been previously used for this task. However, the high computational time associated with breast compression simulation using commercial packages, did not allow the optimisation of both pose and FEM parameters in the same framework. We use a fast explicit Finite Element (FE) solver that runs on a graphics card, enabling the FEM-based transformation model to be fully integrated into the optimisation scheme. The transformation model has seven degrees of freedom, which include parameters for both the initial rigid-body pose of the breast prior to mammographic compression, and those of the biomechanical model. The framework was tested on ten clinical cases and the results were compared against an affine transformation model, previously proposed for the same task. The mean registration error was 11.6±3.8mm for the CC and 11±5.4mm for the MLO view registrations, indicating that this could be a useful clinical tool. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  11. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    Science.gov (United States)

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  12. Coarse-grained models using local-density potentials optimized with the relative entropy: Application to implicit solvation

    International Nuclear Information System (INIS)

    Sanyal, Tanmoy; Shell, M. Scott

    2016-01-01

    Bottom-up multiscale techniques are frequently used to develop coarse-grained (CG) models for simulations at extended length and time scales but are often limited by a compromise between computational efficiency and accuracy. The conventional approach to CG nonbonded interactions uses pair potentials which, while computationally efficient, can neglect the inherently multibody contributions of the local environment of a site to its energy, due to degrees of freedom that were coarse-grained out. This effect often causes the CG potential to depend strongly on the overall system density, composition, or other properties, which limits its transferability to states other than the one at which it was parameterized. Here, we propose to incorporate multibody effects into CG potentials through additional nonbonded terms, beyond pair interactions, that depend in a mean-field manner on local densities of different atomic species. This approach is analogous to embedded atom and bond-order models that seek to capture multibody electronic effects in metallic systems. We show that the relative entropy coarse-graining framework offers a systematic route to parameterizing such local density potentials. We then characterize this approach in the development of implicit solvation strategies for interactions between model hydrophobes in an aqueous environment.

  13. Plantar Fasciitis and the Windlass Mechanism: A Biomechanical Link to Clinical Practice

    Science.gov (United States)

    Malone, Terry R.

    2004-01-01

    Objective: Plantar fasciitis is a prevalent problem, with limited consensus among clinicians regarding the most effective treatment. The purpose of this literature review is to provide a systematic approach to the treatment of plantar fasciitis based on the windlass mechanism model. Data Sources: We searched MEDLINE, SPORT Discus, and CINAHL from 1966 to 2003 using the key words plantar fasciitis, windlass mechanism, pronation, heel pain, and heel spur. Data Synthesis: We offer a biomechanical application for the evaluation and treatment of plantar fasciitis based on a review of the literature for the windlass mechanism model. This model provides a means for describing plantar fasciitis conditions such that clinicians can formulate a potential causal relationship between the conditions and their treatments. Conclusions/Recommendations: Clinicians' understanding of the biomechanical causes of plantar fasciitis should guide the decision-making process concerning the evaluation and treatment of heel pain. Use of this approach may improve clinical outcomes because intervention does not merely treat physical symptoms but actively addresses the influences that resulted in the condition. Principles from this approach might also provide a basis for future research investigating the efficacy of plantar fascia treatment. PMID:16558682

  14. Clinical applications of biomechanics cinematography.

    Science.gov (United States)

    Woodle, A S

    1986-10-01

    Biomechanics cinematography is the analysis of movement of living organisms through the use of cameras, image projection systems, electronic digitizers, and computers. This article is a comparison of cinematographic systems and details practical uses of the modality in research and education.

  15. Biomechanical pulping of kenaf

    Science.gov (United States)

    Aziz Ahmed; Masood Akhtar; Gary C. Myers; Gary M. Scott

    1999-01-01

    The objective of this study was to investigate the effect of fungal pretreatment of whole kenaf prior to refining on refiner electrical energy consumption, paper strength, and optical properties. We also explored the suitability of whole kenaf biomechanical pulp for making newsprint in terms of ISO brightness and strength properties. Kenaf was sterilized by autoclaving...

  16. Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy.

    Science.gov (United States)

    Sussman, Mark A; McCulloch, Andrew; Borg, Thomas K

    2002-11-15

    Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.

  17. Biomechanical evaluation of a second generation headless compression screw for ankle arthrodesis in a cadaver model.

    Science.gov (United States)

    Somberg, Andrew Max; Whiteside, William K; Nilssen, Erik; Murawski, Daniel; Liu, Wei

    2016-03-01

    Many types of screws, plates, and strut grafts have been utilized for ankle arthrodesis. Biomechanical testing has shown that these constructs can have variable stiffness. More recently, headless compression screws have emerged as an evolving method of achieving compression in various applications but there is limited literature regarding ankle arthrodesis. The aim of this study was to determine the biomechanical stability provided by a second generation fully threaded headless compression screw compared to a standard headed, partially threaded cancellous screw in a cadaveric ankle arthrodesis model. Twenty fresh frozen human cadaver specimens were subjected to simulated ankle arthrodesis with either three standard cancellous-bone screws (InFix 7.3mm) or with three headless compression screws (Acumed Acutrak 2 7.5mm). The specimens were subjected to cyclic loading and unloading at a rate of 1Hz, compression of 525 Newtons (N) and distraction of 20N for a total of 500 cycles using an electromechanical load frame (Instron). The amount of maximum distraction was recorded as well as the amount of motion that occurred through 1, 10, 50, 100, and 500 cycles. No significant difference (p=0.412) was seen in the amount of distraction that occurred across the fusion site for either screw. The average maximum distraction after 500 cycles was 201.9μm for the Acutrak 2 screw and 235.4μm for the InFix screw. No difference was seen throughout each cycle over time for the Acutrak 2 screw (p-value=0.988) or the InFix screw (p-value=0.991). Both the traditional InFix type screw and the second generation Acumed Acutrak headless compression screws provide adequate fixation during ankle arthrodesis under submaximal loads. There is no demonstrable difference between traditional cannulated partially threaded screws and headless compression screws studied in this model. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  18. Biomechanical evaluation of heel elevation on load transfer — experimental measurement and finite element analysis

    Science.gov (United States)

    Luximon, Yan; Luximon, Ameersing; Yu, Jia; Zhang, Ming

    2012-02-01

    In spite of ill-effects of high heel shoes, they are widely used for women. Hence, it is essential to understand the load transfer biomechanics in order to design better fit and comfortable shoes. In this study, both experimental measurement and finite element analysis were used to evaluate the biomechanical effects of heel height on foot load transfer. A controlled experiment was conducted using custom-designed platforms. Under different weight-bearing conditions, peak plantar pressure, contact area and center of pressure were analyzed. A three-dimensional finite element foot model was used to simulate the high-heel support and to predict the internal stress distributions and deformations for different heel heights. Results from both experiment and model indicated that heel elevations had significant effects on all variables. When heel elevation increased, the center of pressure shifted from the midfoot region to the forefoot region, the contact area was reduced by 26% from 0 to 10.2 cm heel and the internal stress of foot bones increased. Prediction results also showed that the strain and total tension force of plantar fascia was minimum at 5.1 cm heel condition. This study helps to better understand the biomechanical behavior of foot, and to provide better suggestions for design parameters of high heeled shoes.

  19. Biomechanics of the Optic Nerve Sheath in VIIP Syndrome

    Science.gov (United States)

    Ethier, C. Ross; Raykin, Julia; Gleason, Rudy; Mulugeta, Lealem; Myers, Jerry; Nelson, Emily; Samuels, Brian C.

    2014-01-01

    Long-duration space flight carries the risk of developing Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath (ONS), optic nerve kinking and potentially permanent degradation of visual function. The slow onset of VIIP, its chronic nature, and certain clinical features strongly suggest that biomechanical factors acting on the ONS play a role in VIIP. Here we measure several relevant ONS properties needed to model VIIP biomechanics. The ONS (meninges) of fresh porcine eyes (n7) was reflected, the nerve proper was truncated near the sclera, and the meninges were repositioned to create a hollow cylinder of meningeal connective tissue attached to the posterior sclera. The distal end was cannulated, sealed, and pressure clamped (mimicking cerebrospinal fluid [CSF] pressure), while the eye was also cannulated for independent control of intraocular pressure (IOP). The meninges were inflated (CSF pressure cycling 7-50 mmHg) while ONS outer diameter was imaged. In another set of experiments (n4), fluid permeation rate across the meninges was recorded by observing the drainage of an elevated fluid reservoir (30 mmHg) connected to the meninges. The ONS showed behavior typical of soft tissues: viscoelasticity, with hysteresis in early preconditioning cycles and repeatable behavior after 4 cycles, and nonlinear stiffening, particularly at CSF pressures 15 mmHg (Figure). Tangent moduli measured from the loading curve were 372 101, 1199 358, and 2050 379 kPa (mean SEM) at CSF pressures of 7, 15 and 30 mmHg, respectively. Flow rate measurements through the intact meninges at 30mmHg gave a permeability of 1.34 0.46 lmincm2mmHg (mean SEM). The ONS is a tough, strain-stiffening connective tissue that is surprisingly permeable. The latter observation suggests that there could be significant CSF drainage through the ONS into the orbit, likely important

  20. Biomechanics of Head, Neck, and Chest Injury Prevention for Soldiers

    Science.gov (United States)

    2011-03-01

    30 am – 5:00 pm Overview of Blast Physics and Applications Doubletree Hotel Crystal City Arlington VA, Between the Pentagon and National Airport at...provided) 8:30 Introduction and Overview Dr. Stefan Duma, Virginia Tech Head Injury Biomechanics 8:45 “Instrumented Helmet Data Collection and Analysis...of NASA Suit Interface and Landing Conditions” Ms. Kerry Danelson, Wake Forest University 4:05 “Modeling Human Variation: Orbit Anthropometry and

  1. Integrated Model of the Eye/Optic Nerve Head Biomechanical Environment

    Science.gov (United States)

    Ethier, C. R.; Feola, A.; Myers, J. G.; Nelson, E.; Raykin, J.; Samuels, B.

    2017-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a concern for long-duration space flight. Previously, it has been suggested that ocular changes observed in VIIP syndrome are related to the cephalad fluid shift that results in altered fluid pressures [1]. We are investigating the impact of changes in intracranial pressure (ICP) using a combination of numerical models, which simulate the effects of various environment conditions, including finite element (FE) models of the posterior eye. The specific interest is to understand how altered pressures due to gravitational changes affect the biomechanical environment of tissues of the posterior eye and optic nerve sheath. METHODS: Additional description of the numerical modeling is provided in the IWS abstract by Nelson et al. In brief, to simulate the effects of a cephalad fluid shift on the cardiovascular and ocular systems, we utilized a lumped-parameter compartment model of these systems. The outputs of this lumped-parameter model then inform boundary conditions (pressures) for a finite element model of the optic nerve head (Figure 1). As an example, we show here a simulation of postural change from supine to 15 degree head-down tilt (HDT), with primary outcomes being the predicted change in strains at the optic nerve head (ONH) region, specifically in the lamina cribrosa (LC), retrolaminar optic nerve, and prelaminar neural tissue (PLNT). The strain field can be decomposed into three orthogonal components, denoted as the first, second and third principal strains. We compare the peak tensile (first principal) and compressive (third principal) strains, since elevated strain alters cell phenotype and induces tissue remodeling. RESULTS AND CONCLUSIONS: Our lumped-parameter model predicted an IOP increase of c. 7 mmHg after 21 minutes of 15 degree HDT, which agreed with previous reports of IOP in HDT [1]. The corresponding FEM simulations predicted a relative increase in the magnitudes of the peak tensile

  2. Biomechanics, Exercise Physiology, and the 75th Anniversary of RQES

    Science.gov (United States)

    Hamill, Joseph; Haymes, Emily M.

    2005-01-01

    The purpose of this paper is to review the biomechanics and exercise physiology studies published in the Research Quarterly for Exercise and Sport (RQES) over the past 75 years. Studies in biomechanics, a relatively new subdiscipline that evolved from kinesiology, first appeared in the journal about 40 years ago. Exercise physiology studies have…

  3. Biomechanics of Head, Neck, and Chest Injury Prevention for Soldiers: Phase 2 and 3

    Science.gov (United States)

    2016-08-01

    AWARD NUMBER: W81XWH-10-2-0165 TITLE: “ Biomechanics of Head, Neck, and Chest Injury Prevention for Soldiers: Phase 2 & 3”.” PRINCIPAL INVESTIGATOR...27Sep2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-10-2-0165 “ Biomechanics of Head, Neck, and Chest Injury Prevention for Soldiers: Phase 2...Virginia Tech – Wake Forest University, Center for Injury Biomechanics and the U.S. Army entitled “ Biomechanics of Head, Neck, and Chest Injury

  4. Biomechanics of the press-fit phenomenon in dental implantology: an image-based finite element analysis

    Directory of Open Access Journals (Sweden)

    Frisardi Gianni

    2012-05-01

    Full Text Available Abstract Background A fundamental pre-requisite for the clinical success in dental implant surgery is the fast and stable implant osseointegration. The press-fit phenomenon occurring at implant insertion induces biomechanical effects in the bone tissues, which ensure implant primary stability. In the field of dental surgery, the understanding of the key factors governing the osseointegration process still remains of utmost importance. A thorough analysis of the biomechanics of dental implantology requires a detailed knowledge of bone mechanical properties as well as an accurate definition of the jaw bone geometry. Methods In this work, a CT image-based approach, combined with the Finite Element Method (FEM, has been used to investigate the effect of the drill size on the biomechanics of the dental implant technique. A very accurate model of the human mandible bone segment has been created by processing high resolution micro-CT image data. The press-fit phenomenon has been simulated by FE analyses for different common drill diameters (DA = 2.8 mm, DB = 3.3 mm, and DC = 3.8 mm with depth L = 12 mm. A virtual implant model has been assumed with a cylindrical geometry having height L = 11 mm and diameter D = 4 mm. Results The maximum stresses calculated for drill diameters DA, DB and DC have been 12.31 GPa, 7.74 GPa and 4.52 GPa, respectively. High strain values have been measured in the cortical area for the models of diameters DA and DB, while a uniform distribution has been observed for the model of diameter DC . The maximum logarithmic strains, calculated in nonlinear analyses, have been ϵ = 2.46, 0.51 and 0.49 for the three models, respectively. Conclusions This study introduces a very powerful, accurate and non-destructive methodology for investigating the effect of the drill size on the biomechanics of the dental implant technique. Further studies could aim at understanding how different drill

  5. Biomechanical Analysis of Treadmill Locomotion on the International Space Station

    Science.gov (United States)

    De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.

    2011-01-01

    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to

  6. Biomechanical study of percutaneous lumbar diskectomy

    International Nuclear Information System (INIS)

    Li Yuan; Huang Xianglong; Shen Tianzhen; Hu Zhou; Hong Shuizong; Mei Haiying

    2003-01-01

    Objective: To investigate the stiffness of lumbar spine after the injury caused by percutaneous diskectomy and evaluate the efficiency of percutaneous lumbar diskectomy by biomechanical study. Methods: Four fresh lumbar specimens were used to analyse load-displacement curves in the intact lumbar spine and vertical disc-injured lumbar spine. The concepts of average flexibility coefficient (f) and standardized average flexibility coefficient (fs) were also introduced. Results: The load-displacement curves showed a good stabilization effect of the intact lumbar spine and disc-injured lumbar spine in flexion, extension, right and left bending. The decrease of anti-rotation also can be detected (P<0.05). Conclusion: In biomechanical study, percutaneous lumbar diskectomy is one of the efficiency methods to treat lumbar diac hernia

  7. Biomechanics/risk management (Working Group 2)

    DEFF Research Database (Denmark)

    Sanz, Mariano; Naert, Ignace; Gotfredsen, Klaus

    2009-01-01

    INTRODUCTION: The remit of this workgroup was to update the existing knowledge base in biomechanical factors, navigation systems and medications that may affect the outcome of implant therapy. MATERIAL AND METHODS: The literature was systematically searched and critically reviewed. Five manuscripts...... were produced in five specific topics identified as areas where innovative approaches have been developed in biomechanical factors, navigation systems and medications that may affect the outcome of implant therapy. RESULTS: The results and conclusions of the review process are presented...... survival and complications of implant supported restorations? * A systematic review on the accuracy and the clinical outcome of computer-guided template based implant dentistry. * What is the impact of systemic bisphosphonates on patients undergoing oral implant therapy? * What is the impact...

  8. Modeling the Biomechanics of Swine Mastication – An Inverse Dynamics Approach

    Science.gov (United States)

    Basafa, Ehsan; Murphy, Ryan J.; Gordon, Chad R.; Armand, Mehran

    2014-01-01

    A novel reconstructive alternative for patients with severe facial structural deformity is Le Fort-based, face-jaw-teeth transplantation (FJTT). To date, however, only ten surgeries have included underlying skeletal and jaw-teeth components, all yielding sub-optimal results and a need for a subsequent revision surgery, due to size mismatch and lack of precise planning. Numerous studies have proven swine to be appropriate candidates for translational studies including pre-operative planning of transplantation. An important aspect of planning FJTT is determining the optimal muscle attachment sites on the recipient’s jaw, which requires a clear understanding of mastication and bite mechanics in relation to the new donated upper and/or lower jaw. A segmented CT scan coupled with data taken from literature defined a biomechanical model of mandible and jaw muscles of a swine. The model was driven using tracked motion and external force data of one cycle of chewing published earlier, and predicted the muscle activation patterns as well as temporomandibular joint (TMJ) reaction forces and condylar motions. Two methods, polynomial and min/max optimization, were used for solving the muscle recruitment problem. Similar performances were observed between the two methods. On average, there was a mean absolute error (MAE) of <0.08 between the predicted and measured activation levels of all muscles, and an MAE of <7N for TMJ reaction forces. Simulated activations qualitatively followed the same patterns as the reference data and there was very good agreement for simulated TMJ forces. The polynomial optimization produced a smoother output, suggesting that it is more suitable for studying such motions. Average MAE for condylar motion was 1.2mm, which reduced to 0.37mm when the input incisor motion was scaled to reflect the possible size mismatch between the current and original swine models. Results support the hypothesis that the model can be used for planning of facial

  9. Advances in Proximal Interphalangeal Joint Arthroplasty: Biomechanics and Biomaterials.

    Science.gov (United States)

    Zhu, Andy F; Rahgozar, Paymon; Chung, Kevin C

    2018-05-01

    Proximal interphalangeal (PIP) joint arthritis is a debilitating condition. The complexity of the joint makes management particularly challenging. Treatment of PIP arthritis requires an understanding of the biomechanics of the joint. PIP joint arthroplasty is one treatment option that has evolved over time. Advances in biomaterials have improved and expanded arthroplasty design. This article reviews biomechanics and arthroplasty design of the PIP joint. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Low Density Lipoprotein and Non-Newtonian Oscillating Flow Biomechanical Parameters for Normal Human Aorta.

    Science.gov (United States)

    Soulis, Johannes V; Fytanidis, Dimitrios K; Lampri, Olga P; Giannoglou, George D

    2016-04-01

    The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta.

  11. Harnessing biomechanics to develop cartilage regeneration strategies.

    Science.gov (United States)

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of

  12. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions.

    Science.gov (United States)

    Phinyomark, Angkoon; Petri, Giovanni; Ibáñez-Marcelo, Esther; Osis, Sean T; Ferber, Reed

    2018-01-01

    The increasing amount of data in biomechanics research has greatly increased the importance of developing advanced multivariate analysis and machine learning techniques, which are better able to handle "big data". Consequently, advances in data science methods will expand the knowledge for testing new hypotheses about biomechanical risk factors associated with walking and running gait-related musculoskeletal injury. This paper begins with a brief introduction to an automated three-dimensional (3D) biomechanical gait data collection system: 3D GAIT, followed by how the studies in the field of gait biomechanics fit the quantities in the 5 V's definition of big data: volume, velocity, variety, veracity, and value. Next, we provide a review of recent research and development in multivariate and machine learning methods-based gait analysis that can be applied to big data analytics. These modern biomechanical gait analysis methods include several main modules such as initial input features, dimensionality reduction (feature selection and extraction), and learning algorithms (classification and clustering). Finally, a promising big data exploration tool called "topological data analysis" and directions for future research are outlined and discussed.

  13. [Evaluation of corneal biomechanics in keratoconus using dynamic ultra-high-speed Scheimpflug measurements].

    Science.gov (United States)

    Brettl, S; Franko Zeitz, P; Fuchsluger, T A

    2018-06-22

    The in vivo analysis of corneal biomechanics in patients with keratoconus is especially of interest with respect to diagnosis, follow-up and monitoring of the disease. For a better understanding it is necessary to describe the potential of dynamic Scheimpflug measurements for the detection and interpretation of biomechanical changes in keratoconus. The current state of analyzing biomechanical changes in keratoconus with the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) is described. This technique represents a new approach for understanding corneal biomechanics. Furthermore, it was investigated whether the device can biomechanically quantify a rigidity increasing effect of therapeutic UV-crosslinking and whether early stages of keratoconus can be detected using dynamic Scheimpflug analysis. In patients with keratoconus, the in vivo analysis of corneal biomechanics using dynamic Scheimpflug measurements as a supplementary procedure can be of advantage with respect to disease management. By optimization of screening of subclinical keratoconus stages, this method widens the analytic spectrum regarding diagnosis and follow-up of the disease; however, further studies are required to evaluate whether visual outcome of affected patients can be improved by earlier diagnosis.

  14. THE CENTER FOR MILITARY BIOMECHANICS RESEARCH

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Military Biomechanics Research is a 7,500 ft2 dedicated laboratory outfitted with state-of-the-art equipment for 3-D analysis of movement, measurement...

  15. On the identifiability of inertia parameters of planar Multi-Body Space Systems

    Science.gov (United States)

    Nabavi-Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher

    2018-04-01

    This work describes a new formulation to study the identifiability characteristics of Serially Linked Multi-body Space Systems (SLMBSS). The process exploits the so called "Lagrange Formulation" to develop a linear form of Equations of Motion w.r.t the system Inertia Parameters (IPs). Having developed a specific form of regressor matrix, we aim to expedite the identification process. The new approach allows analytical as well as numerical identification and identifiability analysis for different SLMBSSs' configurations. Moreover, the explicit forms of SLMBSSs identifiable parameters are derived by analyzing the identifiability characteristics of the robot. We further show that any SLMBSS designed with Variable Configurations Joint allows all IPs to be identifiable through comparing two successive identification outcomes. This feature paves the way to design new class of SLMBSS for which accurate identification of all IPs is at hand. Different case studies reveal that proposed formulation provides fast and accurate results, as required by the space applications. Further studies might be necessary for cases where planar-body assumption becomes inaccurate.

  16. Exoskeleton-Based Robotic Platform Applied in Biomechanical Modelling of the Human Upper Limb

    Directory of Open Access Journals (Sweden)

    Andres F. Ruiz

    2009-01-01

    Full Text Available One of the approaches to study the human motor system, and specifically the motor strategies implied during postural tasks of the upper limbs, is to manipulate the mechanical conditions of each joint of the upper limbs independently. At the same time, it is essential to pick up biomechanical signals and bio-potentials generated while the human motor system adapts to the new condition. The aim of this paper is two-fold: first, to describe the design, development and validation of an experimental platform designed to modify or perturb the mechanics of human movement, and simultaneously acquire, process, display and quantify bioelectric and biomechanical signals; second, to characterise the dynamics of the elbow joint during postural control. A main goal of the study was to determine the feasibility of estimating human elbow joint dynamics using EMG-data during maintained posture. In particular, the experimental robotic platform provides data to correlate electromyographic (EMG activity, kinetics and kinematics information from the upper limb motion. The platform aims consists of an upper limb powered exoskeleton, an EMG acquisition module, a control unit and a software system. Important concerns of the platform such as dependability and safety were addressed in the development. The platform was evaluated with 4 subjects to identify, using system identification methods, the human joint dynamics, i.e. visco-elasticity. Results obtained in simulations and experimental phase are introduced.

  17. Biomechanical factors associated with the development of tibiofemoral knee osteoarthritis

    DEFF Research Database (Denmark)

    van Tunen, Joyce A C; Dell'Isola, Andrea; Juhl, Carsten

    2016-01-01

    INTRODUCTION: Altered biomechanics, increased joint loading and tissue damage, might be related in a vicious cycle within the development of knee osteoarthritis (KOA). We have defined biomechanical factors as joint-related factors that interact with the forces, moments and kinematics in and aroun...... publications in peer-reviewed journals and presentations at (inter)national conferences. TRIAL REGISTRATION NUMBER: CRD42015025092....

  18. Tennis elbow: a biomechanical and therapeutic approach.

    Science.gov (United States)

    Schnatz, P; Steiner, C

    1993-07-01

    Lateral epicondylitis, one of the most common lesions of the arm, affects some 50% of tennis players. This condition poses a problem in clinical management because treatment is dependent not only on proper medical therapy but also on correction of the improper on-court biomechanics. The most common flaw is a late contact on the backhand groundstroke, forcing the player to extend the wrist with the extensor muscles. This action predisposes to trauma of the tendon fibers at the lateral epicondyle. Understanding the biomechanics will better prepare the physician to advise the patient and to communicate with a tennis teaching professional to facilitate long-term relief.

  19. Intestinal morphometric and biomechanical changes during aging in rats

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Gregersen, Hans

    2015-01-01

    Background and aim: Previously we demonstrated pronounced morphometric and biomechanical remodeling in the rat intestine during physiological growth up to 32 weeks of age. The aim of the present study is to study intestinal geometric and biomechanical changes in aging rats. Materials and methods...... in the circumferential direction. In conclusion pronounced morphometric and biomechanical remodeling occurred in the rat intestine during aging. The observed changes likely reflect the changes of the physiological function of the intestine during ageing, similar to other tissues where function, mechanical loading......: Twenty-four male Wistar rats, aged from 6 to 22 months, were used in the study. The body weight and the wet weight per length of duodenal and ileal segments were measured at the termination of experiment. Morphometric data were obtained by measuring the wall thickness and wall cross-sectional area...

  20. Biomechanical Effects of Posterior Condylar Offset and Posterior Tibial Slope on Quadriceps Force and Joint Contact Forces in Posterior-Stabilized Total Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Kyoung-Tak Kang

    2017-01-01

    Full Text Available This study aimed to determine the biomechanical effect of the posterior condylar offset (PCO and posterior tibial slope (PTS in posterior-stabilized (PS fixed-bearing total knee arthroplasty (TKA. We developed ±1, ±2, and ±3 mm PCO models in the posterior direction and −3°, 0°, 3°, and 6° PTS models using a previously validated FE model. The influence of changes in the PCO and PTS on the biomechanical effects under deep-knee-bend loading was investigated. The contact stress on the PE insert increased by 14% and decreased by 7% on average as the PCO increased and decreased, respectively, compared to the neutral position. In addition, the contact stress on post in PE insert increased by 18% on average as PTS increased from −3° to 6°. However, the contact stress on the patellar button decreased by 11% on average as PTS increased from −3° to 6° in all different PCO cases. The quadriceps force decreased by 14% as PTS increased from −3° to 6° in all PCO models. The same trend was found in patellar tendon force. Changes in PCO had adverse biomechanical effects whereas PTS increase had positive biomechanical effects. However, excessive PTS should be avoided to prevent knee instability and subsequent failure.