WorldWideScience

Sample records for biomechanical gait analysis

  1. Biomechanics and analysis of running gait.

    Science.gov (United States)

    Dugan, Sheila A; Bhat, Krishna P

    2005-08-01

    Physical activity, including running, is important to general health by way of prevention of chronic illnesses and their precursors. To keep runners healthy, it is paramount that one has sound knowledge of the biomechanics of running and assessment of running gait. More so, improving performance in competitive runners is based in sound training and rehabilitation practices that are rooted firmly in biomechanical principles. This article summarized the biomechanics of running and the means with which one can evaluate running gait. The gait assessment techniques for collecting and analyzing kinetic and kinematic data can provide insights into injury prevention and treatment and performance enhancement.

  2. Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans

    Science.gov (United States)

    Fang-Yen, Christopher; Wyart, Matthieu; Xie, Julie; Kawai, Risa; Kodger, Tom; Chen, Sway; Wen, Quan; Samuel, Aravinthan D. T.

    2010-01-01

    To navigate different environments, an animal must be able to adapt its locomotory gait to its physical surroundings. The nematode Caenorhabditis elegans, between swimming in water and crawling on surfaces, adapts its locomotory gait to surroundings that impose approximately 10,000-fold differences in mechanical resistance. Here we investigate this feat by studying the undulatory movements of C. elegans in Newtonian fluids spanning nearly five orders of magnitude in viscosity. In these fluids, the worm undulatory gait varies continuously with changes in external load: As load increases, both wavelength and frequency of undulation decrease. We also quantify the internal viscoelastic properties of the worm’s body and their role in locomotory dynamics. We incorporate muscle activity, internal load, and external load into a biomechanical model of locomotion and show that (i) muscle power is nearly constant across changes in locomotory gait, and (ii) the onset of gait adaptation occurs as external load becomes comparable to internal load. During the swimming gait, which is evoked by small external loads, muscle power is primarily devoted to bending the worm’s elastic body. During the crawling gait, evoked by large external loads, comparable muscle power is used to drive the external load and the elastic body. Our results suggest that C. elegans locomotory gait continuously adapts to external mechanical load in order to maintain propulsive thrust. PMID:21048086

  3. Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Fang-Yen, Christopher; Wyart, Matthieu; Xie, Julie; Kawai, Risa; Kodger, Tom; Chen, Sway; Wen, Quan; Samuel, Aravinthan D T

    2010-11-23

    To navigate different environments, an animal must be able to adapt its locomotory gait to its physical surroundings. The nematode Caenorhabditis elegans, between swimming in water and crawling on surfaces, adapts its locomotory gait to surroundings that impose approximately 10,000-fold differences in mechanical resistance. Here we investigate this feat by studying the undulatory movements of C. elegans in Newtonian fluids spanning nearly five orders of magnitude in viscosity. In these fluids, the worm undulatory gait varies continuously with changes in external load: As load increases, both wavelength and frequency of undulation decrease. We also quantify the internal viscoelastic properties of the worm's body and their role in locomotory dynamics. We incorporate muscle activity, internal load, and external load into a biomechanical model of locomotion and show that (i) muscle power is nearly constant across changes in locomotory gait, and (ii) the onset of gait adaptation occurs as external load becomes comparable to internal load. During the swimming gait, which is evoked by small external loads, muscle power is primarily devoted to bending the worm's elastic body. During the crawling gait, evoked by large external loads, comparable muscle power is used to drive the external load and the elastic body. Our results suggest that C. elegans locomotory gait continuously adapts to external mechanical load in order to maintain propulsive thrust.

  4. Use of Photogrammetry and Biomechanical Gait analysis to Identify Individuals

    DEFF Research Database (Denmark)

    Larsen, Peter Kastmand; Simonsen, Erik Bruun; Lynnerup, Niels

    Photogrammetry and recognition of gait patterns are valuable tools to help identify perpetrators based on surveillance recordings. We have found that stature but only few other measures have a satisfying reproducibility for use in forensics. Several gait variables with high recognition rates were...

  5. INSTRUMENTATION AND BIOMECHANICAL MODEL FOR KINEMATIC AND KINETIC ANALYSIS OF UPPER LIMBS DURING GAIT WITH CRUTCHES

    Directory of Open Access Journals (Sweden)

    Enrique Pérez-Rizo

    2013-11-01

    Full Text Available The goal of this study was to develop a three-dimensional kinematic and kinetic model of the right upper extremity and a Lofstrand crutch in order to analyze joint displacements and loads during crutch-assisted gait. A Lofstrand crutch was instrumented with a six-component load cell to measure forces and moments at the crutch tip. The crutch and the right upper extremity of a subject were instrumented with markers to obtain kinematic data. A biomechanical model based on rigid bodies was implemented in biomechanical analysis software. To demonstrate the functionality of the model, a pilot test was conducted on one healthy individual during Lofstrand crutch-assisted gait. The shoulder extended during the support phase and flexed in the swing phase, the elbow flexed during the swing, and the wrist remained in extension throughout the cycle. In the shoulder and elbow joints, the predominant reaction forces were upward, whereas the internal force moments were flexion and extension, respectively. This tool will be useful when it comes to identifying risk factors for joint pathology associated with pattern gait, aid design or crutch overuse.

  6. The Application Of A Videometric Analysis System To Biomechanical Gait Measurement

    Science.gov (United States)

    Frost, Paul A.

    1984-11-01

    In biomechanics research and in many sports medicine applications, it is desirable to make precise measurements of the kinematic parameters of body motions. An analysis of these parameters can be used to refine athletic performance, to design sports equipment, to develop orthotics, and to improve the practice of sports medicine. In this paper a videometric analysis system is described that can meet the requirements of a broad range of clinical and research applications. This system consists of state-of-the-art video components, including a shuttered video camera and a high resolution electronic cursor system, as well as a microcomputer and appropriate software for interactively making measurements, displaying results and producing reports. The use of this system for making gait measurements of athletes running on a treadmill is described. Time series of rearfoot angle measurements, made during the support phase of a gait are produced by the system. Individual gaits can be analyzed, or a number of gaits from one or more athletes can be grouped for statistical evaluation. An archival storage and retrieval facility permits the development and use of an extensive data base.

  7. Biomechanics of Gait during Pregnancy

    OpenAIRE

    2014-01-01

    Introduction. During pregnancy women experience several changes in the body’s physiology, morphology, and hormonal system. These changes may affect the balance and body stability and can cause discomfort and pain. The adaptations of the musculoskeletal system due to morphological changes during pregnancy are not fully understood. Few studies clarify the biomechanical changes of gait that occur during pregnancy and in postpartum period. Purposes. The purpose of this re...

  8. A novel biomechanical analysis of gait changes in the MPTP mouse model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Werner J. Geldenhuys

    2015-08-01

    Full Text Available Parkinson’s disease (PD is an age-associated neurodegenerative disorder hallmarked by a loss of mesencephalic dopaminergic neurons. Accurate recapitulation of the PD movement phenotype in animal models of the disease is critical for understanding disease etiology and developing novel therapeutic treatments. However, most existing behavioral assays currently applied to such animal models fail to adequately detect and subsequently quantify the subtle changes associated with the progressive stages of PD. In this study, we used a video-based analysis system to develop and validate a novel protocol for tracking locomotor performance in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of PD. We anticipated that (1 treated mice should use slower, shorter, and less frequent strides and (2 that gait deficits should monotonically increase following MPTP administration, as the effects of neurodegeneration become manifest. Video-based biomechanical analyses, utilizing behavioral measures motivated by the comparative biomechanics literature, were used to quantify gait dynamics over a seven-day period following MPTP treatment. Analyses revealed shuffling behaviors consistent with the gait symptoms of advanced PD in humans. Here we also document dramatic gender-based differences in locomotor performance during the progression of the MPTP-induced lesion, despite male and female mice showing similar losses of striatal dopaminergic cells following MPTP administration. Whereas female mice appeared to be protected against gait deficits, males showed multiple changes in gait kinematics, consistent with the loss of locomotor agility and stability. Overall, these data show that the novel video analysis protocol presented here is a robust method capable of detecting subtle changes in gait biomechanics in a mouse model of PD. Our findings indicate that this method is a useful means by which to easily and economically screen preclinical therapeutic

  9. The effects of biomechanical foot orthoses on the gait patterns of patients with malalignment syndrome as determined by three dimensional gait analysis

    Science.gov (United States)

    Kim, Soo-Hyun; Ahn, Sang-Ho; Jung, Gil-Su; Kim, Jin-Hyun; Cho, Yun-Woo

    2016-01-01

    [Purpose] The biomechanical effects of foot orthoses on malalignment syndrome have not been fully clarified. This experimental investigation was conducted to evaluate the effects of orthoses on the gait patterns of patients with malalignment syndrome. [Subjects and Methods] Ten patients with malalignment syndrome were recruited. For each participant, kinematic and kinetic data were collected under three test conditions: walking barefoot, walking with flat insoles in shoes, and walking with a biomechanical foot orthosis (BFO) in shoes. Gait patterns were analyzed using a motion analysis system. [Results] Spatiotemporal data showed the step and stride lengths when wearing shoes with flat insoles or BFO were significantly greater than when barefoot, and that the walking speed when wearing shoes with BFO was significantly faster than when walking barefoot or with shoes with flat insoles. Kinetic data, showed peak pelvic tilt and obliquity angle were significantly greater when wearing BFO in shoes than when barefoot, and that peak hip flexion/extension angle and peak knee flexion/extension and rotation angles were significantly greater when wearing BFO and flat insoles in shoes than when barefoot. [Conclusion] BFOs can correct pelvic asymmetry while walking. PMID:27190451

  10. Gait biomechanics in the era of data science.

    Science.gov (United States)

    Ferber, Reed; Osis, Sean T; Hicks, Jennifer L; Delp, Scott L

    2016-12-08

    Data science has transformed fields such as computer vision and economics. The ability of modern data science methods to extract insights from large, complex, heterogeneous, and noisy datasets is beginning to provide a powerful complement to the traditional approaches of experimental motion capture and biomechanical modeling. The purpose of this article is to provide a perspective on how data science methods can be incorporated into our field to advance our understanding of gait biomechanics and improve treatment planning procedures. We provide examples of how data science approaches have been applied to biomechanical data. We then discuss the challenges that remain for effectively using data science approaches in clinical gait analysis and gait biomechanics research, including the need for new tools, better infrastructure and incentives for sharing data, and education across the disciplines of biomechanics and data science. By addressing these challenges, we can revolutionize treatment planning and biomechanics research by capitalizing on the wealth of knowledge gained by gait researchers over the past decades and the vast, but often siloed, data that are collected in clinical and research laboratories around the world.

  11. Changes in Post-Stroke Gait Biomechanics Induced by One Session of Gait Training.

    Science.gov (United States)

    Kesar, T M; Reisman, D S; Higginson, J S; Awad, L N; Binder-Macleod, S A

    2015-01-01

    The objective of this study was to determine whether one session of targeted locomotor training can induce measurable improvements in the post-stroke gait impairments. Thirteen individuals with chronic post-stroke hemiparesis participated in one locomotor training session combining fast treadmill training and functional electrical stimulation (FES) of ankle dorsi- and plantar-flexor muscles. Three dimensional gait analysis was performed to assess within-session changes (after versus before training) in gait biomechanics at the subject's self-selected speed without FES. Our results showed that one session of locomotor training resulted in significant improvements in peak anterior ground reaction force (AGRF) and AGRF integral for the paretic leg. Additionally, individual subject data showed that a majority of study participants demonstrated improvements in the primary outcome variables following the training session. This study demonstrates, for the first time, that a single session of intense, targeted post-stroke locomotor retraining can induce significant improvements in post-stroke gait biomechanics. We posit that the within-session changes induced by a single exposure to gait training can be used to predict whether an individual is responsive to a particular gait intervention, and aid with the development of individualized gait retraining strategies. Future studies are needed to determine whether these single-session improvements in biomechanics are accompanied by short-term changes in corticospinal excitability, and whether single-session responses can serve as predictors for the longer-term effects of the intervention with other targeted gait interventions.

  12. The use of artificial intelligence in the analysis of sports performance: a review of applications in human gait analysis and future directions for sports biomechanics.

    Science.gov (United States)

    Lapham, A C; Bartlett, R M

    1995-06-01

    Computers have played an important supporting role in the development of experimental and theoretical sports biomechanics. The role of the computer now extends from data capture and data processing through to mathematical and statistical modelling and simulation and optimization. This paper seeks to demonstrate that elevation of the role of the computer to involvement in the decision-making process, through the use of artificial intelligence techniques, would be a potentially rewarding future direction for the discipline. In the absence of significant previous work in this area, this paper reviews experiences in a parallel field of medical informatics, namely gait analysis. Research into the application of expert systems and neural networks to gait analysis is reviewed, observations made and comparisons drawn with the biomechanical analysis of sports performance. Brief explanations of the artificial intelligence techniques discussed in the paper are provided. The paper concludes that the creation of an expert system for a specific well-defined sports technique would represent a significant advance in the development of sports biomechanics.

  13. An integrated procedure for spine and full skeleton multi-sensor biomechanical analysis & averaging in posture gait and cyclic movement tasks.

    Science.gov (United States)

    D'Amico, Moreno; D'Amico, Gabriele; Paniccia, Michele; Roncoletta, Piero; Vallasciani, Massimo

    2010-01-01

    Spine and posture disorders cover large interest in rehabilitation. Quantitative functional evaluation represents the main goal in Movement/Gait analysis. However very few studies outline the behaviour of spine during Posture and Movement/Gait analysis. To overcome such limits, several years ago our group started, a project to transfer into a complete fully 3D reliable and detailed representation, different segmental biomechanical models presented in literature. As result a complete 3D parametric biomechanical skeleton model has been developed to be used in quantitative analysis. Posture and Movement/Gait analysis are performed by 3D Opto-electronic stereophotogrammetric measurements of body landmarks labelled by passive markers. Depending on different analysis purposes, the model can work at different stages of complexity. Examples on the application of such model into biomechanical and clinical fields have been presented in literature. Our group is continuously working to add new features to such model, which is now able to fully integrate data deriving from force platforms, SEMG, foot pressure maps. By means of data fusion and optimisation procedures all these inputs are used in the model to assess lower limbs internal joint forces, torques and muscular efforts. The possibility to compute the average of cyclic or repetitive tasks has been included as well. Recently we added the possibility to assess internal joint forces and torques at each spine vertebral level and to correlate these latter with all the other model's features. The aim of this study is to present the methodological aspects of such new features and their potential applicability in clinical and biomechanical fields.

  14. Terminology and forensic gait analysis.

    Science.gov (United States)

    Birch, Ivan; Vernon, Wesley; Walker, Jeremy; Young, Maria

    2015-07-01

    The use of appropriate terminology is a fundamental aspect of forensic gait analysis. The language used in forensic gait analysis is an amalgam of that used in clinical practice, podiatric biomechanics and the wider field of biomechanics. The result can often be a lack of consistency in the language used, the definitions used and the clarity of the message given. Examples include the use of 'gait' and 'walking' as synonymous terms, confusion between 'step' and 'stride', the mixing of anatomical, positional and pathological descriptors, and inability to describe appropriately movements of major body segments such as the torso. The purpose of this paper is to share the well-established definitions of the fundamental parameters of gait, common to all professions, and advocate their use in forensic gait analysis to establish commonality. The paper provides guidance on the selection and use of appropriate terminology in the description of gait in the forensic context. This paper considers the established definitions of the terms commonly used, identifies those terms which have the potential to confuse readers, and suggests a framework of terminology which should be utilised in forensic gait analysis.

  15. Acoustic Gaits: Gait Analysis With Footstep Sounds.

    Science.gov (United States)

    Altaf, M Umair Bin; Butko, Taras; Juang, Biing-Hwang Fred

    2015-08-01

    We describe the acoustic gaits-the natural human gait quantitative characteristics derived from the sound of footsteps as the person walks normally. We introduce the acoustic gait profile, which is obtained from temporal signal analysis of sound of footsteps collected by microphones and illustrate some of the spatio-temporal gait parameters that can be extracted from the acoustic gait profile by using three temporal signal analysis methods-the squared energy estimate, Hilbert transform and Teager-Kaiser energy operator. Based on the statistical analysis of the parameter estimates, we show that the spatio-temporal parameters and gait characteristics obtained using the acoustic gait profile can consistently and reliably estimate a subset of clinical and biometric gait parameters currently in use for standardized gait assessments. We conclude that the Teager-Kaiser energy operator provides the most consistent gait parameter estimates showing the least variation across different sessions and zones. Acoustic gaits use an inexpensive set of microphones with a computing device as an accurate and unintrusive gait analysis system. This is in contrast to the expensive and intrusive systems currently used in laboratory gait analysis such as the force plates, pressure mats and wearable sensors, some of which may change the gait parameters that are being measured.

  16. Gait biomechanics and hip muscular strength in patients with patellofemoral osteoarthritis.

    Science.gov (United States)

    Pohl, Michael B; Patel, Chirag; Wiley, J Preston; Ferber, Reed

    2013-03-01

    A significant number of patients with patellofemoral osteoarthritis (PFOA) have described a history of patellofemoral pain syndrome (PFPS). This leads to speculation that the underpinning mechanical causes of PFPS and PFOA may be similar. Although alterations in gait biomechanics and hip strength have been reported in PFPS, this relationship has not yet been explored in PFOA. Therefore the purpose of this study was compare gait biomechanics and hip muscular strength between PFOA patients and a healthy control group. Fifteen patients with symptomatic, radiographic PFOA and 15 controls participated. All patients underwent a walking gait analysis and maximal hip strength testing. Biomechanical variables of interest included the peak angular values of contra-lateral pelvic drop, hip adduction and hip internal rotation during the stance phase. Hip abduction and external rotation strength were assessed using maximal voluntary isometric contractions. The PFOA group demonstrated significantly lower hip abduction strength compared to controls but no difference in hip external rotation strength. There were no statistical differences between the PFOA and control groups for contra-lateral pelvic drop, hip adduction and hip internal rotation angles during walking. Despite patients with PFOA exhibiting weaker hip abductor muscle strength compared to their healthy counterparts they did not demonstrate alterations in pelvis or hip biomechanics during gait. These preliminary data suggests that weaker hip abductor strength does not result in biomechanical alterations during gait in this population.

  17. Biomechanical consequences of gait impairment at the ankle and foot : Injury, malalignment, and co-contraction

    OpenAIRE

    Wang, Ruoli

    2012-01-01

    The human foot contributes significantly to the function of the whole lower extremity during standing and locomotion. Nevertheless, the foot and ankle often suffer injuries and are affected by many musculoskeletal and neurological pathologies. The overall aim of this thesis was to evaluate gait parameters and muscle function change due to foot and ankle injury, malalignment and co-contraction. Using 3D gait analysis, analytical analyses and computational simulations, biomechanical consequence...

  18. Gait analysis: clinical facts.

    Science.gov (United States)

    Baker, Richard; Esquenazi, Alberto; Benedetti, Maria G; Desloovere, Kaat

    2016-08-01

    Gait analysis is a well-established tool for the quantitative assessment of gait disturbances providing functional diagnosis, assessment for treatment planning, and monitoring of disease progress. There is a large volume of literature on the research use of gait analysis, but evidence on its clinical routine use supports a favorable cost-benefit ratio in a limited number of conditions. Initially gait analysis was introduced to clinical practice to improve the management of children with cerebral palsy. However, there is good evidence to extend its use to patients with various upper motor neuron diseases, and to lower limb amputation. Thereby, the methodology for properly conducting and interpreting the exam is of paramount relevance. Appropriateness of gait analysis prescription and reliability of data obtained are required in the clinical environment. This paper provides an overview on guidelines for managing a clinical gait analysis service and on the principal clinical domains of its application: cerebral palsy, stroke, traumatic brain injury and lower limb amputation.

  19. Spastic paretic stiff-legged gait: biomechanics of the unaffected limb.

    Science.gov (United States)

    Kerrigan, D C; Frates, E P; Rogan, S; Riley, P O

    1999-01-01

    A concern for individuals with hemiparesis affecting their gait, which heretofore has never been studied, is the possibility that various compensations occurring in the unaffected limb may strain or fatigue the muscles or ligaments and/or predispose to joint injury in that limb. We studied the biomechanics of the unaffected limb during walking in 20 subjects with hemiparesis who had stiff-legged gait as a result of stroke. An optoelectronic motion analysis and force platform system was used to estimate torques in all three planes about the hip, knee, and ankle. Sagittal plane joint motion and power about the unaffected hip, knee, and ankle were also studied. Data were compared with control walking data collected from 20 able-bodied controls. On average, peak torques and powers were all either reduced or the same compared with controls, even though in some instances values were >2 standard deviations (SD) above the control means. Our findings suggest that on average the probability of excessive muscular-tendon effort and the risk for biomechanical injury in the unaffected limb are minimal compared with able-bodied, walking controls. However, given individual variability, we recommend routine clinical gait analysis for all people with stiff-legged gait to eliminate excessive values in certain biomechanical parameters, which could, if not addressed, predispose to muscle-tendon strain or joint or ligamentous injury.

  20. Gait analysis methods in rehabilitation

    Directory of Open Access Journals (Sweden)

    Baker Richard

    2006-03-01

    Full Text Available Abstract Introduction Brand's four reasons for clinical tests and his analysis of the characteristics of valid biomechanical tests for use in orthopaedics are taken as a basis for determining what methodologies are required for gait analysis in a clinical rehabilitation context. Measurement methods in clinical gait analysis The state of the art of optical systems capable of measuring the positions of retro-reflective markers placed on the skin is sufficiently advanced that they are probably no longer a significant source of error in clinical gait analysis. Determining the anthropometry of the subject and compensating for soft tissue movement in relation to the under-lying bones are now the principal problems. Techniques for using functional tests to determine joint centres and axes of rotation are starting to be used successfully. Probably the last great challenge for optical systems is in using computational techniques to compensate for soft tissue measurements. In the long term future it is possible that direct imaging of bones and joints in three dimensions (using MRI or fluoroscopy may replace marker based systems. Methods for interpreting gait analysis data There is still not an accepted general theory of why we walk the way we do. In the absence of this, many explanations of walking address the mechanisms by which specific movements are achieved by particular muscles. A whole new methodology is developing to determine the functions of individual muscles. This needs further development and validation. A particular requirement is for subject specific models incorporating 3-dimensional imaging data of the musculo-skeletal anatomy with kinematic and kinetic data. Methods for understanding the effects of intervention Clinical gait analysis is extremely limited if it does not allow clinicians to choose between alternative possible interventions or to predict outcomes. This can be achieved either by rigorously planned clinical trials or using

  1. Gait analysis using wearable sensors.

    Science.gov (United States)

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  2. Gait Analysis Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Hutian Feng

    2012-02-01

    Full Text Available Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  3. Biomechanical parameters of gait among transtibial amputees: a review

    Directory of Open Access Journals (Sweden)

    Alex Sandra Oliveira de Cerqueira Soares

    Full Text Available Rehabilitation for lower-limb amputees needs to focus on restoration of daily functions and independent locomotion. As gait is reestablished, reorganization of the motor pattern takes place in order to optimize the functions of the locomotor system. Biomechanics is a field of study that enables understanding of this reorganization. From such knowledge, appropriate strategies for recovering the autonomy of the means of locomotion can be established. Thus, this paper had the aim of reviewing the current status of the biomechanics of locomotion among unilateral transtibial amputees. To achieve this aim, papers written in English or Portuguese and published up to 2005 were selected from the Cochrane Library, PubMed, Scientific Electronic Library Online (SciELO, Literatura Latino-Americana e do Caribe em Ciências da Saúde (Lilacs and Dedalus databases. In cases of transtibial amputation, the absence of plantar flexors negatively affects locomotion. Increased absorption and energy generation by the muscles that control the hip joint of the amputated leg can be considered to be the main compensatory strategy developed by unilateral transtibial amputees during gait. Factors associated with the characteristics of the amputation, prosthesis and experimental protocol used directly influence the results.

  4. 行走中股骨生物力学特性的有限元分析%Finite element analysis of biomechanics of human femur during gait

    Institute of Scientific and Technical Information of China (English)

    杨挺; 郑建河; 姚子龙; 马立敏; 张余

    2016-01-01

    Objective To simulate the optimal boundary conditions with the utilization of finite element, and to explore biomechanics of human femur during gait.Methods Volunteer′s femoral CT data was extracted before three-di-mensional reconstruction and meshing.A computer simulation software, Anybody, was used to simulate the normal move-ments during gait and export the muscle force exerted on femur during the activity.Geomagic studio and Hypermesh were used to match the coordinates between the target model and the model provided by AnyBody and load the muscle force to femur.After that, finite element analysis in Abaqus was performed to analyze the magnitude and concentration region of von Mises stress and strain on femur in gait process.Results The magnitude of von Mises reached the maximum of 27.70 MPa during the midstance phase of the gait cycle, which was located inferoposteriorly to the lesser trochanter.The stress magnitude reached the minimum of 0.62 MPa during the contralateral loading phase.The stress on femur during the swing phase concentrated on the medial mid-diaphysis, with a magnitude of 3.52 MPa.It was also during the mid-stance phase when the maximum of strain of 0.39 mm was observed at the femoral head.The maximum strain of 0.12 mm during the swing phase concentrated on femoral mid-diaphysis.The minimum strain of femur occurred in the contralateral load-ing phase.Conclusion During the mid-stance phase of gait cycle, the magnitude of stress reaches the maximum, which is located inferoposteriorly to the lesser trochanter of femur.The maximum strain of femur is located on the femoral head.%目的:利用有限元的方法,模拟人体最佳边界条件,探寻行走过程中股骨的生物力学情况。方法根据股骨CT数据进行三维重建,并且网格化。利用计算机仿真软件AnyBody模拟正常人平地行走时的动作,导出股骨在整个运动过程中受到的肌肉力。利用Geomagic studio和Hypermesh软件完成目标模

  5. Altered Gait Biomechanics and Increased Knee-Specific Impairments in Patients with Coexisting Tibiofemoral and Patellofemoral Osteoarthritis

    Science.gov (United States)

    Farrokhi, Shawn; O’Connell, Megan; Fitzgerald, G. Kelley

    2014-01-01

    Coexisting patellofemoral osteoarthritis (PFOA) is a common finding in patients with tibiofemoral osteoarthritis (TFOA). The purpose of this study was to elucidate whether severity of coexisting PFOA in patients with TFOA is correlated with altered sagittal-plane gait biomechanics and greater knee-specific impairments. One hundred and six patients with radiographic TFOA were stratified into three groups of no PFOA, mild PFOA, and severe PFOA. All patients completed instrumented gait analysis, quantitative quadriceps strength testing and knee range of motion assessment. Compared to patients with no PFOA, those with severe PFOA exhibited reduced loading-response knee flexion excursions (p=0.002) and increased peak single-leg stance external knee flexion moments (pknee extension range of motion were independently associated with altered sagittal-plane knee biomechanics during gait (pknee flexion excursion during gait may be an attempt to decrease patellofemoral joint loading by patients with severe PFOA but it may increase impact loading of their arthritic tibiofemoral joint. Additionally, the greater external knee flexion moments observed during the single-leg stance phase of gait can lead to an overall increase in patellofemoral joint loading and symptoms in patients with more severe PFOA. Given the association between knee-specific impairments and altered gait biomechanics in our study, addressing quadriceps muscle weakness and limited knee extension range of motion may be indicated in patients with TFOA and severe coexisting PFOA. PMID:25242293

  6. Muscle-skeletal model of the thigh: a tool for understanding the biomechanics of gait in patients with cerebral palsy

    Science.gov (United States)

    Ravera, Emiliano Pablo; Catalfamo Formento, Paola Andrea; José Crespo, Marcos; Andrés Braidot, Ariel

    2011-12-01

    Cerebral Palsy represents the most common cause of physical disability in modern world and within the pediatrics orthopedics units. The gait analysis provides great contributions to the understanding of gait disorders in CP. Giving a more comprehensive treatment plan, including or excluding surgical procedures that can potentially decrease the number of surgical interventions in the life of these patients. Recommendations for orthopedic surgery may be based on a quantitative description of how to alter the properties probably muscle force generation, and how this affects the action of the muscle to determine how these muscles, impaired by disease or surgery, contributing to the movement of the segments of the limb during crouch gait. So the causes and appropriate treatment of gait abnormalities are difficult to determine because the movements generated by the muscular forces of these patients are not clearly understood. A correct determination of the etiology of abnormal patterns of the knee is the key to select the appropriate therapy, presenting a major challenge at present since there is no theoretical basis to determine the biomechanical causes of abnormal gait of these patients. The potential and necessity of using correct biomechanical models that consistently study the abnormalities becomes clear. Reinforcing and correcting a simple gait analysis and eliminating the unknowns when selecting the appropriate treatment is crucial in clinical settings. In this paper a computer muscle-skeletal model is proposed. The model represents a person's thigh simulating the six most representative muscles and joints of the hip and knee. In this way you can have a better understanding of gait abnormalities present in these patients. So the quality of these estimates of individual muscle dynamics facilitate better understanding of the biomechanics of gait pathologies helping to reach better diagnosis prior to surgery and rehabilitation treatments.

  7. Wrist joint moments of walker-assisted gait:a study of biomechanics and instrumentation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    While walkers are commonly prescribed to improve patient stability and ambulatory ability,quantitativestudy of the biomechanical and functional requirements for effective walker use is limited.To investigate the changesin wrist joint moments that occur with the use of a standard walker,a strain gauge-based walker instrumentation system was developed for the measurement of wrist joint moments.This walker dynamometer was integrated with an upper extremity biomechanical model.Preliminary system data were collected for twelve healthy,right-handed young adultsfollowing informed consent.Bilateral upper extremity kinematic data were acquired with a six-camera motion analysis system.Internal joint moments at the wrist were determined in the three clinical planes using the inverse dynamics method.Results showed that during a walker-assisted gait there were several typical demands of wrist abductor,adductor,flexor and external rotator.An interesting " bare phase " of wrist joint moments was also found in phaseangle[-30°,30°] of gait cycle.Complete description of wrist joint moments during walker-assisted gait may provide insight into walker use parameters and rehabilitative strategies.

  8. Gait analysis in forensic medicine

    DEFF Research Database (Denmark)

    Larsen, Peter K; Simonsen, Erik B; Lynnerup, Niels

    2008-01-01

    Recordings from video surveillance systems are used as evidence from crime scenes. It would be useful to perform comparisons between disguised perpetrators and suspects based on their gait. We applied functional anatomical and biomechanical knowledge to analyze the gait of perpetrators, as recorded...... than the other. Based on these characteristic features, we are able to state with reasonable certainty whether the suspect could be the perpetrator, but it is not possible to identify the perpetrator positively. Nevertheless, we have been involved in several cases where the court has found...

  9. [Diagnostics and early rehabilitation of biomechanical gait abnormalities in the patients with cerebral hemiparesis].

    Science.gov (United States)

    Dobrushina, O R; Snopkov, P S; Sidiakina, I V

    2013-01-01

    The objective of the present study was to evaluate the effectiveness of various systems for the analysis of gait biomechanics during the early period of rehabilitation in the patients presenting with central hemiparesis. 30 patients with central hemiparesis were examined with the use of the "Raptor-12", motion capture system, "TRUST-M" gyroscopic system, "Balance Master platform, and "Diasled" tension registration system. The severity of paresis estimated based on the 6-score scale varied from 2 to 4.5 (mean 3.7 +/- 0.9), the Ashworth spasticity index was 1.1 +/- 1.2. The clinically significant phenomena (low goniogram amplitude, gate asymmetry etc.) responsible for the poor mobility (the Rivermead index below 13) were revealed during the analysis using "Raptor-12" and "TRUST-M". These abnormalities served as the targets for the rehabilitative treatment. The analysis of walking parameters on the "Balance Master" platform provided no clinically significant results. The "Diasled" data made it possible to evaluate the treatment-induced improvement in the patients' conditions but had no influence on decision-making as regards the choice of the rehabilitation strategy. The analysis of gait biomechanics with goniometry provides a basis for differential early rehabilitation of walking disorders in the patients suffering central hemoparesis.

  10. Hip joint biomechanics during gait in people with and without symptomatic femoroacetabular impingement.

    Science.gov (United States)

    Diamond, Laura E; Wrigley, Tim V; Bennell, Kim L; Hinman, Rana S; O'Donnell, John; Hodges, Paul W

    2016-01-01

    Femoroacetabular impingement (FAI) is a morphological hip condition that can cause hip/groin pain and impaired function in younger active adults, and may lead to stiffness, muscle weakness, structural damage, and hip osteoarthritis. Understanding the impairments associated with FAI is crucial to guide treatment and rehabilitation strategies. Evidence is limited and conflicting about whether hip biomechanics are impaired during walking in people with symptomatic FAI. The objective of this study was to determine whether kinematics and kinetics during gait differ between people with symptomatic FAI and control participants. Fifteen participants diagnosed with symptomatic cam-type or combined (cam plus pincer) FAI who were scheduled for arthroscopic surgery and 14 age-, and sex-matched disease-free controls underwent three-dimensional gait analysis. Tri-planar hip kinematics and kinetics were compared between the two groups. There were limited significant between-group differences with respect to spatiotemporal variables. Participants with FAI walked with less range of motion in the sagittal plane during a gait cycle, but did not exhibit any significant kinematic differences in the frontal or transverse planes. There were no systematic differences in kinetics between the groups in any plane. Findings suggest that individuals with symptomatic FAI have minimal impairments in gait biomechanics. Although these individuals demonstrate reduced hip joint motion in the sagittal plane, the size of the difference is small and its significance for symptoms and function is unclear. More pronounced deficits in hip kinetics and kinematics may be evident during functional tasks that challenge the hip towards the position of impingement.

  11. Muscle activation patterns and gait biomechanics in patients with ankylosing spondylitis

    Directory of Open Access Journals (Sweden)

    A. Caliri

    2011-09-01

    Full Text Available Patients with ankylosing spondylitis (AS may experience a progressive spinal kyphosis, which induces a forward and downward displacement of the centre of mass (COM of the trunk with consequent use of mechanisms to compensate for the displacement of the trunk. The analysis of patterns of movement gives an important opportunity for follow-up of patients and is an useful tool to plan a therapeutic and rehabilitative program. Objective: The aim of our study was to contribute to the description of abnormalities of gait biomechanics in patients with AS and to individualize, if existing, a typical pattern of these patients. Methods: Five patients with AS (3 men, 2 women were evaluated by gait analysis. Each patient was assessed with dynamic electromyography, with survey of phases of gait cycle and 3D video-analysis of gait related to data of platform (Digivec ® which allows to display real time the force vector of reaction foot-ground overlapping the screen image of patient. Results: The dynamometric platform located the following problems: increasing of the medium-lateral component of the reaction force on the ground in the mild and terminal stance. The anterior-posterior reaction force is diminished in both the initial and the terminal component. The timing of activation of the tibialis anterior results prolonged while the timing of activation of the gastrocnemius medialis results delayed. Conclusion: The patients with AS prefer therefore an eccentric contraction of the tibial anterior in comparison to a concentric contraction of the gastrocnemius medialis, “opting” for a gait strategy that confers greater stability but limited power.

  12. Balzac and human gait analysis.

    Science.gov (United States)

    Collado-Vázquez, S; Carrillo, J M

    2015-05-01

    People have been interested in movement analysis in general, and gait analysis in particular, since ancient times. Aristotle, Hippocrates, Galen, Leonardo da Vinci and Honoré de Balzac all used observation to analyse the gait of human beings. The purpose of this study is to compare Honoré de Balzac's writings with a scientific analysis of human gait. Honoré de Balzac's Theory of walking and other works by that author referring to gait. Honoré de Balzac had an interest in gait analysis, as demonstrated by his descriptions of characters which often include references to their way of walking. He also wrote a treatise entitled Theory of walking (Théorie de la demarche) in which he employed his keen observation skills to define gait using a literary style. He stated that the walking process is divided into phases and listed the factors that influence gait, such as personality, mood, height, weight, profession and social class, and also provided a description of the correct way of walking. Balzac considered gait analysis to be very important and this is reflected in both his character descriptions and Theory of walking, his analytical observation of gait. In our own technology-dominated times, this serves as a reminder of the importance of observation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Knee joint biomechanics and neuromuscular control during gait before and after total knee arthroplasty are sex-specific.

    Science.gov (United States)

    Astephen Wilson, Janie L; Dunbar, Michael J; Hubley-Kozey, Cheryl L

    2015-01-01

    The future of total knee arthroplasty (TKA) surgery will involve planning that incorporates more patient-specific characteristics. Despite known biological, morphological, and functional differences between men and women, there has been little investigation into knee joint biomechanical and neuromuscular differences between men and women with osteoarthritis, and none that have examined sex-specific biomechanical and neuromuscular responses to TKA surgery. The objective of this study was to examine sex-associated differences in knee kinematics, kinetics and neuromuscular patterns during gait before and after TKA. Fifty-two patients with end-stage knee OA (28 women, 24 men) underwent gait and neuromuscular analysis within the week prior to and one year after surgery. A number of sex-specific differences were identified which suggest a different manifestation of end-stage knee OA between the sexes.

  14. Biomechanical organization of gait initiation depends on the timing of affective processing

    NARCIS (Netherlands)

    Stins, J.F.; Van Gelder, M.A.; Oudenhoven, L.M.; Beek, P.J.

    2015-01-01

    Gait initiation (GI) from a quiet bipedal posture has been shown to be influenced by the emotional state of the actor. The literature suggests that the biomechanical organization of forward GI is facilitated when pleasant pictures are shown, as compared to unpleasant pictures. However, there are inc

  15. Gait analysis in anorexia and bulimia nervosa.

    Science.gov (United States)

    Cimolin, Veronica; Galli, Manuela; Vismara, Luca; Vimercati, Sara Laura; Precilios, Helmer; Cattani, Laila; Fabris De Souza, Shirley; Petroni, Maria Letizia; Capodaglio, Paolo

    2013-09-13

    Anorexia (AN) and Bulimia Nervosa (BN) are two common eating disorders, which appear to share some reduced motor capacities, such as a reduced balance. The presence and the extent of other motor disorders have not been investigated in a comprehensive way. The aim of this study was to quantify gait pattern in AN and BN individuals in order to ascertain possible differences from the normality range and provide novel data for developing some evidence-based rehabilitation strategies. Nineteen AN patients (age 30.16+9.73) and 20 BN patients (age 26.8+8.41) were assessed with quantitative 3D computerized Gait Analysis. Results were compared with a group of healthy controls (CG; 30.7+5.6). AN and BN patients were characterized by different gait strategies compared to CG. Spatio-temporal parameters indicated shorter step length, with AN showing the shortest values. AN walked slower than BN and CG. As for kinematics, AN and BN showed a nonphysiologic pattern at pelvis and hip level on the sagittal and frontal plane, with BN yielding the most abnormal values. Both AN and BN patients were characterized by high ankle plantar flexion capacity at toe-off when compared to CG. As for ankle kinetics, both AN and BN showed physiologic patterns. Stiffness at hip level was close to CG in both pathologic groups; at the ankle level, stiffness was significantly decreased in both groups, with AN displaying lower values. Both AN and BN were characterized by an altered gait pattern compared to CG. Biomechanical differences were evident mainly at pelvis and hip level. Loss of lean mass may lead to musculoskeletal adaptation, ultimately causing alterations in the gait pattern.

  16. Gender differences in the restoration of knee joint biomechanics during gait after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Asaeda, Makoto; Deie, Masataka; Fujita, Naoto; Kono, Yoshifumi; Terai, Chiaki; Kuwahara, Wataru; Watanabe, Hodaka; Kimura, Hiroaki; Adachi, Nobuo; Sunagawa, Toru; Ochi, Mitsuo

    2017-03-01

    The aim of our study was to evaluate the effects of gender on recovery of knee joint biomechanics over the stance phase of gait after reconstruction of the anterior cruciate ligament (ACL). Gait parameters and knee joint kinematics and kinetics were compared in 32 patients (16 male and 16 female) who underwent ACL reconstruction for a unilateral ACL deficiency, with comparison to an age-, height-, and weight-matched Control group. Knee flexion, adduction and tibial rotation angles were measured and knee extension and abduction moment was calculated by inverse dynamics methods. Females exhibited more tibial external rotation, in both the Control and ACL groups (Pbiomechanics were changed, in both males and females, compared to the Control groups (Pknee over the stance phase of gait, both pre-operatively and post-ACL reconstruction. Evaluation of biomechanical effects of ACL injury, before and after reconstruction, should be separately evaluated for females and males. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. [Clinical gait analysis: user guide].

    Science.gov (United States)

    Armand, Stéphane; Bonnefoy-Mazure, Alice; Hoffmeyer, Pierre; De Coulon, Geraldo

    2015-10-14

    Clinical gait analysis has become an indispensable medical examination for the management of patients with complex gait disorders. As its name suggests, the purpose of this examination is to assess patients whilst they are walking in a laboratory setting. Measurements include: 3 dimensional joint motion, forces applied to joints, and electromyographic muscle activity. This quantitative data allows identification of walking deviations and to deduce the likely causes of these deviations thanks to the clinical data available for each patient.

  18. Microprocessor-based gait analysis system to retrain Trendelenburg gait.

    Science.gov (United States)

    Petrofsky, J S

    2001-01-01

    A microprocessor-based gait analysis system is described that uses two electromyogram (EMG) amplifiers, two foot switches and an audio feedback device to allow the retraining of one type of improper gait, where the hip abductors (gluteus medius muscles) are weak on one side of the body, causing the opposite hip to drop during the swing phase of gait (Trendelenburg gait). As the abnormality is strictly on one side of the body in most people, the circuitry is minimised, as gait can be analysed by only comparing muscle activity in the affected gluteus medius muscle with that in the unaffected gluteus medius muscle, through the EMG. Two foot contact switches are used to help assess timing of the step cycle. If gait is different on the two sides of the body, an audio cue directs the patient to correct the abnormality by increasing activity on the affected side. The device is tested on five patients. Trendelenburg gait is reduced by an average of 29 degrees through the use of the device. The average stride length at the beginning of the study is 0.32 +/- 0.3 m. By the end of the study, the stride length is increased to 0.45 +/- 0.2 m for the entire group of five subjects. The speed of gait has increased from 1.6 +/- 0.4 kmh(-1) to 3.1 +/- 0.5km h(-1).

  19. Gait analysis of adults with generalised joint hypermobility

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Tegner, Heidi; Alkjær, Tine;

    2012-01-01

    BACKGROUND: The majority of adults with Generalised Joint Hypermobility experience symptoms such as pain and joint instability, which is likely to influence their gait pattern. Accordingly, the purpose of the present project was to perform a biomechanical gait analysis on a group of patients...... with Generalised Joint Hypermobility and compare them to a group of healthy subjects. METHODS: Seventeen adults clinically classified with Generalised Joint Hypermobility (6 males and 11 females) and seventeen healthy subjects (9 males and 8 females) were included in the project. The subjects walked across three...

  20. Using Clinical Gait Case Studies to Enhance Learning in Biomechanics

    Science.gov (United States)

    Chester, Victoria

    2011-01-01

    Clinical case studies facilitate the development of clinical reasoning strategies through knowledge and integration of the basic sciences. Case studies have been shown to be more effective in developing problem-solving abilities than the traditional lecture format. To enhance the learning experiences of students in biomechanics, clinical case…

  1. Gait Analysis in Cervical Spondylotic Myelopathy

    OpenAIRE

    Nishimura, Hirosuke; Endo, Kenji; Suzuki, Hidekazu; Tanaka, Hidetoshi; Shishido, Takaaki; Yamamoto, Kengo

    2015-01-01

    Study Design Gait analysis of patients with cervical spondylotic myelopathy (CSM) by using a sheet-type gait analysis system. Purpose The aim of this study was to compare the gait patterns of patients with CSM, evaluated by the Nurick grades, and to determine the threshold values of gait parameters predicting the occurrence of a fall by using a gait recorder. Overview of Literature Gait disorder due to CSM may progress to severe paraplegia, following even a minor trauma such as a fall. The in...

  2. Análise biomecânica das articulações do quadril e joelho durante a marcha em participantes idosos Biomechanical analysis of hip and knee joints during gait in elderly subjects

    Directory of Open Access Journals (Sweden)

    Renata Noce Kirkwood

    2007-01-01

    . The total effort generated at the knee joint during gait was 0,30J/kg, with 7% occurring on frontal plane, 90% on sagittal plane, and 3% on transverse plane. The biomechanical analysis of the joints during different activities would help clinicians to identify and understand important variables required for improving the performance and deficits of elderly individuals.

  3. Gait analysis in hip viscosupplementation for osteoarthritis: a case report

    Directory of Open Access Journals (Sweden)

    L. Di Lorenzo

    2013-10-01

    Full Text Available Hip is a site very commonly affected by osteoarthritis and the intra-articular administration of hyaluronic acid in the management of osteoarthritic pain is increasingly used. However, the debate about its usefulness is still ongoing, as not all results of clinical trials confirm its effectiveness. In order to achieve the best outcome, clinical assessment and treatment choices should be based on subjective outcome, pathological and mechanical findings that should be integrated with qualitative analysis of human movement. After viscosupplementation, clinical trials often evaluate as endpoint subjective outcomes (i.e. pain visual analogic scale and static imaging such as radiographs and magnetic resonance imaging. In our clinical practice we use gait analysis as part of rehabilitation protocol to measure performance, enhancement and changes of several biomechanical factors. Taking advantage of available resources (BTS Bioengineering gait analysis Elite System we studied a patient’s gait after ultrasound guided hip injections for viscosupplementation. He showed an early clinical and biomechanical improvement during walking after a single intra articular injection of hyaluronic acid. Gait analysis parameters obtained suggest that the pre-treatment slower speed may be caused by antalgic walking patterns, the need for pain control and muscle weakness. After hip viscosupplementation, the joint displayed different temporal, kinetic and kinematic parameters associated with improved pain patterns.

  4. Gait analysis in hip viscosupplementation for osteoarthritis: a case report.

    Science.gov (United States)

    Di Lorenzo, L

    2013-10-31

    Hip is a site very commonly affected by osteoarthritis and the intra-articular administration of hyaluronic acid in the management of osteoarthritic pain is increasingly used. However, the debate about its usefulness is still ongoing, as not all results of clinical trials confirm its effectiveness. In order to achieve the best outcome, clinical assessment and treatment choices should be based on subjective outcome, pathological and mechanical findings that should be integrated with qualitative analysis of human movement. After viscosupplementation, clinical trials often evaluate as endpoint subjective outcomes (i.e. pain visual analogic scale) and static imaging such as radiographs and magnetic resonance imaging. In our clinical practice we use gait analysis as part of rehabilitation protocol to measure performance, enhancement and changes of several biomechanical factors. Taking advantage of available resources (BTS Bioengineering gait analysis Elite System) we studied a patient's gait after ultrasound guided hip injections for viscosupplementation. He showed an early clinical and biomechanical improvement during walking after a single intra articular injection of hyaluronic acid. Gait analysis parameters obtained suggest that the pre-treatment slower speed may be caused by antalgic walking patterns, the need for pain control and muscle weakness. After hip viscosupplementation, the joint displayed different temporal, kinetic and kinematic parameters associated with improved pain patterns.

  5. Trunk biomechanics during hemiplegic gait after stroke: A systematic review.

    Science.gov (United States)

    Van Criekinge, Tamaya; Saeys, Wim; Hallemans, Ann; Velghe, Silke; Viskens, Pieter-Jan; Vereeck, Luc; De Hertogh, Willem; Truijen, Steven

    2017-03-04

    Stroke commonly results in trunk impairments that are associated with decreased trunk coordination and limited trunk muscle strength. These impairments often result in biomechanical changes during walking. Additionally, the so-called pelvic step might be influenced by these impairments. Therefore, the aim of this review was twofold. First, to gain more insight into trunk biomechanics during walking in stroke patients compared to healthy individuals. Second, to investigate the influence of walking speed on trunk biomechanics. The search strategy was performed by the PRISMA guidelines and registered in the PROSPERO database (no. CRD42016035797). Databases MEDLINE, Web of Science, Cochrane Library, ScienceDirect, and Rehabdata were systematically searched until December 2016. Sixteen of the 1099 studies met the eligibility criteria and were included in this review. Risk of bias was assessed by the Newcastle-Ottawa Scale. The majority of studies reported on trunk kinematics during walking, data on trunk kinetics and muscle activity is lacking. Following stroke, patients walk with increased mediolateral trunk sway and larger sagittal motion of the lower trunk. Although rotation of the upper trunk is increased, the trunk shows a more in-phase coordination. Acceleration of the trunk diminishes while instability and asymmetry increase as there are less movement towards the paretic side. However, it is of great importance to differentiate between compensatory trunk movements and intrinsic trunk control deficits. Specific exercise programs, assistive devices and orthoses might be of help in controlling these deficits. Importantly, studies suggested that more natural trunk movements were observed when walking speed was increased.

  6. 臀肌挛缩症的步态特征生物力学分析%Biomechanical Analysis of Gait Characteristics of Gluteal Muscle Contracture

    Institute of Scientific and Technical Information of China (English)

    叶斌; 陈友燕; 张胜年; 余俊; 张弛; 张海林

    2013-01-01

    目的 为临床治疗与康复实施提供客观依据.方法 对臀肌挛缩患者常速及快速行走时的步态数据进行采集与分析.结果 快速行走时臀肌挛缩症患者的步态周期小于正常人(P=0.0389,P<0.05),步频大于正常人(P=0.0124,P<0.05).患者在常速、快速行走时髋关节摆动相最大屈曲角度与正常人之间存在统计学差异(P =0.0049,P<0.05)、(P=0.0327,P<0.05);常速及快速行走时臀肌挛缩患者髋关节向严重侧与向非严重侧的旋转角度差均大于正常人(P=0.0230,P<0.05);快走时臀肌挛缩患者步态的支撑期膝关节屈曲角度大于正常人(P=0.03140,P<0.05).臀肌挛缩患者在常速行走时重心晃动与正常人之间存在统计学差异(P=0.0370,P<0.05).结论 ①臀肌挛缩患者行走时步频小于正常人,下肢双支撑时间所占比例大于正常人.②患者行走时髋关节过度后伸,髋关节屈曲受限,向左右两侧旋转不对称.%Objective To Provide an objective basis for the treatment and rehabilitation of the patients with gluteal muscle contracture. Methods The walking gait data at normal and high speed in patients with gluteal muscle contracture were selected and analyzed. Results At the high speed walking,the gait cycle of patients with gluteal muscle contracture was less than that of normal subjects(P = 0.0389,P <0.05) ,but the stride frequency was greater(P = 0.0124,P<0.05). The maximum hip flexion angle in hip swing phase at normal and high speed walking were statistically significant difference (P =0. 0049, P <0. 05 ;P = 0.0327,P<0.05) ;The hip rotation angle to both serious side and non-serious side at normal and high speed walking in gluteus contracture patients were greater than those in normal people(P=0.03140,P<0.05) ;The knee flexion angle during the stance phase of gait at high speed in patients with gluteal muscle contracture was greater than that in normal people (P =0.03140, P < 0.05) ;The differences in

  7. A mechanical energy analysis of gait initiation

    Science.gov (United States)

    Miller, C. A.; Verstraete, M. C.

    1999-01-01

    The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.

  8. The effect of age and knee osteoarthritis on muscle activation patterns and knee joint biomechanics during dual belt treadmill gait.

    Science.gov (United States)

    Rutherford, Derek; Baker, Matthew; Wong, Ivan; Stanish, William

    2017-06-01

    To compare a group of individuals with moderate medial compartment knee osteoarthritis (OA) to both an age-matched asymptomatic group of older adults and younger adults to determine whether differences in knee joint muscle activation patterns and joint biomechanics exist during gait between these three groups. 20 young adults, 20 older adults, and 40 individuals with moderate knee OA were recruited. Using standardized procedures, surface electromyograms were recorded from the vastus lateralis and medialis, rectus femoris and the medial and lateral hamstrings. All individuals walked on a dual belt instrumented treadmill while segment motions and ground reaction forces were recorded. Sagittal plane motion and net external sagittal and frontal plane moments were calculated. Discrete measures and principal component analyses extracted amplitude and temporal waveform features. Analysis of Variance models using Bonferroni corrections determined between and within group differences in these gait features (α=0.05). Individuals with knee OA have distinct biomechanics and muscle activation patterns when compared to age-matched asymptomatic adults and younger adults whereas differences between the young and older adults were few and included only measures of muscle activation amplitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Gait biomechanics of individuals with transtibial amputation: effect of suspension system.

    Directory of Open Access Journals (Sweden)

    Arezoo Eshraghi

    Full Text Available Prosthetic suspension system is an important component of lower limb prostheses. Suspension efficiency can be best evaluated during one of the vital activities of daily living, i.e. walking. A new magnetic prosthetic suspension system has been developed, but its effects on gait biomechanics have not been studied. This study aimed to explore the effect of suspension type on kinetic and kinematic gait parameters during level walking with the new suspension system as well as two other commonly used systems (the Seal-In and pin/lock. Thirteen persons with transtibial amputation participated in this study. A Vicon motion system (six cameras, two force platforms was utilized to obtain gait kinetic and kinematic variables, as well as pistoning within the prosthetic socket. The gait deviation index was also calculated based on the kinematic data. The findings indicated significant difference in the pistoning values among the three suspension systems. The Seal-In system resulted in the least pistoning compared with the other two systems. Several kinetic and kinematic variables were also affected by the suspension type. The ground reaction force data showed that lower load was applied to the limb joints with the magnetic suspension system compared with the pin/lock suspension. The gait deviation index showed significant deviation from the normal with all the systems, but the systems did not differ significantly. Main significant effects of the suspension type were seen in the GRF (vertical and fore-aft, knee and ankle angles. The new magnetic suspension system showed comparable effects in the remaining kinetic and kinematic gait parameters to the other studied systems. This study may have implications on the selection of suspension systems for transtibial prostheses. Trial registration: Iranian Registry of Clinical Trials IRCT2013061813706N1.

  10. Biomechanical gait features associated with hip osteoarthritis: Towards a better definition of clinical hallmarks.

    Science.gov (United States)

    Meyer, Christophe A G; Corten, Kristoff; Fieuws, Steffen; Deschamps, Kevin; Monari, Davide; Wesseling, Mariska; Simon, Jean-Pierre; Desloovere, Kaat

    2015-10-01

    Critical appraisal of the literature highlights that the discriminative power of gait-related features in patients with hip osteoarthritis (OA) has not been fully explored. We aimed to reduce the number of gait-related features and define the most discriminative ones comparing the three-dimensional gait analysis of 20 patients with hip osteoarthritis (OA) with those of 17 healthy peers. First, principal component analysis was used to reduce the high-dimensional gait data into a reduced set of interpretable variables for further analysis, including tests for group differences. These differences were indicative for the selection of the top 10 variables to be included into linear discriminant analysis models (LDA). Our findings demonstrated the successful data reduction of hip osteoarthritic-related gait features with a high discriminatory power. The combination of the top variables into LDA models clearly separated groups, with a maximum misclassification error rate of 19%, estimated by cross-validation. Decreased hip/knee extension, hip flexion and internal rotation moment were gait features with the highest discriminatory power. This study listed the most clinically relevant gait features characteristics of hip OA. Moreover, it will help clinicians and physiotherapists understand the movement pathomechanics related to hip OA useful in the management and design of rehabilitation intervention.

  11. Effect of prosthetic gel liner thickness on gait biomechanics and pressure distribution within the transtibial socket

    Directory of Open Access Journals (Sweden)

    Erin Boutwell, MS

    2012-04-01

    Full Text Available Prosthetic gel liners are often prescribed for persons with lower-limb amputations to make the prosthetic socket more comfortable. However, their effects on residual limb pressures and gait characteristics have not been thoroughly explored. This study investigated the effects of gel liner thickness on peak socket pressures and gait patterns of persons with unilateral transtibial amputations. Pressure and quantitative gait data were acquired while subjects walked on liners of two different uniform thicknesses. Fibular head peak pressures were reduced (p = 0.04 with the thicker liner by an average of 26 +/– 21%, while the vertical ground reaction force (GRF loading peak increased 3 +/– 3% (p = 0.02. Most subjects perceived increased comfort within the prosthetic socket with the thicker liner, which may be associated with the reduced fibular head peak pressures. Additionally, while the thicker liner presumably increased comfort by providing a more compliant limb-socket interface, the higher compliance may have reduced force and vibration feedback to the residual limb and contributed to the larger vertical GRF loading peaks. We conclude that determining optimal gel liner thickness for a particular individual will require further investigations to better identify and understand the compromises that occur between user perception, residual-limb pressure distribution, and gait biomechanics.

  12. Effect of prosthetic gel liner thickness on gait biomechanics and pressure distribution within the transtibial socket.

    Science.gov (United States)

    Boutwell, Erin; Stine, Rebecca; Hansen, Andrew; Tucker, Kerice; Gard, Steven

    2012-01-01

    Prosthetic gel liners are often prescribed for persons with lower-limb amputations to make the prosthetic socket more comfortable. However, their effects on residual limb pressures and gait characteristics have not been thoroughly explored. This study investigated the effects of gel liner thickness on peak socket pressures and gait patterns of persons with unilateral transtibial amputations. Pressure and quantitative gait data were acquired while subjects walked on liners of two different uniform thicknesses. Fibular head peak pressures were reduced (p = 0.04) with the thicker liner by an average of 26 +/- 21%, while the vertical ground reaction force (GRF) loading peak increased 3 +/- 3% (p = 0.02). Most subjects perceived increased comfort within the prosthetic socket with the thicker liner, which may be associated with the reduced fibular head peak pressures. Additionally, while the thicker liner presumably increased comfort by providing a more compliant limb-socket interface, the higher compliance may have reduced force and vibration feedback to the residual limb and contributed to the larger vertical GRF loading peaks. We conclude that determining optimal gel liner thickness for a particular individual will require further investigations to better identify and understand the compromises that occur between user perception, residual-limb pressure distribution, and gait biomechanics.

  13. Gait Analysis Laboratory

    Science.gov (United States)

    1976-01-01

    Complete motion analysis laboratory has evolved out of analyzing walking patterns of crippled children at Stanford Children's Hospital. Data is collected by placing tiny electrical sensors over muscle groups of child's legs and inserting step-sensing switches in soles of shoes. Miniature radio transmitters send signals to receiver for continuous recording of abnormal walking pattern. Engineers are working to apply space electronics miniaturization techniques to reduce size and weight of telemetry system further as well as striving to increase signal bandwidth so analysis can be performed faster and more accurately using a mini-computer.

  14. Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives.

    Science.gov (United States)

    Martín López, Lucía Martina; Miller, Patrick J O; Aguilar de Soto, Natacha; Johnson, Mark

    2015-05-01

    Diving animals modulate their swimming gaits to promote locomotor efficiency and so enable longer, more productive dives. Beaked whales perform extremely long and deep foraging dives that probably exceed aerobic capacities for some species. Here, we use biomechanical data from suction-cup tags attached to three species of beaked whales (Mesoplodon densirostris, N=10; Ziphius cavirostris, N=9; and Hyperoodon ampullatus, N=2) to characterize their swimming gaits. In addition to continuous stroking and stroke-and-glide gaits described for other diving mammals, all whales produced occasional fluke-strokes with distinctly larger dorso-ventral acceleration, which we termed 'type-B' strokes. These high-power strokes occurred almost exclusively during deep dive ascents as part of a novel mixed gait. To quantify body rotations and specific acceleration generated during strokes we adapted a kinematic method combining data from two sensors in the tag. Body rotations estimated with high-rate magnetometer data were subtracted from accelerometer data to estimate the resulting surge and heave accelerations. Using this method, we show that stroke duration, rotation angle and acceleration were bi-modal for these species, with B-strokes having 76% of the duration, 52% larger body rotation and four times more surge than normal strokes. The additional acceleration of B-strokes did not lead to faster ascents, but rather enabled brief glides, which may improve the overall efficiency of this gait. Their occurrence towards the end of long dives leads us to propose that B-strokes may recruit fast-twitch fibres that comprise ∼80% of swimming muscles in Blainville's beaked whales, thus prolonging foraging time at depth.

  15. Optics in gait analysis and anthropometry

    Science.gov (United States)

    Silva Moreno, Alejandra Alicia

    2013-11-01

    Since antiquity, human gait has been studied to understand human movement, the kind of gait, in some cases, can cause musculoskeletal disorders or other health problems; in addition, also from antiquity, anthropometry has been important for the design of human items such as workspaces, tools, garments, among others. Nowadays, thanks to the development of optics and electronics, more accurate studies of gait and anthropometry can be developed. This work will describe the most important parameters for gait analysis, anthropometry and the optical systems used.

  16. Biomechanical alterations of gait termination in middle-aged and elderly women.

    Science.gov (United States)

    Jung, Sangwoo; Yi, Jaehoon; Song, Changho

    2016-03-01

    [Purpose] The purpose of this study was to analyze the biomechanical changes and patterns of the lower extremities after gait termination in middle-aged and elderly women. [Subjects] The study population comprised an elderly group and middle-aged group. [Methods] To collect kinematic and kinetic data related to gait termination, six infrared cameras and one force platform were used, and variables were calculated by using Visual 3D. [Results] During the termination phase, the elderly group generated less braking force than the middle-aged group. During initiation of the termination phase and after the center of gravity completely stopped moving, there was a difference between the two groups in the hip joint angle. During the termination phase, the maximum angular velocity and extension moment of the ankle joint and those of the knee joint were higher in the elderly group than in the middle-aged group. [Conclusion] In contrast to the middle-aged group that showed a rapid increase and then decrease of the initial extension moment during gait termination, the maximum extension moment that was created during the early stage of the termination phase in the elderly group continued until the center of gravity completely stopped.

  17. Gait Analysis by High School Students

    Science.gov (United States)

    Heck, Andre; van Dongen, Caroline

    2008-01-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of motions with a video analysis tool and via…

  18. Biomechanical study of tarsometatarsal joint fusion using finite element analysis.

    Science.gov (United States)

    Wang, Yan; Li, Zengyong; Zhang, Ming

    2014-11-01

    Complications of surgeries in foot and ankle bring patients with severe sufferings. Sufficient understanding of the internal biomechanical information such as stress distribution, contact pressure, and deformation is critical to estimate the effectiveness of surgical treatments and avoid complications. Foot and ankle is an intricate and synergetic system, and localized intervention may alter the functions to the adjacent components. The aim of this study was to estimate biomechanical effects of the TMT joint fusion using comprehensive finite element (FE) analysis. A foot and ankle model consists of 28 bones, 72 ligaments, and plantar fascia with soft tissues embracing all the segments. Kinematic information and ground reaction force during gait were obtained from motion analysis. Three gait instants namely the first peak, second peak and mid-stance were simulated in a normal foot and a foot with TMT joint fusion. It was found that contact pressure on plantar foot increased by 0.42%, 19% and 37%, respectively after TMT fusion compared with normal foot walking. Navico-cuneiform and fifth meta-cuboid joints sustained 27% and 40% increase in contact pressure at second peak, implying potential risk of joint problems such as arthritis. Von Mises stress in the second metatarsal bone increased by 22% at midstance, making it susceptible to stress fracture. This study provides biomechanical information for understanding the possible consequences of TMT joint fusion.

  19. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals.

    Science.gov (United States)

    Dionisio, Valdeci C; Brown, David A

    2016-06-16

    Collaborative robots are used in rehabilitation and are designed to interact with the client so as to provide the ability to assist walking therapeutically. One such device is the KineAssist which was designed to interact, either in a self-driven mode (SDM) or in an assist mode (AM), with neurologically-impaired individuals while they are walking on a treadmill surface. To understand the level of transparency (i.e., interference with movement due to the mechanical interface) between human and robot, and to estimate and account for changes in the kinetics and kinematics of the gait pattern, we tested the KineAssist under conditions of self-drive and horizontal push assistance. The aims of this study were to compare the joint kinematics, forces and moments during walking at a fixed constant treadmill belt speed and constrained walking cadence, with and without the robotic device (OUT) and to compare the biomechanics of assistive and self-drive modes in the device. Twenty non-neurologically impaired adults participated in this study. We evaluated biomechanical parameters of walking at a fixed constant treadmill belt speed (1.0 m/s), with and without the robotic device in assistive mode. We also tested the self-drive condition, which enables the user to drive the speed and direction of a treadmill belt. Hip, knee and ankle angular displacements, ground reaction forces, hip, knee and ankle moments, and center of mass displacement were compared "in" vs "out" of the device. A repeated measures ANOVA test was applied with the three level factor of condition (OUT, AM, and SDM), and each participant was used as its own comparison. When comparing "in" and "out" of the device, we did not observe any interruptions and/or reversals of direction of the basic gait pattern trajectory, but there was increased ankle and hip angular excursions, vertical ground reaction force and hip moments and reduced center of mass displacement during the "in device" condition. Comparing assistive

  20. Effects of robotic gait rehabilitation on biomechanical parameters in the chronic hemiplegic patients.

    Science.gov (United States)

    Wallard, L; Dietrich, G; Kerlirzin, Y; Bredin, J

    2015-09-01

    Hemiplegia is a more or less complete loss of hemibody voluntary motricity following a brain injury, usually resulting in alterations of the locomotor system with persistent disorders of movement and posture. We were interested in studying the gait pattern called "stiff knee gait" with the main objective to highlight the role of a robotic rehabilitation in improving or modifying/changing the walking pattern in adults with chronic hemiplegic disorders. Data were collected by a motion analysis system (Vicon(®)--Oxford Metrics, Oxford, UK) in order to achieve a Clinical Gait Analysis before and after a robotic gait rehabilitation (Lokomat(®)). Four intensive sessions per weeks during five weeks were performed by ten chronic hemiplegic adults. The results show a significant improvement in locomotor parameters (walking speed, step length, single and double support time) and in the knee kinematics. This first study provides experimental evidence of the importance and usefulness of the robotic rehabilitation as an aid in the rehabilitation of gait pattern in adults with chronic hemiplegia. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. The effects of muscle damage following eccentric exercise on gait biomechanics.

    Science.gov (United States)

    Paschalis, Vassilis; Giakas, Giannis; Baltzopoulos, Vassilios; Jamurtas, Athanasios Z; Theoharis, Vassilios; Kotzamanidis, Christos; Koutedakis, Yiannis

    2007-02-01

    To examine the effects of knee extensors muscle damage on walking and running biomechanics in healthy males. Muscle damage was caused by 60 (6x10) maximal eccentric knee flexions of both legs, selected in a random order, at an angular velocity of 1.05rad/s in 10 volunteers (mean age 20+/-1.0 years). Muscle damage indicators (creatine kinase (CK), lactate dehydrogenase (LDH), delayed onset muscle soreness (DOMS), eccentric and isometric (110 degrees knee flexion) peak torque), pelvic three dimensional (3D) orientation, as well as hip, knee and ankle-joint flexion/extension angles during gait (walking at 1.2m/s and running at 2.8m/s) were assessed pre- and 48h post-eccentric exercise. All muscle damage indicators revealed significant changes post- compared to pre-exercise data (Pknee-joint angle range of movement at the stance and swing phases during walking (Pknee extensors result in changes of treadmill walking and running kinematics at both knee joint and pelvis. The fact that these alterations occur at different gait phases could be attributed to the speed of movement and to a self-protection mechanism to prevent further damage.

  2. Effect of valgus knee alignment on gait biomechanics in healthy women.

    Science.gov (United States)

    Hoch, Matthew C; Weinhandl, Joshua T

    2017-08-01

    The purpose of this study was to compare lower extremity kinematics and kinetics between women with greater or lesser degrees of valgus knee alignment during gait. Nine women with greater valgus knee alignment (11.9±1.6°) were compared to nine women with lesser valgus knee alignment (6.6±2.4°). Participants completed a biomechanical assessment of overground walking for the right limb. Dependent variables included sagittal and frontal plane joint angles and moments for the hip, knee, and ankle at peak vertical ground reaction force, along with knee abduction angular impulse. Sagittal and frontal plane excursions for the hip, knee, and ankle were calculated from heel strike to the peak angle for each variable. The greater valgus alignment group demonstrated lower knee abduction moment (p=0.007), lower knee adduction angle (p0.05). Less knee adduction angle and excursion coupled with lower knee abduction moment and angular impulse in women with greater knee valgus indicates these individuals may be experiencing biomechanics which promote lateral tibiofemoral joint loading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Spinal alignment evolution with age: A prospective gait analysis study

    Science.gov (United States)

    Pesenti, Sébastien; Blondel, Benjamin; Peltier, Emilie; Viehweger, Elke; Pomero, Vincent; Authier, Guillaume; Fuentes, Stéphane; Jouve, Jean-Luc

    2017-01-01

    AIM To describe, using gait analysis, the development of spinal motion in the growing child. METHODS Thirty-six healthy children aged from 3 to 16 years old were included in this study for a gait analysis (9 m-walk). Various kinematic parameters were recorded and analyzed such as thoracic angle (TA), lumbar angle (LA) and sagittal vertical axis (SVA). The kinetic parameters were the net reaction moments (N.m/kg) at the thoracolumbar and lumbosacral junctions. RESULTS TA and LA curves were not statistically correlated to the age (respectively, P = 0.32 and P = 0.41). SVA increased significantly with age (P < 0.001). Moments in sagittal plane at the lumbosacral junction were statistically correlated to the age (P = 0.003), underlining the fact that sagittal mechanical constraints at the lumbosacral junction increase with age. Moments in transversal plane at the thoracolumbar and lumbosacral junctions were statistically correlated to the age (P = 0.0002 and P = 0.0006), revealing that transversal mechanical constraints decrease with age. CONCLUSION The kinetic analysis showed that during growth, a decrease of torsional constraint occurs while an increase of sagittal constraint is observed. These changes in spine biomechanics are related to the crucial role of the trunk for bipedalism acquisition, allowing stabilization despite lower limbs immaturity. With the acquisition of mature gait, the spine will mainly undergo constraints in the sagittal plane.

  4. Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial, Vertical Shock and Energy Storing Return Prosthetic Feet During Simple & Complex Mobility Activities

    Science.gov (United States)

    2013-10-01

    AD_________________ Award Number: W81XWH-11-1-0748 TITLE: Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial...Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial, Vertical Shock and Energy Storing Return Prosthetic Feet During Simple... athlete . Amputee performance will also be compared to a non-amputee control group. Body At this time we can report that 100% of experimental

  5. In Vivo Gait Analysis During Bone Transport.

    Science.gov (United States)

    Mora-Macías, J; Reina-Romo, E; Morgaz, J; Domínguez, J

    2015-09-01

    The load bearing characteristics of the intervened limb over time in vivo are important to know in distraction osteogenesis and bone healing for the characterization of the bone maturation process. Gait analyses were performed for a group of sheep in which bone transport was carried out. The ground reaction force was measured by means of a force platform, and the gait parameters (i.e., the peak, the mean vertical ground reaction force and the impulse) were calculated during the stance phase for each limb. The results showed that these gait parameters decreased in the intervened limb and interestingly increased in the other limbs due to the implantation of the fixator. Additionally, during the process, the gait parameters exponentially approached the values for healthy animals. Corresponding radiographies showed an increasing level of ossification in the callus. This study shows, as a preliminary approach to be confirmed with more experiments, that gait analysis could be used as an alternative method to control distraction osteogenesis or bone healing. For example, these analyses could determine the appropriate time to remove the fixator. Furthermore, gait analysis has advantages over other methods because it provides quantitative data and does not require instrumented fixators.

  6. Variations in kinematics during clinical gait analysis in stroke patients.

    Directory of Open Access Journals (Sweden)

    Julien Boudarham

    Full Text Available In addition to changes in spatio-temporal and kinematic parameters, patients with stroke exhibit fear of falling as well as fatigability during gait. These changes could compromise interpretation of data from gait analysis. The aim of this study was to determine if the gait of hemiplegic patients changes significantly over successive gait trials. Forty two stroke patients and twenty healthy subjects performed 9 gait trials during a gait analysis session. The mean and variability of spatio-temporal and kinematic joint parameters were analyzed during 3 groups of consecutive gait trials (1-3, 4-6 and 7-9. Principal component analysis was used to reduce the number of variables from the joint kinematic waveforms and to identify the parts of the gait cycle which changed during the gait analysis session. The results showed that i spontaneous gait velocity and the other spatio-temporal parameters significantly increased, and ii gait variability decreased, over the last 6 gait trials compared to the first 3, for hemiplegic patients but not healthy subjects. Principal component analysis revealed changes in the sagittal waveforms of the hip, knee and ankle for hemiplegic patients after the first 3 gait trials. These results suggest that at the beginning of the gait analysis session, stroke patients exhibited phase of adaptation,characterized by a "cautious gait" but no fatigue was observed.

  7. Variations in kinematics during clinical gait analysis in stroke patients.

    Science.gov (United States)

    Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Bonnyaud, Céline; Bensmail, Djamel; Zory, Raphael

    2013-01-01

    In addition to changes in spatio-temporal and kinematic parameters, patients with stroke exhibit fear of falling as well as fatigability during gait. These changes could compromise interpretation of data from gait analysis. The aim of this study was to determine if the gait of hemiplegic patients changes significantly over successive gait trials. Forty two stroke patients and twenty healthy subjects performed 9 gait trials during a gait analysis session. The mean and variability of spatio-temporal and kinematic joint parameters were analyzed during 3 groups of consecutive gait trials (1-3, 4-6 and 7-9). Principal component analysis was used to reduce the number of variables from the joint kinematic waveforms and to identify the parts of the gait cycle which changed during the gait analysis session. The results showed that i) spontaneous gait velocity and the other spatio-temporal parameters significantly increased, and ii) gait variability decreased, over the last 6 gait trials compared to the first 3, for hemiplegic patients but not healthy subjects. Principal component analysis revealed changes in the sagittal waveforms of the hip, knee and ankle for hemiplegic patients after the first 3 gait trials. These results suggest that at the beginning of the gait analysis session, stroke patients exhibited phase of adaptation,characterized by a "cautious gait" but no fatigue was observed.

  8. Effect of observation on lower limb prosthesis gait biomechanics: Preliminary results.

    Science.gov (United States)

    Malchow, Connor; Fiedler, Goeran

    2016-12-01

    The Hawthorne effect, a subcategory of reactivity, causes human behavior to change when under observation. Such an effect may apply to gait variation of persons with prosthetics or orthotics devices. This study investigated whether the presence of observers directly affects the gait pattern of users of lower limb prostheses. Within-subject intervention study. Primary outcome measures were gait parameters of initial double support time and upper body lateral tilt angle, which were collected with a mobile sensor attached to the subjects' back. To make subjects feel unwatched, a certain amount of deception was necessary, and two different conditions were created and statistically compared against each other: one in which the subjects were initially unaware of the attention of observers and another one in which the same subjects were aware of a group of observers. Data from two subjects using trans-femoral prosthesis are reported. Findings included a change in step initial double support percentage by up to 14.2% (p = 0.019). Considerable changes were also noted in secondary outcome measures including speed, stride length, and stride symmetry. A reactivity effect of observation exists in prosthetics gait analysis. More comprehensive studies may be motivated by these preliminary findings. Results of this study suggest that users of lower limb prostheses walk differently when their gait is being assessed (e.g. in the prosthetist's office) than in situations without observers. This may in part explain the clinical experience that modifications of prosthetic fit or alignment provide only short-term betterment. © The International Society for Prosthetics and Orthotics 2015.

  9. Immediate effects of an elastic knee sleeve on frontal plane gait biomechanics in knee osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Raphael Schween

    Full Text Available Osteoarthritis of the knee affects millions of people. Elastic knee sleeves aim at relieving symptoms. While symptomatic improvements have been demonstrated as a consequence of elastic knee sleeves, evidence for biomechanical alterations only exists for the sagittal plane. We therefore asked what effect an elastic knee sleeve would have on frontal plane gait biomechanics.18 subjects (8 women, 10 men with osteoarthritis of the medial tibiofemoral joint walked over ground with and without an elastic knee sleeve. Kinematics and forces were recorded and joint moments were calculated using an inverse dynamics approach. Conditions with sleeve and without sleeve were compared with paired t-Tests.With the sleeve, knee adduction angle at ground contact was reduced by 1.9 ± 2.1° (P = 0.006. Peak knee adduction was reduced by 1.5 ± 1.6° (P = 0.004. The first peak knee adduction moment and positive knee adduction impulse were decreased by 10.1% (0.74 ± 0.9 Nm • kg-1; P = 0.002 and 12.9% (0.28 ± 0.3 Nm • s • kg-1; P < 0.004, respectively.Our study provides evidence that wearing an elastic knee sleeve during walking can reduce knee adduction angles, moments and impulse in subjects with knee osteoarthritis. As a higher knee adduction moment has previously been identified as a risk factor for disease progression in patients with medial knee osteoarthritis, we speculate that wearing a knee sleeve may be beneficial for this specific subgroup.

  10. Does meniscal pathology alter gait knee biomechanics and strength post-ACL reconstruction?

    Science.gov (United States)

    Hall, Michelle; Bryant, Adam L; Wrigley, Tim V; Pratt, Clare; Crossley, Kay M; Whitehead, Tim S; Morris, Hayden G; Clark, Ross A; Perraton, Luke G

    2016-05-01

    Individuals following anterior cruciate ligament reconstruction (ACLR) with concomitant meniscal pathology have a higher risk of developing knee osteoarthritis (OA) compared to those with isolated ACLR. Knee extensor weakness and altered dynamic knee joint biomechanics have been suggested to play a role in the development of knee OA following ACLR. This study investigated whether these factors differ in people following ACLR who have concomitant meniscal pathology compared to patients with isolated ACLR. Thirty-three patients with isolated ACLR and 34 patients with ACLR and meniscal pathology underwent strength and gait assessment 12-24 months post-operatively. Primary measures were peak isometric knee extensor torque and knee adduction moment (peak and impulse). Secondary measures included peak knee flexion moment and knee kinematics (sagittal and transverse). There were no between-group differences in knee extensor strength [mean difference (95 % CI) 0.09 (-0.23 to 0.42) Nm/kg, n.s.], peak knee adduction moment [-0.02 (-0.54 to 0.49) Nm/(BW × HT) %, n.s.] or knee adduction moment impulse [0.01 (-0.15 to 0.17) Nm/(BW × HT) %, p = n.s.]. No between-group differences were found for any secondary measures. No evidence was found to suggest that the higher prevalence of OA in patients with ACLR and meniscal pathology compared to patients with isolated ACLR is attributed to reduced knee muscle strength or altered knee joint biomechanics assessed 1-2 years post-surgery. Given that there is a higher incidence of knee OA in patients with concomitant meniscal pathology and ACLR, further investigation is needed so that population-specific rehabilitation protocols can be developed. III.

  11. Application of a model to analyze shoulder biomechanics in adult patients with spinal cord injury when walking with crutches in two different gait patterns.

    Science.gov (United States)

    Perez-Rizo, Enrique; Trincado-Alonso, Fernando; Pérez-Nombela, Soraya; Del Ama-Espinosa, Antonio; Jiménez-Díaz, Fernando; Lozano-Berrio, Vicente; Gil-Agudo, Angel

    2017-01-01

    Specific biomechanical models have been developed to study gait using crutches. Clinical application of these models is needed in adult spinal cord injury (SCI) population walking with different patterns of gait with crutches to prevent overuse shoulder injuries. To apply a biomechanical model in a clinical environment to analyze shoulder in adult SCI patients walking with two different patterns of gait with crutches: two point reciprocal gait (RG) and swing-through gait (SG). Load cells were fixed to the distal ends and forearm cuffs of a pair of crutches. An active markers system was used for kinematics. Five cycles for each gait pattern were analyzed applying a biomechanical model of the upper limbs. Fifteen subjects with SCI were analyzed. The flexo-extension range of motion was significantly greater when using SG (p forces were significantly stronger for SG in all 3 directions. Flexion, adduction and internal rotation torques were also greater in SG (p model was successfully applied to study shoulder biomechanics in adult patients with SCI walking with crutches in two different gait patterns. Greater loads exerted on the shoulder walking with SG were confirmed compared to RG.

  12. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  13. Immediate and 1 week effects of laterally wedge insoles on gait biomechanics in healthy females.

    Science.gov (United States)

    Weinhandl, Joshua T; Sudheimer, Sarah E; Van Lunen, Bonnie L; Stewart, Kimberly; Hoch, Matthew C

    2016-03-01

    It is estimated that approximately 45% of the U.S. population will develop knee osteoarthritis, a disease that creates significant economic burdens in both direct and indirect costs. Laterally wedged insoles have been frequently recommended to reduce knee abduction moments and to manage knee osteoarthritis. However, it remains unknown whether the lateral wedge will reduce knee abduction moments over a prolonged period of time. Thus, the purposes of this study were to (1) examine the immediate effects of a laterally wedged insole in individuals normally aligned knees and (2) determine prolonged effects after the insole was worn for 1 week. Gait analysis was performed on ten women with and without a laterally wedged insole. After participants wore the wedges for a week, a second gait analysis was performed with and without the insole. The wedged insole did not affect peak knee abduction moment, although there was a significant increase in knee abduction angular impulse after wearing the insoles for 1 week. Furthermore, there was a significant increase in vertical ground reaction force at the instance of peak knee abduction moment with the wedges. While the laterally wedged insole used in the current study did not alter knee abduction moments as expected, other studies have shown alterations. Future studies should also examine a longer acclimation period, the influence of gait speed, and the effect of different shoe types with the insole.

  14. Comparison of clinical gait analysis strategies by French neurologists, physiatrists and physiotherapists.

    Science.gov (United States)

    Watelain, Eric; Froger, Jérôme; Barbier, Franck; Lensel, Ghislaine; Rousseaux, Marc; Lepoutre, François-Xavier; Thevenon, André

    2003-01-01

    Clinical and functional gait analysis is used widely by different professionals dealing with patients with hemiplegia. The aim of this study was to examine the gait analysis strategies of neurologists, specialists in physical and rehabilitation medicine (physiatrists) and physiotherapists. Differences in global analysis strategy and choice of indicators between different clinicians have not previously been studied precisely, and we believe that a standardized approach would enhance the training of young practitioners. The knowledge acquisition phase (specialists' expertise identification) was completed by an identified expert with a subject groups of 5 neurologists, 5 specialists in physical and rehabilitation medicine and 5 physiotherapists, who were asked to comment on a videotape of patients with hemiplegia walking, followed by a semi-directed interview. The results show that specialists use a wide variety of gait indicators. The total number of different medical vocabulary and expressions used to describe gait was 396, semantically grouped as 60 general indicators. Specialists highlighted an analysis strategy (order, type and number of indicators) typical to each professional specialty. The neurologists tried to identify the elements allowing localization of lesions and characterized the hemiplegia globally,while the specialists in physical and rehabilitation medicine conducted a bio-mechanical analysis and the physiotherapists were highly descriptive. The differences in strategies adopted by each specialty contribute to an enrichment of gait analysis. This should be taken into account in teaching and determining gait assessment scales.

  15. Variability and similarity of gait as evaluated by joint angles: implications for forensic gait analysis.

    Science.gov (United States)

    Yang, Sylvia X M; Larsen, Peter K; Alkjær, Tine; Simonsen, Erik B; Lynnerup, Niels

    2014-03-01

    Closed-circuit television (CCTV) footage is used in criminal investigations to compare perpetrators with suspects. Usually, incomplete gait cycles are collected, making evidential gait analysis challenging. This study aimed to analyze the discriminatory power of joint angles throughout a gait cycle. Six sets from 12 men were collected. For each man, a variability range VR (mean ± 1SD) of a specific joint angle at a specific time point (a gait cycle was 100 time points) was calculated. In turn, each individual was compared with the 11 others, and whenever 1 of these 11 had a value within this individual’s VR, it counted as positive. By adding the positives throughout the gait cycle, we created simple bar graphs; tall bars indicated a small discriminatory power, short bars indicated a larger one. The highest discriminatory power was at time points 60–80 in the gait cycle. We show how our data can assess gait data from an actual case.

  16. Autonomous Gait Event Detection with Portable Single-Camera Gait Kinematics Analysis System

    Directory of Open Access Journals (Sweden)

    Cheng Yang

    2016-01-01

    Full Text Available Laboratory-based nonwearable motion analysis systems have significantly advanced with robust objective measurement of the limb motion, resulting in quantified, standardized, and reliable outcome measures compared with traditional, semisubjective, observational gait analysis. However, the requirement for large laboratory space and operational expertise makes these systems impractical for gait analysis at local clinics and homes. In this paper, we focus on autonomous gait event detection with our bespoke, relatively inexpensive, and portable, single-camera gait kinematics analysis system. Our proposed system includes video acquisition with camera calibration, Kalman filter + Structural-Similarity-based marker tracking, autonomous knee angle calculation, video-frame-identification-based autonomous gait event detection, and result visualization. The only operational effort required is the marker-template selection for tracking initialization, aided by an easy-to-use graphic user interface. The knee angle validation on 10 stroke patients and 5 healthy volunteers against a gold standard optical motion analysis system indicates very good agreement. The autonomous gait event detection shows high detection rates for all gait events. Experimental results demonstrate that the proposed system can automatically measure the knee angle and detect gait events with good accuracy and thus offer an alternative, cost-effective, and convenient solution for clinical gait kinematics analysis.

  17. Biomechanical analysis of rollator walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Larsen, Peter K; Pedersen, Gitte

    2006-01-01

    The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects.......The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....

  18. Rehabilitation in limb deficiency. 1. Gait and motion analysis.

    Science.gov (United States)

    Czerniecki, J M

    1996-03-01

    This self-directed learning module highlights new advances in this topic area. It is part of the chapter on rehabilitation in limb deficiency in the Self-Directed Physiatric Education Program for practitioners and trainees in physical medicine and rehabilitation. This article discusses normal gait, the influence of prosthetic alignment on amputee function, and the effects of prosthetic components on the metabolic costs and the biomechanical function of the amputee. The biomechanics of normal ambulation are presented as a background to enable the practitioner to gain an understanding of the typical gait adaptations that occur in below-knee and above-knee amputees. The effects of newer prosthetic components and socket designs on the biomechanical adaptations are reviewed. The metabolic costs of amputee ambulation are significantly greater than normal. The theoretical mechanisms for this are discussed, and the effects of newer socket designs, ultra-light-weight components, and energy-storing prosthetic components are presented.

  19. Gait signal analysis with similarity measure.

    Science.gov (United States)

    Lee, Sanghyuk; Shin, Seungsoo

    2014-01-01

    Human gait decision was carried out with the help of similarity measure design. Gait signal was selected through hardware implementation including all in one sensor, control unit, and notebook with connector. Each gait signal was considered as high dimensional data. Therefore, high dimensional data analysis was considered via heuristic technique such as the similarity measure. Each human pattern such as walking, sitting, standing, and stepping up was obtained through experiment. By the results of the analysis, we also identified the overlapped and nonoverlapped data relation, and similarity measure analysis was also illustrated, and comparison with conventional similarity measure was also carried out. Hence, nonoverlapped data similarity analysis provided the clue to solve the similarity of high dimensional data. Considered high dimensional data analysis was designed with consideration of neighborhood information. Proposed similarity measure was applied to identify the behavior patterns of different persons, and different behaviours of the same person. Obtained analysis can be extended to organize health monitoring system for specially elderly persons.

  20. Gait Signal Analysis with Similarity Measure

    Directory of Open Access Journals (Sweden)

    Sanghyuk Lee

    2014-01-01

    Full Text Available Human gait decision was carried out with the help of similarity measure design. Gait signal was selected through hardware implementation including all in one sensor, control unit, and notebook with connector. Each gait signal was considered as high dimensional data. Therefore, high dimensional data analysis was considered via heuristic technique such as the similarity measure. Each human pattern such as walking, sitting, standing, and stepping up was obtained through experiment. By the results of the analysis, we also identified the overlapped and nonoverlapped data relation, and similarity measure analysis was also illustrated, and comparison with conventional similarity measure was also carried out. Hence, nonoverlapped data similarity analysis provided the clue to solve the similarity of high dimensional data. Considered high dimensional data analysis was designed with consideration of neighborhood information. Proposed similarity measure was applied to identify the behavior patterns of different persons, and different behaviours of the same person. Obtained analysis can be extended to organize health monitoring system for specially elderly persons.

  1. Gait analysis in lower-limb amputation and prosthetic rehabilitation.

    Science.gov (United States)

    Esquenazi, Alberto

    2014-02-01

    Gait analysis combined with sound clinical judgment plays an important role in elucidating the factors involved in the pathologic prosthetic gait and the selection and effects of available interventions to optimize it. Detailed clinical evaluation of walking contributes to the analysis of the prosthetic gait, but evaluation in the gait laboratory using kinetic and kinematic data is often necessary to quantify and identify the particular contributions of the variables impacting the gait with confidence and assess the results of such intervention. The same approach can be considered when selecting prosthetic components and assessing leg length in this patient population.

  2. [Three-Dimensional Ultrasonic Gait Analysis in Schizophrenic Patients

    Science.gov (United States)

    Putzhammer, Albert; Heindl, Bernhard; Müller, Jürgen; Broll, Karin; Pfeiff, Liane; Perfahl, Maria; Hess, Linda; Koch, Horst

    2003-05-01

    Schizophrenic disorders as well as neuroleptic treatment can affect locomotion. The study assessed the influence of neuroleptic treatment on human gait via ultrasonic topometric gait analysis. In a control sample the test system proved high test-retest-reliability. Spatial and temporal gait parameters were assessed in schizophrenic patients without neuroleptic treatment (n = 12) and under treatment with conventional neuroleptics (n = 14) and re-assessed after treatment change to the atypical neuroleptic olanzapine in a repeated measures design. After switch from conventional neuroleptics to olanzapine patients showed an increase of gait velocity (p step length (p gait analysis.

  3. Basic gait analysis based on continuous wave radar.

    Science.gov (United States)

    Zhang, Jun

    2012-09-01

    A gait analysis method based on continuous wave (CW) radar is proposed in this paper. Time-frequency analysis is used to analyze the radar micro-Doppler echo from walking humans, and the relationships between the time-frequency spectrogram and human biological gait are discussed. The methods for extracting the gait parameters from the spectrogram are studied in depth and experiments on more than twenty subjects have been performed to acquire the radar gait data. The gait parameters are calculated and compared. The gait difference between men and women are presented based on the experimental data and extracted features. Gait analysis based on CW radar will provide a new method for clinical diagnosis and therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Mild leg length discrepancy affects lower limbs, pelvis and trunk biomechanics of individuals with knee osteoarthritis during gait.

    Science.gov (United States)

    Resende, Renan A; Kirkwood, Renata N; Deluzio, Kevin J; Morton, Amy M; Fonseca, Sérgio T

    2016-10-01

    Leg length discrepancy greater than 1cm increases odds of progressive knee osteoarthritis in the shorter limb. Biomechanical data of 15 knee osteoarthritis participants were collected while they walked under two conditions: (1) control - wearing thick sandals; (2) short limb - wearing a thin sandal on the osteoarthritic limb and a thick sandal on the contralateral limb. The thick and thin sandals had 1.45cm of thickness difference. The knee osteoarthritis limb was analyzed for both conditions. Ankle, knee, hip, pelvis and trunk kinematics and moments were measured with a motion and force capture system. Principal component analysis and mean hypothesis' tests were used to compare the conditions. The short limb condition reduced rearfoot plantarflexion in loading response and increased plantarflexion in late stance (pknee flexion angle in loading response and delayed knee flexion in late stance (p=0.001), increased knee extension moment in loading response and increased knee flexion moment in terminal stance (p=0.023), reduced hip extension moment in early stance and reduced hip flexion moment in late stance (pknee adduction moment (p=0.015), reduced hip adduction angle (p=0.001) and moment (p=0.012) and increased pelvic (p=0.023) and trunk (p=0.001) external rotation. Mild leg length discrepancy affects the entire kinetic chain of individuals with knee osteoarthritis during gait, increasing knee sagittal plane loading, which helps to explain why mild leg length discrepancy accelerates knee osteoarthritis progression. Mild leg length discrepancy should not be overlooked in knee osteoarthritis individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The development of a tool for assessing the quality of closed circuit camera footage for use in forensic gait analysis.

    Science.gov (United States)

    Birch, Ivan; Vernon, Wesley; Walker, Jeremy; Saxelby, Jai

    2013-10-01

    Gait analysis from closed circuit camera footage is now commonly used as evidence in criminal trials. The biomechanical analysis of human gait is a well established science in both clinical and laboratory settings. However, closed circuit camera footage is rarely of the quality of that taken in the more controlled clinical and laboratory environments. The less than ideal quality of much of this footage for use in gait analysis is associated with a range of issues, the combination of which can often render the footage unsuitable for use in gait analysis. The aim of this piece of work was to develop a tool for assessing the suitability of closed circuit camera footage for the purpose of forensic gait analysis. A Delphi technique was employed with a small sample of expert forensic gait analysis practitioners, to identify key quality elements of CCTV footage used in legal proceedings. Five elements of the footage were identified and then subdivided into 15 contributing sub-elements, each of which was scored using a 5-point Likert scale. A Microsoft Excel worksheet was developed to calculate automatically an overall score from the fifteen sub-element scores. Five expert witnesses experienced in using CCTV footage for gait analysis then trialled the prototype tool on current case footage. A repeatability study was also undertaken using standardized CCTV footage. The results showed the tool to be a simple and repeatable means of assessing the suitability of closed circuit camera footage for use in forensic gait analysis. The inappropriate use of poor quality footage could lead to challenges to the practice of forensic gait analysis. All parties involved in criminal proceedings must therefore understand the fitness for purpose of any footage used. The development of this tool could offer a method of achieving this goal, and help to assure the continued role of forensic gait analysis as an aid to the identification process.

  6. Gait Correlation Analysis Based Human Identification

    Directory of Open Access Journals (Sweden)

    Jinyan Chen

    2014-01-01

    Full Text Available Human gait identification aims to identify people by a sequence of walking images. Comparing with fingerprint or iris based identification, the most important advantage of gait identification is that it can be done at a distance. In this paper, silhouette correlation analysis based human identification approach is proposed. By background subtracting algorithm, the moving silhouette figure can be extracted from the walking images sequence. Every pixel in the silhouette has three dimensions: horizontal axis (x, vertical axis (y, and temporal axis (t. By moving every pixel in the silhouette image along these three dimensions, we can get a new silhouette. The correlation result between the original silhouette and the new one can be used as the raw feature of human gait. Discrete Fourier transform is used to extract features from this correlation result. Then, these features are normalized to minimize the affection of noise. Primary component analysis method is used to reduce the features’ dimensions. Experiment based on CASIA database shows that this method has an encouraging recognition performance.

  7. A biomechanical analysis of the 'high guard' position of arms during walking in toddlers.

    Science.gov (United States)

    Kubo, Masayoshi; Ulrich, Beverly

    2006-12-01

    In this study, we investigated biomechanical contributions of the high guard position of the arms observed only in a subgroup of toddlers at very early stages of gait development. Six healthy toddlers who showed this peculiar arm posture were involved in this study. They participated in two data collection sessions (1 month apart). We used three-dimensional analysis of arm posture during gait to estimate the changes in forces and torques generated by the arms and acting on the upper trunk segment. Across visits, toddlers' increase in walking speeds coincided with lowering arm postures. Despite the apparent trend of changes in arm posture in this group of toddlers, the interaction between arm posture and upper trunk position created a variety of changes in forces and torques among individuals. Findings of this study exhibited an example of the exploration of dynamics by toddlers in the early stage of gait development.

  8. Gait analysis of stapling for genu valgum.

    Science.gov (United States)

    Stevens, Peter M; MacWilliams, Bruce; Mohr, R Alexander

    2004-01-01

    Many authors have advocated stapling or epiphysiodesis of the distal medial femur as a means of correcting genu valgum. However, in the literature, aside from clinical improvement (appearance, pain, function), objective evidence of kinetic and kinematic improvement is lacking. Therefore, the authors undertook a prospective gait analysis evaluation of a series of patients treated for genu valgum, comparing pre- and postsurgical measurements to document the benefits of normalizing the mechanical axis. These results indicate that after surgery knee and hip angles and knee moments were returned to within the normal range for a similarly aged control group.

  9. Biomechanical analysis of rollator walking

    Directory of Open Access Journals (Sweden)

    Nielsen Linda H

    2006-01-01

    Full Text Available Abstract Background The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects. Methods The walking pattern during walking with and without rollator was analyzed using a three-dimensional inverse dynamics method. Sagittal joint dynamics and kinematics of the ankle, knee and hip were calculated. In addition, hip joint dynamics and kinematics in the frontal plane were calculated. Seven healthy women participated in the study. Results The hip was more flexed while the knee and ankle joints were less flexed/dorsiflexed during rollator walking. The ROM of the ankle and knee joints was reduced during rollator-walking. Rollator-walking caused a reduction in the knee extensor moment by 50% when compared to normal walking. The ankle plantarflexor and hip abductor moments were smaller when walking with a rollator. In contrast, the angular impulse of the hip extensors was significantly increased during rollator-walking. Conclusion Walking with a rollator unloaded the ankle and especially the knee extensors, increased the hip flexion and thus the contribution of hip extensors to produce movement. Thus, rollator walking did not result in an overall unloading of the muscles and joints of the lower extremities. However, the long-term effect of rollator walking is unknown and further investigation in this field is needed.

  10. Gait analysis in prosthetics: opinions, ideas and conclusions.

    Science.gov (United States)

    Rietman, J S; Postema, K; Geertzen, J H B

    2002-04-01

    A review was performed of the literature of the last eleven years (1990-2000) with the topic: "clinical use of instrumented gait analysis in patients wearing a prosthesis of the lower limb". To this end a literature search was performed in Embase, Medline and Recal. Forty-five (45) articles were identified for study from which 34 were reviewed. The reviews were divided into five subtopics: 1) adaptive strategies in gait (12 studies); 2) the influence of different parts of the prosthesis on gait (12 studies); 3) pressure measurements in the socket in gait studies (4 studies); 4) the influence of the mass of the prostheses on gait (5 studies); 5) energy considerations in gait (2 studies). A considerable part of the studies concerned the adaptive strategies of the amputee in walking and running and the evaluation of different prosthetic feet. All aspects and outcomes were reviewed concerning the clinical relevance.

  11. Changes in voluntary quadriceps activation predict changes in muscle strength and gait biomechanics following knee joint effusion.

    Science.gov (United States)

    Pietrosimone, Brian; Lepley, Adam S; Murray, Amanda M; Thomas, Abbey C; Bahhur, Nael O; Schwartz, Todd A

    2014-09-01

    It has been hypothesized that arthrogenic muscle inhibition is responsible for altering physical function following knee injury. The association between the onset of arthrogenic muscle inhibition, measured using voluntary quadriceps activation, and changes in muscle strength and gait biomechanics are unknown. Outcomes were collected before and following a 60 ml experimental knee effusion in eighteen healthy participants. Voluntary quadriceps activation was the predictor variable, while the criterion variable included, maximal voluntary isometric strength, peak knee flexion angle, peak internal knee extension moment, and peak vertical ground reaction forces during the first half of stance phase upon stair descent. Percent change scores (Δ) were imputed into linear regression equations to determine associations between predictor and criterion variables. The variance in Δ voluntary quadriceps activation significantly predicted 87% the variance in the Δ strength (R(2)=0.87, Pknee flexion angle, Δ voluntary quadriceps activation predicted an additional 29% (Δ R(2)=0.29, P=0.007) of the variance in the Δ knee extension moment (R(2)=0.54, P=0.003, Δ knee extension moment=-10.79+0.74Δ knee flexion angle+1.64Δ voluntary quadriceps activation) following knee effusion. Immediate quadriceps activation deficits following joint effusion result in immediate alterations in muscle strength, knee extensor moment and vertical ground reaction force during gait. Published by Elsevier Ltd.

  12. Modelling, stability and biomechanical implications of three DOF passive bipedal gait

    Directory of Open Access Journals (Sweden)

    Máximo Alejandro Roa Garzón

    2010-04-01

    Full Text Available Passive dynamic walkers can achieve a steady gait down an inclined plane simply by the influence of gravity. This article presents the modelling of a 3 DOF passive bipedal walker, searching for a relationship between gait characteristics, the robot’s physical properties and the slope of the plane. The proposed adimensional dynamical model’s equations are also given, implementing and modelling the dynamics is described and the main results are presented. Limits on robotic parameters leading to establishing stable limit cycles are also analysed as perio-dic doubling bifurcations appear to be natural in passive gait. Interesting results arose when comparing natural passive walking with human bipedal locomotion.

  13. SensorShoe: Mobile Gait Analysis for Parkinson's Disease Patients

    NARCIS (Netherlands)

    Kauw-A-Tjoe, R.; Thalen, J.; Marin-Perianu, M.; Havinga, P.J.M.

    2007-01-01

    We present the design and initial evaluation of a mobile gait analysis system, SensorShoe. The target user group is represented by Parkinson's Disease patients, which need continuous assistance with the physical therapy in their home environment. SensorShoe analyses the gait by using a low-power sen

  14. SensorShoe: Mobile Gait Analysis for Parkinson's Disease Patients

    NARCIS (Netherlands)

    Havinga, P.J.M.; Kauw-A-Tjoe, R.G.; Marin-Perianu, M.; Thalen, J.P.

    2007-01-01

    We present the design and initial evaluation of a mobile gait analysis system, SensorShoe. The target user group is represented by Parkinson's Disease patients, which need continous assistance with the physical therapy in their home environment. SensorShoe analyses the gait by using a low-power sens

  15. In Vivo Verification of Different Hip Joint Center Estimation Methods in Gait Analysis For Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Abdollah YOUSEFI

    2015-01-01

    Full Text Available Hip joint is one of the most stable joints in human body. It has intrinsic stability provided by its relatively rigid ball and socket configuration. The hip joint also has a wide range of motion, which allows normal locomotion and daily activities. Location of hip joint center (HJC is an important parameter in gait analysis, biomechanical and clinical research laboratories to calculate human lower extremity kinematics and kinetics. Inaccuracies in estimation of hip joint center are shown to propagate errors in kinematic and kinetic calculations of lower extremities

  16. A real-time system for biomechanical analysis of human movement and muscle function.

    Science.gov (United States)

    van den Bogert, Antonie J; Geijtenbeek, Thomas; Even-Zohar, Oshri; Steenbrink, Frans; Hardin, Elizabeth C

    2013-10-01

    Mechanical analysis of movement plays an important role in clinical management of neurological and orthopedic conditions. There has been increasing interest in performing movement analysis in real-time, to provide immediate feedback to both therapist and patient. However, such work to date has been limited to single-joint kinematics and kinetics. Here we present a software system, named human body model (HBM), to compute joint kinematics and kinetics for a full body model with 44 degrees of freedom, in real-time, and to estimate length changes and forces in 300 muscle elements. HBM was used to analyze lower extremity function during gait in 12 able-bodied subjects. Processing speed exceeded 120 samples per second on standard PC hardware. Joint angles and moments were consistent within the group, and consistent with other studies in the literature. Estimated muscle force patterns were consistent among subjects and agreed qualitatively with electromyography, to the extent that can be expected from a biomechanical model. The real-time analysis was integrated into the D-Flow system for development of custom real-time feedback applications and into the gait real-time analysis interactive lab system for gait analysis and gait retraining.

  17. Reliability of videotaped observational gait analysis in patients with orthopedic impairments

    NARCIS (Netherlands)

    Brunnekreef, J.J.; Uden, C. van; Moorsel, S. van; Kooloos, J.G.M.

    2005-01-01

    BACKGROUND: In clinical practice, visual gait observation is often used to determine gait disorders and to evaluate treatment. Several reliability studies on observational gait analysis have been described in the literature and generally showed moderate reliability. However, patients with orthopedic

  18. The relationship between patellofemoral and tibiofemoral morphology and gait biomechanics following arthroscopic partial medial meniscectomy

    DEFF Research Database (Denmark)

    Dempsey, Alasdair R.; Wang, Yuanyuan; Thorlund, Jonas Bloch

    2013-01-01

    with decreased patella cartilage volume (B = −17.9 (95 % CI −35.4, −0.4) p = 0.045) while knee adduction moment impulse was associated with increased medial tibial plateau area (B = 7.7 (95 % CI 0.9, 13.3) p = 0.025). A number of other variables approached significance. Conclusions Knee joint biomechanics...

  19. Comparing dynamical systems concepts and techniques for biomechanical analysis

    Institute of Scientific and Technical Information of China (English)

    Richard E.A. van Emmerik; Scott W. Ducharme; Avelino C. Amado; Joseph Hamill

    2016-01-01

    Traditional biomechanical analyses of human movement are generally derived from linear mathematics. While these methods can be useful in many situations, they do not describe behaviors in human systems that are predominately nonlinear. For this reason, nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature. These analysis techniques have provided new insights into how systems (1) maintain pattern stability, (2) transition into new states, and (3) are governed by short-and long-term (fractal) correlational processes at different spatio-temporal scales. These different aspects of system dynamics are typically investigated using concepts related to variability, stability, complexity, and adaptability. The purpose of this paper is to compare and contrast these different concepts and demonstrate that, although related, these terms represent fundamentally different aspects of system dynamics. In particular, we argue that variability should not uniformly be equated with stability or complexity of movement. In addition, current dynamic stability measures based on nonlinear analysis methods (such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics, but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored. Finally, systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.

  20. Measures of frontal plane lower limb alignment obtained from static radiographs and dynamic gait analysis.

    Science.gov (United States)

    Hunt, Michael A; Birmingham, Trevor B; Jenkyn, Thomas R; Giffin, J Robert; Jones, Ian C

    2008-05-01

    Currently, lower limb alignment is measured statically from radiographs that may not accurately represent the condition of the limb when moving and weight-bearing. Thus, the purpose of the present study was to introduce and examine a novel measure of dynamic lower limb alignment obtained during walking in patients with knee OA. In this cross-sectional study, standing, full-length lower limb radiographs were acquired from 80 individuals with confirmed knee OA, who also underwent three-dimensional gait analyses with reflective markers placed on the segments of the lower limb. Frontal plane lower limb alignment was measured using the static radiographs (mechanical axis) and gait analyses (marker-based alignment) by identifying the centres of the hip, knee, and ankle from both methods. Simple linear regression indicated these measures were highly correlated (r=0.84), however, 30% of the variance in the marker-based measure of lower limb alignment was not explained by the mechanical axis despite using the same anatomical landmarks. Results from this study suggest that a valid measure of dynamic lower limb alignment can be obtained from a standard quantitative gait analysis and highlight the differences in measures of lower limb alignment obtained in static and dynamic situations. Future research into the clinical utility of measures of dynamic alignment in the treatment of OA may aid in the development of interventions specifically tailored to one's dynamic lower limb biomechanics during gait.

  1. Gait analysis by high school students

    NARCIS (Netherlands)

    Heck, A.; van Dongen, C.

    2008-01-01

    Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of

  2. The biomechanical effects of the inclusion of a torque absorber on trans-femoral amputee gait, a pilot study.

    Science.gov (United States)

    Van der Linden, M L; Twiste, N; Rithalia, S V S

    2002-04-01

    This paper reports on a pilot study investigating the effects on the gait of two transfemoral amputees of to the inclusion of a torque absorber (TA) and its location relative to the knee unit. Both subjects carried out gait tests with a prosthesis with no TA with, a TA proximal to the knee unit and with a TA distal to the knee unit. Three-dimensional gait analysis was carried out to establish the kinematic and kinetic gait parameters of both the prosthetic and sound side. It was found that the TA did not significantly affect the sagittal kinetic and kinematic parameters of the sound or the prosthetic side. However, for one subject the axial rotation of the socket relative to the foot was significantly greater with the TA. It was concluded that by using the methodology of this pilot study, it is possible to investigate the rotations in the transverse plane within the prosthetic limb and pelvis. Further, including a TA may reduce the relative motion between the stump and the socket and therefore may decrease skin breakdown due to diminished shear forces.

  3. Summary measures for clinical gait analysis: a literature review.

    Science.gov (United States)

    Cimolin, Veronica; Galli, Manuela

    2014-04-01

    Instrumented 3D-gait analysis (3D-GA) is an important method used to obtain information that is crucial for establishing the level of functional limitation due to pathology, observing its evolution over time and evaluating rehabilitative intervention effects. However, a typical 3D-GA evaluation produces a vast amount of data, and despite its objectivity, its use is complicated, and the data interpretation is difficult. It is even more difficult to obtain an overview on patient cohorts for a comparison. Moreover, there is a growing awareness of the need for a concise index, specifically, a single measure of the 'quality' of a particular gait pattern. Several gait summary measures, which have been used in conjunction with 3D-GA, have been proposed to objectify clinical impression, quantify the degree of gait deviation from normal, stratify the severity of pathology, document the changes in gait patterns over time and evaluate interventions.

  4. An Evidence-Based Videotaped Running Biomechanics Analysis.

    Science.gov (United States)

    Souza, Richard B

    2016-02-01

    Running biomechanics play an important role in the development of injuries. Performing a running biomechanics analysis on injured runners can help to develop treatment strategies. This article provides a framework for a systematic video-based running biomechanics analysis plan based on the current evidence on running injuries, using 2-dimensional (2D) video and readily available tools. Fourteen measurements are proposed in this analysis plan from lateral and posterior video. Identifying simple 2D surrogates for 3D biomechanic variables of interest allows for widespread translation of best practices, and have the best opportunity to impact the highly prevalent problem of the injured runner.

  5. Modeling and simulation of normal and hemiparetic gait

    Science.gov (United States)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  6. Does a single gait training session performed either overground or on a treadmill induce specific short-term effects on gait parameters in patients with hemiparesis? A randomized controlled study.

    Science.gov (United States)

    Bonnyaud, Céline; Pradon, Didier; Zory, Raphael; Bensmail, Djamel; Vuillerme, Nicolas; Roche, Nicolas

    2013-01-01

    Gait training for patients with hemiparesis is carried out independently overground or on a treadmill. Several studies have shown differences in hemiparetic gait parameters during overground versus treadmill walking. However, few studies have compared the effects of these 2 gait training conditions on gait parameters, and no study has compared the short-term effects of these techniques on all biomechanical gait parameters. To determine whether a gait training session performed overground or on a treadmill induces specific short-term effects on biomechanical gait parameters in patients with hemiparesis. Twenty-six subjects with hemiparesis were randomly assigned to a single session of either overground or treadmill gait training. The short-term effects on spatiotemporal, kinematic, and kinetic gait parameters were assessed using gait analysis before and immediately after the training and after a 20-minute rest. Speed, cadence, percentage of single support phase, peak knee extension, peak propulsion, and braking on the paretic side were significantly increased after the gait training session. However, there were no specific changes dependent on the type of gait training performed (overground or on a treadmill). A gait training session performed by subjects with hemiparesis overground or on a treadmill did not induce specific short-term effects on biomechanical gait parameters. The increase in gait velocity that followed a gait training session seemed to reflect specific modifications of the paretic lower limb and adaptation of the nonparetic lower limb.

  7. Quantitative gait analysis following hemispherotomy for Rasmussen′s encephalitis

    Directory of Open Access Journals (Sweden)

    Santhosh George Thomas

    2007-01-01

    Full Text Available Peri-insular hemispherotomy is a form of disconnective hemispherectomy involving complete disconnection of all ascending / descending and commisural connections of one hemisphere. We report a case of a seven and a half year old child with intractable epilepsy due to Rasmussen′s encephalitis who underwent peri-insular hemispherotomy and achieved complete freedom from seizures. Quantitative gait analysis was used to describe the changes in the kinematic and kinetic parameters of gait with surface electromyographs 18 months after surgery. The focus of this paper is to highlight the utility of gait analysis following hemispherotomy with a view to directing postsurgical motor training and rehabilitation.

  8. Efficacy of clinical gait analysis: A systematic review.

    Science.gov (United States)

    Wren, Tishya A L; Gorton, George E; Ounpuu, Sylvia; Tucker, Carole A

    2011-06-01

    The aim of this systematic review was to evaluate and summarize the current evidence base related to the clinical efficacy of gait analysis. A literature review was conducted to identify references related to human gait analysis published between January 2000 and September 2009 plus relevant older references. The references were assessed independently by four reviewers using a hierarchical model of efficacy adapted for gait analysis, and final scores were agreed upon by at least three of the four reviewers. 1528 references were identified relating to human instrumented gait analysis. Of these, 116 original articles addressed technical accuracy efficacy, 89 addressed diagnostic accuracy efficacy, 11 addressed diagnostic thinking and treatment efficacy, seven addressed patient outcomes efficacy, and one addressed societal efficacy, with some of the articles addressing multiple levels of efficacy. This body of literature provides strong evidence for the technical, diagnostic accuracy, diagnostic thinking and treatment efficacy of gait analysis. The existing evidence also indicates efficacy at the higher levels of patient outcomes and societal cost-effectiveness, but this evidence is more sparse and does not include any randomized controlled trials. Thus, the current evidence supports the clinical efficacy of gait analysis, particularly at the lower levels of efficacy, but additional research is needed to strengthen the evidence base at the higher levels of efficacy.

  9. Biomechanics for inclusive urban design: Effects of tactile paving on older adults' gait when crossing the street.

    Science.gov (United States)

    Thies, S B; Kenney, L P J; Howard, D; Nester, C; Ormerod, M; Newton, R; Baker, R; Faruk, M; MacLennan, H

    2011-05-17

    In light of our ageing population it is important that the urban environment is easily accessible and hence supports older adults' independence. Tactile 'blister' paving was originally designed to provide guidance for visually impaired people at pedestrian crossings. However, as research links irregular surfaces to falls in older adults, such paving may have an adverse effect on older people. We investigated the effects of tactile paving on older adults' gait in a scenario closely resembling crossing the street. Gait analysis of 32 healthy older adults showed that tactile, as compared to smooth, paving increases the variability in timing of foot placement by 20%, thereby indicating a disturbance of the rhythmic gait pattern. Moreover, toe clearance during the swing phase increased by 7% on tactile paving, and the ability to stop upon cue from the traffic light was compromised. These results need to be viewed under the consideration of limitations associated with laboratory studies and real world analysis is needed to fully understand their implications for urban design.

  10. FreeWalker: a smart insole for longitudinal gait analysis.

    Science.gov (United States)

    Wang, Baitong; Rajput, Kuldeep Singh; Tam, Wing-Kin; Tung, Anthony K H; Yang, Zhi

    2015-08-01

    Gait analysis is an important diagnostic measure to investigate the pattern of walking. Traditional gait analysis is generally carried out in a gait lab, with equipped force and body tracking sensors, which needs a trained medical professional to interpret the results. This procedure is tedious, expensive, and unreliable and makes it difficult to track the progress across multiple visits. In this paper, we present a smart insole called FreeWalker, which provides quantitative gait analysis outside the confinement of traditional lab, at low- cost. The insole consists of eight pressure sensors and two motion tracking sensors, i.e. 3-axis accelerometer and 3-axis gyroscope. This enables measurement of under-foot pressure distribution and motion sequences in real-time. The insole is enabled with onboard SD card as well as wireless data transmission, which help in continuous gait-cycle analysis. The data is then sent to a gateway, for analysis and interpretation of data, using a user interface where gait features are graphically displayed. We also present validation result of a subject's left foot, who was asked to perform a specific task. Experiment results show that we could achieve a data-sampling rate of over 1 KHz, transmitting data up to a distance of 20 meter and maintain a battery life of around 24 hours. Taking advantage of these features, FreeWalker can be used in various applications, like medical diagnosis, rehabilitation, sports and entertainment.

  11. Kinetic Gait Analysis Using a Low-Cost Insole.

    Science.gov (United States)

    Howell, Adam M; Kobayashi, Toshiki; Hayes, Heather A; Foreman, K Bo; Bamberg, Stacy J Morris

    2013-12-01

    Abnormal gait caused by stroke or other pathological reasons can greatly impact the life of an individual. Being able to measure and analyze that gait is often critical for rehabilitation. Motion analysis labs and many current methods of gait analysis are expensive and inaccessible to most individuals. The low-cost, wearable, and wireless insole-based gait analysis system in this study provides kinetic measurements of gait by using low-cost force sensitive resistors. This paper describes the design and fabrication of the insole and its evaluation in six control subjects and four hemiplegic stroke subjects. Subject-specific linear regression models were used to determine ground reaction force plus moments corresponding to ankle dorsiflexion/plantarflexion, knee flexion/extension, and knee abduction/adduction. Comparison with data simultaneously collected from a clinical motion analysis laboratory demonstrated that the insole results for ground reaction force and ankle moment were highly correlated (all >0.95) for all subjects, while the two knee moments were less strongly correlated (generally >0.80). This provides a means of cost-effective and efficient healthcare delivery of mobile gait analysis that can be used anywhere from large clinics to an individual's home.

  12. In-field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture.

    Science.gov (United States)

    Willy, R W; Buchenic, L; Rogacki, K; Ackerman, J; Schmidt, A; Willson, J D

    2016-02-01

    We sought to determine if an in-field gait retraining program can reduce excessive impact forces and peak hip adduction without adverse changes in knee joint work during running. Thirty healthy at-risk runners who exhibited high-impact forces were randomized to retraining [21.1 (± 1.9) years, 22.1 (± 10.8) km/week] or control groups [21.0 (± 1.3) years, 23.2 (± 8.7) km/week]. Retrainers were cued, via a wireless accelerometer, to increase preferred step rate by 7.5% during eight training sessions performed in-field. Adherence with the prescribed step rate was assessed via mobile monitoring. Three-dimensional gait analysis was performed at baseline, after retraining, and at 1-month post-retraining. Retrainers increased step rate by 8.6% (P running (-21.1%, P runs. Thus, in-field gait retraining, cueing a modest increase in step rate, was effective at reducing impact forces, peak hip adduction and eccentric knee joint work.

  13. BIOMECHANICAL INDICES OF STANDING AND GAIT IN PATIENTS AFTER TOTAL KNEE REPLACEMENT USING COMPUTER NAVIGATION

    Directory of Open Access Journals (Sweden)

    Y. A. Bezgodkov

    2011-01-01

    Full Text Available Several biomechanical parameters of standing and walking in 50 patients with osteoarthrosis after total knee arthroplasty were evaluated. The patients were randomly divided in two equal groups: in the first group the surgery was performed with computer navigation system and in the second - with traditional instruments. After TKA with computer navigation centers of common body pressure and legs pressure during standing phase improved significantly better than in traditional group. Walking parameters like step length, ground contact time and rhythm coefficient improved in both groups of patients but without significant difference. Thereby more precise orientation of implant that achieved during computer assisted TKA leads to better functional performance at 6 and 12 month after surgery.

  14. A wireless gait analysis system by digital textile sensors.

    Science.gov (United States)

    Yang, Chang-Ming; Chou, Chun-Mei; Hu, Jwu-Sheng; Hung, Shu-Hui; Yang, Chang-Hwa; Wu, Chih-Chung; Hsu, Ming-Yang; Yang, Tsi-Lin

    2009-01-01

    This paper studies the feasibility of spatio-temporal gait analysis based upon digital textile sensors. Digitized legs and feet patterns of healthy subjects and their relations with spatio-temporal gait parameters were analyzed. In the first experiment, spatio-temporal gait parameters were determined during over ground walking. In the second experiment, predicted running, backward walking, walking up stairs and walking down stairs parameters were determined. From the results of the experiments, it is concluded that, for healthy subjects, the duration of subsequent stride cycles and left/right steps, the estimations of step length, cadence, walking speed, central of pressure and central of mass trajectory, can be obtained by analyzing the digital signals from the textile sensors on pants and socks. These parameters are easily displayed in several different graphs allowing the user to view the parameters during gait. Finally, the digital data are easily to analyze the feature of activity recognition.

  15. Theory analysis and structure optimization design of powered gait orthosis

    Directory of Open Access Journals (Sweden)

    Meng Ning

    2016-03-01

    Full Text Available Patients suffering from paraplegia are special disabled groups in society. In order to help them with lower-limb rehabilitation, a kind of power-assisted gait orthosis is designed. In consideration of the crutches that are rather necessary to keep balance when walking, the effects of crutches on analysis of mechanism cannot be ignored. Based on the gait characteristics, this gait orthosis mechanism is designed, of which the structure is optimized by genetic algorithm and the dynamical model is generated. The periodic movement of hip joints, knee joints, and ankle joints in corrected gait are achieved and the torque can be transferred to the driving force of the back motor and the pushrod according to the orthosis structure. Finally, a verification test shows this design is reasonable and practical.

  16. A computational model for dynamic analysis of the human gait.

    Science.gov (United States)

    Vimieiro, Claysson; Andrada, Emanuel; Witte, Hartmut; Pinotti, Marcos

    2015-01-01

    Biomechanical models are important tools in the study of human motion. This work proposes a computational model to analyse the dynamics of lower limb motion using a kinematic chain to represent the body segments and rotational joints linked by viscoelastic elements. The model uses anthropometric parameters, ground reaction forces and joint Cardan angles from subjects to analyse lower limb motion during the gait. The model allows evaluating these data in each body plane. Six healthy subjects walked on a treadmill to record the kinematic and kinetic data. In addition, anthropometric parameters were recorded to construct the model. The viscoelastic parameter values were fitted for the model joints (hip, knee and ankle). The proposed model demonstrated that manipulating the viscoelastic parameters between the body segments could fit the amplitudes and frequencies of motion. The data collected in this work have viscoelastic parameter values that follow a normal distribution, indicating that these values are directly related to the gait pattern. To validate the model, we used the values of the joint angles to perform a comparison between the model results and previously published data. The model results show a same pattern and range of values found in the literature for the human gait motion.

  17. Biomechanical consequences of plantar fascial release or rupture during gait. Part II: alterations in forefoot loading.

    Science.gov (United States)

    Sharkey, N A; Donahue, S W; Ferris, L

    1999-02-01

    With a model using feet from cadavers, we tested the hypothesis that plantar fascial release or rupture alters the loading environment of the forefoot during the latter half of the stance phase of gait. The model simulated the position and loading environment of the foot at two instants: early in terminal stance immediately after heel-off and late in terminal stance just preceding contralateral heel strike. Eight feet were loaded at both positions by simulated plantar flexor contraction, and the distribution of plantar pressure was measured before and after progressive release of the plantar fascia. Strain in the diaphysis of the second metatarsal was also measured, from which the bending moments and axial force imposed on the metatarsal were calculated. Cutting the medial half of the central plantar fascial band significantly increased peak pressure under the metatarsal heads but had little effect on pressures in other regions of the forefoot or on second metatarsal strain and loading. Dividing the entire central band or completely releasing the plantar fascia from the calcaneus had a much greater effect and caused significant shifts in plantar pressure and force from the toes to beneath the metatarsal heads. These shifts were accompanied by significantly increased strain and bending in the second metatarsal. Complete fasciotomy increased the magnitude of strain in the dorsal aspect of the second metatarsal by more than 80%, suggesting that plantar fascial release or rupture accelerates the accumulation of fatigue damage in these bones. Altered forefoot loading may be a potential complication of plantar fasciotomy.

  18. Three-dimensional gait analysis in spina bifida.

    Science.gov (United States)

    Duffy, C M; Hill, A E; Cosgrove, A P; Corry, I S; Mollan, R A; Graham, H K

    1996-01-01

    This study was designed to determine gait patterns in children with lumbar and sacral neurologic level spina bifida. We studied a group of 28 children: 10 had L4-level lesions and a mean age of 11 years; eight had L5-level lesions and a mean age of 8 years; and 10 had S1-level lesions with a mean age of 12 years. A group of 15 normal children, mean age 10 years, was used for comparison. Each child underwent three-dimensional gait analysis using the Vicon system. We found that there were recognisable gait patterns for each level of spina bifida and that the abnormalities accurately reflected the muscle deficiencies present. The gait patterns approximated more closely to those of the normal group as the neurological level descended. The most important findings were of increased pelvic obliquity and rotation with hip abduction in stance (reflecting the gross Trendelenburg-type gait seen in these children) and persistent knee flexion throughout stance as a result of the absence of the plantar flexion-knee extension couple. We found that gait was not improved by tendon transfers performed either at the hip (posterolateral psoas transfer) or at the ankle (tibialis anterior transfer).

  19. Gait in children with cerebral palsy - Observer reliability of Physician Rating Scale and Edinburgh Visual Gait Analysis Interval Testing Scale

    NARCIS (Netherlands)

    Maathuis, KGB; van der Schans, CP; van Iperen, A; Rietman, HS; Geertzen, JHB

    2005-01-01

    The aim of this study was to test the inter- and intra-observer reliability of the Physician Rating Scale (PRS) and the Edinburgh Visual Gait Analysis Interval Testing (GAIT) scale for use in children with cerebral palsy (CP). Both assessment scales are quantitative observational scales, evaluating

  20. Gait in children with cerebral palsy : observer reliability of Physician Rating Scale and Edinburgh Visual Gait Analysis Interval Testing scale

    NARCIS (Netherlands)

    Maathuis, KGB; van der Schans, CP; van Iperen, A; Rietman, HS; Geertzen, JHB

    2005-01-01

    The aim of this study was to test the inter- and intra-observer reliability of the Physician Rating Scale (PRS) and the Edinburgh Visual Gait Analysis Interval Testing (GAIT) scale for use in children with cerebral palsy (CP). Both assessment scales are quantitative observational scales, evaluating

  1. Automated quantitative gait analysis in animal models of movement disorders

    Directory of Open Access Journals (Sweden)

    Vandeputte Caroline

    2010-08-01

    Full Text Available Abstract Background Accurate and reproducible behavioral tests in animal models are of major importance in the development and evaluation of new therapies for central nervous system disease. In this study we investigated for the first time gait parameters of rat models for Parkinson's disease (PD, Huntington's disease (HD and stroke using the Catwalk method, a novel automated gait analysis test. Static and dynamic gait parameters were measured in all animal models, and these data were compared to readouts of established behavioral tests, such as the cylinder test in the PD and stroke rats and the rotarod tests for the HD group. Results Hemiparkinsonian rats were generated by unilateral injection of the neurotoxin 6-hydroxydopamine in the striatum or in the medial forebrain bundle. For Huntington's disease, a transgenic rat model expressing a truncated huntingtin fragment with multiple CAG repeats was used. Thirdly, a stroke model was generated by a photothrombotic induced infarct in the right sensorimotor cortex. We found that multiple gait parameters were significantly altered in all three disease models compared to their respective controls. Behavioural deficits could be efficiently measured using the cylinder test in the PD and stroke animals, and in the case of the PD model, the deficits in gait essentially confirmed results obtained by the cylinder test. However, in the HD model and the stroke model the Catwalk analysis proved more sensitive than the rotarod test and also added new and more detailed information on specific gait parameters. Conclusion The automated quantitative gait analysis test may be a useful tool to study both motor impairment and recovery associated with various neurological motor disorders.

  2. Self-reported gait unsteadiness in mildly impaired neurological patients: an objective assessment through statistical gait analysis

    Directory of Open Access Journals (Sweden)

    Benedetti Maria

    2012-08-01

    Full Text Available Abstract Background Self-reported gait unsteadiness is often a problem in neurological patients without any clinical evidence of ataxia, because it leads to reduced activity and limitations in function. However, in the literature there are only a few papers that address this disorder. The aim of this study is to identify objectively subclinical abnormal gait strategies in these patients. Methods Eleven patients affected by self-reported unsteadiness during gait (4 TBI and 7 MS and ten healthy subjects underwent gait analysis while walking back and forth on a 15-m long corridor. Time-distance parameters, ankle sagittal motion, and muscular activity during gait were acquired by a wearable gait analysis system (Step32, DemItalia, Italy on a high number of successive strides in the same walk and statistically processed. Both self-selected gait speed and high speed were tested under relatively unconstrained conditions. Non-parametric statistical analysis (Mann–Whitney, Wilcoxon tests was carried out on the means of the data of the two examined groups. Results The main findings, with data adjusted for velocity of progression, show that increased double support and reduced velocity of progression are the main parameters to discriminate patients with self-reported unsteadiness from healthy controls. Muscular intervals of activation showed a significant increase in the activity duration of the Rectus Femoris and Tibialis Anterior in patients with respect to the control group at high speed. Conclusions Patients with a subjective sensation of instability, not clinically documented, walk with altered strategies, especially at high gait speed. This is thought to depend on the mechanisms of postural control and coordination. The gait anomalies detected might explain the symptoms reported by the patients and allow for a more focused treatment design. The wearable gait analysis system used for long distance statistical walking assessment was able to detect

  3. Gait Analysis by Multi Video Sequence Analysis

    DEFF Research Database (Denmark)

    Jensen, Karsten; Juhl, Jens

    2009-01-01

    The project presented in this article aims to develop software so that close-range photogrammetry with sufficient accuracy can be used to point out the most frequent foot mal positions and monitor the effect of the traditional treatment. The project is carried out as a cooperation between the Ort...... Sequence Analysis (MVSA). Results show that the developed MVSA system, in the following called Fodex, can measure the navicula height with a precision of 0.5-0.8 mm. The calcaneus angle can be measured with a precision of 0.8-1.5 degrees....

  4. Kinematic gait patterns in healthy runners: A hierarchical cluster analysis.

    Science.gov (United States)

    Phinyomark, Angkoon; Osis, Sean; Hettinga, Blayne A; Ferber, Reed

    2015-11-01

    Previous studies have demonstrated distinct clusters of gait patterns in both healthy and pathological groups, suggesting that different movement strategies may be represented. However, these studies have used discrete time point variables and usually focused on only one specific joint and plane of motion. Therefore, the first purpose of this study was to determine if running gait patterns for healthy subjects could be classified into homogeneous subgroups using three-dimensional kinematic data from the ankle, knee, and hip joints. The second purpose was to identify differences in joint kinematics between these groups. The third purpose was to investigate the practical implications of clustering healthy subjects by comparing these kinematics with runners experiencing patellofemoral pain (PFP). A principal component analysis (PCA) was used to reduce the dimensionality of the entire gait waveform data and then a hierarchical cluster analysis (HCA) determined group sets of similar gait patterns and homogeneous clusters. The results show two distinct running gait patterns were found with the main between-group differences occurring in frontal and sagittal plane knee angles (Pgait strategies. These results suggest care must be taken when selecting samples of subjects in order to investigate the pathomechanics of injured runners.

  5. Analysis of foot load during ballet dancers' gait.

    Science.gov (United States)

    Prochazkova, Marketa; Tepla, Lucie; Svoboda, Zdenek; Janura, Miroslav; Cieslarová, Miloslava

    2014-01-01

    Ballet is an art that puts extreme demands on the dancer's musculoskeletal system and therefore significantly affects motor behavior of the dancers. The aim of our research was to compare plantar pressure distribution during stance phase of gait between a group of professional ballet dancers and non-dancers. Thirteen professional dancers (5 men, 8 women; mean age of 24.1 ± 3.8 years) and 13 nondancers (5 men, 8 women; mean age of 26.1 ± 5.3 years) participated in this study. Foot pressure analysis during gait was collected using a 2 m pressure plate. The participants were instructed to walk across the platform at a self-selected pace barefoot. Three gait cycles were necessary for the data analysis. The results revealed higher (p < 0.05) pressure peaks in medial edge of forefoot during gait for dancers in comparison with nondancers. Furthermore, differences in total foot loading and foot loading duration of rearfoot was higher (p < 0.05) in dancers as well. We can attribute these differences to long-term and intensive dancing exercises that can change the dancer's gait stereotype.

  6. Analysis of Gait Disturbance in Glut 1 Deficiency Syndrome.

    Science.gov (United States)

    Blumenschine, Michelle; Montes, Jacqueline; Rao, Ashwini K; Engelstad, Kristin; De Vivo, Darryl C

    2016-11-01

    Anticipating potential therapies for Glut 1 deficiency syndrome (Glut1DS) emphasizes the need for effective clinical outcome measures. The 6-minute walk test is a well-established outcome measure that evaluates walking ability in neurological diseases. Twenty-one children with Glut 1 deficiency syndrome and 21 controls performed the 6-minute walk test. Fatigue was determined by comparing distance walked in the first and sixth minutes. Gait was analyzed by stride length, velocity, cadence, base of support, and percentage time in double support. Independent sample t-tests examined differences between group. Repeated-measures analysis of variance evaluated gait parameters over time. Glut 1 deficiency syndrome patients walked less (P Glut 1 deficiency syndrome patients have impaired motor performance, walk more slowly, and have poor balance. The 6-minute walk test with gait analysis may serve as a useful outcome measure in clinical trials in Glut 1 deficiency syndrome.

  7. Clinical gait analysis in a rehabilitation context : some controversial issues

    NARCIS (Netherlands)

    Mulder, T; Nienhuis, B; Pauwels, J

    1998-01-01

    Objective: To determine the focus of clinical gait analysis in order to explain the observed mismatch between the available technology for movement analysis and the aims of clinical rehabilitation medicine. Design: Literature search using two different interactive computerized search systems. Outcom

  8. Gait analysis of elderly women after total knee arthroplasty.

    Science.gov (United States)

    Lee, Aenon; Park, Junhyuck; Lee, Seungwon

    2015-03-01

    [Purpose] The purpose of this study was to investigate ability and muscle activities of elderly women after total knee arthroplasty (TKA) and compare them with those of healthy ones. [Subjects and Methods] Fifteen female patients with TKA due to advanced degenerative arthritis of the measured on knee joint and 19 healthy elderly females participated. Tibiofemoral angles of TKA patients were using a gait analysis system anterioposterior X-rays of the weight-bearing knee. The knee flexion angle and gait parameters were measured. Muscle activities and prolongation time were EMG system. The gait of the treated limb of each participant was evaluated in three consecutive trials at fast speed and comfortable speed. [Results] The knee flexion angle %stance phase, stride length, step length, speed, cadence, and gait cycle significantly decreased at both the fast speed and comfortable speeds, and the onset and duration time of rectus femoris activity was significantly increased at the comfortable speed in the TKA group. [Conclusion] In conclusion, elderly women who received TKA showed decreased gait ability and muscle activity compared to the healthy elderly women.

  9. Research prospect of biomechanics of human loading gait%人体负重行走的生物力学研究及前景

    Institute of Scientific and Technical Information of China (English)

    宋丽华; 陈民盛

    2011-01-01

    BACKGROUND: If human back takes too heavy objects for long time, a series of injury problems would occur. At present, there have been few studies describing the biomechanics of human loading gait. OBJECTIVE: To review the gait parameter changes, reaction force changes, pressure sensors and EMG applications in human loading gait. METHODS: A computer-based retrieval was performed by the first author using the key words "gait, load carriage, backpack" to search the manuscripts published between 2005-2010 describing "weight loading, walking and packpack" in Chinese and English. RESULTS AND CONCLUSION: The current studies regarding loading walking are concluded as follows: all indicators are relatively simple and comprehensive studies are not enough. There are more studies regarding young people and children and there are few studies regarding soldiers who bear loads in marching. There are more studies regarding weight-bearing waling gait, backpack commercial test, and there are few studies describing the biomechanical mechanism of loading-caused injury as well foot pressure change and biomechanical test of shoes. Some studies have conflicting conclusions, resulting in unclear mechanism underlying effects of loading gait on human gait.%背景:人体背部负重行走时若背负重物过重或长时间地承担质量,容易导致一系列的损伤问题,目前有关人体负重行走状态下的生物力学研究较少.目的:综述人体负重行走的步态参数变化、足-地反作用力变化、压力传感器及肌电的应用.方法:由第一作者检索2005/2010 PubMed 数据库及中国知网数据库有关负重、行走、背包方面的文章.英文检索词为"gait,load carriage,backpack",中文检索词为"负重行走、背包、步态".结果与结论:目前对于负重行走的研究:①在研究指标上,各种指标比较单一,综合研究还不够.②在研究对象上,针对青年人群和儿童的相关研究比较多,有关士兵负重行军的

  10. Gait analysis and validation using voxel data.

    Science.gov (United States)

    Wang, Fang; Stone, Erik; Dai, Wenqing; Skubic, Marjorie; Keller, James

    2009-01-01

    In this paper, we present a method for extracting gait parameters including walking speed, step time and step length from a three-dimensional voxel reconstruction, which is built from two calibrated camera views. These parameters are validated with a GAITRite Electronic mat and a Vicon motion capture system. Experiments were conducted in which subjects walked across the GAITRite mat at various speeds while the Vicon cameras recorded the motion of reflective markers attached to subjects' shoes, and our two calibrated cameras captured the images. Excellent agreements were found for walking speed. Step time and step length were also found to have good agreement given the limitation of frame rate and voxel resolution.

  11. A wearable walking monitoring system for gait analysis.

    Science.gov (United States)

    Hsieh, Tsung-Han; Tsai, An-Chih; Chang, Cha-Wei; Ho, Ka-Hou; Hsu, Wei-Li; Lin, Ta-Te

    2012-01-01

    In this paper, both hardware and software design to develop a wearable walking monitoring system for gait analysis are presented. For hardware, the mechanism proposed is adaptive to different individuals to wear, and the portability of the design makes it easy to perform outdoor experiments. Four force sensors and two angle displacement sensors were used to measure plantar force distribution and the angles of hip and knee joints. For software design, a novel algorithm was developed to detect different gait phases and the four gait periods during the stance phase. Furthermore, the center of ground contact force was calculated based on the relationships of the force sensors. The results were compared with the VICON motion capture system and a force plate for validation. Experiments showed the behavior of the joint angles are similar to VICON system, and the average error in foot strike time is less than 90 ms.

  12. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.

    Science.gov (United States)

    Seo, Jeong-Woo; Kang, Dong-Won; Kim, Ju-Young; Yang, Seung-Tae; Kim, Dae-Hyeok; Choi, Jin-Seung; Tack, Gye-Rae

    2014-01-01

    In this study, the accuracy of the inputs required for finite element analysis, which is mainly used for the biomechanical analysis of bones, was improved. To ensure a muscle force and joint contact force similar to the actual values, a musculoskeletal model that was based on the actual gait experiment was used. Gait data were obtained from a healthy male adult aged 29 who had no history of musculoskeletal disease and walked normally (171 cm height and 72 kg weight), and were used as inputs for the musculoskeletal model simulation to determine the muscle force and joint contact force. Among the phases of gait, which is the most common activity in daily life, the stance phase is the most affected by the load. The results data were extracted from five events in the stance phase: heel contact (ST1), loading response (ST2), early mid-stance (ST2), late mid-stance (ST4), and terminal stance (ST5). The results were used as the inputs for the finite element model that was formed using 1.5mm intervals computed tomography (CT) images and the maximum Von-Mises stress and the maximum Von-Mises strain of the right femur were examined. The maximum stress and strain were lowest at the ST4. The maximum values for the femur occurred in the medial part and then in the lateral part after the mid-stance. In this study, the results of the musculoskeletal model simulation using the inverse-dynamic analysis were utilized to improve the accuracy of the inputs, which affected the finite element analysis results, and the possibility of the bone-specific analysis according to the lapse of time was examined.

  13. 3D joint dynamics analysis of healthy children's gait

    OpenAIRE

    SAMSON, William; DESROCHES, Guillaume; Cheze, Laurence; Dumas, Raphaël

    2009-01-01

    The 3D joint moments and 2D joint powers have been largely explored in the literature of healthy children's gait, in particular to compare them with pathologic subjects' gait. However, no study reported on 3D joint power in children which could be due to the difficulties in interpreting the results. Recently, the analysis of the 3D angle between the joint moment and the joint angular velocity vectors has been proposed in order to help 3D joint power interpretation. Our hypothesis is that this...

  14. Gait analysis in prosthetics: Opinions, ideas and conclusions

    NARCIS (Netherlands)

    Rietman, J.S.; Postema, K.; Geertzen, J.H.B.

    2002-01-01

    A review was performed of the literature of the last eleven years (1990-2000) with the topic: "clinical use of instrumented gait analysis in patients wearing a prosthesis of the lower limb". To this end a literature search was performed in Embase, Medline and Recal. Forty-five (45) articles were ide

  15. Soft tissue artifact in canine kinematic gait analysis

    NARCIS (Netherlands)

    Schwencke, M.; Smolders, L.A.; Bergknut, N.; Gustas, P.; Meij, B.P.; Hazewinkel, H.A.W.

    2012-01-01

    Vet Surg. 2012 Oct;41(7):829-37. doi: 10.1111/j.1532-950X.2012.01021.x. Soft tissue artifact in canine kinematic gait analysis. Schwencke M, Smolders LA, Bergknut N, Gustås P, Meij BP, Hazewinkel HA. Source Department of Clinical Sciences of Companion Animals,, Faculty of Veterinary Medicine, Utrech

  16. Gait analysis in prosthetics : opinions, ideas and conclusions

    NARCIS (Netherlands)

    Rietman, J.S.; Postema, K.; Geertzen, J.H.

    2002-01-01

    A review was performed of the literature of the last eleven years (1990-2000) with the topic: "clinical use of instrumented gait analysis in patients wearing a prosthesis of the lower limb". To this end a literature search was performed in Embase, Medline and Recal. Forty-five (45) articles were ide

  17. Test-retest reliability of trunk accelerometric gait analysis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Moe-Nilssen, R

    2004-01-01

    The purpose of this study was to determine the test-retest reliability of a trunk accelerometric gait analysis in healthy subjects. Accelerations were measured during walking using a triaxial accelerometer mounted on the lumbar spine of the subjects. Six men and 14 women (mean age 35.2; range 18...

  18. Analysis of Biomechanical Factors in Bend Running

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2013-03-01

    Full Text Available Sprint running is the demonstration of comprehensive abilities of technology and tactics, under various conditions. However, whether it is just to allocate the tracks for short-distance athletes from different racetracks has been the hot topic. This study analyzes its forces, differences in different tracks and winding influences, in the aspects of sport biomechanics. The results indicate, many disadvantages exist in inner tracks, middle tracks are the best and outer ones are inferior to middle ones. Thus it provides references for training of short-distance items in biomechanics and psychology, etc.

  19. Responsiveness of gait analysis parameters in a cohort of 71 CMT subjects.

    Science.gov (United States)

    Lencioni, Tiziana; Piscosquito, Giuseppe; Rabuffetti, Marco; Bovi, Gabriele; Di Sipio, Enrica; Diverio, Manuela; Moroni, Isabella; Padua, Luca; Pagliano, Emanuela; Schenone, Angelo; Pareyson, Davide; Ferrarin, Maurizio

    2017-07-14

    Detection of worsening in the slowly progressive Charcot-Marie-Tooth disease (CMT) is difficult. As previous clinical scales showed low responsiveness, novel outcome measures are under study, including innovative approaches such as quantitative muscle MRI and instrumented movement analysis. Since gait analysis proved able to reliably quantify CMT locomotor deficits, we aimed to explore whether it can be a sensitive-to-change outcome measure in CMT studies. Clinical and biomechanical evaluations were performed in 71 CMT subjects at baseline and after a mean (±sd) of 28.9 ± 9.5 months. Locomotor tasks included natural walking, ascending and descending steps. Instrumented analysis of such tasks provided indexes related to muscle strength (kinetic parameters) and joint movement (kinematic parameters). Parameter responsiveness was expressed as Standardized Response Mean (SRM). Considering the whole CMT group, several parameters showed moderate responsiveness; subgrouping subjects according to disease severity allowed reaching high responsiveness (SRM >0.80). CMT Examination Score showed moderate responsiveness (SRM 0.53) in the minimally affected group; kinematic parameters were more responsive in this group, whereas kinetic parameters in the most severely affected one. Biomechanical parameters can represent suitable outcome measures for CMT by showing moderate-to-high responsiveness. These data suggest that appropriate selection of patient population and outcome measures is crucial for clinical trials' design. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Gait analysis in demented subjects: Interests and perspectives

    Directory of Open Access Journals (Sweden)

    Olivier Beauchet

    2008-03-01

    Full Text Available Olivier Beauchet1, Gilles Allali2, Gilles Berrut3, Caroline Hommet4, Véronique Dubost5, Frédéric Assal21Department of Geriatrics, Angers University Hospital, France; 2Department of Neurology, Geneva University Hospital, France; 3Department of Geriatrics, Nantes University Hospital, France; 4Department of Internal Medicine and Geriatrics, Tours University Hospital, France; 5Department of Geriatrics, Dijon University Hospital, FranceAbstract: Gait disorders are more prevalent in dementia than in normal aging and are related to the severity of cognitive decline. Dementia-related gait changes (DRGC mainly include decrease in walking speed provoked by a decrease in stride length and an increase in support phase. More recently, dual-task related changes in gait were found in Alzheimer’s disease (AD and non-Alzheimer dementia, even at an early stage. An increase in stride-to-stride variability while usual walking and dual-tasking has been shown to be more specific and sensitive than any change in mean value in subjects with dementia. Those data show that DRGC are not only associated to motor disorders but also to problem with central processing of information and highlight that dysfunction of temporal and frontal lobe may in part explain gait impairment among demented subjects. Gait assessment, and more particularly dual-task analysis, is therefore crucial in early diagnosis of dementia and/or related syndromes in the elderly. Moreover, dual-task disturbances could be a specific marker of falling at a pre-dementia stage.Keywords: gait, prediction of dementia, risk of falling, older adult

  1. Three-Dimensional Gait Analysis Can Shed New Light on Walking in Patients with Haemophilia

    Directory of Open Access Journals (Sweden)

    Sébastien Lobet

    2013-01-01

    Full Text Available In patients with haemophilia (PWH (from Greek “blood love”, the long-term consequences of repeated haemarthrosis include cartilage damage and irreversible arthropathy, resulting in severe impairments in locomotion. Quantifying the extent of joint damage is therefore important in order to prevent disease progression and compare the efficacy of treatment strategies. Musculoskeletal impairments in PWH may stem from structural and functional abnormalities, which have traditionally been evaluated radiologically or clinically. However, these examinations are performed in a supine position (i.e., non-weight-bearing condition. We therefore suggest three-dimensional gait analysis (3DGA as an innovative approach designed to focus on the functional component of the joint during the act of walking. This is of the utmost importance, as pain induced by weight-bearing activities influences the functional performance of the arthropathic joints significantly. This review endeavors to improve our knowledge of the biomechanical consequences of multiple arthropathies on gait pattern in adult patients with haemophilia using 3DGA. In PWH with arthropathy, the more the joint function was altered, the more the metabolic energy was consumed. 3DGA analysis could highlight the effect of an orthopedic disorder in PWH during walking. Indeed, mechanical and metabolic impairments were correlated to the progressive loss of active mobility into the joints.

  2. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis.

    Science.gov (United States)

    Pfister, Alexandra; West, Alexandre M; Bronner, Shaw; Noah, Jack Adam

    2014-07-01

    Biomechanical analysis is a powerful tool in the evaluation of movement dysfunction in orthopaedic and neurologic populations. Three-dimensional (3D) motion capture systems are widely used, accurate systems, but are costly and not available in many clinical settings. The Microsoft Kinect™ has the potential to be used as an alternative low-cost motion analysis tool. The purpose of this study was to assess concurrent validity of the Kinect™ with Brekel Kinect software in comparison to Vicon Nexus during sagittal plane gait kinematics. Twenty healthy adults (nine male, 11 female) were tracked while walking and jogging at three velocities on a treadmill. Concurrent hip and knee peak flexion and extension and stride timing measurements were compared between Vicon and Kinect™. Although Kinect measurements were representative of normal gait, the Kinect™ generally under-estimated joint flexion and over-estimated extension. Kinect™ and Vicon hip angular displacement correlation was very low and error was large. Kinect™ knee measurements were somewhat better than hip, but were not consistent enough for clinical assessment. Correlation between Kinect™ and Vicon stride timing was high and error was fairly small. Variability in Kinect™ measurements was smallest at the slowest velocity. The Kinect™ has basic motion capture capabilities and with some minor adjustments will be an acceptable tool to measure stride timing, but sophisticated advances in software and hardware are necessary to improve Kinect™ sensitivity before it can be implemented for clinical use.

  3. A Biomechanical Analysis of the Karate Chop.

    Science.gov (United States)

    Cavanagh, Peter R.; Landa, Jean

    Although the sport of karate has been somewhat neglected by scientists, the following two isolated biomechanical studies exist in literature: (1) tracings of a karate chop in two planes were presented, but no data was given concerning the rates of movement of the limb segments, and (2) pre- and postimpact phenomena of five subjects were studied,…

  4. Identifying nonlinear biomechanical models by multicriteria analysis

    Science.gov (United States)

    Srdjevic, Zorica; Cveticanin, Livija

    2012-02-01

    In this study, the methodology developed by Srdjevic and Cveticanin (International Journal of Industrial Ergonomics 34 (2004) 307-318) for the nonbiased (objective) parameter identification of the linear biomechanical model exposed to vertical vibrations is extended to the identification of n-degree of freedom (DOF) nonlinear biomechanical models. The dynamic performance of the n-DOF nonlinear model is described in terms of response functions in the frequency domain, such as the driving-point mechanical impedance and seat-to-head transmissibility function. For randomly generated parameters of the model, nonlinear equations of motion are solved using the Runge-Kutta method. The appropriate data transformation from the time-to-frequency domain is performed by a discrete Fourier transformation. Squared deviations of the response functions from the target values are used as the model performance evaluation criteria, thus shifting the problem into the multicriteria framework. The objective weights of criteria are obtained by applying the Shannon entropy concept. The suggested methodology is programmed in Pascal and tested on a 4-DOF nonlinear lumped parameter biomechanical model. The identification process over the 2000 generated sets of parameters lasts less than 20 s. The model response obtained with the imbedded identified parameters correlates well with the target values, therefore, justifying the use of the underlying concept and the mathematical instruments and numerical tools applied. It should be noted that the identified nonlinear model has an improved accuracy of the biomechanical response compared to the accuracy of a linear model.

  5. Gait analysis in rats with peripheral nerve injury.

    Science.gov (United States)

    Yu, P; Matloub, H S; Sanger, J R; Narini, P

    2001-02-01

    Rats are commonly used to study peripheral nerve repair and grafting. The traditional footprint method to assess functional recovery is messy, indirect, and not useful when contractures develop in the animal model. The aim of the present study was to establish an accurate, reproducible, but simple, method to assess dynamic limb function. The basic quantitative aspects of a normal gait were characterized from 59 recorded walks in 23 rats. The video was digitized and analyzed frame by frame on a personal computer. Seven parameters of the gait were assessed: (1) walking speed; (2) stance phase, swing phase and right to left stance/swing ratio; (3) step length and step length ratio; (4) ankle angles at terminal stance and midswing; (5) tail height; (6) midline deviation; and (7) tail deviation. These gait parameters were then applied to groups of animals with sciatic (group S), tibial (group T), and peroneal (group P) nerve injuries. A discriminant analysis was performed to analyze each parameter and to compute a functional score. We found that the video gait analysis was superior to the footprint method and believe it will be very useful in future studies on peripheral nerve injury.

  6. Therapeutic electrical stimulation for spasticity: quantitative gait analysis.

    Science.gov (United States)

    Pease, W S

    1998-01-01

    Improvement in motor function following electrical stimulation is related to strengthening of the stimulated spastic muscle and inhibition of the antagonist. A 26-year-old man with familial spastic paraparesis presented with gait dysfunction and bilateral lower limb spastic muscle tone. Clinically, muscle strength and sensation were normal. He was considered appropriate for a trial of therapeutic electrical stimulation following failed trials of physical therapy and baclofen. No other treatment was used concurrent with the electrical stimulation. Before treatment, quantitative gait analysis revealed 63% of normal velocity and a crouched gait pattern, associated with excessive electromyographic activity in the hamstrings and gastrocnemius muscles. Based on these findings, bilateral stimulation of the quadriceps and anterior compartment musculature was performed two to three times per week for three months. Repeat gait analysis was conducted three weeks after the cessation of stimulation treatment. A 27% increase in velocity was noted associated with an increase in both cadence and right step length. Right hip and bilateral knee stance motion returned to normal (rather than "crouched"). No change in the timing of dynamic electromyographic activity was seen. These findings suggest a role for the use of electrical stimulation for rehabilitation of spasticity. The specific mechanism of this improvement remains uncertain.

  7. Effects of Power Training on Mobility and Gait Biomechanics in Old Adults with Moderate Mobility Disability : Protocol and Design of the Potsdam Gait Study (POGS)

    NARCIS (Netherlands)

    Beijersbergen, Chantal M. I.; Hortobagyi, Tibor; Beurskens, Rainer; Lenzen-Grossimlinghaus, Romana; Gäbler, Martijn; Granacher, Urs

    2016-01-01

    Background: Walking speed decreases in old age. Even though old adults regularly participate in exercise interventions, we do not know how the intervention-induced changes in physical abilities produce faster walking. The Potsdam Gait Study (POGS) will examine the effects of 10 weeks of power traini

  8. A new classification of hemiplegia gait patterns based on bicluster analysis of joint moments.

    Science.gov (United States)

    Pauk, Jolanta; Minta-Bielecka, Katarzyna

    2016-01-01

    Hemiplegia is a paralysis on one side of the body resulting from disease or injury to the motor centers of the brain that may lead to difficulty in walking and problems in balance. A new methodology for hemiplegia gait patterns classification based on bicluster analysis, which aims to identify a group of patients with similar gait patterns, and verify if spatial-temporal gait parameters are correlated with the Barthel Index, has been proposed. Eighteen hemiplegia patients were recruited. Measurements included spatialtemporal gait parameters and joint moments. Gait data were measured using a motion tracking system and two force platforms. Bicluster analysis was used to classify the subjects' gait patterns. The relation between Barthel Index and spatial-temporal gait parameters was determined based on the Spearman correlation. A high correlation between spatial-temporal gait parameters and Barthel Index (r>0.5, p rehabilitation strategies at the patient's individual needs.

  9. Gait analysis in a mouse model resembling Leigh disease.

    Science.gov (United States)

    de Haas, Ria; Russel, Frans G; Smeitink, Jan A

    2016-01-01

    Leigh disease (LD) is one of the clinical phenotypes of mitochondrial OXPHOS disorders and also known as sub-acute necrotizing encephalomyelopathy. The disease has an incidence of 1 in 77,000 live births. Symptoms typically begin early in life and prognosis for LD patients is poor. Currently, no clinically effective treatments are available. Suitable animal and cellular models are necessary for the understanding of the neuropathology and the development of successful new therapeutic strategies. In this study we used the Ndufs4 knockout (Ndufs4(-/-)) mouse, a model of mitochondrial complex I deficiency. Ndusf4(-/-) mice exhibit progressive neurodegeneration, which closely resemble the human LD phenotype. When dissecting behavioral abnormalities in animal models it is of great importance to apply translational tools that are clinically relevant. To distinguish gait abnormalities in patients, simple walking tests can be assessed, but in animals this is not easy. This study is the first to demonstrate automated CatWalk gait analysis in the Ndufs4(-/-) mouse model. Marked differences were noted between Ndufs4(-/-) and control mice in dynamic, static, coordination and support parameters. Variation of walking speed was significantly increased in Ndufs4(-/-) mice, suggesting hampered and uncoordinated gait. Furthermore, decreased regularity index, increased base of support and changes in support were noted in the Ndufs4(-/-) mice. Here, we report the ability of the CatWalk system to sensitively assess gait abnormalities in Ndufs4(-/-) mice. This objective gait analysis can be of great value for intervention and drug efficacy studies in animal models for mitochondrial disease.

  10. Supplementing biomechanical modeling with EMG analysis

    Science.gov (United States)

    Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail

    2016-01-01

    It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.

  11. Gait variability in people with neurological disorders: A systematic review and meta-analysis.

    Science.gov (United States)

    Moon, Yaejin; Sung, JongHun; An, Ruopeng; Hernandez, Manuel E; Sosnoff, Jacob J

    2016-06-01

    There has been growing evidence showing gait variability provides unique information about gait characteristics in neurological disorders. This study systemically reviewed and quantitatively synthesized (via meta-analysis) existing evidence on gait variability in various neurological diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), cerebellar ataxia (CA), Huntington's disease (HD), multiple sclerosis (MS), and Parkinson's disease (PD). Keyword search were conducted in PubMed, Web of science, Cumulative Index to Nursing and Allied Health Literature, and Cochrane Library. Meta-analysis was performed to estimate the pooled effect size for gait variability for each neurological group. Meta-regression was performed to compare gait variability across multiple groups with neurological diseases. Gait variability of 777 patients with AD, ALS, CA, HD, MS, or PD participating in 25 studies was included in meta-analysis. All pathological groups had increased amount of gait variability and loss of fractal structure of gait dynamics compared to healthy controls, and gait variability differentiated distinctive neurological conditions. The HD groups had the highest alterations in gait variability among all pathological groups, whereas the PD, AD and MS groups had the lowest. Interventions that aim to improve gait function in patients with neurological disorders should consider the heterogeneous relationship between gait variability and neurological conditions.

  12. Energy storage and release of prosthetic feet. Part 1: Biomechanical analysis related to user benefits.

    Science.gov (United States)

    Postema, K; Hermens, H J; de Vries, J; Koopman, H F; Eisma, W H

    1997-04-01

    The energy storing and releasing behaviour of 2 energy storing feet (ESF) and 2 conventional prosthetic feet (CF) were compared (ESF: Otto Bock Dynamic Pro and Hanger Quantum; CF: Otto Bock Multi Axial and Otto Bock Lager). Ten trans-tibial amputees were selected. The study was designed as a double-blind, randomised trial. For gait analysis a VICON motion analysis system was used with 2 AMTI force platforms. A special measuring device was used for measuring energy storage and release of the foot during a simulated step. The impulses of the anteroposterior component of the ground force showed small, statistically non-significant differences (deceleration phase: 22.7-23.4 Ns; acceleration phase: 17.0-18.4 Ns). The power storage and release phases as well as the net results also showed small differences (maximum difference in net result is 0.03 J kg-1). It was estimated that these differences lead to a maximum saving of 3% of metabolic energy during walking. It was considered unlikely that the subjects would notice this difference. It was concluded that during walking differences in mechanical energy expenditure of this magnitude are probably not of clinical relevance. Ankle power, as an indicator for energy storage and release gave different results to the energy storage and release as measured with the special test device, especially during landing response. In the biomechanical model (based on inverse dynamics) used in the gait analysis the deformation of the material is not taken into consideration and hence this method of gait analysis is probably not suitable for calculation of shock absorption.

  13. A 3-D biomechanical skeleton model for posture and movement analysis.

    Science.gov (United States)

    D'Amico, Moreno; D'Amico, Gabriele; Roncoletta, Piero

    2006-01-01

    A project to merge into a full 3D reliable and detailed human skeleton representation various segmental biomechanical models presented in literature has been undertaken by our group. The obtained 3D skeleton model is fully parametric and can so be fitted to each subject anthropometric characteristics. A non-ionizing approach based on 3D opto-electronic measurements of body landmarks labelled by passive markers has been chosen to build the 3D parametric biomechanical skeleton model. To this aim various protocols involving different body labelling (and so different related anthropometric data) have been established for different analyses. To analyse human posture and spinal related pathologies, a 27 markers protocol has been set for static analysis, while 49 markers protocol has been set for gait and movement analysis. A special focus has been devoted to identify and model the spine with a correct degree of accuracy and reliability. To this aim complex signal processing and optimisation procedures have been tested. The model is able to fully integrate information deriving from other measurements devices as force platform data, surface EMG, foot pressure maps. The presented model is the first proposed in literature, to authors knowledge, able to process such multifactorial information to perform a full kinematic and kinetic analysis with particular focus on the spine. Several hundreds of patients have been already analysed and followed up with this methodology that proved to be useful for various posture and spine related pathologies (in particular spine deformities, low-back pain etc.).

  14. [3-D ultrasound-assisted gait analysis of schizophrenic patients. Comparison between conventional neuroleptics and olanzapine].

    Science.gov (United States)

    Putzhammer, Albert; Heindl, Bernhard; Müller, Jürgen; Broll, Karin; Pfeiff, Liane; Perfahl, Maria; Hess, Linda; Koch, Horst

    2003-05-01

    Schizophrenic disorders as well as neuroleptic treatment can affect locomotion. The study assessed the influence of neuroleptic treatment on human gait via ultrasonic topometric gait analysis. In a control sample the test system proved high test-retest-reliability. Spatial and temporal gait parameters were assessed in schizophrenic patients without neuroleptic treatment (n = 12) and under treatment with conventional neuroleptics (n = 14) and re-assessed after treatment change to the atypical neuroleptic olanzapine in a repeated measures design. After switch from conventional neuroleptics to olanzapine patients showed an increase of gait velocity (p step length (p gait analysis.

  15. Biomechanical analysis technique choreographic movements (for example, "grand battman jete"

    Directory of Open Access Journals (Sweden)

    Batieieva N.P.

    2015-04-01

    Full Text Available Purpose : biomechanical analysis of the execution of choreographic movement "grand battman jete". Material : the study involved students (n = 7 of the department of classical choreography faculty of choreography. Results : biomechanical analysis of choreographic movement "grand battman jete" (classic exercise, obtained kinematic characteristics (path, velocity, acceleration, force of the center of mass (CM bio parts of the body artist (foot, shin, thigh. Built bio kinematic model (phase. The energy characteristics - mechanical work and kinetic energy units legs when performing choreographic movement "grand battman jete". Conclusions : It was found that the ability of an athlete and coach-choreographer analyze the biomechanics of movement has a positive effect on the improvement of choreographic training of qualified athletes in gymnastics (sport, art, figure skating and dance sports.

  16. The impact of vertic al variation between toe and heel markers on the accuracy of biomechanical gait evaluation%脚跟和脚趾标记点间的垂直误差对步态生物力学参数预测准确性的影响

    Institute of Scientific and Technical Information of China (English)

    隋文; 毛琪; 冯鑫鑫; 徐航

    2016-01-01

    toe and heel markers can prevent misun -derstanding the results of biomechanics gait results , facilitating clinical analysis of gait and reasonable evaluation of bio-mechanics gait parameters during treatment .

  17. First metatarsophalangeal arthrodesis: a clinical, pedobarographic and gait analysis study.

    Science.gov (United States)

    DeFrino, Paul Francis; Brodsky, James White; Pollo, Fabian E; Crenshaw, Stephanie J; Beischer, Andrew D

    2002-06-01

    This study investigated the results of first metatarsophalangeal (MTP) arthrodesis in terms of clinical outcome measures, plantar pressure distribution, and gait patterns. Ten feet in nine patients with severe hallux rigidus (HR) who underwent first MTP arthrodesis were studied. The preoperative evaluation included a subjective questionnaire, physical exam, AOFAS hallux score, radiographs and dynamic pedobarography (EMED). At follow-up (average 34 months) these were repeated, and gait analysis studies were obtained. Patients showed significant clinical improvement based on the subjective criteria. The mean AOFAS score improved from 38 preoperatively to 90 postoperatively. Postoperative EMED analysis showed restoration of the weightbearing function of the first ray, with greater maximum force carried by the distal hallux at toe-off. Kinematic and kinetic gait analysis from each patient's operative limb were compared to the unaffected contralateral limb and to age- and sex-matched healthy subjects. The kinematic data indicated a significantly shorter step length with some loss in ankle plantar flexion at toe-off on the fused side. The kinetic data indicated a reduction in both ankle torque and ankle power at push-off. Clinical results indicated effective pain relief and a high level of patient satisfaction, consistent with previous reports in patients with symptomatic Hallux Rigidus.

  18. Functional improvement after carotid endarterectomy: demonstrated by gait analysis and acetazolamide stress brain perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Kim, G. E.; Yoo, J. Y.; Kim, D. G.; Moon, D. H. [Asan Medical Center, Seoul (Korea, Republic of)

    2005-07-01

    Scientific documentation of neurologic improvement following carotid endarterectomy (CEA) has not been established. The purpose of this prospective study is to investigate whether CEA performed for the internal carotid artery flow lesion improves gait and cerebrovascular hemodynamic status in patients with gait disturbance. We prospectively performed pre- and postCEA gait analysis and acetazolamide stress brain perfusion SPECT (Acz-SPECT) with Tc-99m ECD in 91 patients (M/F: 81/10, mean age: 64.1 y) who had gait disturbance before receiving CEA. Gait performance was assessed using a Vicon 370 motion analyzer. The gait improvement after CEA was correlated to cerebrovascular hemodynamic change as well as symptom duration. 12 hemiparetic stroke patients (M/F=9/3, mean age: 51 y) who did not receive CEA as a control underwent gait analysis twice in a week interval to evaluate whether repeat testing of gait performance shows learning effect. Of 91 patients, 73 (80%) patients showed gait improvement (change of gait speed > 10%) and 42 (46%) showed marked improvement (change of gait speed > 20%), but no improvement was observed in control group at repeat test. Post-operative cerebrovascular hemodynamic improvement was noted in 49 (54%) of 91 patients. There was marked gait improvement in patients group with cerebrovascular hemodynamic improvement compared to no change group (p<0.05). Marked gait improvement and cerebrovascular hemodynamic improvement were noted in 53% and 61% of the patient who had less than 3 month history of symptom compared to 31% and 24% of the patients who had longer than 3 months, respectively (p<0.05). Marked gait improvement was obtained in patients who had improvement of cerebrovascular hemodynamic status on Acz-SPECT after CEA. These results suggest functional improvement such as gait can result from the improved perfusion of misery perfusion area, which is viable for a longer period compared to literatures previously reported.

  19. Clinical gait data analysis based on Spatio-Temporal features

    CERN Document Server

    Katiyar, Rohit

    2010-01-01

    Analysing human gait has found considerable interest in recent computer vision research. So far, however, contributions to this topic exclusively dealt with the tasks of person identification or activity recognition. In this paper, we consider a different application for gait analysis and examine its use as a means of deducing the physical well-being of people. The proposed method is based on transforming the joint motion trajectories using wavelets to extract spatio-temporal features which are then fed as input to a vector quantiser; a self-organising map for classification of walking patterns of individuals with and without pathology. We show that our proposed algorithm is successful in extracting features that successfully discriminate between individuals with and without locomotion impairment.

  20. A body-worn gait analysis system for evaluating hemiplegic gait

    NARCIS (Netherlands)

    Granat, M.H.; Maxwell, D.J.; Bosch, C.J.; Ferguson, A.C.B.; Lees, K.R.; Barbenel, J.C.

    1995-01-01

    This paper describes a system for measuring the temporal parameters of hemiplegic gait. This system uses shoe insoles with sensors, acting as switches, placed under the heel, head of the first metatarsal, head of the fifth metatarsal and the big toe. This system is able to monitor gait for up to 10

  1. Effect of children's shoes on gait: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Burns Joshua

    2011-01-01

    Full Text Available Abstract Background The effect of footwear on the gait of children is poorly understood. This systematic review synthesises the evidence of the biomechanical effects of shoes on children during walking and running. Methods Study inclusion criteria were: barefoot and shod conditions; healthy children aged ≤ 16 years; sample size of n > 1. Novelty footwear was excluded. Studies were located by online database-searching, hand-searching and contact with experts. Two authors selected studies and assessed study methodology using the Quality Index. Meta-analysis of continuous variables for homogeneous studies was undertaken using the inverse variance approach. Significance level was set at P 2. Where I2 > 25%, a random-effects model analysis was used and where I2 Results Eleven studies were included. Sample size ranged from 4-898. Median Quality Index was 20/32 (range 11-27. Five studies randomised shoe order, six studies standardised footwear. Shod walking increased: velocity, step length, step time, base of support, double-support time, stance time, time to toe-off, sagittal tibia-rearfoot range of motion (ROM, sagittal tibia-foot ROM, ankle max-plantarflexion, Ankle ROM, foot lift to max-plantarflexion, 'subtalar' rotation ROM, knee sagittal ROM and tibialis anterior activity. Shod walking decreased: cadence, single-support time, ankle max-dorsiflexion, ankle at foot-lift, hallux ROM, arch length change, foot torsion, forefoot supination, forefoot width and midfoot ROM in all planes. Shod running decreased: long axis maximum tibial-acceleration, shock-wave transmission as a ratio of maximum tibial-acceleration, ankle plantarflexion at foot strike, knee angular velocity and tibial swing velocity. No variables increased during shod running. Conclusions Shoes affect the gait of children. With shoes, children walk faster by taking longer steps with greater ankle and knee motion and increased tibialis anterior activity. Shoes reduce foot motion and

  2. Kinematic analysis of tandem gait on a sine wave walkway

    Science.gov (United States)

    Kawakami, Shingo; Fujisawa, Hiroyuki; Tomizawa, Yoshiyuki; Murakami, Kenichi

    2016-01-01

    [Purpose] The purpose of this study was to ascertain the kinematic characteristics on a horizontal plane, including knee joint rotation, when walking with a tandem gait on a sine wave walkway. [Subjects and Methods] Eighteen healthy adults were enrolled as subjects in this study. They walked with a tandem gait on a sine wave walkway. A three-dimensional motion analysis system was used to record data and calculate the trunk, hip joint, and knee joint rotation angles. [Results] The rotation angle ranges for the trunk, hip joint, and knee joint were 23.3°, 53.3°, and 47.3°, respectively. The trunk generally rotated towards the direction of movement, and when turning left using the left leg as the pivot, the hip joint was internally rotated and the knee joint was externally rotated. In contrast, when making a directional change to the right using the left leg as the pivot, the hip joint was externally rotated and the knee joint was internally rotated. [Conclusion] Through tandem gait analysis on a sine wave walkway, knee joint rotation was found to be important in changes of direction. PMID:27799663

  3. Intra-individual gait pattern variability in specific situations: Implications for forensic gait analysis.

    Science.gov (United States)

    Ludwig, Oliver; Dillinger, Steffen; Marschall, Franz

    2016-07-01

    In this study, inter- and intra-individual gait pattern differences are examined in various gait situations by means of phase diagrams of the extremity angles (cyclograms). 8 test subjects walked along a walking distance of 6m under different conditions three times each: barefoot, wearing sneakers, wearing combat boots, after muscular fatigue, and wearing a full-face motorcycle helmet restricting vision. The joint angles of foot, knee, and hip were recorded in the sagittal plane. The coupling of movements was represented by time-adjusted cyclograms, and the inter- and intra-individual differences were captured by calculating the similarity between different gait patterns. Gait pattern variability was often greater between the defined test situations than between the individual test subjects. The results have been interpreted considering neurophysiological regulation mechanisms. Footwear, masking, and fatigue were interpreted as disturbance parameters, each being a cause for gait pattern variability and complicating the inference of identity of persons in video recordings.

  4. Gait pattern in myotonic dystrophy (Steinert disease): a kinematic, kinetic and EMG evaluation using 3D gait analysis.

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; Crugnola, Veronica; Priano, Lorenzo; Menegoni, Francesco; Trotti, Claudio; Milano, Eva; Mauro, Alessandro

    2012-03-15

    We investigated the gait pattern of 10 patients with myotonic dystrophy (Steinert disease; 4 females, 6 males; age: 41.5+7.6 years), compared to 20 healthy controls, through manual muscle test and gait analysis, in terms of kinematic, kinetic and EMG data. In most of patients (80%) distal muscle groups were weaker than proximal ones. Weakness at lower limbs was in general moderate to severe and MRC values evidenced a significant correlation between tibialis anterior and gastrocnemius medialis (R=0.91). An overall observation of gait pattern in patients when compared to controls showed that most spatio-temporal parameters (velocity, step length and cadence) were significantly different. As concerns kinematics, patients' pelvic tilt was globally in a higher position than control group, with reduced hip extension ability in stance phase and limited range of motion; 60% of the limbs revealed knee hyperextension during midstance and ankle joints showed a quite physiological position at initial contact and higher dorsiflexion during stance phase if compared to healthy individuals. Kinetic plots evidenced higher hip power during loading response and lower ankle power generation in terminal stance. The main EMG abnormalities were seen in tibialis anterior and gastrocnemius medialis muscles. In this study gait analysis gives objective and quantitative information about the gait pattern and the deviations due to the muscular situation of these patients; these results are important from a clinical point of view and suggest that rehabilitation programs for them should take these findings into account.

  5. Biomechanical Analysis of Treadmill Locomotion on the International Space Station

    Science.gov (United States)

    De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.

    2011-01-01

    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to

  6. Biomechanical Analysis of T2 Exercise

    Science.gov (United States)

    DeWitt, John K.; Ploutz-Snyder, Lori; Everett, Meghan; Newby, Nathaniel; Scott-Pandorf, Melissa; Guilliams, Mark E.

    2010-01-01

    Crewmembers regularly perform treadmill exercise on the ISS. With the implementation of T2 on ISS, there is now the capacity to obtain ground reaction force (GRF) data GRF data combined with video motion data allows biomechanical analyses to occur that generate joint torque estimates from exercise conditions. Knowledge of how speed and load influence joint torque will provide quantitative information on which exercise prescriptions can be based. The objective is to determine the joint kinematics, ground reaction forces, and joint kinetics associated with treadmill exercise on the ISS. This study will: 1) Determine if specific exercise speed and harness load combinations are superior to others in exercise benefit; and 2) Aid in the design of exercise prescriptions that will be most beneficial in maintaining crewmember health.

  7. [Complexity analysis of gait signal based on Jensen-Shannon divergence].

    Science.gov (United States)

    Wang, Peicun; Wang, Jun

    2014-06-01

    When people are walking, they will produce gait signals and different people will produce different gait signals. The research of the gait signal complexity is really of great significance for medicine. By calculating people's gait signal complexity, we can assess a person's health status and thus timely detect and diagnose diseases. In this study, the Jensen-Shannon divergence (JSD), the method of complexity analysis, was used to calculate the complexity of gait signal in the healthy elderly, healthy young people and patients with Parkinson's disease. Then we detected the experimental data by variance detection. The results showed that the difference among the complexity of the three gait signals was great. Through this research, we have got gait signal complexity range of patients with Parkinson's disease, the healthy elderly and healthy young people, respectively, which would provide an important basis for clinical diagnosis.

  8. Electromyographic analysis of the gait cycle phases of boxer dogs

    Directory of Open Access Journals (Sweden)

    J.F. Araújo

    2016-08-01

    Full Text Available ABSTRACT Systematic studies involving technologies such as surface electromyography (sEMG may provide important data that enable veterinarians to recognize musculoskeletal, ligamentous, and neurological alterations. The aim of this study was to describe the gait cycle phases and the timing of muscle activation in healthy Boxer dogs during gait by means of sEMG. The gait cycle of seven Boxer dogs was evaluated and sEMG was recorded from the biceps brachii, triceps brachii, brachiocephalic, rectus femoris, semitendinosus, semimembranosus, and superficial gluteal muscles of the right hemibody. Circular monopolar Ag/AgCl electrodes were attached to the mean point between the motor point and the muscle insertion. The electromyographic signals were collected by an active interface with 20-fold gain in a bipolar differential configuration using a 16-channel signal conditioner (EMG Systems Brasil, while the dogs walked on a treadmill at a speed of 2m/s. Pearson's correlation was used for the statistical analysis. A positive correlation was found between the rectus femoris and biceps brachii (r= 0.81; superficial gluteal and triceps brachii (r= 0.69; semitendinosus-semimembranosus and biceps brachii (r= 0.76; and rectus femoris and semitendinosus and semimembranosus muscle groups (r=0.99. The biceps brachii and brachiocephalic muscles work in tandem to position the thoracic limb during the gait cycle, while the semitendinosus-semimembranosus group flexes the knee and, simultaneously with the quadriceps that flexes the hip, prevents the contact of the pelvic limb with the ground during the swing phase. The body is propelled forward by the triceps brachii muscle, which extends the elbow and flexes the shoulder at the final contact, while the superficial gluteal muscle extends the hip.

  9. Short-Term Effects of Thoracic Spine Manipulation on the Biomechanical Organisation of Gait Initiation: A Randomized Pilot Study

    Science.gov (United States)

    Ditcharles, Sébastien; Yiou, Eric; Delafontaine, Arnaud; Hamaoui, Alain

    2017-01-01

    Speed performance during gait initiation is known to be dependent on the capacity of the central nervous system to generate efficient anticipatory postural adjustments (APA). According to the posturo-kinetic capacity (PKC) concept, any factor enhancing postural chain mobility and especially spine mobility, may facilitate the development of APA and thus speed performance. “Spinal Manipulative Therapy High-Velocity, Low-Amplitude” (SMT-HVLA) is a healing technique applied to the spine which is routinely used by healthcare practitioners to improve spine mobility. As such, it may have a positive effect on the PKC and therefore facilitate gait initiation. The present study aimed to investigate the short-term effect of thoracic SMT-HVLA on spine mobility, APA and speed performance during gait initiation. Healthy young adults (n = 22) performed a series of gait initiation trials on a force plate before (“pre-manipulation” condition) and after (“post-manipulation” condition) a sham manipulation or an HVLA manipulation applied to the ninth thoracic vertebrae (T9). Participants were randomly assigned to the sham (n = 11) or the HVLA group (n = 11).The spine range of motion (ROM) was assessed in each participant immediately after the sham or HVLA manipulations using inclinometers. The results showed that the maximal thoracic flexion increased in the HVLA group after the manipulation, which was not the case in the sham group. In the HVLA group, results further showed that each of the following gait initiation variables reached a significantly lower mean value in the post-manipulation condition as compared to the pre-manipulation condition: APA duration, peak of anticipatory backward center of pressure displacement, center of gravity velocity at foot-off, mechanical efficiency of APA, peak of center of gravity velocity and step length. In contrast, for the sham group, results showed that none of the gait initiation variables significantly differed between the pre

  10. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis.

    Science.gov (United States)

    Mahaudens, P; Banse, X; Mousny, M; Detrembleur, C

    2009-04-01

    Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. Consequently, AIS can modify human locomotion. Very few studies have investigated a simple activity like walking in a cohort of well-defined untreated patients with scoliosis. The first goal of this study is to evaluate the effects of scoliosis and scoliosis severity on kinematic and electromyographic (EMG) gait variables compared to an able-bodied population. The second goal is to look for any asymmetry in these parameters during walking. Thirteen healthy girls and 41 females with untreated AIS, with left thoracolumbar or lumbar primary structural curves were assessed. AIS patients were divided into three clinical subgroups (group 1 40 degrees). Gait analysis included synchronous bilateral kinematic and EMG measurements. The subjects walked on a treadmill at 4 km/h (comfortable speed). The tridimensional (3D) shoulder, pelvis, and lower limb motions were measured using 22 reflective markers tracked by four infrared cameras. The EMG timing activity was measured using bipolar surface electrodes on quadratus lumborum, erector spinae, gluteus medius, rectus femoris, semitendinosus, tibialis anterior, and gastrocnemius muscles. Statistical comparisons (ANOVA) were performed across groups and sides for kinematic and EMG parameters. The step length was reduced in AIS compared to normal subjects (7% less). Frontal shoulder, pelvis, and hip motion and transversal hip motion were reduced in scoliosis patients (respectively, 21, 27, 28, and 22% less). The EMG recording during walking showed that the quadratus lumborum, erector spinae, gluteus medius, and semitendinosus muscles contracted during a longer part of the stride in scoliotic patients (46% of the stride) compared with normal subjects (35% of the stride). There was no significant difference between scoliosis groups 1, 2, and 3 for any of the kinematic and EMG parameters, meaning

  11. Meshless methods in biomechanics bone tissue remodelling analysis

    CERN Document Server

    Belinha, Jorge

    2014-01-01

    This book presents the complete formulation of a new advanced discretization meshless technique: the Natural Neighbour Radial Point Interpolation Method (NNRPIM). In addition, two of the most popular meshless methods, the EFGM and the RPIM, are fully presented. Being a truly meshless method, the major advantages of the NNRPIM over the FEM, and other meshless methods, are the remeshing flexibility and the higher accuracy of the obtained variable field. Using the natural neighbour concept, the NNRPIM permits to determine organically the influence-domain, resembling the cellulae natural behaviour. This innovation permits the analysis of convex boundaries and extremely irregular meshes, which is an advantage in the biomechanical analysis, with no extra computational effort associated.   This volume shows how to extend the NNRPIM to the bone tissue remodelling analysis, expecting to contribute with new numerical tools and strategies in order to permit a more efficient numerical biomechanical analysis.

  12. Combined robotic-aided gait training and 3D gait analysis provide objective treatment and assessment of gait in children and adolescents with Acquired Hemiplegia.

    Science.gov (United States)

    Molteni, Erika; Beretta, Elena; Altomonte, Daniele; Formica, Francesca; Strazzer, Sandra

    2015-08-01

    To evaluate the feasibility of a fully objective rehabilitative and assessment process of the gait abilities in children suffering from Acquired Hemiplegia (AH), we studied the combined employment of robotic-aided gait training (RAGT) and 3D-Gait Analysis (GA). A group of 12 patients with AH underwent 20 sessions of RAGT in addition to traditional manual physical therapy (PT). All the patients were evaluated before and after the training by using the Gross Motor Function Measures (GMFM), the Functional Assessment Questionnaire (FAQ), and the 6 Minutes Walk Test. They also received GA before and after RAGT+PT. Finally, results were compared with those obtained from a control group of 3 AH children who underwent PT only. After the training, the GMFM and FAQ showed significant improvement in patients receiving RAGT+PT. GA highlighted significant improvement in stance symmetry and step length of the affected limb. Moreover, pelvic tilt increased, and hip kinematics on the sagittal plane revealed statistically significant increase in the range of motion during the hip flex-extension. Our data suggest that the combined program RAGT+PT induces improvements in functional activities and gait pattern in children with AH, and it demonstrates that the combined employment of RAGT and 3D-GA ensures a fully objective rehabilitative program.

  13. Laboratory review: the role of gait analysis in seniors' mobility and fall prevention.

    Science.gov (United States)

    Bridenbaugh, Stephanie A; Kressig, Reto W

    2011-01-01

    Walking is a complex motor task generally performed automatically by healthy adults. Yet, by the elderly, walking is often no longer performed automatically. Older adults require more attention for motor control while walking than younger adults. Falls, often with serious consequences, can be the result. Gait impairments are one of the biggest risk factors for falls. Several studies have identified changes in certain gait parameters as independent predictors of fall risk. Such gait changes are often too discrete to be detected by clinical observation alone. At the Basel Mobility Center, we employ the GAITRite electronic walkway system for spatial-temporal gait analysis. Although we have a large range of indications for gait analyses and several areas of clinical research, our focus is on the association between gait and cognition. Gait analysis with walking as a single-task condition alone is often insufficient to reveal underlying gait disorders present during normal, everyday activities. We use a dual-task paradigm, walking while simultaneously performing a second cognitive task, to assess the effects of divided attention on motor performance and gait control. Objective quantification of such clinically relevant gait changes is necessary to determine fall risk. Early detection of gait disorders and fall risk permits early intervention and, in the best-case scenario, fall prevention. We and others have shown that rhythmic movement training such as Jaques-Dalcroze eurhythmics, tai chi and social dancing can improve gait regularity and automaticity, thus increasing gait safety and reducing fall risk. Copyright © 2010 S. Karger AG, Basel.

  14. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator

    Directory of Open Access Journals (Sweden)

    Joaquin Ballesteros

    2016-11-01

    Full Text Available Gait analysis can provide valuable information on a person’s condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars—related to the user condition—and the estimation error; and (ii this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  15. Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling.

    Science.gov (United States)

    Senden, R; Savelberg, H H C M; Grimm, B; Heyligers, I C; Meijer, K

    2012-06-01

    This study investigated whether the Tinetti scale, as a subjective measure for fall risk, is associated with objectively measured gait characteristics. It is studied whether gait parameters are different for groups that are stratified for fall risk using the Tinetti scale. Moreover, the discriminative power of gait parameters to classify elderly according to the Tinetti scale is investigated. Gait of 50 elderly with a Tinneti>24 and 50 elderly with a Tinetti≤24 was analyzed using acceleration-based gait analysis. Validated algorithms were used to derive spatio-temporal gait parameters, harmonic ratio, inter-stride amplitude variability and root mean square (RMS) from the accelerometer data. Clear differences in gait were found between the groups. All gait parameters correlated with the Tinetti scale (r-range: 0.20-0.73). Only walking speed, step length and RMS showed moderate to strong correlations and high discriminative power to classify elderly according to the Tinetti scale. It is concluded that subtle gait changes that have previously been related to fall risk are not captured by the subjective assessment. It is therefore worthwhile to include objective gait assessment in fall risk screening.

  16. Gait analysis using gravitational acceleration measured by wearable sensors.

    Science.gov (United States)

    Takeda, Ryo; Tadano, Shigeru; Todoh, Masahiro; Morikawa, Manabu; Nakayasu, Minoru; Yoshinari, Satoshi

    2009-02-09

    A novel method for measuring human gait posture using wearable sensor units is proposed. The sensor units consist of a tri-axial acceleration sensor and three gyro sensors aligned on three axes. The acceleration and angular velocity during walking were measured with seven sensor units worn on the abdomen and the lower limb segments (both thighs, shanks and feet). The three-dimensional positions of each joint are calculated from each segment length and joint angle. Joint angle can be estimated mechanically from the gravitational acceleration along the anterior axis of the segment. However, the acceleration data during walking includes three major components; translational acceleration, gravitational acceleration and external noise. Therefore, an optimization analysis was represented to separate only the gravitational acceleration from the acceleration data. Because the cyclic patterns of acceleration data can be found during constant walking, a FFT analysis was applied to obtain some characteristic frequencies in it. A pattern of gravitational acceleration was assumed using some parts of these characteristic frequencies. Every joint position was calculated from the pattern under the condition of physiological motion range of each joint. An optimized pattern of the gravitational acceleration was selected as a solution of an inverse problem. Gaits of three healthy volunteers were measured by walking for 20s on a flat floor. As a result, the acceleration data of every segment was measured simultaneously. The characteristic three-dimensional walking could be shown by the expression using a stick figure model. In addition, the trajectories of the knee joint in the horizontal plane could be checked by visual imaging on a PC. Therefore, this method provides important quantitive information for gait diagnosis.

  17. Kinematic analysis quantifies gait abnormalities associated with lameness in broiler chickens and identifies evolutionary gait differences.

    Science.gov (United States)

    Caplen, Gina; Hothersall, Becky; Murrell, Joanna C; Nicol, Christine J; Waterman-Pearson, Avril E; Weeks, Claire A; Colborne, G Robert

    2012-01-01

    This is the first time that gait characteristics of broiler (meat) chickens have been compared with their progenitor, jungle fowl, and the first kinematic study to report a link between broiler gait parameters and defined lameness scores. A commercial motion-capturing system recorded three-dimensional temporospatial information during walking. The hypothesis was that the gait characteristics of non-lame broilers (n = 10) would be intermediate to those of lame broilers (n = 12) and jungle fowl (n = 10, tested at two ages: immature and adult). Data analysed using multi-level models, to define an extensive range of baseline gait parameters, revealed inter-group similarities and differences. Natural selection is likely to have made jungle fowl walking gait highly efficient. Modern broiler chickens possess an unbalanced body conformation due to intense genetic selection for additional breast muscle (pectoral hypertrophy) and whole body mass. Together with rapid growth, this promotes compensatory gait adaptations to minimise energy expenditure and triggers high lameness prevalence within commercial flocks; lameness creating further disruption to the gait cycle and being an important welfare issue. Clear differences were observed between the two lines (short stance phase, little double-support, low leg lift, and little back displacement in adult jungle fowl; much double-support, high leg lift, and substantial vertical back movement in sound broilers) presumably related to mass and body conformation. Similarities included stride length and duration. Additional modifications were also identified in lame broilers (short stride length and duration, substantial lateral back movement, reduced velocity) presumably linked to musculo-skeletal abnormalities. Reduced walking velocity suggests an attempt to minimise skeletal stress and/or discomfort, while a shorter stride length and time, together with longer stance and double-support phases, are associated with

  18. Kinematic analysis quantifies gait abnormalities associated with lameness in broiler chickens and identifies evolutionary gait differences.

    Directory of Open Access Journals (Sweden)

    Gina Caplen

    Full Text Available This is the first time that gait characteristics of broiler (meat chickens have been compared with their progenitor, jungle fowl, and the first kinematic study to report a link between broiler gait parameters and defined lameness scores. A commercial motion-capturing system recorded three-dimensional temporospatial information during walking. The hypothesis was that the gait characteristics of non-lame broilers (n = 10 would be intermediate to those of lame broilers (n = 12 and jungle fowl (n = 10, tested at two ages: immature and adult. Data analysed using multi-level models, to define an extensive range of baseline gait parameters, revealed inter-group similarities and differences. Natural selection is likely to have made jungle fowl walking gait highly efficient. Modern broiler chickens possess an unbalanced body conformation due to intense genetic selection for additional breast muscle (pectoral hypertrophy and whole body mass. Together with rapid growth, this promotes compensatory gait adaptations to minimise energy expenditure and triggers high lameness prevalence within commercial flocks; lameness creating further disruption to the gait cycle and being an important welfare issue. Clear differences were observed between the two lines (short stance phase, little double-support, low leg lift, and little back displacement in adult jungle fowl; much double-support, high leg lift, and substantial vertical back movement in sound broilers presumably related to mass and body conformation. Similarities included stride length and duration. Additional modifications were also identified in lame broilers (short stride length and duration, substantial lateral back movement, reduced velocity presumably linked to musculo-skeletal abnormalities. Reduced walking velocity suggests an attempt to minimise skeletal stress and/or discomfort, while a shorter stride length and time, together with longer stance and double-support phases, are associated

  19. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    Directory of Open Access Journals (Sweden)

    Silvia Fantozzi

    Full Text Available Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23° and the ankle more dorsiflexed (≈ 9° at heel strike, and the hip was more flexed at toe-off (≈ 13° in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7° and showed a more inversed mean value (≈ 7°. The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered

  20. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    Science.gov (United States)

    Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio

    2015-01-01

    Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the

  1. Gait Strategy in Patients with Ehlers-Danlos Syndrome Hypermobility Type: A Kinematic and Kinetic Evaluation Using 3D Gait Analysis

    Science.gov (United States)

    Galli, Manuela; Cimolin, Veronica; Rigoldi, Chiara; Castori, Marco; Celletti, Claudia; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The aim of this study was to quantify the gait patterns of adults with joint hypermobility syndrome/Ehlers-Danlos syndrome (JHS/EDS-HT) hypermobility type, using Gait Analysis. We quantified the gait strategy in 12 JHS/EDS-HT adults individuals (age: 43.08 + 6.78 years) compared to 20 healthy controls (age: 37.23 plus or minus 8.91 years), in…

  2. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation

    Science.gov (United States)

    Cole, Michael H.; Graepel, Cara L.; Hyam, Jonathan A.; Jenkinson, Ned; Brittain, John-Stuart; Coyne, Terry J.; Silburn, Peter A.; Aziz, Tipu Z.; Kerr, Graham; Brown, Peter

    2012-01-01

    Gait freezing is an episodic arrest of locomotion due to an inability to take normal steps. Pedunculopontine nucleus stimulation is an emerging therapy proposed to improve gait freezing, even where refractory to medication. However, the efficacy and precise effects of pedunculopontine nucleus stimulation on Parkinsonian gait disturbance are not established. The clinical application of this new therapy is controversial and it is unknown if bilateral stimulation is more effective than unilateral. Here, in a double-blinded study using objective spatiotemporal gait analysis, we assessed the impact of unilateral and bilateral pedunculopontine nucleus stimulation on triggered episodes of gait freezing and on background deficits of unconstrained gait in Parkinson’s disease. Under experimental conditions, while OFF medication, Parkinsonian patients with severe gait freezing implanted with pedunculopontine nucleus stimulators below the pontomesencephalic junction were assessed during three conditions; off stimulation, unilateral stimulation and bilateral stimulation. Results were compared to Parkinsonian patients without gait freezing matched for disease severity and healthy controls. Pedunculopontine nucleus stimulation improved objective measures of gait freezing, with bilateral stimulation more effective than unilateral. During unconstrained walking, Parkinsonian patients who experience gait freezing had reduced step length and increased step length variability compared to patients without gait freezing; however, these deficits were unchanged by pedunculopontine nucleus stimulation. Chronic pedunculopontine nucleus stimulation improved Freezing of Gait Questionnaire scores, reflecting a reduction of the freezing encountered in patients’ usual environments and medication states. This study provides objective, double-blinded evidence that in a specific subgroup of Parkinsonian patients, stimulation of a caudal pedunculopontine nucleus region selectively improves gait

  3. Stereophotogrammetrie Mass Distribution Parameter Determination Of The Lower Body Segments For Use In Gait Analysis

    Science.gov (United States)

    Sheffer, Daniel B.; Schaer, Alex R.; Baumann, Juerg U.

    1989-04-01

    Inclusion of mass distribution information in biomechanical analysis of motion is a requirement for the accurate calculation of external moments and forces acting on the segmental joints during locomotion. Regression equations produced from a variety of photogrammetric, anthropometric and cadaeveric studies have been developed and espoused in literature. Because of limitations in the accuracy of predicted inertial properties based on the application of regression equation developed on one population and then applied on a different study population, the employment of a measurement technique that accurately defines the shape of each individual subject measured is desirable. This individual data acquisition method is especially needed when analyzing the gait of subjects with large differences in their extremity geo-metry from those considered "normal", or who may possess gross asymmetries in shape in their own contralateral limbs. This study presents the photogrammetric acquisition and data analysis methodology used to assess the inertial tensors of two groups of subjects, one with spastic diplegic cerebral palsy and the other considered normal.

  4. Shod wear and foot alignment in clinical gait analysis.

    Science.gov (United States)

    Louey, Melissa Gar Yee; Sangeux, Morgan

    2016-09-01

    Sagittal plane alignment of the foot presents challenges when the subject wears shoes during gait analysis. Typically, visual alignment is performed by positioning two markers, the heel and toe markers, aligned with the foot within the shoe. Alternatively, software alignment is possible when the sole of the shoe lies parallel to the ground, and the change in the shoe's sole thickness is measured and entered as a parameter. The aim of this technical note was to evaluate the accuracy of visual and software foot alignment during shod gait analysis. We calculated the static standing ankle angles of 8 participants (mean age: 8.7 years, SD: 2.9 years) wearing bilateral solid ankle foot orthoses (BSAFOs) with and without shoes using the visual and software alignment methods. All participants were able to stand with flat feet in both static trials and the ankle angles obtained in BSAFOs without shoes was considered the reference. We showed that the current implementation of software alignment introduces a bias towards more ankle dorsiflexion, mean=3°, SD=3.4°, p=0.006, and proposed an adjusted software alignment method. We found no statistical differences using visual alignment and adjusted software alignment between the shoe and shoeless conditions, p=0.19 for both. Visual alignment or adjusted software alignment are advised to represent foot alignment accurately.

  5. Benchmarking Foot Trajectory Estimation Methods for Mobile Gait Analysis

    Directory of Open Access Journals (Sweden)

    Julius Hannink

    2017-08-01

    Full Text Available Mobile gait analysis systems based on inertial sensing on the shoe are applied in a wide range of applications. Especially for medical applications, they can give new insights into motor impairment in, e.g., neurodegenerative disease and help objectify patient assessment. One key component in these systems is the reconstruction of the foot trajectories from inertial data. In literature, various methods for this task have been proposed. However, performance is evaluated on a variety of datasets due to the lack of large, generally accepted benchmark datasets. This hinders a fair comparison of methods. In this work, we implement three orientation estimation and three double integration schemes for use in a foot trajectory estimation pipeline. All methods are drawn from literature and evaluated against a marker-based motion capture reference. We provide a fair comparison on the same dataset consisting of 735 strides from 16 healthy subjects. As a result, the implemented methods are ranked and we identify the most suitable processing pipeline for foot trajectory estimation in the context of mobile gait analysis.

  6. The Rancho EMG analyzer: a computerized system for gait analysis.

    Science.gov (United States)

    Perry, J; Bontrager, E L; Bogey, R A; Gronley, J K; Barnes, L A

    1993-11-01

    This paper describes a computer system which accurately defines the EMG patterns of the lower extremities during gait. Footswitches are used to identify the temporal relationships and determine the phases of the gait cycle. Fine wire electrodes, inserted in the desired muscles of the patient being tested, provide EMG signals for comparison with a normal database. The system is also usable with surface electrodes when an appropriate normal database for surface electrodes is incorporated. Descriptive qualifiers (such as 'premature onset', 'delayed cessation', 'no clinically significant EMG', 'continuous activity' etc.) are used to produce a clinically relevant printed (textual) report. The intensity filtered average (IFA) of the EMG is shown graphically with the representative profile of each stride. The IFAs for all muscles tested can be plotted together (up to six on a page) and the graphic representation of the 'raw' EMG can be produced. The methods of generating the normal database by creating time-adjusted mean profiles (TAMP) are enumerated. The clinical use of the system is discussed. A detailed analysis of 31 of the most recent patient tests for which the system was used provides an indication of its accuracy. For 86% of the 428 muscle tests examined, the EMG analyser was considered to have given the correct result as compared with a visual analysis of the raw EMG record by a trained expert. Recommendations for the use and future improvements of the EMG analyser are made.

  7. Human Gait Feature Extraction Including a Kinematic Analysis Toward Robotic Power Assistance

    Directory of Open Access Journals (Sweden)

    Mario I. Chacon-Murguia

    2012-09-01

    Full Text Available The present work proposes a method for human gait and kinematic analysis. Gait analysis consists of the determination of hip, knee and ankle positions through video analysis. Gait kinematic for the thigh and knee is then generated from this data. Evaluations of the gait analysis method indicate an acceptable performance of 86.66% for hip and knee position estimation, and comparable findings with other reported works for gait kinematic. A coordinate systems assignment is performed according to the DH algorithm and a direct kinematic model of the legs is obtained. The legs’ angles obtained from the video analysis are applied to the kinematic model in order to revise the application of this model to robotic legs in a power assisted system.

  8. Measuring medial longitudinal arch deformation during gait. A reliability study

    DEFF Research Database (Denmark)

    Bencke, Jesper; Christiansen, Ditte; Jensen, Anne Kathrine Bendrup;

    2012-01-01

    during gait and to compare this method with a static measure and a 2D dynamic method. Fifty-two feet (26 healthy male participants) were tested twice 4-9 days apart in a biomechanical gait analysis laboratory using a 3D three-marker foot model, a 2D video-based model for the measurement of MLAD during...... and showed that ND obtained during quiet standing could not predict the MLAD during gait. The 3D method, or alternatively the 2D method, may be used in clinical settings as reliable methods for easy estimation of the foot longitudinal stability....

  9. Biomechanical consequences of plantar fascial release or rupture during gait: part I--disruptions in longitudinal arch conformation.

    Science.gov (United States)

    Sharkey, N A; Ferris, L; Donahue, S W

    1998-12-01

    To examine whether conformational changes induced by plantar fascial division may progress during gait, we loaded the feet of seven cadavers using an apparatus that simulates the actions of the extrinsic plantarflexors. We measured the effects of plantar fasciotomy at two instants in the terminal-stance phase of gait. Radiographic measurements of height of the arch, base length of the arch, and talo first-metatarsal angle were used to assess contributions to arch support made by the plantar fascia, tibialis posterior, peroneus longus and brevis, and digital flexor muscles. Complete fasciotomy caused significant collapse of the arch in the sagittal plane. Early in terminal stance, at the instant after heel-off, mean height of the arch decreased from 47 to 45 mm. Late in terminal stance, at the instant preceding contralateral heel strike, mean height of the arch decreased from 46 to 43. Effects of division of the central band, though significant, were mild. Medial base length of the arch increased from 163 to 167 mm in the absence of tibialis posterior contraction at late terminal stance. Arch-supporting abilities of the other extrinsic muscles were insignificant.

  10. Reliability of three-dimensional gait analysis in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    McDermott, Ailish

    2010-10-01

    Gait impairment is one of the primary symptoms of cervical spondylotic myelopathy (CSM). Detailed assessment is possible using three-dimensional gait analysis (3DGA), however the reliability of 3DGA for this population has not been established. The aim of this study was to evaluate the test-retest reliability of temporal-spatial, kinematic and kinetic parameters in a CSM population.

  11. Influence of loading cycle profile and frequency on a biomechanical parameter of a model of a balloon kyphoplasty-augmented lumbar spine segment: a finite element analysis study.

    Science.gov (United States)

    Li, Yuan; Lewis, Gladius

    2010-01-01

    For patients who are suffering debilitating and persistent pain due to vertebral compression fracture(s) and for whom conservative therapies have not provided relief, balloon kyphoplasty (BKP) is used as a surgical option. There are only a very few literature reports on the use of the finite element analysis (FEA) method to obtain biomechanical parameters of models of spine segments that include BKP augmentation at a given level. In each of these studies, the applied loading used was quasi-static. During normal activities of daily living, the patient's spine would be subject to dynamically-applied loading. Thus, the question of the influence of the characteristics of a dynamically-applied loading cycle on biomechanical parameters of a spine that includes BKP-augmented segment(s) is germane; however, a study of this issue is lacking. We investigated this issue in the present FEA work, with the spine segment model being the L1-L3 motion segment units (MSUs) (a segment that is commonly augmented using BKP) and prophylactic BKP simulated at L2. The dynamic load was the compressive load-versus-time cycle to which the L3-L4 MSU is subjected during gait. Four cases of the cycle were considered, corresponding to slow-, normal-, fast- and very fast-paced gait. The loading cycle was applied to the superior surface of L1 while the inferior surface of L3 was fully constrained. It was found that (1) the global mean von Mises stress during the loading cycle (σVMG), in each tissue in the model increased in going from a slow-paced gait cycle to a very fast-paced gait cycle; and (2) for the slow-paced gait cycle, with increase in frequency of the cycle, f (1 ≤ f ≤ 3 Hz), σVMG in each of these tissues increased. Potential uses of the present findings are identified.

  12. Superior functional outcome after femoral derotation osteotomy according to gait analysis in cerebral palsy.

    Science.gov (United States)

    Niklasch, M; Dreher, T; Döderlein, L; Wolf, S I; Ziegler, K; Brunner, R; Rutz, E

    2015-01-01

    The femoral derotation osteotomy (FDO) is seen as the golden standard treatment in children with cerebral palsy and internal rotation gait. Variable outcomes with cases of over- and undercorrection mainly in the less involved patients have been reported. The determination of the amount of derotation is still inconsistent. 138 patients (age: 11 (± 3.3) years) with cerebral palsy and internal rotation gait were examined pre- and 1 year postoperatively after distal or proximal FDO, using standardized clinical examination and 3D gait analysis. Three groups were defined retrospectively depending on the amount of derotation in relation to the mean hip rotation in stance (MHR) during gait analysis: Group A (derotation angle > MHR + 10°), Group B (derotation angle = MHR ± 10°), Group C (derotation angle gait analysis compared with clinical examination.

  13. [Therapeutic efficacy during active phases of multiple sclerosis: gait analysis and comparison with the EDSS score].

    Science.gov (United States)

    Fauchard-Renard, C; Renard, J F; Miret, N; Hannequin, D; Mihout, B; Weber, J

    2001-07-01

    Fifteen patients experiencing a flare-up of multiple sclerosis were given 1 g methylprednosolone per day for 5 days. The EDSS score and gait analysis using spatio-temporal variables were recorded for these patients on days 0, 5 and 45. Both methods evidenced significant improvement but the significance was observed between day 0 and day 5 for the EDSS and between day 5 and 45 for gait speed and between day 0 and 45 for step rate. Gait speed was correlated with the pyramidal scale but not with the other functional scales of the EDSS. These results suggest that EDSS and spatio-temporal gait analysis are different tools for the assessment of therapeutic effect. Gait analysis can provide a precise quantitative assessment of the locomotor handicap as a function of the proposed treatment.

  14. Gait patterns comparison of children with Duchenne muscular dystrophy to those of control subjects considering the effect of gait velocity.

    Science.gov (United States)

    Gaudreault, Nathaly; Gravel, Denis; Nadeau, Sylvie; Houde, Sylvie; Gagnon, Denis

    2010-07-01

    3D analysis of the gait of children with Duchenne muscular dystrophy (DMD) was the topic of only a few studies and none of these considered the effect of gait velocity on the gait parameters of children with DMD. Gait parameters of 11 children with DMD were compared to those of 14 control children while considering the effect of gait velocity using 3D biomechanical analysis. Kinematic and kinetic gait parameters were measured using an Optotrak motion analysis system and AMTI force plates embedded in the floor. The data profiles of children with DMD walking at natural gait velocity were compared to those of the control children who walked at both natural and slow gait velocities. When both groups walked at similar velocity, children with DMD had higher cadence and shorter step length. They demonstrated a lower hip extension moment as well as a minimal or absent knee extension moment. At the ankle, a dorsiflexion moment was absent at heel strike due to the anterior location of the center of pressure. The magnitude of the medio-lateral ground reaction force was higher in children with DMD. Despite this increase, the hip abductor moment was lower. Hip power generation was also observed at the mid-stance in DMD children. These results suggest that most of the modifications observed are strategies used by children with DMD to cope with possible muscle weakness in order to provide support, propulsion and balance of the body during gait.

  15. Biomechanical Analysis of Contemporary Throwing Technique Theory

    Directory of Open Access Journals (Sweden)

    Chen Jian

    2015-01-01

    Full Text Available Based on the movement process of throwing and in order to further improve the throwing technique of our country, this paper will first illustrate the main influence factors which will affect the shot distance via the mutual combination of movement equation and geometrical analysis. And then, it will give the equation of the acting force that the throwing athletes have to bear during throwing movement; and will reach the speed relationship between each arthrosis during throwing and batting based on the kinetic analysis of the throwing athletes’ arms while throwing. This paper will obtain the momentum relationship of the athletes’ each arthrosis by means of rotational inertia analysis; and then establish a restricted particle dynamics equation from the Lagrange equation. The obtained result shows that the momentum of throwing depends on the momentum of the athletes’ wrist joints while batting.

  16. Gait analysis using floor markers and inertial sensors.

    Science.gov (United States)

    Do, Tri Nhut; Suh, Young Soo

    2012-01-01

    In this paper, a gait analysis system which estimates step length and foot angles is proposed. A measurement unit, which consists of a camera and inertial sensors, is installed on a shoe. When the foot touches the floor, markers are recognized by the camera to obtain the current position and attitude. A simple planar marker with 4,096 different codes is used. These markers printed on paper are placed on the floor. When the foot is moving off the floor, the position and attitude are estimated using an inertial navigation algorithm. For accurate estimation, a smoother is proposed, where vision information and inertial sensor data are combined. Through experiments, it is shown that the proposed system can both track foot motion and estimate step length.

  17. Gait Analysis Using Floor Markers and Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Young Soo Suh

    2012-02-01

    Full Text Available In this paper, a gait analysis system which estimates step length and foot angles is proposed. A measurement unit, which consists of a camera and inertial sensors, is installed on a shoe. When the foot touches the floor, markers are recognized by the camera to obtain the current position and attitude. A simple planar marker with 4,096 different codes is used. These markers printed on paper are placed on the floor. When the foot is moving off the floor, the position and attitude are estimated using an inertial navigation algorithm. For accurate estimation, a smoother is proposed, where vision information and inertial sensor data are combined. Through experiments, it is shown that the proposed system can both track foot motion and estimate step length.

  18. The effect of an external hip joint stabiliser on gait function after surgery for tumours located around the circumference of the pelvis: analysis of seven cases of internal hemipelvectomy or proximal femur resection.

    Science.gov (United States)

    Akiyama, Toru; Saita, Kazuo; Ogura, Koichi; Kawai, Akira; Imanishi, Jungo; Yazawa, Yasuo; Kawashima, Noritaka; Ogata, Toru

    2016-03-01

    Limb-sparing resection of malignant pelvic tumours provides the opportunity for patients to obtain better post-operative mobility. However, because few studies have examined in detail the gait function of patients following pelvic tumour resection, the factors affecting gait performance remain to be clarified. Here, with the laboratory-based computer-assisted gait analysis, we evaluated these patients' gait objectively and the impact of a hip-stabilising supporter on gait improvement was simultaneously examined. Three-dimensional gait analysis was performed to obtain cross-sectional data for seven post-operative patients (mean age, 42.7 years; range, 20-61 years) who underwent various types of resection, including P1/4 internal hemipelvectomy (IH), P1/2/3 IH, and proximal femur resection with prosthetic reconstruction. To assess the immediate effects of a hip joint stabiliser, we instructed subjects to walk at their self-selected preferred speed and compared gait parameters with and without use of the hip stabiliser. At baseline, the average walking speed was 0.75 m/s (95% CI 0.53-0.97). As shown by the intra-subject comparison, the hip stabiliser increased walking speed in all but one subject, increasing both temporal and spatial parameters. Ground reaction force of operated limbs increased for some subjects, while step length increased on at least one side in all subjects. Improvement in the gait parameters is indicative of better control provided by the external hip stabiliser over the affected limb. Moreover, our findings show the potential of a biomechanical approach to improve gait function following pelvic tumour resection.

  19. Clinical gait analysis: comparing explicit state duration HMMs using a reference-based index.

    Science.gov (United States)

    Karg, Michelle; Seiberl, Wolfgang; Kreuzpointner, Florian; Haas, Johannes-Peter; Kulic, Dana

    2015-03-01

    In clinical gait analysis, the gait of a patient is recorded with optical motion capture and compared with a healthy reference group. High-dimensional gait datasets are difficult to interpret; machine learning can provide guidance regarding the most relevant gait phases and joint angles for visual analysis and quantify the difference between healthy and pathological gait. We propose an explicit state duration hidden Markov model (HMM) modeling the timeseries data of a subject or a group and the use of a reference-based measure that compares the most likely observations in each state. Based on this stochastic framework, the similarity between healthy and pathological gait can be quantified for each state, each joint angle, and each subject. This concept also includes an overall gait index useful for group comparison or the assessment of an individual's gait. For visualization, joint angle timeseries can be generated from the explicit state duration HMM. The accuracy of the explicit state duration HMM and the performance of the reference-based measures are evaluated on a dataset including strides of healthy subjects and patients suffering from arthritis.

  20. Optimal markers' placement on the thorax for clinical gait analysis.

    Science.gov (United States)

    Armand, Stéphane; Sangeux, Morgan; Baker, Richard

    2014-01-01

    Although, several thorax models have been proposed for clinical gait analysis, none has received widespread acceptance nor been subject to any extensive validation work, especially for the marker set to use. The aim of this study was thus to determine the optimal and minimal makers' placement on the thorax for clinical gait analysis. Ten healthy subjects have performed a series of movements (arm, head, trunk) with large amplitude during walking. Reflective markers were taped on the thorax (C7, T2, T4, T6, T8, T10, T12, sternum, clavicles and ribs) and their 3D positions were captured with an opto-electronic system. Each combination of 3 markers has been tested. The global error of each model was computed with the estimated position of the markers considering the thorax segment as a solid segment. Two families of marker sets were identified with the lowest error. The first family was composed by two anterior and one posterior marker on the thorax (incisura jugularis (IJ), xiphoid process, and T8). The second family was composed by two posterior and one anterior maker (IJ, T2 and T8 or T10). Even, if these two families of marker sets presented a similar error for marker position, the angles obtained from these marker sets showed large differences especially for the axial rotation movement of the trunk (up to 40.1°). The optimal and minimal maker set identified with a variety of large movements of the trunk, head and arms was IJ, T2 and T8 or T10. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A Grassmann graph embedding framework for gait analysis

    Science.gov (United States)

    Connie, Tee; Goh, Michael Kah Ong; Teoh, Andrew Beng Jin

    2014-12-01

    Gait recognition is important in a wide range of monitoring and surveillance applications. Gait information has often been used as evidence when other biometrics is indiscernible in the surveillance footage. Building on recent advances of the subspace-based approaches, we consider the problem of gait recognition on the Grassmann manifold. We show that by embedding the manifold into reproducing kernel Hilbert space and applying the mechanics of graph embedding on such manifold, significant performance improvement can be obtained. In this work, the gait recognition problem is studied in a unified way applicable for both supervised and unsupervised configurations. Sparse representation is further incorporated in the learning mechanism to adaptively harness the local structure of the data. Experiments demonstrate that the proposed method can tolerate variations in appearance for gait identification effectively.

  2. System for three-dimensional biomechanical analysis of joints

    Science.gov (United States)

    Siebert, Markus; Englmeier, Karl-Hans; von Eisenhart-Rothe, Ruediger; Bringmann, Christoph; Eckstein, Felix; Bonel, H.; Reiser, Maximilian; Graichen, Heiko

    2002-04-01

    We developed 3D MR based image processing methods for biomechanical analysis of joints. These methods provide quantitative data on the morphological distribution of the joint cartilage as well as biomechanical analysis of relative translation and rotation of joints. After image data acquisition in an open MR system, the segmentation of the different joint structures was performed by a semi automatic technique based on a gray value oriented region growing algorithm. After segmentation 3D reconstructions of cartilage and bone surfaces were performed. Principal axis decomposition is used to calculate a reproducible tibia plateau based coordinate system that allows the determination of relative rotation and translation of the condyles and menisci in relation to the tibia plateau. The analysis of the femoral movement is based on a reproducible, semi automatic calculated epicondylar axis. The analysis showed a posterior translation of the meniscus and even more of the femur condyles in healthy knees and in knees with an insufficiency of the anterior cruciate ligament (ACL).

  3. Inertial Sensor-Based Two Feet Motion Tracking for Gait Analysis

    Directory of Open Access Journals (Sweden)

    Tran Nhat Hung

    2013-04-01

    Full Text Available Two feet motion is estimated for gait analysis. An inertial sensor is attached on each shoe and an inertial navigation algorithm is used to estimate the movement of both feet. To correct inter-shoe position error, a camera is installed on the right shoe and infrared LEDs are installed on the left shoe. The proposed system gives key gait analysis parameters such as step length, stride length, foot angle and walking speed. Also it gives three dimensional trajectories of two feet for gait analysis.

  4. Inertial sensor-based two feet motion tracking for gait analysis.

    Science.gov (United States)

    Hung, Tran Nhat; Suh, Young Soo

    2013-04-29

    Two feet motion is estimated for gait analysis. An inertial sensor is attached on each shoe and an inertial navigation algorithm is used to estimate the movement of both feet. To correct inter-shoe position error, a camera is installed on the right shoe and infrared LEDs are installed on the left shoe. The proposed system gives key gait analysis parameters such as step length, stride length, foot angle and walking speed. Also it gives three dimensional trajectories of two feet for gait analysis.

  5. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations

    Science.gov (United States)

    Hausdorff, Jeffrey M.; Ashkenazy, Yosef; Peng, Chang-K.; Ivanov, Plamen Ch.; Stanley, H. Eugene; Goldberger, Ary L.

    2001-12-01

    We present a random walk, fractal analysis of the stride-to-stride fluctuations in the human gait rhythm. The gait of healthy young adults is scale-free with long-range correlations extending over hundreds of strides. This fractal scaling changes characteristically with maturation in children and older adults and becomes almost completely uncorrelated with certain neurologic diseases. Stochastic modeling of the gait rhythm dynamics, based on transitions between different “neural centers”, reproduces distinctive statistical properties of the gait pattern. By tuning one model parameter, the hopping (transition) range, the model can describe alterations in gait dynamics from childhood to adulthood - including a decrease in the correlation and volatility exponents with maturation.

  6. Inter-laboratory consistency of gait analysis measurements.

    Science.gov (United States)

    Benedetti, M G; Merlo, A; Leardini, A

    2013-09-01

    The dissemination of gait analysis as a clinical assessment tool requires the results to be consistent, irrespective of the laboratory. In this work a baseline assessment of between site consistency of one healthy subject examined at 7 different laboratories is presented. Anthropometric and spatio-temporal parameters, pelvis and lower limb joint rotations, joint sagittal moments and powers, and ground reaction forces were compared. The consistency between laboratories for single parameters was assessed by the median absolute deviation and maximum difference, for curves by linear regression. Twenty-one lab-to-lab comparisons were performed and averaged. Large differences were found between the characteristics of the laboratories (i.e. motion capture systems and protocols). Different values for the anthropometric parameters were found, with the largest variability for a pelvis measurement. The spatio-temporal parameters were in general consistent. Segment and joint kinematics consistency was in general high (R2>0.90), except for hip and knee joint rotations. The main difference among curves was a vertical shift associated to the corresponding value in the static position. The consistency between joint sagittal moments ranged form R2=0.90 at the ankle to R2=0.66 at the hip, the latter was increasing when comparing separately laboratories using the same protocol. Pattern similarity was good for ankle power but not satisfactory for knee and hip power. The force was found the most consistent, as expected. The differences found were in general lower than the established minimum detectable changes for gait kinematics and kinetics for healthy adults.

  7. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.

    Science.gov (United States)

    De Groote, F; De Laet, T; Jonkers, I; De Schutter, J

    2008-12-05

    We developed a Kalman smoothing algorithm to improve estimates of joint kinematics from measured marker trajectories during motion analysis. Kalman smoothing estimates are based on complete marker trajectories. This is an improvement over other techniques, such as the global optimisation method (GOM), Kalman filtering, and local marker estimation (LME), where the estimate at each time instant is only based on part of the marker trajectories. We applied GOM, Kalman filtering, LME, and Kalman smoothing to marker trajectories from both simulated and experimental gait motion, to estimate the joint kinematics of a ten segment biomechanical model, with 21 degrees of freedom. Three simulated marker trajectories were studied: without errors, with instrumental errors, and with soft tissue artefacts (STA). Two modelling errors were studied: increased thigh length and hip centre dislocation. We calculated estimation errors from the known joint kinematics in the simulation study. Compared with other techniques, Kalman smoothing reduced the estimation errors for the joint positions, by more than 50% for the simulated marker trajectories without errors and with instrumental errors. Compared with GOM, Kalman smoothing reduced the estimation errors for the joint moments by more than 35%. Compared with Kalman filtering and LME, Kalman smoothing reduced the estimation errors for the joint accelerations by at least 50%. Our simulation results show that the use of Kalman smoothing substantially improves the estimates of joint kinematics and kinetics compared with previously proposed techniques (GOM, Kalman filtering, and LME) for both simulated, with and without modelling errors, and experimentally measured gait motion.

  8. Pilot study of manual sugarcane harvesting using biomechanical analysis.

    Science.gov (United States)

    Clementson, C L; Hansen, A C

    2008-07-01

    In many countries, sugar cane harvesting is a very labor-intensive activity in which workers usually become fatigued after manually cutting the cane for a few hours. They need frequent pauses for rest, and they experience sustained injuries from excessive stress on the joints and muscles of the body. The cutting tool and motion involved directly influence the stresses created. A cutting tool that has not been designed by taking into consideration occupational biomechanics can lead to unnecessary strains in the body's muscle system, resulting in injuries. The purpose of this research was to carry out a pilot study of the impact of two common manual sugarcane cutting tools and the cutting posture they induce on the body with the aid of biomechanics. The machete and the cutlass from South Africa and Guyana, respectively, were examined to determine the cutting forces. Using static strength prediction modeling, the body stress levels at the point of cut in the cutting motion were determined. The cutting postures of three subjects were contrasted, their extreme postures were identified, and suggestions were made to improve the ergonomics of the cutting activity. The results of this pilot study showed that the cutlass required less cutting force than the machete because of the slicing cut provided by the curved blade edge of the cutlass. However, the biomechanical analysis indicated that the bent blade of the machete required less flexion of the back and therefore was likely to cause less back fatigue and injury. An improved design of the sugarcane manual harvesting tool should incorporate the bend of the machete to reduce flexion and a curved cutting edge that provides a slicing cut.

  9. Glucosamine-containing supplement improves locomotor functions in subjects with knee pain – a pilot study of gait analysis

    Directory of Open Access Journals (Sweden)

    Kanzaki N

    2016-06-01

    Full Text Available Noriyuki Kanzaki,1 Yuta Otsuka,1 Takayuki Izumo,1 Hiroshi Shibata,1 Hideyuki Nagao,2 Keita Ogawara,3 Hiroshi Yamada,3 Seiji Miyazaki,3 Yutaka Nakamura3 1Institute for Health Care Science, Suntory Wellness Ltd, Seika-cho, Soraku-gun, Kyoto, Japan; 2Research Institute of Sports Medical Science, Tokai University, Hiratsuka, Kanagawa, Japan; 3School of Physical Education, Tokai University, Hiratsuka, Kanagawa, Japan Background: Previously, we demonstrated that glucosamine-containing supplementation was effective for improving locomotor functions, especially walking speed. However, the biomechanical mechanism of efficacy has not been elucidated. This study aimed to address this challenge in subjects with knee pain, using a motion capture system. Methods: An open label study was conducted in 30 Japanese subjects with knee pain. The subjects were administered a daily supplement containing 1,200 mg of glucosamine hydrochloride, 60 mg of chondroitin sulfate, 45 mg of type II collagen peptides, 90 mg of quercetin glycosides, 10 mg of imidazole peptides, 1 mg of proteoglycan, and 5 µg of vitamin D (GCQID. The intervention continued for 16 weeks. Efficacy for locomotor functions involving the knee joint was evaluated mainly using the Japanese Knee Osteoarthritis Measure (JKOM and the 5-question Geriatric Locomotive Function Scale (GLFS-5. To examine the biomechanical mechanism of efficacy for locomotor functions, motions of subjects in a normal walking state were captured. Gait analysis was conducted and efficacy for gait parameters such as normal walking speed, stride length, cadence, and angle of soles was evaluated. Results: GCQID significantly improved total scores on the JKOM and GLFS-5. In gait analysis, normal walking speed, stride length, and angle of soles at the end of the stance phase were all significantly increased, but cadence did not change significantly during the intervention period. There were significant intercorrelations of changes in

  10. Inertial Sensor-Based Robust Gait Analysis in Non-Hospital Settings for Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Can Tunca

    2017-04-01

    Full Text Available The gold standards for gait analysis are instrumented walkways and marker-based motion capture systems, which require costly infrastructure and are only available in hospitals and specialized gait clinics. Even though the completeness and the accuracy of these systems are unquestionable, a mobile and pervasive gait analysis alternative suitable for non-hospital settings is a clinical necessity. Using inertial sensors for gait analysis has been well explored in the literature with promising results. However, the majority of the existing work does not consider realistic conditions where data collection and sensor placement imperfections are imminent. Moreover, some of the underlying assumptions of the existing work are not compatible with pathological gait, decreasing the accuracy. To overcome these challenges, we propose a foot-mounted inertial sensor-based gait analysis system that extends the well-established zero-velocity update and Kalman filtering methodology. Our system copes with various cases of data collection difficulties and relaxes some of the assumptions invalid for pathological gait (e.g., the assumption of observing a heel strike during a gait cycle. The system is able to extract a rich set of standard gait metrics, including stride length, cadence, cycle time, stance time, swing time, stance ratio, speed, maximum/minimum clearance and turning rate. We validated the spatio-temporal accuracy of the proposed system by comparing the stride length and swing time output with an IR depth-camera-based reference system on a dataset comprised of 22 subjects. Furthermore, to highlight the clinical applicability of the system, we present a clinical discussion of the extracted metrics on a disjoint dataset of 17 subjects with various neurological conditions.

  11. Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise

    Science.gov (United States)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.

    2017-01-01

    the applied device load and the dual cable long bar or single cable T-bar interface between the test subject and the device. Data is also obtained using free weights with the identical loading for a comparison to the resistively loaded exercise device trials. The data drives the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. RESULTS Lower body kinematics, joint moments, joint forces and muscle forces are obtained from the OpenSim biomechanical analysis of the squat exercises under different loading conditions. Preliminary results from the model for the loading conditions will be presented as will hypotheses developed for follow on work.

  12. Biomechanical differences between cases with chronic exertional compartment syndrome and asymptomatic controls during walking and marching gait.

    Science.gov (United States)

    Roberts, Andrew; Roscoe, David; Hulse, David; Bennett, Alexander N; Dixon, Sharon

    2017-07-18

    Chronic exertional compartment syndrome is a significant problem in military populations that may be caused by specific military activities. This study aimed to investigate the kinematic and kinetic differences in military cases with chronic exertional compartment syndrome and asymptomatic controls. 20 males with symptoms of chronic exertional compartment syndrome of the anterior compartment and 20 asymptomatic controls were studied. Three-dimensional lower limb kinematics and kinetics were compared during walking and marching. Cases were significantly shorter in stature and took a relatively longer stride in relation to leg length than controls. All kinematic differences identified were at the ankle. Cases demonstrated increased ankle plantarflexion from mid-stance to toe-off. Cases also demonstrated less ankle inversion at the end of stance and early swing phases. Lower ankle inversion moments were observed during mid-stance. The anthropometric and biomechanical differences demonstrated provide a plausible mechanism for the development of chronic exertional compartment syndrome in this population. The shorter stature in combination with the relatively longer stride length observed in cases may result in an increased demand on the anterior compartment musculature during ambulation. The results of this study, together with clinical insights and the literature suggest that the suppression of the walk-to-run stimulus during group marches may play a significant role in the development of chronic exertional compartment syndrome within a military population. The differences in joint angles and moments also suggest an impairment of the muscular control of ankle joint function, such as a reduced effectiveness of tibialis anterior. It is unclear whether this is a cause or consequence of chronic exertional compartment syndrome. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Feasibility of a cost-effective, video analysis software-based mobility protocol for objective spine kinematics and gait metrics: a proof of concept study.

    Science.gov (United States)

    Paul, Justin C; Petrizzo, Anthony; Rizzo, John-Ross; Bianco, Kristina; Maier, Stephen; Errico, Thomas J; Lafage, Virginie

    2015-03-01

    The purpose of this study was to investigate the potential of a high-throughput, easily implemented, cost-effective, video analysis software-based mobility protocol to quantify spine kinematics. This prospective cohort study of clinical biomechanics implemented 2-dimensional (2D) image processing at a tertiary-care academic institution. Ten healthy, able-bodied volunteers were recruited for 2D videography of gait and functional motion. The reliability of a 2D video analysis software program for gait and range of motion metrics was evaluated over 2 independent experimental sessions, assessing for inter-trial, inter-session, and inter-rater reliability. Healthy volunteers were evaluated for simple forward and side bending, rotation, treadmill stride length, and more complex seated-to-standing tasks. Based on established intraclass correlation coefficients, results indicated that reliability was considered good to excellent for simple forward and side bending, rotation, stride length, and more complex sit-to-standing tasks. In conclusion, a cost-effective, 2D, video analysis software-based mobility protocol represents a feasible and clinically useful approach for objective spine kinematics and gait metrics. As the complication rate of operative management in the setting of spinal deformity is weighed against functional performance and quality of life measures, an objective analysis tool in combination with an appropriate protocol will aid in clinical assessments and lead to an increased evidence base for management options and decision algorithms.

  14. Toward a low-cost gait analysis system for clinical and free-living assessment.

    Science.gov (United States)

    Ladha, Cassim; Del Din, Silvia; Nazarpour, Kianoush; Hickey, Aodhan; Morris, Rosie; Catt, Michael; Rochester, Lynn; Godfrey, Alan

    2016-08-01

    Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait is a complex process which has been restricted to bespoke clinical facilities until recently. The use of inexpensive wearable technologies is an attractive alternative and offers the potential to assess gait in any environment. In this paper we present the development of a low cost analysis gait system built using entirely open source components. The system is used to capture spatio-temporal gait characteristics derived from an existing conceptual model, sensitive to ageing and neurodegenerative pathology (e.g. Parkinson's disease). We demonstrate the system is suitable for use in a clinical unit and will lead to pragmatic use in a free-living (home) environment. The system consists of a wearable (tri-axial accelerometer and gyroscope) with a Raspberry Pi module for data storage and analysis. This forms ongoing work to develop gait as a low cost diagnostic in modern healthcare.

  15. Poor Gait Performance and Prediction of Dementia: Results From a Meta-Analysis

    Science.gov (United States)

    Beauchet, Olivier; Annweiler, Cédric; Callisaya, Michele L.; De Cock, Anne-Marie; Helbostad, Jorunn L.; Kressig, Reto W.; Srikanth, Velandai; Steinmetz, Jean-Paul; Blumen, Helena M.; Verghese, Joe; Allali, Gilles

    2017-01-01

    Background Poor gait performance predicts risk of developing dementia. No structured critical evaluation has been conducted to study this association yet. The aim of this meta-analysis was to systematically examine the association of poor gait performance with incidence of dementia. Methods An English and French Medline search was conducted in June 2015, with no limit of date, using the medical subject headings terms “Gait” OR “Gait Disorders, Neurologic” OR “Gait Apraxia” OR “Gait Ataxia” AND “Dementia” OR “Frontotemporal Dementia” OR “Dementia, Multi-Infarct” OR “Dementia, Vascular” OR “Alzheimer Disease” OR “Lewy Body Disease” OR “Frontotemporal Dementia With Motor Neuron Disease” (Supplementary Concept). Poor gait performance was defined by standardized tests of walking, and dementia was diagnosed according to international consensus criteria. Four etiologies of dementia were identified: any dementia, Alzheimer disease (AD), vascular dementia (VaD), and non-AD (ie, pooling VaD, mixed dementias, and other dementias). Fixed effects meta-analyses were performed on the estimates in order to generate summary values. Results Of the 796 identified abstracts, 12 (1.5%) were included in this systematic review and meta-analysis. Poor gait performance predicted dementia [pooled hazard ratio (HR) combined with relative risk and odds ratio = 1.53 with P < .001 for any dementia, pooled HR = 1.79 with P < .001 for VaD, HR = 1.89 with P value < .001 for non-AD]. Findings were weaker for predicting AD (HR = 1.03 with P value = .004). Conclusions This meta-analysis provides evidence that poor gait performance predicts dementia. This association depends on the type of dementia; poor gait performance is a stronger predictor of non-AD dementias than AD. PMID:26852960

  16. Accelerometer and gyroscope based gait analysis using spectral analysis of patients with osteoarthritis of the knee.

    Science.gov (United States)

    Staab, Wieland; Hottowitz, Ralf; Sohns, Christian; Sohns, Jan Martin; Gilbert, Fabian; Menke, Jan; Niklas, Andree; Lotz, Joachim

    2014-07-01

    [Purpose] A wide variety of accelerometer tools are used to estimate human movement, but there are no adequate data relating to gait symmetry parameters in the context of knee osteoarthritis. This study's purpose was to evaluate a 3D-kinematic system using body-mounted sensors (gyroscopes and accelerometers) on the trunk and limbs. This is the first study to use spectral analysis for data post processing. [Subjects] Twelve patients with unilateral knee osteoarthritis (OA) (10 male) and seven age-matched controls (6 male) were studied. [Methods] Measurements with 3-D accelerometers and gyroscopes were compared to video analysis with marker positions tracked by a six-camera optoelectronic system (VICON 460, Oxford Metrics). Data were recorded using the 3D-kinematic system. [Results] The results of both gait analysis systems were significantly correlated. Five parameters were significantly different between the knee OA and control groups. To overcome time spent in expensive post-processing routines, spectral analysis was performed for fast differentiation between normal gait and pathological gait signals using the 3D-kinematic system. [Conclusions] The 3D-kinematic system is objective, inexpensive, accurate and portable, and allows long-term recordings in clinical, sport as well as ergonomic or functional capacity evaluation (FCE) settings. For fast post-processing, spectral analysis of the recorded data is recommended.

  17. Biomechanical Analysis of Force Distribution in Human Finger Extensor Mechanisms

    Directory of Open Access Journals (Sweden)

    Dan Hu

    2014-01-01

    Full Text Available The complexities of the function and structure of human fingers have long been recognised. The in vivo forces in the human finger tendon network during different activities are critical information for clinical diagnosis, surgical treatment, prosthetic finger design, and biomimetic hand development. In this study, we propose a novel method for in vivo force estimation for the finger tendon network by combining a three-dimensional motion analysis technique and a novel biomechanical tendon network model. The extensor mechanism of a human index finger is represented by an interconnected tendinous network moving around the phalanx’s dorsum. A novel analytical approach based on the “Principle of Minimum Total Potential Energy” is used to calculate the forces and deformations throughout the tendon network of the extensor mechanism when subjected to an external load and with the finger posture defined by measurement data. The predicted deformations and forces in the tendon network are in broad agreement with the results obtained by previous experimental in vitro studies. The proposed methodology provides a promising tool for investigating the biomechanical function of complex interconnected tendon networks in vivo.

  18. Gait analysis using accelerometry in dystrophin-deficient dogs.

    Science.gov (United States)

    Barthélémy, Inès; Barrey, Eric; Thibaud, Jean-Laurent; Uriarte, Ane; Voit, Thomas; Blot, Stéphane; Hogrel, Jean-Yves

    2009-11-01

    Dogs affected with Golden Retriever Muscular Dystrophy (GRMD) exhibit striking clinical similarities with patients suffering from Duchenne muscular dystrophy (DMD), particularly gait impairments. The purpose of this study was to describe the use and reliability of accelerometry in gait assessment of dogs with muscular dystrophy. Eight healthy and 11 GRMD adult dogs underwent three gait assessment sessions, using accelerometry. Three-axial recordings of accelerations were performed, and gait variables calculated. Total power, force and regularity of accelerations, stride length and speed, normalized by height at withers, stride frequency, and cranio-caudal power were significantly decreased, whereas medio-lateral power was significantly increased in GRMD dogs. Moreover, these variables were repeatable within and between sessions. Accelerometry provides reliable variables which highlight specific gait patterns of GRMD dogs, describing objectively and quantitatively their slow, short-stepped, and swaying gait. As it is easy to set-up, quick to perform and inexpensive, accelerometry represents a useful tool, to assess locomotion during pre-clinical trials.

  19. Suspected feigned knee extensor weakness: usefulness of 3D gait analysis. Case report.

    Science.gov (United States)

    Chaler, Joaquim; Müller, Bertram; Maiques, Anna; Pujol, Eduard

    2010-07-01

    The purpose of the present case report is to show the potential for use of 3D gait analysis as an assessment method of feigned muscle weakness. We describe a patient complaining of right leg pain and weakness. Physical examination showed severe quadriceps muscle weakness in a highly abnormal gait pattern context. Conventional diagnostic workup did not show any relevant findings. Three-dimensional (3D) gait analysis was performed with a 3D motion capture system. Joint angles, internal moments and powers were computed from the motion data. Lower leg muscle surface-electromyography was also performed. During the late stance phase, flexor moment and negative power peaks (indicating eccentric knee extensor activity) were generated in the knee, together with relevant Rectus femoris activity. All findings were highly inconsistent with true quadriceps weakness and gave objective ground to suspect insincerity of patient complaints. 3D gait analysis might be a valuable clinical assessment tool in suspected feigned lower limb muscle weakness.

  20. The complex genetics of gait speed: genome-wide meta-analysis approach

    Science.gov (United States)

    Lunetta, Kathryn L.; Smith, Jennifer A.; Eicher, John D.; Vered, Rotem; Deelen, Joris; Arnold, Alice M.; Buchman, Aron S.; Tanaka, Toshiko; Faul, Jessica D.; Nethander, Maria; Fornage, Myriam; Adams, Hieab H.; Matteini, Amy M.; Callisaya, Michele L.; Smith, Albert V.; Yu, Lei; De Jager, Philip L.; Evans, Denis A.; Gudnason, Vilmundur; Hofman, Albert; Pattie, Alison; Corley, Janie; Launer, Lenore J.; Knopman, Davis S.; Parimi, Neeta; Turner, Stephen T.; Bandinelli, Stefania; Beekman, Marian; Gutman, Danielle; Sharvit, Lital; Mooijaart, Simon P.; Liewald, David C.; Houwing-Duistermaat, Jeanine J.; Ohlsson, Claes; Moed, Matthijs; Verlinden, Vincent J.; Mellström, Dan; van der Geest, Jos N.; Karlsson, Magnus; Hernandez, Dena; McWhirter, Rebekah; Liu, Yongmei; Thomson, Russell; Tranah, Gregory J.; Uitterlinden, Andre G.; Weir, David R.; Zhao, Wei; Starr, John M.; Johnson, Andrew D.; Ikram, M. Arfan; Bennett, David A.; Cummings, Steven R.; Deary, Ian J.; Harris, Tamara B.; Kardia, Sharon L. R.; Mosley, Thomas H.; Srikanth, Velandai K.; Windham, Beverly G.; Newman, Ann B.; Walston, Jeremy D.; Davies, Gail; Evans, Daniel S.; Slagboom, Eline P.; Ferrucci, Luigi; Kiel, Douglas P.; Murabito, Joanne M.; Atzmon, Gil

    2017-01-01

    Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging. PMID:28077804

  1. Positive outcomes following gait therapy intervention for hip osteoarthritis: A longitudinal study.

    Science.gov (United States)

    Solomonow-Avnon, Deborah; Herman, Amir; Levin, Daniel; Rozen, Nimrod; Peled, Eli; Wolf, Alon

    2017-01-04

    Footwear-generated biomechanical manipulation of lower-limb joints was shown to beneficially impact gait and quality of life in knee osteoarthritis patients, but has not been tested in hip osteoarthritis patients. We examined a customized gait treatment program using a biomechanical device shown in previous investigations to be capable of manipulating hip biomechanics via foot center of pressure (COP) modulation. The objective of this study was to assess the treatment program for hip osteoarthritis patients, enrolled in a 1-year prospective investigation, by means of objective gait and spatiotemporal parameters, and subjective quality of life measures. Gait analysis and completion of questionnaires were performed at the start of the treatment (baseline), and after 3, 6, and 12 months. Outcome parameters were evaluated over time using linear mixed effects models, and association between improvement in quality of life measures and change in objective outcomes was tested using mixed effect linear regression models. Quality of life measures improved compared to baseline, accompanied by increased gait speed and cadence. Sagittal-plane hip joint kinetics, kinematics, and spatiotemporal parameters changed throughout the study compared to baseline, in a manner suggesting improvement of gait. The most substantial improvement occurred within 3 months after treatment initiation, after which improvement approximately plateaued, but was sustained at 12 months. Speed and cadence, as well as several sagittal-plane gait parameters, were significant predictors of improvement in quality of life.

  2. Gait and jump analysis in healthy cats using a pressure mat system.

    Science.gov (United States)

    Stadig, Sarah M; Bergh, Anna K

    2015-06-01

    Physical orthopaedic examination in cats does not always reveal signs of lameness and no objective gait analysis method has yet been standardised for use in cats. The aims of the present study were to define appropriate parameters for pressure mat analyses during walk and jump, and to define reference values for gait parameters of healthy cats. Further, the distribution of the vertical force within the paws and the influence of a non-centred head position were investigated. The hypothesis was that cats have a symmetrical gait, a front/hindlimb asymmetry similar to dogs, and that peak vertical force (PVF) and vertical impulse (VI) have high intraclass correlation coefficients, confirming the reliability of these parameters. Data for walking (n = 46) showed gait symmetry indices of close to 1.0, besides PVF front/hind (1.3 ± 0.2). The PVF front/hind for jumping cats (n = 16) was 1.7 ± 0.6. Results from the distribution of the vertical force within the paw (n = 39) showed that the main weight during a strike is transferred from the caudal towards the craniomedial part of the paw. The findings support the hypothesis that healthy cats have similar gait symmetry to healthy dogs and that PVF and VI are reliable gait parameters. In conclusion, the present study provides a reference interval for healthy cats. Further studies are needed to investigate gait parameters in cats with orthopaedic disease.

  3. An introduction to biomechanics solids and fluids, analysis and design

    CERN Document Server

    Humphrey, Jay D

    2004-01-01

    Designed to meet the needs of undergraduate students, Introduction to Biomechanics takes the fresh approach of combining the viewpoints of both a well-respected teacher and a successful student. With an eye toward practicality without loss of depth of instruction, this book seeks to explain the fundamental concepts of biomechanics. With the accompanying web site providing models, sample problems, review questions and more, Introduction to Biomechanics provides students with the full range of instructional material for this complex and dynamic field.

  4. The application of multilevel modelling to account for the influence of walking speed in gait analysis.

    Science.gov (United States)

    Keene, David J; Moe-Nilssen, Rolf; Lamb, Sarah E

    2016-01-01

    Differences in gait performance can be explained by variations in walking speed, which is a major analytical problem. Some investigators have standardised speed during testing, but this can result in an unnatural control of gait characteristics. Other investigators have developed test procedures where participants walking at their self-selected slow, preferred and fast speeds, with computation of gait characteristics at a standardised speed. However, this analysis is dependent upon an overlap in the ranges of gait speed observed within and between participants, and this is difficult to achieve under self-selected conditions. In this report a statistical analysis procedure is introduced that utilises multilevel modelling to analyse data from walking tests at self-selected speeds, without requiring an overlap in the range of speeds observed or the routine use of data transformations.

  5. Principal Component Analysis of Gait Kinematics Data in Acute and Chronic Stroke Patients

    Directory of Open Access Journals (Sweden)

    Ivana Milovanović

    2012-01-01

    Full Text Available We present the joint angles analysis by means of the principal component analysis (PCA. The data from twenty-seven acute and chronic hemiplegic patients were used and compared with data from five healthy subjects. The data were collected during walking along a 10-meter long path. The PCA was applied on a data set consisting of hip, knee, and ankle joint angles of the paretic and the nonparetic leg. The results point to significant differences in joint synergies between the acute and chronic hemiplegic patients that are not revealed when applying typical methods for gait assessment (clinical scores, gait speed, and gait symmetry. The results suggest that the PCA allows classification of the origin for the deficit in the gait when compared to healthy subjects; hence, the most appropriate treatment can be applied in the rehabilitation.

  6. Pre- and post-operative gait analysis for evaluation of neck pain in chronic whiplash

    Directory of Open Access Journals (Sweden)

    Ginsburg Glen M

    2009-07-01

    Full Text Available Abstract Introduction Chronic neck pain after whiplash is notoriously refractory to conservative treatment, and positive radiological findings to explain the symptoms are scarce. The apparent disproportionality between subjective complaints and objective findings is significant for the planning of treatment, impairment ratings, and judicial questions on causation. However, failure to identify a symptom's focal origin with routine imaging studies does not invalidate the symptom per se. It is therefore of a general interest both to develop effective therapeutic strategies in chronic whiplash, and to establish techniques for objectively evaluation of treatment outcomes. Methods Twelve patients with chronic neck pain after whiplash underwent pre- and postoperative computerized 3D gait analysis. Results Significant improvement was found in all gait parameters, cervical range-of-motion, and self reported pain (VAS. Conclusion Chronic neck pain is associated with abnormal cervical spine motion and gait patterns. 3D gait analysis is a useful instrument to assess the outcome of treatment for neck pain.

  7. IMU-Based Joint Angle Measurement for Gait Analysis

    Directory of Open Access Journals (Sweden)

    Thomas Seel

    2014-04-01

    Full Text Available This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1 joint axis and position identification; and (2 flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°.

  8. IMU-based joint angle measurement for gait analysis.

    Science.gov (United States)

    Seel, Thomas; Raisch, Jörg; Schauer, Thomas

    2014-04-16

    This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°.

  9. Gait analysis in chronic heart failure: The calf as a locus of impaired walking capacity.

    Science.gov (United States)

    Panizzolo, Fausto A; Maiorana, Andrew J; Naylor, Louise H; Dembo, Lawrence; Lloyd, David G; Green, Daniel J; Rubenson, Jonas

    2014-11-28

    Reduced walking capacity, a hallmark of chronic heart failure (CHF), is strongly correlated with hospitalization and morbidity. The aim of this work was to perform a detailed biomechanical gait analysis to better identify mechanisms underlying reduced walking capacity in CHF. Inverse dynamic analyses were conducted in CHF patients and age- and exercise level-matched control subjects on an instrumented treadmill at self-selected treadmill walking speeds and at speeds representing +20% and -20% of the subjects' preferred speed. Surprisingly, no difference in preferred speed was observed between groups, possibly explained by an optimization of the mechanical cost of transport in both groups (the mechanical cost to travel a given distance; J/kg/m). The majority of limb kinematics and kinetics were also similar between groups, with the exception of greater ankle dorsiflexion angles during stance in CHF. Nevertheless, over two times greater ankle plantarflexion work during stance and per distance traveled is required for a given triceps surae muscle volume in CHF patients. This, together with a greater reliance on the ankle compared to the hip to power walking in CHF patients, especially at faster speeds, may contribute to the earlier onset of fatigue in CHF patients. This observation also helps explain the high correlation between triceps surae muscle volume and exercise capacity that has previously been reported in CHF. Considering the key role played by the plantarflexors in powering walking and their association with exercise capacity, our findings strongly suggest that exercise-based rehabilitation in CHF should not omit the ankle muscle group.

  10. Automated detection of instantaneous gait events using time frequency analysis and manifold embedding.

    Science.gov (United States)

    Aung, Min S H; Thies, Sibylle B; Kenney, Laurence P J; Howard, David; Selles, Ruud W; Findlow, Andrew H; Goulermas, John Y

    2013-11-01

    Accelerometry is a widely used sensing modality in human biomechanics due to its portability, non-invasiveness, and accuracy. However, difficulties lie in signal variability and interpretation in relation to biomechanical events. In walking, heel strike and toe off are primary gait events where robust and accurate detection is essential for gait-related applications. This paper describes a novel and generic event detection algorithm applicable to signals from tri-axial accelerometers placed on the foot, ankle, shank or waist. Data from healthy subjects undergoing multiple walking trials on flat and inclined, as well as smooth and tactile paving surfaces is acquired for experimentation. The benchmark timings at which heel strike and toe off occur, are determined using kinematic data recorded from a motion capture system. The algorithm extracts features from each of the acceleration signals using a continuous wavelet transform over a wide range of scales. A locality preserving embedding method is then applied to reduce the high dimensionality caused by the multiple scales while preserving salient features for classification. A simple Gaussian mixture model is then trained to classify each of the time samples into heel strike, toe off or no event categories. Results show good detection and temporal accuracies for different sensor locations and different walking terrains.

  11. Estimation of spatial-temporal gait parameters in level walking based on a single accelerometer: validation on normal subjects by standard gait analysis.

    Science.gov (United States)

    Bugané, F; Benedetti, M G; Casadio, G; Attala, S; Biagi, F; Manca, M; Leardini, A

    2012-10-01

    This paper investigates the ability of a single wireless inertial sensing device stuck on the lower trunk to provide spatial-temporal parameters during level walking. The 3-axial acceleration signals were filtered and the timing of the main gait events identified. Twenty-two healthy subjects were analyzed with this system for validation, and the estimated parameters were compared with those obtained with state-of-the-art gait analysis, i.e. stereophotogrammetry and dynamometry. For each side, from four to six gait cycles were measured with the device, of which two were validated by gait analysis. The new acquisition system is easy to use and does not interfere with regular walking. No statistically significant differences were found between the acceleration-based measurements and the corresponding ones from gait analysis for most of the spatial-temporal parameters, i.e. stride length, stride duration, cadence and speed, etc.; significant differences were found for the gait cycle phases, i.e. single and double support duration, etc. The system therefore shows promise also for a future routine clinical use.

  12. Gait profile score and movement analysis profile in patients with Parkinson's disease during concurrent cognitive load

    Directory of Open Access Journals (Sweden)

    Danielli S. Speciali

    2014-08-01

    Full Text Available Background: Gait disorders are common in individuals with Parkinson's Disease (PD and the concurrent performance of motor and cognitive tasks can have marked effects on gait. The Gait Profile Score (GPS and the Movement Analysis Profile (MAP were developed in order to summarize the data of kinematics and facilitate understanding of the results of gait analysis. Objective: To investigate the effectiveness of the GPS and MAP in the quantification of changes in gait during a concurrent cognitive load while walking in adults with and without PD. Method: Fourteen patients with idiopathic PD and nine healthy subjects participated in the study. All subjects performed single and dual walking tasks. The GPS/MAP was computed from three-dimensional gait analysis data. Results: Differences were found between tasks for GPS (P<0.05 and Gait Variable Score (GVS (pelvic rotation, knee flexion-extension and ankle dorsiflexion-plantarflexion (P<0.05 in the PD group. An interaction between task and group was observed for GPS (P<0.01 for the right side (Cohen's ¯d=0.99, left side (Cohen's ¯d=0.91, and overall (Cohen's ¯d=0.88. No interaction was observed only for hip internal-external rotation and foot internal-external progression GVS variables in the PD group. Conclusions: The results showed gait impairment during the dual task and suggest that GPS/MAP may be used to evaluate the effects of concurrent cognitive load while walking in patients with PD.

  13. Analysis of Gait Pattern to Recognize the Human Activities

    Directory of Open Access Journals (Sweden)

    Jay Prakash Gupta

    2014-09-01

    Full Text Available Human activity recognition based on the computer vision is the process of labelling image sequences with action labels. Accurate systems for this problem are applied in areas such as visual surveillance, human computer interaction and video retrieval. The challenges are due to variations in motion, recording settings and gait differences. Here we propose an approach to recognize the human activities through gait. Activity recognition through Gait is the process of identifying an activity by the manner in which they walk. The identification of human activities in a video, such as a person is walking, running, jumping, jogging etc are important activities in video surveillance. We contribute the use of Model based approach for activity recognition with the help of movement of legs only. Experimental results suggest that our method are able to recognize the human activities with a good accuracy rate and robust to shadows present in the videos.

  14. Analysis of gait patterns in normal school-aged children.

    Science.gov (United States)

    Menkveld, S R; Knipstein, E A; Quinn, J R

    1988-01-01

    The continuing development of gait in 60 children aged 7-16 years was studied with plantar surface-attached transducers to describe the time pressure profiles of foot segments during stance. Decreased pronation/supination of the subtalar and midtarsal joints was shown by simultaneous onset and simultaneous peak on medial and lateral heel sensors. The resultant midstance showed a rapid lateral-to-medial loading of the forefoot. The foot-flat position with decreased rotation about the longitudinal axis of the foot persists even after the temporal parameters of gait attain mature values.

  15. A non linear analysis of human gait time series based on multifractal analysis and cross correlations

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Diosdado, A [Department of Mathematics, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Av. Acueducto s/n, 07340, Mexico City (Mexico)

    2005-01-01

    We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems.

  16. Biomechanical analysis of limited-contact plate used for osteosynthesis.

    Science.gov (United States)

    Pochrząst, Magdalena; Basiaga, Marcin; Marciniak, Jan; Kaczmarek, Marcin

    2014-01-01

    This paper presents the results of numerical analysis aimed at determining the state of stresses and displacements of compression plate used in osteosynthesis of tibia, carried out by applying finite element method using the ANSYS program. The analysis took into account two variants of the osteosynthesis. Variant I included the osteosynthesis in which plate was attached directly to the bone, in variant II, the plate was moved away from the bones by about 5 mm. Biomechanical characteristics of the corrective osteotomy plate-tibia was determined for implants made of Ti-6Al-4V alloy. The boundary conditions adopted for the analysis reflect phenomena occurring in a real system. Based on the results of the analysis relative displacements and reduced stresses in various components were determined as a function of the applied load within the range of F = 500-1500 N. The maximum forces, both variant I and variant II determined during analysis, ensure that the generated stress does not exceed yield strength of the material and compressive strength of the bone, and do not exceed safety movement in the fracture gap. In addition, it was found that the locking of the compressive plate to the bone has a little effect on the distribution of displacements and stresses on the plate-tibia system in the case of a simple fracture.

  17. Towards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters

    Science.gov (United States)

    Gaßner, Heiko; Hannink, Julius; Pasluosta, Cristian; Klucken, Jochen; Eskofier, Björn M.

    2017-01-01

    The purpose of this study was to assess the concurrent validity and test–retest reliability of a sensor-based gait analysis system. Eleven healthy subjects and four Parkinson’s disease (PD) patients were asked to complete gait tasks whilst wearing two inertial measurement units at their feet. The extracted spatio-temporal parameters of 1166 strides were compared to those extracted from a reference camera-based motion capture system concerning concurrent validity. Test–retest reliability was assessed for five healthy subjects at three different days in a two week period. The two systems were highly correlated for all gait parameters (r>0.93). The bias for stride time was 0±16 ms and for stride length was 1.4±6.7 cm. No systematic range dependent errors were observed and no significant changes existed between healthy subjects and PD patients. Test-retest reliability was excellent for all parameters (intraclass correlation (ICC) > 0.81) except for gait velocity (ICC > 0.55). The sensor-based system was able to accurately capture spatio-temporal gait parameters as compared to the reference camera-based system for normal and impaired gait. The system’s high retest reliability renders the use in recurrent clinical measurements and in long-term applications feasible. PMID:28657587

  18. TRUNK FUNCTION IN HEMIPLEGIC PATIENTS KINEMATIC ANALYSIS OF TRUNK BENDING AND GAIT PERFORMANCE

    Directory of Open Access Journals (Sweden)

    FumikoKamijo

    2016-06-01

    Full Text Available Background: Trunk function is considered important for stroke patients in rehabilitation, but the significance of this factoris unclear. In this study, we examined trunk function, defined as the ability to keep the trunk stable against gravity during movement. In addition, we aimed to elucidate the relationship between gait performance and trunk function. Methods: The subjects were 14 hemiplegic men and 20 healthy elderly men. Movement was assessed by a three-dimensional motion analysis system focusing on the trunk. The trunk was divided into three parts: the pelvis, the middle trunk, and the upper trunk. The parameters assessed were static standing, anterior tilt of the trunk in the standing position, and gait. We examined the relationship of each of these trunk movement factors with gait speed. All data was analyzed using SPSS program version 21 (p < 0.05. Results: Comparing data of hemiplegic patients to that of normal subjects, during trunk bending, a large rotation angle toward the non-affected side was found and that toward the affected side of the middle trunk at the toe off time of the affected limb during gait was found in hemiplegic patients (p < 0.01. The degrees of both rotation angles were related to the gait performance. Conclusion: The movement of the middle trunk during bending in hemiplegic patients affected gait performance. The results indicated that gravity and movements of lower limbs easily affected the middle trunk. This is an important factor to consider in the rehabilitation of hemiplegic patients.

  19. [Gait analysis in cerebral palsy patients--correlations between disorders of muscle coordination and gait abnormalities].

    Science.gov (United States)

    Güth, V; Abbink, F; Cloppenburg, E

    1985-01-01

    Electromyographic and gait investigations of 35 patients and 32 healthy persons were evaluated in order to get hints upon the origin of anomalous movements of the pelvis and the spine with following results: a. The amount of the spine motions of CP-patients is significantly greater than that of health persons. The motions of the pelvis of the patients also seems to be greater, but there is no significance. b. The average electromyographical activity of the hip abductors of CP-patients is not remarkably diminished, that of the hip adductors is not increased. We also found no signs of an atrophy of the hip adductors or a hypertrophy of the hip adductors. c. There is no correlation between the disturbances of coordination of the entire lower leg measured by electromyography and the amount of the pathologic motions. d. We found a distinct correlation between the disturbances especially of the hip ab- and adductors and the amount of the pathologic motions. This amount is the smaller, the worse is the coordination of these two groups of muscles. The topics a-c do not allow to find the origin of the Duchenne- and Trendelenburg limpings of CP-patients, topic d also gives explanation of this fact. In opposition we may suppose here that the bad timing of the coordination resp. the corresponding permanent electrical activity of the hip ab- and adductors has a stabilizing influence upon the pelvis and the spine. As the most probable origin of the increased Duchenne limping we not suppose the increased motions of the stance phase. Our following investigations will deal with this hypothesis.

  20. Numerical method in biomechanical analysis of intramedullary osteosynthesis in children

    Directory of Open Access Journals (Sweden)

    A. Krauze

    2006-02-01

    Full Text Available Purpose: The paper presents the biomechanical analysis of intramedullary osteosynthesis in 5-7 year old children.Design/methodology/approach: The numerical analysis was performed for two different materials (stainless steel – 316L and titanium alloy – Ti-6Al-4V and for two different fractures of the femur (1/2 of the bone shaft, and 25 mm above. Furthermore, the stresses between the bone fragments were calculated while loading the femur with forces derived from the trunk mass. In the research the Metaizeau method was applied. This method ensures appropriate fixation without complications.Findings: The numerical analysis shows that stresses in both the steel and the titanium alloy nails didn’t exceed the yield point: for the stainless steel Rp0,2,min = 690 MPa and for the titanium alloy Rp0,2,min = 895 MPa.Research limitations/implications: The obtained results are the basis for the optimization of mechanical properties of the metallic biomaterial.Practical implications: On the basis of the obtained results it can be stated that both stainless steel and titanium alloy nails can be aplied in elastic osteosythesis in femur fractures in children.Originality/value: The obtain results can be used by physicians to ensure elastic osteosythesis that accelerate bone union.

  1. Biomechanical analysis of the main masticatory muscles in the rabbit.

    Science.gov (United States)

    Baron, P; Debussy, T

    1980-09-01

    The main masticatory muscles of the Rabbit (Oryctolagus cuniculus L.) were divided into their 25 component bundles per side. 5 dry skulls were used to determine points of origin and insertion which were then projected onto 3 planes perpendicular to each other, for the establishment of a biomechanical model. By interpreting this model and by examining various mandibular movements, the bundles were classified into 16 functional groups. The findings of other biomechanical studies are contrasted with the results of the study.

  2. Gait kinematic analysis in patients with a mild form of central cord syndrome

    Directory of Open Access Journals (Sweden)

    Crespo-Ruiz Beatriz

    2011-02-01

    Full Text Available Abstract Background Central cord syndrome (CCS is considered the most common incomplete spinal cord injury (SCI. Independent ambulation was achieved in 87-97% in young patients with CCS but no gait analysis studies have been reported before in such pathology. The aim of this study was to analyze the gait characteristics of subjects with CCS and to compare the findings with a healthy age, sex and anthropomorphically matched control group (CG, walking both at a self-selected speed and at the same speed. Methods Twelve CCS patients and a CG of twenty subjects were analyzed. Kinematic data were obtained using a three-dimensional motion analysis system with two scanner units. The CG were asked to walk at two different speeds, at a self-selected speed and at a slower one, similar to the mean gait speed previously registered in the CCS patient group. Temporal, spatial variables and kinematic variables (maximum and minimum lower limb joint angles throughout the gait cycle in each plane, along with the gait cycle instants of occurrence and the joint range of motion - ROM were compared between the two groups walking at similar speeds. Results The kinematic parameters were compared when both groups walked at a similar speed, given that there was a significant difference in the self-selected speeds (p Conclusions The gait pattern of CCS patients showed a decrease of knee and ankle sagittal ROM during level walking and an increase in hip abduction to increase base of support. The findings of this study help to improve the understanding how CCS affects gait changes in the lower limbs.

  3. Confronting hip resurfacing and big femoral head replacement gait analysis

    Directory of Open Access Journals (Sweden)

    Panagiotis K. Karampinas

    2014-03-01

    Full Text Available Improved hip kinematics and bone preservation have been reported after resurfacing total hip replacement (THRS. On the other hand, hip kinematics with standard total hip replacement (THR is optimized with large diameter femoral heads (BFH-THR. The purpose of this study is to evaluate the functional outcomes of THRS and BFH-THR and correlate these results to bone preservation or the large femoral heads. Thirty-one patients were included in the study. Gait speed, postural balance, proprioception and overall performance. Our results demonstrated a non-statistically significant improvement in gait, postural balance and proprioception in the THRS confronting to BFH-THR group. THRS provide identical outcomes to traditional BFH-THR. The THRS choice as bone preserving procedure in younger patients is still to be evaluated.

  4. [Gait analysis after intra-articular calcaneus fractures].

    Science.gov (United States)

    Siegmeth, A; Petje, G; Mittlmeier, T; Vécsei, V

    1996-01-01

    We retrospectively compared 20 patients with displaced intra-articular calcaneal fractures by clinical assessment and dynamic pedography. Eleven were treated operatively, 9 conservatively. The purpose was to identify differences in post-traumatic gait performance and to correlate the pedographic data to a clinical score to show its reliability. Twenty individuals without a history of foot injuries were used as a control group. Both groups had restricted motion in the subtalar joint, increased hindfoot and midfoot loading and decreased forefoot loading. Furthermore, they showed prolonged contact phases and an impaired ability to speed up gait during the toe-off phase. Load transfer from the hindfoot to the forefoot showed typical distribution patterns. The operatively treated group showed better functional results with fewer subjective complaints.

  5. Gait analysis of children with spastic hemiplegic cerebral palsy

    Institute of Scientific and Technical Information of China (English)

    Xin Wang; Yuexi Wang

    2012-01-01

    An experiment was carried out in the key laboratory for Technique Diagnosis and Function Assessment of Winter Sports of China to investigate the differences in gait characteristics between healthy children and children with spastic hemiplegic cerebral palsy. With permission of their parents, 200 healthy children aged 3 to 6 years in the kindergarten of Northeastern University were enrolled in this experiment. Twenty children aged 3 to 6 years with spastic hemiplegic cerebral palsy from Shengjing Hospital, China were also enrolled in this experiment. Standard data were collected by simultaneously recording gait information from two digital cameras.DVracker was used to analyze the standard data. The children with hemiplegic cerebral palsy had a longer gait cycle, slower walking speed, and longer support phase than did the healthy children.The support phase was longer than the swing phase in the children with hemiplegic cerebral palsy. There were significant differences in the angles of the hip, knee, and ankle joint between children with cerebral palsy and healthy children at the moment of touching the ground and buff -ering, and during pedal extension. Children with hemiplegic cerebral palsy had poor motor coordination during walking, which basically resulted in a short stride, high stride frequency to maintain speed, more obvious swing, and poor stability.

  6. [Application of finite element analysis in Chinese cervical manipulation biomechanics].

    Science.gov (United States)

    Wang, Huihao; Chen, Bo; Zhan, Hongsheng; Wang, Huihao; Chen, Bo; Zhan, Hongsheng

    2013-10-01

    Clinical advantages of Chinese spinal manipulation therapy (CSMT) were recognized for spinal chronic lesions of soft tissues and bones, such as cervical spondylosis, etc. However, the security of CSMT and the hypotheses of practice mechanisms were questioned for lacking of the relevant basic researches. Researches have proved that these methods could be used to observe the dynamic effects of spine with application of finite element analysis (FEA) computer technology. Combining with other biomechanical experimental methods and applying advanced FEA technology for mechanical problems of CSMT, we may not only find the mechanisms of action and provide theoretical supports for the traditional Chinese therapy, but also standardize the key techniques and optimize the treatment options improving clinical outcomes, and even promote spreading of CSMT. Computer models are ideally suited for studying phenomena that cannot be satisfactorily investigated with other models. However, computer models of CSMT practice remain to be further refined. The results which had been acquired so far not only verified some of the traditional points of view, but also revised and specified some perspectives of the past. This paper intends to review FEA studies with Chinese cervical manipulation therapy (CCMT) for cervical spinal chronic lesions of soft tissues and bones, involving different effects for cervical spine joints (pulling/traction and thrusting) with practice techniques and cervical spine soft tissues (including vessels and its hemodynamics, muscles and fasciae, etc).

  7. Biomechanical Analysis of the Jump Shot in Basketball

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2014-10-01

    Full Text Available Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability

  8. Biomechanical analysis of stair descent in patients with knee osteoarthritis.

    Science.gov (United States)

    Igawa, Tatsuya; Katsuhira, Junji

    2014-05-01

    [Purpose] The purposes of this study were to investigate the lower extremity joint kinematics and kinetics of patients with the knee osteoarthritis (knee OA) during stair descent and clarify the biomechanical factors related to their difficulty in stair descent. [Subjects and Methods] Eight healthy elderly persons and four knee OA patients participated in this study. A 3-D motion analysis system and force plates were employed to measure lower extremity joint angles, ranges of motion, joint moments, joint powers, and ratios of contribution for the joint powers while descending stairs. [Results] Knee joint flexion angle, extension moment, and negative power during the early stance phase in the knee OA group were smaller than those in the healthy subjects group. However, no significant changes in these parameters in the ankle joint were observed between the two subject groups. [Conclusion] Knee OA patients could not use the knee joint to absorb impact during the early stance phase of stair descent. Hence, they might compensate for the roles played by the intact knee joint by mainly using ipsilateral ankle kinematics and kinetics.

  9. Patients’ follow-up using biomechanical analysis of rehabilitation exercises

    Directory of Open Access Journals (Sweden)

    Bruno Bonnechère

    2017-03-01

    Full Text Available Thanks to the evolution of game controllers video games are becoming more and more popular in physical rehabilitation. The integration of serious games in rehabilitation has been tested for various pathologies. Parallel to this clinical research, a lot of studies have been done in order to validate the use of these game controllers for simple biomechanical evaluation. Currently, it is thus possible to record the motions performed by the patients during serious gaming exercises for later analysis. Therefore, data collected during the exercises could be used for monitoring the evolution of the patients during long term rehabilitation. Before using the parameters extracted from the games to assess patients’ evolution two important aspects must be verified: the reproducibility of measurement and a possible effect of learning of the task to be performed. Ten healthy adults played 9 sessions of specific games developed for rehabilitation over a 3-weeks period. Nineteen healthy children played 2 sessions to study the influence of age. Different parameters were extracted from the games: time, range of motion, reaching area. Results of this study indicates that it is possible to follow the evolution of the patients during the rehabilitation process. The majority of the learning effect occurred during the very first session. Therefore, in order to allow proper regular monitoring, the results of this first session should not be included in the follow-up of the patient.

  10. Multi-complexity ensemble measures for gait time series analysis: application to diagnostics, monitoring and biometrics.

    Science.gov (United States)

    Gavrishchaka, Valeriy; Senyukova, Olga; Davis, Kristina

    2015-01-01

    Previously, we have proposed to use complementary complexity measures discovered by boosting-like ensemble learning for the enhancement of quantitative indicators dealing with necessarily short physiological time series. We have confirmed robustness of such multi-complexity measures for heart rate variability analysis with the emphasis on detection of emerging and intermittent cardiac abnormalities. Recently, we presented preliminary results suggesting that such ensemble-based approach could be also effective in discovering universal meta-indicators for early detection and convenient monitoring of neurological abnormalities using gait time series. Here, we argue and demonstrate that these multi-complexity ensemble measures for gait time series analysis could have significantly wider application scope ranging from diagnostics and early detection of physiological regime change to gait-based biometrics applications.

  11. Estimation of Spatial-Temporal Gait Parameters Using a Low-Cost Ultrasonic Motion Analysis System

    Directory of Open Access Journals (Sweden)

    Yongbin Qi

    2014-08-01

    Full Text Available In this paper, a low-cost motion analysis system using a wireless ultrasonic sensor network is proposed and investigated. A methodology has been developed to extract spatial-temporal gait parameters including stride length, stride duration, stride velocity, stride cadence, and stride symmetry from 3D foot displacements estimated by the combination of spherical positioning technique and unscented Kalman filter. The performance of this system is validated against a camera-based system in the laboratory with 10 healthy volunteers. Numerical results show the feasibility of the proposed system with average error of 2.7% for all the estimated gait parameters. The influence of walking speed on the measurement accuracy of proposed system is also evaluated. Statistical analysis demonstrates its capability of being used as a gait assessment tool for some medical applications.

  12. Gait analysis in a pre- and post-ischemic stroke biomedical pig model.

    Science.gov (United States)

    Duberstein, Kylee Jo; Platt, Simon R; Holmes, Shannon P; Dove, C Robert; Howerth, Elizabeth W; Kent, Marc; Stice, Steven L; Hill, William D; Hess, David C; West, Franklin D

    2014-02-10

    Severity of neural injury including stroke in human patients, as well as recovery from injury, can be assessed through changes in gait patterns of affected individuals. Similar quantification of motor function deficits has been measured in rodent animal models of such injuries. However, due to differences in fundamental structure of human and rodent brains, there is a need to develop a large animal model to facilitate treatment development for neurological conditions. Porcine brain structure is similar to that of humans, and therefore the pig may make a more clinically relevant animal model. The current study was undertaken to determine key gait characteristics in normal biomedical miniature pigs and dynamic changes that occur post-neural injury in a porcine middle cerebral artery (MCA) occlusion ischemic stroke model. Yucatan miniature pigs were trained to walk through a semi-circular track and were recorded with high speed cameras to detect changes in key gait parameters. Analysis of normal pigs showed overall symmetry in hindlimb swing and stance times, forelimb stance time, along with step length, step velocity, and maximum hoof height on both fore and hindlimbs. A subset of pigs were again recorded at 7, 5 and 3 days prior to MCA occlusion and then at 1, 3, 5, 7, 14 and 30 days following surgery. MRI analysis showed that MCA occlusion resulted in significant infarction. Gait analysis indicated that stroke resulted in notable asymmetries in both temporal and spatial variables. Pigs exhibited lower maximum front hoof height on the paretic side, as well as shorter swing time and longer stance time on the paretic hindlimb. These results support that gait analysis of stroke injury is a highly sensitive detection method for changes in gait parameters in pig.

  13. Assessment of paclitaxel induced sensory polyneuropathy with "Catwalk" automated gait analysis in mice.

    Directory of Open Access Journals (Sweden)

    Petra Huehnchen

    Full Text Available Neuropathic pain as a symptom of sensory nerve damage is a frequent side effect of chemotherapy. The most common behavioral observation in animal models of chemotherapy induced polyneuropathy is the development of mechanical allodynia, which is quantified with von Frey filaments. The data from one study, however, cannot be easily compared with other studies owing to influences of environmental factors, inter-rater variability and differences in test paradigms. To overcome these limitations, automated quantitative gait analysis was proposed as an alternative, but its usefulness for assessing animals suffering from polyneuropathy has remained unclear. In the present study, we used a novel mouse model of paclitaxel induced polyneuropathy to compare results from electrophysiology and the von Frey method to gait alterations measured with the Catwalk test. To mimic recently improved clinical treatment strategies of gynecological malignancies, we established a mouse model of dose-dense paclitaxel therapy on the common C57Bl/6 background. In this model paclitaxel treated animals developed mechanical allodynia as well as reduced caudal sensory nerve action potential amplitudes indicative of a sensory polyneuropathy. Gait analysis with the Catwalk method detected distinct alterations of gait parameters in animals suffering from sensory neuropathy, revealing a minimized contact of the hind paws with the floor. Treatment of mechanical allodynia with gabapentin improved altered dynamic gait parameters. This study establishes a novel mouse model for investigating the side effects of dose-dense paclitaxel therapy and underlines the usefulness of automated gait analysis as an additional easy-to-use objective test for evaluating painful sensory polyneuropathy.

  14. Metabolic and Biomechanical Measures of Gait Efficiency of Three Multi-Axial, Vertical Shock and Energy Storing-Return Prosthetic Feet During Simple and Complex Mobility Activities

    Science.gov (United States)

    2014-12-01

    differences exist between feet conditions at self-selected treadmill walking and running speeds in the laboratory. Aim 2: To determine if biomechanic ...REPORT DATE 2. REPORT TYPE Final 3. DATES COVERED 15-Sep-2011 – 14-Sep-2014 4. TITLE AND SUBTITLE Title: Metabolic and Biomechanical ...differences exist between feet conditions at self-selected treadmill walking and running speeds Aim 3: To determine if differences in perceptive

  15. Adolescent baseball pitching technique: lower extremity biomechanical analysis.

    Science.gov (United States)

    Milewski, Matthew D; Õunpuu, Sylvia; Solomito, Matthew; Westwell, Melany; Nissen, Carl W

    2012-11-01

    Documentation of the lower extremity motion patterns of adolescent pitchers is an important part of understanding the pitching motion and the implication of lower extremity technique on upper extremity loads, injury and performance. The purpose of this study was to take the initial step in this process by documenting the biomechanics of the lower extremities during the pitching cycle in adolescent pitchers and to compare these findings with the published data for older pitchers. Three-dimensional motion analysis using a comprehensive lower extremity model was used to evaluate the fast ball pitch technique in adolescent pitchers. Thirty-two pitchers with a mean age of 12.4 years (range 10.5-14.7 years) and at least 2 years of experience were included in this study. The pitchers showed a mean of 49 ± 12° of knee flexion of the lead leg at foot contact. They tended to maintain this position through ball release, and then extended their knee during the follow through phase (ball release to maximal internal glenohumeral rotation). The lead leg hip rapidly progressed into adduction and flexion during the arm cocking phase with a range of motion of 40 ± 10° adduction and 30 ± 13° flexion. The lead hip mean peak adduction velocity was 434 ± 83°/s and flexion velocity was 456 ± 156°/s. Simultaneously, the trailing leg hip rapidly extended approaching to a mean peak extension of -8 ± 5° at 39% of the pitch cycle, which is close to passive range of motion constraints. Peak hip abduction of the trailing leg at foot contact was -31 ± 12°, which also approached passive range of motion constraints. Differences and similarities were also noted between the adolescent lower extremity kinematics and adult pitchers; however, a more comprehensive analysis using similar methods is needed for a complete comparison.

  16. Objective assessment of motor fatigue in multiple sclerosis using kinematic gait analysis: a pilot study

    Directory of Open Access Journals (Sweden)

    Sehle Aida

    2011-10-01

    Full Text Available Abstract Background Fatigue is a frequent and serious symptom in patients with Multiple Sclerosis (MS. However, to date there are only few methods for the objective assessment of fatigue. The aim of this study was to develop a method for the objective assessment of motor fatigue using kinematic gait analysis based on treadmill walking and an infrared-guided system. Patients and methods Fourteen patients with clinically definite MS participated in this study. Fatigue was defined according to the Fatigue Scale for Motor and Cognition (FSMC. Patients underwent a physical exertion test involving walking at their pre-determined patient-specific preferred walking speed until they reached complete exhaustion. Gait was recorded using a video camera, a three line-scanning camera system with 11 infrared sensors. Step length, width and height, maximum circumduction with the right and left leg, maximum knee flexion angle of the right and left leg, and trunk sway were measured and compared using paired t-tests (α = 0.005. In addition, variability in these parameters during one-minute intervals was examined. The fatigue index was defined as the number of significant mean and SD changes from the beginning to the end of the exertion test relative to the total number of gait kinematic parameters. Results Clearly, for some patients the mean gait parameters were more affected than the variability of their movements while other patients had smaller differences in mean gait parameters with greater increases in variability. Finally, for other patients gait changes with physical exertion manifested both in changes in mean gait parameters and in altered variability. The variability and fatigue indices correlated significantly with the motoric but not with the cognitive dimension of the FSMC score (R = -0.602 and R = -0.592, respectively; P Conclusions Changes in gait patterns following a physical exertion test in patients with MS suffering from motor fatigue can be

  17. Clinical gait analysis for amputees: innovation wishlist and the perspectives offered by the outwalk protocol.

    Science.gov (United States)

    Cutti, Andrea Giovanni; Raggi, Michele; Andreoni, Giuseppe; Sacchetti, Rinaldo

    2015-01-01

    Clinical gait analysis (CGA) has shown potentials for the prosthetics field and has been found effective for scientific purposes and to design general rehabilitation models. However, intrinsic limitations of the "artificial" laboratory environment usually result in recording performances not representative patients' real-life gait. In order to promote the diffusion of CGA in the clinical decision-making process, a framework for developing novel, more ecological CGA applications is presented. Moreover, the Outwalk protocol, based on wearable sensors and developed within this framework guidelines, is described and validated for its inter-rater agreement on a population of transtibial amputees walking in a real-life scenario. Results show the possibility of drawing precise conclusions over different aspects of amputees' gait and prostheses' performance in every-day life conditions.

  18. Validation of the kinect for gait analysis using the GAITRite walkway.

    Science.gov (United States)

    Baldewijns, Greet; Verheyden, Geert; Vanrumste, Bart; Croonenborghs, Tom

    2014-01-01

    Accurate, non-intrusive and straightforward techniques for gait quality analysis can provide important information concerning the fall risk of a person. For this purpose an algorithm was developed which can measure step length and step time using the Kinect depth image. The validity of the measured step length and time is determined using the GAITRite walkway as a ground truth. The results of this validation confirm that the Kinect is well-suited for determining general parameters of a walking sequence (a Spearmans Correlation Coefficient (SCC) of 0.94 for average step length and 0.75 for average step time per walk), but we furthermore show that determining accurate results for single steps is more difficult (SCC of 0.74 for step length and 0.43 for step time for each step), making it harder to measure more complex gait parameters such as e.g. gait symmetry.

  19. Individual limb mechanical analysis of gait following stroke.

    Science.gov (United States)

    Mahon, Caitlin E; Farris, Dominic J; Sawicki, Gregory S; Lewek, Michael D

    2015-04-13

    The step-to-step transition of walking requires significant mechanical and metabolic energy to redirect the center of mass. Inter-limb mechanical asymmetries during the step-to-step transition may increase overall energy demands and require compensation during single-support. The purpose of this study was to compare individual limb mechanical gait asymmetries during the step-to-step transitions, single-support and over a complete stride between two groups of individuals following stroke stratified by gait speed (≥0.8 m/s or phases of a stride, as well as over a complete stride. Robust inter-limb asymmetries in mechanical power existed during walking after stroke; for both groups, the non-paretic limb produced significantly more positive net mechanical power than the paretic limb during all phases of a stride and over a complete stride. Interestingly, no differences in inter-limb mechanical power asymmetry were noted between groups based on walking speed, during any phase or over a complete stride. Paretic propulsion, however, was different between speed-based groups. The fact that paretic propulsion (calculated from anterior-posterior forces) is different between groups, but our measure of mechanical work (calculated from all three directions) is not, suggests that limb power output may be dominated by vertical components, which are required for upright support.

  20. Metatarsal Loading During Gait-A Musculoskeletal Analysis.

    Science.gov (United States)

    Al-Munajjed, Amir A; Bischoff, Jeffrey E; Dharia, Mehul A; Telfer, Scott; Woodburn, James; Carbes, Sylvain

    2016-03-01

    Detailed knowledge of the loading conditions within the human body is essential for the development and optimization of treatments for disorders and injuries of the musculoskeletal system. While loads in the major joints of the lower limb have been the subject of extensive study, relatively little is known about the forces applied to the individual bones of the foot. The objective of this study was to use a detailed musculoskeletal model to compute the loads applied to the metatarsal bones during gait across several healthy subjects. Motion-captured gait trials and computed tomography (CT) foot scans from four healthy subjects were used as the inputs to inverse dynamic simulations that allowed the computation of loads at the metatarsal joints. Low loads in the metatarsophalangeal (MTP) joint were predicted before terminal stance, however, increased to an average peak of 1.9 times body weight (BW) before toe-off in the first metatarsal. At the first tarsometatarsal (TMT) joint, loads of up to 1.0 times BW were seen during the early part of stance, reflecting tension in the ligaments and muscles. These loads subsequently increased to an average peak of 3.0 times BW. Loads in the first ray were higher compared to rays 2-5. The joints were primarily loaded in the longitudinal direction of the bone.

  1. A passive dynamic walking robot that has a deterministic nonlinear gait.

    Science.gov (United States)

    Kurz, Max J; Judkins, Timothy N; Arellano, Chris; Scott-Pandorf, Melissa

    2008-01-01

    There is a growing body of evidence that the step-to-step variations present in human walking are related to the biomechanics of the locomotive system. However, we still have limited understanding of what biomechanical variables influence the observed nonlinear gait variations. It is necessary to develop reliable models that closely resemble the nonlinear gait dynamics in order to advance our knowledge in this scientific field. Previously, Goswami et al. [1998. A study of the passive gait of a compass-like biped robot: symmetry and chaos. International Journal of Robotic Research 17(12)] and Garcia et al. [1998. The simplest walking model: stability, complexity, and scaling. Journal of Biomechanical Engineering 120(2), 281-288] have demonstrated that passive dynamic walking computer models can exhibit a cascade of bifurcations in their gait pattern that lead to a deterministic nonlinear gait pattern. These computer models suggest that the intrinsic mechanical dynamics may be at least partially responsible for the deterministic nonlinear gait pattern; however, this has not been shown for a physical walking robot. Here we use the largest Laypunov exponent and a surrogation analysis method to confirm and extend Garcia et al.'s and Goswami et al.'s original results to a physical passive dynamic walking robot. Experimental outcomes from our walking robot further support the notion that the deterministic nonlinear step-to-step variations present in gait may be partly governed by the intrinsic mechanical dynamics of the locomotive system. Furthermore the nonlinear analysis techniques used in this investigation offer novel methods for quantifying the nature of the step-to-step variations found in human and robotic gait.

  2. Use of wand markers on the pelvis in three dimensional gait analysis

    DEFF Research Database (Denmark)

    Smith, Martin; Curtis, Derek; Bencke, Jesper

    2013-01-01

    During clinical gait analysis, surface markers are placed over the anterior superior iliac spines (ASIS) of the pelvis. However, this can be problematic in overweight or obese subjects, where excessive adipose tissue can obscure the markers and prevent accurate tracking. A novel solution to this ...

  3. Footpad dermatitis and pain assessment in turkey poults using analgesia and objective gait analysis

    NARCIS (Netherlands)

    Weber Wyneken, C.; Sinclair, A.; Veldkamp, T.; Vinco, L.J.; Hocking, P.M.

    2015-01-01

    The relationships between litter moisture, footpad dermatitis (FPD) and pain in medium-heavy turkey strains was studied by gait analysis in two medium-heavy with and without analgesia (betamethasone or bupivacaine). The relationship between FPD and litter moisture was linear above a breakpoint of

  4. Ultrasonic motion analysis system - measurement of temporal and spatial gait parameters

    NARCIS (Netherlands)

    Huitema, RB; Hof, AL; Postema, K

    2002-01-01

    The duration of stance and swing phase and step and stride length are important parameters in human gait. In this technical note a low-cost ultrasonic motion analysis system is described that is capable of measuring these temporal and spatial parameters while subjects walk on the floor. By using the

  5. Gait analysis after total knee arthroplasty: comparison of pre and postoperative characteristics

    Directory of Open Access Journals (Sweden)

    ihsan senturk

    2017-03-01

    Conclusion: For the surgical realignment of the knee, the kinematic chain of the lower extremity must be considered, and gait analysis will be helpful in deciding the type of surgical treatment. [Cukurova Med J 2017; 42(1.000: 92-96

  6. Extraction of human gait signatures: an inverse kinematic approach using Groebner basis theory applied to gait cycle analysis

    Science.gov (United States)

    Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.

    2013-05-01

    This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.

  7. Test-Retest Reliability of an Automated Infrared-Assisted Trunk Accelerometer-Based Gait Analysis System.

    Science.gov (United States)

    Hsu, Chia-Yu; Tsai, Yuh-Show; Yau, Cheng-Shiang; Shie, Hung-Hai; Wu, Chu-Ming

    2016-07-23

    The aim of this study was to determine the test-retest reliability of an automated infrared-assisted, trunk accelerometer-based gait analysis system for measuring gait parameters of healthy subjects in a hospital. Thirty-five participants (28 of them females; age range, 23-79 years) performed a 5-m walk twice using an accelerometer-based gait analysis system with infrared assist. Measurements of spatiotemporal gait parameters (walking speed, step length, and cadence) and trunk control (gait symmetry, gait regularity, acceleration root mean square (RMS), and acceleration root mean square ratio (RMSR)) were recorded in two separate walking tests conducted 1 week apart. Relative and absolute test-retest reliability was determined by calculating the intra-class correlation coefficient (ICC3,1) and smallest detectable difference (SDD), respectively. The test-retest reliability was excellent for walking speed (ICC = 0.87, 95% confidence interval = 0.74-0.93, SDD = 13.4%), step length (ICC = 0.81, 95% confidence interval = 0.63-0.91, SDD = 12.2%), cadence (ICC = 0.81, 95% confidence interval = 0.63-0.91, SDD = 10.8%), and trunk control (step and stride regularity in anterior-posterior direction, acceleration RMS and acceleration RMSR in medial-lateral direction, and acceleration RMS and stride regularity in vertical direction). An automated infrared-assisted, trunk accelerometer-based gait analysis system is a reliable tool for measuring gait parameters in the hospital environment.

  8. Gait analysis of spastic walking in patients with cervical compressive myelopathy.

    Science.gov (United States)

    Maezawa, Y; Uchida, K; Baba, H

    2001-01-01

    To assess neurological status and to evaluate the effect of surgical decompression in patients with cervical myelopathy, we performed computerized gait analysis in 24 patients with cervical compressive myelopathy who showed spastic walking. Gait analysis was repeated during neurological follow-up that averaged 32.4 months. The gait pattern in patients with severe myelopathy was characterized by hyperextension of the knee in the stance phase without plantar flexion of the ankle in the swing phase, significantly reduced walking speed and step length, prolonged stance phase duration and decreased single-stance phase duration, and increased step width. The angle of flexion of the knee joint in the stance phase was significantly correlated with the Japanese Orthopaedic Association (JOA) score. Postoperative neurological improvement was associated with increased walking speed and decreased extension angle of the knee joint (single-stance phase and swing phase). Postoperatively, 12 patients had normalized extension of the knee in stance phase and their walking speed, cadence, stance phase duration, and single-stance phase duration, as well as step length and width, showed nonsignificant differences from these parameters in healthy controls. Our results show that kinesiological gait analysis is clinically useful for the functional assessment of the severity of spastic walking in cervical myelopathy.

  9. Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on Quaternion Calculations

    Directory of Open Access Journals (Sweden)

    Hiroaki Miyagawa

    2013-07-01

    Full Text Available This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively.

  10. Accelerometry-based gait analysis and its application to Parkinson's disease assessment--part 1: detection of stride event.

    Science.gov (United States)

    Yoneyama, Mitsuru; Kurihara, Yosuke; Watanabe, Kajiro; Mitoma, Hiroshi

    2014-05-01

    Gait analysis is widely recognized as a promising tool for obtaining objective information on the walking behavior of Parkinson's disease (PD) patients. It is especially useful in clinical practices if gait properties can be captured with minimal instrumentation that does not interfere with the subject's usual behavioral pattern under ambulatory conditions. In this study, we propose a new gait analysis system based on a trunk-mounted acceleration sensor and automatic gait detection algorithm. The algorithm identifies the acceleration signal with high intensity, periodicity, and biphasicity as a possible gait sequence, from which gait peaks due to stride events are extracted by utilizing the cross-correlation and anisotropy properties of the signal. A total of 11 healthy subjects and 12 PD patients were tested to evaluate the performance of the algorithm. The result indicates that gait peaks can be detected with an accuracy of more than 94%. The proposed method may serve as a practical component in the accelerometry-based assessment of daily gait characteristics.

  11. Biomechanical conditions of walking

    CERN Document Server

    Fan, Y F; Luo, L P; Li, Z Y; Han, S Y; Lv, C S; Zhang, B

    2015-01-01

    The development of rehabilitation training program for lower limb injury does not usually include gait pattern design. This paper introduced a gait pattern design by using equations (conditions of walking). Following the requirements of reducing force to the injured side to avoid further injury, we developed a lower limb gait pattern to shorten the stride length so as to reduce walking speed, to delay the stance phase of the uninjured side and to reduce step length of the uninjured side. This gait pattern was then verified by the practice of a rehabilitation training of an Achilles tendon rupture patient, whose two-year rehabilitation training (with 24 tests) has proven that this pattern worked as intended. This indicates that rehabilitation training program for lower limb injury can rest on biomechanical conditions of walking based on experimental evidence.

  12. Biomechanical analysis of the swim-start: a review.

    Science.gov (United States)

    Vantorre, Julien; Chollet, Didier; Seifert, Ludovic

    2014-05-01

    This review updates the swim-start state of the art from a biomechanical standpoint. We review the contribution of the swim-start to overall swimming performance, the effects of various swim-start strategies, and skill effects across the range of swim-start strategies identified in the literature. The main objective is to determine the techniques to focus on in swimming training in the contemporary context of the sport. The phases leading to key temporal events of the swim-start, like water entry, require adaptations to the swimmer's chosen technique over the course of a performance; we thus define the swim-start as the moment when preparation for take-off begins to the moment when the swimming pattern begins. A secondary objective is to determine the role of adaptive variability as it emerges during the swim-start. Variability is contextualized as having a functional role and operating across multiple levels of analysis: inter-subject (expert versus non-expert), inter-trial or intra-subject (through repetitions of the same movement), and inter-preference (preferred versus non-preferred technique). Regarding skill effects, we assume that swim-start expertise is distinct from swim stroke expertise. Highly skilled swim-starts are distinguished in terms of several factors: reaction time from the start signal to the impulse on the block, including the control and regulation of foot force and foot orientation during take-off; appropriate amount of glide time before leg kicking commences; effective transition from leg kicking to break-out of full swimming with arm stroking; overall maximal leg and arm propulsion and minimal water resistance; and minimized energy expenditure through streamlined body position. Swimmers who are less expert at the swim-start spend more time in this phase and would benefit from training designed to reduce: (i) the time between reaction to the start signal and impulse on the block, and (ii) the time in transition (i.e., between gliding and leg

  13. Selection of clinical features for pattern recognition applied to gait analysis.

    Science.gov (United States)

    Altilio, Rosa; Paoloni, Marco; Panella, Massimo

    2017-04-01

    This paper deals with the opportunity of extracting useful information from medical data retrieved directly from a stereophotogrammetric system applied to gait analysis. A feature selection method to exhaustively evaluate all the possible combinations of the gait parameters is presented, in order to find the best subset able to classify among diseased and healthy subjects. This procedure will be used for estimating the performance of widely used classification algorithms, whose performance has been ascertained in many real-world problems with respect to well-known classification benchmarks, both in terms of number of selected features and classification accuracy. Precisely, support vector machine, Naive Bayes and K nearest neighbor classifiers can obtain the lowest classification error, with an accuracy greater than 97 %. For the considered classification problem, the whole set of features will be proved to be redundant and it can be significantly pruned. Namely, groups of 3 or 5 features only are able to preserve high accuracy when the aim is to check the anomaly of a gait. The step length and the swing speed are the most informative features for the gait analysis, but also cadence and stride may add useful information for the movement evaluation.

  14. Directed neural connectivity changes in robot-assisted gait training: a partial Granger causality analysis.

    Science.gov (United States)

    Youssofzadeh, Vahab; Zanotto, Damiano; Stegall, Paul; Naeem, Muhammad; Wong-Lin, KongFatt; Agrawal, Sunil K; Prasad, Girijesh

    2014-01-01

    Now-a-days robotic exoskeletons are often used to help in gait training of stroke patients. However, such robotic systems have so far yielded only mixed results in benefiting the clinical population. Therefore, there is a need to investigate how gait learning and de-learning get characterised in brain signals and thus determine neural substrate to focus attention on, possibly, through an appropriate brain-computer interface (BCI). To this end, this paper reports the analysis of EEG data acquired from six healthy individuals undergoing robot-assisted gait training of a new gait pattern. Time-domain partial Granger causality (PGC) method was applied to estimate directed neural connectivity among relevant brain regions. To validate the results, a power spectral density (PSD) analysis was also performed. Results showed a strong causal interaction between lateral motor cortical areas. A frontoparietal connection was found in all robot-assisted training sessions. Following training, a causal "top-down" cognitive control was evidenced, which may indicate plasticity in the connectivity in the respective brain regions.

  15. Assessment of gait in subcortical vascular encephalopathy by computerized analysis: a cross-sectional and longitudinal study.

    Science.gov (United States)

    Bäzner, H; Oster, M; Daffertshofer, M; Hennerici, M

    2000-11-01

    In subcortical vascular encephalopathy (SVE) gait disturbance is a common and early clinical sign which might be used to monitor disease progression. In the absence of reliable scales and with regard to the equivocal results of highly complex gait imaging devices we assessed the natural course of SVE in a prospective study, using a new straight forward technique to quantify and compare sequential gait studies. We report the results of 300 computerized gait analyses in 119 patients with SVE and 63 age-matched controls. Thirty-nine SVE patients were re-evaluated to monitor the natural course of the disease and to study the correlation of gait disturbances with MRI changes and neuropsychological findings. The system consists of a set of shoes containing 16 load sensors and a measuring-unit reading each sensor at 20-ms intervals. By off-line analysis we graded each recording on a Gait Disorder Score (GDS) with six variables indicating gait steadiness: step frequency, length of gait lines (which represent the movement of the centre of gravity during heel to toe movement), length of single support lines, variability of single and of double support lines, and double support time. In cross-sectional analysis, patients with SVE showed cadence (steps/min) to be reduced at 87.3 +/- 19.5 (96.4 +/- 7.8 in controls, P gait lines was significantly less: 0.70 +/- 0.13 vs. 0.80 +/- 0.05 in controls, with length of single support gait lines reduced at 0.42 +/- 0.14 in SVE (0.58 +/- 0.06 in controls, P phases was increased (0.19 +/- 0.10 s vs. 0.13 +/- 0.02 s in controls, P gait disorder who were re-investigated after a mean interval of 26 months (5.4 +/- 4.5 vs. 8.4 +/- 5.5, P gait analysis system for the evaluation of gait disorders and it quantifies the deterioration of gait in SVE patients.

  16. BIOMECHANICAL ANALYSIS OF RUNNING IN THE HIGH JUMP

    Directory of Open Access Journals (Sweden)

    Leite Werlayne

    2013-02-01

    Full Text Available The aim of this paper is to analyze the biomechanics of running at high jump. To this study was realized a bibliographic revision. The running phase is the one which starts when the athlete is set in movement for the jump until the moment that he touches the ground with the takeoff foot in front of the bar, this phase can be divided into two parts: the running in straight line and the running in curve. On the other hand, for better understanding and due to a biomechanical complexity, the running in curve will be divided into three other parts: the three last strides, the two last strides and the last strides. Besides that, we could mention important factors for an efficient approach run: the radius of the curve, the distance and length of the takeoff run.

  17. Biomechanical analysis of the camelid cervical intervertebral disc

    Directory of Open Access Journals (Sweden)

    Dean K. Stolworthy

    2015-01-01

    Full Text Available Chronic low back pain (LBP is a prevalent global problem, which is often correlated with degenerative disc disease. The development and use of good, relevant animal models of the spine may improve treatment options for this condition. While no animal model is capable of reproducing the exact biology, anatomy, and biomechanics of the human spine, the quality of a particular animal model increases with the number of shared characteristics that are relevant to the human condition. The purpose of this study was to investigate the camelid (specifically, alpaca and llama cervical spine as a model of the human lumbar spine. Cervical spines were obtained from four alpacas and four llamas and individual segments were used for segmental flexibility/biomechanics and/or morphology/anatomy studies. Qualitative and quantitative data were compared for the alpaca and llama cervical spines, and human lumbar specimens in addition to other published large animal data. Results indicate that a camelid cervical intervertebral disc (IVD closely approximates the human lumbar disc with regard to size, spinal posture, and biomechanical flexibility. Specifically, compared with the human lumbar disc, the alpaca and llama cervical disc size are approximately 62%, 83%, and 75% with regard to area, depth, and width, respectively, and the disc flexibility is approximately 133%, 173%, and 254%, with regard to range of motion (ROM in axial-rotation, flexion-extension, and lateral-bending, respectively. These results, combined with the clinical report of disc degeneration in the llama lower cervical spine, suggest that the camelid cervical spine is potentially well suited for use as an animal model in biomechanical studies of the human lumbar spine.

  18. Effects of a combined strengthening, stretching and functional training program versus usual-care on gait biomechanics and foot function for diabetic neuropathy: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Sartor Cristina

    2012-03-01

    Full Text Available Abstract Background Polyneuropathy is a complication of diabetes mellitus that has been very challenging for clinicians. It results in high public health costs and has a huge impact on patients' quality of life. Preventive interventions are still the most important approach to avoid plantar ulceration and amputation, which is the most devastating endpoint of the disease. Some therapeutic interventions improve gait quality, confidence, and quality of life; however, there is no evidence yet of an effective physical therapy treatment for recovering musculoskeletal function and foot rollover during gait that could potentially redistribute plantar pressure and reduce the risk of ulcer formation. Methods/Design A randomised, controlled trial, with blind assessment, was designed to study the effect of a physiotherapy intervention on foot rollover during gait, range of motion, muscle strength and function of the foot and ankle, and balance confidence. The main outcome is plantar pressure during foot rollover, and the secondary outcomes are kinetic and kinematic parameters of gait, neuropathy signs and symptoms, foot and ankle range of motion and function, muscle strength, and balance confidence. The intervention is carried out for 12 weeks, twice a week, for 40-60 min each session. The follow-up period is 24 weeks from the baseline condition. Discussion Herein, we present a more comprehensive and specific physiotherapy approach for foot and ankle function, by choosing simple tasks, focusing on recovering range of motion, strength, and functionality of the joints most impaired by diabetic polyneuropathy. In addition, this intervention aims to transfer these peripheral gains to the functional and more complex task of foot rollover during gait, in order to reduce risk of ulceration. If it shows any benefit, this protocol can be used in clinical practice and can be indicated as complementary treatment for this disease. Trial Registration Clinical

  19. Effects of a combined strengthening, stretching and functional training program versus usual-care on gait biomechanics and foot function for diabetic neuropathy: a randomized controlled trial.

    Science.gov (United States)

    Sartor, Cristina Dallemole; Watari, Ricky; Pássaro, Anice Campos; Picon, Andreja Paley; Hasue, Renata Haydée; Sacco, Isabel C N

    2012-03-19

    Polyneuropathy is a complication of diabetes mellitus that has been very challenging for clinicians. It results in high public health costs and has a huge impact on patients' quality of life. Preventive interventions are still the most important approach to avoid plantar ulceration and amputation, which is the most devastating endpoint of the disease. Some therapeutic interventions improve gait quality, confidence, and quality of life; however, there is no evidence yet of an effective physical therapy treatment for recovering musculoskeletal function and foot rollover during gait that could potentially redistribute plantar pressure and reduce the risk of ulcer formation. A randomised, controlled trial, with blind assessment, was designed to study the effect of a physiotherapy intervention on foot rollover during gait, range of motion, muscle strength and function of the foot and ankle, and balance confidence. The main outcome is plantar pressure during foot rollover, and the secondary outcomes are kinetic and kinematic parameters of gait, neuropathy signs and symptoms, foot and ankle range of motion and function, muscle strength, and balance confidence. The intervention is carried out for 12 weeks, twice a week, for 40-60 min each session. The follow-up period is 24 weeks from the baseline condition. Herein, we present a more comprehensive and specific physiotherapy approach for foot and ankle function, by choosing simple tasks, focusing on recovering range of motion, strength, and functionality of the joints most impaired by diabetic polyneuropathy. In addition, this intervention aims to transfer these peripheral gains to the functional and more complex task of foot rollover during gait, in order to reduce risk of ulceration. If it shows any benefit, this protocol can be used in clinical practice and can be indicated as complementary treatment for this disease. ClinicalTrials.gov Identifier: NCT01207284.

  20. Biomechanical analysis of cages for posterior lumbar interbody fusion.

    Science.gov (United States)

    Fantigrossi, Alfonso; Galbusera, Fabio; Raimondi, Manuela Teresa; Sassi, Marco; Fornari, Maurizio

    2007-01-01

    Interbody fusions using intervertebral cages have become increasingly common in spinal surgery. Computational simulations were conducted in order to compare different cage designs in terms of their biomechanical interaction with the spinal structures. Differences in cage design and surgical technique may significantly affect the biomechanics of the fused spine segment, but little knowledge is available on this topic. In the present study, four 3D finite element models were developed, reproducing the human L4-L5 spinal unit in intact condition and after implantation of three different cage models. The intact model consisted of two vertebral bodies and relevant laminae, facet joints, main ligaments and disc. The instrumented models reproduced the post-operative conditions resulting after implant of the different cages. The three considered devices were hollow threaded titanium cages, the BAK (Zimmer Centerpulse, Warsaw, IN, USA), the Interfix and the Interfix Fly (both by Medtronic Sofamor Danek, Memphis, TN, USA). Simulations were run imposing various loading conditions, under a constant compressive preload. A great increase in the stiffness induced on the spinal segment by all cages was observed in all the considered loading cases. Stress distributions on the bony surface were evaluated and discussed. The differences observed between the biomechanics of the instrumented models were associated with the geometrical and surgical features of the devices.

  1. Gait analysis in patients with advanced Parkinson disease: different or additive effects on gait induced by levodopa and chronic STN stimulation.

    Science.gov (United States)

    Lubik, S; Fogel, W; Tronnier, V; Krause, M; König, J; Jost, W H

    2006-02-01

    The aim of our study was to observe the effects on gait parameters induced by STN stimulation and levodopa medication in patients with advanced Parkinson's disease in order to determine different or additive effects. Therefore we examined 12 patients with advanced Parkinson disease after bilateral implantation of DBS into the STN. We assessed the motor score of the UPDRS and quantitative gait analysis under 4 treatment conditions: with and without stimulation as well as with and without levodopa. The mean improvement of the UPDRS motor score was almost the same with levodopa and DBS. Combining both therapies we saw a further improvement of the motor score. Gait parameters of patients with PD treated either with levodopa or STN stimulation were greatly improved. A significant difference between levodopa and STN stimulation could only be shown for the parameters velocity and step length. These parameters improved more with levodopa than with stimulation. The combination of both therapeutic methods showed the best results on the UPDRS motor score and gait parameters.

  2. Gait analysis during treadmill and overground locomotion in children and adults.

    Science.gov (United States)

    Stolze, H; Kuhtz-Buschbeck, J P; Mondwurf, C; Boczek-Funcke, A; Jöhnk, K; Deuschl, G; Illert, M

    1997-12-01

    Gait analysis on the treadmill and in the overground condition is used both in scientific approaches for investigating the neuronal organisation and ontogenetic development of locomotion and in a variety of clinical applications. We investigated the differences between overground and treadmill locomotion (at identical gait velocity) in 12 adults and 14 children (6-7 years old). During treadmill locomotion the step frequency increased by 7% in adults and 10% in children compared to overground walking, whereas the stride length and the stance phase of the walking cycle decreased. The swing phase, however, increased significantly by 5% in adults and remained unchanged in children. Balance-related gait parameters such as the step width and foot rotation angles increased during treadmill locomotion. The reduction of the step length was found to be stable after 10 min of treadmill walking in most subjects. With regard to the shifted phases of the walking cycle and the changed balance related gait parameters in the treadmill condition, we assume a different modulation of the central pattern generator in treadmill walking, due to a changed afferent input. Regarding the pronounced differences between overground and treadmill walking in children, it is discussed whether the systems generating and integrating different modulations of locomotion into a stable movement pattern have reached full capacity in 6-7 year old children.

  3. Age-Related Differences in Gait Kinematics, Kinetics, and Muscle Function: A Principal Component Analysis.

    Science.gov (United States)

    Schloemer, Sarah A; Thompson, Julie A; Silder, Amy; Thelen, Darryl G; Siston, Robert A

    2017-03-01

    Age-related increased hip extensor recruitment during gait is a proposed compensation strategy for reduced ankle power generation and may indicate a distal-to-proximal shift in muscle function with age. Extending beyond joint level analyses, identifying age-related changes at the muscle level could capture more closely the underlying mechanisms responsible for movement. The purpose of this study was to characterize and compare muscle forces and induced accelerations during gait in healthy older adults with those of young adults. Simulations of one gait cycle for ten older (73.9 ± 5.3 years) and six young (21.0 ± 2.1 years) adults walking at their self-selected speed were analyzed. Muscle force and induced acceleration waveforms, along with kinematic, kinetic, and muscle activation waveforms, were compared between age-groups using principal component analysis. Simulations of healthy older adults had greater gluteus maximus force and vertical support contribution, but smaller iliacus force, psoas force, and psoas vertical support contribution. There were no age-group differences in distal muscle force, contribution, or ankle torque magnitudes. Later peak dorsiflexion and peak ankle angular velocity in older adults may have contributed to their greater ankle power absorption during stance. These findings reveal the complex interplay between age-related changes in neuromuscular control, kinematics, and muscle function during gait.

  4. Parkinson's disease assessment based on gait analysis using an innovative RGB-D camera system.

    Science.gov (United States)

    Rocha, Ana Patrícia; Choupina, Hugo; Fernandes, José Maria; Rosas, Maria José; Vaz, Rui; Silva Cunha, João Paulo

    2014-01-01

    Movement-related diseases, such as Parkinson's disease (PD), progressively affect the motor function, many times leading to severe motor impairment and dramatic loss of the patients' quality of life. Human motion analysis techniques can be very useful to support clinical assessment of this type of diseases. In this contribution, we present a RGB-D camera (Microsoft Kinect) system and its evaluation for PD assessment. Based on skeleton data extracted from the gait of three PD patients treated with deep brain stimulation and three control subjects, several gait parameters were computed and analyzed, with the aim of discriminating between non-PD and PD subjects, as well as between two PD states (stimulator ON and OFF). We verified that among the several quantitative gait parameters, the variance of the center shoulder velocity presented the highest discriminative power to distinguish between non-PD, PD ON and PD OFF states (p = 0.004). Furthermore, we have shown that our low-cost portable system can be easily mounted in any hospital environment for evaluating patients' gait. These results demonstrate the potential of using a RGB-D camera as a PD assessment tool.

  5. Kinematic analysis of the gait in professional ballet dancers

    Directory of Open Access Journals (Sweden)

    Lucie Teplá

    2014-06-01

    Full Text Available Background: A ballet dance routine places extreme functional demands on the musculoskeletal system and affects the motor behaviour of the dancers. An extreme ballet position places high stress on many segments of the dancer's body and can significantly influence the mobility of the lower limb joints. Objective: The aim of this study was to observe the differences in the gait pattern between ballet dancers and non-dancers. Methods:Thirteen professional ballet dancers (5 males, 8 females; age 24.1 ± 3.8 years; height 170.2 ± 8.5 cm; weight 58.3 ± 11.2 kg participated in this research. We compared these subjects with twelve controls (3 males, 9 females; mean age 24.3 ± 2.75 years; height 173.3 ± 6.01 cm; weight 72.2 ± 12.73 kg. None of the participants had any history of serious musculoskeletal pathology or injury or surgery to the lower limbs. Control groups had no ballet experience. Each participant performed five trials of the gait at self-selected walking speed. Kinematic data was obtained using the Vicon MX optoelectronic system. The observed data was processed in the Vicon Nexus and Vicon Polygon programmes and statistically evaluated in Statistica. Non-parametric test (Mann-Whitney U test, p < .05 was applied for comparing the dancers and the controls. Results:  Significant differences (p < .05 were found in all lower limb joints. In the dancers, greater hip extension (-15.30 ± 3.31° vs. -12.95 ± 6.04°; p = .008 and hip abduction (-9.18 ± 5.89° vs. -6.08 ± 2.52°; p < .001 peaks together with increased pelvic tilt (3.33 ± 1.26° vs. 3.01 ± 1.46°; p = .020, pelvic obliquity (12.46 ± 3.05° vs. 10.34 ± 3.49°; p < .001 and pelvic rotation (14.29 ± 3.77° vs. 13.26 ± 4.91°; p = .029 were observed. Additionally, the dancers demonstrated greater knee flexion (65.67 ± 4.65° vs. 62.45 ± 5.24°; p = .002 and knee

  6. Gait kinematics analysis of the idiopathic scoliosis patient

    Directory of Open Access Journals (Sweden)

    Audrey Esteves

    2006-09-01

    Full Text Available Idiopathic Scoliosis (IS is apparent structural deformity of the spine being able to provoke alterations in the gait. Considering these alterations it was intended to describe the kinematics characteristics of the gait in IS patient objectifying to compare the individual in two distinct moments during rehabilitation process. The research individual was a university student with 25 years IS patient developed from infancy. The instrument used for the data collection was the system of three-dimensional reconstruction of movement DMAS 5,0 of the SPICATek®. The results had shown that there is no significant differences for the space/temporal variables when to compare the two collections; with relation to normality was evidenced significant differences for the variables TPD (p=0,015, TPE (p=0,011, TAS-E (p=0,023, CPD (p=0,0000038, CPE (p=0,000014, CPASS (p=0,00090, LP (p=0,049, CAD (p=0,036 and v (p=0,015; when comparing the individual of the research with other referring studies the ISpatients was possible to observe superior values for the variables TAD-D and TAD-E and inferior values for the TBD, TBE, TAS-D, TAS-E, CPD, CPE, CAD and v; with relation to the side asymmetry between the variables TAD-D and TAD-E (p= 0,037 was evidenced in the second collection, and between CPD and CPE in both of them (C1 p=0,016 e C2 p=0,011. For the displayed it can be concluded that the individual presented problems in the gait, possibly caused for the structural deformity present in the column, having presented same differences for the majority of the variables in the comparison with normal individuals. Referring to the period of rehabilitation, between the collections, believes that it did not contribute for possible alterations in the gait. RESUMO A escoliose idiopática (EI é uma deformidade estrutural aparente da coluna vertebral, podendo provocar alterações na marcha. Considerando essas alterações, procurou-se descrever as características cinem

  7. Nonlinear analysis of electromyogram following gait training with myoelectrically triggered neuromuscular electrical stimulation in stroke survivors

    Science.gov (United States)

    Dutta, Anirban; Khattar, Bhawna; Banerjee, Alakananda

    2012-12-01

    Neuromuscular electrical stimulation (NMES) facilitates ambulatory function after paralysis by activating the muscles of the lower extremities. The NMES-assisted stepping can either be triggered by a heel-switch (switch-trigger), or by an electromyogram (EMG)-based gait event detector (EMG-trigger). The command sources—switch-trigger or EMG-trigger—were presented to each group of six chronic (>6 months post-stroke) hemiplegic stroke survivors. The switch-trigger group underwent transcutaneous NMES-assisted gait training for 1 h, five times a week for 2 weeks, where the stimulation of the tibialis anterior muscle of the paretic limb was triggered with a heel-switch detecting heel-rise of the same limb. The EMG-trigger group underwent transcutaneous NMES-assisted gait training of the same duration and frequency where the stimulation was triggered with surface EMG from medial gastrocnemius (MG) of the paretic limb in conjunction with a heel-switch detecting heel-rise of the same limb. During the baseline and post-intervention surface EMG assessment, a total of 10 s of surface EMG was recorded from bilateral MG muscle while the subjects tried to stand steady on their toes. A nonlinear tool—recurrence quantification analysis (RQA)—was used to analyze the surface EMG. The objective of this study was to find the effect of NMES-assisted gait training with switch-trigger or EMG-trigger on two RQA parameters—the percentage of recurrence (%Rec) and determinism (%Det), which were extracted from surface EMG during fatiguing contractions of the paretic muscle. The experimental results showed that during fatiguing contractions, (1) %Rec and %Det have a higher initial value for paretic muscle than the non-paretic muscle, (2) the rate of change in %Rec and %Det was negative for the paretic muscle but positive for the non-paretic muscle, (3) the rate of change in %Rec and %Det significantly increased from baseline for the paretic muscle after EMG-triggered NMES

  8. Kinetic and kinematic analysis of gait pattern of 13 year old children with unilateral genu valgum.

    Science.gov (United States)

    Ganesan, B; Fong, K N K; Luximon, A; Al-Jumaily, A

    2016-07-01

    Genu valgum is a common knee deformity in growing children. It alters the alignment of the lower extremity, body posture, and gait pattern of the children. Understanding of kinematic and kinetic parameters of gait in genu valgum is essential for planning and implementing the intervention to correcting the valgus deformity. The aim of this paper is to investigate the kinetic and kinematic gait differences in children with genu valgum. A 13-year old girl with left side unilateral genu valgum and a closely matched healthy counterpart were recruited to compare the kinetic and kinematic parameters of their gait performances, and they were captured by The VICON motion analysis system. The results showed that the child with genu valgum had lower left and right knee angles (39.6˚; 30.2˚) and higher ankle angles (35.6˚; 28.4˚) than the healthy subject (64.2˚, 60.2˚). In addition, the child with genu valgum had lower moments on the left side of the knee (42.1 mm.N) than unaffected right knee (73.9 mm.N). Also, the ground reaction force was (0.7 N) lower in the affected knee of the child with genu valgum than the normal subject. This study revealed that there were decreased knee and ankle moments and lower knee and ankle ground reaction forces in the affected genu valgum extremity when compared with the healthy counterpart. These changes might be responsible for the altering gait pattern of the child with genu valgum.

  9. Intelligent data analysis of instrumented gait data in stroke patients-a systematic review.

    Science.gov (United States)

    Wikström, Jakob; Georgoulas, George; Moutsopoulos, Thucydides; Seferiadis, Aris

    2014-08-01

    Instrumented gait analysis (GA) may be used to analyze the causes of gait deviation in stroke patients but generates a large amount of complex data. The task of transforming this data into a comprehensible report is cumbersome. Intelligent data analysis (IDA) refers to the use of computational methods in order to analyze quantitative data more effectively. The purpose of this review was to identify and appraise the available IDA methods for handling GA data collected from patients with stroke using the standard equipment of a gait lab (3D/2D motion capture, force plates, EMG). Eleven databases were systematically searched and fifteen studies that employed some type of IDA method for the analysis of kinematic and/or kinetic and/or EMG data in populations involving stroke patients were identified. Four categories of IDA methods were employed for the analysis of sensor-acquired data in these fifteen studies: classification methods, dimensionality reduction methods, clustering methods and expert systems. The methodological quality of these studies was critically appraised by examining sample characteristics, measurements and IDA properties. Three overall methodological shortcomings were identified: (1) small sample sizes and underreported patient characteristics, (2) testing of which method is best suited to the analysis was neglected and (3) lack of stringent validation procedures. No IDA method for GA data from stroke patients was identified that can be directly applied to clinical practice. Our findings suggest that the potential provided by IDA methods is not being fully exploited.

  10. Biomechanical Analysis of a Filiform Mechanosensory Hair Socket of Crickets.

    Science.gov (United States)

    Joshi, Kanishka; Mian, Ahsan; Miller, John

    2016-08-01

    Filiform mechanosensory hairs of crickets are of great interest to engineers because of the hairs' highly sensitive response to low-velocity air-currents. In this study, we analyze the biomechanical properties of filiform hairs of the cercal sensory system of a common house cricket. The cercal sensory system consists of two antennalike appendages called cerci that are situated at the rear of the cricket's abdomen. Each cercus is covered with 500-750 flow sensitive filiform mechanosensory hairs. Each hair is embedded in a complex viscoelastic socket that acts as a spring and dashpot system and guides the movement of the hair. When a hair deflects due to the drag force induced on its length by a moving air-current, the spiking activity of the neuron that innervates the hair changes and the combined spiking activity of all hairs is extracted by the cercal sensory system. Filiform hairs have been experimentally studied by researchers, though the basis for the hairs' biomechanical characteristics is not fully understood. The socket structure has not been analyzed experimentally or theoretically from a mechanical standpoint, and the characterization that exists is mathematical in nature and only provides a very rudimentary approximation of the socket's spring nature. This study aims to understand and physically characterize the socket's behavior and interaction with the filiform hair by examining hypotheses about the hair and socket biomechanics. A three-dimensional computer-aided design (CAD) model was first created using confocal microscopy images of the hair and socket structure of the cricket, and then finite-element analyses (FEAs) based on the physical conditions that the insect experiences were simulated. The results show that the socket can act like a spring; however, it has two-tier rotational spring constants during pre- and postcontacts of iris and hair bulge due to its constitutive nonstandard geometric shapes.

  11. Finite element analysis of a total ankle replacement during the stance phase of gait.

    Science.gov (United States)

    Reggiani, B; Leardini, A; Corazza, F; Taylor, M

    2006-01-01

    Total ankle replacement (TAR) designs have still several important issues to be addressed before the treatment becomes fully acceptable clinically. Very little is known about the performance, in terms of the contact pressures and kinematics of TAR when subjected to daily activities such as level gait. For this purpose, an explicit finite element model of a novel 3-component TAR was developed, which incorporated a previously validated mechanical model of the ankle ligament apparatus. The intermediate mobile polyethylene meniscal bearing was modelled as an elastic-plastic continuum while the articulating surfaces of the tibial and talar metal components as rigid bodies. Overall kinematics, contact pressures and ligament forces were analysed during passive, i.e. virtually unloaded, and active, i.e. stance phase of gait, conditions. Simulation of passive motion predicted similar kinematics as reported previously in an analytical four-bar linkage model. The meniscal bearing was observed to move 5.6 mm posteriorly during the simulated stance and the corresponding antero-posterior displacement of the talar component was 8.3 mm. The predicted pattern and the amount (10.6 degrees ) of internal-external rotation of the ankle complex were found to be in good agreement with corresponding in vivo measurements on normal ankles. A peak contact pressure of 16.8 MPa was observed, with majority of contact pressures below 10 MPa. For most ligaments, reaction forces remain within corresponding physiological ranges. A first realistic representation of the biomechanical behaviour of the human ankle when replaced by prosthetic joints is provided. The applied methodology can potentially be applied to other TAR designs.

  12. Biomechanical analysis of cross-country skiing techniques.

    Science.gov (United States)

    Smith, G A

    1992-09-01

    The development of new techniques for cross-country skiing based on skating movements has stimulated biomechanical research aimed at understanding the various movement patterns, the forces driving the motions, and the mechanical factors affecting performance. Research methods have evolved from two-dimensional kinematic descriptions of classic ski techniques to three-dimensional analyses involving measurement of the forces and energy relations of skating. While numerous skiing projects have been completed, most have focused on either the diagonal stride or the V1 skating technique on uphill terrain. Current understanding of skiing mechanics is not sufficiently complete to adequately assess and optimize an individual skier's technique.

  13. ARTIFICIAL INTELLIGENCE IN SPORTS BIOMECHANICS: NEW DAWN OR FALSE HOPE?

    Directory of Open Access Journals (Sweden)

    Roger Bartlett

    2006-12-01

    Full Text Available This article reviews developments in the use of Artificial Intelligence (AI in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques' and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics.

  14. Gait analysis before and after achilles tendon surgical suture in a single-subject study: a case report.

    Science.gov (United States)

    Marcolin, Giuseppe; Buriani, Alessandro; Balasso, Alberto; Villaminar, Renato; Petrone, Nicola

    2015-01-01

    Achilles tendon rupture is a disabling injury that requires a long recovery time. We describe a unique case of a 46-year-old male who had undergone gait analysis as part of a personal physical examination and who, 16 months later, ruptured his left Achilles tendon while running. With gait kinematic and kinetic data available both before and after his injury, we determined the residual gait asymmetries on his uninjured side and compared the pre- and postinjury measurements. We analyzed his gait at 1, 4, and 7 weeks after his return to full weightbearing. Compared with the preinjury values, at 7 weeks he had almost complete range of motion in his left ankle (-2%) and a slight increase in gait velocity (+6%) and cadence (+3%). The peak power of his injured ankle was 90% of its preinjury value. In contrast, the unaffected ankle was at 118%. These observations suggest that measuring the asymmetries of the gait cycle, especially at the beginning of rehabilitation, can be used to improve treatment. We had the patient strengthen his ankle using a stationary bicycle before he returned to running. Kinetics also appears to be more powerful than kinematics in detecting functional asymmetries associated with reduced calf strength, even 15 weeks after surgery. Gait analysis could be used to predict the effectiveness of rehabilitation protocols and help calibrate and monitor the return to sports participation while preventing overloading muscle and tendon syndromes.

  15. Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking.

    Science.gov (United States)

    Zelik, Karl E; Takahashi, Kota Z; Sawicki, Gregory S

    2015-03-01

    Measuring biomechanical work performed by humans and other animals is critical for understanding muscle-tendon function, joint-specific contributions and energy-saving mechanisms during locomotion. Inverse dynamics is often employed to estimate joint-level contributions, and deformable body estimates can be used to study work performed by the foot. We recently discovered that these commonly used experimental estimates fail to explain whole-body energy changes observed during human walking. By re-analyzing previously published data, we found that about 25% (8 J) of total positive energy changes of/about the body's center-of-mass and >30% of the energy changes during the Push-off phase of walking were not explained by conventional joint- and segment-level work estimates, exposing a gap in our fundamental understanding of work production during gait. Here, we present a novel Energy-Accounting analysis that integrates various empirical measures of work and energy to elucidate the source of unexplained biomechanical work. We discovered that by extending conventional 3 degree-of-freedom (DOF) inverse dynamics (estimating rotational work about joints) to 6DOF (rotational and translational) analysis of the hip, knee, ankle and foot, we could fully explain the missing positive work. This revealed that Push-off work performed about the hip may be >50% greater than conventionally estimated (9.3 versus 6.0 J, P=0.0002, at 1.4 m s(-1)). Our findings demonstrate that 6DOF analysis (of hip-knee-ankle-foot) better captures energy changes of the body than more conventional 3DOF estimates. These findings refine our fundamental understanding of how work is distributed within the body, which has implications for assistive technology, biomechanical simulations and potentially clinical treatment.

  16. Assessment of biofeedback rehabilitation in post-stroke patients combining fMRI and gait analysis: a case study

    OpenAIRE

    Del Din, Silvia; Bertoldo, Alessandra; Sawacha, Zimi; Jonsdottir, Johanna; Rabuffetti, Marco; Cobelli, Claudio; Ferrarin, Maurizio

    2014-01-01

    Background The ability to walk independently is a primary goal for rehabilitation after stroke. Gait analysis provides a great amount of valuable information, while functional magnetic resonance imaging (fMRI) offers a powerful approach to define networks involved in motor control. The present study reports a new methodology based on both fMRI and gait analysis outcomes in order to investigate the ability of fMRI to reflect the phases of motor learning before/after electromyographic biofeedba...

  17. Use of wand markers on the pelvis in three dimensional gait analysis.

    Science.gov (United States)

    Smith, Martin; Curtis, Derek; Bencke, Jesper; Stebbins, Julie

    2013-09-01

    During clinical gait analysis, surface markers are placed over the anterior superior iliac spines (ASIS) of the pelvis. However, this can be problematic in overweight or obese subjects, where excessive adipose tissue can obscure the markers and prevent accurate tracking. A novel solution to this problem has previously been proposed and tested on a limited sample of healthy, adult subjects. This involves use of wand markers on the pelvis, to virtually recreate the ASIS markers. The method was tested here on 20 typical subjects presenting for clinical gait analysis (adults and children, including overweight subjects). The method was found to accurately reproduce ASIS markers, and allow calculation of pelvic angles to within one degree of angles produced by ASIS markers. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The use of gait analysis in the treatment of pediatric foot and ankle disorders.

    Science.gov (United States)

    Theologis, Tim; Stebbins, Julie

    2010-06-01

    Assessment of foot pathology during walking should form an integral part of the clinical evaluation of children. Simple observation and video recording have limitations and are not quantifiable. Three-dimensional analysis of foot motion during walking can provide invaluable information on the dynamic function of the foot and can contribute to clinical decision making. As motion analysis technology advances, the accuracy and reliability of the dynamic assessment of the foot during walking will increase further, allowing clinicians to rely confidently on this information during patient assessment and the study of treatment outcomes. It is logical to expect that objective and quantifiable assessment of gait should be undertaken before and after treatment that sets gait improvement as one of its aims. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Insights into gait disorders: walking variability using phase plot analysis, Huntington's disease.

    Science.gov (United States)

    Collett, Johnny; Esser, Patrick; Khalil, Hanan; Busse, Monica; Quinn, Lori; DeBono, Katy; Rosser, Anne; Nemeth, Andrea H; Dawes, Helen

    2014-09-01

    Huntington's disease (HD) is a progressive inherited neurodegenerative disorder. Identifying sensitive methodologies to quantitatively measure early motor changes have been difficult to develop. This exploratory observational study investigated gait variability and symmetry in HD using phase plot analysis. We measured the walking of 22 controls and 35 HD gene carriers (7 premanifest (PreHD)), 16 early/mid (HD1) and 12 late stage (HD2) in Oxford and Cardiff, UK. The unified Huntington's disease rating scale-total motor scores (UHDRS-TMS) and disease burden scores (DBS) were used to quantify disease severity. Data was collected during a clinical walk test (8.8 or 10 m) using an inertial measurement unit attached to the trunk. The 6 middle strides were used to calculate gait variability determined by spatiotemporal parameters (co-efficient of variation (CoV)) and phase plot analysis. Phase plots considered the variability in consecutive wave forms from vertical movement and were quantified by SDA (spatiotemporal variability), SDB (temporal variability), ratio ∀ (ratio SDA:SDB) and Δangleβ (symmetry). Step time CoV was greater in manifest HD (p0.05). Phase plot analysis identified differences between manifest HD and controls for SDB, Ratio ∀ and Δangle (all pplot analysis may be a sensitive method of detecting gait changes in HD and can be performed quickly during clinical walking tests.

  20. Technique of the biomechanical analysis of execution of upward jump piked

    Directory of Open Access Journals (Sweden)

    Nataliya Batieieva

    2016-12-01

    Full Text Available Purpose: the biomechanical analysis of execution of upward jump piked. Material & Methods: the following methods of the research were used: theoretical analysis and synthesis of data of special scientific and methodical literature; photographing, video filming, biomechanical computer analysis, pedagogical observation. Students (n=8 of the chair of national choreography of the department of choreographic art of Kiev national university of culture and art took part in carrying out the biomechanical analysis of execution of upward jump piked. Results: the biomechanical analysis of execution of upward jump piked is carried out, the kinematic characteristics (way, speed, acceleration, effort of the general center of weight (GCW and center of weight (CW of biolinks of body of the executor are received (feet, shins, hips, shoulder, forearm, hands. Biokinematic models (phases are constructed. Power characteristics are defined – mechanical work and kinetic energy of links of legs and hands at execution of upward jump piked. Conclusions: it is established that the technique of execution of upward jump piked considerably influences the level of technical training of the qualified sportsmen in gymnastics (sports, in aerobic gymnastics (aerobics, diving and dancing sports.

  1. Biomechanical Analysis of the Effects of Bilateral Hinged Knee Bracing

    Science.gov (United States)

    Lee, Hangil; Ha, Dokyeong; Kang, Yeoun-Seung; Park, Hyung-Soon

    2016-01-01

    This research analyzed the effect of bilateral hinged knee braces on a healthy knee from a biomechanical frame in vivo. This was accomplished by fitting a knee brace with two customized wireless force/torque (F/T) sensors that could readily record force and torque during live motion, while the kinetics at the knee were computed using the inverse dynamics of the motion capture and force plate data. Four tasks to test the brace’s effects were drop vertical jumping, pivoting, stop vertical jumping, and cutting. The results showed that the hinges in the knee brace can absorb up to 18% of the force and 2.7% of the torque at the knee during various athletic motions. Thus, the hinges demonstrated minimal effect in reducing the mechanical load on the knee. There were limitations concerning the consistency of the motions performed by the subjects during the trials and the influence of the other portions of the brace to evaluate the overall effectiveness of the brace as a whole. Future works may incorporate a fatigue protocol and injured subjects to better determine the effects of the brace. There is still a need for more research on the biomechanical influence of knee braces to develop safer and more effective products. PMID:27379233

  2. Biomechanical Analysis of the Effects of Bilateral Hinged Knee Bracing.

    Science.gov (United States)

    Lee, Hangil; Ha, Dokyeong; Kang, Yeoun-Seung; Park, Hyung-Soon

    2016-01-01

    This research analyzed the effect of bilateral hinged knee braces on a healthy knee from a biomechanical frame in vivo. This was accomplished by fitting a knee brace with two customized wireless force/torque (F/T) sensors that could readily record force and torque during live motion, while the kinetics at the knee were computed using the inverse dynamics of the motion capture and force plate data. Four tasks to test the brace's effects were drop vertical jumping, pivoting, stop vertical jumping, and cutting. The results showed that the hinges in the knee brace can absorb up to 18% of the force and 2.7% of the torque at the knee during various athletic motions. Thus, the hinges demonstrated minimal effect in reducing the mechanical load on the knee. There were limitations concerning the consistency of the motions performed by the subjects during the trials and the influence of the other portions of the brace to evaluate the overall effectiveness of the brace as a whole. Future works may incorporate a fatigue protocol and injured subjects to better determine the effects of the brace. There is still a need for more research on the biomechanical influence of knee braces to develop safer and more effective products.

  3. Least Action Principle in Gait

    CERN Document Server

    Fan, Yifang; Fan, Yubo; Xu, Zongxiang; Li, Zhiyu; Luo, Donglin

    2009-01-01

    We apply the laws of human gait vertical ground reaction force and discover the existence of the phenomenon of least action principle in gait. Using a capacitive mat transducer system, we obtain the variations of human gait vertical ground reaction force and establish a structure equation for the resultant of such a force. Defining the deviation of vertical force as an action function, we observe from our gait optimization analysis the least action principle at half of the stride time. We develop an evaluation index of mechanical energy consumption based upon the least action principle in gait. We conclude that these observations can be employed to enhance the accountability of gait evaluation.

  4. Biomechanical analysis of reducing sacroiliac joint shear load by optimization of pelvic muscle and ligament forces

    NARCIS (Netherlands)

    J.J.M. Pel (Johan); C.W. Spoor (Cornelis); A.L. Pool-Goudzwaard (Annelies); G.A. Hoek van Dijke; C.J. Snijders (Chris)

    2008-01-01

    textabstractEffective stabilization of the sacroiliac joints (SIJ) is essential, since spinal loading is transferred via the SIJ to the coxal bones, and further to the legs. We performed a biomechanical analysis of SIJ stability in terms of reduced SIJ shear force in standing posture using a validat

  5. Stability of the unlinked Latitude total elbow prosthesis: A biomechanical in vitro analysis

    NARCIS (Netherlands)

    Wagener, Marc L.; Vos, de Maarten J.; Hendriks, Jan C.M.; Eygendaal, Denise; Verdonschot, Nico

    2013-01-01

    Background The purpose of this study is to assess the valgus and varus laxity of the unlinked version of the Latitude total elbow prosthesis and the effects of radial head preservation or replacement. Methods Biomechanical analysis of the valgus and varus laxity of the unlinked Latitude was perform

  6. Stability of the unlinked Latitude total elbow prosthesis: A biomechanical in vitro analysis.

    NARCIS (Netherlands)

    Wagener, M.L.; Vos, M.J. de; Hendriks, J.C.M.; Eygendaal, D.; Verdonschot, N.J.J.

    2013-01-01

    BACKGROUND: The purpose of this study is to assess the valgus and varus laxity of the unlinked version of the Latitude total elbow prosthesis and the effects of radial head preservation or replacement. METHODS: Biomechanical analysis of the valgus and varus laxity of the unlinked Latitude was perfor

  7. The application of finite element analysis in the skull biomechanics and dentistry.

    Science.gov (United States)

    Prado, Felippe Bevilacqua; Rossi, Ana Cláudia; Freire, Alexandre Rodrigues; Ferreira Caria, Paulo Henrique

    2014-01-01

    Empirical concepts describe the direction of the masticatory stress dissipation in the skull. The scientific evidence of the trajectories and the magnitude of stress dissipation can help in the diagnosis of the masticatory alterations and the planning of oral rehabilitation in the different areas of Dentistry. The Finite Element Analysis (FEA) is a tool that may reproduce complex structures with irregular geometries of natural and artificial tissues of the human body because it uses mathematical functions that enable the understanding of the craniofacial biomechanics. The aim of this study was to review the literature on the advantages and limitations of FEA in the skull biomechanics and Dentistry study. The keywords of the selected original research articles were: Finite element analysis, biomechanics, skull, Dentistry, teeth, and implant. The literature review was performed in the databases, PUBMED, MEDLINE and SCOPUS. The selected books and articles were between the years 1928 and 2010. The FEA is an assessment tool whose application in different areas of the Dentistry has gradually increased over the past 10 years, but its application in the analysis of the skull biomechanics is scarce. The main advantages of the FEA are the realistic mode of approach and the possibility of results being based on analysis of only one model. On the other hand, the main limitation of the FEA studies is the lack of anatomical details in the modeling phase of the craniofacial structures and the lack of information about the material properties.

  8. Diffusion entropy analysis on the stride interval fluctuation of human gait

    CERN Document Server

    Cai, S M; Yang, H J; Zhao, F C; Zhou, P L; Zhou, T; Cai, Shi-Min; Wang, Bing-Hong; Yang, Hui-Jie; Zhao, Fang-Cui; Zhou, Pei-Ling; Zhou, Tao

    2006-01-01

    In this paper, the diffusion entropy technique is applied to investigate the scaling behavior of stride interval fluctuations of human gait. The scaling behavior of the stride interval of human walking at normal, slow and fast rate are similar; with the scale-invariance exponents in the interval $[0.663,0.955]$, of which the mean value is $0.821\\pm0.011$. Dynamical analysis of these stride interval fluctuations reveals a self-similar pattern: Fluctuation at one time scale are statistically similar to those at multiple other time scales, at least over hundreds of steps, while the healthy subjects walk at their normal rate. The long-range correlations are observed during the spontaneous walking after the removal of the trend in the time series with Fourier filter. These findings uncover that the fractal dynamics of stride interval of human gait are normally intrinsic to the locomotor systems.

  9. Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis

    Science.gov (United States)

    Portillo-Portillo, Jose; Leyva, Roberto; Sanchez, Victor; Sanchez-Perez, Gabriel; Perez-Meana, Hector; Olivares-Mercado, Jesus; Toscano-Medina, Karina; Nakano-Miyatake, Mariko

    2016-01-01

    This paper proposes a view-invariant gait recognition framework that employs a unique view invariant model that profits from the dimensionality reduction provided by Direct Linear Discriminant Analysis (DLDA). The framework, which employs gait energy images (GEIs), creates a single joint model that accurately classifies GEIs captured at different angles. Moreover, the proposed framework also helps to reduce the under-sampling problem (USP) that usually appears when the number of training samples is much smaller than the dimension of the feature space. Evaluation experiments compare the proposed framework’s computational complexity and recognition accuracy against those of other view-invariant methods. Results show improvements in both computational complexity and recognition accuracy. PMID:28025484

  10. Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Jose Portillo-Portillo

    2016-12-01

    Full Text Available This paper proposes a view-invariant gait recognition framework that employs a unique view invariant model that profits from the dimensionality reduction provided by Direct Linear Discriminant Analysis (DLDA. The framework, which employs gait energy images (GEIs, creates a single joint model that accurately classifies GEIs captured at different angles. Moreover, the proposed framework also helps to reduce the under-sampling problem (USP that usually appears when the number of training samples is much smaller than the dimension of the feature space. Evaluation experiments compare the proposed framework’s computational complexity and recognition accuracy against those of other view-invariant methods. Results show improvements in both computational complexity and recognition accuracy.

  11. Analysis of gait in rats with olivocerebellar lesions and ability of the nicotinic acetylcholine receptor agonist varenicline to attenuate impairments.

    Science.gov (United States)

    Lambert, C S; Philpot, R M; Engberg, M E; Johns, B E; Wecker, L

    2015-09-15

    Studies have demonstrated that administration of the neuronal nicotinic receptor agonist varenicline to rats with olivocerebellar lesions attenuates balance deficits on a rotorod and balance beam, but the effects of this drug on gait deficits have not been investigated. To accomplish this, male Sprague-Dawley rats were trained to walk on a motorized treadmill at 25 and 35 cm/s and baseline performance determined; both temporal and spatial gait parameters were analyzed. A principal component analysis (PCA) was used to identify the key components of gait, and the cumulative gait index (CGI) was calculated, representing deviations from prototypical gait patterns. Subsequently, animals either remained as non-lesioned controls or received injections of 3-acetylpyridine (3-AP)/nicotinamide to destroy the climbing fibers innervating Purkinje cells. The gait of the non-lesioned group was assessed weekly to monitor changes in the normal population, while the gait of the lesioned group was assessed 1 week following 3-AP administration, and weekly following the daily administration of saline or varenicline (0.3, 1.0, or 3.0mg free base/kg) for 2 weeks. Non-lesioned animals exhibited a 60-70% increased CGI over time due to increases in temporal gait measures, whereas lesioned animals exhibited a nearly 3-fold increased CGI as a consequence of increases in spatial measures. Following 2 weeks of treatment with the highest dose of varenicline (3.0mg free base/kg), the swing duration of lesioned animals normalized, and stride duration, stride length and step angle in this population did not differ from the non-lesioned population. Thus, varenicline enabled animals to compensate for their impairments and rectify the timing of the gait cycle.

  12. 3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach.

    Science.gov (United States)

    Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Avogaro, Angelo; Cobelli, Claudio

    2014-09-22

    Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP. The peak values and the total distribution of the pressures were compared for this purpose. Results showed that the models were less robust when driven from group data and underestimated the PP in each foot subarea. In particular in the case of the neuropathic subject's model the mean errors between experimental and simulated data were around the 20% of the peak values. This knowledge is crucial in understanding the aetiology of diabetic foot.

  13. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications

    Directory of Open Access Journals (Sweden)

    Alvaro Muro-de-la-Herran

    2014-02-01

    Full Text Available This article presents a review of the methods used in recognition and analysis of the human gait from three different approaches: image processing, floor sensors and sensors placed on the body. Progress in new technologies has led the development of a series of devices and techniques which allow for objective evaluation, making measurements more efficient and effective and providing specialists with reliable information. Firstly, an introduction of the key gait parameters and semi-subjective methods is presented. Secondly, technologies and studies on the different objective methods are reviewed. Finally, based on the latest research, the characteristics of each method are discussed. 40% of the reviewed articles published in late 2012 and 2013 were related to non-wearable systems, 37.5% presented inertial sensor-based systems, and the remaining 22.5% corresponded to other wearable systems. An increasing number of research works demonstrate that various parameters such as precision, conformability, usability or transportability have indicated that the portable systems based on body sensors are promising methods for gait analysis.

  14. MEMS-based sensing and algorithm development for fall detection and gait analysis

    Science.gov (United States)

    Gupta, Piyush; Ramirez, Gabriel; Lie, Donald Y. C.; Dallas, Tim; Banister, Ron E.; Dentino, Andrew

    2010-02-01

    Falls by the elderly are highly detrimental to health, frequently resulting in injury, high medical costs, and even death. Using a MEMS-based sensing system, algorithms are being developed for detecting falls and monitoring the gait of elderly and disabled persons. In this study, wireless sensors utilize Zigbee protocols were incorporated into planar shoe insoles and a waist mounted device. The insole contains four sensors to measure pressure applied by the foot. A MEMS based tri-axial accelerometer is embedded in the insert and a second one is utilized by the waist mounted device. The primary fall detection algorithm is derived from the waist accelerometer. The differential acceleration is calculated from samples received in 1.5s time intervals. This differential acceleration provides the quantification via an energy index. From this index one may ascertain different gait and identify fall events. Once a pre-determined index threshold is exceeded, the algorithm will classify an event as a fall or a stumble. The secondary algorithm is derived from frequency analysis techniques. The analysis consists of wavelet transforms conducted on the waist accelerometer data. The insole pressure data is then used to underline discrepancies in the transforms, providing more accurate data for classifying gait and/or detecting falls. The range of the transform amplitude in the fourth iteration of a Daubechies-6 transform was found sufficient to detect and classify fall events.

  15. Biomechanical analysis of injury criterion for child and adult dummies.

    Science.gov (United States)

    Sances, A

    2000-01-01

    The development of human injury tolerance is difficult because of the physical differences between humans and animals, the available dummies, and tissue of the cadaver. Furthermore, human volunteer testing can clearly only be done at subinjurious levels. While considerable biomechanical injury evidence exists for the adult human based on cadaveric studies, little information is available for the pediatric population. However, some material is available from skull bone modulus studies and from the fetal tendon strength and early pediatric studies of the newborn. A review of living human, animal, and human cadaveric studies, which forms the basis for head-neck injury criterion are given. Examples of the use of the Hybrid III dummy for injury prediction such as in the Malibu rollover tests and air bag mechanisms show neck injury levels are considerably above the proposed Malibu 2000 N level.

  16. Intraoperative Periprosthetic Femur Fracture: A Biomechanical Analysis of Cerclage Fixation.

    Science.gov (United States)

    Frisch, Nicholas B; Charters, Michael A; Sikora-Klak, Jakub; Banglmaier, Richard F; Oravec, Daniel J; Silverton, Craig D

    2015-08-01

    Intraoperative periprosthetic femur fracture is a known complication of total hip arthroplasty (THA) and a variety of cerclage systems are available to manage these fractures. The purpose of this study was to examine the in situ biomechanical response of cerclage systems for fixation of periprosthetic femur fractures that occur during cementless THA. We compared cobalt chrome (CoCr) cables, synthetic cables, monofilament wires and hose clamps under axial compressive and torsional loading. Metallic constructs with a positive locking system performed the best, supporting the highest loads with minimal implant subsidence (both axial and angular) after loading. Overall, the CoCr cable and hose clamp had the highest construct stiffness and least reduction in stiffness with increased loading. They were not demonstrably different from each other. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Preliminary gait analysis results after posterior tibial tendon reconstruction: a prospective study.

    Science.gov (United States)

    Brodsky, James W

    2004-02-01

    The purpose of this study was to investigate the effect on gait in patients who underwent reconstruction for stage II posterior tibial tendon (PTT) dysfunction. Twelve patients with stage II PTT dysfunction underwent surgical reconstruction consisting of debridement of the posterior tibial tendon, flexor digitorum longus tendon transfer to the navicular tuberosity, medial displacement calcaneal osteotomy, and spring ligament reconstruction. Midfoot arthrodesis was performed in six patients and gastrocnemius recession in three. Gait analysis was performed 2 weeks prior to surgery and 1 year postoperatively. Preoperative and postoperative data were compared to determine differences in temporal-spatial parameters, lower limb kinematics, and ankle push-off power. Step length for the operated side increased from 52.6 +/- 9.6 cm before the surgery to 57.5 +/- 7.1 cm after the surgery (p =.048). Cadence improved from 100.2 +/- 10.7 steps/min to 109.1 +/- 8.5 steps/min (p =.05), thus increasing velocity from 87.6 +/- 22.6 cm/s to 103.4 +/- 15.9 cm/s (p =.042). Single support percentage was unchanged. Maximum sagittal ankle joint power at push-off increased from 0.79 +/- 0.35 W before surgery to 1.2 +/- 0.5 W after surgery (p =.042). There were statistically significant improvements in all radiographic parameters studied. This is the first prospective study to evaluate the in vivo effects on gait in patients undergoing this common surgical procedure. Analysis demonstrated statistically significant improvement in kinetic and kinematic parameters of gait function.

  18. Biomechanical analysis of padding in child seats and head injury.

    Science.gov (United States)

    Kumaresan, Srirangam; Sances, Anthony; Carlin, Fred

    2002-01-01

    Head injury is a common finding for infants and young children involved in automobile accidents. Although the child restraint seats have increased the level of safety for the pediatric population, skull fracture and/or brain injury occur during the interaction between the child's head and interior of the car seats with no padding. The introduction of effective and sufficient padding may significantly reduce the head injury. The present study was designed to evaluate the biomechanical effects of padding in child seats to reduce the potential for head injury. A head drop test of a six-month old anthropomorphic dummy was conducted. The side of the dummy head impacted the interior wing of child car seats of relatively soft and stiff materials, and a rigid metal plate at velocities of 2.2, 4.5 and 6.7 m/s. In all tests, three types of padding environments were used (no padding, comfort foam, 16 to 19 mm polypropylene padding). All data were collected at 10 kHz and filtered. A total of 39 tests were conducted. The head injury criteria (HIC), and head acceleration, and head angular acceleration were obtained. The HIC was calculated over a 36 ms interval from the resultant tri-axial acceleration. The angular accelerations were derived from the angular velocity data. The head injury biomechanical parameters decreased with the addition of padding. The HIC, peak acceleration, and angular acceleration were reduced up to 91%, 80%, and 61% respectively. The present results emphasize the importance of energy absorbing padding to provide an improved safety environment in child car seats.

  19. Effect of Global Postural Rehabilitation program on spatiotemporal gait parameters of parkinsonian patients: a three-dimensional motion analysis study.

    Science.gov (United States)

    Vitale, Carmine; Agosti, Valeria; Avella, Dario; Santangelo, Gabriella; Amboni, Marianna; Rucco, Rosaria; Barone, Paolo; Corato, Francesco; Sorrentino, Giuseppe

    2012-12-01

    The aim of the present study was to evaluate the effects of a Global Postural Rehabilitation (GPR) program on motor symptoms and gait parameters of patients with Parkinson's disease (PD) by means of three-dimensional motion analysis study. Ten subjects with clinical diagnosis of PD were enrolled (study group). Age-, sex- and disease duration-matched PD patients were recruited as a control group (no treatment). Three-dimensional motion analysis was conducted by means of a stereophotogrammetric system. After basal evaluation, the study group underwent a specific rehabilitation program consisting of individual 40 min GPR daily sessions, 3 days a week for 4 consecutive weeks. Neurological status and spatiotemporal gait parameters of the two groups were evaluated at study entry (t (0)), at 4 weeks (t (1), end of rehabilitation protocol) and at 8 and 12 weeks (t (2) and t (3), follow-up evaluation). At baseline evaluation, the two groups did not differ in clinical features and gait parameters. At the end of rehabilitation protocol (t (1)) and at follow-up evaluation (t (2) and t (3)), a significant improvement in temporal gait parameters and UPDRS scores was observed in all treated patients as compared to baseline and controls. Our preliminary findings showed that significant improvements in mobility and gait parameters of PD patients can be obtained through GPR treatment, with a parallel improvement in clinical status. Quantitative analysis of gait pattern can be considered a useful tool to assess the efficacy of rehabilitation interventions in patients affected by PD.

  20. Effect of dual-task-induced uncertainty on gait biomechanics in patients with multiple sclerosis with 2-6.5 EDSS grade.

    Science.gov (United States)

    Gutiérrez Cruz, Carmen; Miangolarra Page, Juan Carlos; Rojas Ruiz, F Javier

    2016-09-01

    The goal of this study was to assess the effect that uncertainty induced by dual task conditions has on reaction-response time parameters and gait patterns of patients with multiple sclerosis (MS) with a 2-6.5 EDSS grade. The study involved eleven patients - nine women and two men - diagnosed with multiple sclerosis (age, 48±10years; height, 1.65±0.1m; weight, 72±22kg) with capacity to walk five meters without any aid or assistance. We employed an intra-group repeated measures design. Each participant was asked to walk with and without task-related uncertainty. Reaction-response and gait cycle times, as well as center of mass (CM) dynamics were measured using three force plates synchronized with a video camera through an electronic device that also controlled the system of uncertainty. The results obtained reveal that uncertainty induced by dual tasking is related to a reduction in the mean stride length and mean displacement and horizontal velocity of the CM in patients with MS. The values obtained for CM parameters indicate that uncertainty affects balance, as compared to no-uncertainty situations. These results confirm the necessity of including controlled dual-task-induced uncertainty in physical training programs for MS patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Test-Retest Reliability of an Automated Infrared-Assisted Trunk Accelerometer-Based Gait Analysis System

    Directory of Open Access Journals (Sweden)

    Chia-Yu Hsu

    2016-07-01

    Full Text Available The aim of this study was to determine the test-retest reliability of an automated infrared-assisted, trunk accelerometer-based gait analysis system for measuring gait parameters of healthy subjects in a hospital. Thirty-five participants (28 of them females; age range, 23–79 years performed a 5-m walk twice using an accelerometer-based gait analysis system with infrared assist. Measurements of spatiotemporal gait parameters (walking speed, step length, and cadence and trunk control (gait symmetry, gait regularity, acceleration root mean square (RMS, and acceleration root mean square ratio (RMSR were recorded in two separate walking tests conducted 1 week apart. Relative and absolute test-retest reliability was determined by calculating the intra-class correlation coefficient (ICC3,1 and smallest detectable difference (SDD, respectively. The test-retest reliability was excellent for walking speed (ICC = 0.87, 95% confidence interval = 0.74–0.93, SDD = 13.4%, step length (ICC = 0.81, 95% confidence interval = 0.63–0.91, SDD = 12.2%, cadence (ICC = 0.81, 95% confidence interval = 0.63–0.91, SDD = 10.8%, and trunk control (step and stride regularity in anterior-posterior direction, acceleration RMS and acceleration RMSR in medial-lateral direction, and acceleration RMS and stride regularity in vertical direction. An automated infrared-assisted, trunk accelerometer-based gait analysis system is a reliable tool for measuring gait parameters in the hospital environment.

  2. Physiological knock-knee in preschool children: prevalence, correlating factors, gait analysis, and clinical significance.

    Science.gov (United States)

    Lin, C J; Lin, S C; Huang, W; Ho, C S; Chou, Y L

    1999-01-01

    Physiological knock-knee (PKK) was categorized by measuring intermalleolar distance (IMD), a clinically simple method, to evaluate the prevalence and correlating factors in 305 preschool children. The prevalence in this cross-sectional study was relatively high, and it was age related (p = 0.002; 64, 44, and 34% for ages 3-4, 4-5, and 5-6 years, respectively). The following factors were correlated with PKK: use of walking chair early (p = 0.0001), independently walked late (p = 0.0005), dependently walked longer (p = 0.0001), concurrence with flatfoot (p = 0.001), and angular deformity (toe in/out, p = 0.03). Gait analysis, with spatiotemporal, kinematics, and kinetics parameters, was performed to evaluate the ambulatory significance. Preschool children with PKK have a shorter stride length (p = 0.02) and a slower walking speed (p = 0.004). Dynamic hyperextension of the knee is noted for 8 degrees during the whole gait cycle (p PKK is a variable that should be considered in the development of mature gait for preschool children.

  3. Repeatability of phasic muscle activity: performance of surface and intramuscular wire electrodes in gait analysis.

    Science.gov (United States)

    Kadaba, M P; Wootten, M E; Gainey, J; Cochran, G V

    1985-01-01

    Repeatability is an important consideration for gait analysis data that are being used as an adjunct to clinical decision making. An index of repeatability may be based on a statistical criterion (variance ratio) that reflects similarity of wave forms over a number of identical cycles. The purpose of this study was to use the variance ratio to assess the repeatability of phasic muscle activity recorded with surface and bipolar intramuscular wire electrodes during gait on 10 normal subjects. Variance ratios were calculated using rectified and smoothed electromyographic data recorded simultaneously from the two types of electrodes. Three measures of repeatability (reproducibility, reliability, and constancy--defined as the cycle-to-cycle, run-to-run, and day-to-day repeatability of phasic muscle activity) were used to compare the performance of the two electrode techniques. Results show that the reproducibility and reliability were better for surface electrodes than for intramuscular wire electrodes, and constancy was good for surface electrodes and poor for intramuscular wire electrodes. Repeatability improved with increasing smoothing window lengths but was better for surface electrodes than wire electrodes, irrespective of the smoothing window. This study indicates that surface electrode data represent a more consistent measure of activity of superficial muscles, if comparisons are to be made between gait data from different test days.

  4. An IMU-to-Body Alignment Method Applied to Human Gait Analysis

    Directory of Open Access Journals (Sweden)

    Laura Susana Vargas-Valencia

    2016-12-01

    Full Text Available This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis.

  5. Gait analysis of patients with knee osteoarthritis before and after Chinese massage treatment.

    Science.gov (United States)

    Qingguang, Zhu; Min, Fang; Li, Gong; Shuyun, Jiang; Wuquan, Sun; Jianhua, Li; Yong, Li

    2015-08-01

    The objective of this study was to evaluate the effectiveness of Chinese massage therapy in patients with knee osteoarthritis (OA) by measuring lower-limb gait parameters. We recruited 20 women with knee OA, who then underwent Chinese massage therapy three times per week for 2 weeks. The patients underwent gait evaluation using a six-camera infrared motion analysis system. They completed Western Ontario and McMaster Universities Osteoarthritis Index questionnaires before and after treatment. We calculated the forward speed, step width, step length, total support time percentage, initial double support time percentage, and single support time percentage. We also measured the angles at the knee, hip, and ankle during the stance phase of walking. The results showed statistically significant mean differences in knee pain relief, alleviation of stiffness, and physical function enhancement after therapy (P < 0.05). The patients gained significantly faster gait speed, greater step width, and increased total support time percentage after the Chinese massage therapy (P < 0.05). There were no significant differences in the range of motion or initial contact angles of the knee, hip, or ankle during the stance phase of walking. We concluded that Chinese massage is a beneficial complementary treatment and an alternative therapy choice for patients with knee OA for short-term pain relief. Chinese massage may improve walking ability for these patients.

  6. Subjects with hip osteoarthritis show distinctive patterns of trunk movements during gait-a body-fixed-sensor based analysis

    Directory of Open Access Journals (Sweden)

    Reininga Inge HF

    2012-01-01

    Full Text Available Abstract Background Compensatory trunk movements during gait, such as a Duchenne limp, are observed frequently in subjects with osteoarthritis of the hip, yet angular trunk movements are seldom included in clinical gait assessments. Hence, the objective of this study was to quantify compensatory trunk movements during gait in subjects with hip osteoarthritis, outside a gait laboratory, using a body-fixed-sensor based gait analysis. Frontal plane angular movements of the pelvis and thorax and spatiotemporal parameters of persons who showed a Duchenne limp during gait were compared to healthy subjects and persons without a Duchenne limp. Methods A Body-fixed-sensor based gait analysis approach was used. Two body-fixed sensors were positioned at the dorsal side of the pelvis and on the upper thorax. Peak-to-peak frontal plane range of motion (ROM and spatiotemporal parameters (walking speed, step length and cadence of persons with a Duchenne limp during gait were compared to healthy subjects and persons without a Duchenne limp. Participants were instructed to walk at a self-selected low, preferred and high speed along a hospital corridor. Generalized estimating equations (GEE analyses were used to assess group differences between persons with a Duchenne limp, without a Duchenne limp and healthy subjects. Results Persons with a Duchenne limp showed a significantly larger thoracic ROM during walking compared to healthy subjects and to persons without a Duchenne limp. In both groups of persons with hip osteoarthritis, pelvic ROM was lower than in healthy subjects. This difference however only reached significance in persons without a Duchenne limp. The ratio of thoracic ROM relative to pelvic ROM revealed distinct differences in trunk movement patterns. Persons with hip osteoarthritis walked at a significantly lower speed compared to healthy subjects. No differences in step length and cadence were found between patients and healthy subjects, after

  7. Motor coordination during gait after anterior cruciate ligament injury: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Gustavo Leporace

    2013-08-01

    Full Text Available To investigate the state of art about motor coordination during gait in patients with anterior cruciate ligament (ACL injury. Searches were carried out, limited from 1980 to 2010, in various databases with keywords related to motor coordination, gait and ACL injury. From the analysis of titles and applying the inclusion/exclusion criteria 24 studies were initially selected and, after reading the abstract, eight studies remained in the final analysis. ACL deficient patients tend to have a more rigid and less variable gait, while injured patients with ACL reconstruction have less rigid and more variable gait with respect to healthy individuals. The overall results suggest the existence of differences in motor coordination between the segments with intact and those with injured knee, regardless of ligament reconstruction. ACL injured patients present aspects related to the impairment of the capability to adapt the gait pattern to different environmental conditions, possibly leading to premature knee degeneration. However, the techniques used for biomechanical gait data processing are limited with respect to obtaining information that leads to the development of intervention strategies aimed at the rehabilitation of that injury, since it is not possible to identify the location within the gait cycle where the differences could be explained.

  8. Detrended fluctuation analysis and adaptive fractal analysis of stride time data in Parkinson's disease: stitching together short gait trials.

    Science.gov (United States)

    Kirchner, Marietta; Schubert, Patric; Liebherr, Magnus; Haas, Christian T

    2014-01-01

    Variability indicates motor control disturbances and is suitable to identify gait pathologies. It can be quantified by linear parameters (amplitude estimators) and more sophisticated nonlinear methods (structural information). Detrended Fluctuation Analysis (DFA) is one method to measure structural information, e.g., from stride time series. Recently, an improved method, Adaptive Fractal Analysis (AFA), has been proposed. This method has not been applied to gait data before. Fractal scaling methods (FS) require long stride-to-stride data to obtain valid results. However, in clinical studies, it is not usual to measure a large number of strides (e.g., [Formula: see text][Formula: see text] strides). Amongst others, clinical gait analysis is limited due to short walkways, thus, FS seem to be inapplicable. The purpose of the present study was to evaluate FS under clinical conditions. Stride time data of five self-paced walking trials ([Formula: see text] strides each) of subjects with PD and a healthy control group (CG) was measured. To generate longer time series, stride time sequences were stitched together. The coefficient of variation (CV), fractal scaling exponents [Formula: see text] (DFA) and [Formula: see text] (AFA) were calculated. Two surrogate tests were performed: A) the whole time series was randomly shuffled; B) the single trials were randomly shuffled separately and afterwards stitched together. CV did not discriminate between PD and CG. However, significant differences between PD and CG were found concerning [Formula: see text] and [Formula: see text]. Surrogate version B yielded a higher mean squared error and empirical quantiles than version A. Hence, we conclude that the stitching procedure creates an artificial structure resulting in an overestimation of true [Formula: see text]. The method of stitching together sections of gait seems to be appropriate in order to distinguish between PD and CG with FS. It provides an approach to integrate FS as

  9. Gender differences in gait kinematics in runners with iliotibial band syndrome.

    Science.gov (United States)

    Phinyomark, A; Osis, S; Hettinga, B A; Leigh, R; Ferber, R

    2015-12-01

    Atypical running gait biomechanics are considered a primary factor in the etiology of iliotibial band syndrome (ITBS). However, a general consensus on the underpinning kinematic differences between runners with and without ITBS is yet to be reached. This lack of consensus may be due in part to three issues: gender differences in gait mechanics, the preselection of discrete biomechanical variables, and/or relatively small sample sizes. Therefore, this study was designed to address two purposes: (a) examining differences in gait kinematics for male and female runners experiencing ITBS at the time of testing and (b) assessing differences in gait kinematics between healthy gender- and age-matched runners as compared with their ITBS counterparts using waveform analysis. Ninety-six runners participated in this study: 48 ITBS and 48 healthy runners. The results show that female ITBS runners exhibited significantly greater hip external rotation compared with male ITBS and female healthy runners. On the contrary, male ITBS runners exhibited significantly greater ankle internal rotation compared with healthy males. These results suggest that care should be taken to account for gender when investigating the biomechanical etiology of ITBS.

  10. Extensive Biomechanical Analysis of Passenger Locomotion in Airbus A320

    Directory of Open Access Journals (Sweden)

    Jasna Jurum-Kipke

    2008-07-01

    Full Text Available Every human working activity is related to adequate workloadand therefore also stress. The workloads of people workingin different working postures form a wide but still insufficientlystudied biomechanical and ergonomic field. Carrying, liftingand manipulating freight often results in relatively high loads,and in case of the need for increased frequency of such procedures,the result is an exhausting dynamic strain of the humanbody. The loads that can occur during human activities are inthe majority of cases related to their extremely non-ergonomicworking position. It has been determined that the working posturesof the human body are supported by the action of the musclesystem on the human locomotoric chain. Non-ergonomicposture of human body is harmful, especially in case when it isforced or when it is in the field of suboptimal condition. Highloads affect directly the human safety, and in case of longer exposureof the body to the action of such loads, the possibility formore permanent organism damages of organism may occur.

  11. Quantification and recognition of parkinsonian gait from monocular video imaging using kernel-based principal component analysis

    Directory of Open Access Journals (Sweden)

    Chen Shih-Wei

    2011-11-01

    Full Text Available Abstract Background The computer-aided identification of specific gait patterns is an important issue in the assessment of Parkinson's disease (PD. In this study, a computer vision-based gait analysis approach is developed to assist the clinical assessments of PD with kernel-based principal component analysis (KPCA. Method Twelve PD patients and twelve healthy adults with no neurological history or motor disorders within the past six months were recruited and separated according to their "Non-PD", "Drug-On", and "Drug-Off" states. The participants were asked to wear light-colored clothing and perform three walking trials through a corridor decorated with a navy curtain at their natural pace. The participants' gait performance during the steady-state walking period was captured by a digital camera for gait analysis. The collected walking image frames were then transformed into binary silhouettes for noise reduction and compression. Using the developed KPCA-based method, the features within the binary silhouettes can be extracted to quantitatively determine the gait cycle time, stride length, walking velocity, and cadence. Results and Discussion The KPCA-based method uses a feature-extraction approach, which was verified to be more effective than traditional image area and principal component analysis (PCA approaches in classifying "Non-PD" controls and "Drug-Off/On" PD patients. Encouragingly, this method has a high accuracy rate, 80.51%, for recognizing different gaits. Quantitative gait parameters are obtained, and the power spectrums of the patients' gaits are analyzed. We show that that the slow and irregular actions of PD patients during walking tend to transfer some of the power from the main lobe frequency to a lower frequency band. Our results indicate the feasibility of using gait performance to evaluate the motor function of patients with PD. Conclusion This KPCA-based method requires only a digital camera and a decorated corridor setup

  12. Reliability of 3D gait data across multiple laboratories.

    Science.gov (United States)

    Kaufman, Kenton; Miller, Emily; Kingsbury, Trevor; Russell Esposito, Elizabeth; Wolf, Erik; Wilken, Jason; Wyatt, Marilynn

    2016-09-01

    The aim of this study was to analyze the repeatability of gait analysis studies performed across multiple trials, sessions, and laboratories. Ten healthy participants (6 male/4 female, mean age of 30, mean BMI of 24kg/m(2)) were assessed in 3 sessions conducted at each of the three Centers of Excellence for Amputee Care within the Department of Defense. For each test session, kinematic and kinetic parameters were collected during five walking trials for each limb. One independent examiner at each site placed markers on the subjects. Biomechanical data were collected at two walking speeds: self-selected and Froude speed. Variability of the gait data was attributed to inter-trial, inter-session, and inter-lab errors for each subject. These error sources were averaged across all ten subjects to obtain a pooled error estimate. The kinematic errors were fairly consistent at the two walking speeds tested. Median inter-lab kinematic errors were gait laboratories, particularly when gait speed is standardized across testing sessions. A key similarity between sites was the use of identical anatomical segment definitions for the respective gait models.

  13. Principal component analysis in ground reaction forces and center of pressure gait waveforms of people with transfemoral amputation.

    Science.gov (United States)

    Soares, Denise Paschoal; de Castro, Marcelo Peduzzi; Mendes, Emilia Assunção; Machado, Leandro

    2016-12-01

    The alterations in gait pattern of people with transfemoral amputation leave them more susceptible to musculoskeletal injury. Principal component analysis is a method that reduces the amount of gait data and allows analyzing the entire waveform. To use the principal component analysis to compare the ground reaction force and center of pressure displacement waveforms obtained during gait between able-bodied subjects and both limbs of individuals with transfemoral amputation. This is a transversal study with a convenience sample. We used a force plate and pressure plate to record the anterior-posterior, medial-lateral and vertical ground reaction force, and anterior-posterior and medial-lateral center of pressure positions of 12 participants with transfemoral amputation and 20 able-bodied subjects during gait. The principal component analysis was performed to compare the gait waveforms between the participants with transfemoral amputation and the able-bodied individuals. The principal component analysis model explained between 74% and 93% of the data variance. In all ground reaction force and center of pressure waveforms relevant portions were identified; and always at least one principal component presented scores statistically different (p amputation compared to the able-bodied participants. Principal component analysis reduced the amount of data, allowed analyzing the whole waveform, and identified specific sub-phases of gait that were different between the groups. Therefore, this approach seems to be a powerful tool to be used in gait evaluation and following the rehabilitation status of people with transfemoral amputation. © The International Society for Prosthetics and Orthotics 2015.

  14. Foot pressure analysis of adults with flat and normal feet at different gait speeds on an ascending slope

    Science.gov (United States)

    Kim, Myoung-Kwon

    2015-01-01

    [Purpose] This study was conducted to determine the difference in foot pressures between flat and normal feet at different gait speeds on an ascending slope. [Subjects] This study enrolled 30 adults with normal (n=15) and flat feet (n=15), with ages from 21 to 30 years old, who had no history of neurological disorders or gait problems. A treadmill was used for the analysis of kinematic features during gait, using a slope of 10%, and gait velocities of slow, normal, and fast. [Methods] A foot pressure analyzer was used to measure changes in foot pressure. [Results] Compared to the normal subjects, the foot pressure of the flatfoot subjects showed a significant increase in the 2–3rd metatarsal region with increasing gait speed, whereas there were significant decreases in the 1st toe and 1st metatarsal regions with increasing gait speed. [Conclusion] The body weight of adults with flatfoot was concentrated on the 2–3rd metatarsal region during the stance phase and increased with walking speed on the ascending slope due to weakening of function of the medial longitudinal arch. PMID:26834348

  15. Recovery of gait pattern after medial patellofemoral ligament reconstruction for objective patellar instability.

    Science.gov (United States)

    Carnesecchi, O; Philippot, R; Boyer, B; Farizon, F; Edouard, P

    2016-01-01

    Gait pattern alterations were previously reported in association with objective patellar instability (OPI). Gait pattern comparison between a series of patients having undergone medial patellofemoral ligament (MPFL) reconstruction and a sample of control subjects. Thirty patients at 6 months postoperatively after MPFL reconstruction and thirty control subjects were enrolled in the study for a clinical and biomechanical assessment including gait analysis at three selected walking rates using the GAITRite(®) system. The mean raw IKDC score was 73 (± 19), and the mean Kujala knee function was 84 (± 17.5). The study of gait did not demonstrate any significant difference between the two groups at a normal and fast walking rate. At a 10 km/h running speed, the single-support phase was significantly shortened by a mean 2.33% (p clinical results in the management of OPI. At 6 months postoperatively, the patient gait pattern was similar to that observed in healthy subjects at a normal and fast walking speed. However, our study revealed persistent gait abnormalities at a 10 km/h running speed. These gait alterations seemed to be related to the ligament reconstruction in itself due to the higher strain applied on the reconstructed MPFL during running cycle (10 km/h). Level of evidence IV.

  16. Kinematic gait parameters of a child with cerebral palsy: Comparison between different forms of support

    Directory of Open Access Journals (Sweden)

    Micheli Martinello

    2014-04-01

    Full Text Available The aim of this study was to evaluate the kinematic haracteristics of gait in children with spastic diplegia aided by different forms of support (one crutch, two crutches, and scapular girdle, and thus determine the most appropriate way to train gait in children with spastic diplegia based on biomechanical characteristics. The study subject was a female, nine-year-old child, diagnosed with cerebral palsy of spastic diplegia type. The following instruments were used for clinical evaluation of gross motor function: Gross Motor Function Classification System - GMFCS, Gross Motor Function Measure - GMFM 88, and Modified Ashworth Scale. The child performed five repetitions of gait with each type of support. By kinematic analysis, spatiotemporal and angular variables of hip and knee in the sagittal plane were obtained. The values closest to typical gait were obtained with 2 crutches, followed by support with scapular girdle and one crutch. It was possible to observe that gait with two crutches was the most appropriate form of support, considering the functionality and independence of the child assessed; however, gait supported by scapular girdle may be appropriate for gait training in clinical practice, because it stimulates different spatiotemporal and angular parameters.

  17. FUNDAMENTALS OF BIOMECHANICS

    Directory of Open Access Journals (Sweden)

    Duane Knudson

    2007-09-01

    Full Text Available DESCRIPTION This book provides a broad and in-depth theoretical and practical description of the fundamental concepts in understanding biomechanics in the qualitative analysis of human movement. PURPOSE The aim is to bring together up-to-date biomechanical knowledge with expert application knowledge. Extensive referencing for students is also provided. FEATURES This textbook is divided into 12 chapters within four parts, including a lab activities section at the end. The division is as follows: Part 1 Introduction: 1.Introduction to biomechanics of human movement; 2.Fundamentals of biomechanics and qualitative analysis; Part 2 Biological/Structural Bases: 3.Anatomical description and its limitations; 4.Mechanics of the musculoskeletal system; Part 3 Mechanical Bases: 5.Linear and angular kinematics; 6.Linear kinetics; 7.Angular kinetics; 8.Fluid mechanics; Part 4 Application of Biomechanics in Qualitative Analysis :9.Applying biomechanics in physical education; 10.Applying biomechanics in coaching; 11.Applying biomechanics in strength and conditioning; 12.Applying biomechanics in sports medicine and rehabilitation. AUDIENCE This is an important reading for both student and educators in the medicine, sport and exercise-related fields. For the researcher and lecturer it would be a helpful guide to plan and prepare more detailed experimental designs or lecture and/or laboratory classes in exercise and sport biomechanics. ASSESSMENT The text provides a constructive fundamental resource for biomechanics, exercise and sport-related students, teachers and researchers as well as anyone interested in understanding motion. It is also very useful since being clearly written and presenting several ways of examples of the application of biomechanics to help teach and apply biomechanical variables and concepts, including sport-related ones

  18. Gait characteristic analysis and identification based on the iPhone's accelerometer and gyrometer.

    Science.gov (United States)

    Sun, Bing; Wang, Yang; Banda, Jacob

    2014-09-12

    Gait identification is a valuable approach to identify humans at a distance. In this paper, gait characteristics are analyzed based on an iPhone's accelerometer and gyrometer,and a new approach is proposed for gait identification. Specifically, gait datasets are collected by the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets are processed to extract gait characteristic parameters which include gait frequency, symmetry coefficient, dynamic range and similarity coefficient of characteristic curves. Finally, a weighted voting scheme dependent upon the gait characteristic parameters is proposed forgait identification. Four experiments are implemented to validate the proposed scheme. The attitude and acceleration solutions are verified by simulation. Then the gait characteristics are analyzed by comparing two sets of actual data, and the performance of the weighted voting identification scheme is verified by 40 datasets of 10 subjects.

  19. Gait Characteristic Analysis and Identification Based on the iPhone’s Accelerometer and Gyrometer

    Directory of Open Access Journals (Sweden)

    Bing Sun

    2014-09-01

    Full Text Available Gait identification is a valuable approach to identify humans at a distance. In thispaper, gait characteristics are analyzed based on an iPhone’s accelerometer and gyrometer,and a new approach is proposed for gait identification. Specifically, gait datasets are collectedby the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets areprocessed to extract gait characteristic parameters which include gait frequency, symmetrycoefficient, dynamic range and similarity coefficient of characteristic curves. Finally, aweighted voting scheme dependent upon the gait characteristic parameters is proposed forgait identification. Four experiments are implemented to validate the proposed scheme. Theattitude and acceleration solutions are verified by simulation. Then the gait characteristicsare analyzed by comparing two sets of actual data, and the performance of the weightedvoting identification scheme is verified by 40 datasets of 10 subjects.

  20. Application of principal component analysis in clinical gait research: identification of systematic differences between healthy and medial knee-osteoarthritic gait.

    Science.gov (United States)

    Federolf, P A; Boyer, K A; Andriacchi, T P

    2013-09-01

    For a successful completion of a movement task the motor control system has to observe a multitude of internal constraints that govern the coordination of its segments. The purpose of this study was to apply principal component (PC) analysis to detect differences in the segmental coordination between healthy subjects and patients with medial knee osteoarthritis (OA). It was hypothesized that (1) systematic differences in patterns of whole body movement would be identifiable with this method even in small sample sized groups and that (2) these differences will include compensatory movements in the OA patients in both the lower and upper body segments. Marker positions and ground reaction forces of three gait trials of 5 healthy and 5 OA participants with full body marker sets were analyzed using a principal component analysis. Group differences in the PC-scores were determined for the first 10 PC-vectors and a linear combination of those PC-vectors where differences were found defined a discriminant vector. Projecting the original trials onto this discriminant vector yielded significant group differences (t(d=8)=3.011; p=0.017) with greater upper body movement in patients with knee OA that was correlated with the medial-lateral ground reaction force. These results help to characterize the adaptation of whole-body gait patterns to knee OA in a relatively small population and may provide an improved basis for the development of interventions to modify knee load. The PC-based motion analysis offered a highly sensitive approach to identify characteristic whole body patterns of movement associated with pathological gait.

  1. Multi-scale complexity analysis of muscle coactivation during gait in children with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Wen eTao

    2015-07-01

    Full Text Available The objective of this study is to characterize complexity of lower-extremity muscle coactivation and coordination during gait in children with cerebral palsy (CP, children with typical development (TD and healthy adults, by applying recently developed multivariate multi-scale entropy (MMSE analysis to surface EMG signals. Eleven CP children (CP group, eight TD children and seven healthy adults (consider as an entire control group were asked to walk while surface EMG signals were collected from 5 thigh muscles and 3 lower leg muscles on each leg (16 EMG channels in total. The 16-channel surface EMG data, recorded during a series of consecutive gait cycles, were simultaneously processed by multivariate empirical mode decomposition (MEMD, to generate fully aligned data scales for subsequent MMSE analysis. In order to conduct extensive examination of muscle coactivation complexity using the MEMD-enhanced MMSE, 14 data analysis schemes were designed by varying partial muscle combinations and time durations of data segments. Both TD children and healthy adults showed almost consistent MMSE curves over multiple scales for all the 14 schemes, without any significant difference (p > 0.09. However, quite diversity in MMSE curve was observed in the CP group when compared with those in the control group. There appears to be diverse neuropathological processes in CP that may affect dynamical complexity of muscle coactivation and coordination during gait. The abnormal complexity patterns emerging in CP group can be attributed to different factors such as motor control impairments, loss of muscle couplings, and spasticity or paralysis in individual muscles. All these findings expand our knowledge of neuropathology of CP from a novel point of view of muscle co-activation complexity, also indicating the potential to derive a quantitative index for assessing muscle activation characteristics as well as motor function in CP.

  2. Analysis of gait using a treadmill and a Time-of-flight camera

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2009-01-01

    We present a system that analyzes human gait using a treadmill and a Time-of-flight camera. The camera provides spatial data with local intensity measures of the scene, and data are collected over several gait cycles. These data are then used to model and analyze the gait. For each frame...

  3. Interpreting locomotor biomechanics from the morphology of human footprints.

    Science.gov (United States)

    Hatala, Kevin G; Wunderlich, Roshna E; Dingwall, Heather L; Richmond, Brian G

    2016-01-01

    Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprint's overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the

  4. Reliability of segmental accelerations measured using a new wireless gait analysis system.

    Science.gov (United States)

    Kavanagh, Justin J; Morrison, Steven; James, Daniel A; Barrett, Rod

    2006-01-01

    The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.

  5. Robotic Gait Training for Individuals With Cerebral Palsy: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Carvalho, Igor; Pinto, Sérgio Medeiros; Chagas, Daniel das Virgens; Praxedes Dos Santos, Jomilto Luiz; de Sousa Oliveira, Tainá; Batista, Luiz Alberto

    2017-07-24

    To identify the effects of robotic gait training practices in individuals with cerebral palsy. The search was performed in the following electronic databases: PubMed, Embase, Medline (OvidSP), Cochrane Database of Systematic Reviews, Web of Science, Scopus, Compendex, IEEE Xplore, ScienceDirect, Academic Search Premier, and Physiotherapy Evidence Database. Studies were included if they fulfilled the following criteria: (1) they investigated the effects of robotic gait training, (2) they involved patients with cerebral palsy, and (3) they enrolled patients classified between levels I and IV using the Gross Motor Function Classification System. The information was extracted from the selected articles using the descriptive-analytical method. The Critical Review Form for Quantitative Studies was used to quantitate the presence of critical components in the articles. To perform the meta-analysis, the effects of the intervention were quantified by effect size (Cohen d). Of the 133 identified studies, 10 met the inclusion criteria. The meta-analysis showed positive effects on gait speed (.21 [-.09, .51]), endurance (.21 [-.06, .49]), and gross motor function in dimension D (.18 [-.10, .45]) and dimension E (0.12 [-.15, .40]). The results obtained suggest that this training benefits people with cerebral palsy, specifically by increasing walking speed and endurance and improving gross motor function. For future studies, we suggest investigating device configuration parameters and conducting a large number of randomized controlled trials with larger sample sizes and individuals with homogeneous impairment. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. A pilot study of biomechanical assessment before and after an integrative training program for adolescents with juvenile fibromyalgia.

    Science.gov (United States)

    Tran, Susan T; Thomas, Staci; DiCesare, Christopher; Pfeiffer, Megan; Sil, Soumitri; Ting, Tracy V; Williams, Sara E; Myer, Gregory D; Kashikar-Zuck, Susmita

    2016-07-22

    Adolescents with juvenile fibromyalgia (JFM) tend to be very sedentary and avoid participation in physical activity. A prior study suggested that JFM patients show altered biomechanics compared to healthy adolescents which may make them more prone to pain/injury during exercise. A new intervention combining well established cognitive behavioral therapy (CBT) techniques with specialized neuromuscular exercise -Fibromyalgia Integrative Training for Teens (FIT Teens) was developed and shown to be promising in improving functioning in adolescents with JFM. In contrast to traditional exercise programs such as aerobic or resistance training, neuromuscular training is a tailored approach which targets gait, posture, balance and movement mechanics which form the foundation for safe exercise participation with reduced risk for injury or pain (and hence more tolerable by JFM patients). The aim of this pilot feasibility study was to establish whether objective biomechanical assessment including sophisticated 3-D motion analysis would be useful in measuring improvements in strength, balance, gait, and functional performance after participation in the 8-week FIT Teens program. Eleven female participants with JFM (ages 12-18 years) completed pre- and post-treatment assessments of biomechanics, including walking gait analysis, lower extremity strength assessment, functional performance, and dynamic postural stability. Descriptive data indicated that mechanics of walking gait and functional performance appeared to improve after treatment. Hip abduction strength and dynamic postural control also demonstrated improvements bilaterally. Overall, the results of this pilot study offer initial evidence for the utility of biomechanical assessment to objectively demonstrate observable changes in biomechanical performance after an integrated training intervention for youth with JFM. If replicated in larger controlled studies, findings would suggest that through the FIT Teens intervention

  7. Defining the knee joint flexion-extension axis for purposes of quantitative gait analysis: an evaluation of methods.

    Science.gov (United States)

    Schache, Anthony G; Baker, Richard; Lamoreux, Larry W

    2006-08-01

    Minimising measurement variability associated with hip axial rotation and avoiding knee joint angle cross-talk are two fundamental objectives of any method used to define the knee joint flexion-extension axis for purposes of quantitative gait analysis. The aim of this experiment was to compare three different methods of defining this axis: the knee alignment device (KAD) method, a method based on the transepicondylar axis (TEA) and an alternative numerical method (Dynamic). The former two methods are common approaches that have been applied clinically in many quantitative gait analysis laboratories; the latter is an optimisation procedure. A cohort of 20 subjects performed three different functional tasks (normal gait; squat; non-weight bearing knee flexion) on repeated occasions. Three-dimensional hip and knee angles were computed using the three alternative methods of defining the knee joint flexion-extension axis. The repeatability of hip axial rotation measurements during normal gait was found to be significantly better for the Dynamic method (pknee varus-valgus kinematic profile and the degree of knee joint angle cross-talk were smallest for the Dynamic method across all functional tasks. The Dynamic method therefore provided superior results in comparison to the KAD and TEA-based methods and thus represents an attractive solution for orientating the knee joint flexion-extension axis for purposes of quantitative gait analysis.

  8. Comparative Analysis of the Biomechanical Behaviour of Two Cementless Short Stems for Hip Replacement: Linea Anatomic and Minihip.

    Directory of Open Access Journals (Sweden)

    Sergio Gabarre

    Full Text Available A comparative study between two stems (Linea Anatomic and Minihip has been performed in order to analyse the differences in their biomechanical behaviour, concerning stem micromotions and load transmission between stem and bone. From the corresponding finite element models, a parametric study was carried out to quantify ranges of micromotions taking into account: friction coefficient in the stem-bone interface, press-fit and two types of gait cycle. Micromotions were evaluated for each stem at six different levels along repeated gait cycles. An initial and marked stem subsidence at the beginning of the simulation was observed, followed by an asymptotic decrease due to friction forces. Once migration occurs, a repeated reversible cyclic micromotion is developed and stabilized as gait cycle times are simulated. The general motion pattern exhibited higher amplitude of micromotion for Minihip compared to Linea stem. The load transmission mechanism was analyzed, identifying the main internal forces. The results show higher local forces for Minihip stem up to 80% greater than for Linea stem. The differences of design between Minihip and Linea conditioned different distributions of load, influencing the posterior stress-shielding. Consequently, short stems require high bone stock and quality should, being indicated for young patients with high bone quality.

  9. Kinematic Analysis of Gait in the Second and Third Trimesters of Pregnancy

    Directory of Open Access Journals (Sweden)

    Marco Branco

    2013-01-01

    Full Text Available The kinematic analysis of gait during pregnancy provides more information about the anatomical changes and contributes to exercise and rehabilitation prescription. The purposes were to quantify the lower limb kinematics of gait and to compare it between the second and third trimesters of pregnancy and with a control group. A three-dimensional analysis was performed in twenty-two pregnant women and twelve nonpregnant. Repeated Measures and Manova tests were performed for comparisons between trimesters and between pregnant and controls. The walking speed, stride width, right-/left-step time, cycle time and time of support, and flight phases remain unchanged between trimesters and between pregnant and controls. Stride and right-/left-step lengths decreased between trimesters. Double limb support time increased between trimesters, and it increased when compared with controls. Joint kinematics showed a significant decrease of right-hip extension and adduction during stance phase between trimesters and when compared with controls. Also, an increase in left-knee flexion and a decrease in right-ankle plantarflexion were found between trimesters. The results suggested that pregnant women need to maintain greater stability of body and to become more efficient in locomotion. Further data from the beginning of pregnancy anthropometric data may contribute to the analysis.

  10. A Biomechanical Comparison of Two Intramedullary Implants for Subtrochanteric Fracture in Two Healing Stages: A Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Xinlei Wu

    2015-01-01

    Full Text Available Background. The biomechanical effect of two implants, namely, proximal femoral nail antirotation for Asia (PFNA-II and Expert Asian Femoral Nail (A2FN, for treating subtrochanteric fracture during healing stages, is still unclear. Methods. A 3D finite element model of an intact femur was constructed and validated. The fractured and postoperative models were accordingly produced. The postoperative models were loaded with the peak joint forces during gait for the soft and hard callus stages. The effects of stress distribution on the implants, femoral head and callus, and the deformation of the proximal femur were examined. Results. Both implants showed similar biomechanical effect in two healing stages. As the healing duration increased, the von Mises stress of two implants and the tensile stress of the femoral head decreased, whereas the compressive stress of the femoral head increased. However, the PFNA-II operation resulted in higher stress on the implant, lower stress on the proximal femur, and lower compressive stress and higher tensile stress on the callus than A2FN operation. Conclusions. The A2FN implant may provide a biomechanically superior construct for subtrochanteric fracture healing. However, the upper screw of the A2FN implant may be more likely to be loose in the healing process.

  11. A Development of Force Plate for Biomechanics Analysis of Standing and Walking

    Science.gov (United States)

    Wardoyo, S.; Hutajulu, P. T.; Togibasa, O.

    2016-08-01

    Force plates are known as an excellent teaching aid to demonstrate the kinematics and dynamics of motion and commonly used in biomechanics laboratories to measure ground forces involved in the motion of human. It is consist of a metal plate with sensors attached to give an electrical output proportional to the force on the plate. Moreover, force plates are useful for examining the kinetic characteristics of an athlete's movement. They provide information about the external forces involved in movement that can aid a coach or sports scientist to quantitatively evaluate the athlete's skill development. In this study, we develop our prototype of force plate with less than 100,- simply by using flexible force transducer attached inside rubber matt, in the form of square blocks (dimension: 250 mm × 150 mm × 10 mm), with maximum load up to 60 kg. The handmade force plate was tested by applying biomechanics analysis for standing and walking. The testing was done on Experimental Soccer Courses’ students at the Department of Physical Education, Health and Recreation, University of Cenderawasih. The design of the force plate system together with biomechanics analysis will be discussed.

  12. Physiologically corrected coupled motion during gait analysis using a model-based approach.

    Science.gov (United States)

    Bonnechère, Bruno; Sholukha, Victor; Salvia, Patrick; Rooze, Marcel; Van Sint Jan, Serge

    2015-01-01

    Gait analysis is used in daily clinics for patients' evaluation and follow-up. Stereophotogrammetric devices are the most used tool to perform these analyses. Although these devices are accurate results must be analyzed carefully due to relatively poor reproducibility. One of the major issues is related to skin displacement artifacts. Motion representation is recognized reliable for the main plane of motion displacement, but secondary motions, or combined, are less reliable because of the above artifacts. Model-based approach (MBA) combining accurate joint kinematics and motion data was previously developed based on a double-step registration method. This study presents an extensive validation of this MBA method by comparing results with a conventional motion representation model. Thirty five healthy subjects participated to this study. Gait motion data were obtained from a stereophotogrammetric system. Plug-in Gait model (PiG) and MBA were applied to raw data, results were then compared. Range-of-motion, were computed for pelvis, hip, knee and ankle joints. Differences between PiG and MBA were then computed. Paired-sample t-tests were used to compare both methods. Normalized root-mean square errors were also computed. Shapes of the curves were compared using coefficient of multiple correlations. The MBA and PiG approaches shows similar results for the main plane of motion displacement but statistically significative discrepancies appear for the combined motions. MBA appear to be usable in applications (such as musculoskeletal modeling) requesting better approximations of the joints-of-interest thanks to the integration of validated joint mechanisms.

  13. Quantitative Gait Analysis Using a Motorized Treadmill System Sensitively Detects Motor Abnormalities in Mice Expressing ATPase Defective Spastin.

    Science.gov (United States)

    Connell, James W; Allison, Rachel; Reid, Evan

    2016-01-01

    The hereditary spastic paraplegias (HSPs) are genetic conditions in which there is progressive axonal degeneration in the corticospinal tract. Autosomal dominant mutations, including nonsense, frameshift and missense changes, in the gene encoding the microtubule severing ATPase spastin are the most common cause of HSP in North America and northern Europe. In this study we report quantitative gait analysis using a motorized treadmill system, carried out on mice knocked-in for a disease-associated mutation affecting a critical residue in the Walker A motif of the spastin ATPase domain. At 4 months and at one year of age homozygous mutant mice had a number of abnormal gait parameters, including in stride length and stride duration, compared to heterozygous and wild-type littermates. Gait parameters in heterozygous animals did not differ from wild-type littermates. We conclude that quantitative gait analysis using the DigiGait system sensitively detects motor abnormalities in a hereditary spastic paraplegia model, and would be a useful method for analyzing the effects of pharmacological treatments for HSP.

  14. Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2016-10-01

    Full Text Available Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO and heel strike (HS gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses.

  15. A novel method for the measurement of linear body segment parameters during clinical gait analysis.

    Science.gov (United States)

    Geil, Mark D

    2013-09-01

    Clinical gait analysis is a valuable tool for the understanding of motion disorders and treatment outcomes. Most standard models used in gait analysis rely on predefined sets of body segment parameters that must be measured on each individual. Traditionally, these parameters are measured using calipers and tape measures. The process can be time consuming and is prone to several sources of error. This investigation explored a novel method for rapid recording of linear body segment parameters using magnetic-field based digital calipers commonly used for a different purpose in prosthetics and orthotics. The digital method was found to be comparable to traditional in all linear measures and data capture was significantly faster with the digital method, with mean time savings for 10 measurements of 2.5 min. Digital calipers only record linear distances, and were less accurate when diameters were used to approximate limb circumferences. Experience in measuring BSPs is important, as an experienced measurer was significantly faster than a graduate student and showed less difference between methods. Comparing measurement of adults vs. children showed greater differences with adults, and some method-dependence. If the hardware is available, digital caliper measurement of linear BSPs is accurate and rapid.

  16. Gait analysis, bone and muscle density assessment for patients undergoing total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Benedikt Magnússon

    2012-12-01

    Full Text Available Total hip arthroplasty (THA is performed with or without the use of bone cement. Facing the lack of reliable clinical guidelines on decision making whether a patient should receive THA with or without bone cement, a joint clinical and engineering approach is proposed here with the objective to assess patient recovery developing monitoring techniques based on gait analysis, measurements of bone mineral density and structural and functional changes of quadriceps muscles. A clinical trial was conducted with 36 volunteer patients that were undergoing THA surgery for the first time: 18 receiving cemented implant and 18 receiving non-cemented implant. The patients are scanned with Computer Tomographic (CT modality prior-, immediately- and 12 months post-surgery. The CT data are further processed to segment muscles and bones for calculating bone mineral density (BMD. Quadriceps muscle density Hounsfield (HU based value is calculated from the segmented file on healthy and operated leg before and after THA surgery. Furthermore clinical assessment is performed using gait analysis technologies such as a sensing carpet, wireless electrodes and video. Patients undergo these measurements prior-, 6 weeks post - and 52 weeks post-surgery. The preliminary results indicate computational tools and methods that are able to quantitatively analyze patient’s condition pre and post-surgery: The spatial parameters such as step length and stride length increase 6 weeks post op in the patient group receiving cemented implant while the angle in the toe in/out parameter decrease in both patient groups.

  17. Functional Assessment of the Foot Undergoing Percutaneous Achilles Tenotomy in Term of Gait Analysis

    Directory of Open Access Journals (Sweden)

    Yu-Bin Liu

    2016-01-01

    Full Text Available Background. This study was designed to evaluate the function of the foot undergoing the procedure of percutaneous Achilles tenotomy (PAT in case of clubfoot management in terms of gait analysis. Methods. Nineteen patients with unilateral clubfeet were retrospectively reviewed from our database from July 2012 to June 2016. The result in all the cases was rated as excellent according to the scale of International Clubfoot Study Group (ICSG. The affected sides were taken as Group CF and the contralateral sides as Group CL. Three-dimensional gait analysis was applied for the functional evaluation of the involved foot. Results. Statistical difference was found in physical parameters of passive ankle dorsiflexion and plantar-flexion. No statistical difference was found in temporal-spatial parameters. There was statistical difference in kinematic parameters of total ankle rotation, ankle range of motion, and internal foot progression angle and in kinetic parameters of peak ankle power. No statistical difference was found in other kinematic and kinetic parameters. Conclusions. It is demonstrated that the procedure of PAT is safe and efficient for correcting the equinus deformity in case of clubfoot management and preserving the main function of Achilles tendon at the minimum of four-year follow-up.

  18. Axis-Exchanged Compensation and Gait Parameters Analysis for High Accuracy Indoor Pedestrian Dead Reckoning

    Directory of Open Access Journals (Sweden)

    Honghui Zhang

    2015-01-01

    Full Text Available Pedestrian dead reckoning (PDR is an effective way for navigation coupled with GNSS (Global Navigation Satellite System or weak GNSS signal environment like indoor scenario. However, indoor location with an accuracy of 1 to 2 meters determined by PDR based on MEMS-IMU is still very challenging. For one thing, heading estimation is an important problem in PDR because of the singularities. For another thing, walking distance estimation is also a critical problem for pedestrian walking with randomness. Based on the above two problems, this paper proposed axis-exchanged compensation and gait parameters analysis algorithm to improve the navigation accuracy. In detail, an axis-exchanged compensation factored quaternion algorithm is put forward first to overcome the singularities in heading estimation without increasing the amount of computation. Besides, real-time heading is updated by R-adaptive Kalman filter. Moreover, gait parameters analysis algorithm can be divided into two steps: cadence detection and step length estimation. Thus, a method of cadence classification and interval symmetry is proposed to detect the cadence accurately. Furthermore, a step length model adjusted by cadence is established for step length estimation. Compared to the traditional PDR navigation, experimental results showed that the error of navigation reduces 32.6%.

  19. Investigation of the influence of design details on short implant biomechanics using colorimetric photoelastic analysis: a pilot study

    OpenAIRE

    Zielak, João César; Archetti, Felipe Belmonte; Scotton,Ricardo; Filietaz,Marcelo; Carmen Lucia Mueller STORRER; Giovanini,Allan Fernando; Tatiana Miranda DELIBERADOR

    2015-01-01

    Introduction : The clinical survival of a dental implant is directly related to its biomechanical behavior. Since short implants present lower bone/implant contact area, their design may be more critical to stress distribution to surrounding tissues. Photoelastic analysis is a biomechanical method that uses either simple qualitative results or complex calculations for the acquisition of quantitative data. In order to simplify data acquisition, we performed a pilot study to demonstrate the inv...

  20. Biomechanics of the press-fit phenomenon in dental implantology: an image-based finite element analysis

    OpenAIRE

    Frisardi Gianni; Barone Sandro; Razionale Armando V; Paoli Alessandro; Frisardi Flavio; Tullio Antonio; Lumbau Aurea; Chessa Giacomo

    2012-01-01

    Abstract Background A fundamental pre-requisite for the clinical success in dental implant surgery is the fast and stable implant osseointegration. The press-fit phenomenon occurring at implant insertion induces biomechanical effects in the bone tissues, which ensure implant primary stability. In the field of dental surgery, the understanding of the key factors governing the osseointegration process still remains of utmost importance. A thorough analysis of the biomechanics of dental implanto...

  1. Clinical and biomechanical factors which predict timed up and down stairs test performance in hemiparetic patients.

    Science.gov (United States)

    Bonnyaud, Céline; Zory, Raphael; Pradon, Didier; Vuillerme, Nicolas; Roche, Nicolas

    2013-07-01

    The ability to ascend and descend a flight of stairs is considered as one of the best predictors of free-living activity and is correlated with domestic extrinsic activity in hemiparetic patients. However, the relationship between timed-stair performance and clinical and biomechanical parameters has never been studied this population. The aim of this study was to determine if performance on the Timed Up and Down Stairs (TUDS) test was related to clinical variables (maximal gait speed, strength and spasticity) and to biomechanical gait parameters (spatio-temporal, kinematic and kinetic gait parameters) in hemiparetic patients. Sixty hemiparetic patients performed the TUDS test, underwent 3D gait-analysis and a clinical assessment. Pearson's correlations and two stepwise multiple linear regression analyses were carried out to identify the parameters which were the most highly correlated with TUDS test performance among the clinical variables and gait parameters on the paretic side. Maximal walking speed on the 10-m walk test and strength of the ankle dorsiflexors were the clinical variables that were the most related to TUDS test performance (63% of variance explained). The percentage of single support phase on the paretic side was the biomechanical gait parameter which was the most related to TUDS test performance (58% of variance explained). The results of this study identified three parameters which predicted the performance to ascend and descend a flight of stairs as fast as possible in hemiparetic patients. Rehabilitation programs which aim to improve stair performance and independence in daily life activities should focus on these three parameters. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Full Body Gait Analysis May Improve Diagnostic Discrimination Between Hereditary Spastic Paraplegia and Spastic Diplegia: A Preliminary Study

    Science.gov (United States)

    Bonnefoy-Mazure, A.; Turcot, K.; Kaelin, A.; De Coulon, G.; Armand, S.

    2013-01-01

    Hereditary spastic paraplegia (HSP) and spastic diplegia (SD) patients share a strong clinical resemblance. Thus, HSP patients are frequently misdiagnosed with a mild form of SD. Clinical gait analysis (CGA) has been highlighted as a possible tool to support the differential diagnosis of HSP and SD. Previous analysis has focused on the lower-body…

  3. Computational intelligence in gait research: a perspective on current applications and future challenges.

    Science.gov (United States)

    Lai, Daniel T H; Begg, Rezaul K; Palaniswami, Marimuthu

    2009-09-01

    Our mobility is an important daily requirement so much so that any disruption to it severely degrades our perceived quality of life. Studies in gait and human movement sciences, therefore, play a significant role in maintaining the well-being of our mobility. Current gait analysis involves numerous interdependent gait parameters that are difficult to adequately interpret due to the large volume of recorded data and lengthy assessment times in gait laboratories. A proposed solution to these problems is computational intelligence (CI), which is an emerging paradigm in biomedical engineering most notably in pathology detection and prosthesis design. The integration of CI technology in gait systems facilitates studies in disorders caused by lower limb defects, cerebral disorders, and aging effects by learning data relationships through a combination of signal processing and machine learning techniques. Learning paradigms, such as supervised learning, unsupervised learning, and fuzzy and evolutionary algorithms, provide advanced modeling capabilities for biomechanical systems that in the past have relied heavily on statistical analysis. CI offers the ability to investigate nonlinear data relationships, enhance data interpretation, design more efficient diagnostic methods, and extrapolate model functionality. These are envisioned to result in more cost-effective, efficient, and easy-to-use systems, which would address global shortages in medical personnel and rising medical costs. This paper surveys current signal processing and CI methodologies followed by gait applications ranging from normal gait studies and disorder detection to artificial gait simulation. We review recent systems focusing on the existing challenges and issues involved in making them successful. We also examine new research in sensor technologies for gait that could be combined with these intelligent systems to develop more effective healthcare solutions.

  4. Long-term donor-site morbidity after vascularized free fibula flap harvesting: Clinical and gait analysis.

    Science.gov (United States)

    Feuvrier, Damien; Sagawa, Yoshimasa; Béliard, Samuel; Pauchot, Julien; Decavel, Pierre

    2016-02-01

    The aim of this study was to determine the clinical morbidity and changes in gait temporal spatial parameters after harvesting of a vascularized free fibula flap. This study included 11 patients (mean age: 52 ± 17 years) and 11 healthy controls (mean age: 50 ± 14 years). The patients were assessed between 5 and 104 months post surgery. The study consisted of a subjective functional evaluation with two validated clinical scores (Kitaoka Score and Point Evaluation System (PES) score), clinical and neurological examination of the legs, and evaluation of gait temporal spatial parameters while walking at a comfortable speed. The mean functional Kitaoka score was 78/100, and the mean PES score of 12.18 was considered average. At the time of the review, five patients had sensory disorders, two had toe deformities, and eight had pain at the donor site. The gait analysis showed that the patient's comfortable walking speed was significantly lower in comparison to that of the controls, and that stride length and cadence were reduced. In addition, most of the gait-specific parameters were significantly different. The donor leg displayed greater variability during walking. To reduce the risk of falling, this study revealed that the patients' gait pattern had changed as they took a more cautious approach during walking. Early rehabilitation is expected to help improve and/or restore the physical abilities of patients after harvesting of the vascularized free fibula flap.

  5. Analysis of balance function, falling risk and gait in the early and middle stages of patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Wang-shu YUAN

    2017-07-01

    Full Text Available Objective To analyze the balance function, falling risk and gait in the early and middle stages of patients with Parkinson's disease (PD for provide clinical basis for patients' rehabilitation treatment.  Methods There were 30 PD patients in the early and middle stages and 15 healthy subjects matched in gender, age and degree of education. Berg Balance Scale (BBS was used to evaluate balance function. Timed Up and Go Test (TUGT, Chair Rising Test (CRT and Tandem Gait Test (TGT were used to evaluate falling risk. The gait analysis system was used to evaluate gait.  Results Compared with healthy subjects, PD patients obtained lower scores on BBS (P = 0.001. In the falling risk, PD patients spent more seconds in performing TUGT (P = 0.003 and CRT (P = 0.002 and finished fewer numbers of steps on TGT (P = 0.041. In 10 - Meter Walk Test (10MWT, PD patients had shorter step length (P =0.020, decreased step speed (P = 0.038, increased ratio of toe touches (P = 0.000 and decreased left and right ankle dorsiflexion in swing phase (P = 0.005, 0.006.  Conclusions In the early and middle stages, PD patients have decreased balance function, increased falling risk and unusual gait. The rehabilitation treatment should be given as soon as possible. DOI: 10.3969/j.issn.1672-6731.2017.05.007

  6. Accuracy and Repeatability of the Gait Analysis by the WalkinSense System

    Directory of Open Access Journals (Sweden)

    Marcelo P. de Castro

    2014-01-01

    Full Text Available WalkinSense is a new device designed to monitor walking. The aim of this study was to measure the accuracy and repeatability of the gait analysis performed by the WalkinSense system. Descriptions of values recorded by WalkinSense depicting typical gait in adults are also presented. A bench experiment using the Trublu calibration device was conducted to statically test the WalkinSense. Following this, a dynamic test was carried out overlapping the WalkinSense and the Pedar insoles in 40 healthy participants during walking. Pressure peak, pressure peak time, pressure-time integral, and mean pressure at eight-foot regions were calculated. In the bench experiments, the repeatability (i among the WalkinSense sensors (within, (ii between two WalkinSense devices, and (iii between the WalkinSense and the Trublu devices was excellent. In the dynamic tests, the repeatability of the WalkinSense (i between stances in the same trial (within-trial and (ii between trials was also excellent (ICC > 0.90. When the eight-foot regions were analyzed separately, the within-trial and between-trials repeatability was good-to-excellent in 88% (ICC > 0.80 of the data and fair in 11%. In short, the data suggest that the WalkinSense has good-to-excellent levels of accuracy and repeatability for plantar pressure variables.

  7. Gait analysis comparison of cruciate retaining and substituting TKA following PCL sacrifice.

    Science.gov (United States)

    Joglekar, Siddharth; Gioe, Terence J; Yoon, Patrick; Schwartz, Michael H

    2012-08-01

    The role of the posterior cruciate ligament (PCL) remains controversial in total knee arthroplasty (TKA), with some surgeons who believe in PCL sacrifice and substitution and others who believe in PCL preservation for stability. Manufacturers have developed both cruciate-substituting/posterior stabilized (PS) implants typically used when the ligament is sacrificed and cruciate retaining (CR) implants designed for ligament preservation. However, studies demonstrate excellent clinical results with CR implants despite PCL sacrifice. This study sought to determine functional stability differences between PS and CR TKAs following PCL sacrifice. Eighteen (9 matched pairs) subjects with either a PS or CR TKA and sacrificed PCL and a normal contralateral knee were subjected to physical exam and gait analysis (walking, stair ascent and descent) using a staircase model, passive reflective arrays and an optoelectric system. No differences were detected between the two groups among any of the measured parameters (knee flexion angle, knee flexion moment, knee power absorption, pelvic tilt). PCL sacrifice in a well-balanced cruciate retaining TKA did not result in instability during stair descent based on gait parameters. The decision to use a posterior stabilized design when faced with an incompetent PCL intraoperatively should be based on factors other than anticipated instability.

  8. Biomechanical effect of electromechanical knee-ankle-foot-orthosis on knee joint control in patients with poliomyelitis.

    Science.gov (United States)

    Hwang, Sungjae; Kang, Sungjae; Cho, Kanghee; Kim, Youngho

    2008-06-01

    In this study, an ideal electromechanical KAFO, satisfying stability in the stance and knee flexion in the swing phase during walking, was developed. Biomechanical evaluations were performed on four polio patients by means of three-dimensional gait analyses and energy consumption studies. From the three-dimensional gait analysis on poliomyelitis patients, a considerable amount of knee flexion during the swing phase was observed in controlled-knee gait, which resulted in approximately 33% less energy consumption than in locked-knee gait. The developed electromechanical KAFO in this study was helpful in poliomyelitis patients having partial or complete paralysis of the lower extremity, providing both stability in the stance and free swinging of the knee. This unit was efficient in the transfer of energy.

  9. Biomechanical analysis of titanium fixation plates and screws in ...

    African Journals Online (AJOL)

    Key words: Bone plates, bone screws, finite element analysis, jaw fixation techniques, mandible, mandibular .... model is built up, in similar way to building block construction, .... shows advantages, such as granting intraoral route, minimal.

  10. Chinese woman weightlifter snatch excellent biomechanical analysis technology

    OpenAIRE

    Wang, Xinna

    2009-01-01

    JVC9800 camera using a sentinel site in the tournament seven of China's best athletes in women's weightlifting snatch filming techniques, shooting a frequency of 50 cells / s, exposure time 1 / 250 s. PEAK video analysis system used for the video shoot for processing. Analysis of the athletes in the snatch during the knee angle and hip angle, trunk angle and time-varying relationship between the curves, revealing the excellent Chinese women's weightlifting snatch the technical characteristics...

  11. Comparison of a clinical gait analysis method using videography and temporal-distance measures with 16-mm cinematography.

    Science.gov (United States)

    Stuberg, W A; Colerick, V L; Blanke, D J; Bruce, W

    1988-08-01

    The purpose of this study was to compare a clinical gait analysis method using videography and temporal-distance measures with 16-mm cinematography in a gait analysis laboratory. Ten children with a diagnosis of cerebral palsy (means age = 8.8 +/- 2.7 years) and 9 healthy children (means age = 8.9 +/- 2.4 years) participated in the study. Stride length, walking velocity, and goniometric measurements of the hip, knee, and ankle were recorded using the two gait analysis methods. A multivariate analysis of variance was used to determine significant differences between the data collected using the two methods. Pearson product-moment correlation coefficients were determined to examine the relationship between the measurements recorded by the two methods. The consistency of performance of the subjects during walking was examined by intraclass correlation coefficients. No significant differences were found between the methods for the variables studied. Pearson product-moment correlation coefficients ranged from .79 to .95, and intraclass coefficients ranged from .89 to .97. The clinical gait analysis method was found to be a valid tool in comparison with 16-mm cinematography for the variables that were studied.

  12. Variations In Gait Patterns Of Runners: Relationship To Anthropometric Measurements

    Science.gov (United States)

    Adelsberg, S.; Tauber, C.; Au, J.; Pugh, J.

    1983-07-01

    High-speed computerized motion analysis was used to assess the running parameters of a group of runners. Anthropometric measurements were taken on the group of runners in an effort to provide possible correlations between running style, speed, and anthropometry. The most consistent correlation was between speed and stride length. Femur length and stride length was only highly correlated for the runners at the fastest speeds. The faster runners also had a gait pattern characterized by significantly lower ground contact time than that of the slower runners. Of prime importance in running is behavior of the body during float phase, and mediated by anthropometry and the biomechanical characteristics of the stance phase.

  13. [The novel quantitative measures of gait and posture in Parkinson's disease: cross-sectional analysis].

    Science.gov (United States)

    Mano, Tomoo; Nishi, Ryoji; Kobayashi, Yosuke; Matsuo, Koji; Kobayashi, Yasushi; Kakehi, Akio

    2015-01-01

    Posture abnormality and gait impairments characterize of Parkinson's disease (PD), predict the risk of falling, and are important contributors to reduced quality of life. The quantitative measures of posture and gait may eventually provide usefulness as a biomarker in PD. This study included that 40 patients with PD (male 26, female 14, average age 70.4 ± 7.6 years old) and 17 normal healthy controls. We selected the quantified measures of the gait function, such as MDS-UPDRS, Timed up & go test, 5 feet walk test, 6 minutes-walk test. The posture angle of both forward flexion and lateral flexion were measured using the application of smartphone, which is capable even in a consulting room. The new posture quantitative measurement is stabile between examiners. The gait functions and the posture angles were significantly abnormal in the PD patients, compared to healthy controls (P gait but do correlate in limited univariate analyses with measures of gait function.

  14. Class Energy Image Analysis for Video Sensor-Based Gait Recognition: A Review

    Directory of Open Access Journals (Sweden)

    Zhuowen Lv

    2015-01-01

    Full Text Available Gait is a unique perceptible biometric feature at larger distances, and the gait representation approach plays a key role in a video sensor-based gait recognition system. Class Energy Image is one of the most important gait representation methods based on appearance, which has received lots of attentions. In this paper, we reviewed the expressions and meanings of various Class Energy Image approaches, and analyzed the information in the Class Energy Images. Furthermore, the effectiveness and robustness of these approaches were compared on the benchmark gait databases. We outlined the research challenges and provided promising future directions for the field. To the best of our knowledge, this is the first review that focuses on Class Energy Image. It can provide a useful reference in the literature of video sensor-based gait representation approach.

  15. EEG analysis of gait movement preparation in the normal state and in the abnormal state of Parkinsonʼs disease with freezing of gait /

    OpenAIRE

    Velu, Priya D.

    2014-01-01

    The cortical control of gait is an important aspect of locomotive function in healthy and diseased states. Here we used electroencephalography (EEG), signal processing, and machine learning methods to capture neural signals related to movement preparation of gait in healthy controls and in Parkinson's disease patients with freezing of gait (FOG). We focused on pre-movement EEG in tasks that required natural ambulation of the subjects through the environment with the ultimate goal of applicati...

  16. Gait analysis and energy consumption of below-knee amputees wearing three different prosthetic feet.

    Science.gov (United States)

    Huang, G F; Chou, Y L; Su, F C

    2000-10-01

    This study scientifically measures the dynamic gait characteristics and energy consumption of 16 male below-knee amputees, eight vascular and eight traumatic, while wearing solid ankle cushion heel (SACH), single axis and multiple axis prosthetic feet via six-camera motion analysis, metabolic measurement cart and heavy-duty treadmill. Subjective results are additionally determined via questionnaire after testing. Motion analysis showed statistically significant differences at Pmultiple axis foot in the velocity, cadence, stride length and single limb stance. Significant differences were found in energy consumption between the traumatic and vascular groups, and significant changes in walking under different speeds and different inclines. Results provide quantitative and qualitative information about the dynamic performance of the various feet, which can be helpful in prescribing the optimal prosthetic foot for individual amputees.

  17. A DATA-MINING BASED METHOD FOR THE GAIT PATTERN ANALYSIS

    Directory of Open Access Journals (Sweden)

    Marcelo Rudek

    2015-12-01

    Full Text Available The paper presents a method developed for the gait classification based on the analysis of the trajectory of the pressure centres (CoP extracted from the contact points of the feet with the ground during walking. The data acquirement is performed ba means of a walkway with embedded tactile sensors. The proposed method includes capturing procedures, standardization of data, creation of an organized repository (data warehouse, and development of a process mining. A graphical analysis is applied to looking at the footprint signature patterns. The aim is to obtain a visual interpretation of the grouping by situating it into the normal walking patterns or deviations associated with an individual way of walking. The method consists of data classification automation which divides them into healthy and non-healthy subjects in order to assist in rehabilitation treatments for the people with related mobility problems.

  18. Assessment of gait symmetry for Talus Valgus children based on experimental kinematic analysis

    Science.gov (United States)

    Toth-Tascau, Mirela; Pasca, Oana; Vigaru, Cosmina; Rusu, Lucian

    2013-10-01

    The general purpose of this study was to assess the gait symmetry for Talus Valgus deformity based on experimental kinematic analysis. As this foot condition generally occurs in children, the study is focused on two children having five years old, one being healthy, as control subject, and the second one having bilateral Talus Valgus deformity. Kinematic experimental analysis was conducted using Zebris CMS-HS Measuring System. The bilateral symmetry was analyzed using two methods: index of symmetry (SI) calculated for spatio-temporal parameters (stance phase, swing phase, and step length) and kinematic parameter (maximum value of dorsiflexion - plantar flexion angle in the ankle joint), and an unpaired t-test to compare the variation of means values of dorsiflexion - plantar flexion angle in ankle joint for both left and right side. The study evidenced a good bilateral symmetry in case of the control subject and quantified the asymmetry in case of subject with Talus Valgus deformity.

  19. Advanced Prosthetic Gait Training Tool

    Science.gov (United States)

    2015-12-01

    distance up spine near T7 spinous process Spine_Rigid Intersection of spine and the point between the shoulder joints LowNeck Base of the neck near C7...spinous process UpperNeck Top of the neck near C1 spinous process LCLAV, RCLAV Approximately one-fourth distance between manubrium and acromion...capture data between the human subjects and the Santos biomechanical model that may affect the way clinicians score the gait data when using Santos

  20. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation

    OpenAIRE

    Thevathasan, Wesley; Cole, Michael H.; Graepel, Cara L.; Hyam, Jonathan A.; Jenkinson, Ned; Brittain, John-Stuart; Coyne, Terry J; Peter A Silburn; Aziz, Tipu Z.; Kerr, Graham; BROWN, Peter

    2012-01-01

    Gait freezing is an episodic arrest of locomotion due to an inability to take normal steps. Pedunculopontine nucleus stimulation is an emerging therapy proposed to improve gait freezing, even where refractory to medication. However, the efficacy and precise effects of pedunculopontine nucleus stimulation on Parkinsonian gait disturbance are not established. The clinical application of this new therapy is controversial and it is unknown if bilateral stimulation is more effective than unilatera...

  1. Capability of 2 gait measures for detecting response to gait training in stroke survivors: Gait Assessment and Intervention Tool and the Tinetti Gait Scale.

    Science.gov (United States)

    Zimbelman, Janice; Daly, Janis J; Roenigk, Kristen L; Butler, Kristi; Burdsall, Richard; Holcomb, John P

    2012-01-01

    To characterize the performance of 2 observational gait measures, the Tinetti Gait Scale (TGS) and the Gait Assessment and Intervention Tool (G.A.I.T.), in identifying improvement in gait in response to gait training. In secondary analysis from a larger study of multimodal gait training for stroke survivors, we measured gait at pre-, mid-, and posttreatment according to G.A.I.T. and TGS, assessing their capability to capture recovery of coordinated gait components. Large medical center. Cohort of stroke survivors (N=44) greater than 6 months after stroke. All subjects received 48 sessions of a multimodal gait-training protocol. Treatment consisted of 1.5 hours per session, 4 sessions per week for 12 weeks, receiving these 3 treatment aspects: (1) coordination exercise, (2) body weight-supported treadmill training, and (3) overground gait training, with 46% of subjects receiving functional electrical stimulation. All subjects were evaluated with the G.A.I.T. and TGS before and after completing the 48-session intervention. An additional evaluation was performed at midtreatment (after session 24). For the total subject sample, there were significant pre-/post-, pre-/mid-, and mid-/posttreatment gains for both the G.A.I.T. and the TGS. According to the G.A.I.T., 40 subjects (91%) showed improved scores, 2 (4%) no change, and 2 (4%) a worsening score. According to the TGS, only 26 subjects (59%) showed improved scores, 16 (36%) no change, and 1 (2%) a worsening score. For 1 treatment group of chronic stroke survivors, the TGS failed to identify a significant treatment response to gait training, whereas the G.A.I.T. measure was successful. The G.A.I.T. is more sensitive than the TGS for individual patients and group treatment response in identifying recovery of volitional control of gait components in response to gait training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Biomechanical analysis of titanium fixation plates and screws in ...

    African Journals Online (AJOL)

    2015-08-10

    Aug 10, 2015 ... complex because the major stress‑bearing of the mandible are disrupted in this ... elastic as were the other materials used in this analysis. The .... the computational model is developed based on the modular principle and is ...

  3. Valgus bracing in patients with medial compartment osteoarthritis of the knee. A gait analysis study of a new brace.

    NARCIS (Netherlands)

    Gaasbeek, R.D.A.; Groen, B.E.; Hampsink, B.; Heerwaarden, R.J. van; Duysens, J.E.J.

    2007-01-01

    A new valgus brace was evaluated in 15 patients with medial osteoarthritis of the knee and a varus leg axis. Significant improvement of pain and function were found after 6 weeks of brace treatment. Gait analysis showed that the brace had a tendency of lowering the peak varus moment about the knee.

  4. Biomechanical analysis of the muscular power of martial arts athletes.

    Science.gov (United States)

    Machado, S M; Osório, R A L; Silva, N S; Magini, M

    2010-06-01

    This study analyzes the performance of knee extension and flexion of Taekwondo and Kickboxing athletes. The power values were extracted through electromyography obtained by an isokinetic dynamometer at 60 degrees per second. These values are resulted from the square of the electromyography signal. The analysis of kick power was made using a modified wavelet algorithm considering values with 95% significance. Both groups presented equivalent power and torque capacity with different training times and experience, on the other hand, the wavelet analysis showed better results in muscular recruitment performance in athletes with more experience, in other words, power is not only performance but also power plus recruitment produces better results. This study uniquely showed that muscular enhancement capacity is not only related to the power capacity of contraction but also to motor coordination.

  5. Contact characteristics of articular surfaces for talus during gait-a finite element analysis%正常步态下距骨关节面接触特征的有限元分析

    Institute of Scientific and Technical Information of China (English)

    卢昌怀; 余斌; 陈辉强; 林庆荣

    2011-01-01

    [目的]通过有限元法分析正常步态下距骨各关节面软骨应力变化,了解各关节面软骨应力分布的生物力学特征.[方法]利用正常男性的足踝部螺旋 CT 扫描数据,运用三维建模软件,建立足踝部三维几何模型,并对其进行有限元网格划分,分析正常步态下距骨各关节面接触应力及 Von Mises 应力分布.[结果]建立包括骨、软骨、韧带在内的正常人体足踝部三维有限元模型,共21 865 个节点、73 440 个单元,较客观地反映了人体足踝的解剖结构和力学特性.不同位相距骨各关节面接触应力及 Von Mises 应力分布区域和应力值不同.[结论]采用有限元法分析关节软骨应力的生物力学特征是一种可行、有效的方法.%[ Objective] To construct a three- dimensional finite element model (FEM) of normal adult human ankle in order to supply a digital platform for biomechanical research of talar cartilage stress during gait, and understand the stress distribution of cartilage biomechanical characteristics. [ Methods] A three - dimensional FEM of normal adult human ankle was established through helical CT images and meshed, for analysis of contact pressure and Von Mises stress distribution of cartilage during gait. [ Results] An ankle model was constructed including bones, cartilage, ligaments, which was composed of 21 865 nodes, 73 440 elements. The articular surface contact stress and the Von Mises stress distribution and stress values were different in different stance phases. [ Conclusion] The application of FEM is valid and reasonable. It could be optimized by the interference of anatomical data and biomechanical experiments and used in further articular cartilage biomechanics research.

  6. Effects of Global Postural Reeducation on gait kinematics in parkinsonian patients: a pilot randomized three-dimensional motion analysis study.

    Science.gov (United States)

    Agosti, Valeria; Vitale, Carmine; Avella, Dario; Rucco, Rosaria; Santangelo, Gabriella; Sorrentino, Pierpaolo; Varriale, Pasquale; Sorrentino, Giuseppe

    2016-04-01

    The Global Postural Reeducation (GPR) method is a physical therapy based on the stretching of antigravity muscle chains with the parallel enhancement of the basal tone of antagonistic muscles addressed to improve static and dynamic stability. Through a three-dimensional motion analysis (3DMA) system, our study aims to investigate whether in Parkinson's disease (PD) patients a GPR program results in a more physiological gait pattern. The kinematic parameters of gait of twenty subjects with clinically diagnosed PD were calculated. The patients were randomly assigned to a study (10 or control (10) group. All subjects underwent neurological and 3DMA assessments at entry time (t 0), at 4 weeks (t 1, end of GPR program), and at 8 and 12 weeks (t 2 and t 3, follow-up evaluation). The study group underwent a four-week GPR program, three times a week, for 40 min individual sessions. Kinematic gait parameters of thigh (T), knee (K) and ankle (A) and UPDRS-III scores were evaluated. At the end of the GPR program, we observed an improvement of the kinematic gait pattern, documented by the increase in KΔc and TΔc values that respectively express the flexion amplitude of knee and thigh. The amelioration was persistent at follow-up assessments, with a parallel enhancement in clinical parameters. GPR intervention shows a long-term efficacy on gait pattern in PD patients. Furthermore, we validated 3DMA as a valuable tool to study the kinematics of gait thus refining the understanding of the effects of specific rehabilitation programs.

  7. Feature extraction and selection for objective gait analysis and fall risk assessment by accelerometry

    Directory of Open Access Journals (Sweden)

    Cremer Gerald

    2011-01-01

    Full Text Available Abstract Background Falls in the elderly is nowadays a major concern because of their consequences on elderly general health and moral states. Moreover, the aging of the population and the increasing life expectancy make the prediction of falls more and more important. The analysis presented in this article makes a first step in this direction providing a way to analyze gait and classify hospitalized elderly fallers and non-faller. This tool, based on an accelerometer network and signal processing, gives objective informations about the gait and does not need any special gait laboratory as optical analysis do. The tool is also simple to use by a non expert and can therefore be widely used on a large set of patients. Method A population of 20 hospitalized elderlies was asked to execute several classical clinical tests evaluating their risk of falling. They were also asked if they experienced any fall in the last 12 months. The accelerations of the limbs were recorded during the clinical tests with an accelerometer network distributed on the body. A total of 67 features were extracted from the accelerometric signal recorded during a simple 25 m walking test at comfort speed. A feature selection algorithm was used to select those able to classify subjects at risk and not at risk for several classification algorithms types. Results The results showed that several classification algorithms were able to discriminate people from the two groups of interest: fallers and non-fallers hospitalized elderlies. The classification performances of the used algorithms were compared. Moreover a subset of the 67 features was considered to be significantly different between the two groups using a t-test. Conclusions This study gives a method to classify a population of hospitalized elderlies in two groups: at risk of falling or not at risk based on accelerometric data. This is a first step to design a risk of falling assessment system that could be used to provide

  8. Clinical Evaluation of a Mobile Sensor-Based Gait Analysis Method for Outcome Measurement after Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Tilman Calliess

    2014-08-01

    Full Text Available Clinical scores and motion-capturing gait analysis are today’s gold standard for outcome measurement after knee arthroplasty, although they are criticized for bias and their ability to reflect patients’ actual quality of life has been questioned. In this context, mobile gait analysis systems have been introduced to overcome some of these limitations. This study used a previously developed mobile gait analysis system comprising three inertial sensor units to evaluate daily activities and sports. The sensors were taped to the lumbosacral junction and the thigh and shank of the affected limb. The annotated raw data was evaluated using our validated proprietary software. Six patients undergoing knee arthroplasty were examined the day before and 12 months after surgery. All patients reported a satisfactory outcome, although four patients still had limitations in their desired activities. In this context, feasible running speed demonstrated a good correlation with reported impairments in sports-related activities. Notably, knee flexion angle while descending stairs and the ability to stop abruptly when running exhibited good correlation with the clinical stability and proprioception of the knee. Moreover, fatigue effects were displayed in some patients. The introduced system appears to be suitable for outcome measurement after knee arthroplasty and has the potential to overcome some of the limitations of stationary gait labs while gathering additional meaningful parameters regarding the force limits of the knee.

  9. Clinical evaluation of a mobile sensor-based gait analysis method for outcome measurement after knee arthroplasty.

    Science.gov (United States)

    Calliess, Tilman; Bocklage, Raphael; Karkosch, Roman; Marschollek, Michael; Windhagen, Henning; Schulze, Mareike

    2014-08-28

    Clinical scores and motion-capturing gait analysis are today's gold standard for outcome measurement after knee arthroplasty, although they are criticized for bias and their ability to reflect patients' actual quality of life has been questioned. In this context, mobile gait analysis systems have been introduced to overcome some of these limitations. This study used a previously developed mobile gait analysis system comprising three inertial sensor units to evaluate daily activities and sports. The sensors were taped to the lumbosacral junction and the thigh and shank of the affected limb. The annotated raw data was evaluated using our validated proprietary software. Six patients undergoing knee arthroplasty were examined the day before and 12 months after surgery. All patients reported a satisfactory outcome, although four patients still had limitations in their desired activities. In this context, feasible running speed demonstrated a good correlation with reported impairments in sports-related activities. Notably, knee flexion angle while descending stairs and the ability to stop abruptly when running exhibited good correlation with the clinical stability and proprioception of the knee. Moreover, fatigue effects were displayed in some patients. The introduced system appears to be suitable for outcome measurement after knee arthroplasty and has the potential to overcome some of the limitations of stationary gait labs while gathering additional meaningful parameters regarding the force limits of the knee.

  10. Android Platform for Realtime Gait Tracking Using Inertial Measurement Units

    Science.gov (United States)

    Aqueveque, Pablo; Sobarzo, Sergio; Saavedra, Francisco; Maldonado, Claudio; Gómez, Britam

    2016-01-01

    One of the most important movements performed by the humans is gait. Biomechanical Gait analysis is usually by optical capture systems. However, such systems are expensive and sensitive to light and obstacles. In order to reduce those costs a system based on Inertial Measurements Units (IMU) is proposed. IMU are a good option to make movement analisys indoor with a low post-processing data, allowing to connect those systems to an Android platform. The design is based on two elements: a) The IMU sensors and the b) Android device. The IMU sensor is simple, small (35 x 35 mm), portable and autonomous (7.8 hrs). A resolution of 0.01° in their measurements is obtained, and sends data via Bluetooth link. The Android application works for Android 4.2 or higher, and it is compatible with Bluetooth devices 2.0 or higher. Three IMU sensors send data to a Tablet wirelessly, in order to evaluate the angles evolution for each joint of the leg (hip, knee and ankle). This information is used to calculate gait index and evaluate the gait quality online during the physical therapist is working with the patient. PMID:27990241

  11. Android platform for realtime gait tracking using inertial measurement units

    Directory of Open Access Journals (Sweden)

    Pablo Aqueveque

    2016-07-01

    Full Text Available One of the most important movements performed by the humans is gait. Biomechanical Gait analysis is usually by optical capture systems. However, such systems are expensive and sensitive to light and obstacles. In order to reduce those costs a system based on Inertial Measurements Units (IMU is proposed. IMU are a good option to make movement analisys indoor with a low post-processing data, allowing to connect those systems to an Android platform. The design is based on two elements: a The IMU sensors and the b Android device. The IMU sensor is simple, small (35 x 35 mm, portable and autonomous (7.8 hrs. A resolution of 0.01° in their measurements is obtained, and sends data via Bluetooth link. The Android application works for Android 4.2 or higher, and it is compatible with Bluetooth devices 2.0 or higher. Three IMU sensors send data to a Tablet wirelessly, in order to evaluate the angles evolution for each joint of the leg (hip, knee and ankle. This information is used to calculate gait index and evaluate the gait quality online during the physical therapist is working with the patient.

  12. Android Platform for Realtime Gait Tracking Using Inertial Measurement Units.

    Science.gov (United States)

    Aqueveque, Pablo; Sobarzo, Sergio; Saavedra, Francisco; Maldonado, Claudio; Gómez, Britam

    2016-06-13

    One of the most important movements performed by the humans is gait. Biomechanical Gait analysis is usually by optical capture systems. However, such systems are expensive and sensitive to light and obstacles. In order to reduce those costs a system based on Inertial Measurements Units (IMU) is proposed. IMU are a good option to make movement analisys indoor with a low post-processing data, allowing to connect those systems to an Android platform. The design is based on two elements: a) The IMU sensors and the b) Android device. The IMU sensor is simple, small (35 x 35 mm), portable and autonomous (7.8 hrs). A resolution of 0.01° in their measurements is obtained, and sends data via Bluetooth link. The Android application works for Android 4.2 or higher, and it is compatible with Bluetooth devices 2.0 or higher. Three IMU sensors send data to a Tablet wirelessly, in order to evaluate the angles evolution for each joint of the leg (hip, knee and ankle). This information is used to calculate gait index and evaluate the gait quality online during the physical therapist is working with the patient.

  13. A Biomechanical Analysis of the Modified Taekwondo Axe Kick

    Directory of Open Access Journals (Sweden)

    Luigi T. Bercades

    2012-07-01

    Full Text Available This study is a theoretical analysis of the kinematic and kinetic aspects of the modified taekwondo axe kick. The traditional or classical axe kick has the whole kicking leg (the thigh and the shank considered as a rigid body on both the upswing and downswing phases of the kick, which is speculated to have sufficient angular momentum to increase the risk of some forms of injuries in competition. The present study seeks to present an alternate version that will decrease the moment of inertia on the downswing, reduce the subsequent angular momentum, and finally decrease the resultant impulse to the target. Theoretically, this will reduce the chances of certain types of injury caused by the kick.

  14. Effects of Bone Young’s Modulus on Finite Element Analysis in the Lateral Ankle Biomechanics

    OpenAIRE

    Niu, W. X.; Wang, L J; Feng, T. N.; Jiang, C.H.; Fan, Y. B.; M. Zhang

    2013-01-01

    Finite element analysis (FEA) is a powerful tool in biomechanics. The mechanical properties of biological tissue used in FEA modeling are mainly from experimental data, which vary greatly and are sometimes uncertain. The purpose of this study was to research how Young’s modulus affects the computations of a foot-ankle FEA model. A computer simulation and an in-vitro experiment were carried out to investigate the effects of incremental Young’s modulus of bone on the stress and strain outcomes ...

  15. Biomechanical analysis of women weightlifters during the snatch.

    Science.gov (United States)

    Hoover, Donald L; Carlson, Kevin M; Christensen, Bryan K; Zebas, Carole J

    2006-08-01

    The majority of the research to date on weightlifting has focused on men competitors. This study attempted to bridge the sex-based gap evident in the scientific literature. The performances of 10 women weightlifters competing in the 1999 United States national championships were analyzed. The performance of the athletes competing in the 69-kg class was recorded and analyzed using a Peak5 2D Motion Analysis system. The purpose of this study was 3-fold: (a) analyze the horizontal bar displacement of women weightlifters, (b) analyze key kinematic variables related to performance, and (c) compare the power outputs of the first, second, and total pulls in the snatch. Less than half (snatch attempts demonstrated by the women weightlifters in this study displayed the optimal toward-away-toward horizontal bar trajectory reported elsewhere. The women in this study demonstrated greater drop displacement and drop under times than those previously reported for men weightlifters. They also demonstrated lesser maximal vertically velocities of the barbell than those reported for world class women weightlifters. These women weightlifters demonstrated statistically significant differences (p snatch, and total power output values were comparable to values previously reported. The results of this study suggest that women demonstrate performance characteristics that differ subtly from those reported in men weightlifters. Knowledge of performance measures during the snatch may help coaches and athletes more fully refine the training leading to competition.

  16. Effects of Augmented Exercise Therapy on Outcome of Gait and Gait-Related Activities in the First 6 Months After Stroke A Meta-Analysis

    NARCIS (Netherlands)

    Veerbeek, Janne M.; Koolstra, Muriel; Ket, Johannes C. F.; van Wegen, Erwin E. H.; Kwakkel, Gert

    2011-01-01

    Background and Purpose-The purpose of this study was to determine the effects of augmented exercise therapy on gait, gait-related activities, and (basic and extended) activities of daily living within the first 6 months poststroke. Methods-A systematic literature search in electronic databases from

  17. Gait and electromyographic analysis of patients recovering after limb-saving surgery

    NARCIS (Netherlands)

    De Visser, E; Mulder, T; Schreuder, HWB; Veth, RPH; Duysens, J

    2000-01-01

    Objective. Control of gait after limb-saving surgery. Design. Case series study. Background. At the moment little is known about adaptations in patients' gait after limb-saving surgery. Methods. Nineteen patients who underwent limb-saving surgery at least 1 yr earlier and 10 normal subjects were stu

  18. Gait analysis in three different 6-hydroxydopamine rat models of Parkinson's disease.

    Science.gov (United States)

    Zhou, Ming; Zhang, Wangming; Chang, Jingyu; Wang, Jun; Zheng, Weixin; Yang, Yong; Wen, Peng; Li, Min; Xiao, Hu

    2015-01-01

    Gait deficits are important clinical symptoms of Parkinson's disease (PD) but are rarely studied. In this study we made three different rat PD models by administration of 6-hydroxydopamine into caudate putamen (CPU), medial forebrain bundle (MFB) and substantia nigra compact (SNC). We evaluated the gait changes in these models by using a computer-assisted CatWalk system. Correlations of gait parameters with tyrosine hydroxylase protein levels in the CPU and SNC were also investigated. The gait readouts were significantly impaired in both the MFB and SNC groups. However, the MFB group showed a more pronounced impairment than the SNC group. In contrast, only mild and incomplete gait impairment occurred in the CPU group. In addition, some gait parameters demonstrated close correlation with the protein levels of TH. This paper suggests that the 6-hydroxydopamine-induced MFB model is more propitious to study gait dysfunction than the other two models and the CatWalk system can provide reliable and objective criteria to stratify gait changes arising from 6-hydroxydopamine lesioned rats. These findings may hold promise in the study of PD disease progression and new therapeutic methods.

  19. Analysis of Parallel and Transverse Visual Cues on the Gait of Individuals with Idiopathic Parkinson's Disease

    Science.gov (United States)

    de Melo Roiz, Roberta; Azevedo Cacho, Enio Walker; Cliquet, Alberto, Jr.; Barasnevicius Quagliato, Elizabeth Maria Aparecida

    2011-01-01

    Idiopathic Parkinson's disease (IPD) has been defined as a chronic progressive neurological disorder with characteristics that generate changes in gait pattern. Several studies have reported that appropriate external influences, such as visual or auditory cues may improve the gait pattern of patients with IPD. Therefore, the objective of this…

  20. Systematic review of quantitative clinical gait analysis in patients with dementia.

    NARCIS (Netherlands)

    Iersel, M.B. van; Hoefsloot, W.; Munneke, M.; Bloem, B.R.; Olde Rikkert, M.G.M.

    2004-01-01

    INTRODUCTION: Diminished mobility often accompanies dementia and has a great impact on independence and quality of life. New treatment strategies for dementia are emerging, but the effects on gait remains to be studied objectively. In this review we address the general effects of dementia on gait as

  1. Kinematic gait analysis and lactation performance in dairy cows fed a diet supplemented with zinc, manganese, copper and cobalt.

    Science.gov (United States)

    Yamamoto, Satoshi; Ito, Kazuhiko; Suzuki, Kii; Matsushima, Yuki; Watanabe, Izumi; Watanabe, Yutaka; Abiko, Keima; Kamada, Toshihiko; Sato, Kan

    2014-03-01

    This study investigated how supplementation of the diet of dairy cows with trace minerals (zinc, manganese, copper and cobalt) affected kinematic gait parameters and lactation performance. Eight Holstein cows were divided into two groups, with each group receiving a different dietary treatment (control diet, or control diet supplemented with trace minerals) in a two-period crossover design. Kinematic gait parameters were calculated by using image analysis software. Compared to cows fed the control diet, cows that received the trace mineral-supplemented diet exhibited significantly increased walking and stepping rates, and had a shorter stance duration. Feed intake and milk production increased in cows fed the trace mineral-supplemented diet compared with control groups. The plasma manganese concentration was not different in control and experimental cows. In contrast, cobalt was only detected in the plasma of cows fed the supplemented diet. These results provide the first evidence that trace mineral supplementation of the diet of dairy cows affects locomotion, and that the associated gait changes can be detected by using kinematic gait analysis. Moreover, trace mineral supplementation improved milk production and only minimally altered blood and physiological parameters in dairy cows.

  2. Modificações biomecânicas na marcha de indivíduos com osteoartrite medial do joelho Biomechanical changes in gait of subjects with medial knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Hésojy Gley Pereira Vital da Silva

    2012-01-01

    Full Text Available OBJETIVO: Demonstrar a presença e magnitude de determinadas variáveis biomecânicas na marcha de pacientes com osteoartrite (OA medial de joelho e suas relações com o carregamento deste. MÉTODOS: Vinte e um indivíduos diagnosticados com OA do compartimento medial do joelho foram submetidos à avaliação da marcha e comparados com grupo controle. RESULTADOS: O grupo com OA em relação ao grupo controle apresentou: menor velocidade da marcha (0,8±0,1 vs. 1,1±0,1m/s, maior pico precoce do momento adutor (2,6±1,2 vs. 0,3±1,4 Nm/kg, maior pico tardio do momento adutor (1,8±0,7 vs. 0,9±0,2 Nm/kg, maior pico do momento flexor (1,6±0,9 vs. 0,6±0,4 Nm/kg, elevado pico de varo dinâmico (11,5º±8,3 vs. 3º±3,9, maior pico de flexão (15,6º±8 vs. 9,3º±4,1, com tendência ao flexo (5,5º±8,5 na fase de apoio, menor pico de flexão (58,7º±13,3 vs. 67,5º±4,8 no balanço e elevados picos de rotação externa (25,5º±12,7 vs. 0,5º±12,4. Os picos de ângulos e de momentos ocorreram nas mesmas fases da marcha nos dois grupos. CONCLUSÃO: Pacientes com OA do compartimento medial do joelho apresentam modificações na marcha com aumento rotação externa, redução da velocidade, aumento do momento flexor e flexão no apoio, insuficientes para uma redução considerável do carregamento. Nível de Evidência III, Estudo caso-controle.OBJETIVE: Demonstrate the presence and magnitude of biomechanical variables during gait in patients with medial knee osteoarthritis (OA and the relationship with the knee loading. METHODS: Gait of 21 subjects diagnosed with medial knee OA was evaluated and compared to the control group. RESULTS: The group with OA showed: Lower gait speed (0.8 ± 0.1 vs. 1.1 ± 0.1m/s, higher peak early (2.6 ± 1.2 vs. 0.3 ± 1.4 Nm/Kg and late peak of the adduction moment (1.8 ± 0.7 vs. 0.9 ± 0.2 Nm/Kg, higher peak flexor moment (1.6 ± 0.9 vs. 0.6 ± 0.4 Nm/Kg , high dynamic peak varus (11.5 ± 8.3 vs. 3o ± 3.9, higher

  3. Implementation An image processing technique for video motion analysis during the gait cycle canine

    Science.gov (United States)

    López, G.; Hernández, J. O.

    2017-01-01

    Nowadays the analyses of human movement, more specifically of the gait have ceased to be a priority for our species. Technological advances and implementations engineering have joined to obtain data and information regarding the gait cycle in another animal species. The aim of this paper is to analyze the canine gait in order to get results that describe the behavior of the limbs during the gait cycle. The research was performed by: 1. Dog training, where it is developed the step of adaptation and trust; 2. Filming gait cycle; 3. Data acquisition, in order to obtain values that describe the motion cycle canine and 4. Results, obtaining the kinematics variables involved in the march. Which are essential to determine the behavior of the limbs, as well as for the development of prosthetic or orthotic. This project was carried out with conventional equipment and using computational tools easily accessible.

  4. Using Video Analysis and Biomechanics to Engage Life Science Majors in Introductory Physics

    Science.gov (United States)

    Stephens, Jeff

    There is an interest in Introductory Physics for the Life Sciences (IPLS) as a way to better engage students in what may be their only physical science course. In this talk I will present some low cost and readily available technologies for video analysis and how they have been implemented in classes and in student research projects. The technologies include software like Tracker and LoggerPro for video analysis and low cost high speed cameras for capturing real world events. The focus of the talk will be on content created by students including two biomechanics research projects performed over the summer by pre-physical therapy majors. One project involved assessing medial knee displacement (MKD), a situation where the subject's knee becomes misaligned during a squatting motion and is a contributing factor in ACL and other knee injuries. The other project looks at the difference in landing forces experienced by gymnasts and cheer-leaders while performing on foam mats versus spring floors. The goal of this talk is to demonstrate how easy it can be to engage life science majors through the use of video analysis and topics like biomechanics and encourage others to try it for themselves.

  5. Cross-talk correction method for knee kinematics in gait analysis using principal component analysis (PCA: a new proposal.

    Directory of Open Access Journals (Sweden)

    Audrey Baudet

    Full Text Available In 3D gait analysis, the knee joint is usually described by the Eulerian way. It consists in breaking down the motion between the articulating bones of the knee into three rotations around three axes: flexion/extension, abduction/adduction and internal/external rotation. However, the definition of these axes is prone to error, such as the "cross-talk" effect, due to difficult positioning of anatomical landmarks. This paper proposes a correction method, principal component analysis (PCA, based on an objective kinematic criterion for standardization, in order to improve knee joint kinematic analysis.The method was applied to the 3D gait data of two different groups (twenty healthy subjects and four with knee osteoarthritis. Then, this method was evaluated with respect to three main criteria: (1 the deletion of knee joint angle cross-talk (2 the reduction of variance in the varus/valgus kinematic profile (3 the posture trial varus/valgus deformation matching the X-ray value for patients with knee osteoarthritis. The effect of the correction method was tested statistically on variabilities and cross-talk during gait.Cross-talk was lower (p<0.05 after correction (the correlation between the flexion-extension and varus-valgus kinematic profiles being annihilated. Additionally, the variance in the kinematic profile for knee varus/valgus and knee flexion/extension was found to be lower and higher (p<0.05, respectively, after correction for both the left and right side. Moreover, after correction, the posture trial varus/valgus angles were much closer to x-ray grading.The results show that the PCA correction applied to the knee joint eliminates the cross-talk effect, and does not alter the radiological varus/valgus deformation for patients with knee osteoarthritis. These findings suggest that the proposed correction method produces new rotational axes that better fit true knee motion.

  6. Three-dimensional motion analysis of the effects of auditory cueing on gait pattern in patients with Parkinson's disease: a preliminary investigation.

    Science.gov (United States)

    Picelli, Alessandro; Camin, Maruo; Tinazzi, Michele; Vangelista, Antonella; Cosentino, Alessandro; Fiaschi, Antonio; Smania, Nicola

    2010-08-01

    Auditory cueing enhances gait in parkinsonian patients. Our aim was to evaluate its effects on spatiotemporal (stride length, stride time, cadence, gait speed, single and double support duration) kinematic (range of amplitude of the hip, knee and ankle joint angles registered in the sagittal plane) and kinetic (maximal values of the hip and ankle joint power) gait parameters using three-dimensional motion analysis. Eight parkinsonian patients performed 12 walking tests: 3 repetitions of 4 conditions (normal walking, 90, 100, and 110% of the mean cadence at preferred pace cued walking). Subjects were asked to uniform their cadence to the cueing rhythm. In the presence of auditory cues stride length, cadence, gait speed and ratio single/double support duration increased. Range of motion of the ankle joint decreased and the maximal values within the pull-off phase of the hip joint power increased. Thus, auditory cues could improve gait modifying motor strategy in parkinsonian patients.

  7. Comparison of Gait Aspects According to FES Stimulation Position Applied to Stroke Patients

    OpenAIRE

    Mun, Byeong-mu; Kim, Tae-ho; Lee, Jin-hwan; Lim, Jin-youg; Seo, Dong-kwon; Lee, Dong-Jin

    2014-01-01

    [Purpose] This study sought to identify the gait aspects according to the FES stimulation position in stroke patients during gait training. [Subjects and Methods] To perform gait analysis, ten stroke patients were grouped based on 4 types of gait conditions: gait without FES stimulation (non-FES), gait with FES stimulation on the tibialis anterior (Ta), gait with FES stimulation on the tibialis anterior and quadriceps (TaQ), and gait with FES stimulation on the tibialis anterior and gluteus m...

  8. Chopart prosthesis and semirigid foot orthosis in traumatic forefoot amputation. Comparative gait analysis.

    Science.gov (United States)

    Hirsch, G; McBride, M E; Murray, D D; Sanderson, D J; Dukes, I; Menard, M R

    1996-01-01

    Gait was analyzed in seven otherwise healthy males at least 11 mo after they had recovered from a traumatic unilateral transmetatarsal amputation incurred during the course of their usual occupation. All seven were fitted with a semirigid foot orthosis. Four were also fitted with a Chopart prosthesis. Gait was evaluated with forceplate measurements of ground reaction force during free walking, by clinical observation of such ambulation on videotape, and by the subjective impression of the men as obtained by a questionnaire. In all men, with unmodified footwear, with the orthosis, and with the prosthesis, the forceplate data showed an abnormal pattern characterized by reduced stance duration and deficient forward propulsion on the amputated side. The abnormality and asymmetry of ground-reaction forces were less with greater preserved stump length and for a given stump length were with the above-ankle concept (Chopart) prosthesis than with the below-ankle concept. These features were recognized during the clinical analysis of all footwear, but there was an extra irregularity of weight progression noted with the fixed ankle of the Chopart prosthesis. The questionnaire reported stump problems to be the principal difficulty, and the follow-up revealed persistent attempts at surgical management including consideration of amputation at a higher level. It was concluded that the patient and the surgeons are likely to choose preservation of limb length over considerations of function during acute care and that the prosthetic concept best suited to deal with the resulting stump should emphasize unloading the distal part of the stump and smoothing out the impulsive force peak on the stump in late stance to minimize pain and to enhance ambulation capacity.

  9. Gait analysis in cerebral palsy children%脑性瘫痪儿童的步态特征分析

    Institute of Scientific and Technical Information of China (English)

    冉茂群; 周世林; 肖农; 任永平; 张红运; 陈玉霞; 刘玲

    2013-01-01

    背景:脑瘫患儿的步态异常较常见,如何控制改善步态是康复治疗的重点。目的:分析脑瘫患儿步态的生物力学参数,并观察支具控制对不随意运动型脑瘫患儿运动能力的影响。方法:研究对比脑瘫患儿和正常儿童在起步过程中以及步行中的生物力学参数,起步过程中的生物力学参数包括时空参数,膝、踝关节活动度的运动学参数以及动力学参数;步行中的生物力学参数包括时空参数。不随意运动型脑瘫患儿均接受支具控制辅助下徒手体位控制、减重步态训练、S-E-T 的3个月治疗,治疗前后采用88项粗大运动评价量表A区和视频对照进行疗效评估。结果与结论:脑瘫患儿和正常儿童在起步过程中的生物力学参数测试对比中,除了右脚为起步脚的额状轴地面反力峰值外,其余各项生物力学参数均有明显差异;步行中的生物力学参数测试对比中,脑瘫患儿较正常儿童支撑相和双足支撑相延长、步长和复步长缩短。支具控制脑瘫患儿观察中,与治疗前比较,GMFM88项A 区平均得分显著提高,视频示患儿治疗后不自主动作减少,头颈躯干较稳定,生活能力有好转,癫痫及认知障碍和基底节区有影像学改变的患儿进步幅度较小,舞蹈-徐动型和张力障碍型比徐动痉挛型患儿运动能力进步幅度大。%BACKGROUND:Abnormal gaits are very common in children with cerebral palsy, and how to improve the gait is the focus of rehabilitation therapy. OBJECTIVE:To analyze the biomechanical parameters of gaits in cerebral palsy children and to observe the effects of brace control on the exercise capacity of dyskinetic cerebral palsy children. METHODS:In this paper, we compared the biomechanical parameters of children with cerebral palsy and normal children in the initial process of walking and during walking. Biomechanical parameters in the initial process

  10. Integrated kinematics-kinetics-plantar pressure data analysis: a useful tool for characterizing diabetic foot biomechanics.

    Science.gov (United States)

    Sawacha, Zimi; Guarneri, Gabriella; Cristoferi, Giuseppe; Guiotto, Annamaria; Avogaro, Angelo; Cobelli, Claudio

    2012-05-01

    The fundamental cause of lower-extremity complications in diabetes is chronic hyperglycemia leading to diabetic foot ulcer pathology. While the relationship between abnormal plantar pressure distribution and plantar ulcers has been widely investigated, little is known about the role of shear stress. Moreover, the mutual relationship among plantar pressure, shear stress, and abnormal kinematics in the etiology of diabetic foot has not been established. This lack of knowledge is determined by the lack of commercially available instruments which allow such a complex analysis. This study aims to develop a method for the simultaneous assessment of kinematics, kinetics, and plantar pressure on foot subareas of diabetic subjects by means of combining three commercial systems. Data were collected during gait on 24 patients (12 controls and 12 diabetic neuropathics) with a motion capture system synchronized with two force plates and two baropodometric systems. A four segment three-dimensional foot kinematics model was adopted for the subsegment angles estimation together with a three segment model for the plantar sub-area definition during gait. The neuropathic group exhibited significantly excessive plantar pressure, ground reaction forces on each direction, and a reduced loading surface on the midfoot subsegment (pfoot ulcerations, and help planning prevention programs.

  11. Biomechanics of octopedal locomotion: kinematic and kinetic analysis of the spider Grammostola mollicoma.

    Science.gov (United States)

    Biancardi, Carlo M; Fabrica, C Gabriel; Polero, Patricia; Loss, Jefferson Fagundes; Minetti, Alberto E

    2011-10-15

    Despite the abundance of octapodal species and their evolutionary importance in originating terrestrial locomotion, the locomotion mechanics of spiders has received little attention so far. In this investigation we use inverse dynamics to study the locomotor performance of Grammostola mollicoma (18 g). Through 3-D kinematic measurements, the trajectory of the eight limbs and cephalothorax or abdomen allowed us to estimate the motion of the body centre of mass (COM) at different speeds. Classic mechanics of locomotion and multivariate analysis of several variables such as stride length and frequency, duty factor, mechanical external work and energy recovery, helped to identify two main gaits, a slow (speed mechanical work (external + internal) calculated in the present study and metabolic data from the literature allowed us to estimate the locomotion efficiency of this species, which was less than 4%. Gait pattern due to alternating limb support, which generates asymmetrical COM trajectories and a small but consistent energy transfer between potential and kinetic energies of COM, is discussed both in terms of coordination indices and by referring to the octopod as formed by two quadrupeds in series. Analogies and differences of the newly obtained parameters with the allometric data and predictions are also illustrated.

  12. Typical gait analysis of a six-legged robot in the context of metamorphic mechanism theory

    Science.gov (United States)

    Xu, Kun; Ding, Xilun

    2013-07-01

    The equivalent mechanism of the system is often considered as one specific mechanism in most existing studies of multi-legged robots, however the equivalent mechanism is varying while the robot moves on the ground. Four typical tripod period gaits of a radial symmetrical six-legged robot are analyzed. Similar to the metamorphic mechanism, the locomotion of multi-legged robot is considered as a series of varying hybrid serial-parallel mechanisms by assuming the constraints of the feet on the ground with hinges. One gait cycle is divided into several periods, and in different walking period there is a specific equivalent mechanism corresponding to it, and the walking process of multi-legged robot is composed by these series of equivalent mechanisms. Walking performance can be got by analyzing these series of equivalent mechanisms. Kinematics model of the equivalent mechanism is established, workspaces of equivalent mechanisms are illustrated by simulation and a concept of static stability workspace is proposed to evaluate the static stability of these four gaits. A new method to calculate the stride length of multi-legged robots is presented by analyzing the relationship between the workspace of two adjacent equivalent parallel mechanisms in one gait cycle. The stride lengths of four gaits are given by simulations. Comparison of stride length and static stability among these four typical tripod gaits are given. It has been proved that mixed gait and insect-wave gait II have better static stability than mammal kick-off gait and insect-wave gait I. Insect-wave gait II displays its advantage on stride length while the height of robot body lower than 87 mm, mammal kick-off gait has superiority on stride length while the height of robot body higher than 115 mm, and insect-wave gait I shows its shortcoming in stride length. The proposed method based on metamorphic theory and combining the footholds and body height of robot provides a new method to comprehensive analyze the

  13. 基于LifeMOD的个性化人工膝关节设计中的生物力学分析%A biomechanical analysis based on LifeMOD for individualized artificial knee joint design

    Institute of Scientific and Technical Information of China (English)

    马妮; 肖丽英

    2011-01-01

    Objective: To investigate the biomechanical performanre of individualized design artificial knee joint after surgical operation.Method: Based on the digital biomechanical simulation software LifeMOD, human biomechanical model for simulating the motions of healthy human and total knee replacement(TKR) patient in normal gait was designed and generated, where the motion and internal forces could be explored.Result: The outputs included joint angles, joint contact forces and ligament / muscle forces. Through comparative analysis, the individualized artificial knee joint could replicate the normal knee ideally in gait characteristics.Conclusion: This study provided an effective access for further research of dynamic knee biomechanics, as well as a reference to artificial knee joint design, performance evaluation and clinical application.%目的:探讨个性化设计的人工膝关节植入人体后的生物力学响应.方法:基于生物力学数字仿真软件LifeMOD,建立健康人体及人工膝关节置换术后人体步行的运动/动力学模型,对人体在步行过程中的运动和内部受力情况进行分析.结果:仿真得到整个步态周期中膝关节的运动的角位移、关节接触力以及韧带和肌肉的载荷曲线,通过对比分析,可知本文所设计的人工膝关节在步态特性方面较理想地复制了正常的膝关节.结论:本研究对探索人工膝关节的动态生物力学特性和关节似体的设计、性能评价以及临床应用等有重要意义.

  14. Biomechanical analysis of acromioclavicular joint dislocation treated with clavicle hook plates in different lengths.

    Science.gov (United States)

    Shih, Cheng-Min; Huang, Kui-Chou; Pan, Chien-Chou; Lee, Cheng-Hung; Su, Kuo-Chih

    2015-11-01

    Clavicle hook plates are frequently used in clinical orthopaedics to treat acromioclavicular joint dislocation. However, patients often exhibit acromion osteolysis and per-implant fracture after undergoing hook plate fixation. With the intent of avoiding future complications or fixation failure after clavicle hook plate fixation, we used finite element analysis (FEA) to investigate the biomechanics of clavicle hook plates of different materials and sizes when used in treating acromioclavicular joint dislocation. Using finite element analysis, this study constructed a model comprising four parts: clavicle, acromion, clavicle hook plate and screws, and used the model to simulate implanting different types of clavicle hook plates in patients with acromioclavicular joint dislocation. Then, the biomechanics of stainless steel and titanium alloy clavicle hook plates containing either six or eight screw holes were investigated. The results indicated that using a longer clavicle hook plate decreased the stress value in the clavicle, and mitigated the force that clavicle hook plates exert on the acromion. Using a clavicle hook plate material characterized by a smaller Young's modulus caused a slight increase in the stress on the clavicle. However, the external force the material imposed on the acromion was less than the force exerted on the clavicle. The findings of this study can serve as a reference to help orthopaedic surgeons select clavicle hook plates.

  15. Health monitors for chronic disease by gait analysis with mobile phones.

    Science.gov (United States)

    Juen, Joshua; Cheng, Qian; Prieto-Centurion, Valentin; Krishnan, Jerry A; Schatz, Bruce

    2014-11-01

    We have developed GaitTrack, a phone application to detect health status while the smartphone is carried normally. GaitTrack software monitors walking patterns, using only accelerometers embedded in phones to record spatiotemporal motion, without the need for sensors external to the phone. Our software transforms smartphones into health monitors, using eight parameters of phone motion transformed into body motion by the gait model. GaitTrack is designed to detect health status while the smartphone is carried during normal activities, namely, free-living walking. The current method for assessing free-living walking is medical accelerometers, so we present evidence that mobile phones running our software are more accurate. We then show our gait model is more accurate than medical pedometers for counting steps of patients with chronic disease. Our gait model was evaluated in a pilot study involving 30 patients with chronic lung disease. The six-minute walk test (6 MWT) is a major assessment for chronic heart and lung disease, including congestive heart failure and especially chronic obstructive pulmonary disease (COPD), affecting millions of persons. The 6 MWT consists of walking back and forth along a measured distance for 6 minutes. The gait model using linear regression performed with 94.13% accuracy in measuring walk distance, compared with the established standard of direct observation. We also evaluated a different statistical model using the same gait parameters to predict health status through lung function. This gait model has high accuracy when applied to demographic cohorts, for example, 89.22% accuracy testing the cohort of 12 female patients with ages 50-64 years.

  16. 步态分析在膝骨性关节炎中应用的研究进展%Application of gait analysis in knee osteoarthritis

    Institute of Scientific and Technical Information of China (English)

    陈年盛; 陈海鹏; 刘志坤

    2015-01-01

    Based on application of gait analysis in knee osteoarthritis of gait characteristics, diagnosis, treatment and rehabilitation evaluation, literature of recent years was reported to provide a reference for application of gait analysis in knee osteoarthritis.%从步态分析在膝骨性关节炎步态特点、诊断、治疗及康复功能评定方面的应用入手,对近年来的文献进行了报道,为步态分析在膝骨性关节炎中的应用提供参考依据。

  17. Rehabilitation System based on the Use of Biomechanical Analysis and Videogames through the Kinect Sensor

    Directory of Open Access Journals (Sweden)

    John E. Muñoz-Cardona

    2013-11-01

    Full Text Available This paper presents development of a novel system for physical rehabilitation of patients with multiple pathologies, through dynamic with exercise videogames (exergames and analysis of the movements of patients using developed software. This system is based on the use of the Kinect sensor for both purposes: amusing the patient in therapy through of specialist exergames and provide a tool to record and analyze MoCap data taken through the Kinect sensor and processed using biomechanical analysis through Euler angles. All interactive system is installed in a rehabilitation center and works with different pathologies (stroke, IMOC, craneoencephallic trauma, etc., patients interact with the platform while the specialist records data for later analysis, which is performed by software designed for this purpose. The motion graphics are shown in the sagittal, frontal and rotationalplanefrom20 points distributed in the body. The final system is portable, non-invasive, inexpensive, natural interaction with the patient and easily implemented for medical purposes.

  18. The effect of Masai Barefoot Technology (MBT) footwear on lower limb biomechanics: A systematic review.

    Science.gov (United States)

    Tan, Jade M; Auhl, Maria; Menz, Hylton B; Levinger, Pazit; Munteanu, Shannon E

    2016-01-01

    This systematic review evaluated the available evidence for the effects of Masai Barefoot Technology (MBT) footwear on lower limb biomechanics during gait. Electronic databases (MEDLINE, EMBASE, CINAHL, SPORTDiscus, and PubMed) were searched in January 2015. Methodological quality of included studies was evaluated using the Quality Index. Standardised mean differences and 95% confidence intervals were calculated, and meta-analysis was conducted where possible. 17 studies satisfied the inclusion criteria; 16 cross-sectional studies and one randomised control trial (RCT). Quality Index scores ranged from 7 to 12 (out of 15). All 17 studies investigated walking gait only. Evidence showed that MBT footwear caused asymptomatic individuals to walk with a shorter stride length, reduced peak hip flexion, increased peak knee extension, and reduced hip and knee range of motion throughout gait. All kinematic effects occurred in the sagittal plane. There was a trend towards a decrease in internal and external joint moments and power, except for the foot, where increases in force were observed. There were only a small number of changes to lower limb muscle amplitude and timing. No statistically significant effects were observed in symptomatic individuals with knee osteoarthritis or following total knee replacement, but there was an increase in cadence and a decrease in step length in individuals following tibiotalar arthrodesis. These findings suggest that MBT footwear does change lower limb biomechanics in both asymptomatic and symptomatic individuals during gait. However, further clinical trials need to be undertaken to determine whether these changes are therapeutically beneficial.

  19. Biomechanics Analysis of Combat Sport (Silat) By Using Motion Capture System

    Science.gov (United States)

    Zulhilmi Kaharuddin, Muhammad; Badriah Khairu Razak, Siti; Ikram Kushairi, Muhammad; Syawal Abd. Rahman, Mohamed; An, Wee Chang; Ngali, Z.; Siswanto, W. A.; Salleh, S. M.; Yusup, E. M.

    2017-01-01

    ‘Silat’ is a Malay traditional martial art that is practiced in both amateur and in professional levels. The intensity of the motion spurs the scientific research in biomechanics. The main purpose of this abstract is to present the biomechanics method used in the study of ‘silat’. By using the 3D Depth Camera motion capture system, two subjects are to perform ‘Jurus Satu’ in three repetitions each. One subject is set as the benchmark for the research. The videos are captured and its data is processed using the 3D Depth Camera server system in the form of 16 3D body joint coordinates which then will be transformed into displacement, velocity and acceleration components by using Microsoft excel for data calculation and Matlab software for simulation of the body. The translated data obtained serves as an input to differentiate both subjects’ execution of the ‘Jurus Satu’. Nine primary movements with the addition of five secondary movements are observed visually frame by frame from the simulation obtained to get the exact frame that the movement takes place. Further analysis involves the differentiation of both subjects’ execution by referring to the average mean and standard deviation of joints for each parameter stated. The findings provide useful data for joints kinematic parameters as well as to improve the execution of ‘Jurus Satu’ and to exhibit the process of learning a movement that is relatively unknown by the use of a motion capture system.

  20. Laser-Treated Titanium Implants: An In Vivo Histomorphometric and Biomechanical Analysis.

    Science.gov (United States)

    Trisi, Paolo; Berardini, Marco; Colagiovanni, Marco; Berardi, Davide; Perfetti, Giorgio

    2016-10-01

    The aim of the present histological and biomechanical analysis was to compare, in vivo, the strength and quality of osseointegration between a laser-treated implant surface and a standard machined surface. Customized titanium implants, having 2 different surfaces, were used. Implants were longitudinally split in the 2 surfaces: one side was laser treated and the opposite one had a machined surface. Eight implants were inserted in the iliac crest of 2 sheep: 4 with a split laser and machined surfaces, 2 with a completely laser-treated surface, and 2 with fully machined surfaces. The animals were killed 8 weeks after the placement of implants. The histomorphometric and biomechanical parameters calculated for each surface were the bone-implant contact (%BIC) and the reverse torque value (RTV) RESULTS:: The RTV of the laser-treated implants were about 3-fold higher than that of the machined implants. The histomorphometric results showed a significant difference of %BIC around 30% between the laser surfaces compared to the machined ones. The present study showed that laser surface treatment induces better osteointegration than machined surface. The laser-treated surface seems to be able to increase the osseointegration amount in respect to the machined implants.

  1. Biomechanical analysis of hyoid bone displacement in videofluoroscopy: a systematic review of intervention effects.

    Science.gov (United States)

    van der Kruis, Jolien G J; Baijens, Laura W J; Speyer, Renée; Zwijnenberg, Iris

    2011-06-01

    This systematic review explores studies using biomechanical analysis of hyoid bone displacement in videofluoroscopy of swallowing as a spatial outcome parameter to evaluate intervention effects. Two authors independently carried out the literature search using the electronic databases Embase, PubMed, and Cochrane Library. Differences in their search findings were settled by discussion. The search was limited to publications in the English, German, French, Spanish, or Dutch language. MeSH terms were used, supplemented by free-text words to identify the most recent publications. In addition, reference lists were searched by hand. Only studies using videofluoroscopy to evaluate the biomechanical effects of swallowing interventions in dysphagic subjects were included in the review. While the body of literature on measuring hyoid bone displacement in videofluoroscopy has grown, only 12 studies met the inclusion criteria. Several of the 12 studies had methodological shortcomings. In general, the conclusions could not be compared across the studies because of their heterogeneous designs and outcome measures. Overall, several intervention effect studies reported significant results. In particular, bolus modification and swallowing maneuvers showed a greater range of hyoid bone displacement. In light of this review, further research on hyoid bone displacement as a spatial variable in well-defined patient populations using well-defined videofluoroscopic protocols to measure intervention effects is recommended.

  2. The influence of iliotibial band syndrome history on running biomechanics examined via principal components analysis.

    Science.gov (United States)

    Foch, Eric; Milner, Clare E

    2014-01-03

    Iliotibial band syndrome (ITBS) is a common knee overuse injury among female runners. Atypical discrete trunk and lower extremity biomechanics during running may be associated with the etiology of ITBS. Examining discrete data points limits the interpretation of a waveform to a single value. Characterizing entire kinematic and kinetic waveforms may provide additional insight into biomechanical factors associated with ITBS. Therefore, the purpose of this cross-sectional investigation was to determine whether female runners with previous ITBS exhibited differences in kinematics and kinetics compared to controls using a principal components analysis (PCA) approach. Forty participants comprised two groups: previous ITBS and controls. Principal component scores were retained for the first three principal components and were analyzed using independent t-tests. The retained principal components accounted for 93-99% of the total variance within each waveform. Runners with previous ITBS exhibited low principal component one scores for frontal plane hip angle. Principal component one accounted for the overall magnitude in hip adduction which indicated that runners with previous ITBS assumed less hip adduction throughout stance. No differences in the remaining retained principal component scores for the waveforms were detected among groups. A smaller hip adduction angle throughout the stance phase of running may be a compensatory strategy to limit iliotibial band strain. This running strategy may have persisted after ITBS symptoms subsided.

  3. Using sensitivity analysis to validate the predictions of a biomechanical model of bite forces.

    Science.gov (United States)

    Sellers, William Irvin; Crompton, Robin Huw

    2004-02-01

    Biomechanical modelling has become a very popular technique for investigating functional anatomy. Modern computer simulation packages make producing such models straightforward and it is tempting to take the results produced at face value. However the predictions of a simulation are only valid when both the model and the input parameters are accurate and little work has been done to verify this. In this paper a model of the human jaw is produced and a sensitivity analysis is performed to validate the results. The model is built using the ADAMS multibody dynamic simulation package incorporating the major occlusive muscles of mastication (temporalis, masseter, medial and lateral pterygoids) as well as a highly mobile temporomandibular joint. This model is used to predict the peak three-dimensional bite forces at each teeth location, joint reaction forces, and the contributions made by each individual muscle. The results for occlusive bite-force (1080N at M1) match those previously published suggesting the model is valid. The sensitivity analysis was performed by sampling the input parameters from likely ranges and running the simulation many times rather than using single, best estimate values. This analysis shows that the magnitudes of the peak retractive forces on the lower teeth were highly sensitive to the chosen origin (and hence fibre direction) of the temporalis and masseter muscles as well as the laxity of the TMJ. Peak protrusive force was also sensitive to the masseter origin. These result shows that the model is insufficiently complex to estimate these values reliably although the much lower sensitivity values obtained for the bite forces in the other directions and also for the joint reaction forces suggest that these predictions are sound. Without the sensitivity analysis it would not have been possible to identify these weaknesses which strongly supports the use of sensitivity analysis as a validation technique for biomechanical modelling.

  4. Impaired gait function in adults with cerebral palsy is associated with reduced rapid force generation and increased passive stiffness

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Kirk, Henrik; Lorentzen, Jakob

    2015-01-01

    analysis of the ankle joint during treadmill walking was obtained by 3-D motion analysis. RESULTS: Passive stiffness was significantly increased in adults with CP compared to controls. Passive stiffness and RFDdf were correlated to reduced toe lift. RFDpf provided the best correlation to push-off velocity...... (mean age 34.3, range 18-57years) and fifteen healthy age-matched controls were biomechanically measured for passive and reflex-mediated stiffness of the ankle plantarflexors at rest, maximal voluntary plantarflexion and dorsiflexion effort (MVCpf,df) and rate of force development (RFDpf,df). Kinematic......, range of movement in the ankle joint and gait speed. Reflex-mediated stiffness was not correlated to any parameters of impaired gait. CONCLUSIONS: Impaired gait function in adults with CP is associated with reduced RFD and increased passive stiffness of ankle muscles. SIGNIFICANCE: These findings...

  5. Impact of Dual Task on Parkinson's Disease, Stroke and Ataxia Patients' Gait: A Comparative Analysis

    Directory of Open Access Journals (Sweden)

    Michelly Arjona Maciel

    2014-01-01

    Full Text Available Introduction: Performing dual task for neurological patients is complex and it can be influenced by the localization of the neurological lesion. Objective: Comparing the impact of dual task on gait in patients with Parkinson's disease, stroke and ataxia. Method: Subjects with Parkinson's disease (PD in initial phase, stroke and ataxia, with independent gait, were evaluated while doing simple gait, with cognitive, motor and cognitive-motor gait demand, assessing average speed and number of steps. Results: Ataxia and stroke patients, compared with PD, showed an increase in the number of steps and decrease the average speed on the march with cognitive demand. Subjects with PD performed better on tasks when compared to others. Conclusion: In this study the impact of dual task was lower in Parkinson's disease patients.

  6. Characterizing multisegment foot kinematics during gait in diabetic foot patients

    Directory of Open Access Journals (Sweden)

    Denti Paolo

    2009-10-01

    Full Text Available Abstract Background The prevalence of diabetes mellitus has reached epidemic proportions, this condition may result in multiple and chronic invalidating long term complications. Among these, the diabetic foot, is determined by the simultaneous presence of both peripheral neuropathy and vasculopathy that alter the biomechanics of the foot with the formation of callosity and ulcerations. To diagnose and treat the diabetic foot is crucial to understand the foot complex kinematics. Most of gait analysis protocols represent the entire foot as a rigid body connected to the shank. Nevertheless the existing multisegment models cannot completely decipher the impairments associated with the diabetic foot. Methods A four segment foot and ankle model for assessing the kinematics of the diabetic foot was developed. Ten normal subjects and 10 diabetics gait patterns were collected and major sources of variability were tested. Repeatability analysis was performed both on a normal and on a diabetic subject. Direct skin marker placement was chosen in correspondence of 13 anatomical landmarks and an optoelectronic system was used to collect the data. Results Joint rotation normative bands (mean plus/minus one standard deviation were generated using the data of the control group. Three representative strides per subject were selected. The repeatability analysis on normal and pathological subjects results have been compared with literature and found comparable. Normal and pathological gait have been compared and showed major statistically significant differences in the forefoot and midfoot dorsi-plantarflexion. Conclusion Even though various biomechanical models have been developed so far to study the properties and behaviour of the foot, the present study focuses on developing a methodology for the functional assessment of the foot-ankle complex and for the definition of a functional model of the diabetic neuropathic foot. It is, of course, important to evaluate

  7. Experimental tests for foot pressure analysis during orthostatic position and gait

    Directory of Open Access Journals (Sweden)

    Ganea Daniel

    2017-01-01

    Full Text Available Human body postural deviation during normal activities such as gait or orthostatic position can cause injuries. The paper presents an experimental study regarding the distribution of contact pressures during gait and orthostatic position, aiming to evaluate the load distribution between forefoot (FF and rear-foot (RF, the projection of center of gravity and the support area variation while conducting stability metering and feet load distribution tests.

  8. Quantitative analysis of gait and balance response to deep brain stimulation in Parkinson's disease

    OpenAIRE

    Mera, Thomas O.; Filipkowski, Danielle E.; Riley, David E.; Whitney, Christina M.; Walter, Benjamin L.; Gunzler, Steven A; Giuffrida, Joseph P

    2012-01-01

    Gait and balance disturbances in Parkinson’s disease (PD) can be debilitating and may lead to increased fall risk. Deep brain stimulation (DBS) is a treatment option once therapeutic benefits from medication are limited due to motor fluctuations and dyskinesia. Optimizing DBS parameters for gait and balance can be significantly more challenging than for other PD motor symptoms. Furthermore, inter-rater reliability of the standard clinical PD assessment scale, Unified Parkinson’s Disease Ratin...

  9. Three-dimensional knee kinematics by conventional gait analysis for eleven motor tasks of daily living: typical patterns and repeatability.

    Science.gov (United States)

    Scheys, Lennart; Leardini, Alberto; Wong, Pius D; Van Camp, Laurent; Callewaert, Barbara; Bellemans, Johan; Desloovere, Kaat

    2013-04-01

    The availability of detailed knee kinematic data during various activities can facilitate clinical studies of this joint. To describe in detail normal knee joint rotations in all three anatomical planes, 25 healthy subjects (aged 22-49 years) performed eleven motor tasks, including walking, step ascent and descent, each with and without sidestep or crossover turns, chair rise, mild and deep squats, and forward lunge. Kinematic data were obtained with a conventional lower-body gait analysis protocol over three trials per task. To assess the repeatability with standard indices, a representative subset of 10 subjects underwent three repetitions of the entire motion capture session. Extracted parameters with good repeatability included maximum and minimum axial rotation during turning, local extremes of the flexion curves during gait tasks, and stride times. These specific repeatable parameters can be used for task selection or power analysis when planning future clinical studies.

  10. Normative Spatiotemporal Gait Parameters in Older Adults

    OpenAIRE

    Hollman, John H; McDade, Eric M.; Petersen, Ronald C.

    2011-01-01

    While factor analyses have characterized pace, rhythm and variability as factors that explain variance in gait performance in older adults, comprehensive analyses incorporating many gait parameters have not been undertaken and normative data for many of those parameters are lacking. The purposes of this study were to conduct a factor analysis on nearly two dozen spatiotemporal gait parameters and to contribute to the normative database of gait parameters from healthy, able-bodied men and wome...

  11. [Effectiveness of in situ subtalar arthrodesis with bone graft for subtalar traumatic arthritis and gait analysis].

    Science.gov (United States)

    Wu, Zhanpo; Chen, Wei; Zhang, Qi; Yin, Bing; Li, Ming; Wang, Haili; Zhang, Yingze

    2011-10-01

    foot, mild heel inversion occurred. The gravity center curve of the contralateral foot in the test group was almost the same as that of normal controls; curve medially shifted when forefoot touched down. The curve irregularly and laterally shifted in the subtalar arthrodesis foot; the curve did not medially shift when forefoot touched down. In situ subtalar arthrodesis with bone graft has good clinical results for subtalar traumatic arthritis. Gait analysis can be applied to assess the therapeutic effectiveness, and contribute to make a surgical plan. For the adaptive alteration of contralateral side after subtalar arthrodesis, a cohort of normal subjects should be used for comparison in gait analysis.

  12. Percutaneous repair of Achilles tendon ruptures with Tenolig: quantitative analysis of postural control and gait pattern.

    Science.gov (United States)

    Mezzarobba, S; Bortolato, S; Giacomazzi, A; Fancellu, G; Marcovich, R; Valentini, R

    2012-12-01

    Surgical approach in Achilles tendon's rupture involved during the last years has becoming safer and less invasive as possible. Lots of study investigate the outcomes of the mini-invasive technique with Tenolig proving its good results, but never in the long-term. Our study want to emphasize the effectiveness of this treatment exploring the postural and gait patterns in a 24-month follow up. Patients did self-training exercises without specific supervision, instead of a particular postoperative rehabilitation protocol. We compared 21 patients to a control group of 19 health subjects using a clinical examination, a podobarometric and an optokinetic analysis. Data shows no differences in time-distance parameters, despite a reduction of propulsion phase data, confirmed also by kinetic analysis. Podobarometric results show only a decrease in the anterior pressure of the injured limb (p=0.09). In standing an increase of anterior-posterior oscillation of the COP (center of pressure) (p=0.03). The results underline the long-term outcome effectiveness of the technique but some functional alterations remain. This could be the reason of the weakness, which always affected the patients. Reduction of the triceps elongation and restoration of strength during the propulsion phase should be the key points in postoperative physiotherapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Investigation of the influence of design details on short implant biomechanics using colorimetric photoelastic analysis: a pilot study

    Directory of Open Access Journals (Sweden)

    João César Zielak

    Full Text Available Introduction : The clinical survival of a dental implant is directly related to its biomechanical behavior. Since short implants present lower bone/implant contact area, their design may be more critical to stress distribution to surrounding tissues. Photoelastic analysis is a biomechanical method that uses either simple qualitative results or complex calculations for the acquisition of quantitative data. In order to simplify data acquisition, we performed a pilot study to demonstrate the investigation of biomechanics via correlation of the findings of colorimetric photoelastic analysis (stress transition areas; STAs of design details between two types of short dental implants under axial loads. Methods Implants were embedded in a soft photoelastic resin and axially loaded with 10 and 20 N of force. Implant design features were correlated with the STAs (mm2 of the colored fringes of colorimetric photoelastic analysis. Results Under a 10 N load, the surface area of the implants was directly related to STA, whereas under a 20 N load, the surface area and thread height were inversely related to STA. Conclusion A smaller external thread height seemed to improve the biomechanical performance of the short implants investigated.

  14. Modelling and Analysis on Biomechanical Dynamic Characteristics of Knee Flexion Movement under Squatting

    Directory of Open Access Journals (Sweden)

    Jianping Wang

    2014-01-01

    Full Text Available The model of three-dimensional (3D geometric knee was built, which included femoral-tibial, patellofemoral articulations and the bone and soft tissues. Dynamic finite element (FE model of knee was developed to simulate both the kinematics and the internal stresses during knee flexion. The biomechanical experimental system of knee was built to simulate knee squatting using cadaver knees. The flexion motion and dynamic contact characteristics of knee were analyzed, and verified by comparing with the data from in vitro experiment. The results showed that the established dynamic FE models of knee are capable of predicting kinematics and the contact stresses during flexion, and could be an efficient tool for the analysis of total knee replacement (TKR and knee prosthesis design.

  15. Biomechanical analysis of scoliosis and back muscles using CT evaluation and finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Saka, K.

    1987-03-01

    The CT observation of back muscles of an idiopathic scoliosis patient showed increased muscle volume and high CT value on the convex side. Following these muscles by digitizer showed that convex muscle volume increased as the vertebra shifted to convexity. These back muscles were suggested to be transversospinalis muscles. Biomechanical analysis using finite element method (FEM) was done to further investigate this increasing volume of back muscles. A Risser experiment using FEM revealed that initial lordosis configuration model only produces rotation to the convex side by unilateral loading. We, therefore, made the model adding posterior element, regarding contraction of M. transversospinalis. In a normal case, the upper vertebra is rotated over the lower towards the side opposite the muscle contraction. The scoliosis model, however, showed rotation towards the side of muscle contraction. M. transversospinalis can be considered as the agent of this rotation force. In a rib cage model, M. transversospinalis also affected the rib cage deformity.

  16. The importance of carrying a backpack in the rehabilitation of osteoporotic patients (biomechanical analysis).

    Science.gov (United States)

    Wendlova, J

    2011-01-01

    Based on a simple biomechanical analysis available to physicians, the article recommends carrying a backpack regularly as a part of the complex rehabilitation of osteoporotic patients. Carrying a backpack in front or on the back is recommended to patients with uncomplicated osteoporosis, while carrying a backpack on the back only is recommended to patients with osteporotic vertebral fractures. The importance of carrying a backpack is based upon removing the muscular dysbalance of the trunk muscles and upon increasing the bone strength by compressive force acting upon the vertebrae and proximal femur and activating osteoblasts to enhance the process of osteoformation. The backpack load is differentiated--patients with vertebral fractures put a weight up to 1 kg into their backpacks, patients without vertebral fractures increase the load up to 2 kg (Fig. 2, Ref. 12).

  17. Comparative gait analysis between children with autism and age-matched controls: analysis with temporal-spatial and foot pressure variables.

    Science.gov (United States)

    Lim, Bee-Oh; O'Sullivan, David; Choi, Bum-Gwon; Kim, Mi-Young

    2016-01-01

    [Purpose] The purpose of this study was to investigate the gait pattern of children with autism by using a gait analysis system. [Subjects] Thirty children were selected for this study: 15 with autism (age, 11.2 ± 2.8 years; weight, 48.1 ± 14.1 kg; height, 1.51 ± 0.11 m) and 15 healthy age-matched controls (age, 11.0 ± 2.9 years; weight, 43.6 ± 10 kg; height, 1.51 ± 0.011 m). [Methods] All participants walked three times on the GAITRite(®) system while their plantar pressure was being recorded. [Results] The results showed a reduction in cadence, gait velocity, and step length, and an increase in step width in children with autism. Plantar pressure variables highlight the differences between the active pressure areas, especially in the hindfoot of children with autism. [Conclusion] The results suggest that children with autism have an abnormal gait compared with that of age-matched controls, and thus they need extra attention to correct these abnormal gait patterns.

  18. Functional data analyses for the assessment of joint power profiles during gait of stroke subjects.

    Science.gov (United States)

    Andrade, André G P; Polese, Janaine C; Paolucci, Leopoldo A; Menzel, Hans-Joachim K; Teixeira-Salmela, Luci F

    2014-04-01

    Lower extremity kinetic data during walking of 12 people with chronic poststroke were reanalyzed, using functional analysis of variance (FANOVA). To perform the FANOVA, the whole curve is represented by a mathematical function, which spans the whole gait cycle and avoids the need to identify isolated points, as required for traditional parametric analyses of variance (ANOVA). The power variables at the ankle, knee, and hip joints, in the sagittal plane, were compared between two conditions: With and without walking sticks at comfortable and fast speeds. For the ankle joint, FANOVA demonstrated increases in plantar flexion power generation during 60-80% of the gait cycle between fast and comfortable speeds with the use of walking sticks. For the knee joint, the use of walking sticks resulted in increases in the knee extension power generation during 10-30% of the gait cycle. During both speeds, the use of walking sticks resulted in increased power generation by the hip extensors and flexors during 10-30% and 40-70% of the gait cycle, respectively. These findings demonstrated the benefits of applying the FANOVA approach to improve the knowledge regarding the effects of walking sticks on gait biomechanics and encourage its use within other clinical contexts.

  19. Fundamentals of Biomechanics

    OpenAIRE

    Duane Knudson

    2007-01-01

    DESCRIPTION This book provides a broad and in-depth theoretical and practical description of the fundamental concepts in understanding biomechanics in the qualitative analysis of human movement. PURPOSE The aim is to bring together up-to-date biomechanical knowledge with expert application knowledge. Extensive referencing for students is also provided. FEATURES This textbook is divided into 12 chapters within four parts, including a lab activities section at the end. The division is as follow...

  20. Quantitative analysis of gait and balance response to deep brain stimulation in Parkinson's disease.

    Science.gov (United States)

    Mera, Thomas O; Filipkowski, Danielle E; Riley, David E; Whitney, Christina M; Walter, Benjamin L; Gunzler, Steven A; Giuffrida, Joseph P

    2013-05-01

    Gait and balance disturbances in Parkinson's disease (PD) can be debilitating and may lead to increased fall risk. Deep brain stimulation (DBS) is a treatment option once therapeutic benefits from medication are limited due to motor fluctuations and dyskinesia. Optimizing DBS parameters for gait and balance can be significantly more challenging than for other PD motor symptoms. Furthermore, inter-rater reliability of the standard clinical PD assessment scale, Unified Parkinson's Disease Rating Scale (UPDRS), may introduce bias and washout important features of gait and balance that may respond differently to PD therapies. Study objectives were to evaluate clinician UPDRS gait and balance scoring inter-rater reliability, UPDRS sensitivity to different aspects of gait and balance, and how kinematic features extracted from motion sensor data respond to stimulation. Forty-two subjects diagnosed with PD were recruited with varying degrees of gait and balance impairment. All subjects had been prescribed dopaminergic medication, and 20 subjects had previously undergone DBS surgery. Subjects performed seven items of the gait and balance subset of the UPDRS while wearing motion sensors on the sternum and each heel and thigh. Inter-rater reliability varied by UPDRS item. Correlation coefficients between at least one kinematic feature and corresponding UPDRS scores were greater than 0.75 for six of the seven items. Kinematic features improved (pUPDRS items. Despite achieving high correlations with the UPDRS, evaluating individual kinematic features may help address inter-rater reliability issues and rater bias associated with focusing on different aspects of a motor task.

  1. How useful is satellite positioning system (GPS to track gait parameters? A review

    Directory of Open Access Journals (Sweden)

    Schutz Yves

    2005-09-01

    Full Text Available Abstract Over the last century, numerous techniques have been developed to analyze the movement of humans while walking and running. The combined use of kinematics and kinetics methods, mainly based on high speed video analysis and forceplate, have permitted a comprehensive description of locomotion process in terms of energetics and biomechanics. While the different phases of a single gait cycle are well understood, there is an increasing interest to know how the neuro-motor system controls gait form stride to stride. Indeed, it was observed that neurodegenerative diseases and aging could impact gait stability and gait parameters steadiness. From both clinical and fundamental research perspectives, there is therefore a need to develop techniques to accurately track gait parameters stride-by-stride over a long period with minimal constraints to patients. In this context, high accuracy satellite positioning can provide an alternative tool to monitor outdoor walking. Indeed, the high-end GPS receivers provide centimeter accuracy positioning with 5–20 Hz sampling rate: this allows the stride-by-stride assessment of a number of basic gait parameters – such as walking speed, step length and step frequency – that can be tracked over several thousand consecutive strides in free-living conditions. Furthermore, long-range correlations and fractal-like pattern was observed in those time series. As compared to other classical methods, GPS seems a promising technology in the field of gait variability analysis. However, relative high complexity and expensiveness – combined with a usability which requires further improvement – remain obstacles to the full development of the GPS technology in human applications.

  2. How useful is satellite positioning system (GPS) to track gait parameters? A review.

    Science.gov (United States)

    Terrier, Philippe; Schutz, Yves

    2005-09-02

    Over the last century, numerous techniques have been developed to analyze the movement of humans while walking and running. The combined use of kinematics and kinetics methods, mainly based on high speed video analysis and forceplate, have permitted a comprehensive description of locomotion process in terms of energetics and biomechanics. While the different phases of a single gait cycle are well understood, there is an increasing interest to know how the neuro-motor system controls gait form stride to stride. Indeed, it was observed that neurodegenerative diseases and aging could impact gait stability and gait parameters steadiness. From both clinical and fundamental research perspectives, there is therefore a need to develop techniques to accurately track gait parameters stride-by-stride over a long period with minimal constraints to patients. In this context, high accuracy satellite positioning can provide an alternative tool to monitor outdoor walking. Indeed, the high-end GPS receivers provide centimeter accuracy positioning with 5-20 Hz sampling rate: this allows the stride-by-stride assessment of a number of basic gait parameters--such as walking speed, step length and step frequency--that can be tracked over several thousand consecutive strides in free-living conditions. Furthermore, long-range correlations and fractal-like pattern was observed in those time series. As compared to other classical methods, GPS seems a promising technology in the field of gait variability analysis. However, relative high complexity and expensiveness--combined with a usability which requires further improvement--remain obstacles to the full development of the GPS technology in human applications.

  3. The history of gait analysis before the advent of modern computers.

    Science.gov (United States)

    Baker, Richard

    2007-09-01

    Aristotle (384-322 BCE) can be attributed with the earliest recorded comments regarding the manner in which humans walk. It was not until the renaissance that further progress was made through the experiments and theorising of Giovanni Borelli (1608-1679). Although several scientists wrote about walking through the enlightenment period it was the brothers Willhelm (1804-1891) and Eduard (1806-1871) Weber, working in Leipzig who made the next major contribution based on very simple measurements. Both Jules Etienne Marey (1830-1904), working in France, and Eadweard Muybridge (1830-1904), working in America, made significant advances in measurement technology. These were developed further by Otto Fischer (1861-1917) in collaboration with Willhelm Braune (1831-1892). The major developments in the early twentieth century were in the development of force plates and the understanding of kinetics. The team headed by Verne Inman (1905-1980) and Howard Eberhart (1906-1993) made major advances in America shortly after the Second War. David Sutherland (1923-2006) and Jacquelin Perry pioneered clinical applications in America and Jurg Baumann (1926-2000) in Europe. It was not until the advent of modern computers that clinical gait analysis became widely available.

  4. Analysis of EMG temporal parameters from the tibialis anterior during hemiparetic gait

    Science.gov (United States)

    Bonell, Claudia E.; Cherniz, Analía S.; Tabernig, Carolina B.

    2007-11-01

    Functional electrical stimulation is a rehabilitation technique used to restore the motor muscular function by means of electrical stimulus commanded by a trigger signal under volitional control. In order to enhance the motor rehabilitation, a more convenient control signal may be provided by the same muscle that is being stimulated. For example, the tibialis anterior (TA) in the applications of foot drop correction could be used. This work presents the statistical analysis of the root mean square (RMS) and the absolute mean value (VMA) of the TA electromyogram (EMG) signal computed from different phases of the gait cycle related with increases/decreases stages of muscle activity. The EMG records of 40 strides of 2 subjects with hemiparesia were processed. The RMS and VMA parameters allow distinguishing the oscillation phase from the other analyzed intervals, but they present significant spreading of mean values. This led to conclude that it is possible to use these parameters to identify the start of TA muscle activity, but altogether with other parameter or sensor that would reduce the number of false positives.

  5. Analysis of EMG temporal parameters from the tibialis anterior during hemiparetic gait

    Energy Technology Data Exchange (ETDEWEB)

    Bonell, Claudia E; Cherniz, AnalIa S; Tabernig, Carolina B [Laboratorio de Ingenieria de Rehabilitacion e Investigaciones Neuromusculares y Sensoriales, Facultad de Ingenieria, UNER, Oro Verde (Argentina)

    2007-11-15

    Functional electrical stimulation is a rehabilitation technique used to restore the motor muscular function by means of electrical stimulus commanded by a trigger signal under volitional control. In order to enhance the motor rehabilitation, a more convenient control signal may be provided by the same muscle that is being stimulated. For example, the tibialis anterior (TA) in the applications of foot drop correction could be used. This work presents the statistical analysis of the root mean square (RMS) and the absolute mean value (VMA) of the TA electromyogram (EMG) signal computed from different phases of the gait cycle related with increases/decreases stages of muscle activity. The EMG records of 40 strides of 2 subjects with hemiparesia were processed. The RMS and VMA parameters allow distinguishing the oscillation phase from the other analyzed intervals, but they present significant spreading of mean values. This led to conclude that it is possible to use these parameters to identify the start of TA muscle activity, but altogether with other parameter or sensor that would reduce the number of false positives.

  6. [Effects of aquatic physical exercise on the kinematic gait pattern in patients with Parkinson's disease: a pilot study].

    Science.gov (United States)

    Rodriguez, Paula; Cancela, José M; Ayan, Carlos; do Nascimento, Carla; Seijo-Martínez, Manuel

    2013-03-16

    AIM. To determine the effects of an aquatic-based physical exercise program on gait parameters of patients with Parkinson's disease (PD). PATIENTS AND METHODS. A total of nine patients diagnosed with idiopathic PD (stages I-III according to the Hoehn and Yahr scale) carried out an aquatic physical exercise program which lasted for five months, with one session per week. A three-dimensional biomechanical analysis was used to determine the effects of the program on several kinematic variables (walking speed, cadence, stride length, step time, single and double support time, angles of the hip, knee and ankle joints) which were assessed by a treadmill-walking test. RESULTS. At the end of the program, significant improvement in walking speed, stride length and on the relationship between single and double support time (p Aquatic-based physical exercise seems to have positive effects in some aspects of the gait kinematics parameters present in the typical gait pattern of patients with PD.

  7. Insights into gait disorders: walking variability using phase plot analysis, Parkinson's disease.

    Science.gov (United States)

    Esser, Patrick; Dawes, Helen; Collett, Johnny; Howells, Ken

    2013-09-01

    Gait variability may have greater utility than spatio-temporal parameters and can, be an indication for risk of falling in people with Parkinson's disease (PD). Current methods rely on prolonged data collection in order to obtain large datasets which may be demanding to obtain. We set out to explore a phase plot variability analysis to differentiate typically developed adults (TDAs) from PD obtained from two 10 m walks. Fourteen people with PD and good mobility (Rivermead Mobility Index≥8) and ten aged matched TDA were recruited and walked over 10-m at self-selected walking speed. An inertial measurement unit was placed over the projected centre of mass (CoM) sampling at 100 Hz. Vertical CoM excursion was derived to determine modelled spatiotemporal data after which the phase plot analysis was applied producing a cloud of datapoints. SDA described the spread and SDB the width of the cloud with β the angular vector of the data points. The ratio (∀) was defined as SDA: SDB. Cadence (p=.342) and stride length (p=.615) did not show a significance between TDA and PD. A difference was found for walking speed (p=.041). Furthermore a significant difference was found for β (p=.010), SDA (p=.004) other than SDB (p=.385) or ratio ∀ (p=.830). Two sequential 10-m walks showed no difference in PD for cadence (p=.193), stride length (p=.683), walking speed (p=.684) and β (p=.194), SDA (p=.051), SDB (p=.145) or ∀ (p=.226). The proposed phase plot analysis, performed on CoM motion could be used to reliably differentiate PD from TDA over a 10-m walk.

  8. Gait analysis associated with anterior cruciate ligament reconstruction%前交叉韧带重建手术前后的步态分析

    Institute of Scientific and Technical Information of China (English)

    王卫明; 赵德伟; 崔大平; 李端欣; 刘宇鹏; 杨圣

    2009-01-01

    Objective To determine how selected gait parameters, measured by three-dimensional motion capture system, may change as a result of anterior cruciate ligament (ACL) deficiency and following ACL reconstruction. Methods The study was performed on 29 ACL-deficient subjects prior to and at 3, 6,9 and 12 months after ACL reconstructive surgery by the four stranded hamstring tendon technique. The group was examined at an average of 2.6 months after injury (range: 2 weeks-16 months). But at pre-surgery, gait analysis was performed using the DorealSoft DVMC-8801 three-dimensional motion capture system. Kinematic data were recorded for the lower extremities. The results obtained from the injured subjects were compared with those of 58 individuals without ACL damage. Each subject was asked to walk on a motorized treadmill (ECON USA) with different slopes and perform-after a 6 minute familiarization time-at least 2 minutes of walking at a constant speed of 1.9 km/h. Results The ACL-deficient patients exhibited a quadriceps avoidance pattern prior to and at 3 months post-surgery. In the operated individuals, the spatial-temporal parameters and the knee angle had already regained a normal pattern for the ACL-deficient extremity during gait at 6 months post-surgery. However, the relative ACL movement parameter-which describes the tibial translation into the direction of ACL-and the angular acceleration showed no significant statistical difference as compared with the values of healthy control group at just 9 months post-surgery.Conclusion The ACL surgical repair significantly alters lower-extremity gait patterns, and that the establishment of pre-injury gait patterns takes at least 9 months to occur. 3D gait analysis for assessment of patients undergoing anterior cruciate ligament reconstruction surgery can precisely reflect knee biomechanical changes, and assist to explore optimal treatment approach and postoperative rehabilitation methods.%目的 研究膝关节前交叉韧

  9. Gait analysis associated with ankle ligament reconstruction%踝关节重建手术前后的步态分析

    Institute of Scientific and Technical Information of China (English)

    崔大平; 赵德伟; 孙强; 于小光

    2013-01-01

    [ Objective]The aim of this study is to determine how selected gait parameters, measured by three-dimensional motion capture system, may change as a result of ankle ligament deficiency and following ankle ligament reconstruction. [ Method] The study was performed on 39 ankle ligament-deficient subjects prior to and 6 months, 12 months, 18months and 24 for months after ankle ligament reconstructive surgery by the four stranded hamstring tendon technique. The group was examined an average of 2. 6 months after injury ( ranging from 2 weeks to 16 months) , but before surgery. Gait analysis was performed using the DorealSoft DVMC-8801 three-dimensional motion capture system (Doreal Software Co. ,Ltd. , China). Kinematic data were recorded for the lower limb. The results obtained from the injured subjects were compared with those of 58 individuals without ankle ligament damage. Each subject was asked to walk on a motorized treadmill (ECON USA) with different slope and perform-after six minutes of familiarization time-at least 2 minutes of walking at a constant speed of 1.9 km/h. [ Result ] The ankle ligament-deficient patients exhibited a quadriceps avoidance pattern prior to and 6 months after surgery. In the individuals operated on, the spatial-temporal parameters and the ankle angle had already regained a normal pattern for the ankle ligament-deficient limb during gait 12 months after surgery. However, the relative ankle ligament movement parameter-which describes the tibial translation into the direction of ankle ligament-and the angular acceleration showed no significant statistical difference compared with the values of healthy control group just 18 months after surgery. [Conclusion]The data from this study suggest that ANKLE LIGAMENT surgical repair significantly alters lower-extremity gait patterns, and that the establishment of pre-injury gait patterns takes at least 18 months to occur. 3D gait analysis for assessment of patients undergoing anterior cruciate

  10. Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects

    Directory of Open Access Journals (Sweden)

    Driscoll Mark

    2011-05-01

    Full Text Available Abstract Background The etiology of AIS remains unclear, thus various hypotheses concerning its pathomechanism have been proposed. To date, biomechanical modeling has not been used to thoroughly study the influence of the abnormal growth profile (i.e., the growth rate of the vertebral body during the growth period on the pathomechanism of curve progression in AIS. This study investigated the hypothesis that AIS progression is associated with the abnormal growth profiles of the anterior column of the spine. Methods A finite element model of the spinal column including growth dynamics was utilized. The initial geometric models were constructed from the bi-planar radiographs of a normal subject. Based on this model, five other geometric models were generated to emulate different coronal and sagittal curves. The detailed modeling integrated vertebral body growth plates and growth modulation spinal biomechanics. Ten years of spinal growth was simulated using AIS and normal growth profiles. Sequential measures of spinal alignments were compared. Results (1 Given the initial lateral deformity, the AIS growth profile induced a significant Cobb angle increase, which was roughly between three to five times larger compared to measures utilizing a normal growth profile. (2 Lateral deformities were absent in the models containing no initial coronal curvature. (3 The presence of a smaller kyphosis did not produce an increase lateral deformity on its own. (4 Significant reduction of the kyphosis was found in simulation results of AIS but not when using the growth profile of normal subjects. Conclusion Results from this analysis suggest that accelerated growth profiles may encourage supplementary scoliotic progression and, thus, may pose as a progressive risk factor.

  11. Biomechanical Analysis of Latarjet Screw Fixation: Comparison of Screw Types and Fixation Methods.

    Science.gov (United States)

    Shin, Jason J; Hamamoto, Jason T; Leroux, Timothy S; Saccomanno, Maristella F; Jain, Akshay; Khair, Mahmoud M; Mellano, Christen R; Shewman, Elizabeth F; Nicholson, Gregory P; Romeo, Anthony A; Cole, Brian J; Verma, Nikhil N

    2017-09-01

    To compare the initial fixation stability, failure strength, and mode of failure of 5 different screw types and fixation methods commonly used for the classic Latarjet procedure. Thirty-five fresh-frozen cadaveric shoulder specimens were allocated into 5 groups. A 25% anteroinferior glenoid defect was created, and a classic Latarjet coracoid transfer procedure was performed. All grafts were fixed with 2 screws, differing by screw type and/or fixation method. The groups included partially threaded solid 4.0-mm cancellous screws with bicortical fixation, partially threaded solid 4.0-mm cancellous screws with unicortical fixation, fully threaded solid 3.5-mm cortical screws with bicortical fixation, partially threaded cannulated 4.0-mm cancellous screws with bicortical fixation, and partially threaded cannulated 4.0-mm captured screws with bicortical fixation. All screws were stainless steel. Outcomes included cyclic creep and secant stiffness during cyclic loading, as well as load and work to failure during the failure test. Intergroup comparisons were made by a 1-way analysis of variance. There were no significant differences among different screw types or fixation methods in cyclic creep or secant stiffness after cyclic loading or in load to failure or work to failure during the failure test. Post-failure radiographs showed evidence of screw bending in only 1 specimen that underwent the Latarjet procedure with partially threaded solid cancellous screws with bicortical fixation. The mode of failure for all specimens analyzed was screw cutout. In this biomechanical study, screw type and fixation method did not significantly influence biomechanical performance in a classic Latarjet procedure. When performing this procedure, surgeons may continue to select the screw type and method of fixation (unicortical or bicortical) based on preference; however, further studies are required to determine the optimal method of treatment. Surgeons may choose the screw type and

  12. Motion Analysis of Chinese Bajiquan Based on Three-dimensional Images of Biomechanics

    Directory of Open Access Journals (Sweden)

    Ming Zi

    2017-06-01

    Full Text Available With the development of sports biomechanics, human motion mechanical characteristics have received more and more attention from plenty of researchers. Therefore, how to analyze the biomechanics of the living body has become the principle problem at the present stage. In this study, the three-dimensional (3D image was adopted for a sport dynamics analysis of the riding style of the Chinese Bajiquan. First of all, the change rules of the temporal characteristic parameters when the research objects in the experiment group and the control group completing the riding style action were analyzed based on the characteristics of the action; in the initial stage of the action, the movement speed was relatively slow, and with the center of gravity of the right feet moving down, stable support was formed. Secondly, parameters such as hip joint angle and knee joint angle, etc., were tested from the perspective of dynamics sensors and a rigid block model was constructed to accurately calculate the joint angle. The hip joint guaranteed the stability of center of gravity during movement; the fluctuation of the ankle joint was relatively small, while the maximum fluctuation range of the trunk angle during movement was small, which could keep the upper limbs up straight as well as reduce fluctuation, and the lowering of the center of gravity was good for the stability of the lower limbs. When the riding style action was completed, the toes of the research objects in the experiment group would buckle subconsciously to control the balance of the body. Therefore, the riding style requires the interaction among different parameters, which conforms with the characteristics of the Chinese Bajiquan.

  13. Skeleton-Based Abnormal Gait Detection

    Directory of Open Access Journals (Sweden)

    Trong-Nguyen Nguyen

    2016-10-01

    Full Text Available Human gait analysis plays an important role in musculoskeletal disorder diagnosis. Detecting anomalies in human walking, such as shuffling gait, stiff leg or unsteady gait, can be difficult if the prior knowledge of such a gait pattern is not available. We propose an approach for detecting abnormal human gait based on a normal gait model. Instead of employing the color image, silhouette, or spatio-temporal volume, our model is created based on human joint positions (skeleton in time series. We decompose each sequence of normal gait images into gait cycles. Each human instant posture is represented by a feature vector which describes relationships between pairs of bone joints located in the lower body. Such vectors are then converted into codewords using a clustering technique. The normal human gait model is created based on multiple sequences of codewords corresponding to different gait cycles. In the detection stage, a gait cycle with normality likelihood below a threshold, which is determined automatically in the training step, is assumed as an anomaly. The experimental results on both marker-based mocap data and Kinect skeleton show that our method is very promising in distinguishing normal and abnormal gaits with an overall accuracy of 90.12%.

  14. Motion analysis of Chinese normal knees during gait based on a novel portable system.

    Science.gov (United States)

    Zhang, Yu; Yao, Zilong; Wang, Shaobai; Huang, Wenhan; Ma, Limin; Huang, Huayang; Xia, Hong

    2015-03-01

    Normative tibiofemoral data of Chinese or Asian subjects during gait is rarely reported. This study is aimed at investigating the six-degree-of-freedom (6DOF) knee kinematics of adult Chinese during gait, based on a novel portable system. Twenty-eight healthy Chinese subjects (56 knees) were studied during their treadmill gaits. A set of optical marker clusters were attached to the thighs and shanks of each subject, who was tracked by an optical joint kinematics measurement system. Knee landmarks were initially digitized with respect to the marker cluster sets to determine the local coordinate systems for calculation of 6DOF knee joint kinematics. The range of motion (ROM) in 6DOF and 5 kinematic parameters were calculated and compared between bilateral knees and genders. We discovered that knee rotations, as well as motion in proximodistal and mediolateral translations, showed similar patterns in flexion and extension. However, the anteroposterior translations did not show a clear pattern. The results of ROM in 6DOF obtained in this study are comparable with those reported in existing literature. No statistical difference was found between left and right knees either in the ROMs or in the 5 kinematic parameters. However, the ROM in the mediolateral direction during gait was found to be higher in men than women (P=0.014). In addition, the femurs of female subjects rotated more internally than the femurs of male during the stance phase (P=0.011). We concluded that normal Chinese knees exhibited distinct gait patterns, except for anteroposterior motion. Women and men exhibit different axial rotations and mediolateral translation patterns during their treadmill gait.

  15. Gait analysis of teenagers and young adults diagnosed with autism & severe verbal communication disorders

    Directory of Open Access Journals (Sweden)

    Michael J. Weiss

    2013-05-01

    Full Text Available Both movement differences and disorders are common within autism spectrum disorders (ASD. These differences have wide and heterogeneous variability among different ages and sub-groups all diagnosed with ASD. Gait was studied in a more homogeneously identified group of nine teenagers and young adults who scored as severe in both measures of verbal communication and overall rating of Autism on the Childhood Autism Rating Scales (CARS. The ASD individuals were compared to a group of typically developing university undergraduates of similar ages. All participants walked a distance of 6-meters across a GAITRite electronic walkway for six trials. The ASD and comparison groups differed widely on many spatiotemporal aspects of gait including: step and stride length, foot positioning, cadence, velocity, step time, gait cycle time, swing time, stance time, and single and double support time. Moreover, the two groups differed in the percentage of the total gait cycle in each of these phases. The qualitative rating of Body Use on the CARS also indicated severe levels of unusual body movement for all of the ASD participants. These findings demonstrate that older teens and young adults with severe forms of Verbal Communication Impairments and Autism differ widely in their gait from typically developing individuals. The differences found in the current investigation are far more pronounced compared to previous findings with younger and/or less severely involved individuals diagnosed with ASD as compared to typically developing controls. As such, these data may be a useful anchor-point in understanding the trajectory of development of gait specifically and motor functions generally.

  16. Validity of the MarkWiiR for kinematic analysis during walking and running gaits

    Directory of Open Access Journals (Sweden)

    Johnny Padulo

    2014-11-01

    Full Text Available The aim of this study was to validate the MarkWiiR (MW captured by the Nintendo Wii-Remote (100-Hz to assess active marker displacement by comparison with 2D video analysis. Ten participants were tested on a treadmill at different walking (1<6 km · h-1 and running (10<13 km · h-1 speeds. During the test, the active marker for MW and a passive marker for video analysis were recorded simultaneously with the two devices. The displacement of the marker on the two axes (x-y was computed using two different programs, Kinovea 0.8.15 and CoreMeter, for the camera and MW, respectively. Pearson correlation was acceptable (x-axis r≥0.734 and y-axis r≥0.684, and Bland–Altman plots of the walking speeds showed an average error of 0.24±0.52% and 1.5±0.91% for the x- and y-axis, respectively. The difference of running speeds showed average errors of 0.67±0.33% and 1.26±0.33% for the x- and y-axes, respectively. These results demonstrate that the two measures are similar from both the x- and the y-axis perspective. In conclusion, these findings suggest that the MarkWiiR is a valid and reliable tool to assess the kinematics of an active marker during walking and running gaits.

  17. The Use of Accelerometers and Gyroscopes to Estimate Hip and Knee Angles on Gait Analysis

    Directory of Open Access Journals (Sweden)

    Francesco Alonge

    2014-05-01

    Full Text Available In this paper the performance of a sensor system, which has been developed to estimate hip and knee angles and the beginning of the gait phase, have been investigated. The sensor system consists of accelerometers and gyroscopes. A new algorithm was developed in order to avoid the error accumulation due to the gyroscopes drift and vibrations due to the ground contact at the beginning of the stance phase. The proposed algorithm have been tested and compared to some existing algorithms on over-ground walking trials with a commercial device for assisted gait. The results have shown the good accuracy of the angles estimation, also in high angle rate movement.

  18. Two-Dimensional Video Analysis of Youth and Adolescent Pitching Biomechanics: A Tool For the Common Athlete.

    Science.gov (United States)

    DeFroda, Steven F; Thigpen, Charles A; Kriz, Peter K

    2016-01-01

    Three-dimensional (3D) motion analysis is the gold standard for analyzing the biomechanics of the baseball pitching motion. Historically, 3D analysis has been available primarily to elite athletes, requiring advanced cameras, and sophisticated facilities with expensive software. The advent of newer technology, and increased affordability of video recording devices, and smartphone/tablet-based applications has led to increased access to this technology for youth/amateur athletes and sports medicine professionals. Two-dimensional (2D) video analysis is an emerging tool for the kinematic assessment and observational measurement of pitching biomechanics. It is important for providers, coaches, and players to be aware of this technology, its application in identifying causes of arm pain and preventing injury, as well as its limitations. This review provides an in-depth assessment of 2D video analysis studies for pitching, a direct comparison of 2D video versus 3D motion analysis, and a practical introduction to assessing pitching biomechanics using 2D video analysis.

  19. Gait analysis system for assessment of dynamic loading axis of the knee.

    Science.gov (United States)

    Kawakami, Hideo; Sugano, Nobuhiko; Yonenobu, Kazuo; Yoshikawa, Hideki; Ochi, Takahiro; Hattori, Asaki; Suzuki, Naoki

    2005-01-01

    The purpose of this study was (1) to demonstrate a computer-assisted gait analysis system that can visualize the locus of the dynamic loading axis on the proximal tibia joint surface, and (2) to assess the accuracy of this system in a patient with bilateral knee osteoarthritis (OA). This system uses force plate data, CT skeletal structure data and motion capture data obtained from an infrared position sensor. The relative positions between bones and markers were used to calculate skeletal model movement based on movement of the markers. The locus of the dynamic loading axis on the knee joint was defined as the point on the proximal tibia joint surface that intersected with the loading axis of the lower limb, which passed through the centre of the femoral head and the centroid of multiple points surrounded by the distal tibia joint surface contour. To assess the accuracy of this system, open MRI was used to evaluate positions of skin markers against bones in six healthy volunteers. The locus in a patient was affected by differences between the varus knee with medial compartment OA on the non-operative side and the knee treated with high tibial osteotomy (HTO) on the opposite side. At knee flexion angles of 0 degrees, 15 degrees and 30 degrees, the mean value of measurement error for point locations on the locus was within 5.6% of joint width in the lateral direction (JWLD) on the proximal tibia joint. This system can provide clinically useful information for evaluation of the dynamic loading axis on the knee joint surface.

  20. Multicenter trial of motion analysis for injury risk prediction: lessons learned from prospective longitudinal large cohort combined biomechanical - epidemiological studies

    Directory of Open Access Journals (Sweden)

    Timothy E. Hewett

    2015-10-01

    Full Text Available ABSTRACTOur biodynamics laboratory group has conducted large cohort biomechanical-epidemiological studies targeted at identifying the complex interactions among biomechanical, biological, hormonal, and psychosocial factors that lead to increased risk of anterior cruciate ligament (ACL injuries. The findings from our studies have revealed highly sensitive and specific predictors for ACL injury. Despite the high incidence of ACL injuries among young athletes, larger cohorts are needed to reveal the underlying mechanistic causes of increased risk for ACL injury. In the current study, we have outlined key factors that contribute to the overall success of multicenter, biomechanical-epidemiological investigations designed to test a larger number of athletes who otherwise could not be recruited, screened, or tested at a single institution. Twenty-five female volleyball players were recruited from a single high school team and tested at three biodynamics laboratories. All athletes underwent three-dimensional motion capture analysis of a drop vertical jump task. Kinematic and kinetic variables were compared within and among laboratories. Reliability of peak kinematic variables was consistently rated good-to-excellent. Reliability of peak kinetic variables was consistently rated goodto-excellent within sites, but greater variability was observed between sites. Variables measured in the sagittal plane were typically more reliable than variables measured in the coronal and transverse planes. This study documents the reliability of biomechanical variables that are key to identification of ACL injury mechanisms and of athletes at high risk. These findings indicate the feasibility of executing multicenter, biomechanical investigations that can yield more robust, reliable, and generalizable findings across larger cohorts of athletes.

  1. Video Analysis of Human Gait and Posture to Determine Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Ivan Lee

    2008-08-01

    Full Text Available This paper investigates the application of digital image processing techniques to the detection of neurological disorder. Visual information extracted from the postures and movements of a human gait cycle can be used by an experienced neurologist to determine the mental health of the person. However, the current visual assessment of diagnosing neurological disorder is based very much on subjective observation, and hence the accuracy of diagnosis heavily relies on experience. Other diagnostic techniques employed involve the use of imaging systems which can only be operated under highly constructed environment. A prototype has been developed in this work that is able to capture the subject's gait on video in a relatively simple setup, and from which to process the selected frames of the gait in a computer. Based on the static visual features such as swing distances and joint angles of human limbs, the system identifies patients with Parkinsonism from the test subjects. To our knowledge, it is the first time swing distances are utilized and identified as an effective means for characterizing human gait. The experimental results have shown a promising potential in medical application to assist the clinicians in diagnosing Parkinsonism.

  2. Gait analysis of transfemoral amputee patients using prostheses with two different knee joints

    NARCIS (Netherlands)

    Boonstra, AM; Schrama, JM; Eisma, WH; Hof, AL; Fidler, EV

    1996-01-01

    Objective: To evaluate the gait of transfemoral amputee patients using a prosthesis with a 4-bar linkage knee joint with either a mechanical swing phase control (Otto Beck 3R20) or a pneumatic swing phase control (Tehlin knee). Design: Randomized cross-over trial. Setting: Rehabilitation Department

  3. An Analysis of Body Center of Mass Movement during Walking for Power Asisst of Paraplegic Gait

    Science.gov (United States)

    Kagawa, Takahiro; Yamashina, Hideki; Uno, Yoji

    An efficient and stable gait control is an essential problem to develop a legged locomotor device for paraplegics. In this study, we investigate a necessary condition of the ballistic walking to avoid a backward balance loss. The condition derived by an inverted pendulum model is represented as a simple relationship between a position and velocity of a body center of mass at toe-off. The condition was validated through simulation experiments of a 7-link musculoskeletal model and gait measurement experiments of normal and paraplegic subjects. The results of the model simulation showed a good agreement with some predictions of the inverted pendulum model. The measured center of mass trajectories of normal and paraplegic gaits were satisfied with the necessary condition. These results suggest that the necessary condition is effective to avoid a backward falling during walking. In addition, energy input was required in a double support phase while the trajectory followed the ballistic movement of the inverted pendulum in a single support phase for a normal subject. These results suggest that a power assist control to be satisfied with the necessary condition during a double support phase and a ballistic gait generation during a single support phase are required for a paraplegic locomotor with efficiency and stability.

  4. [Gait analysis of adults' slips and falls based on COM equilibrium recovery response].

    Science.gov (United States)

    Su, Hailong; Zhang, Dawei; Li, Jia

    2012-02-01

    Aiming at slips and falls occurred during adults' walking, a method was proposed that could predict slips and falls based on center of mass (COM) recovery response. This method, based on the Kane's equation dynamic walking model of the lower extremities, can be used to rapidly detect dynamic parameters in each gait cycle, and analyze any instantaneous balance status of slips and falls, and the characteristic COM curves may be accomplished on the basis of the measurement data. Moreover, causations, phases and processes about gaits of adults' slips and falls could be judged and analyzed by the characteristic curves. When the distance between the projection point of COM to base of support (BOS) domain is more than 0.012-0. 015m, human gaits have a tendency to slip and fall. When COM velocity response curve value is between 0.9-2. 1m/s, human gaits are normal and stable. The experimental results of slips and falls about the two different age groups showed that the method is able to predict and revise slips and falls by the COM recovery response characteristic curves.

  5. Gait Analysis in Adults with Intellectual Disabilities Living in a Residential Facility

    Science.gov (United States)

    Salb, Johannes; Lindemann, Ulrich; Woodward, Carol; Almutaseb, Sanaa; Becker, Clemens; Sieber, Cornel; Freiberger, Ellen

    2017-01-01

    Background: Mobility limitations are of particular interest in people with intellectual disabilities. The aim of this study was to present feasibility and mean values of gait parameters in people with intellectual disability and it was hypothesized that several trials would be necessary to gain stable values for this cohort. Material and Methods:…

  6. Balance and gait analysis of senior tumble-prone patients with cerebrovascular disease.

    Science.gov (United States)

    Fang, Hong

    2017-05-01

    This study aims to observe the tumble status for senior patients with cerebrovascular disease, and to analyze the balance and gait condition in order to provide the basis for clinical prevention and nursing care. A total of 48 senior patients with cerebrovascular disease were investigated with the Tinetti balance and gait evaluation, and the relation between tumble occurrence and balance ability was interrogated. The total score of balance evaluation value and gait value for 89.1% of the senior patients with cerebrovascular disease was fewer than 19 points, which indicated a risk of tumble. The majority of patients could not complete the immediate standing balance well, turning stand balance, mild chest-pushed balance and eyes-closed standing balance. The occurrence of immediate standing balance and turning stand balance fewer than three times was less frequent than the occurrence of tumble for one time, which had significant difference (P<0.05). The senior patients with cerebrovascular disease and immediate standing balance and turning stand balance could easily tumble many times, which was crucial for the nursing staff to carry out preventive strategies. Detailed observations of balance and gait function for senior patients were described, which provided a promising basis for designing appropriate nursing measures.

  7. Very low cost stand-off suicide bomber detection system using human gait analysis to screen potential bomb carrying individuals

    Science.gov (United States)

    Greneker, Gene, III

    2005-05-01

    Individuals who carry bombs on their bodies and detonate those bombs in public places are a security problem. There is belief that suicide bombings currently used in the mid-east may spread to the United States if the organized terrorist groups operating in the United States are not identified and the cell members arrested. While bombs in vehicles are the primary method currently used to spread terror in Iraq, U. S. warfighters are starting to face suicide bombers. This may become more of the situation if a stand-off detection capability is developed for the vehicle bomb case. This paper presents a concept, that if developed and commercialized, could provide an inexpensive suicide bomber screening system that could be used to screen individuals approaching a checkpoint while the individual is still 500 to 1,000 feet from the checkpoint. The proposed system measures both the radar cross-section of the individual and the radar derived gait characteristics that are associated with individuals carrying a bomb on their body. GTRI researchers propose to use human gait characteristics, as detected by radar, to determine if a human subject who is carrying no visible load on the body is actually carrying a concealed load under their clothes. The use of radar gait as a metric for the detection (as opposed to a video system) of a suicide bomber is being proposed because detection of gait characteristics are thought to be less sensitive to where the bomb is located on the body, lighting conditions, and the fact that the legs may be shrouded in a robe. The detection of a bomb using radar gait analysis may also prove to be less sensitive to changing tactics regarding where the bomb is placed on the body. An inert suicide bomb vest was constructed using water pipes to simulate the explosive devices. Wiring was added to simulated detonators. The vest weighs approximately 35 pounds. Radar data was taken on the volunteer subject wearing the vest that simulated the suicide bomb. This

  8. The cow pedogram-Analysis of gait cycle variables allows the detection of lameness and foot pathologies.

    Science.gov (United States)

    Alsaaod, M; Luternauer, M; Hausegger, T; Kredel, R; Steiner, A

    2017-02-01

    Changes in gait characteristics are important indicators in assessing the health and welfare of cattle. The aim of this study was to detect unilateral hind limb lameness and foot pathologies in dairy cows using 2 high-frequency accelerometers (400 Hz). The extracted gait cycle variables included temporal events (kinematic outcome = gait cycle, stance phase, and swing phase duration) and several peaks (kinetic outcome = foot load, toe-off). The study consisted of 2 independent experiments. Experiment 1 was carried out to compare the pedogram variables between the lateral claw and respective metatarsus (MT; n = 12) in sound cows (numerical rating system variables across limbs within cows between lame cows (numerical rating system ≥3, n = 5) and sound cows (n = 12) using pedogram data that were visually compared with the synchronized cinematographic data. Experiment 2 was carried out to determine the differences across limbs within cows between cows with foot lesions (n = 12) and without foot lesions (n = 12) using only pedogram data. A receiver operator characteristic analysis was used to determine the performance of selected pedogram variables at the cow level. The pedogram of the lateral claw of sound cows revealed similarities of temporal events (gait cycle duration, stance and swing phases) but higher peaks (toe-off and foot load) as compared with the pedogram of the respective MT. In both experiments, comparison of the values between groups showed significantly higher values in lame cows and cows with foot lesions for all gait cycle variables. The optimal cutoff value of the relative stance phase duration for identifying lame cows was 14.79% and for cows with foot lesions was 2.53% with (both 100% sensitivity and 100% specificity) in experiments 1 and 2, respectively. The use of accelerometers with a high sampling rate (400 Hz) at the level of the MT is a promising tool to indirectly measure the kinematic variables of the lateral claw and to detect unilateral

  9. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Jiang-Jun Zhou

    2017-01-01

    Full Text Available In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP and a locking compression plate (LCP. CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing.

  10. An Efficient Gait Recognition with Backpack Removal

    Science.gov (United States)

    Lee, Heesung; Hong, Sungjun; Kim, Euntai

    2009-12-01

    Gait-based human identification is a paradigm to recognize individuals using visual cues that characterize their walking motion. An important requirement for successful gait recognition is robustness to variations including different lighting conditions, poses, and walking speed. Deformation of the gait silhouette caused by objects carried by subjects also has a significant effect on the performance of gait recognition systems; a backpack is the most common of these objects. This paper proposes methods for eliminating the effect of a carried backpack for efficient gait recognition. We apply simple, recursive principal component analysis (PCA) reconstructions and error compensation to remove the backpack from the gait representation and then conduct gait recognition. Experiments performed with the CASIA database illustrate the performance of the proposed algorithm.

  11. Gait analysis after total knee arthroplasty with cemented versus cementless type%骨水泥型与非骨水泥型全膝关节置换后的步态差异

    Institute of Scientific and Technical Information of China (English)

    张旻; 江澜; 沈晓艳

    2011-01-01

    背景:全膝关节置换已经被证明是一种有效治疗膝骨性关节炎的方法,但是不同类型的全膝关节置换假体固定方式术后所产生的膝关节下肢生物力学差异至今仍不明确.目的:通过三维步态分析骨水泥固定和非骨水泥固定两种不同的全膝关节置换术后患者的膝关节生物力学差异.方法:分别选取骨水泥型全膝关节置换以及非骨水泥型全膝关节置换患者各16例,通过测力台以及三维步态分析系统比较2组患者术前以及术后3个月的膝关节生物力学变化并进行对比.结果与结论:与手术前相比两组患者术后步速及步长均明显增加,支撑相在整个步态周期中的百分比明显减小, 膝关节屈在支撑相及摆动相中最大屈曲角度均明显增加,膝关节外翻角度增加.两种患者术后膝关节内翻角度以及膝关节内收力矩均明显减小.提示,骨水泥型与非骨水泥型全膝关节置换术均能有效改善膝骨性关节炎患者的步行能力以及下肢关节功能,两者间未见明显生物力学差异.%BACKGROUND: Total knee arthroplasty (TKA) has been proved to be a very effective method for patients with knee osteoarthritis. But the biomedical changes at knee joint between two different types of TKA (cemented and cementless) after operation remain not clear.OBJECTIVE: To explore the different biomechanical changes between the cemented and cementless TKA through three-dimensional gait analysis.METHODS: A total of 16 knee osteoarthritis patients treated with cemented TKA and 16 with cementless TKA were included.Force plates and three-dimensional gait analysis system were used to compare differences in biomechanics before and 3 months after operations.RESULTS AND CONCLUSION: Both groups showed significant increased walking speed and stride length, but decreased percentage of stance phase in gait cycle after operation, significant increased knee flexion angle in stance phase and swing

  12. Biomechanics of first ray hypermobility: an investigation on joint force during walking using finite element analysis.

    Science.gov (United States)

    Wong, Duo Wai-Chi; Zhang, Ming; Yu, Jia; Leung, Aaron Kam-Lun

    2014-11-01

    Hypermobility of the first ray is suggested to contribute to hallux valgus. The investigation of first ray hypermobility focused on the mobility and range of motion that based on manual examination. The load transfer mechanism of the first ray is important to understand the development and pathomechanism of hallux valgus. In this study, we investigated the immediate effect of the joint hypermobility on the metatarsocuneiform and metatarsophalangeal joint loading through a reduction of the stiffness of the foot ligaments. A three-dimensional foot model was constructed from a female aged 28 via MRI. All foot and ankle bones, including two sesamoids and the encapsulated bulk tissue were modeled as 3D solid parts, linking with ligaments of shell elements and muscles connectors. The stance phase of walking was simulated by the boundary and loading conditions obtained from gait analysis of the same subject. Compared with the normal foot, the hypermobile foot had higher resultant metatarsocuneiform and metatarsophalangeal joint forces. The increases accounted for 18.6% and 3.9% body weight. There was also an abrupt change of metatarsocuneiform joint force in the medial-lateral direction. The predicted results represented possible risk of joint problems and metatarsus primus varus.

  13. Gait evaluation of an automatic stance-control knee orthosis in a patient with postpoliomyelitis.

    Science.gov (United States)

    Hebert, Jackie S; Liggins, Adrian B

    2005-08-01

    To determine gait differences in a subject ambulating with a knee-ankle-foot orthosis (KAFO) with a locked knee joint versus an automatic stance-control knee joint. Single-subject crossover design. Tertiary rehabilitation facility with a motion analysis laboratory. A 61-year-old ambulatory male volunteer with postpoliomyelitis walking with a stance-control KAFO. Instrumented gait analysis and Physiological Cost Index in the locked knee and stance-control modes. Differences in gait parameters. On the braced limb, stance-control mode showed a near-normal knee flexion wave in swing, reduced pelvic retraction and rotational excursion, and improved hip power generation. On the nonbraced limb, the stance-control mode allowed elimination of vaulting, reduction in abnormal ankle and hip power generation, increased knee power absorption, and more typical quadriceps activation. There was a trend toward improved energy efficiency in the stance-control mode. Use of a stance-control knee joint in a KAFO appears to improve gait biomechanics and improve energy efficiency compared with a locked knee.

  14. Dinosaur biomechanics.

    Science.gov (United States)

    Alexander, R McNeill

    2006-08-07

    Biomechanics has made large contributions to dinosaur biology. It has enabled us to estimate both the speeds at which dinosaurs generally moved and the maximum speeds of which they may have been capable. It has told us about the range of postures they could have adopted, for locomotion and for feeding, and about the problems of blood circulation in sauropods with very long necks. It has made it possible to calculate the bite forces of predators such as Tyrannosaurus, and the stresses they imposed on its skull; and to work out the remarkable chewing mechanism of hadrosaurs. It has shown us how some dinosaurs may have produced sounds. It has enabled us to estimate the effectiveness of weapons such as the tail spines of Stegosaurus. In recent years, techniques such as computational tomography and finite element analysis, and advances in computer modelling, have brought new opportunities. Biomechanists should, however, be especially cautious in their work on animals known only as fossils. The lack of living specimens and even soft tissues oblige us to make many assumptions. It is important to be aware of the often wide ranges of uncertainty that result.

  15. Comparative biomechanical and microstructural analysis of native versus peracetic acid-ethanol treated cancellous bone graft.

    Science.gov (United States)

    Rauh, Juliane; Despang, Florian; Baas, Jorgen; Liebers, Cornelia; Pruss, Axel; Gelinsky, Michael; Günther, Klaus-Peter; Stiehler, Maik

    2014-01-01

    Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE) treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG). Forty-eight human CBG cylinders were either treated by PE or frozen at -20 °C and subjected to compression testing and histological and scanning electron microscopy (SEM) analysis. The levels of compressive strength, stiffness (Young's modulus), and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG.

  16. Comparative Biomechanical and Microstructural Analysis of Native versus Peracetic Acid-Ethanol Treated Cancellous Bone Graft

    Directory of Open Access Journals (Sweden)

    Juliane Rauh

    2014-01-01

    Full Text Available Bone transplantation is frequently used for the treatment of large osseous defects. The availability of autologous bone grafts as the current biological gold standard is limited and there is a risk of donor site morbidity. Allogenic bone grafts are an appealing alternative, but disinfection should be considered to reduce transmission of infection disorders. Peracetic acid-ethanol (PE treatment has been proven reliable and effective for disinfection of human bone allografts. The purpose of this study was to evaluate the effects of PE treatment on the biomechanical properties and microstructure of cancellous bone grafts (CBG. Forty-eight human CBG cylinders were either treated by PE or frozen at −20°C and subjected to compression testing and histological and scanning electron microscopy (SEM analysis. The levels of compressive strength, stiffness (Young’s modulus, and fracture energy were significantly decreased upon PE treatment by 54%, 59%, and 36%, respectively. Furthermore, PE-treated CBG demonstrated a 42% increase in ultimate strain. SEM revealed a modified microstructure of CBG with an exposed collagen fiber network after PE treatment. We conclude that the observed reduced compressive strength and reduced stiffness may be beneficial during tissue remodeling thereby explaining the excellent clinical performance of PE-treated CBG.

  17. Sparsity and Biomechanics Inspired Integration of Shape and Speckle Tracking for Cardiac Deformation Analysis

    Science.gov (United States)

    Compas, Colin B.; Lin, Ben A.; Sampath, Smita; O’Donnell, Matthew; Sinusas, Albert J.; Duncan, James S.

    2016-01-01

    Cardiac motion analysis, particularly of the left ventricle (LV), can provide valuable information regarding the functional state of the heart. We propose a strategy of combining shape tracking and speckle tracking based displacements to calculate the dense deformation field of the myocardium. We introduce the use and effects of l1 regularization, which induces sparsity, in our integration method. We also introduce regularization to make the dense fields more adhering to cardiac biomechanics. Finally, we motivate the necessity of temporal coherence in the dense fields and demonstrate a way of doing so. We test our method on ultrasound (US) images acquired from six open-chested canine hearts. Baseline and post-occlusion strain results are presented for an animal, where we were able to detect significant change in the ischemic region. Six sets of strain results were also compared to strains obtained from tagged magnetic resonance (MR) data. Median correlation (with MR-tagging) coefficients of 0.73 and 0.82 were obtained for radial and circumferential strains respectively. PMID:27976753

  18. Biomechanical evaluation of dental implants in D1 and D4 bone by Finite Element Analysis.

    Science.gov (United States)

    Danza, M; Quaranta, A; Carinci, F; Paracchini, L; Pompa, G; Vozza, I

    2010-06-01

    The aim of the present study was to analyze stress and strain distribution in dental implants with different abutment's inclination inserted in D1 and D4 bone. The biomechanical behavior of 5 mm x 16 mm dental implants with straight, 15 degrees and 25 degrees angulated abutments subjected to static loads, in contact with D1 and D4 bone, was evaluated by Finite Element Analysis (FEA). The lowest stress and strain values were found in the system composed by implants with straight abutments loaded with a 200-N vertical strength, while the highest stress and strain values were found in implants with 15 degrees angulated abutment loaded with a tilted strength (FY=200 N and FZ=140 N). Stress value increased from D1 to D4 bone, while strain value decreased due to the effect of normal elasticity mode of biological tissues. The different stress and strain distribution in D1 and D4 bone tissue surrounding dental implants with a tapered neck could favor prosthetic load and play a role in implant long-term success.

  19. Biomechanical influences of head posture on occlusion: an experimental study using finite element analysis.

    Science.gov (United States)

    Motoyoshi, Mitsuru; Shimazaki, Takahisa; Sugai, Tatsuyoshi; Namura, Shinkichi

    2002-08-01

    The biomechanical influences of head posture on the cervical column and craniofacial complex during masticatory simulation were quantified using three-dimensional (3D) finite element analysis (FEA). Three types of finite element model (FEM) were designed to examine relationships between the position of the head and malocclusion. Model A was constructed to have a standardized cervical column curve, model B a forward inclined posture, and model C a backward inclined posture. The results of the spinal displacements revealed that model B moved in a forward direction and model C in a backward direction during masticatory simulation. The stress distributions on the cervical column (C1-C7) for models A, B, and C showed differences; stress converged at the atlas in model A, high-level stresses were observed at the spinous processes of C6 and C7 in model C, and the stress converged at the anterior edge in the vertebral body of C4 of model B. Stress distribution on the occlusal plane and maxillofacial structure did not show absolute differences among the three models. Alteration of head posture was directly related to stress distribution on the cervical column, but may not always directly influence the occlusal state.

  20. Biomechanical analysis of upper limb during the use of touch screen: motion strategies identification.

    Science.gov (United States)

    Jacquier-Bret, Julien; Gorce, Philippe; Motti Lilian, Genaro; Vigouroux, Nadine

    2017-03-01

    Nowadays touch technology is growing and developers try to make it ever more intuitive and easier to use. This present work focused on the upper limb joint coordination during the achievement of puzzles on touch screen. A 5-inch and 10-inch devices were used to perform 9 and 16 pieces puzzles dragged with digits. The conclusions showed an increase in joint solicitation with the number of piece and the touch screen size. Moreover, three interactions strategies proved to be an evidence: the 'wrist strategy' preferentially implying wrist flexion/extension, the 'elbow strategy' preferentially implying the elbow flexion/extension and the 'neutral strategy' mobilising equally the two joints. From an ergonomic point of view, the data about how the upper limb segments are mobilised while interacting with the screen could be relevant to increase the adaptability of the devices to the user, including users with motor impairments. Practitioner Summary: Information about the biomechanical organisation of movement during interaction with touch devices appears relevant in order to develop applications adapted to the motor capacities of users. From the analysis of joint angles when performing several times a puzzle with healthy subjects, three motor strategies were highlighted.

  1. A three-dimensional finite element model for biomechanical analysis of the hip.

    Science.gov (United States)

    Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe

    2013-11-01

    The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.

  2. Gait analysis based on surface electromyography%基于表面肌电的步态分析

    Institute of Scientific and Technical Information of China (English)

    王静; 吴效明

    2012-01-01

    BACKGROUND: Gait analysis is an important evaluation tool in etiological analysis and diagnosis of the human motor system and the nervous system, as well as the function, efficacy and disability evaluation, and muscle activity is the basic factor influencing walking power.OBJECTIVE: To analyze the surface electromyography signal changes of lower limb muscles in the process of free walking, and to study the surface electromyography characteristics and mechanism corresponding to different gait phases.METHODS: Seven cases of healthy people tibial anterior and lateral gastrocnemius surface electromyography signal were collected during normal gait by German Zebris FDM gait analysis system (6 m) simultaneous electromyography instrument, the signal was denoised and normalized by Matlab software, then the surface electromyography signal diagram that corresponded to various gait phases was obtained and the peak changes were observed; the 15 m free human walking bilateral tibial anterior and lateral gastrocnemius surface electromyography signals were tested by Finland ME6000 system, and then the time domain and frequency domain characteristic parameters were extracted.RESULTS AND CONCLUSION: Tibial anterior and lateral gastrocnemius surface electromyography signals showed characteristic changes in a gait cycle, namely the tibial anterior surface electromyography peak occurred in the heel strike, but the lateral gastrocnemius surface electromyography peak occurred in the middle-rear support phase. There was significant difference of bilateral tibial anterior and lateral gastrocnemius characteristic parameters between the dominant side and non-dominant one (P < 0.05), and the change trend was different for different muscles.%背景:步态分析在人体运动系统和神经系统疾病的病因分析,诊断,功能、疗效与残疾评定中是重要的评价手段,其中肌肉活动是影响步行动力的基础因素.目的:分析人体自然行走过程中下肢前后肌群