WorldWideScience

Sample records for biomaterials electronic resource

  1. Biomaterials

    CERN Document Server

    Migonney , Véronique

    2014-01-01

    Discovered in the 20th century, biomaterials have contributed to many of the incredible scientific and technological advancements made in recent decades. This book introduces and details the tenets of biomaterials, their relevance in a various fields, practical applications of their products, and potential advancements of the years to come. A comprehensive resource, the text covers the reasons that certain properties of biomaterials contribute to specific applications, and students and researchers will appreciate this exhaustive textbook.

  2. Biomaterials

    NARCIS (Netherlands)

    Van Mourik, P.; Van Dam, J.; Picken, S.J.; Ursem, B.

    2013-01-01

    The metabolic pathways of living organisms produce biomaterials. Hence, in principle biomaterials are fully sustainable. This does not mean that their processing and application have no impact on the environment, e.g. the recycling of natural rubber remains a problem. Biomaterials are applied in a

  3. ELECTRONIC HUMAN RESOURCE MANAGEMENT

    OpenAIRE

    Dr. M. Panneerselvam

    2017-01-01

    Electronic Human Resource Management is an essence the revolution of human resource functions to management and employees. These functions are typically used via intranet and web technology. This helps the organization to improve their standards where they can able to review and forward. All those documents can be viewed within a fraction of second with help of client and server links. The phenomenon of E- HRM deserves closer and more fundamental roots to HR activity. The E-HRM develops and b...

  4. Electronic Resource Management and Design

    Science.gov (United States)

    Abrams, Kimberly R.

    2015-01-01

    We have now reached a tipping point at which electronic resources comprise more than half of academic library budgets. Because of the increasing work associated with the ever-increasing number of e-resources, there is a trend to distribute work throughout the library even in the presence of an electronic resources department. In 2013, the author…

  5. Biomaterials-Based Electronics: Polymers and Interfaces for Biology and Medicine

    Science.gov (United States)

    Muskovich, Meredith; Bettinger, Christopher J.

    2012-01-01

    Advanced polymeric biomaterials continue to serve as a cornerstone of new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter without direct electronic communication. However, biological systems have evolved to synthesize and employ naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be interpreted as potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to the use of natural and synthetic biological materials as integral components in technologies such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted. PMID:23184740

  6. Biomaterials-based electronics: polymers and interfaces for biology and medicine.

    Science.gov (United States)

    Muskovich, Meredith; Bettinger, Christopher J

    2012-05-01

    Advanced polymeric biomaterials continue to serve as a cornerstone for new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter in the absence of direct electronic communication. However, biological systems have evolved to synthesize and utilize naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be translated into potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to covering technologies where natural and synthetic biological materials serve as integral components such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of microalgae biomaterials with enhanced antioxidant activity using electron beam

    International Nuclear Information System (INIS)

    Kim, Younghwa; Park, Hyunjin; Choi, Soojeong; Lee, Jaehwa

    2013-01-01

    By increasing the antioxidant products (e. g. antioxidant enzyme, carotenoid, phycobiliproteins, chlorophyll, lipid phenolic compounds, etc.) in microalgae, it could be useful for industry. In this study, mutants of fresh water microalgae Arthrospira platensis (A. platensis) by high energy electron beam were isolated and characterized. Those selected mutants showed higher growth rate than parental strain. The antioxidant enzyme activity (SOD and POD), flavonoid, phenolic compound and phycocyanin of mutants were increased about 2 times compared to wild type. Moreover, DPPH radical scavenging activity was increased about 20%. Microalgae species with improved growth rate and enhanced active compounds make the commercial process more feasible in industry. Using microalgae mutants with increased antioxidant products, it is useful to develop microalgae biomaterials for neutraceuticals

  8. Development of microalgae biomaterials with enhanced antioxidant activity using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Younghwa; Park, Hyunjin; Choi, Soojeong; Lee, Jaehwa [Silla Univ., Busan (Korea, Republic of)

    2013-07-01

    By increasing the antioxidant products (e. g. antioxidant enzyme, carotenoid, phycobiliproteins, chlorophyll, lipid phenolic compounds, etc.) in microalgae, it could be useful for industry. In this study, mutants of fresh water microalgae Arthrospira platensis (A. platensis) by high energy electron beam were isolated and characterized. Those selected mutants showed higher growth rate than parental strain. The antioxidant enzyme activity (SOD and POD), flavonoid, phenolic compound and phycocyanin of mutants were increased about 2 times compared to wild type. Moreover, DPPH radical scavenging activity was increased about 20%. Microalgae species with improved growth rate and enhanced active compounds make the commercial process more feasible in industry. Using microalgae mutants with increased antioxidant products, it is useful to develop microalgae biomaterials for neutraceuticals.

  9. Managing electronic resources a LITA guide

    CERN Document Server

    Weir, Ryan O

    2012-01-01

    Informative, useful, current, Managing Electronic Resources: A LITA Guide shows how to successfully manage time, resources, and relationships with vendors and staff to ensure personal, professional, and institutional success.

  10. Implementing CORAL: An Electronic Resource Management System

    Science.gov (United States)

    Whitfield, Sharon

    2011-01-01

    A 2010 electronic resource management survey conducted by Maria Collins of North Carolina State University and Jill E. Grogg of University of Alabama Libraries found that the top six electronic resources management priorities included workflow management, communications management, license management, statistics management, administrative…

  11. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-11-05

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration is to consolidate all electronic resources into a single and centralized location. This would allow for better information sharing among library staff.

  12. Ultrastructural study by backscattered electron imaging and elemental microanalysis of bone-to-biomaterial interface and mineral degradation of porcine xenografts used in maxillary sinus floor elevation.

    Science.gov (United States)

    Ramírez-Fernández, Maria Piedad; Calvo-Guirado, Jose Luis; Maté-Sánchez Del Val, Jose Eduardo; Delgado-Ruiz, Rafael Arcesio; Negri, Bruno; Barona-Dorado, Cristina

    2013-05-01

    The aim of this study was to carry out an ultrastructural study of the biomaterial-to-bone interface and biomaterial mineral degradation in retrieved bone biopsies following maxillary sinus augmentation using collagenized porcine xenografts (Osteobiol(®) Mp3) in 15 clinical cases. Nine months after sinus lifting, bone cores were harvested from the maxillary sinus. The specimens were processed for observation under a scanning electron microscope with backscattered electron imaging (SEM-BSE). In addition, chemical analysis and elemental mapping of the mineral composition were generated using a microanalytical system based on energy-dispersive X-ray spectrometry (EDX). No clinical complications were evident during surgery. Scanning electron microscopy revealed that newly formed bone had become closely attached to the xenograft. Statistical analysis showed a significantly high Ca/P ratio in the biomaterial (2.46 ± 0.16) and at the bone interface (2.00 ± 0.48) compared to bone (1.97 ± 0.36), which suggests that there may be a gradual diffusion of Ca ions from the biomaterial into the newly forming bone at the interface as part of the biomaterial's resorption process. EDX analysis of the residual porcine biomaterial at different points showed some particle categories with different mean ratios of Ca/P according to size, pointing to different stages of the resorption process. The biomaterial proved to be biocompatible, bioreabsorbable and osteoconductive when used as a bone substitute for maxillary sinus elevation. SEM-BSE revealed that newly formed bone had become closely attached to the xenografts. EDX analysis monitored the resorption process of the porcine bone xenograft. Elemental mapping showed that there was a gradual diffusion of Ca ions from the biomaterial to the newly forming bone at the interface. © 2012 John Wiley & Sons A/S.

  13. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-05-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system as potential replacements namely: Proquest 360 Resource Manager, Ex Libris Alma and Open Source CORAL ERMS. After comparing and trialling the systems, it was decided to go for Proquest 360 Resource Manager.

  14. CHALLENGES OF ELECTRONIC INFORMATION RESOURCES IN ...

    African Journals Online (AJOL)

    This paper discusses the role of policy for proper and efficient library services in the electronic era. It points out ... New approaches in acquisition, accessing, selection, preservation and choices on whether to operate digital, or combine traditional print and digital resources in the library have to be worked out and adopted.

  15. 2015 Utilization of Electronic Information Resources in Ramat

    African Journals Online (AJOL)

    electronic resources, electronic books, electronic learning, electronic journals, as well as electronic archive among others is intensely powerful and has permeated all segments and sectors of the society. Electronic information resources (EIRS) as reported by Meitz (2004), are "Library materials produced in electronic format.

  16. The calculating rating of electronic resources

    OpenAIRE

    MUMINOV BAHODIR.BOLTAYEICH

    2016-01-01

    The rating of electron resources is devoted to count by theories, directions in this work. The calculating model of rating of ER by entering and exiting directions on bases of used widely PageRank is produced for calculating the rating of web pages in Google searching system. The rating of ER is taken into account for calculating the ratings of entering direction and the calculating exiting direction is accomplished by equitable distribution of ER. And also the calculating rating ER among kin...

  17. Making sense of the electronic resource marketplace: trends in health-related electronic resources.

    Science.gov (United States)

    Blansit, B D; Connor, E

    1999-07-01

    Changes in the practice of medicine and technological developments offer librarians unprecedented opportunities to select and organize electronic resources, use the Web to deliver content throughout the organization, and improve knowledge at the point of need. The confusing array of available products, access routes, and pricing plans makes it difficult to anticipate the needs of users, identify the top resources, budget effectively, make sound collection management decisions, and organize the resources effectively and seamlessly. The electronic resource marketplace requires much vigilance, considerable patience, and continuous evaluation. There are several strategies that librarians can employ to stay ahead of the electronic resource curve, including taking advantage of free trials from publishers; marketing free trials and involving users in evaluating new products; watching and testing products marketed to the clientele; agreeing to beta test new products and services; working with aggregators or republishers; joining vendor advisory boards; benchmarking institutional resources against five to eight competitors; and forming or joining a consortium for group negotiating and purchasing. This article provides a brief snapshot of leading biomedical resources; showcases several libraries that have excelled in identifying, acquiring, and organizing electronic resources; and discusses strategies and trends of potential interest to biomedical librarians, especially those working in hospital settings.

  18. Smart biomaterials

    CERN Document Server

    Ebara, Mitsuhiro; Narain, Ravin; Idota, Naokazu; Kim, Young-Jin; Hoffman, John M; Uto, Koichiro; Aoyagi, Takao

    2014-01-01

    This book surveys smart biomaterials, exploring the properties, mechanics and characterization of hydrogels, particles, assemblies, surfaces, fibers and conjugates. Reviews applications such as drug delivery, tissue engineering, bioseparation and more.

  19. Electronic resource management systems a workflow approach

    CERN Document Server

    Anderson, Elsa K

    2014-01-01

    To get to the bottom of a successful approach to Electronic Resource Management (ERM), Anderson interviewed staff at 11 institutions about their ERM implementations. Among her conclusions, presented in this issue of Library Technology Reports, is that grasping the intricacies of your workflow-analyzing each step to reveal the gaps and problems-at the beginning is crucial to selecting and implementing an ERM. Whether the system will be used to fill a gap, aggregate critical data, or replace a tedious manual process, the best solution for your library depends on factors such as your current soft

  20. Utilization of electronic information resources in Ramat Library ...

    African Journals Online (AJOL)

    ... printer, and audio-visuals are equally available. Student have unlimited accessibility in the utilization of electronic resources, students frequently utilized electronic information resources in Ramat Library. It is recommended, among others, that registered students should utilize and access electronic information resources ...

  1. Impact of electronic resources use on academic performance of ...

    African Journals Online (AJOL)

    Results indicated that use of electronic resources had a positive impact on students' academic performance. Based on the findings of this study, it is recommended that more emphasis should be laid on the acquisition of electronic resources so as to give room for wider and multiple access to information resources in order to ...

  2. Use of Electronic Resources in a Private University in Nigeria ...

    African Journals Online (AJOL)

    The study examined awareness and constraints in the use of electronic resources by lecturers and students of Ajayi Crowther University, Oyo, Nigeria. It aimed at justifying the resources expended in the provision of electronic resources in terms of awareness, patronage and factors that may be affecting awareness and use ...

  3. LCA of Biofuels and Biomaterials

    DEFF Research Database (Denmark)

    Hjuler, Susanne Vedel; Hansen, Sune Balle

    2017-01-01

    Biofuels and biomaterials can today substitute many commodities produced from fossil resources, and the bio-based production is increasing worldwide. As fossil resources are limited, and the use of such resources is a major contributor to global warming and other environmental impacts, the potent...

  4. The Evolution of Selection Activities for Electronic Resources.

    Science.gov (United States)

    Davis, Trisha L.

    1997-01-01

    Selection of electronic resources--CD-ROMs, dial access databases, electronic journals, and World Wide Web products--requires a more extensive set of criteria than do print resources. Discusses two factors influencing collection development of electronic products: technology options and licensing issues, and outlines how traditional selection…

  5. Electronic Resource Management System. Vernetzung von Lizenzinformationen

    Directory of Open Access Journals (Sweden)

    Michaela Selbach

    2014-12-01

    Full Text Available In den letzten zehn Jahren spielen elektronische Ressourcen im Bereich der Erwerbung eine zunehmend wichtige Rolle: Eindeutig lässt sich hier ein Wandel in den Bibliotheken (fort vom reinen Printbestand zu immer größeren E-Only-Beständen feststellen. Die stetig wachsende Menge an E-Ressourcen und deren Heterogenität stellt Bibliotheken vor die Herausforderung, die E-Ressourcen effizient zu verwalten. Nicht nur Bibliotheken, sondern auch verhandlungsführende Institutionen von Konsortial- und Allianzlizenzen benötigen ein geeignetes Instrument zur Verwaltung von Lizenzinformationen, welches den komplexen Anforderungen moderner E-Ressourcen gerecht wird. Die Deutsche Forschungsgemeinschaft (DFG unterstützt ein Projekt des Hochschulbibliothekszentrums des Landes Nordrhein-Westfalen (hbz, der Universitätsbibliothek Freiburg, der Verbundzentrale des Gemeinsamen Bibliotheksverbundes (GBV und der Universitätsbibliothek Frankfurt, in dem ein bundesweit verfügbares Electronic Ressource Managementsystem (ERMS aufgebaut werden soll. Ein solches ERMS soll auf Basis einer zentralen Knowledge Base eine einheitliche Nutzung von Daten zur Lizenzverwaltung elektronischer Ressourcen auf lokaler, regionaler und nationaler Ebene ermöglichen. Statistische Auswertungen, Rechteverwaltung für alle angeschlossenen Bibliotheken, kooperative Datenpflege sowie ein über standardisierte Schnittstellen geführter Datenaustausch stehen bei der Erarbeitung der Anforderungen ebenso im Fokus wie die Entwicklung eines Daten- und Funktionsmodells. In the last few years the importance of electronic resources in library acquisitions has increased significantly. There has been a shift from mere print holdings to both e- and print combinations and even e-only subscriptions. This shift poses a double challenge for libraries: On the one hand they have to provide their e-resource collections to library users in an appealing way, on the other hand they have to manage these

  6. Electronic resources access and usage among the postgraduates of ...

    African Journals Online (AJOL)

    Electronic resources access and usage among the postgraduates of a Nigerian University of Technology. ... by postgraduates in using e-resources include takes too much time to find, e-resources are not always accessible, lack of supporting structures (connection, downloading, printing limits) and too many resources.

  7. Utilization of electronic information resources by academic staff at ...

    African Journals Online (AJOL)

    The study investigated the utilization of Electronic Information resources by the academic staff of Makerere University in Uganda. It examined the academic staff awareness of the resources available, the types of resources provided by the Makerere University Library, the factors affecting resource utilization. The study was ...

  8. Biological biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Jorge-Herrero, E. [Servicio de Cirugia Experimental. Clinica Puerta de Hierro, Madrid (Spain)

    1997-05-01

    There are a number of situations in which substances of biological origin are employed as biomaterials. Most of them are macromolecules derived from isolated connective tissue or the connective tissue itself in membrane form, in both cases, the tissue can be used in its natural form or be chemically treated. In other cases, certain blood vessels can be chemically pretreated and used as vascular prostheses. Proteins such as albumin, collagen and fibrinogen are employed to coat vascular prostheses. Certain polysaccharides have also been tested for use in controlled drug release systems. Likewise, a number of tissues, such as dura mater, bovine pericardium, procine valves and human valves, are used in the preparation of cardiac prostheses. We also use veins from animals or humans in arterial replacement. In none of these cases are the tissues employed dissimilar to the native tissues as they have been chemically modified, becoming a new bio material with different physical and biochemical properties. In short, we find that natural products are being utilized as biomaterials and must be considered as such; thus, it is necessary to study both their chemicobiological and physicomechanical properties. In the present report, we review the current applications, problems and future prospects of some of these biological biomaterials. (Author) 84 refs.

  9. Engineering of biomaterials

    CERN Document Server

    dos Santos, Venina; Savaris, Michele

    2017-01-01

    This book focuses on biomaterials of different forms used for medical implants. The authors introduce the characteristics and properties of biomaterials and then dedicate special chapters to metallic, ceramic, polymeric and composite biomaterials. Case studies on sterilization methods by biomaterials are also presented. Finally, the authors describe the degradation and effects of biomaterials in living tissue.

  10. The impact of electronic information resource use on research output

    African Journals Online (AJOL)

    This paper examines the impact of the use of electronic information resources on research output in the universities in Tanzania. Research for this paper was conducted in five public universities in Tanzania with varied levels of access to electronic information resources. The selection of the sample universities was ...

  11. Using Electronic Resources to Support Problem-Based Learning

    Science.gov (United States)

    Chang, Chen-Chi; Jong, Ay; Huang, Fu-Chang

    2012-01-01

    Students acquire skills in problem solving and critical thinking through the process as well as team work on problem-based learning courses. Many courses have started to involve the online learning environment and integrate these courses with electronic resources. Teachers use electronic resources in their classes. To overcome the problem of the…

  12. impact of the use of electronic resources on research output

    African Journals Online (AJOL)

    manda

    Abstract. This paper examines the impact of the use of electronic information resources on research output in the universities in Tanzania. Research for this paper was conducted in five public universities in Tanzania with varied levels of access to electronic information resources. The selection of the sample universities was ...

  13. The Role of the Acquisitions Librarian in Electronic Resources Management

    Science.gov (United States)

    Pomerantz, Sarah B.

    2010-01-01

    With the ongoing shift to electronic formats for library resources, acquisitions librarians, like the rest of the profession, must adapt to the rapidly changing landscape of electronic resources by keeping up with trends and mastering new skills related to digital publishing, technology, and licensing. The author sought to know what roles…

  14. Use of electronic resources by undergraduates in two selected ...

    African Journals Online (AJOL)

    The purpose of this study is to know the extent of use of electronic resources and identify the type of electronic resources used by undergraduates in universities in Nigeria. Questionnaire was used for data collection. The study population includes all undergraduate students in the faculty of engineering in Niger Delta ...

  15. Electronic resources preferred by pediatric hospitalists for clinical care.

    Science.gov (United States)

    Beck, Jimmy B; Tieder, Joel S

    2015-10-01

    There is little research on pediatric hospitalists' use of evidence-based resources. The aim of this study was to determine the electronic resources that pediatric hospitalists prefer. Using a web-based survey, the authors determined hospitalists' preferred electronic resources, as well as their attitudes toward lifelong learning, practice, and experience characteristics. One hundred sixteen hospitalists completed the survey. The most preferred resource for general information, patient handouts, and treatment was UpToDate. Online search engines were ranked second for general information and patient handouts. Pediatric hospitalists tend to utilize less rigorous electronic resources such as UpToDate and Google. These results can set a platform for discussing the quality of resources that pediatric hospitalists use.

  16. Library training to promote electronic resource usage

    DEFF Research Database (Denmark)

    Frandsen, Tove Faber; Tibyampansha, Dativa; Ibrahim, Glory

    2017-01-01

    of implementing training programmes to encourage the use of the e-library. Findings: Training sessions increase the usage of library e-resources significantly; however, the effect seems to be short-lived and training sessions alone may not increase the overall long-term usage. Originality/value: The present paper...

  17. Integrating Electronic Resources into the Library Catalog: A Collaborative Approach.

    Science.gov (United States)

    Herrera, Gail; Aldana, Lynda

    2001-01-01

    Describes a project at the University of Mississippi Libraries to catalog purchased electronic resources so that access to these resources is available only via the Web-based library catalog. Discusses collaboration between cataloging and systems personnel; and describes the MARC catalog record field that contains the information needed to locate…

  18. Utilisation of Electronic Information Resources By Lecturers in ...

    African Journals Online (AJOL)

    This study assesses the use of information resources, specifically, electronic databases by lecturers/teachers in Universities and Colleges of Education in South Western Nigeria. Information resources are central to teachers' education. It provides lecturers/teachers access to information that enhances research and ...

  19. Preservation and conservation of electronic information resources of ...

    African Journals Online (AJOL)

    The major holdings of the broadcast libraries of the Nigerian Television Authority (NTA) are electronic information resources; therefore, providing safe places for general management of these resources have aroused interest in the industry in Nigeria for sometimes. The need to study the preservation and conservation of ...

  20. Using XML Technologies to Organize Electronic Reference Resources

    OpenAIRE

    Huser, Vojtech; Del Fiol, Guilherme; Rocha, Roberto A.

    2005-01-01

    Provision of access to reference electronic resources to clinicians is becoming increasingly important. We have created a framework for librarians to manage access to these resources at an enterprise level, rather than at the individual hospital libraries. We describe initial project requirements, implementation details, and some preliminary results.

  1. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  2. Building an electronic resource collection a practical guide

    CERN Document Server

    Lee, Stuart D

    2004-01-01

    This practical book guides information professionals step-by-step through building and managing an electronic resource collection. It outlines the range of electronic products currently available in abstracting and indexing, bibliographic, and other services and then describes how to effectively select, evaluate and purchase them.

  3. Organizational matters of competition in electronic educational resources

    Directory of Open Access Journals (Sweden)

    Ирина Карловна Войтович

    2015-12-01

    Full Text Available The article examines the experience of the Udmurt State University in conducting competitions of educational publications and electronic resources. The purpose of such competitions is to provide methodological support to educational process. The main focus is on competition of electronic educational resources. The technology of such contests is discussed through detailed analysis of the main stages of the contest. It is noted that the main task of the preparatory stage of the competition is related to the development of regulations on competition and the definition of criteria for selection of the submitted works. The paper also proposes a system of evaluation criteria of electronic educational resources developed by members of the contest organizing committee and jury members. The article emphasizes the importance of not only the preparatory stages of the competition, but also measures for its completion, aimed at training teachers create quality e-learning resources.

  4. USE OF VIDEO IN MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES

    Directory of Open Access Journals (Sweden)

    Svitlana Denisenko

    2015-10-01

    Full Text Available The widespread introduction of electronic educational resources in the educational process requires the development of a scientific basis for all aspects related to their creation and use. These modern means are designed not just to convey to learners the required course material, but also to create conditions for its most effective study. This is possible in conditions of reasonable approach to the presentation of educational material on the screen. The article is devoted to consideration of the problem of presenting educational material in electronic educational resources. Visuals are powerful didactic tool that enhances the perception and understanding of educational information. Particular attention is paid to the use of such a powerful medium like video. Investigated the role and importance of video in the learning process, their educational opportunities and benefits. Shows types of video and their use in electronic educational resources. Grounded requirements for training videos. The recommendations are given on the use of video in combination with other media in electronic educational resources. Adduced the example a real electronic multimedia educational resource and shows the possibility of using video.

  5. [Orthopedic biomaterials].

    Science.gov (United States)

    Sedel, L; Nizard, R; Meunier, A

    1995-03-01

    It is very challenging to insure long term security and effectiveness for joint arthroplasties, artificial ligaments, extensive bone replacement and some other orthopaedic biomaterials. How can we predict the long term security and efficacy of such an implant? Only an interdisciplinary approach can provide a satisfactory answer. The surgeon must define the needs, he must find the appropriate surgical techniques and conduct the clinical trial. The material scientist must elaborate safe and secure materials with regards to their biotolerance and mechanical resistance. This has to be performed in close connection with the biomechanics lab. Biomechanic Science must predict the expected stresses. It has to design special simulator to quantify in vitro material toughness, wear characteristics, lubrication, behaviour and surface deformation. Biological and mechanical standardized tests have to be carried on. Then it is possible to conduct a clinical trial, prospectively in comparison to another already developed material. Clinical studies could serve to measure efficacy and radiological modification. After failure, it is possible to analyse retrieved specimen, to measure the material degradation in real environment, to perform biological studies on retrieved tissues i.e. : macrophagic activities, tissue response, bone ingrowth, inflammatory or immunological reaction. For more than twenty years we worked on alumina against alumina total hips. The idea was to develop a low debris system to enhance long term longevity of the prosthesis. The Charnley design has proven its effectiveness for more than fifteen years, but polyethylene wear is responsible for late failures. This is specially crucial for young patients, male sex and high activity level patients. At the beginning, biological studies and mechanical tests were performed, it appeared that the biological tolerance of alumina ceramic was excellent, the fracture toughness was adequate, but there were some problems related

  6. Why and How to Measure the Use of Electronic Resources

    Directory of Open Access Journals (Sweden)

    Jean Bernon

    2008-11-01

    Full Text Available A complete overview of library activity implies a complete and reliable measurement of the use of both electronic resources and printed materials. This measurement is based on three sets of definitions: document types, use types and user types. There is a common model of definitions for printed materials, but a lot of questions and technical issues remain for electronic resources. In 2006 a French national working group studied these questions. It relied on the COUNTER standard, but found it insufficient and pointed out the need for local tools such as web markers and deep analysis of proxy logs. Within the French national consortium COUPERIN, a new working group is testing ERMS, SUSHI standards, Shibboleth authentication, along with COUNTER standards, to improve the counting of the electronic resources use. At this stage this counting is insufficient and its improvement will be a European challenge for the future.

  7. The Study of Analytical Model of Library Electronic Resources Usage-A Case of Medical Electronic Resources

    Directory of Open Access Journals (Sweden)

    Chung-Yen Yu

    2014-10-01

    Full Text Available With the advents of internet, the importance of electronic resources is growing. Due to the increasing expensiveness of electronic resources, university libraries normally received budgets from parent institutions annually. They necessarily applied effective and systematic methods for decision making in electronic resources purchase or re-subscription. However, there are some difficulties in practices: First of all, libraries are unable to receive user records; second, the COUNTER statistics does not include details about users and their affiliation. As a result, one cannot conduct advanced user analysis based on the usage of users, institutions, and departments. To overcome the difficulties, this study presents a feasible model to analyze electronic resource usage effectively and flexibly. We set up a proxy server to collect actual usage raw data. By analyzing items in internet browsing records, associated with original library automatic system, this study aims at exploring how to use effective ways to analyze big data of website log data. We also propose the process of how original data to be transformed, cleared, integrated, and demonstrated. This study adopted a medical university library and its subscription of medical electronic resources as a case. Our data analysis includes (1 year of subscription,(2 title of journal, (3 affiliation, (4 subjects, and (5 specific journal requirements, etc. The findings of the study are contributed to obtain further understanding in policy making and user behavior analysis. The integrated data provides multiple applications in informatics research, information behavior, bibliomining, presenting diverse views and extended issues for further discussion.

  8. Access to electronic resources by visually impaired people

    Directory of Open Access Journals (Sweden)

    Jenny Craven

    2003-01-01

    Full Text Available Research into access to electronic resources by visually impaired people undertaken by the Centre for Research in Library and Information Management has not only explored the accessibility of websites and levels of awareness in providing websites that adhere to design for all principles, but has sought to enhance understanding of information seeking behaviour of blind and visually impaired people when using digital resources.

  9. Practical guide to electronic resources in the humanities

    CERN Document Server

    Dubnjakovic, Ana

    2010-01-01

    From full-text article databases to digitized collections of primary source materials, newly emerging electronic resources have radically impacted how research in the humanities is conducted and discovered. This book, covering high-quality, up-to-date electronic resources for the humanities, is an easy-to-use annotated guide for the librarian, student, and scholar alike. It covers online databases, indexes, archives, and many other critical tools in key humanities disciplines including philosophy, religion, languages and literature, and performing and visual arts. Succinct overviews of key eme

  10. Electronic Commerce Resource Centers. An Industry--University Partnership.

    Science.gov (United States)

    Gulledge, Thomas R.; Sommer, Rainer; Tarimcilar, M. Murat

    1999-01-01

    Electronic Commerce Resource Centers focus on transferring emerging technologies to small businesses through university/industry partnerships. Successful implementation hinges on a strategic operating plan, creation of measurable value for customers, investment in customer-targeted training, and measurement of performance outputs. (SK)

  11. Printed And Electronic Resources Utilization By Agricultural Science ...

    African Journals Online (AJOL)

    This paper examines the use of printed and electronic resources by agricultural science students in three Nigerian universities. A two-part questionnaire was designed to elicit necessary information from the respondents selected for the study. One thousand three hundred (1300) respondents from faculties of Agriculture in ...

  12. Electronic information resource sharing among university libraries in ...

    African Journals Online (AJOL)

    The study explored the state of electronic information resource sharing among university libraries in Southern part of Nigeria, highlighting the prospects and the challenges. The study was an empirical research which adopted the descriptive survey as the design. The questionnaire was used to collect data from the ...

  13. Page 170 Use of Electronic Resources by Undergraduates in Two ...

    African Journals Online (AJOL)

    undergraduate students use electronic resources such as NUC virtual library, HINARI, E- journals, CD-ROMs, AGORA, and ... to finance and geographical location. Furthermore, in developed countries like United Kingdom, students get access to .... databases, web sources and audio-video tapes. Furthermore, studies also ...

  14. Modern ICT Tools: Online Electronic Resources Sharing Using Web ...

    African Journals Online (AJOL)

    Modern ICT Tools: Online Electronic Resources Sharing Using Web 2.0 and Its Implications For Library And Information Practice In Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...

  15. Users satisfaction with electronic information resources and services ...

    African Journals Online (AJOL)

    Users satisfaction with electronic information resources and services in A.B.U & UNIBEN MTN Net Libraries. ... Lastly, management of the MTN Net Libraries should conduct user studies annually in order to have feedback from users on how well the library is meeting their information needs. The results of the survey should ...

  16. ANALYTICAL REVIEW OF ELECTRONIC RESOURCES FOR THE STUDY OF LATIN

    Directory of Open Access Journals (Sweden)

    Olena Yu. Balalaieva

    2014-04-01

    Full Text Available The article investigates the current state of development of e-learning content in the Latin language. It is noted that the introduction of ICT in the educational space has expanded the possibility of studying Latin, opened access to digital libraries resources, made it possible to use scientific and educational potential and teaching Latin best practices of world's leading universities. A review of foreign and Ukrainian information resources and electronic editions for the study of Latin is given. Much attention was paid to the didactic potential of local and online multimedia courses of Latin, electronic textbooks, workbooks of interactive tests and exercises, various dictionaries and software translators, databases and digital libraries. Based on analysis of the world market of educational services and products the main trends in the development of information resources and electronic books are examined. It was found that multimedia courses with interactive exercises or workbooks with interactive tests, online dictionaries and translators are the most widely represented and demanded. The noticeable lagging of Ukrainian education and computer linguistics in quantitative and qualitative measures in this industry is established. The obvious drawback of existing Ukrainian resources and electronic editions for the study of Latin is their noninteractive nature. The prospects of e-learning content in Latin in Ukraine are outlined.

  17. Gender Analysis Of Electronic Information Resource Use: The Case ...

    African Journals Online (AJOL)

    This article is based on an empirical study that examined the association between gender and the use of electronic information resources among postgraduate students at the University of Dar es salaam, Tanzania. The study was conducted in December 2005 and integrated both qualitative and quantitative research ...

  18. Use of electronic information resources among the undergraduate ...

    African Journals Online (AJOL)

    The study aimed at finding out the use of electronic information resources among undergraduate students in the Federal University of Technology, Akure. The study is based on descriptive survey design method and the population consists of 16,962 undergraduate students across different schools at the Federal University ...

  19. Adoption and use of electronic information resources by medical ...

    African Journals Online (AJOL)

    This study investigated the adoption and use of electronic information resources by medical science students of the University of Benin. The descriptive survey research design was adopted for the study and 390 students provided the data. Data collected were analysed with descriptive Statistics(Simple percentage and ...

  20. Student Satisfaction with Electronic Library Resources at Wayne State University

    Science.gov (United States)

    Holley, Robert P.; Powell, Ronald R.

    2004-01-01

    This paper reports the results of a survey of student satisfaction with electronic library resources other than the online catalog at Wayne State University. Undertaken in Fall Term 2000 as a class project for a marketing course, a student team designed, administered, and analyzed a survey of a random sample of students. Almost 40% of the…

  1. Technical Communicator: A New Model for the Electronic Resources Librarian?

    Science.gov (United States)

    Hulseberg, Anna

    2016-01-01

    This article explores whether technical communicator is a useful model for electronic resources (ER) librarians. The fields of ER librarianship and technical communication (TC) originated and continue to develop in relation to evolving technologies. A review of the literature reveals four common themes for ER librarianship and TC. While the…

  2. Access to electronic information resources by students of federal ...

    African Journals Online (AJOL)

    The paper discusses access to electronic information resources by students of Federal Colleges of Education in Eha-Amufu and Umunze. Descriptive survey design was used to investigate sample of 526 students. Sampling technique used was a Multi sampling technique. Data for the study were generated using ...

  3. Evaluating the appropriateness of electronic information resources for learning.

    Science.gov (United States)

    Saparova, Dinara; Nolan, Nathanial S

    2016-01-01

    Current US medical students have begun to rely on electronic information repositories-such as UpToDate, AccessMedicine, and Wikipedia-for their pre-clerkship medical education. However, it is unclear whether these resources are appropriate for this level of learning due to factors involving information quality, level of evidence, and the requisite knowledgebase. This study evaluated appropriateness of electronic information resources from a novel perspective: amount of mental effort learners invest in interactions with these resources and effects of the experienced mental effort on learning. Eighteen first-year medical students read about three unstudied diseases in the above-mentioned resources (a total of fifty-four observations). Their eye movement characteristics (i.e., fixation duration, fixation count, visit duration, and task-evoked pupillary response) were recorded and used as psychophysiological indicators of the experienced mental effort. Post reading, students' learning was assessed with multiple-choice tests. Eye metrics and test results constituted quantitative data analyzed according to the repeated Latin square design. Students' perceptions of interacting with the information resources were also collected. Participants' feedback during semi-structured interviews constituted qualitative data and was reviewed, transcribed, and open coded for emergent themes. Compared to AccessMedicine and Wikipedia, UpToDate was associated with significantly higher values of eye metrics, suggesting learners experienced higher mental effort. No statistically significant difference between the amount of mental effort and learning outcomes was found. More so, descriptive statistical analysis of the knowledge test scores suggested similar levels of learning regardless of the information resource used. Judging by the learning outcomes, all three information resources were found appropriate for learning. UpToDate, however, when used alone, may be less appropriate for first

  4. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  5. TO QUESTION OF QUALITY EXAMINATION OF ELECTRONIC EDUCATIONAL RESOURCES

    OpenAIRE

    Svitlana G. Lytvynova

    2013-01-01

    The article deals with the scientific and methodological approaches to the examination of quality of electronic educational resources (EER) for secondary schools. It was defined conceptual apparatus, described the object of examination, clarified certain aspects of the functions of examination, determined the basic tasks of expertise, summarized the principles of expertise (scientific, personalization, active involvement in the learning process), described the requirements to the participants...

  6. Biomaterials and their applications

    CERN Document Server

    Reza Rezaie, Hamid; Öchsner, Andreas

    2015-01-01

    This short book presents an overview of different types of biomaterial such as bio ceramics, bio polymers, metals and bio composites, while especially focusing on nano biomaterials and their applications in different tissues. It provides a compact introduction to nano materials for drug delivery systems, tissue engineering and implants, while also reviewing essential trends in the biomaterial field over the last few decades and the latest developments.

  7. Sustainable Biomaterials: Current Trends, Challenges and Applications

    Directory of Open Access Journals (Sweden)

    Girish Kumar Gupta

    2015-12-01

    Full Text Available Biomaterials and sustainable resources are two complementary terms supporting the development of new sustainable emerging processes. In this context, many interdisciplinary approaches including biomass waste valorization and proper usage of green technologies, etc., were brought forward to tackle future challenges pertaining to declining fossil resources, energy conservation, and related environmental issues. The implementation of these approaches impels its potential effect on the economy of particular countries and also reduces unnecessary overburden on the environment. This contribution aims to provide an overview of some of the most recent trends, challenges, and applications in the field of biomaterials derived from sustainable resources.

  8. Analysis of empty responses from electronic resources in infobutton managers.

    Science.gov (United States)

    Long, Jie; Hulse, Nathan C; Tao, Cui

    2015-01-01

    Infobuttons provide context-aware educational materials to both providers and patients and are becoming an important element in modern electronic health records (EHR) and patient health records (PHR). However, the content from different electronic resources (e-resource) as responses from infobutton manager has not been fully analyzed and evaluated. In this paper, we propose a method for automatically analyzing responses from infobutton manager. A tool is implemented to retrieve and analyze responses from infobutton manager. To test the tool, we extracted and sampled common and uncommon concepts from EHR usage data in Intermountain Healthcare's enterprise data warehouse. From the output of the tool, we evaluate infobutton performance by multiple categories, including against the most and less common used concepts, grouped by different modules in patient portal, by different e-resources, and by type of access (standardized Health Level Seven (HL7) vs not). Based on the results of our evaluation, we provide suggestions for further enhancements of infobuttons to the current implementation, including suggesting accessing priorities of e-resources and encouraging the use of the HL7 standard.

  9. Biomaterials for MEMS

    CERN Document Server

    Chiao, Mu

    2011-01-01

    This book serves as a guide for practicing engineers, researchers, and students interested in MEMS devices that use biomaterials and biomedical applications. It is also suitable for engineers and researchers interested in MEMS and its applications but who do not have the necessary background in biomaterials.Biomaterials for MEMS highlights important features and issues of biomaterials that have been used in MEMS and biomedical areas. Hence this book is an essential guide for MEMS engineers or researchers who are trained in engineering institutes that do not provide the background or knowledge

  10. An introduction to biomaterials

    CERN Document Server

    Hollinger, Jeffrey O

    2011-01-01

    Consensus Definitions, Fundamental Concepts, and a Standardized Approach to Applied Biomaterials Sciences, J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Wound Healing BiologyCutaneous Wound Pathobiology: Raison d'etre for Tissue Engineering, L.K. Macri and R.A.F. ClarkOsseous Wound Healing, A. Nawab, M. Wong, D. Kwak, L. Schutte, A. Sharma, and J.O. HollingerBiology, Biomechanics, Biomaterial Interactions: Cellular MechanicsCell and Tissue Mechanobiology, W. Guo, P. Alvarez, and Y. WangBiology, Biomechanics, Biomaterial Interactions: Materials-Host InteractionsCell-Material In

  11. Evaluating increased resource use in fibromyalgia using electronic health records

    Directory of Open Access Journals (Sweden)

    Margolis JM

    2016-11-01

    Full Text Available Jay M Margolis,1 Elizabeth T Masters,2 Joseph C Cappelleri,3 David M Smith,1 Steven Faulkner4 1Truven Health Analytics, Life Sciences, Outcomes Research, Bethesda, MD, 2Pfizer Inc, Outcomes & Evidence, New York, NY, 3Pfizer Inc, Statistics, Groton, CT, 4Pfizer Inc, North American Medical Affairs, Medical Outcomes Specialists, St Louis, MO, USA Objective: The management of fibromyalgia (FM, a chronic musculoskeletal disease, remains challenging, and patients with FM are often characterized by high health care resource utilization. This study sought to explore potential drivers of all-cause health care resource utilization and other factors associated with high resource use, using a large electronic health records (EHR database to explore data from patients diagnosed with FM. Methods: This was a retrospective analysis of de-identified EHR data from the Humedica database. Adults (≥18 years with FM were identified based on ≥2 International Classification of Diseases, Ninth Revision codes for FM (729.1 ≥30 days apart between January 1, 2008 and December 31, 2012 and were required to have evidence of ≥12 months continuous care pre- and post-index; first FM diagnosis was the index event; 12-month pre- and post-index reporting periods. Multivariable analysis evaluated relationships between variables and resource utilization. Results: Patients were predominantly female (81.4%, Caucasian (87.7%, with a mean (standard deviation age of 54.4 (14.8 years. The highest health care resource utilization was observed for the categories of “medication orders” and “physician office visits,” with 12-month post-index means of 21.2 (21.5 drug orders/patient and 15.1 (18.1 office visits/patient; the latter accounted for 73.3% of all health care visits. Opioids were the most common prescription medication, 44.3% of all patients. The chance of high resource use was significantly increased (P<0.001 26% among African-Americans vs Caucasians and for patients

  12. Applications of biomaterials to liquid crystals.

    Science.gov (United States)

    Iwabata, Kazuki; Sugai, Urara; Seki, Yasutaka; Furue, Hirokazu; Sakaguchi, Kengo

    2013-04-19

    Nowadays, chemically synthesized proteins and peptides are attractive building blocks and have potential in many important applications as biomaterials. In this review, applications of biomaterials to thermotropic liquid crystals are discussed. The review covers the improvement of the performance of liquid crystal displays using liquid crystal physical gels consisting of a liquid crystal and amino acid-based gelators, and also new functionalization of liquid crystals. Moreover, the influence of DNA, which is one of the more attractive biomaterials, dispersed in thermotropic liquid crystals and its potential use in the liquid crystal industry is described. In addition, we found interesting results during electrooptical measurements of liquid crystals doped with DNA, and explain them from the point of view of biological applications. These recent approaches suggest that these biomaterials may be applicable in the electronic device industry and should be considered as an interesting material with their physical properties having the potential to create or refine an industrial product.

  13. Applications of Biomaterials to Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Kengo Sakaguchi

    2013-04-01

    Full Text Available Nowadays, chemically synthesized proteins and peptides are attractive building blocks and have potential in many important applications as biomaterials. In this review, applications of biomaterials to thermotropic liquid crystals are discussed. The review covers the improvement of the performance of liquid crystal displays using liquid crystal physical gels consisting of a liquid crystal and amino acid-based gelators, and also new functionalization of liquid crystals. Moreover, the influence of DNA, which is one of the more attractive biomaterials, dispersed in thermotropic liquid crystals and its potential use in the liquid crystal industry is described. In addition, we found interesting results during electrooptical measurements of liquid crystals doped with DNA, and explain them from the point of view of biological applications. These recent approaches suggest that these biomaterials may be applicable in the electronic device industry and should be considered as an interesting material with their physical properties having the potential to create or refine an industrial product.

  14. Smart Radiation Therapy Biomaterials.

    Science.gov (United States)

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. End-of-life resource recovery from emerging electronic products

    DEFF Research Database (Denmark)

    Parajuly, Keshav; Habib, Komal; Cimpan, Ciprian

    2016-01-01

    Integrating product design with appropriate end-of-life (EoL) processing is widely recognized to have huge potentials in improving resource recovery from electronic products. In this study, we investigate both the product characteristics and EoL processing of robotic vacuum cleaner (RVC), as a case......-case scenario, only 47% of the total materials in RVCs are ultimately recycled. While this low material recovery is mainly due to the lower plastic recycling rate, other market realities and the complex material flows in the recycling chain also contribute to it. The study provides a robust methodological...... approach for assessing the EoL performance based on the knowledge of a product and its complex recycling chain. The lessons learned can be used to support both the design and EoL processing of products with similar features, which carry a high potential for resource recovery, especially at the initial...

  16. Analysis of Human Resources Management Strategy in China Electronic Commerce Enterprises

    Science.gov (United States)

    Shao, Fang

    The paper discussed electronic-commerce's influence on enterprise human resources management, proposed and proved the human resources management strategy which electronic commerce enterprise should adopt from recruitment strategy to training strategy, keeping talent strategy and other ways.

  17. Effects of Electronic Information Resources Skills Training for Lecturers on Pedagogical Practices and Research Productivity

    Science.gov (United States)

    Bhukuvhani, Crispen; Chiparausha, Blessing; Zuvalinyenga, Dorcas

    2012-01-01

    Lecturers use various electronic resources at different frequencies. The university library's information literacy skills workshops and seminars are the main sources of knowledge of accessing electronic resources. The use of electronic resources can be said to have positively affected lecturers' pedagogical practices and their work in general. The…

  18. Researching in biomaterials optics

    Science.gov (United States)

    Pérez, María. M.; Ionescu, Ana; Yebra, Ana; Cardona, Juan C.; Herrera, Luis J.; Rivas, María. José; Pecho, Óscar E.; Ghinea, Razvan

    2017-08-01

    The optical properties of a tissue or a biomaterial can be described in terms of the absorption coefficient (μa), the scattering coefficient (μs), the scattering function p(θ,ψ) and the real refractive index of the biomaterial. The Inverse Adding-Doubling, IAD, Method and relationship between the Kubelka- Munk parameters and the transport coefficients are used to describe optical properties at different wavelengths for a large variety of tissues and tissue like biomaterials, such as native cornea, tissue engineered cornea, tissue engineered oral mucosa, natural dentin and dental resin nanocomposites, among others

  19. Electronic Document Management: A Human Resource Management Case Study

    Directory of Open Access Journals (Sweden)

    Thomas Groenewald

    2004-11-01

    Full Text Available This case study serve as exemplar regarding what can go wrong with the implementation of an electronic document management system. Knowledge agility and knowledge as capital, is outlined against the backdrop of the information society and knowledge economy. The importance of electronic document management and control is sketched thereafter. The literature review is concluded with the impact of human resource management on knowledge agility, which includes references to the learning organisation and complexity theory. The intervention methodology, comprising three phases, follows next. The results of the three phases are presented thereafter. Partial success has been achieved with improving the human efficacy of electronic document management, however the client opted to discontinue the system in use. Opsomming Die gevalle studie dien as voorbeeld van wat kan verkeerd loop met die implementering van ’n elektroniese dokumentbestuur sisteem. Teen die agtergrond van die inligtingsgemeenskap en kennishuishouding word kennissoepelheid en kennis as kapitaal bespreek. Die literatuurstudie word afgesluit met die inpak van menslikehulpbronbestuur op kennissoepelheid, wat ook die verwysings na die leerorganisasie en kompleksietydsteorie insluit. Die metodologie van die intervensie, wat uit drie fases bestaan, volg daarna. Die resultate van die drie fases word vervolgens aangebied. Slegs gedeelte welslae is behaal met die verbetering van die menslike doeltreffendheid ten opsigte van elektroniese dokumentbestuur. Die klient besluit egter om nie voort te gaan om die huidige sisteem te gebruik nie.

  20. Designer biomaterials for mechanobiology

    Science.gov (United States)

    Li, Linqing; Eyckmans, Jeroen; Chen, Christopher S.

    2017-12-01

    Biomaterials engineered with specific bioactive ligands, tunable mechanical properties and complex architecture have emerged as powerful tools to probe cell sensing and response to physical properties of their material surroundings, and ultimately provide designer approaches to control cell function.

  1. Biofilm and Dental Biomaterials

    Directory of Open Access Journals (Sweden)

    Marit Øilo

    2015-05-01

    Full Text Available All treatment involving the use of biomaterials in the body can affect the host in positive or negative ways. The microbiological environment in the oral cavity is affected by the composition and shape of the biomaterials used for oral restorations. This may impair the patients’ oral health and sometimes their general health as well. Many factors determine the composition of the microbiota and the formation of biofilm in relation to biomaterials such as, surface roughness, surface energy and chemical composition, This paper aims to give an overview of the scientific literature regarding the association between the chemical, mechanical and physical properties of dental biomaterials and oral biofilm formation, with emphasis on current research and future perspectives.

  2. Biomaterials in Artificial Organs.

    Science.gov (United States)

    Kambic, Helen E.; And Others

    1986-01-01

    Biomaterials are substances or combinations of substances that can be used in a system that treats, augments, or replaces any tissue, organ, or body function. The nature and role of these substances, particularly in the cadiovascular system, are discussed. (JN)

  3. Biomaterials a basic introduction

    CERN Document Server

    Chen, Qizhi

    2014-01-01

    Part IBiomaterials ScienceBiomaterials Science and EngineeringLearning ObjectivesMaterials Science and EngineeringMultilevels of Structure and Categorization of MaterialsFour Categories of MaterialsDefinitions of Biomaterials, Biomedical Materials, and Biological MaterialsBiocompatibilityChapter HighlightsActivitiesSimple Questions in ClassProblems and ExercisesBibliographyToxicity and CorrosionLearning ObjectivesElements in the BodyBiological Roles and Toxicities of Trace ElementsSelection of Metallic Elements in Medical-Grade AlloysCorrosion of MetalsEnvironment inside the BodyMinimization of Toxicity of Metal ImplantsChapter HighlightsLaboratory Practice 1Simple Questions in ClassProblems and ExercisesAdvanced Topic: Biological Roles of Alloying ElementsBibliographyMechanical Properties of BiomaterialsLearning ObjectivesRole of Implant BiomaterialsMechanical Properties of General ImportanceHardnessElasticity: Resilience and StrechabilityMechanical Properties Terms Used in the Medical CommunityFailureEssent...

  4. TO QUESTION OF QUALITY EXAMINATION OF ELECTRONIC EDUCATIONAL RESOURCES

    Directory of Open Access Journals (Sweden)

    Svitlana G. Lytvynova

    2013-04-01

    Full Text Available The article deals with the scientific and methodological approaches to the examination of quality of electronic educational resources (EER for secondary schools. It was defined conceptual apparatus, described the object of examination, clarified certain aspects of the functions of examination, determined the basic tasks of expertise, summarized the principles of expertise (scientific, personalization, active involvement in the learning process, described the requirements to the participants of EER expertise, grounded EER accordance to didactic and methodological requirements, described an algorithm of preparation for  the examination object to determine compliance with the requirements of didactic. It is established that the assessment is aimed to the receipt from the experts of corresponding data and acceptance on their basis of competent decisions about expedience of the use in general educational establishments.

  5. Wildlife biomaterial banking in Africa for now and the future.

    Science.gov (United States)

    Bartels, Paul; Kotze, Antoinette

    2006-08-01

    The Wildlife Biological Resource Centre (wBRC) together with its partners in BioBank SA, have created a Biological Resource Bank (BRB) that is dedicated to the acquisition, processing, banking, using and provision of biomaterials to the scientific and conservation industry that are viable, diverse and representative of southern Africa's wildlife populations. Banked biomaterials include tissue such as muscle, kidney, fat, liver, embryos, fibroblast cultures, blood, sperm, hair, egg shells and other tissue, fluids and cells. Biomaterials are made available for research, biodiversity conservation and biotechnology development. Biomaterials are used in many disciplines, including genetics, reproduction, nutrition, and disease studies. Biomaterials from selected species are also useful for the detection and monitoring of Persistent Organic Pollutants and other potentially harmful substances found in the environment. Biomaterials are made available to third parties with prior consent from the biomaterials "owner" and only after the signing of a customised Material Transfer Agreement (MTA) or Cooperative Research and Development Agreement (CRADA). The training of staff from National and Provincial Game Reserves, Zoological Gardens, Animal Breeders and laboratories is carried out on a regular basis with the aim of securing good quality biomaterials. Sampling kits are made available to persons tasked with the collection of wildlife biomaterials. The Biobank SA consortium acts as an integrated resource centre linking partner collections. The consortium's operational arm, namely wBRC, is active in the development of relevant policy, regulations and legislation pertaining to biomaterials, including Access and Benefit Sharing systems. The main sponsor of the project is the Department of Science and Technology, National Government of South Africa.

  6. Advanced biomaterials and biodevices

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Biomaterials are the fastest-growing emerging field of  biodevices. Design and development of biomaterials play a significant role in the diagnosis, treatment, and prevention of diseases. Recently, a variety of scaffolds/carriers have been evaluated for tissue regeneration, drug delivery, sensing and imaging.  Liposomes and microspheres have been developed for sustained delivery. Several anti-cancer drugs have been successfully formulated using biomaterial. The targeting of drugs to certain physiological sites has emerged as a promising tool in the treatment with improved drug bioavailability and reduction of dosing frequency. Biodevices-based targeting of drugs may improve the therapeutic success by limiting the adverse drug effects and resulting in more patient compliance and attaining a higher adherence level. Advanced biodevices hold merit as a drug carrier with high carrier capacity, feasibility of incorporation of both hydrophilic and hydrophobic substances, high stability, as well as the feasibility...

  7. Bone substitute biomaterials

    CERN Document Server

    Mallick, K

    2014-01-01

    Bone substitute biomaterials are fundamental to the biomedical sector, and have recently benefitted from extensive research and technological advances aimed at minimizing failure rates and reducing the need for further surgery. This book reviews these developments, with a particular focus on the desirable properties for bone substitute materials and their potential to encourage bone repair and regeneration. Part I covers the principles of bone substitute biomaterials for medical applications. One chapter reviews the quantification of bone mechanics at the whole-bone, micro-scale, and non-scale levels, while others discuss biomineralization, osteoductivization, materials to fill bone defects, and bioresorbable materials. Part II focuses on biomaterials as scaffolds and implants, including multi-functional scaffolds, bioceramics, and titanium-based foams. Finally, Part III reviews further materials with the potential to encourage bone repair and regeneration, including cartilage grafts, chitosan, inorganic poly...

  8. Electronic Safety Resource Tools -- Supporting Hydrogen and Fuel Cell Commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Barilo, Nick F.

    2014-09-29

    The Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program conducted a planning session in Los Angeles, CA on April 1, 2014 to consider what electronic safety tools would benefit the next phase of hydrogen and fuel cell commercialization. A diverse, 20-person team led by an experienced facilitator considered the question as it applied to the eight most relevant user groups. The results and subsequent evaluation activities revealed several possible resource tools that could greatly benefit users. The tool identified as having the greatest potential for impact is a hydrogen safety portal, which can be the central location for integrating and disseminating safety information (including most of the tools identified in this report). Such a tool can provide credible and reliable information from a trustworthy source. Other impactful tools identified include a codes and standards wizard to guide users through a series of questions relating to application and specific features of the requirements; a scenario-based virtual reality training for first responders; peer networking tools to bring users from focused groups together to discuss and collaborate on hydrogen safety issues; and a focused tool for training inspectors. Table ES.1 provides results of the planning session, including proposed new tools and changes to existing tools.

  9. Biomaterials and therapeutic applications

    Science.gov (United States)

    Ferraro, Angelo

    2016-03-01

    A number of organic and inorganic, synthetic or natural derived materials have been classified as not harmful for the human body and are appropriate for medical applications. These materials are usually named biomaterials since they are suitable for introduction into living human tissues of prosthesis, as well as for drug delivery, diagnosis, therapies, tissue regeneration and many other clinical applications. Recently, nanomaterials and bioabsorbable polymers have greatly enlarged the fields of application of biomaterials attracting much more the attention of the biomedical community. In this review paper I am going to discuss the most recent advances in the use of magnetic nanoparticles and biodegradable materials as new biomedical tools.

  10. Controlling user access to electronic resources without password

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Fred Hewitt

    2015-06-16

    Described herein are devices and techniques for remotely controlling user access to a restricted computer resource. The process includes pre-determining an association of the restricted computer resource and computer-resource-proximal environmental information. Indicia of user-proximal environmental information are received from a user requesting access to the restricted computer resource. Received indicia of user-proximal environmental information are compared to associated computer-resource-proximal environmental information. User access to the restricted computer resource is selectively granted responsive to a favorable comparison in which the user-proximal environmental information is sufficiently similar to the computer-resource proximal environmental information. In at least some embodiments, the process further includes comparing user-supplied biometric measure and comparing it with a predetermined association of at least one biometric measure of an authorized user. Access to the restricted computer resource is granted in response to a favorable comparison.

  11. Biomaterials for tissue engineering: summary

    Science.gov (United States)

    Christenson, L.; Mikos, A. G.; Gibbons, D. F.; Picciolo, G. L.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    This article summarizes presentations and discussion at the workshop "Enabling Biomaterial Technology for Tissue Engineering," which was held during the Fifth World Biomaterials Congress in May 1996. Presentations covered the areas of material substrate architecture, barrier effects, and cellular response, including analysis of biomaterials challenges involved in producing specific tissue-engineered products.

  12. Biomaterials and magnetism

    Indian Academy of Sciences (India)

    Magnetite (Fe34) is biocompatible and therefore is one of the most extensively used biomaterials for different applications ranging from cell separation and drug delivery to hyperthermia. Other than this, a large number of magnetic materials in bulk as well as in the form of nano particles have been exploited for a variety of ...

  13. Update on Biomaterials.

    Science.gov (United States)

    Anderson, Paul A; Giori, Nicholas J; Lavernia, Carlos J; Villa, Jesus M; Greenwald, A Seth

    2016-01-01

    Biomaterials are essential to the use and development of successful treatments for orthopaedic patients. Orthopaedic surgeons need to understand the expected clinical performance and the effects of implants in patients. Recent attempts to improve implant durability have resulted in adverse effects related to biomaterials and their relationship to patients. Examples of these adverse effects in hip arthroplasty include wear and corrosion of metal-on-metal bearings, trunnions, and tapered modular neck junctions. Conversely, polymers and ceramics have shown substantial improvements in durability. Improved implant compositions and manufacturing processes have resulted in ceramic head and acetabular liners with improved material properties and the avoidance of voids, which have, in the past, caused catastrophic fractures. Cross-linking of polyethylene with radiation and doping with antioxidants has substantially increased implant durability and is increasingly being used in joint prostheses other than the hip. Additive manufacturing is potentially a transformative process; it can lead to custom and patient-specific implants and to improvements in material properties, which can be optimized to achieve desired bone responses. Orthopaedic surgeons must understand the material properties and the biologic effects of new or altered biomaterials and manufacturing processes before use. In addition, a clear benefit to the patient must be proven based on superior preclinical results and high-quality clinical investigations before orthopaedic surgeons use new or altered biomaterials.

  14. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  15. Hot topics in biomaterials

    CERN Document Server

    Alton, Eric W; Griesenbach, Uta

    2014-01-01

    The expert coverage of the eight chapters in this book reflects the diverse nature of the field of biomaterials science and encompasses contributions from a wide range of fields, highlighting key classes of novel materials and exploring the underlying science and potential applications.

  16. Resources

    Science.gov (United States)

    ... Colon cancer - resources Cystic fibrosis - resources Depression - resources Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family ...

  17. The Internet School of Medicine: use of electronic resources by medical trainees and the reliability of those resources.

    Science.gov (United States)

    Egle, Jonathan P; Smeenge, David M; Kassem, Kamal M; Mittal, Vijay K

    2015-01-01

    Electronic sources of medical information are plentiful, and numerous studies have demonstrated the use of the Internet by patients and the variable reliability of these sources. Studies have investigated neither the use of web-based resources by residents, nor the reliability of the information available on these websites. A web-based survey was distributed to surgical residents in Michigan and third- and fourth-year medical students at an American allopathic and osteopathic medical school and a Caribbean allopathic school regarding their preferred sources of medical information in various situations. A set of 254 queries simulating those faced by medical trainees on rounds, on a written examination, or during patient care was developed. The top 5 electronic resources cited by the trainees were evaluated for their ability to answer these questions accurately, using standard textbooks as the point of reference. The respondents reported a wide variety of overall preferred resources. Most of the 73 responding medical trainees favored textbooks or board review books for prolonged studying, but electronic resources are frequently used for quick studying, clinical decision-making questions, and medication queries. The most commonly used electronic resources were UpToDate, Google, Medscape, Wikipedia, and Epocrates. UpToDate and Epocrates had the highest percentage of correct answers (47%) and Wikipedia had the lowest (26%). Epocrates also had the highest percentage of wrong answers (30%), whereas Google had the lowest percentage (18%). All resources had a significant number of questions that they were unable to answer. Though hardcopy books have not been completely replaced by electronic resources, more than half of medical students and nearly half of residents prefer web-based sources of information. For quick questions and studying, both groups prefer Internet sources. However, the most commonly used electronic resources fail to answer clinical queries more than half

  18. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  19. Checklist Manifesto for Electronic Resources: Getting Ready for the Fiscal Year and Beyond

    Science.gov (United States)

    England, Lenore; Fu, Li; Miller, Stephen

    2011-01-01

    Organization of electronic resources workflow is critical in the increasingly complicated and complex world of library management. A simple organizational tool that can be readily applied to electronic resources management (ERM) is the use of checklists. Based on the principles discussed in The Checklist Manifesto: How to Get Things Right, the…

  20. Electronic resource management practical perspectives in a new technical services model

    CERN Document Server

    Elguindi, Anne

    2012-01-01

    A significant shift is taking place in libraries, with the purchase of e-resources accounting for the bulk of materials spending. Electronic Resource Management makes the case that technical services workflows need to make a corresponding shift toward e-centric models and highlights the increasing variety of e-formats that are forcing new developments in the field.Six chapters cover key topics, including: technical services models, both past and emerging; staffing and workflow in electronic resource management; implementation and transformation of electronic resource management systems; the ro

  1. Use of Internet and Electronic Resources amongst Postgraduate ...

    African Journals Online (AJOL)

    Findings indicate that the study group has regular access to the internet , and preferred using free online resources from Google and Wikipedia to institutionally subscribed academic online resources in databases such as HINARI, EBSCO Host, Questia , JSTOR and High Beam.This shows that technology alone cannot help ...

  2. Strategic Planning for Electronic Resources Management: A Case Study at Gustavus Adolphus College

    Science.gov (United States)

    Hulseberg, Anna; Monson, Sarah

    2009-01-01

    Electronic resources, the tools we use to manage them, and the needs and expectations of our users are constantly evolving; at the same time, the roles, responsibilities, and workflow of the library staff who manage e-resources are also in flux. Recognizing a need to be more intentional and proactive about how we manage e-resources, the…

  3. Biomaterials and bone mechanotransduction

    Science.gov (United States)

    Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.

  4. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  5. Biomaterials in light amplification

    Science.gov (United States)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  6. Preservation of and Permanent Access to Electronic Information Resources

    National Research Council Canada - National Science Library

    Hodge, Gail

    2004-01-01

    The rapid growth in the creation and dissemination of electronic information has emphasized the digital environment's speed and ease of dissemination with little regard for its long-term preservation and access...

  7. Controlling user access to electronic resources without password

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Fred Hewitt

    2017-08-22

    Described herein are devices and techniques for remotely controlling user access to a restricted computer resource. The process includes obtaining an image from a communication device of a user. An individual and a landmark are identified within the image. Determinations are made that the individual is the user and that the landmark is a predetermined landmark. Access to a restricted computing resource is granted based on the determining that the individual is the user and that the landmark is the predetermined landmark. Other embodiments are disclosed.

  8. Development of Elastomeric Polypeptide BIomaterials

    National Research Council Canada - National Science Library

    Urry, Dan

    1998-01-01

    To design elastic polypeptide biomaterials in order to achieve diverse forms of free energy transduction by these water-miscible hydrophobic folding and assembling macromolecules, thereby to elucidate...

  9. impact of the use of electronic resources on research output

    African Journals Online (AJOL)

    manda

    reported using free Internet resources including the search engines, while only a small proportion uses scholarly databases. For example, 22% of researchers reported using the. African Journals Online (AJOL) while 7% use Gale databases (see Table 2 for details). Additionally, the frequency of use also varied significantly ...

  10. Challenges associated with cataloguing of electronic resources in ...

    African Journals Online (AJOL)

    The aim of the paper is to identify challenges associated with the cataloguing of e resources in some selected university libraries in south –south Nigeria. The descriptive survey design involving the use of questionnaire as the research instrument was adopted. The population comprised of cataloguers in five selected ...

  11. Availability of Electronic Resources for Service Provision in ...

    African Journals Online (AJOL)

    The study also revealed that majority of the University libraries have adequate basic infrastructure for effective electronic information services. ... acquired by the library are put into maximal use by the library clientele, thereby ensuring the achievement of the library's objective which is satisfying the users, information needs.

  12. Growing an Electronic Library: Resources, Utility, Marketing and Politics.

    Science.gov (United States)

    Dugdale, David; Dugdale, Christine

    2000-01-01

    Describes the development of the ResIDe Electronic Library at the University of the West of England, Bristol. Analyzes potential of the system to increase economy, efficiency and effectiveness in library services and relates it to how the needs of sponsors and students can be met. (Author/LRW)

  13. MODELING OF QUALITY MANAGEMENT SYSTEM FOR ELECTRONIC LEARNING RESOURCES: THE INTEGRATED AND DIFFERENTIATED APPROACHES

    Directory of Open Access Journals (Sweden)

    H. M. Kravtsov

    2012-03-01

    Full Text Available Abstract. Results on modeling of quality management system of electronic information resources on the basis of the analysis of its elements functioning with use of the integrated and differentiated approaches are presented. Application of such model is illustrated on an example of calculation and optimization of parameters of a quality management system at the organization of the co-ordinated work of services of monitoring, an estimation of quality and support of electronic learning resources.

  14. A Study on Developing Evaluation Criteria for Electronic Resources in Evaluation Indicators of Libraries

    Science.gov (United States)

    Noh, Younghee

    2010-01-01

    This study aimed to improve the current state of electronic resource evaluation in libraries. While the use of Web DB, e-book, e-journal, and other e-resources such as CD-ROM, DVD, and micro materials is increasing in libraries, their use is not comprehensively factored into the general evaluation of libraries and may diminish the reliability of…

  15. Managing Selection for Electronic Resources: Kent State University Develops a New System to Automate Selection

    Science.gov (United States)

    Downey, Kay

    2012-01-01

    Kent State University has developed a centralized system that manages the communication and work related to the review and selection of commercially available electronic resources. It is an automated system that tracks the review process, provides selectors with price and trial information, and compiles reviewers' feedback about the resource. It…

  16. Video Killed the Radio Star: Language Students' Use of Electronic Resources-Reading or Viewing?

    Science.gov (United States)

    Kiliçkaya, Ferit

    2016-01-01

    The current study aimed to investigate language students' use of print and electronic resources for their research papers required in research techniques class, focusing on which reading strategies they used while reading these resources. The participants of the study were 90 sophomore students enrolled in the research techniques class offered at…

  17. Biomaterials: An Introduction for Librarians.

    Science.gov (United States)

    Bush, Renee B.

    1996-01-01

    Contains an overview of biomaterials, an interdisciplinary field in which research combines medicine, biological sciences, physical sciences, and engineering. Biomaterials are substances which improve quality of life by augmenting or replacing bodily tissues or functions. Highlights problems associated with collection development and literature…

  18. Where Do Electronic Books Fit in the College Research Arsenal of Resources?

    Science.gov (United States)

    Barbier, Patricia

    2007-01-01

    Student use of electronic books has become an accepted supplement to traditional resources. Student use and satisfaction was monitored through an online course discussion board. Increased use of electronic books indicate this service is an accepted supplement to the print book collection.

  19. Trends in biomaterials

    CERN Document Server

    Kothiyal, G P

    2016-01-01

    Biomaterials research requires the union of materials scientists, engineers, biologists, biomedical doctors, and surgeons. Societal implications have invoked tremendous interest in this area of research in recent years. What started as a search for strong and durable implant materials has now led to path-breaking developments in tissue engineering, targeted drug delivery, and tissue scaffolds. Viable applications of mesoporous structures, polymer biocomposites, and fibers (synthetic and natural) in the areas of clinical orthopedics, controlled drug delivery, tissue engineering, orthodontics, etc., have emerged as relatively recent concepts. This book presents recent results related to both materials aspects and implant issues. The focus is on structural, magnetic, antibacterial, bioactivity/compatibility, mechanical, and other related properties and the implication of these results on biomedical applications. The book discusses technical problems faced by the surgeon during implant fixation in total hip repla...

  20. Biomaterials in orthopaedics

    Science.gov (United States)

    Navarro, M; Michiardi, A; Castaño, O; Planell, J.A

    2008-01-01

    At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field. PMID:18667387

  1. Adsorptive Removal of Metal Ions from Water using Functionalized Biomaterials.

    Science.gov (United States)

    Deshpande, Kanchanmala

    2017-01-01

    Synthesis and modification of cost-effective sorbents for removing heavy metals from water resources is an area of significance. It had been reported that materials with biological origins, such as agricultural and animal waste, are excellent alternatives to conventional adsorbents due to their higher affinity, capacity and selectivity towards metal ions. These properties of biomaterials help to reduce or detoxify metal ions concentration in contaminated water to acceptable regulatory standards. Synthesis of novel, efficient, cost effective, eco-friendly biomaterials for heavy metal adsorption from water is still an area of challenge. In this comprehensive review, acompilation of patents as well as published articles is carried out to outline the properties of different biomaterials based on their precursors along withdetailed description of biomaterial morphology and various surface modification approaches. A detailed study of the performance of adsorbents and the role of physical and chemical modification in terms of enhancing their potential for metal adsorption from water is compiled here. The factors affecting adsorption behavior i.e., capacity and affinity of e biomaterials is also compiled. This paper presents a concise review of reported studies on the synthesis and modification of biomaterials, their use for heavy metal removal from waters and future prospects of this technology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Mechanics of additively manufactured biomaterials.

    Science.gov (United States)

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The National Site Licensing of Electronic Resources: An Institutional Perspective

    Directory of Open Access Journals (Sweden)

    Xiaohua Zhu

    2011-06-01

    Full Text Available While academic libraries in most countries are struggling to negotiate with publishers and vendors individually or collaboratively via consortia, a few countries have experimented with a different model, national site licensing (NSL. Because NSL often involves government and large-scale collaboration, it has the potential to solve many problems in the complex licensing world. However, not many nations have adopted it. This study uses historical research approach and the comparative case study research method to explore the seemingly low level of adoption. The cases include the Canadian National Site Licensing Project (CNSLP, the United Kingdom’s National Electronic Site Licensing Initiative (NESLI, and the United States, which has not adopted NSL. The theoretical framework guiding the research design and data collection is W. Richard Scott’s institutional theory, which utilizes three supporting pillars—regulative, normative, and cultural-cognitive—to analyze institutional processes. In this study, the regulative pillar and the normative pillar of NSL adoption— an institutional construction and change—are examined. Data were collected from monographs, research articles, government documents, and relevant websites. Based on the analysis of these cases, a preliminary model is proposed for the adoption of NSL. The factors that support a country’s adoption of NSL include the need for new institutions, a centralized educational policy-making system and funding system, supportive political trends, and the tradition of cooperation. The factors that may prevent a country from adopting NSL include decentralized educational policy and funding, diversity and the large number of institutions, the concern for the “Big Deal,” and the concern for monopoly.

  4. Zirconia as a Dental Biomaterial

    Directory of Open Access Journals (Sweden)

    Alvaro Della Bona

    2015-08-01

    Full Text Available Ceramics are very important in the science of dental biomaterials. Among all dental ceramics, zirconia is in evidence as a dental biomaterial and it is the material of choice in contemporary restorative dentistry. Zirconia has been applied as structural material for dental bridges, crowns, inserts, and implants, mostly because of its biocompatibility, high fracture toughness, and radiopacity. However, the clinical success of restorative dentistry has to consider the adhesion to different substrates, which has offered a great challenge to dental zirconia research and development. This study characterizes zirconia as a dental biomaterial, presenting the current consensus and challenges to its dental applications.

  5. Use of poisons information resources and satisfaction with electronic products by Victorian emergency department staff.

    Science.gov (United States)

    Luke, Stephen; Fountain, John S; Reith, David M; Braitberg, George; Cruickshank, Jaycen

    2014-10-01

    ED staff use a range of poisons information resources of varying type and quality. The present study aims to identify those resources utilised in the state of Victoria, Australia, and assess opinion of the most used electronic products. A previously validated self-administered survey was conducted in 15 EDs, with 10 questionnaires sent to each. The survey was then repeated following the provision of a 4-month period of access to Toxinz™, an Internet poisons information product novel to the region. The study was conducted from December 2010 to August 2011. There were 117 (78%) and 48 (32%) responses received from the first and second surveys, respectively, a 55% overall response rate. No statistically significant differences in professional group, numbers of poisoned patients seen or resource type accessed were identified between studies. The electronic resource most used in the first survey was Poisindex® (48.68%) and Toxinz™ (64.1%) in the second. There were statistically significant (P poisons information but would do so if a reputable product was available. The order of poisons information sources most utilised was: consultation with a colleague, in-house protocols and electronic resources. There was a significant difference in satisfaction with electronic poisons information resources and a movement away from existing sources when choice was provided. Interest in increased use of mobile solutions was identified. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  6. Zirconia as a Dental Biomaterial

    OpenAIRE

    Alvaro Della Bona; Oscar E. Pecho; Rodrigo Alessandretti

    2015-01-01

    Ceramics are very important in the science of dental biomaterials. Among all dental ceramics, zirconia is in evidence as a dental biomaterial and it is the material of choice in contemporary restorative dentistry. Zirconia has been applied as structural material for dental bridges, crowns, inserts, and implants, mostly because of its biocompatibility, high fracture toughness, and radiopacity. However, the clinical success of restorative dentistry has to consider the adhesion to different subs...

  7. Improving access to information – defining core electronic resources for research and wellbeing

    Directory of Open Access Journals (Sweden)

    Kristiina Hormia-Poutanen

    2007-11-01

    Full Text Available Research and innovation are listed as the key success factors for the future development of Finnish prosperity and the Finnish economy. The Finnish libraries have developed a scenario to support this vision. University, polytechnic and research institute libraries as well as public libraries have defined the core electronic resources necessary to improve access to information in Finland. The primary aim of this work has been to provide information and justification for central funding for electronic resources to support the national goals. The secondary aim is to help with the reallocation of existing central funds to better support access to information.

  8. Analytical Study of Usage of Electronic Information Resources at Pharmacopoeial Libraries in India

    Directory of Open Access Journals (Sweden)

    Sunil Tyagi

    2014-02-01

    Full Text Available The objective of this study is to know the rate and purpose of the use of e-resource by the scientists at pharmacopoeial libraries in India. Among other things, this study examined the preferences of the scientists toward printed books and journals, electronic information resources, and pattern of using e-resources. Non-probability sampling specially accidental and purposive technique was applied in the collection of primary data through administration of user questionnaire. The sample respondents chosen for the study consists of principle scientific officer, senior scientific officer, scientific officer, and scientific assistant of different division of the laboratories, namely, research and development, pharmaceutical chemistry, pharmacovigilance, pharmacology, pharmacogonosy, and microbiology. The findings of the study reveal the personal experiences and perceptions they have had on practice and research activity using e-resource. The major findings indicate that of the total anticipated participants, 78% indicated that they perceived the ability to use computer for electronic information resources. The data analysis shows that all the scientists belonging to the pharmacopoeial libraries used electronic information resources to address issues relating to drug indexes and compendia, monographs, drugs obtained through online databases, e-journals, and the Internet sources—especially polices by regulatory agencies, contacts, drug promotional literature, and standards.

  9. Eavesdropping on Electronic Guidebooks: Observing Learning Resources in Shared Listening Environments

    OpenAIRE

    Woodruff, Allison; Aoki, Paul M.; Grinter, Rebecca E.; Hurst, Amy; Szymanski, Margaret H.; Thornton, James D.

    2002-01-01

    We describe an electronic guidebook, Sotto Voce, that enables visitors to share audio information by eavesdropping on each other's guidebook activity. We have conducted three studies of visitors using electronic guidebooks in a historic house: one study with open air audio played through speakers and two studies with eavesdropped audio. An analysis of visitor interaction in these studies suggests that eavesdropped audio provides more social and interactive learning resources than open air aud...

  10. Elektronik Bilgi Kaynaklarının Seçimi / Selection of Electronic Information Resources

    Directory of Open Access Journals (Sweden)

    Pınar Al

    2003-04-01

    Full Text Available For many years, library users have used only from the printed media in order to get the information that they have needed. Today with the widespread use of the Web and the addition of electronic information resources to library collections, the use of information in the electronic environment as well as in printed media is started to be used. In time, such types of information resources as, electronic journals, electronic books, electronic encyclopedias, electronic dictionaries and electronic theses have been added to library collections. In this study, selection criteria that can be used for electronic information resources are discussed and suggestions are provided for libraries that try to select electronic information resources for their collections.

  11. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  12. The Acquisition and Management of Electronic Resources: Can Use Justify Cost?

    Science.gov (United States)

    Koehn, Shona L.; Hawamdeh, Suliman

    2010-01-01

    As library collections increasingly become digital, libraries are faced with many challenges regarding the acquisition and management of electronic resources. Some of these challenges include copyright and fair use, the first-sale doctrine, licensing versus ownership, digital preservation, long-term archiving, and, most important, the issue of…

  13. Awareness and use of electronic resources at a university campus in ...

    African Journals Online (AJOL)

    This study looks into the use of electronic resources by the faculty members of College of Technology Education, Kumasi of the University of Education, Winneba, Ghana. Sixty-two copies of a questionnaire were sent to the entire faculty and 31 were returned which gave a response rate of 50%. The responses showed very ...

  14. REVIEW OF MOODLE PLUGINS FOR DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES FROM LANGUAGE DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2015-09-01

    Full Text Available Today the problem of designing multimedia electronic educational resources from language disciplines in Moodle is very important. This system has a lot of different, powerful resources, plugins to facilitate the learning of students with language disciplines. This article presents an overview and comparative analysis of the five Moodle plugins for designing multimedia electronic educational resources from language disciplines. There have been considered their key features and functionality in order to choose the best for studying language disciplines in the Moodle. Plugins are compared by a group of experts according to the criteria: efficiency, functionality and easy use. For a comparative analysis of the plugins it is used the analytic hierarchy process.

  15. Effects of the Use of Electronic Human Resource Management (EHRM Within Human Resource Management (HRM Functions at Universities

    Directory of Open Access Journals (Sweden)

    Chux Gervase Iwu

    2016-09-01

    Full Text Available This study set out to examine the effect of e-hrm systems in assisting human resource practitioners to execute their duties and responsibilities. In comparison to developed economies of the world, information technology adoption in sub-Saharan Africa has not been without certain glitches. Some of the factors that are responsible for these include poor need identification, sustainable funding, and insufficient skills. Besides these factors, there is also the issue of change management and users sticking to what they already know. Although, the above factors seem negative, there is strong evidence that information systems such as electronic human resource management present benefits to an organization. To achieve this, a dual research approach was utilized. Literature assisted immensely in both the development of the conceptual framework upon which the study hinged as well as in the development of the questionnaire items. The study also made use of an interview checklist to guide the participants. The findings reveal a mix of responses that indicate that while there are gains in adopting e-hrm systems, it is wiser to consider supporting resources as well as articulate the needs of the university better before any investment is made.

  16. Biomaterial Selection for Tooth Regeneration

    Science.gov (United States)

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  17. Characterization of Biomaterials by Soft X-Ray Spectromicroscopy

    Directory of Open Access Journals (Sweden)

    Adam P. Hitchcock

    2010-07-01

    Full Text Available Synchrotron-based soft X-ray spectromicroscopy techniques are emerging as useful tools to characterize potentially biocompatible materials and to probe protein interactions with model biomaterial surfaces. Simultaneous quantitative chemical analysis of the near surface region of the candidate biomaterial, and adsorbed proteins, peptides or other biological species can be obtained at high spatial resolution via scanning transmission X-ray microscopy (STXM and X-ray photoemission electron microscopy (X-PEEM. Both techniques use near-edge X-ray absorption fine structure (NEXAFS spectral contrast for chemical identification and quantitation. The capabilities of STXM and X-PEEM for the analysis of biomaterials are reviewed and illustrated by three recent studies: (1 characterization of hydrophobic surfaces, including adsorption of fibrinogen (Fg or human serum albumin (HSA to hydrophobic polymeric thin films, (2 studies of HSA adsorption to biodegradable or potentially biocompatible polymers, and (3 studies of biomaterials under fully hydrated conditions. Other recent applications of STXM and X-PEEM to biomaterials are also reviewed.

  18. Radiation produced biomaterials

    International Nuclear Information System (INIS)

    Rosiak, J.M.

    1998-01-01

    Medical advances that have prolonged the average life span have generated increased need for new materials that can be used as tissue and organ replacements, drug delivery systems and/or components of devices related to therapy and diagnosis. The first man-made plastic used as surgical implant was celluloid, applied for cranial defect repair. However, the first users applied commercial materials with no regard for their purity, biostability and post-operative interaction with the organism. Thus, these materials evoked a strong tissue reaction and were unacceptable. The first polymer which gained acceptance for man-made plastic was poly(methyl methacrylate). But the first polymer of choice, precursor of the broad class of materials known today as hydrogels, was poly(hydroxyethyl methacrylate) synthesized in the fifties by Wichterle and Lim. HEMA and its various combinations with other, both hydrophilic and hydrophobic, polymers are till now the most often used hydrogels for medical purposes. In the early fifties, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking, also with hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of phenomena associated with mechanism of reactions, topology of network, and relations between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by Charlesby (1960) and Chapiro (1962) proceed from this time. The noticeable interest in application of radiation to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents published by Japanese and American scientists. Among others, the team of the Takasaki Radiation Chemistry Research Establishment headed by Kaetsu as well as Hoffman and his colleagues from the Center of Bioengineering, University of Washington have created the base for spreading interest in the field of biomaterials formed by means of

  19. USE OF ELECTRONIC EDUCATIONAL RESOURCES WHEN TRAINING IN WORK WITH SPREADSHEETS

    Directory of Open Access Journals (Sweden)

    Х А Гербеков

    2017-12-01

    Full Text Available Today the tools for maintaining training courses based on opportunities of information and communication technologies are developed. Practically in all directions of preparation and on all subject matters electronic textbook and self-instruction manuals are created. Nevertheless the industry of computer educational and methodical materials actively develops and gets more and more areas of development and introduction. In this regard more and more urgent is a problem of development of the electronic educational resources adequate to modern educational requirements. Creation and the organization of training courses with use of electronic educational resources in particular on the basis of Internet technologies remains a difficult methodical task.In article the questions connected with development of electronic educational resources for use when studying the substantial line “Information technologies” of a school course of informatics in particular for studying of spreadsheets are considered. Also the analysis of maintenance of a school course and the unified state examination from the point of view of representation of task in him corresponding to the substantial line of studying “Information technologies” on mastering technology of information processing in spreadsheets and the methods of visualization given by means of charts and schedules is carried out.

  20. Chitin fulfilling a biomaterials promise

    CERN Document Server

    Khor, Eugene

    2001-01-01

    The second edition of Chitin underscores the important factors for standardizing chitin processing and characterization. It captures the essential interplay between chitin's assets and limitations as a biomaterial, placing the past promises of chitin in perspective, addressing its present realities and offering insight into what is required to realize chitin's destiny (including its derivative, chitosan) as a biomaterial of the twenty-first century. This book is an ideal guide for both industrialists and researchers with a vested interest in commercializing chitin.An upd

  1. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  2. Directions of use of electronic resources at training to computer science of students of a teacher training college

    OpenAIRE

    Светлана Анатольева Баженова

    2009-01-01

    Article is devoted questions of use of electronic resources at training to computer science in a teacher training college, principles of pedagogical expediency of use of electronic resources at training are specified computer science and positive aspects of such use for different forms of work of the student and the teacher are allocated.

  3. Availability, Level of Use and Constraints to Use of Electronic Resources by Law Lecturers in Public Universities in Nigeria

    Science.gov (United States)

    Amusa, Oyintola Isiaka; Atinmo, Morayo

    2016-01-01

    (Purpose) This study surveyed the level of availability, use and constraints to use of electronic resources among law lecturers in Nigeria. (Methodology) Five hundred and fifty-two law lecturers were surveyed and four hundred and forty-two responded. (Results) Data analysis revealed that the level of availability of electronic resources for the…

  4. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Oduvaldo Câmara Marques Pereira-Junior

    2013-05-01

    Full Text Available PURPOSE: To evaluate in vitro ability the of three different biomaterials - purified hydroxyapatite, demineralized bone matrix and castor oil-based polyurethane - as biocompatible 3D scaffolds for canine bone marrow mesenchymal stem cell (MSC intending bone tissue engineering. METHODS: MSCs were isolated from canine bone marrow, characterized and cultivated for seven days with the biomaterials. Cell proliferation and adhesion to the biomaterial surface were evaluated by scanning electron microscopy while differentiation into osteogenic lineage was evaluated by Alizarin Red staining and Sp7/Osterix surface antibody marker. RESULTS: The biomaterials allowed cellular growth, attachment and proliferation. Osteogenic differentiation occurred in the presence of hydroxyapatite, and matrix deposition commenced in the presence of the castor oil-based polyurethane. CONCLUSION: All the tested biomaterials may be used as mesenchymal stem cell scaffolds in cell-based orthopedic reconstructive therapy.

  5. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  6. Predoctoral Curriculum Guidelines for Biomaterials.

    Science.gov (United States)

    Journal of Dental Education, 1986

    1986-01-01

    The American Association of Dental Schools' predoctoral guidelines for biomaterials curricula includes notes on interrelationships between this and other fields, a curriculum overview, primary educational goals, prerequisites, a core content outline, specific behavioral objectives for each content area, and information on sequencing, faculty and…

  7. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  8. A systematic review of portable electronic technology for health education in resource-limited settings.

    Science.gov (United States)

    McHenry, Megan S; Fischer, Lydia J; Chun, Yeona; Vreeman, Rachel C

    2017-08-01

    The objective of this study is to conduct a systematic review of the literature of how portable electronic technologies with offline functionality are perceived and used to provide health education in resource-limited settings. Three reviewers evaluated articles and performed a bibliography search to identify studies describing health education delivered by portable electronic device with offline functionality in low- or middle-income countries. Data extracted included: study population; study design and type of analysis; type of technology used; method of use; setting of technology use; impact on caregivers, patients, or overall health outcomes; and reported limitations. Searches yielded 5514 unique titles. Out of 75 critically reviewed full-text articles, 10 met inclusion criteria. Study locations included Botswana, Peru, Kenya, Thailand, Nigeria, India, Ghana, and Tanzania. Topics addressed included: development of healthcare worker training modules, clinical decision support tools, patient education tools, perceptions and usability of portable electronic technology, and comparisons of technologies and/or mobile applications. Studies primarily looked at the assessment of developed educational modules on trainee health knowledge, perceptions and usability of technology, and comparisons of technologies. Overall, studies reported positive results for portable electronic device-based health education, frequently reporting increased provider/patient knowledge, improved patient outcomes in both quality of care and management, increased provider comfort level with technology, and an environment characterized by increased levels of technology-based, informal learning situations. Negative assessments included high investment costs, lack of technical support, and fear of device theft. While the research is limited, portable electronic educational resources present promising avenues to increase access to effective health education in resource-limited settings, contingent

  9. Graphite Oxide to Graphene. Biomaterials to Bionics.

    Science.gov (United States)

    Thompson, Brianna C; Murray, Eoin; Wallace, Gordon G

    2015-12-09

    The advent of implantable biomaterials has revolutionized medical treatment, allowing the development of the fields of tissue engineering and medical bionic devices (e.g., cochlea implants to restore hearing, vagus nerve stimulators to control Parkinson's disease, and cardiac pace makers). Similarly, future materials developments are likely to continue to drive development in treatment of disease and disability, or even enhancing human potential. The material requirements for implantable devices are stringent. In all cases they must be nontoxic and provide appropriate mechanical integrity for the application at hand. In the case of scaffolds for tissue regeneration, biodegradability in an appropriate time frame may be required, and for medical bionics electronic conductivity is essential. The emergence of graphene and graphene-family composites has resulted in materials and structures highly relevant to the expansion of the biomaterials inventory available for implantable medical devices. The rich chemistries available are able to ensure properties uncovered in the nanodomain are conveyed into the world of macroscopic devices. Here, the inherent properties of graphene, along with how graphene or structures containing it interface with living cells and the effect of electrical stimulation on nerves and cells, are reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Corrosion resistance of PLGA-coated biomaterials.

    Science.gov (United States)

    Szewczenko, Janusz; Kajzer, Wojciech; Grygiel-Pradelok, Magdalena; Jaworska, Joanna; Jelonek, Katarzyna; Nowińska, Katarzyna; Gawliczek, Maria; Libera, Marcin; Marcinkowski, Andrzej; Kasperczyk, Janusz

    2017-01-01

    The aim of the study was to determine the influence of PLGA bioresorbable polymer coating on corrosion resistance of metal biomaterial. Polymer coating deposited by immersion method was applied. Corrosion resistance of metal biomaterials (stainless steel, Ti6Al4V, Ti6Al7Nb) coated with PLGA polymer, after 90 days exposure to Ringer's solution was tested. The amount of metal ions released to the solution was also investigated (inductively coupled plasma-atomic emission spectrometry (ICP-AES) method). The surface of the samples was observed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Degradation of PLGA was monitored with the use of the 1H NMR spectroscopy and GPC (Gel Permeation Chromatography). The studies were carried out for non-sterilized (NS) and sterilized (S) samples. Application of the polymer coating causes a reduction of release of metal ions to the solution. Depending on metal substrate different course of destruction of polymer layer was observed. After 90 days of incubation in Ringer's solution polymer layer was highly degraded, however, the composition of copolymer (ratio of the comonomeric units in the chain) remained unchanged during the whole process, which suggests even degradation. The polymer layer reduced degradation kinetics of the metal substrate. Moreover, degradation process did not change surface morphology of metal substrate and did not disturb its integrity. The results obtained indicate that the applied polymer layer improves corrosion resistance of the alloys being investigated. Thus, the developed implants with bioresorbable coatings could be advantageous for medical applications.

  11. Use of radiation in biomaterials science

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Roberto S. E-mail: rbenson1@utk.edu

    2002-05-01

    Radiation is widely used in the biomaterials science for surface modification, sterilization and to improve bulk properties. Radiation is also used to design of biochips, and in situ photopolymerizable of bioadhesives. The energy sources most commonly used in the irradiation of biomaterials are high-energy electrons, gamma radiation, ultraviolet (UV) and visible light. Surface modification involves placement of selective chemical moieties on the surface of a material by chemical reactions to improve biointeraction for cell adhesion and proliferation, hemocompatibility and water absorption. The exposure of a polymer to radiation, especially ionizing radiation, can lead to chain scission or crosslinking with changes in bulk and surface properties. Sterilization by irradiation is designed to inactivate most pathogens from the surface of biomedical devices. An overview of the use of gamma and UV radiation to improve surface tissue compatibility, bulk properties and surface properties for wear resistance, formation of hydrogels and curing dental sealants and bone adhesives is presented. Gamma and vacuum ultraviolet (VUV) irradiated ultrahigh molecular weight polyethylene (UHMWPE) exhibit improvement in surface modulus and hardness. The surface modulus and hardness of UHMWPE showed a dependence on type of radiation, dosage and processing. VUV surface modified e-PTFE vascular grafts exhibit increases in hydrophilicity and improvement towards adhesion of fibrin glue.

  12. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  13. Model of e-learning with electronic educational resources of new generation

    Directory of Open Access Journals (Sweden)

    A. V. Loban

    2017-01-01

    Full Text Available Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with electronic educational resource of new generation is developed, conditionally decomposed into three basic components: the formalization model of the course in the form of the thesaurusclassifier (“Author of e-resource”, the model of learning as management (“Coordination. Consultation. Control”, the learning model with the thesaurus-classifier (“Student”. Model “Author of e-resource” allows the student to achieve completeness, high degree of didactic elaboration and structuring of the studied material in triples of variants: modules of education information, practical task and control tasks; the result of the student’s (author’s of e-resource activity is the thesaurus-classifier. Model of learning as management is based on the principle of personal orientation of learning in computer environment and determines the logic of interaction between the lecturer and the student when determining the triple of variants individually for each student; organization of a dialogue between the lecturer and the student for consulting purposes; personal control of the student’s success (report generation and iterative search for the concept of the class assignment in the thesaurus-classifier before acquiring the required level of training. Model “Student” makes it possible to concretize the learning tasks in relation to the personality of the student and to the training level achieved; the assumption of the lecturer about the level of training of a

  14. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  15. Review of material recovery from used electric and electronic equipment-alternative options for resource conservation.

    Science.gov (United States)

    Friege, Henning

    2012-09-01

    For waste from electric and electronic equipment, the WEEE Directive stipulates the separate collection of electric and electronic waste. As to new electric and electronic devices, the Restriction of Hazardous Substances (RoHS) Directive bans the use of certain chemicals dangerous for man and environment. From the implementation of the WEEE directive, many unsolved problems have been documented: poor collection success, emission of dangerous substances during collection and recycling, irretrievable loss of valuable metals among others. As to RoHS, data from the literature show a satisfying success. The problems identified in the process can be reduced to some basic dilemmas at the borders between waste management, product policy and chemical safety. The objectives of the WEEE Directive and the specific targets for use and recycling of appliances are not consistent. There is no focus on scarce resources. Extended producer responsibility is not sufficient to guarantee sustainable waste management. Waste management reaches its limits due to problems of implementation but also due to physical laws. A holistic approach is necessary looking at all branch points and sinks in the stream of used products and waste from electric and electronic equipment. This may be done with respect to the general rules for sustainable management of material streams covering the three dimensions of sustainable policy. The relationships between the players in the field of electric and electronic devices have to be taken into account. Most of the problems identified in the implementation process will not be solved by the current amendment of the WEEE Directive.

  16. [Use of internet and electronic resources among Spanish intensivist physicians. First national survey].

    Science.gov (United States)

    Gómez-Tello, V; Latour-Pérez, J; Añón Elizalde, J M; Palencia-Herrejón, E; Díaz-Alersi, R; De Lucas-García, N

    2006-01-01

    Estimate knowledge and use habits of different electronic resources in a sample of Spanish intensivists: Internet, E-mail, distribution lists, and use of portable electronic devices. Self-applied questionnaire. A 50-question questionnaire was distributed among Spanish intensivists through the hospital marketing delegates of a pharmaceutical company and of electronic forums. A total of 682 questionnaires were analyzed (participation: 74%). Ninety six percent of those surveyed used Internet individually: 67% admitted training gap. Internet was the second source of clinical consultations most used (61%), slightly behind consultation to colleagues (65%). The pages consulted most were bibliographic databases (65%) and electronic professional journals (63%), with limited use of Evidence Based Medicine pages (19%). Ninety percent of those surveyed used e-mail regularly in the practice of their profession, although 25% admitted that were not aware of its possibilities. The use of E-mail decreased significantly with increase in age. A total of 62% of the intensivists used distribution lists. Of the rest, 42% were not aware of its existence and 32% admitted they had insufficient training to handle them. Twenty percent of those surveyed had portable electronic devices and 64% considered it useful, basically due to its rapid consultation at bedside. Female gender was a negative predictive factor of its use (OR 0.35; 95% CI 0.2-0.63; p=0.0002). A large majority of the Spanish intensivists use Internet and E-mail. E-mail lists and use of portable devices are still underused resources. There are important gaps in training and infrequent use of essential pages. There are specific groups that require directed educational policies.

  17. Electrospun polyacrylonitrile nanofibrous biomaterials.

    Science.gov (United States)

    Ren, Xuehong; Akdag, Akin; Zhu, Changyun; Kou, Lei; Worley, S D; Huang, T S

    2009-11-01

    An N-halamine precursor, 3-(5'-methyl-5'-hydantoinyl)acetanilide (I), was synthesized in our laboratory and loaded onto electrospun polyacrylonitrile fiber to prepare nanosized biocidal materials, which could be rendered antimicrobial by exposure to household bleach. Differential scanning calorimetry was used to study the thermal properties of the nanofibers with and without the N-halamine precursor and its chlorinated derivative loaded. Scanning electron microscopy demonstrated that the ultrafine fibers formed with diameters from 250 to 600 nm. Chlorinated nanofibrous mats composed of the fibers were challenged with Staphylococcus aureus (ATCC 6538) and Escherichia coli O157:H7 (ATCC 43895); they showed promising inactivation efficacies against the two bacterial species within 5 minutes of contact. Potential uses of the antimicrobial fibers include filters for industrial water and air disinfection and protective clothing. (c) 2008 Wiley Periodicals, Inc.

  18. Silver Nanoparticles in Dental Biomaterials

    OpenAIRE

    Corrêa, Juliana Mattos; Mori, Matsuyoshi; Sanches, Heloísa Lajas; Cruz, Adriana Dibo da; Poiate, EdgardJr.; Poiate, Isis Andréa Venturini Pola

    2015-01-01

    Silver has been used in medicine for centuries because of its antimicrobial properties. More recently, silver nanoparticles have been synthesized and incorporated into several biomaterials, since their small size provides great antimicrobial effect, at low filler level. Hence, these nanoparticles have been applied in dentistry, in order to prevent or reduce biofilm formation over dental materials surfaces. This review aims to discuss the current progress in this field, highlighting aspects re...

  19. Comparing Electronic Human Resource Management Systems Efficiency In Production Organization amp Service Organizations

    Directory of Open Access Journals (Sweden)

    Ali Hadian

    2015-08-01

    Full Text Available Today the organizations used information technology in performing human resource department affairs and this is called as electronic human resource management EHRM. In fact as the competitive complexity increases the need for implementing EHRM in production and service businesses increases too. This paper is written in order to specify the importance of implementing EHRM in production and service organizations and also to evaluate efficiency rate and the importance degree in these two ones. In this paper first the topics literature and the most important aspects of implementing these systems will be reviewed and after categorizing these views the hierarchal model will be proposed by applying AHP method. The result of analyzing this model by EXPERT CHOICE software shows that implementing EHRM in both kinds of organizations has the same importance however there is a large difference between them in implementing aspects.

  20. The Synthesis of the Hierarchical Structure of Information Resources for Management of Electronic Commerce Entities

    Directory of Open Access Journals (Sweden)

    Krutova Anzhelika S.

    2017-06-01

    Full Text Available The aim of the article is to develop the theoretical bases for the classification and coding of economic information and the scientific justification of the content of information resources of an electronic commerce enterprise. The essence of information resources for management of electronic business entities is investigated. It is proved that the organization of accounting in e-commerce systems is advisable to be built on the basis of two circuits: accounting for financial flows and accounting associated with transformation of business factors in products and services as a result of production activities. There presented a sequence of accounting organization that allows to combine the both circuits in a single information system, which provides a possibility for the integrated replenishment and distributed simultaneous use of the e-commerce system by all groups of users. It is proved that the guarantee of efficient activity of the information management system of electronic commerce entities is a proper systematization of the aggregate of information resources on economic facts and operations of an enterprise in accordance with the management tasks by building the hierarchy of accounting nomenclatures. It is suggested to understand nomenclature as an objective, primary information aggregate concerning a certain fact of the economic activity of an enterprise, which is characterized by minimum requisites, is entered into the database of the information system and is to be reflected in the accounting system. It is proposed to build a database of e-commerce systems as a part of directories (constants, personnel, goods / products, suppliers, buyers and the hierarchy of accounting nomenclatures. The package of documents regulating the organization of accounting at an enterprise should include: the provision on the accounting services, the order on the accounting policy, the job descriptions, the schedules of information exchange, the report card and

  1. THE MODEL OF LINGUISTIC TEACHERS’ COMPETENCY DEVELOPMENT ON DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES IN THE MOODLE SYSTEM

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2017-10-01

    Full Text Available The article is devoted to the problem of developing the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system. The concept of "the competence of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system" is justified and defined. Identified and characterized the components by which the levels of the competency development of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system should be assessed. Developed a model for the development of the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system, which is based on the main scientific approaches, used in adult education, and consists of five blocks: target, informative, technological, diagnostic and effective.

  2. Open-Source Electronic Health Record Systems for Low-Resource Settings: Systematic Review.

    Science.gov (United States)

    Syzdykova, Assel; Malta, André; Zolfo, Maria; Diro, Ermias; Oliveira, José Luis

    2017-11-13

    Despite the great impact of information and communication technologies on clinical practice and on the quality of health services, this trend has been almost exclusive to developed countries, whereas countries with poor resources suffer from many economic and social issues that have hindered the real benefits of electronic health (eHealth) tools. As a component of eHealth systems, electronic health records (EHRs) play a fundamental role in patient management and effective medical care services. Thus, the adoption of EHRs in regions with a lack of infrastructure, untrained staff, and ill-equipped health care providers is an important task. However, the main barrier to adopting EHR software in low- and middle-income countries is the cost of its purchase and maintenance, which highlights the open-source approach as a good solution for these underserved areas. The aim of this study was to conduct a systematic review of open-source EHR systems based on the requirements and limitations of low-resource settings. First, we reviewed existing literature on the comparison of available open-source solutions. In close collaboration with the University of Gondar Hospital, Ethiopia, we identified common limitations in poor resource environments and also the main requirements that EHRs should support. Then, we extensively evaluated the current open-source EHR solutions, discussing their strengths and weaknesses, and their appropriateness to fulfill a predefined set of features relevant for low-resource settings. The evaluation methodology allowed assessment of several key aspects of available solutions that are as follows: (1) integrated applications, (2) configurable reports, (3) custom reports, (4) custom forms, (5) interoperability, (6) coding systems, (7) authentication methods, (8) patient portal, (9) access control model, (10) cryptographic features, (11) flexible data model, (12) offline support, (13) native client, (14) Web client,(15) other clients, (16) code

  3. A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources

    International Nuclear Information System (INIS)

    Oguchi, Masahiro; Murakami, Shinsuke; Sakanakura, Hirofumi; Kida, Akiko; Kameya, Takashi

    2011-01-01

    Highlights: → End-of-life electrical and electronic equipment (EEE) as secondary metal resources. → The content and the total amount of metals in specific equipment are both important. → We categorized 21 EEE types from contents and total amounts of various metals. → Important equipment types as secondary resources were listed for each metal kind. → Collectability and possible collection systems of various EEE types were discussed. - Abstract: End-of-life electrical and electronic equipment (EEE) has recently received attention as a secondary source of metals. This study examined characteristics of end-of-life EEE as secondary metal resources to consider efficient collection and metal recovery systems according to the specific metals and types of EEE. We constructed an analogy between natural resource development and metal recovery from end-of-life EEE and found that metal content and total annual amount of metal contained in each type of end-of-life EEE should be considered in secondary resource development, as well as the collectability of the end-of-life products. We then categorized 21 EEE types into five groups and discussed their potential as secondary metal resources. Refrigerators, washing machines, air conditioners, and CRT TVs were evaluated as the most important sources of common metals, and personal computers, mobile phones, and video games were evaluated as the most important sources of precious metals. Several types of small digital equipment were also identified as important sources of precious metals; however, mid-size information and communication technology (ICT) equipment (e.g., printers and fax machines) and audio/video equipment were shown to be more important as a source of a variety of less common metals. The physical collectability of each type of EEE was roughly characterized by unit size and number of end-of-life products generated annually. Current collection systems in Japan were examined and potentially appropriate collection

  4. Determining the level of awareness of the physicians in using the variety of electronic information resources and the effecting factors.

    Science.gov (United States)

    Papi, Ahmad; Ghazavi, Roghayeh; Moradi, Salimeh

    2015-01-01

    Understanding of the medical society's from the types of information resources for quick and easy access to information is an imperative task in medical researches and management of the treatment. The present study was aimed to determine the level of awareness of the physicians in using various electronic information resources and the factors affecting it. This study was a descriptive survey. The data collection tool was a researcher-made questionnaire. The study population included all the physicians and specialty physicians of the teaching hospitals affiliated to Isfahan University of Medical Sciences and numbered 350. The sample size based on Morgan's formula was set at 180. The content validity of the tool was confirmed by the library and information professionals and the reliability was 95%. Descriptive statistics were used including the SPSS software version 19. On reviewing the need of the physicians to obtain the information on several occasions, the need for information in conducting the researches was reported by the maximum number of physicians (91.9%) and the usage of information resources, especially the electronic resources, formed 65.4% as the highest rate with regard to meeting the information needs of the physicians. Among the electronic information databases, the maximum awareness was related to Medline with 86.5%. Among the various electronic information resources, the highest awareness (43.3%) was related to the E-journals. The highest usage (36%) was also from the same source. The studied physicians considered the most effective deterrent in the use of electronic information resources as being too busy and lack of time. Despite the importance of electronic information resources for the physician's community, there was no comprehensive knowledge of these resources. This can lead to less usage of these resources. Therefore, careful planning is necessary in the hospital libraries in order to introduce the facilities and full capabilities of the

  5. Resource conservation approached with an appropriate collection and upgrade-remanufacturing for used electronic products.

    Science.gov (United States)

    Zlamparet, Gabriel I; Tan, Quanyin; Stevels, A B; Li, Jinhui

    2018-03-01

    This comparative research represents an example for a better conservation of resources by reducing the amount of waste (kg) and providing it more value under the umbrella of remanufacturing. The three discussed cases will expose three issues already addressed separately in the literature. The generation of waste electrical and electronic equipment (WEEE) interacts with the environmental depletion. In this article, we gave the examples of addressed issues under the concept of remanufacturing. Online collection opportunity eliminating classical collection, a business to business (B2B) implementation for remanufactured servers and medical devices. The material reuse (recycling), component sustainability, reuse (part harvesting), product reuse (after repair/remanufacturing) indicates the recovery potential using remanufacturing tool for a better conservation of resources adding more value to the products. Our findings can provide an overview of new system organization for the general collection, market potential and the technological advantages using remanufacturing instead of recycling of WEEE or used electrical and electronic equipment. Copyright © 2017. Published by Elsevier Ltd.

  6. Use of Electronic Resources by M.Sc. Chemistry Students at Arts Science and Commerce College Chopda Dist-Jalgaon

    OpenAIRE

    Dr.Paithankar Rajeev; R., Mr.Kamble V.R.

    2017-01-01

    The libraries and information services has been changed due to the development of information and communication technology. Electronics resources role is very important as information repositories are use of information for various purposes like academic, research, teaching and learning process. E-resources gives solutions of the traditional libraries as like all data storage in digital format, users can access library without boundaries through internet so e-resources popularity is very cont...

  7. Making the Right Connections: Perceptions of Human Resource/Personnel Directors Concerning Electronic Job-Search Methods.

    Science.gov (United States)

    Hubbard, Joan C.; North, Alexa B.; Arjomand, H. Lari

    1997-01-01

    Examines methods used to search for entry-level managerial positions and assesses how human resource and personnel directors in Georgia perceive these methods. Findings indicate that few of the directors use electronic technology to fill such positions, but they view positively those applicants who use electronic job searching methods. (RJM)

  8. Biomaterials in Relation to Dentistry.

    Science.gov (United States)

    Deb, Sanjukta; Chana, Simran

    2015-01-01

    Dental caries remains a challenge in the improvement of oral health. It is the most common and widespread biofilm-dependent oral disease, resulting in the destruction of tooth structure by the acidic attack from cariogenic bacteria. The tooth is a heavily mineralised tissue, and both enamel and dentine can undergo demineralisation due to trauma or dietary conditions. The adult population worldwide affected by dental caries is enormous and despite significant advances in caries prevention and tooth restoration, treatments continue to pose a substantial burden to healthcare. Biomaterials play a vital role in the restoration of the diseased or damaged tooth structure and, despite providing reasonable outcomes, there are some concerns with clinical performance. Amalgam, the silver grey biomaterial that has been widely used as a restorative material in dentistry, is currently in throes of being phased out, especially with the Minimata convention and treaty being signed by a number of countries (January 2013; http://mercuryconvention.org/Convention/) that aims to control the anthropogenic release of mercury in the environment, which naturally impacts the use of amalgam, where mercury is a component. Thus, the development of alternative restoratives and restoration methods that are inexpensive, can be used under different climatic conditions, withstand storage and allow easy handling, the main prerequisites of dental biomaterials, is important. The potential for using biologically engineered tissue and consequent research to replace damaged tissues has also seen a quantum leap in the last decade. Ongoing research in regenerative treatments in dentistry includes alveolar ridge augmentation, bone tissue engineering and periodontal ligament replacement, and a future aim is bioengineering of the whole tooth. Research towards developing bioengineered teeth is well underway and identification of adult stem cell sources to make this a viable treatment is advancing; however, this

  9. Nanotechnology in medicine: nanofilm biomaterials.

    Science.gov (United States)

    Van Tassel, Paul R

    2013-12-13

    By interrogating nature at the length scale of important biological molecules (proteins, DNA), nanotechnology offers great promise to biomedicine. We review here our recent work on nanofilm biomaterials: "nanoscopically" thin, functional, polymer-based films serving as biocompatible interfaces. In one thrust, films containing carbon nanotubes are shown to be highly antimicrobial and, thus, to be promising as biomedical device materials inherently resistive to microbial infection. In another thrust, strategies are developed toward films of independently controllable bioactivity and mechanical rigidity - two key variables governing typical biological responses.

  10. From Millennium ERM to Proquest 360 Resource Manager: Implementing a new Electronic Resources Management System ERMS in an International Graduate Research University in Saudi Arabia

    KAUST Repository

    Ramli, Rindra M.

    2017-05-17

    An overview of the Recommendation Study and the subsequent Implementation of a new Electronic Resources Management system ERMS in an international graduate research university in the Kingdom of Saudi Arabia. It covers the timeline, deliverables and challenges as well as lessons learnt by the Project Team.

  11. Keratoconus: Tissue Engineering and Biomaterials

    Directory of Open Access Journals (Sweden)

    Dimitrios Karamichos

    2014-09-01

    Full Text Available Keratoconus (KC is a bilateral, asymmetric, corneal disorder that is characterized by progressive thinning, steepening, and potential scarring. The prevalence of KC is stated to be 1 in 2000 persons worldwide; however, numbers vary depending on size of the study and regions. KC appears more often in South Asian, Eastern Mediterranean, and North African populations. The cause remains unknown, although a variety of factors have been considered. Genetics, cellular, and mechanical changes have all been reported; however, most of these studies have proven inconclusive. Clearly, the major problem here, like with any other ocular disease, is quality of life and the threat of vision loss. While most KC cases progress until the third or fourth decade, it varies between individuals. Patients may experience periods of several months with significant changes followed by months or years of no change, followed by another period of rapid changes. Despite the major advancements, it is still uncertain how to treat KC at early stages and prevent vision impairment. There are currently limited tissue engineering techniques and/or “smart” biomaterials that can help arrest the progression of KC. This review will focus on current treatments and how biomaterials may hold promise for the future.

  12. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  13. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  14. Electronic tracking of human resource skills and knowledge, just in time training, manageable due diligence

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziej, M.A. [Quick Test International Inc., (Canada). Canadian Technology Human Resource Board; Baker, O. [KeySpan Energy Canada, Calgary, AB (Canada)

    2001-06-01

    KeySpan Energy Canada is in the process of obtaining recognition of various occupational profiles including pipeline operators, inspectors, and field and plant operators from various certifying organizations. The process of allowing individuals to obtain certification is recognized by Canadian Technology Human Resources Board as a step towards national standards for technologists and technicians. Proven competency is a must for workers in todays oil industry in response to increasingly stringent government safety regulations, environmental concerns and high public scrutiny. Quick Test international Inc. has developed a management tool in collaboration with end users at KeySpan Energy Canada. It is an electronic, Internet based competency tool for tracking personal competencies and maintaining continued competency. Response to the tool has been favourable. 2 refs., 4 figs.

  15. DEVELOPMENT AND USAGE OF THE ELECTRONIC VIDEO RESOURCES FOR EDUCATIONAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Yaroslav M. Hlynsky

    2017-04-01

    Full Text Available This article discusses the theoretical foundation, the creation and implementation of the electronic educational video resources (EEVR in the example of the development and the usage of the collection of video tutorials in event-driven programming theme, which is studied in the framework of the subject "Informatics" by students of many specialties. It offers some development of the existing conceptual and categorical apparatus concerning EEVR development. It is alleged that the video tutorials allow you to automate the process of learning, redistribute instructional time for the benefit of students' independent work, to provide classroom release time for the teaching of the theoretical issues of the course that is aimed at improving the fundamental nature of training. Practical recommendations for the development of the effective EEVR, which may be useful for the authors of e-learning courses for students of different forms of training are proposed.

  16. Properties and clinical relevance of osteoinductive biomaterials

    NARCIS (Netherlands)

    Habibovic, Pamela

    2005-01-01

    This thesis had two main goals: (¿) to investigate parameters influencing osteoinductive potential of biomaterials in order to unravel the mechanism underlying osteoinduction and (¿¿) to investigate performance of osteoinductive biomaterials orthotopically in order to get insight into their clinical

  17. Osteoconductivity of Complex Biomaterials Assayed by Fluorescent-Engineered Osteoblast-like Cells.

    Science.gov (United States)

    Manfrini, Marco; Mazzoni, Elisa; Barbanti-Brodano, Giovanni; Nocini, Pierfrancesco; D'agostino, Antonio; Trombelli, Leonardo; Tognon, Mauro

    2015-04-01

    Biomaterials employed for the bone regeneration can be assayed for specific features such as osteoconductivity and gene expression. In this study, the composite HA/collagen/chondroitin-sulfate biomaterial was investigated using an engineered human cell line, named Saos-eGFP. This cell line, a green fluorescent engineered human osteoblast-like cell, was employed as a cellular model for the in vitro study of biomaterial characteristics. The cytotoxicity was indirectly evaluated by fluorescence detection, osteoconductivity was assayed both by fluorescence and electron microscope analysis as well as cell morphology, whereas the RT-PCR technique was employed to assay gene expression. Saos-eGFP cells viability detection after 24 and 96 h of incubation showed that biomaterial enables the adhesion and proliferation of seeded cells as well as that of the plastic surface, the control. Fluorescence and scanning electron microscopy (SEM) analyses indicated that Saos-eGFP cells were homogeneously distributed on the HA granule surfaces, exhibiting cytoplasmic bridges, and were localized on the collagen-chondroitin sulfate extra-cellular matrix. An expression analysis of specific genes encoding for differentiation markers, showed that biomaterial assayed did not alter the osteogenic pathway of the Saos-eGFP cell line. Our assays confirm the cytocompatibility of this biomaterial, suggesting an osteoconductive capacity mediated by its chemical contents. We showed that the Saos-eGFP cellular model is suitable for in vitro biomaterial assays, and more specifically for assessing osteoconductivity. This result suggests that the cytocompatibility and osteoconductive features of the biomaterial assayed as bone substitute, could have a positive downstream effect on implant osteo-integration.

  18. Leveraging advances in biology to design biomaterials

    Science.gov (United States)

    Darnell, Max; Mooney, David J.

    2017-12-01

    Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.

  19. Availability, Use and Constraints to Use of Electronic Information Resources by Postgraduates Students at the University of Ibadan

    Directory of Open Access Journals (Sweden)

    Dare Samuel Adeleke

    2017-12-01

    Full Text Available Availability, awareness and use of electronic resources provide access to authoritative, reliable, accurate and timely access to information. The use of electronic information resources (EIRs can enable innovation in teaching and increase timeliness in research of postgraduate students which will eventual result into encouragement of the expected research-led enquiry in this digital age. The study adopted a descriptive survey design. Samples of 300 of postgraduate students within seven out 13 Faculties were randomly selected. Data were collected using questionnaire designed to elicit response from respondents and data were analyzed using descriptive statistics methods percentages, mean, and standard deviation. Results indicated that internet was ranked most available and used in the university. Low level of usage of electronic resources, in particular, full texts data bases is linked to a number of constraints: Interrupted power supply was ranked highest among other factors as speed and capacity of computers, retrieval of records with high recall and low precision, retrieving records relevant to information need, lack of knowledge of search techniques to retrieve information effectively, non possession of requisite IT skills and problems accessing the internet. The study recommended that usage of electronic resources be made compulsory, intensifying awareness campaigns concerning the availability, training on use of electronic resources and the problem of power outage be addressed.

  20. Genetic-algorithm-based optimization of a fuzzy logic resource manager for electronic attack

    Science.gov (United States)

    Smith, James F., III; Rhyne, Robert D., II

    2000-04-01

    A fuzzy logic based expert system has been developed that automatically allocates electronic attack (EA) resources in real-time over many dissimilar platforms. The platforms can be very general, e.g., ships, planes, robots, land based facilities, etc. Potential foes the platforms deal with can also be general. This paper describes data mining activities related to development of the resource manager with a focus on genetic algorithm based optimization. A genetic algorithm requires the construction of a fitness function, a function that must be maximized to give optimal or near optimal results. The fitness functions are in general non- differentiable at many points and highly non-linear, neither property providing difficulty for a genetic algorithm. The fitness functions are constructed using insights from geometry, physics, engineering, and military doctrine. Examples are given as to how fitness functions are constructed including how the fitness function is averaged over a database of military scenarios. The use of a database of scenarios prevents the algorithm from having too narrow a range of behaviors, i.e., it creates a more robust solution.

  1. Factors Influencing Students' Use of Electronic Resources and their Opinions About this Use: The Case of Students at An-Najah National University

    Directory of Open Access Journals (Sweden)

    Wajeeh M. Daher

    2010-12-01

    Full Text Available Electronic resources are becoming an integral part of the modern life and of the educational scene, especially the high education scene. In this research we wanted to verify what influences first degree university students' use of electronic resources and their opinions regarding this use. Collecting data from 202 students and analyzing it using SPSS, we found that more than one half of the participants had high level of electronic media use and more than one third had moderate level of electronic media use. These levels of use indicate the students' awareness of the role and benefits of electronic media use. Regarding the factors that influence the students' se of electronic resources we found that the student's use of electronic resources had significant strong positive relationships with the provision of electronic resources by the academic institution. It had significant moderate positive relationships with the resources characteristics and the course requirement, and had significant weak relationships with the instructor's support and the student's characteristics. We explained these relationships as resulting from the influence of the surrounding community. Regarding the students' opinions about the use of electronic resources, we found that the student's opinion of electronic resources has significant strong positive relationships with student's use of electronic resources, level of this use, the academic institution available facilities, student's characteristics and resources characteristics. It does not have significant relationships with the instructor's support or the course requirement. We explained these relationships depending on activity theory and its integration with ecological psychology.

  2. The electronic encapsulation of knowledge in hydraulics, hydrology and water resources

    Science.gov (United States)

    Abbott, Michael B.

    The rapidly developing practice of encapsulating knowledge in electronic media is shown to lead necessarily to the restructuring of the knowledge itself. The consequences of this for hydraulics, hydrology and more general water-resources management are investigated in particular relation to current process-simulation, real-time control and advice-serving systems. The generic properties of the electronic knowledge encapsulator are described, and attention is drawn to the manner in which knowledge 'goes into hiding' through encapsulation. This property is traced in the simple situations of pure mathesis and in the more complex situations of taxinomia using one example each from hydraulics and hydrology. The consequences for systems architectures are explained, pointing to the need for multi-agent architectures for ecological modelling and for more general hydroinformatics systems also. The relevance of these developments is indicated by reference to ongoing projects in which they are currently being realised. In conclusion, some more general epistemological aspects are considered within the same context. As this contribution is so much concerned with the processes of signification and communication, it has been partly shaped by the theory of semiotics, as popularised by Eco ( A Theory of Semiotics, Indiana University, Bloomington, 1977).

  3. Resources

    Science.gov (United States)

    English in Australia, 1973

    1973-01-01

    Contains seven short resources''--units, lessons, and activities on the power of observation, man and his earth, snakes, group discussion, colloquial and slang, the continuous story, and retelling a story. (DD)

  4. THE FACTOR-CRITERIA MODEL OF ASSESSMENT OF ELECTRONIC EDUCATIONAL GAME RESOURCES IN MATHEMATICS FOR PRIMARY SCHOOL STUDENTS

    Directory of Open Access Journals (Sweden)

    Oksana M. Melnyk

    2016-05-01

    Full Text Available This article proves the need for a comprehensive assessment of electronic educational game resources in mathematics for the primary school students; gives the definition of “the factor-criteria model of the electronic educational game resources (EEGR”. It also describes the created model, which consists of requirements for the content, methodological and program parts of the electronic resources for primary school; identifies the factors and the criteria to each of them. It was proposed to assess the ratios within the group of factors and each group of criteria according to the arithmetic progression. The presented model can be a convenient tool both for primary school teachers and EEGR developers. It can also be a basis for a unified state comprehensive system of assessment of the EEGR.

  5. SAGES: a suite of freely-available software tools for electronic disease surveillance in resource-limited settings.

    Directory of Open Access Journals (Sweden)

    Sheri L Lewis

    Full Text Available Public health surveillance is undergoing a revolution driven by advances in the field of information technology. Many countries have experienced vast improvements in the collection, ingestion, analysis, visualization, and dissemination of public health data. Resource-limited countries have lagged behind due to challenges in information technology infrastructure, public health resources, and the costs of proprietary software. The Suite for Automated Global Electronic bioSurveillance (SAGES is a collection of modular, flexible, freely-available software tools for electronic disease surveillance in resource-limited settings. One or more SAGES tools may be used in concert with existing surveillance applications or the SAGES tools may be used en masse for an end-to-end biosurveillance capability. This flexibility allows for the development of an inexpensive, customized, and sustainable disease surveillance system. The ability to rapidly assess anomalous disease activity may lead to more efficient use of limited resources and better compliance with World Health Organization International Health Regulations.

  6. Ion release from metallic biomaterials

    OpenAIRE

    Morais, Liliane Siqueira de; Guimarães, Glaucio Serra; Elias, Carlos Nelson

    2007-01-01

    OBJETIVO: todo biomaterial metálico implantado possui alguma interação com os tecidos em contato, havendo liberação de íons por dissolução, desgaste ou corrosão. O objetivo deste trabalho foi analisar a liberação de íons metálicos por alguns tipos de biomateriais metálicos, descrevendo a interação íon/tecido e os possíveis efeitos adversos. CONCLUSÃO: os tratamentos de jateamento e ataque ácido propiciam aumento na dissolução e liberação de íons metálicos, mas o recobrimento destas superfície...

  7. Bioresorption and degradation of biomaterials.

    Science.gov (United States)

    Das, Debarun; Zhang, Ziyang; Winkler, Thomas; Mour, Meenakshi; Gunter, Christina; Morlock, Michael; Machens, Hans-Gunther; Schilling, Arndt F

    2012-01-01

    The human body is a composite structure, completely constructed of biodegradable materials. This allows the cells of the body to remove and replace old or defective tissue with new material. Consequently, artificial resorbable biomaterials have been developed for application in regenerative medicine. We discuss here advantages and disadvantages of these bioresorbable materials for medical applications and give an overview of typically used metals, ceramics and polymers. Methods for the quantification of bioresorption in vitro and in vivo are described. The next challenge will be to better understand the interface between cell and material and to use this knowledge for the design of “intelligent” materials that can instruct the cells to build specific tissue geometries and degrade in the process.

  8. Biomaterial science meets computational biology.

    Science.gov (United States)

    Hutmacher, Dietmar W; Little, J Paige; Pettet, Graeme J; Loessner, Daniela

    2015-05-01

    There is a pressing need for a predictive tool capable of revealing a holistic understanding of fundamental elements in the normal and pathological cell physiology of organoids in order to decipher the mechanoresponse of cells. Therefore, the integration of a systems bioengineering approach into a validated mathematical model is necessary to develop a new simulation tool. This tool can only be innovative by combining biomaterials science with computational biology. Systems-level and multi-scale experimental data are incorporated into a single framework, thus representing both single cells and collective cell behaviour. Such a computational platform needs to be validated in order to discover key mechano-biological factors associated with cell-cell and cell-niche interactions.

  9. Osteoinduction of calcium phosphate biomaterials in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lijia; Shi, Yujun [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Ye, Feng [Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China); Bu, Hong, E-mail: hongbu@scu.edu.cn [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China)

    2013-04-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca{sub 3}(PO{sub 4}){sub 2}, CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation. - Highlights: ► Intrinsic osteoinduction of calcium phosphate biomaterials was observed implanted in muscles of mice. ► Biomaterials powder also has osteoinduction property. ► Osteogenic genes and protein could be detected by RT-PCR and Western blot in implanted biomaterials. ► Osteogenic phenomenon could be observed by electron microscopy. ► The chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation.

  10. Albumin grafting on biomaterial surfaces using gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, K.R.

    1993-01-01

    Surface modification has been used extensively in various fields to introduce desirable surface properties without affecting the bulk properties of the material. In the area of biomaterials, the approach of surface modification offers an effective alternative to the synthesis of new biomaterials. The specific objective of this study was to modify different biomaterial surfaces by albumin grafting to improve their blood compatibility. The modified surfaces were characterized for surface-induced platelet activation and thrombus formation. This behavior was correlated with the conditions used for grafting. In particular, albumin was functionalized to introduce pendant double bonds into the molecule. The functionalized albumin was covalently attached to various surfaces, such as dimethyldichlorosilane-coated glass, polypropylene, polycarbonate, poly(vinyl chloride), and polyethylene by gamma-irradiation. Platelet adhesion and activation on these surfaces was examined using video microscopy and scanning electron microscopy. The extent of grafting was found to be dependent on the albumin concentration used for adsorption and the gamma-irradiation time. Release of the grafted albumin during exposure to blood was minimal. The albumin-grafted fibers maintained their thromboresistant properties even after storage at elevated temperatures for prolonged time periods. Finally, the approach was used to graft albumin on the PLEXUS Adult Hollow Fiber Oxygenators (Shiley). The blood compatibility of the grafted oxygenators improved significantly when compared to controls.

  11. Metallic Biomaterials: Current Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Karthika Prasad

    2017-07-01

    Full Text Available Metallic biomaterials are engineered systems designed to provide internal support to biological tissues and they are being used largely in joint replacements, dental implants, orthopaedic fixations and stents. Higher biomaterial usage is associated with an increased incidence of implant-related complications due to poor implant integration, inflammation, mechanical instability, necrosis and infections, and associated prolonged patient care, pain and loss of function. In this review, we will briefly explore major representatives of metallic biomaterials along with the key existing and emerging strategies for surface and bulk modification used to improve biointegration, mechanical strength and flexibility of biometals, and discuss their compatibility with the concept of 3D printing.

  12. Biomaterial stiffness determines stem cell fate.

    Science.gov (United States)

    Lv, Hongwei; Wang, Heping; Zhang, Zhijun; Yang, Wang; Liu, Wenbin; Li, Yulin; Li, Lisha

    2017-06-01

    Stem cells have potential to develop into numerous cell types, thus they are good cell source for tissue engineering. As an external physical signal, material stiffness is capable of regulating stem cell fate. Biomaterial stiffness is an important parameter in tissue engineering. We summarize main measurements of material stiffness under different condition, then list and compare three main methods of controlling stiffness (material amount, crosslinking density and photopolymeriztion time) which interplay with one another and correlate with stiffness positively, and current advances in effects of biomaterial stiffness on stem cell fate. We discuss the unsolved problems and future directions of biomaterial stiffness in tissue engineering. Copyright © 2017. Published by Elsevier Inc.

  13. Creating biomaterials with spatially organized functionality.

    Science.gov (United States)

    Chow, Lesley W; Fischer, Jacob F

    2016-05-01

    Biomaterials for tissue engineering provide scaffolds to support cells and guide tissue regeneration. Despite significant advances in biomaterials design and fabrication techniques, engineered tissue constructs remain functionally inferior to native tissues. This is largely due to the inability to recreate the complex and dynamic hierarchical organization of the extracellular matrix components, which is intimately linked to a tissue's biological function. This review discusses current state-of-the-art strategies to control the spatial presentation of physical and biochemical cues within a biomaterial to recapitulate native tissue organization and function. © 2016 by the Society for Experimental Biology and Medicine.

  14. Polymeric biomaterials structure and function, v.1

    CERN Document Server

    Dumitriu, Severian

    2013-01-01

    Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume

  15. Structure-function characteristics of the biomaterials based on milk-derived proteins.

    Science.gov (United States)

    Ghosh, Arun; Ali, M Azam; Selvanesan, Luxmanan; Dias, George J

    2010-05-01

    There is an impetus on development of implantable biomaterials with the characteristics of improved biodegradability, bio-absorbability and wound healing activities. The milk proteins have valuable nutritional and biological properties, which lead to the promotion of quality health. In this study, whey protein isolate or WPI (highly aggregated) and its component lactalbumin (less aggregated) were melt blended with polycaprolactone (PCL) and then compression moulded into thin sheets ( approximately 1mm thickness). The effects of structural morphologies of the proteins on the mechanical, morphological, in vitro enzymatic degradation, and cytotoxicity and cell proliferation characteristics of the biomaterials were examined. In general, the tensile strength and modulus of the biomaterials decreased with increasing protein content. Compared to WPI, lactalbumin showed a better compatibility with the PCL matrix as observed in the mechanical properties and scanning electron microscopic morphology. The biomaterials exhibited a good retention of the mechanical characteristics after digestion in a physiologically simulated fluid containing trypsin enzyme. However, lactalbumin containing biomaterials showed a better retention of the tensile properties compared to WPI containing biomaterials. The cell culture studies indicated that the biomaterials have no cytotoxic effects, moreover they enhanced the proliferation of L929 cells compared to the pure PCL. Finally, this study indicated that the PCL based biomaterials with a protein content of 20wt% may be applied in fabrication of implantable devices for soft tissue engineering, where it requires a reasonably low to moderate mechanical strength (e.g., approximately 10MPa tensile strength), and improved biodegradability, biocompatibility and tissue healing activities. 2010 Elsevier B.V. All rights reserved.

  16. Utilization of Electronic Information Resources by Undergraduate Students of University of Ibadan: A Case Study of Social Sciences and Education

    Science.gov (United States)

    Owolabi, Sola; Idowu, Oluwafemi A.; Okocha, Foluke; Ogundare, Atinuke Omotayo

    2016-01-01

    The study evaluated utilization of electronic information resources by undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan. The study adopted a descriptive survey design with a study population of 1872 undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan, from which a…

  17. Impact of Electronic Resources and Usage in Academic Libraries in Ghana: Evidence from Koforidua Polytechnic & All Nations University College, Ghana

    Science.gov (United States)

    Akussah, Maxwell; Asante, Edward; Adu-Sarkodee, Rosemary

    2015-01-01

    The study investigates the relationship between impact of electronic resources and its usage in academic libraries in Ghana: evidence from Koforidua Polytechnic & All Nations University College, Ghana. The study was a quantitative approach using questionnaire to gather data and information. A valid response rate of 58.5% was assumed. SPSS…

  18. Plant Products for Innovative Biomaterials in Dentistry

    Directory of Open Access Journals (Sweden)

    Elena M. Varoni

    2012-07-01

    Full Text Available Dental biomaterials and natural products represent two of the main growing research fields, revealing plant-derived compounds may play a role not only as nutraceuticals in affecting oral health, but also in improving physico-chemical properties of biomaterials used in dentistry. Therefore, our aim was to collect all available data concerning the utilization of plant polysaccharides, proteins and extracts rich in bioactive phytochemicals in enhancing performance of dental biomaterials. Although compelling evidences are suggestive of a great potential of plant products in promoting material-tissue/cell interface, to date, only few authors have investigated their use in development of innovative dental biomaterials. A small number of studies have reported plant extract-based titanium implant coatings and periodontal regenerative materials. To the best of our knowledge, this review is the first to deal with this topic, highlighting a general lack of research findings in an interesting field which still needs to be investigated.

  19. Biomaterials in the repair of sports injuries

    Science.gov (United States)

    Ducheyne, Paul; Mauck, Robert L.; Smith, Douglas H.

    2012-08-01

    The optimal stimulation of tissue regeneration in bone, cartilage and spinal cord injuries involves a judicious selection of biomaterials with tailored chemical compositions, micro- and nanostructures, porosities and kinetic release properties for the delivery of relevant biologically active molecules.

  20. The recent progress of tribological biomaterials

    Directory of Open Access Journals (Sweden)

    S.F. E

    2015-06-01

    Full Text Available Tribological phenomena abundantly exist in living beings, especially in human beings, such as in teeth, eyes, bones, skins, heart valves and so on, and it is meaningful to reveal the mechanism of tribology in human body and fabricate artificial biomaterials to replace the damaged tissues to release the pain of patients. Alloys, ceramics and polymers are three uppermost materials used in engineering and some of them play a crucial role in biomedicine. In the paper, we provide an overview of the tribological behaviors of artificial biomaterials including alloys, ceramics and polymers. We aim to provide fundamental mechanistic and applications of tribological biomaterials, while emphasizing the advantages and disadvantages of various kinds of tribological biomaterials. Finally, some challenges and the potential promising breakthroughs are also succinctly highlighted in this field.

  1. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  2. Titanium Dioxide Photocatalysis in Biomaterials Applications

    OpenAIRE

    Cai, Yanling

    2013-01-01

    Despite extensive preventative efforts, the problem of controlling infections associated with biomedical materials persists. Bacteria tend to colonize on biocompatible materials and form biofilms; thus, novel biomaterials with antibacterial properties are of great interest. In this thesis, titanium dioxide (TiO2)-associated photocatalysis under ultraviolet (UV) irradiation was investigated as a strategy for developing bioactivity and antibacterial properties on biomaterials. Although much of ...

  3. Biomaterials innovation bundling technologies and life

    CERN Document Server

    Styhre, A

    2014-01-01

    Rapid advances in the life sciences means that there is now a far more detailed understanding of biological systems on the cellular, molecular and genetic levels. Sited at the intersection between the life sciences, the engineering sciences and the design sciences, innovations in the biomaterials industry are expected to garner increasing attention and play a key role in future development. This book examines the biomaterials innovations taking place in corporations and in academic research settings today.

  4. Current Strategies in Cardiovascular Biomaterial Functionalization

    Directory of Open Access Journals (Sweden)

    Karla Lehle

    2010-01-01

    Full Text Available Prevention of the coagulation cascade and platelet activation is the foremost demand for biomaterials in contact with blood. In this review we describe the underlying mechanisms of these processes and offer the current state of antithrombotic strategies. We give an overview of methods to prevent protein and platelet adhesion, as well as techniques to immobilize biochemically active molecules on biomaterial surfaces. Finally, recent strategies in biofunctionalization by endothelial cell seeding as well as their possible clinical applications are discussed.

  5. Medical applications for biomaterials in Bolivia

    CERN Document Server

    Arias, Susan

    2015-01-01

    This book investigates the potential medical benefits natural biomaterials can offer in developing countries by analyzing the case of Bolivia. The book explores the medical and health related applications of Bolivian commodities: quinoa, barley, sugarcane, corn, sorghum and sunflower seeds. This book helps readers better understand some of the key health concerns facing countries like Bolivia and how naturally derived biomaterials and therapeutics could help substantially alleviate many of their problems.

  6. Special Issue “Biomaterials and Bioprinting”

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2016-09-01

    Full Text Available The emergence of bioprinting in recent years represents a marvellous advancement in 3D printing technology. It expands the range of 3D printable materials from the world of non-living materials into the world of living materials. Biomaterials play an important role in this paradigm shift. This Special Issue focuses on biomaterials and bioprinting and contains eight articles covering a number of recent topics in this emerging area.

  7. Systematic review of electronic surveillance of infectious diseases with emphasis on antimicrobial resistance surveillance in resource-limited settings.

    Science.gov (United States)

    Rattanaumpawan, Pinyo; Boonyasiri, Adhiratha; Vong, Sirenda; Thamlikitkul, Visanu

    2018-02-01

    Electronic surveillance of infectious diseases involves rapidly collecting, collating, and analyzing vast amounts of data from interrelated multiple databases. Although many developed countries have invested in electronic surveillance for infectious diseases, the system still presents a challenge for resource-limited health care settings. We conducted a systematic review by performing a comprehensive literature search on MEDLINE (January 2000-December 2015) to identify studies relevant to electronic surveillance of infectious diseases. Study characteristics and results were extracted and systematically reviewed by 3 infectious disease physicians. A total of 110 studies were included. Most surveillance systems were developed and implemented in high-income countries; less than one-quarter were conducted in low-or middle-income countries. Information technologies can be used to facilitate the process of obtaining laboratory, clinical, and pharmacologic data for the surveillance of infectious diseases, including antimicrobial resistance (AMR) infections. These novel systems require greater resources; however, we found that using electronic surveillance systems could result in shorter times to detect targeted infectious diseases and improvement of data collection. This study highlights a lack of resources in areas where an effective, rapid surveillance system is most needed. The availability of information technology for the electronic surveillance of infectious diseases, including AMR infections, will facilitate the prevention and containment of such emerging infectious diseases. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Biocompatibility and Toxicity of Nano biomaterials 2014

    International Nuclear Information System (INIS)

    Li, X.; Lee, S.Ch.; Zhang, Sh.; Akasaka, T.

    2014-01-01

    It is well known that nano materials have developed rapidly over the past few decades. Based on their unique physicochemical properties and special mechanical properties, nano materials have provided application possibility in many different fields. Currently, as nano biomaterials, they are widely used in various biomedical applications, such as drug delivery systems, tissue engineering, dental/bone implant, and biosensors. For example, nano biomaterials have been used in tissue engineering because of their satisfactory bioactivity, high mechanical properties, and large surface area to adsorb specific proteins. Many kinds of nano biomaterials are used to prepare composite scaffolds to get better biocompatibility and higher ability in repairing specific tissues. Several antibacterial metallic nano biomaterials are used to coat implant surfaces to improve the speed of healing fractures. In addition, lots of nano biomaterials have the potential to break the limitations of the traditional delivery systems. They can load larger amount of drugs and provide stable drug release for long time at the targeted sites, such as tumors. Moreover, they can combine with polymers to furnish simultaneous drug delivery systems with the controllable release rate. Besides these applications, more and more nano biomaterials show great potential to be applied as highly sensitive biosensors because they have higher ability in loading firmly or interacting completely with recognition aptamers.

  9. 2010 Panel on the Biomaterials Grand Challenges

    Science.gov (United States)

    Reichert, William “Monty”; Ratner, Buddy D.; Anderson, James; Coury, Art; Hoffman, Allan S.; Laurencin, Cato T.; Tirrell, David

    2014-01-01

    In 2009, the National Academy for Engineering issued the Grand Challenges for Engineering in the 21st Century comprised of 14 technical challenges that must be addressed to build a healthy, profitable, sustainable, and secure global community (http://www.engineeringchallenges.org). Although crucial, none of the NEA Grand Challenges adequately addressed the challenges that face the biomaterials community. In response to the NAE Grand Challenges, Monty Reichert of Duke University organized a panel entitled Grand Challenges in Biomaterials at the at the 2010 Society for Biomaterials Annual Meeting in Seattle. Six members of the National Academies—Buddy Ratner, James Anderson, Allan Hoffman, Art Coury, Cato Laurencin, and David Tirrell—were asked to propose a grand challenge to the audience that, if met, would significantly impact the future of biomaterials and medical devices. Successfully meeting these challenges will speed the 60-plus year transition from commodity, off-the-shelf biomaterials to bioengineered chemistries, and biomaterial devices that will significantly advance our ability to address patient needs and also to create new market opportunities. PMID:21171147

  10. Dosimetry by stimulated exoelectronic emission of apatites and dental biomaterials

    International Nuclear Information System (INIS)

    Rakotomalala, R.

    1982-02-01

    This work is a contribution to the study of stimulated exoelectronic emission, the goal of which is the development of a dosimetry available in case of accidental irradiation. The first part is devoted to a review of the various theoretical models suggested by several authors on the exoemission phenomenon, and to the description of the experimental set up: counter and detector electronic circuits. The second part gives the experimental results obtained with the different products studied: fluorapatite, hydroxyapatite (considered to be the major constituent of bones and teeth), tricalcic phosphate and dental biomaterials: porcelain and some canal obturation substances [fr

  11. Biomaterials for craniofacial bone engineering.

    Science.gov (United States)

    Tevlin, R; McArdle, A; Atashroo, D; Walmsley, G G; Senarath-Yapa, K; Zielins, E R; Paik, K J; Longaker, M T; Wan, D C

    2014-12-01

    Conditions such as congenital anomalies, cancers, and trauma can all result in devastating deficits of bone in the craniofacial skeleton. This can lead to significant alteration in function and appearance that may have significant implications for patients. In addition, large bone defects in this area can pose serious clinical dilemmas, which prove difficult to remedy, even with current gold standard surgical treatments. The craniofacial skeleton is complex and serves important functional demands. The necessity to develop new approaches for craniofacial reconstruction arises from the fact that traditional therapeutic modalities, such as autologous bone grafting, present myriad limitations and carry with them the potential for significant complications. While the optimal bone construct for tissue regeneration remains to be elucidated, much progress has been made in the past decade. Advances in tissue engineering have led to innovative scaffold design, complemented by progress in the understanding of stem cell-based therapy and growth factor enhancement of the healing cascade. This review focuses on the role of biomaterials for craniofacial bone engineering, highlighting key advances in scaffold design and development. © International & American Associations for Dental Research.

  12. The Use of Electronic Resources by Academic Staff at the University of Ilorin, Nigeria

    Science.gov (United States)

    Tella, Adeyinka; Orim, Faith; Ibrahim, Dauda Morenikeji; Memudu, Suleiman Ajala

    2018-01-01

    The use of e-resources is now commonplace among academics in tertiary educational institutions the world over. Many academics including those in the universities are exploring the opportunities of e-resources to facilitate teaching and research. As the use of e-resources is increasing particularly among academics at the University of Ilorin,…

  13. Use and Cost of Electronic Resources in Central Library of Ferdowsi University Based on E-metrics

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Davarpanah

    2012-07-01

    Full Text Available The purpose of this study was to investigate the usage of electronic journals in Ferdowsi University, Iran based on e-metrics. The paper also aimed to emphasize the analysis of cost-benefit and the correlation between the journal impact factors and the usage data. In this study experiences of Ferdowsi University library on licensing and usage of electronic resources was evaluated by providing a cost-benefit analysis based on the cost and usage statistics of electronic resources. Vendor-provided data were also compared with local usage data. The usage data were collected by tracking web-based access locally, and by collecting vender-provided usage data. The data sources were one-year of vendor-supplied e-resource usage data such as Ebsco, Elsevier, Proquest, Emerald, Oxford and Springer and local usage data collected from the Ferdowsi university web server. The study found that actual usage values differ for vendor-provided data and local usage data. Elsevier has got the highest usage degree in searches, sessions and downloads. Statistics also showed that a small number of journals satisfy significant amount of use while the majority of journals were used less frequent and some were never used at all. The users preferred the PDF rather than HTML format. The data in subject profile suggested that the provided e-resources were best suited to certain subjects. There was no correlation between IF and electronic journal use. Monitoring the usage of e-resources gained increasing importance for acquisition policy and budget decisions. The article provided information about local metrics for the six surveyed vendors/publishers, e.g. usage trends, requests per package, cost per use as related to the scientific specialty of the university.

  14. Biomaterials and medical devices a perspective from an emerging country

    CERN Document Server

    Hermawan, Hendra

    2016-01-01

    This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants...

  15. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials.

    Science.gov (United States)

    Dai, Zhenyu; Li, Yue; Lu, Weizhong; Jiang, Dianming; Li, Hong; Yan, Yonggang; Lv, Guoyu; Yang, Aiping

    2015-01-01

    To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) complex biomaterials with muscle and bone tissue in an in vivo model. Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE) staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM) at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining. HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that the peripheral tissues of the implanted biomaterials were continuous and lacked bone osteolysis, absorption, necrosis, or osteomyelitis. The connection between implanted biomaterials and bone tissue was tight. The results of HE, Masson, toluidine blue staining and SEM confirmed that the implanted biomaterials were closely connected to the bone defect and that no rejection had taken place. The n-CDHA/PAA biomaterials induced differentiation of a large number of chondrocytes. New bone trabecula began to form at 4 weeks after implanting n

  16. Marine Structural Biomaterials in Medical Biomimicry.

    Science.gov (United States)

    Green, David W; Lee, Jong-Min; Jung, Han-Sung

    2015-10-01

    Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today.

  17. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  18. Wear Characteristics of Metallic Biomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2015-05-01

    Full Text Available Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  19. Challenges for international students in using electronic resources in the Learning Centre : a case study of Oslo University College

    OpenAIRE

    Rahman, Md. Anisur

    2011-01-01

    Joint Master Degree in Digital Library Learning (DILL) The purpose of this study is to find out the challenges facing by international students in using electronic resources in the OUC learning center. This research has used a qualitative approach and purposive, a non-probability techniques used for sampling of this study. A semi-structured face-to-face interviews method is used for the collection of data. The interview questions were open ended and the discourse analysis metho...

  20. Adherence ability of Staphylococcus epidermidis on prosthetic biomaterials: an in vitro study

    Directory of Open Access Journals (Sweden)

    Shida T

    2013-10-01

    Full Text Available Takayuki Shida,1 Hironobu Koseki,1 Itaru Yoda,1 Hidehiko Horiuchi,1 Hideyuki Sakoda,2 Makoto Osaki11Department of Orthopedic Surgery, Graduate School of Medicine, Nagasaki University, Nagasaki, Japan; 2Division of Medical Devices, National Institute of Health Sciences, Tokyo, JapanAbstract: Bacterial adhesion to the surface of biomaterials is an essential step in the pathogenesis of implant-related infections. In this in vitro research, we evaluated the ability of Staphylococcus epidermidis to adhere to the surface of solid biomaterials, including oxidized zirconium-niobium alloy (Oxinium, cobalt-chromium-molybdenum alloy, titanium alloy, commercially pure titanium, and stainless steel, and performed a biomaterial-to-biomaterial comparison. The test specimens were physically analyzed to quantitatively determine the viable adherent density of the S. epidermidis strain RP62A (American Type Culture Collection [ATCC] 35984. Field emission scanning electron microscope and laser microscope examination revealed a featureless, smooth surface in all specimens (average roughness <10 nm. The amounts of S. epidermidis that adhered to the biomaterial were significantly lower for Oxinium and the cobalt-chromium-molybdenum alloy than for commercially pure titanium. These results suggest that Oxinium and cobalt-chromium-molybdenum alloy are less susceptible to bacterial adherence and are less inclined to infection than other materials of a similar degree of smoothness.Keyword: bacterial adhesion, implant, infection, surface character

  1. Microgel mechanics in biomaterial design.

    Science.gov (United States)

    Saxena, Shalini; Hansen, Caroline E; Lyon, L Andrew

    2014-08-19

    The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels and their colloidal analogues, microgels, have been and continue to be heavily investigated as viable materials for biological applications because they offer numerous, facile avenues in tailoring chemical and physical properties to approach biologically harmonious integration. Mechanical properties in particular are recently coming into focus as an important manner in which biological responses can be altered. In this Account, we trace how mechanical properties of microgels have moved into the spotlight of research efforts with the realization of their potential impact in biologically integrative systems. We discuss early experiments in our lab and in others focused on synthetic modulation of particle structure at a rudimentary level for fundamental drug delivery studies. These experiments elucidated that microgel mechanics are a consequence of polymer network distribution, which can be controlled by chemical composition or particle architecture. The degree of deformability designed into the microgel allows for a defined response to an imposed external force. We have studied deformation in packed colloidal phases and in translocation events through confined pores; in all circumstances, microgels exhibit impressive deformability in response to their environmental constraints. Microgels further translate their mechanical properties when assembled in films to the properties of the bulk material. In particular, microgel films have been a large focus in our lab as building blocks for self

  2. RESEARCH OF INFLUENCE OF QUALITY OF ELECTRONIC EDUCATIONAL RESOURCES ON QUALITY OF TRAINING WITH USE OF DISTANCE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    H. M. Kravtsov

    2013-03-01

    Full Text Available Communication improving of educational processes requires today new approaches to the management arrangements and forming of educational policy in the field of distance learning, which is based on the use of modern information and communication technologies. An important step in this process is the continuous monitoring of the development and implementation of information technology and, in particular, the distance learning systems in higher educational establishments. The main objective of the monitoring is the impact assessment on the development of distance learning following the state educational standards, curricula, methodical and technical equipment and other factors; factors revelation that influence the implementation and outcomes of distance learning; results comparison of educational institution functioning and distance education systems in order to determine the most efficient ways of its development. The paper presents the analysis results of the dependence of the quality of educational services on the electronic educational resources. Trends in educational services development was studied by comparing the quality influence of electronic educational resources on the quality of educational services of higher pedagogical educational institutions of Ukraine as of 2009-2010 and 2012-2013. Generally, the analysis of the survey results allows evaluating quality of the modern education services as satisfactory and it can be said that almost 70% of the success of their future development depends on the quality of the used electronic educational resources and distance learning systems in particular.

  3. Tracking the Flow of Resources in Electronic Waste - The Case of End-of-Life Computer Hard Disk Drives.

    Science.gov (United States)

    Habib, Komal; Parajuly, Keshav; Wenzel, Henrik

    2015-10-20

    Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system.

  4. Applications of biomaterials in corneal wound healing

    Directory of Open Access Journals (Sweden)

    I-Lun Tsai

    2015-04-01

    Full Text Available Disease affecting the cornea is a common cause of blindness worldwide. To date, the amniotic membrane (AM is the most widely used clinical method for cornea regeneration. However, donor-dependent differences in the AM may result in variable clinical outcomes. To overcome this issue, biomaterials are currently under investigation for corneal regeneration in vitro and in vivo. In this article, we highlight the recent advances in hydrogels, bioengineered prosthetic devices, contact lenses, and drug delivery systems for corneal regeneration. In clinical studies, the therapeutic effects of biomaterials, including fibrin and collagen-based hydrogels and silicone contact lenses, have been demonstrated in damaged cornea. The combination of cells and biomaterials may provide potential treatment in corneal wound healing in the future.

  5. Human Endothelial Cell Models in Biomaterial Research.

    Science.gov (United States)

    Hauser, Sandra; Jung, Friedrich; Pietzsch, Jens

    2017-03-01

    Endothelial cell (EC) models have evolved as important tools in biomaterial research due to ubiquitously occurring interactions between implanted materials and the endothelium. However, screening the available literature has revealed a gap between material scientists and physiologists in terms of their understanding of these biomaterial-endothelium interactions and their relative importance. Consequently, EC models are often applied in nonphysiological experimental setups, or too extensive conclusions are drawn from their results. The question arises whether this might be one reason why, among the many potential biomaterials, only a few have found their way into the clinic. In this review, we provide an overview of established EC models and possible selection criteria to enable researchers to determine the most reliable and relevant EC model to use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Manufacturing Cell Therapies Using Engineered Biomaterials.

    Science.gov (United States)

    Abdeen, Amr A; Saha, Krishanu

    2017-10-01

    Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. HELP (INFORMATION ELECTRONIC RESOURCE "CHRONICLE OF ONU: DATES, FACTS, EVENTS": HISTORY OF UNIVERSITY IN INFORMATION SPACE

    Directory of Open Access Journals (Sweden)

    А. М. Гавриленко

    2016-03-01

    Object of research is the help information resource "The chronicle of the Odessa national university of I. I. Mechnikov: dates, facts, events". The main objective of our article – to state the main methodological bases of creation of information resource. One of advantages of information resource is possibility of continuous updating and replenishment by new information. Main objective of creation of this information resource is systematization of material on stories of the Odessa national university of I. I. Mechnikov from the date of his basis to the present, ensuring interactive access to information on the main dates, the most significant events in life of university. The base of research are sources on the history of university, chronology of historical development, formation of infrastructure, cadres and scientific researches. In information resource the main stages of development, functioning and transformation of the Odessa University are analyzed, information on its divisions is collected. For creation of this information resource in Scientific library the method of work was developed, the main selection criteria of data are allocated. This information resource have practical value for all who is interested in history of university, historians, scientists-researchers of history of science and the city of Odessa.

  8. Facile design of biomaterials by 'click' chemistry

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    The advent of the so‐called ‘click chemistry’ a decade ago has significantly improved the chemical toolbox for producing novel biomaterials. This review focuses primarily on the application of Cu(I)‐catalysed azide–alkyne 1,3‐cycloadditon in the preparation of numerous, diverse biomaterials...... chemistry is elaborated. The present state of creating functional and biologically active surfaces by click chemistry is presented. Finally, conducting surfaces based on an azide‐functionalized polymer with prospective biological sensor potential are introduced. Copyright © 2012 Society of Chemical Industry...

  9. Regulatory affairs for biomaterials and medical devices

    CERN Document Server

    Amato, Stephen F; Amato, B

    2015-01-01

    All biomaterials and medical devices are subject to a long list of regulatory practises and policies which must be adhered to in order to receive clearance. This book provides readers with information on the systems in place in the USA and the rest of the world. Chapters focus on a series of procedures and policies including topics such as commercialization, clinical development, general good practise manufacturing and post market surveillance.Addresses global regulations and regulatory issues surrounding biomaterials and medical devicesEspecially useful for smaller co

  10. Effect of Access to an Electronic Medical Resource on Performance Characteristics of a Certification Examination: A Randomized Controlled Trial.

    Science.gov (United States)

    Lipner, Rebecca S; Brossman, Bradley G; Samonte, Kelli M; Durning, Steven J

    2017-09-05

    Electronic resources are increasingly used in medical practice. Their use during high-stakes certification examinations has been advocated by many experts, but whether doing so would affect the capacity to differentiate between high and low abilities is unknown. To determine the effect of electronic resources on examination performance characteristics. Randomized controlled trial. Medical certification program. 825 physicians initially certified by the American Board of Internal Medicine (ABIM) who passed the Internal Medicine Certification examination or sat for the Internal Medicine Maintenance of Certification (IM-MOC) examination in 2012 to 2015. Participants were randomly assigned to 1 of 4 conditions: closed book using typical or additional time, or open book (that is, UpToDate [Wolters Kluwer]) using typical or additional time. All participants took the same modified version of the IM-MOC examination. Primary outcomes included item difficulty (how easy or difficult the question was), item discrimination (how well the question differentiated between high and low abilities), and average question response time. Secondary outcomes included examination dimensionality (that is, the number of factors measured) and test-taking strategy. Item response theory was used to calculate question characteristics. Analysis of variance compared differences among conditions. Closed-book conditions took significantly less time than open-book conditions (mean, 79.2 seconds [95% CI, 78.5 to 79.9 seconds] vs. 110.3 seconds [CI, 109.2 to 111.4 seconds] per question). Mean discrimination was statistically significantly higher for open-book conditions (0.34 [CI, 0.32 to 0.35] vs. 0.39 [CI, 0.37 to 0.41] per question). A strong single dimension showed that the examination measured the same factor with or without the resource. Only 1 electronic resource was evaluated. Inclusion of an electronic resource with time constraints did not adversely affect test performance and did not change

  11. Materiomics - High-Throughput Screening of Biomaterial Properties

    NARCIS (Netherlands)

    de Boer, Jan; van Blitterswijk, Clemens

    2013-01-01

    This complete, yet concise, guide introduces you to the rapidly developing field of high throughput screening of biomaterials: materiomics. Bringing together the key concepts and methodologies used to determine biomaterial properties, you will understand the adaptation and application of materomics

  12. The level of the usage of the human resource information system and electronic recruitment in Croatian companies

    Directory of Open Access Journals (Sweden)

    Snježana Pivac

    2014-12-01

    Full Text Available Performing business according to contemporary requirements influences companies for continuous usage of modern managerial tools, such as a human resource information system (HRIS and electronic recruitment (ER. Human resources have been recognised as curtail resources and the main source of a competitive advantage in creation of successful business performance. In order to attract and select the top employees, companies use quality information software for attracting internal ones, and electronic recruitment for attracting the best possible external candidates. The main aim of this paper is to research the level of the usage of HRIS and ER within medium-size and large Croatian companies. Moreover, the additional aim of this paper is to evaluate the relationship among the usage of these modern managerial tools and the overall success of human resource management within these companies. For the purpose of this paper, primary and secondary research has been conducted in order to reveal the level of the usage of HRIS and ER as well as the overall success of human resource management in Croatian companies. The companies’ classification (HRIS and ER is done by using the non-hierarchical k-means cluster method as well as the nonparametric Kruskal Wallis test. Further, the companies are ranked by the multicriteria PROMETHEE method. Relevant nonparametric tests are used for testing the overall companies’ HRM. Finally, binary logistic regression is estimated, relating binary variable HRM and HRIS development. After detailed research, it can be concluded that large Croatian companies apply HRIS in majority (with a positive relation to HRM performance, but still require certain degrees of its development.

  13. Collagen based Biomaterials from CLRI: An Inspiration from the ...

    Indian Academy of Sciences (India)

    Focus of Research on the Collagen-based Biomaterials in CLRI: Patient care and pain reduction · People at CLRI: for Whom Collagen matters as a Biomaterial · Skin as an organ: Is it smart? Collagen: Emerging Role as a Smart ... Wound Care Products from CLRI in the market place · Logic of Biomaterial devices from CLRI ...

  14. Collagen based Biomaterials from CLRI: An Inspiration from the ...

    Indian Academy of Sciences (India)

    Focus of Research on the Collagen-based Biomaterials in CLRI: Patient care and pain reduction · People at CLRI: for Whom Collagen matters as a Biomaterial · Skin as an organ: Is it smart? Collagen: Emerging Role as a Smart material · Building blocks of Collagen based biomaterial devices · Collagen: its Organizational ...

  15. Osteoinduction by biomaterials - Physicochemical and structural influences

    NARCIS (Netherlands)

    Habibovic, Pamela; Sees, Tara M.; van den Doel, Mirella; van Blitterswijk, Clemens; de Groot, K.

    2006-01-01

    Osteoinduction by biomaterials has been shown to be a real phenomenon by many investigators in the last decade. The exact mechanism of this phenomenon is, however, still largely unknown. This in vivo study in goats was performed to get insight into processes governing the phenomenon of

  16. Biomaterials supported CdS nanocrystals

    International Nuclear Information System (INIS)

    Balu, Alina M.; Campelo, Juan M.; Luque, Rafael; Rajabi, Fatemeh; Romero, Antonio A.

    2010-01-01

    CdS quantum dot materials were prepared through a simple room temperature deposition of CdS nanocrystals on biomaterials including starch and chitosan. Materials obtained were found to contain differently distributed CdS nanocrystals on the surface of the biopolymers, making them potentially interesting for biomedical applications as contrast agents and/or in photocatalysis.

  17. Designing Smart Biomaterials for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ferdous Khan

    2017-12-01

    Full Text Available The engineering of human tissues to cure diseases is an interdisciplinary and a very attractive field of research both in academia and the biotechnology industrial sector. Three-dimensional (3D biomaterial scaffolds can play a critical role in the development of new tissue morphogenesis via interacting with human cells. Although simple polymeric biomaterials can provide mechanical and physical properties required for tissue development, insufficient biomimetic property and lack of interactions with human progenitor cells remain problematic for the promotion of functional tissue formation. Therefore, the developments of advanced functional biomaterials that respond to stimulus could be the next choice to generate smart 3D biomimetic scaffolds, actively interacting with human stem cells and progenitors along with structural integrity to form functional tissue within a short period. To date, smart biomaterials are designed to interact with biological systems for a wide range of biomedical applications, from the delivery of bioactive molecules and cell adhesion mediators to cellular functioning for the engineering of functional tissues to treat diseases.

  18. Biomaterials and tissue engineering in reconstructive surgery

    Indian Academy of Sciences (India)

    This paper provides an account of the rationale for the development of implantable medical devices over the last half-century and explains the criteria that have controlled the selection of biomaterials for these critical applications. In spite of some good successes and excellent materials, there are still serious limitations to ...

  19. Hydroxyapatite, a biomaterial: Its chemical synthesis ...

    Indian Academy of Sciences (India)

    Hydroxyapatite, a biomaterial: Its chemical synthesis, characterization and study of biocompatibility prepared from shell of garden snail,. Helix aspersa. ANJUVAN SINGH. Department of Biotechnology and Biosciences, Lovely Professional University, Phagwara 144 411, India. MS received 10 February 2010; revised 20 July ...

  20. Building blocks of Collagen based biomaterial devices

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  1. Cleaning of biomaterial surfaces: protein removal by different solvents.

    Science.gov (United States)

    Kratz, Fabian; Grass, Simone; Umanskaya, Natalia; Scheibe, Christian; Müller-Renno, Christine; Davoudi, Neda; Hannig, Matthias; Ziegler, Christiane

    2015-04-01

    The removal of biofilms or protein films from biomaterials is still a challenging task. In particular, for research investigations on real (applied) surfaces the reuse of samples is of high importance, because reuse allows the comparison of the same sample in different experiments. The aim of the present study was to evaluate the cleaning efficiency of different solvents (SDS, water, acetone, isopropanol, RIPA-buffer and Tween-20) on five different biomaterials (titanium, gold, PMMA (no acetone used), ceramic, and PTFE) with different wettability which were covered by layers of two different adsorbed proteins (BSA and lysozyme). The presence of a protein film after adsorption was confirmed by transmission electron microscopy (TEM). After treatment of the surfaces with the different solvents, the residual proteins on the surface were determined by BCA-assay (bicinchoninic acid assay). Data of the present study indicate that SDS is an effective solvent, but for several protein-substrate combinations it does not show the cleaning efficiency often mentioned in literature. RIPA-buffer and Tween-20 were more effective. They showed very low residual protein amounts after cleaning on all examined material surfaces and for both proteins, however, with small differences for the respective substrate-protein combinations. RIPA-buffer in combination with ultrasonication completely removed the protein layer as confirmed by TEM. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology.

    Science.gov (United States)

    Polizu, Stefania; Savadogo, Oumarou; Poulin, Philippe; Yahia, L'Hocine

    2006-07-01

    One of the facets of nanotechnology applications is the immense opportunities they offer for new developments in medicine and health sciences. Carbon nanotubes (CNTs) have particularly attracted attention for designing new monitoring systems for environment and living cells as well as nanosensors. Carbon nanotubes-based biomaterials are also employed as support for active prosthesis or functional matrices in reparation of parts of the human body. These nanostructures are studied as molecular-level building blocks for the complex and miniaturized medical device, and substrate for stimulation of cellular growth. The CNTs are cylindrical shaped with caged molecules which can act as nanoscale containers for molecular species, well required for biomolecular recognition and drug delivery systems. Endowed with very large aspect ratios, an excellent electrical conductivity and inertness along with mechanical robustness, nanotubes found enormous applications in molecular electronics and bioelectronics. The ballistic electrical behaviour of SWNTs conjugated with functionalization promotes a large variety of biosensors for individual molecules. Actuative response of CNTs is considered very promising feature for nanodevices, micro-robots and artificial muscles. An description of CNTs based biomaterials is attempted in this review, in order to point out their enormous potential for biomedical nanotechnology and nanobiotechnology.

  3. New biomaterials obtained with ionizing radiations

    International Nuclear Information System (INIS)

    Gaussens, G.

    1982-01-01

    In present-day surgery and medicine use is increasingly made of materials foreign to the organism in order to remedy a physiological defect either temporarily or permanently. These materials, known as ''biomaterials'', take widely varying forms: plastics, metals, cements, ceramics, etc. Biomaterials can be classified in accordance with their function: (a) Devices designed to be fully implanted in the human body in order to replace an anatomical structure, either temporarily or permanently, such as articular, vascular, mammary and osteosynthetic prostheses, etc.; (b) Devices having prolonged contact with mucous tissues, such as intra-uterine devices, contact lenses, etc.; (c) Extracorporeal devices designed to treat blood such as artificial kidneys, blood oxygenators, etc.; and (d) Biomaterials can also be taken to mean chemically inert, implantable materials designed to produce a continuous discharge of substances containing pharmacologically active molecules, such as contraceptive devices or ocular devices (for treating glaucoma). The two most important criteria for a biomaterial are those of biological compatibility and biological functionality. Techniques using ionizing radiation as an energy source provide an excellent tool for synthesizing or modifying the properties of plastics. The properties of polymers can be improved, new polymers can be synthesized without chemical additives (often the cause of incompatibility with tissue or blood) and without increased temperature, and polymerization can be induced in the solid state using deep-frozen monomers. Also, radiation-induced modifications in polymers can be applied to semi-finished or finished products. Examples are also given of marketed biomaterials that have been produced using radiation chemistry techniques

  4. QR Codes as Finding Aides: Linking Electronic and Print Library Resources

    Science.gov (United States)

    Kane, Danielle; Schneidewind, Jeff

    2011-01-01

    As part of a focused, methodical, and evaluative approach to emerging technologies, QR codes are one of many new technologies being used by the UC Irvine Libraries. QR codes provide simple connections between print and virtual resources. In summer 2010, a small task force began to investigate how QR codes could be used to provide information and…

  5. Supporting Learning and Information Sharing in Natural Resource Management with Technologies for Electronic Documents

    Science.gov (United States)

    Alem, Leila; McLean, Alistair

    2005-01-01

    Community participation is central to achieving sustainable natural resource management. A prerequisite to informed participation is that community and stakeholder groups have access to different knowledge sources, are more closely attuned to the different issues and viewpoints, and are sufficiently equipped to understand and maybe resolve complex…

  6. MendelWeb: An Electronic Science/Math/History Resource for the WWW.

    Science.gov (United States)

    Blumberg, Roger B.

    This paper describes a hypermedia resource, called MendelWeb that integrates elementary biology, discrete mathematics, and the history of science. MendelWeb is constructed from Gregor Menders 1865 paper, "Experiments in Plant Hybridization". An English translation of Mendel's paper, which is considered to mark the birth of classical and…

  7. New method of synthesis and in vitro studies of a porous biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Wers, E., E-mail: wers.eric@hotmail.com [Equipe Chimie du Solide et Matériaux, UMR CNRS 6226, Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, 263 avenue du Général Leclerc, 35042 Rennes Cedex (France); Lefeuvre, B. [Equipe Chimie du Solide et Matériaux, UMR CNRS 6226, Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, 263 avenue du Général Leclerc, 35042 Rennes Cedex (France); Pellen-Mussi, P.; Novella, A. [Equipe Chimie du Solide et Matériaux, UMR CNRS 6226, Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35042 Rennes Cedex (France); Oudadesse, H. [Equipe Chimie du Solide et Matériaux, UMR CNRS 6226, Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, 263 avenue du Général Leclerc, 35042 Rennes Cedex (France)

    2016-04-01

    Biomaterials for bone reconstruction represent a widely studied area. In this paper, a new method of synthesis of a porous glass–ceramic obtained by thermal treatment is presented. The prepared biomaterial was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and induced couple plasma-optical emission spectroscopy (ICP-OES), mercury porosimetry and by the Archimedes method. In vitro evaluations in a simulated body fluid (SBF) and in contact with SaOS{sub 2} human osteoblasts were also carried out. The porous glass–ceramic is composed of a total porous network of 60% suitable for body fluid and cell infiltration, with pore sizes varying from 60 nm to 143 μm. The presence of two crystalline phases decreases the kinetic of bioactivity compared to an amorphous biomaterial (bioactive glass). A hydroxyapatite layer appears from 15 days of immersion on the surface and inside the pores, showing a biodegradation and a bioactivity in four steps. Cytotoxicity assessments present an increase of the cellular viability after 72 h proving the non-cytotoxic effect of the glass–ceramic. Thus, the results of these different studies indicate that the porous biomaterial may have a potential application for the bone regeneration. This paper also presents the novelty of this method. It is a rapid synthesis which combines simplicity and low cost. This represents an advantage for an eventual industrialization. - Highlights: • The new method of synthesis of a porous glass–ceramic is reproducible. • The porous glass–ceramic possesses a total porosity of 60%. • The biomaterial shows a bioactivity in four steps with hydroxyapatite formation. • 82% of cellular viability is observed on the surface of the biomaterial.

  8. Electronic Resources in a Next-Generation Catalog: The Case of WorldCat Local

    Science.gov (United States)

    Shadle, Steve

    2009-01-01

    In April 2007, the University of Washington Libraries debuted WorldCat Local (WCL), a localized version of the WorldCat database that interoperates with a library's integrated library system and fulfillment services to provide a single-search interface for a library's physical and electronic content. This brief will describe how WCL incorporates a…

  9. Survey of the use of electronic information resources by students in ...

    African Journals Online (AJOL)

    For libraries to continue to lead in this industry generally and academic libraries in particular, deliberate effort must be made to bring the IT education to every potential user of the libraries. This however must be done based on available data. This is what this study sought to provide- a survey of the use of electronic ...

  10. Bringing Up Gopher: Access to Local & Remote Electronic Resources for University Library Users.

    Science.gov (United States)

    Brown, Melvin Marlo; And Others

    Some of the administrative and organizational issues in creating a gopher, specifically a library gopher for university libraries, are discussed. In 1993 the Electronic Collections Task Force of the New Mexico State University library administration began to develop a library-based gopher system that would enable users to have unlimited access to…

  11. Eavesdropping on Electronic Guidebooks: Observing Learning Resources in Shared Listening Environments.

    Science.gov (United States)

    Woodruff, Allison; Aoki, Paul M.; Grinter, Rebecca E.; Hurst, Amy; Szymanski, Margaret H.; Thornton, James D.

    This paper describes an electronic guidebook, "Sotto Voce," that enables visitors to share audio information by eavesdropping on each others guidebook activity. The first section discusses the design and implementation of the guidebook device, key aspects of its user interface, the design goals for the audio environment, the eavesdropping…

  12. Data Resource Profile: Cardiovascular disease research using linked bespoke studies and electronic health records (CALIBER)

    Science.gov (United States)

    Denaxas, Spiros C; George, Julie; Herrett, Emily; Shah, Anoop D; Kalra, Dipak; Hingorani, Aroon D; Kivimaki, Mika; Timmis, Adam D; Smeeth, Liam; Hemingway, Harry

    2012-01-01

    The goal of cardiovascular disease (CVD) research using linked bespoke studies and electronic health records (CALIBER) is to provide evidence to inform health care and public health policy for CVDs across different stages of translation, from discovery, through evaluation in trials to implementation, where linkages to electronic health records provide new scientific opportunities. The initial approach of the CALIBER programme is characterized as follows: (i) Linkages of multiple electronic heath record sources: examples include linkages between the longitudinal primary care data from the Clinical Practice Research Datalink, the national registry of acute coronary syndromes (Myocardial Ischaemia National Audit Project), hospitalization and procedure data from Hospital Episode Statistics and cause-specific mortality and social deprivation data from the Office of National Statistics. Current cohort analyses involve a million people in initially healthy populations and disease registries with ∼105 patients. (ii) Linkages of bespoke investigator-led cohort studies (e.g. UK Biobank) to registry data (e.g. Myocardial Ischaemia National Audit Project), providing new means of ascertaining, validating and phenotyping disease. (iii) A common data model in which routine electronic health record data are made research ready, and sharable, by defining and curating with meta-data >300 variables (categorical, continuous, event) on risk factors, CVDs and non-cardiovascular comorbidities. (iv) Transparency: all CALIBER studies have an analytic protocol registered in the public domain, and data are available (safe haven model) for use subject to approvals. For more information, e-mail s.denaxas@ucl.ac.uk PMID:23220717

  13. Mechanistic investigation of a hemostatic keratin biomaterial

    Science.gov (United States)

    Rahmany, Maria Bahawdory

    Traumatic injury leads to more productive years lost than heart disease, cancer and stroke combined. Trauma is often accompanied and complicated by uncontrolled bleeding. Human hair keratin biomaterials have demonstrated efficacy in controlling hemorrhage in both small and large animal models; however little is known about the mechanism by which these proteins aid in blood clotting. Inspection of the amino acid sequence of known keratins shows the presence of several cellular binding motifs, suggesting a possible mechanism and potentially eliminating the need to functionalize the material's surface for cellular interaction. In addition to small animal studies, the hemostatic activity of keratin hydrogels was explored through porcine hemorrhage models representing both a high flow and low flow bleed. In both studies, keratin hydrogels appeared to lead to a significant reduction in blood loss. The promising results from these in vivo studies provided the motivation for this project. The objective of this dissertation work was to assess the mechanism of action of a hemostatic keratin biomaterial, and more broadly assess the biomaterial-cellular interaction(s). It is our hypothesis that keratin biomaterials have the capacity to specifically interact with cells and lead to propagation of intracellular signaling pathway, specifically contributing to hemostasis. Through application of biochemical and molecular tools, we demonstrate here that keratin biomaterials contribute to hemostasis through two probable mechanisms; integrin mediated platelet adhesion and increased fibrin polymerization. Platelets are the major cell type involved in coagulation both by acting as a catalytic surface for the clotting cascade and adhering to extracellular matrix (ECM) proteins providing a soft platelet plug. Because keratin biomaterials have structural and biochemical characteristics similar to ECM proteins, we utilized several adhesion assays to investigate platelet adhesion to keratin

  14. Polysaccharide-based biomaterials with antimicrobial and antioxidant properties

    Directory of Open Access Journals (Sweden)

    Véronique Coma

    2013-01-01

    Full Text Available Active packaging is one of the responses to the recent food-borne microbial outbreaks and to the consumer’s demand for high quality food and for packaging that is more advanced and creative than what is currently offered. Moreover, with the recent increase in ecological awareness associated with the dramatic decrease in fossil resources, research has turned towards the elaboration of more natural materials. This paper provides a short review of biomaterials exhibiting antimicrobial and antioxidant properties for applications in food preservation. The two main concepts of active biopackaging materials are briefly introduced. The different polysaccharides potentially used in packaging materials are then presented associated with a brief overview of research works related to biopackaging, exhibiting notably antimicrobial or antioxidant properties. Finally, future trends such as the release-on-demand of bioactive agents are discussed.

  15. Resource-efficient conception of waste electrical and electronic equipment collection groups

    OpenAIRE

    Gries, Nadja von; Wilts, Claas Henning

    2014-01-01

    Critical metals are in great demand by the electrical and electronics industry, so waste electrical and eletronic equipment represents a significant source of secondary raw materials. Owing to low recycling rates and the concomitant supply risks associated with critical metals, the closure of the material cycles is highly relevant to the German economy. Losses of these metals occur from collection until their material recovery, along the entire disposal chain of waste electrical and electroni...

  16. Gelatin Functionalization of Biomaterial Surfaces: Strategies for Immobilization and Visualization

    Directory of Open Access Journals (Sweden)

    Peter Dubruel

    2011-01-01

    Full Text Available In the present work, the immobilization of gelatin as biopolymer on two types of implantable biomaterials, polyimide and titanium, was compared. Both materials are known for their biocompatibility while lacking cell-interactive behavior. For both materials, a pre-functionalization step was required to enable gelatin immobilization. For the polyimide foils, a reactive succinimidyl ester was introduced first on the surface, followed by covalent grafting of gelatin. For the titanium material, methacrylate groups were first introduced on the Ti surface through a silanization reaction. The applied functionalities enabled the subsequent immobilization of methacrylamide modified gelatin. Both surface modified materials were characterized in depth using atomic force microscopy, static contact angle measurements, confocal fluorescence microscopy, attenuated total reflection infrared spectroscopy and X-ray photo-electron spectroscopy. The results indicated that the strategies elaborated for both material classes are suitable to apply stable gelatin coatings. Interestingly, depending on the material class studied, not all surface analysis techniques are applicable.

  17. Preference and Use of Electronic Information and Resources by Blind/Visually Impaired in NCR Libraries in India

    Directory of Open Access Journals (Sweden)

    Shailendra Kumar

    2013-06-01

    Full Text Available This paper aims to determine the preference and use of electronic information and resources by blind/visually impaired users in the leading National Capital Region (NCR libraries of India. Survey methodology has been used as the basic research tool for data collection with the help of questionnaires. The 125 in total users surveyed in all the five libraries were selected randomly on the basis of willingness of the users with experience of working in digital environments to participate in the survey. The survey results were tabulated and analyzed with descriptive statistics methods using Excel software and 'Stata version 11'. The findings reveal that ICT have a positive impact in the lives of people with disabilities as it helps them to work independently and increases the level of confidence among them. The Internet is the most preferred medium of access to information among the majority of blind/visually impaired users. The 'Complexity of content available on the net' is found as the major challenge faced during Internet use by blind users of NCR libraries. 'Audio books on CDs/DVDs and DAISY books' are the most preferred electronic resources among the majority of blind/visually impaired users. This study will help the library professionals and organizations/institutions serving people with disabilities to develop effective library services for blind/visually impaired users in the digital environment on the basis of findings on information usage behavior in the study.

  18. An Exploratory study on the use of LibAnswers to Resolve, Track and Monitor Electronic Resources Issues: The KAUST Library experience

    KAUST Repository

    Ramli, Rindra M.

    2017-05-03

    An Exploratory study on KAUST library use of LibAnswers in resolving electronic resources questions received in LibAnswers. It describes the findings of the questions received in LibAnswers. The author made suggestions based on the findings to improve the reference services in responding to e-resources questions.

  19. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    Science.gov (United States)

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications.

  20. Internet and electronic resources for inflammatory bowel disease: a primer for providers and patients.

    Science.gov (United States)

    Fortinsky, Kyle J; Fournier, Marc R; Benchimol, Eric I

    2012-06-01

    Patients with inflammatory bowel disease (IBD) are increasingly turning to the Internet to research their condition and engage in discourse on their experiences. This has resulted in new dynamics in the relationship between providers and their patients, with misinformation and advertising potentially presenting barriers to the cooperative patient-provider partnership. This article addresses important issues of online IBD-related health information and social media activity, such as quality, reliability, objectivity, and privacy. We reviewed the medical literature on the quality of online information provided to IBD patients, and summarized the most commonly accessed Websites related to IBD. We also assessed the activity on popular social media sites (such as Facebook, Twitter, and YouTube), and evaluated currently available applications for use by IBD patients and providers on mobile phones and tablets. Through our review of the literature and currently available resources, we developed a list of recommended online resources to strengthen patient participation in their care by providing reliable, comprehensive educational material. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  1. Silicone containing biomaterials in cardiovascular applications

    Science.gov (United States)

    Silvestri, A.; Sartori, S.; Serafini, P.; Ferrando, P.; Mattu, C.; Milione, S.; Boccafoschi, F.; Ciardelli, G.

    2010-06-01

    A series of biostable polyurethane (PU) formulations, including a composite containing a biocompatible clay as filler, were prepared as new biomaterials for cardiovascular applications. Polydimethylsiloxane (PDMS) and polytetramethylenoxide (PTMO) were selected as macrodiols because of their high hydrolysis resistance. 1,6-Diisocyanatohexane (HDI) and 1,4-cyclohexane dimethanol (CDM) were used as diisocyanate and chain extender, respectively. Chemical and mechanical characterizations of the obtained polymers highlight that they are promising materials for applications in the cardiovascular field.

  2. Granulometric composition study of mineral resources using opto-electronic devices and Elsieve software system

    OpenAIRE

    Kaminski Stanislaw; Kaminski Piotr; Kaminska Dorota; Trzcinski Jerzy

    2016-01-01

    The use of mechanical sieves has a great impact on measurement results because occurrence of anisometric particles causes undercounting the average size. Such errors can be avoided by using opto-electronic measuring devices that enable measurement of particles from 10 μm up to a few dozen millimetres in size. The results of measurement of each particle size fraction are summed up proportionally to its weight with the use of Elsieve software system and for every type of material particle-size ...

  3. Fluidized bed gasification of select granular biomaterials.

    Science.gov (United States)

    Subramanian, P; Sampathrajan, A; Venkatachalam, P

    2011-01-01

    Biomaterials can be converted into solid, liquid and gaseous fuels through thermochemical or biochemical conversion processes. Thermochemical conversion of granular biomaterials is difficult because of its physical nature and one of the suitable processes is fluidized bed gasification. In this study, coir pith, rice husk and saw dust were selected and synthetic gas was generated using a fluidized bed gasifier. Gas compositions of product gas were analyzed and the percentage of carbon monoxide and carbon dioxide was in the range of 8.24-19.55 and 10.21-17.14, respectively. The effect of equivalence ratio (0.3, 0.4 and 0.5) and reaction time (at 10 min interval) on gas constituents was studied. The gas yield for coir pith, rice husk and sawdust were found to be in the range of 1.98-3.24, 1.79-2.81 and 2.18-3.70 Nm3 kg(-1), respectively. Models were developed to study the influence of biomaterial properties and operating conditions on molar concentration of gas constituents and energy output. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Biomaterial strategies for alleviation of myocardial infarction

    Science.gov (United States)

    Venugopal, Jayarama Reddy; Prabhakaran, Molamma P.; Mukherjee, Shayanti; Ravichandran, Rajeswari; Dan, Kai; Ramakrishna, Seeram

    2012-01-01

    World Health Organization estimated that heart failure initiated by coronary artery disease and myocardial infarction (MI) leads to 29 per cent of deaths worldwide. Heart failure is one of the leading causes of death in industrialized countries and is expected to become a global epidemic within the twenty-first century. MI, the main cause of heart failure, leads to a loss of cardiac tissue impairment of left ventricular function. The damaged left ventricle undergoes progressive ‘remodelling’ and chamber dilation, with myocyte slippage and fibroblast proliferation. Repair of diseased myocardium with in vitro-engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for heart failure patients. These events reflect an apparent lack of effective intrinsic mechanism for myocardial repair and regeneration. Motivated by the desire to develop minimally invasive procedures, the last 10 years observed growing efforts to develop injectable biomaterials with and without cells to treat cardiac failure. Biomaterials evaluated include alginate, fibrin, collagen, chitosan, self-assembling peptides, biopolymers and a range of synthetic hydrogels. The ultimate goal in therapeutic cardiac tissue engineering is to generate biocompatible, non-immunogenic heart muscle with morphological and functional properties similar to natural myocardium to repair MI. This review summarizes the properties of biomaterial substrates having sufficient mechanical stability, which stimulates the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering. PMID:21900319

  5. Trends in prosthetic biomaterials in implant dentistry

    Directory of Open Access Journals (Sweden)

    Saranjit Singh Bhasin

    2015-01-01

    Full Text Available The most important criterion for the success of dental implants is the selection of a suitable implant biomaterial. To improve the biologic performance of an implant, it is necessary to select a material that does not elicit any negative biological response and at the same time maintains adequate function. It is mandatory for a dentist to have a comprehensive knowledge of various biomaterials used for dental implants. The material of choice for fabrication of the dental implant till date is titanium. With the advancements in the field of implants, zirconia seems to be propitious in the future. However, more advanced in vitro and in vivo studies are required before reaching any such conclusion. To increase the success of zirconia implants, care should be taken to reduce the incidence of mechanical failures. Such failures can be taken care of by having a thorough technical knowledge of implant designing and manufacturing defects. This article attempts to compare the advantages and disadvantages of various dental implant biomaterials. Focus is placed on the recent advances in this field with the recently introduced zirconia and its comparison to conventional titanium.

  6. Reconstituted Keratin Biomaterial with Enhanced Ductility

    Directory of Open Access Journals (Sweden)

    Halleh Atri

    2015-11-01

    Full Text Available Nowadays the waste from protein fibres represents an important renewable source for a new generation of biomaterials and promising competitors for carbohydrate based biomaterials. Regenerated keratin biomaterials are biodegradable in vivo and in vitro, biocompatible, and support cell attachment and proliferation; however, their major drawback has been their weak mechanical properties such as ductility. The following study was conducted in an attempt to improve the ductility of reconstituted keratin films obtained from Australian merino wool fibres. Keratin was extracted from wool fibres according to an established protocol proposed by Yamauchi, and then dialyzed and desalted by multiple diafiltration wash cycles. The resulting keratin film was transparent, biodegradable, and, opposite to its predecessors, mechanically durable, possessing a Young modulus about 12.5 MPa with 35% extensibility. The polypeptide chains were found to rearrange themselves in the β-sheet state in this keratin film, which was shown to be semi-crystalline. This film, unlike its predecessors, did not support human cell proliferation. These properties of the diafiltered keratin film have led us to think that diafiltration resulted in producing a totally new keratin film, which is envisaged to find applications in various areas.

  7. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-05-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices. Failure of most biomaterials originates from the inability to predict and control the influence of their surface properties on biological phenomena, particularly protein adsorption, and cellular behaviour, which subsequently results in unfavourable host response. Here, we introduce a surface-proteomic screening approach using a label-free mass spectrometry technique to decipher the adsorption profile of extracellular matrix (ECM) proteins on different biomaterials, and correlate it with cellular behaviour. We demonstrated that the way a biomaterial selectively interacts with specific ECM proteins of a given tissue seems to determine the interactions between the cells of that tissue and biomaterials. Accordingly, this approach can

  8. New method of synthesis and in vitro studies of a porous biomaterial.

    Science.gov (United States)

    Wers, E; Lefeuvre, B; Pellen-Mussi, P; Novella, A; Oudadesse, H

    2016-04-01

    Biomaterials for bone reconstruction represent a widely studied area. In this paper, a new method of synthesis of a porous glass-ceramic obtained by thermal treatment is presented. The prepared biomaterial was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and induced couple plasma-optical emission spectroscopy (ICP-OES), mercury porosimetry and by the Archimedes method. In vitro evaluations in a simulated body fluid (SBF) and in contact with SaOS2 human osteoblasts were also carried out. The porous glass-ceramic is composed of a total porous network of 60% suitable for body fluid and cell infiltration, with pore sizes varying from 60 nm to 143 μm. The presence of two crystalline phases decreases the kinetic of bioactivity compared to an amorphous biomaterial (bioactive glass). A hydroxyapatite layer appears from 15 days of immersion on the surface and inside the pores, showing a biodegradation and a bioactivity in four steps. Cytotoxicity assessments present an increase of the cellular viability after 72 h proving the non-cytotoxic effect of the glass-ceramic. Thus, the results of these different studies indicate that the porous biomaterial may have a potential application for the bone regeneration. This paper also presents the novelty of this method. It is a rapid synthesis which combines simplicity and low cost. This represents an advantage for an eventual industrialization. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Granulometric composition study of mineral resources using opto-electronic devices and Elsieve software system

    Directory of Open Access Journals (Sweden)

    Kaminski Stanislaw

    2016-01-01

    Full Text Available The use of mechanical sieves has a great impact on measurement results because occurrence of anisometric particles causes undercounting the average size. Such errors can be avoided by using opto-electronic measuring devices that enable measurement of particles from 10 μm up to a few dozen millimetres in size. The results of measurement of each particle size fraction are summed up proportionally to its weight with the use of Elsieve software system and for every type of material particle-size distribution can be obtained. The software allows further statistical interpretation of the results. Beam of infrared radiation identifies size of particles and counts them precisely. Every particle is represented by an electronic impulse proportional to its size. Measurement of particles in aqueous suspension that replaces the hydrometer method can be carried out by using the IPS L analyser (range from 0.2 to 600 μm. The IPS UA analyser (range from 0.5 to 2000 μm is designed for measurement in the air. An ultrasonic adapter enables performing measurements of moist and aggregated particles from 0.5 to 1000 μm. The construction and software system allow to determine second dimension of the particle, its shape coefficient and specific surface area. The AWK 3D analyser (range from 0.2 to 31.5 mm is devoted to measurement of various powdery materials with subsequent determination of particle shape. The AWK B analyser (range from 1 to 130 mm measures materials of thick granulation and shape of the grains. The presented method of measurement repeatedly accelerates and facilitates study of granulometric composition.

  10. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  11. Current concepts of regenerative biomaterials in implant dentistry

    Directory of Open Access Journals (Sweden)

    Annapurna Ahuja

    2015-01-01

    Full Text Available The primary objective of any implant system is to achieve firm fixation to the bone and this could be influenced by biomechanical as well as biomaterial selection. An array of materials is used in the replacement of missing teeth through implantation. The appropriate selection of biomaterials directly influences the clinical success and longevity of implants. Thus the clinician needs to have adequate knowledge of the various biomaterials and their properties for their judicious selection and application in his/her clinical practice. The recent materials such as bioceramics and composite biomaterials that are under consideration and investigation have a promising future. For optimal performance, implant biomaterials should have suitable mechanical strength, biocompatibility, and structural biostability in the physiological environment. This article reviews the various implant biomaterials and their ease of use in implant dentistry.

  12. Electronic learning and open educational resources in the health sciences in ghana.

    Science.gov (United States)

    Adanu, Rmk; Adu-Sarkodie, Y; Opare-Sem, O; Nkyekyer, K; Donkor, P; Lawson, A; Engleberg, N C

    2010-12-01

    To determine whether a group of Ghanaian students are able to easily use electronic learning material and whether they perceive this method of learning as acceptable. The University of Ghana Medical School (UGMS) and the School of Medical Sciences (SMS), Kwame Nkrumah University of Science and Technology (KNUST) PARTICIPANTS: One hundred and fifty third year medical students at SMS and nineteen fifth year medical students at UGMS METHODS: Two e-learning materials were developed, one on the polymerase chain reaction and the other on total abdominal hysterectomy and these were distributed to selected medical students. Two weeks after the distribution of the programmes, a one-page, self-administered questionnaire was distributed to the target groups of students at the two institutions. Ninety three percent (139) of respondents at KNUST and 95% (18) at UG report having access to a computer for learning purposes. All of the UG students viewed the TAH programme; 82% (130) of the KNUST students viewed the PCR animations. All students who viewed the programmes at both institutions indicated that the e-learning pro-grammes were "more effective" in comparison to other methods of learning. Computer ownership or availability at both medical schools is sufficient to permit the distribution and viewing of e-learning materials by students and the medical students considered both programmes to be very helpful.

  13. Cardiovascular implantable electronic device function and longevity at autopsy: an underestimated resource.

    Science.gov (United States)

    Sinha, Sunil K; Crain, Barbara; Flickinger, Katie; Calkins, Hugh; Rickard, John; Cheng, Alan; Berger, Ronald; Tomaselli, Gordon; Marine, Joseph E

    2016-10-01

    The feasibility and safety of postmortem cardiovascular implantable electronic device (CIED; pacemaker or defibrillator) retrieval for reuse has been shown. To date, studies indicate a low yield of reusable postmortem CIEDs (17%-30%). The purpose of this study was to test the hypothesis that a higher rate of reusable CIEDs would be identified upon postmortem retrieval when an institutional protocol for systematic and routine acquisition, interrogation, reprogramming, and manufacturer analysis was used. Over a 6-year period, all subjects referred for autopsy underwent concomitant CIED pulse generator retrieval and enrollment in the Johns Hopkins Post-Mortem CIED Registry. CIEDs were interrogated, reprogrammed, and submitted for manufacturer analysis. In total, 84 autopsies had CIEDs (37 pacemakers, 47 implantable cardioverter-defibrillators). CIEDs were implanted 2.84 ± 2.32 years before death, with 30% implanted 60% of pacemakers and >50% of defibrillators demonstrated normal functional status with projected longevities >7 years on average. Formation of a national hospital-based "CIED donor network" would facilitate larger scale charitable efforts in underserved countries. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  14. Investigation of Transport Properties of a New Biomaterials - GUM Mangosteen

    Science.gov (United States)

    Pradhan, Sourav S.; Sarkar, A.

    2006-06-01

    Biomaterial has occupied leading position in material science for various scientific and technological applications. This present work is carried out over a natural gum extracted from raw fruit of Mangosteen, an east Indian tree (Gercinia Mangostana) following extraction and purification process. Solid specimen of the said gum is developed following sol-gel like process. AC and DC electrical analysis on the dried solid specimen of the gum were carried out and showed high electrical conduction with σ ~ 1 E-03 S/cm, of which ionic and electronic contributions are 70% and 30% respectively. Analysis shows that origin of high electrical conductivity is due to presence of substantial amount of organic acid unit in its polysaccharide background. In fact the observed σ is about 1000 times of that observed in gum Arabica. Optical absorption of this new bio- materials are also studied using UV-VIS analysis. The results show its high absorption co-efficient in UV and blue part of analysed range. A complete electrical characterization of the material have been made. It has also been observed that the electronic conduction can be enhanced to 70% of the total electrical conductivity by forming complex with Iodine and organic (Citric) acid from Lemon fruit. This high potential material is being studied for development of electronic device application.

  15. Fiber from ramie plant (Boehmeria nivea): A novel suture biomaterial.

    Science.gov (United States)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Devi, Dipali; Kalita, Dhaneswar; Kalita, Kasturi; Dash, Suvakanta; Kotoky, Jibon

    2016-05-01

    The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characters to market available ones. From natural origin only silk, cotton and linen fibers are presently available in market as non-absorbable suture biomaterials. In this study, we have developed a novel, cost-effective, and biocompatible suture biomaterial from ramie plant, Boehmeria nivea fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of raw and degummed ramie fiber, where the former one showed desirable characteristics for suture preparation. The braided multifilament ramie suture prepared from degummed fiber exhibited excellent tensile strength. The suture found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The fabricated ramie suture exhibited significant antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus; which can be attributed to the inherent bacteriostatic ability of ramie plant fiber. In vivo wound closure efficacy was evaluated in adult male wister rats by suturing the superficial wound incisions. Within seven days of surgery the wound got completely healed leaving no rash and scar. The role of the ramie suture in complete wound healing was supported by the reduced levels of serum inflammatory mediators. Histopathology studies confirmed the wound healing ability of ramie suture, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Tensile properties, biocompatibility and wound closure efficacy of the ramie suture were comparable with market available BMSF suture. The outcome of this study can drive tremendous possibility for the utilization of ramie plant fiber for

  16. Radiation processing for the preparation of biomaterials and polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Junhwa; Lim, Younmook; Kang, Phil Hyun; Choi, Jaehak; Nho, Young Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-04-15

    It is known that a radiation processing of polymeric materials has some unique advantages over other chemical and physical processing. For example, the use of toxic chemicals and strict temperature/moisture controls may not be needed during a radiation processing. Furthermore, the shape distortion of a product can be minimized during a radiation curing process. Since sterilization can also be incorporated in the process, a radiation processing could be efficient to manufacture bio material and medical products. In this presentation, our recent research outcomes in the fields of a radiation processing for biomaterials and polymer electrolytes carried out at the Korea Atomic Energy Research Institute (KAERI) are presented. In the field of a bio material production, two radiation sources, Co-60 gamma ray and electron beam are generally utilized to induce a crosslinking of natural or biocompatible synthetic polymers for the preparation of biomaterials, more specifically hydrogels. In this process, an extra process such as a removal process of toxic chemicals and a sterilization process are not necessary. Hydrogels for a wound treatment, ato pic dermatitis treatment, tissue scaffolds, and post-surgical anti-adhesion barriers have been developed or being developed by our research institute. The preparation of polymer electrolytes such as fuel cell membranes and lithium battery separators are also very attractive research fields using a radiation processing. Commercial polymer membranes such as fluoropolymer and polyethylene can be modified by a radiation induced grafting and/or crosslinking process to introduce desired functionalities onto the membranes for a specific purpose. In our research institute, these radiation-treated membranes for a specific purpose. In our research institute, these radiation-treated membranes have been successfully utilized to prepare fuel cell membranes and lithium battery separators with higher ion conductivities and desired mechanical

  17. Green Supply Chain Collaboration for Fashionable Consumer Electronics Products under Third-Party Power Intervention—A Resource Dependence Perspective

    Directory of Open Access Journals (Sweden)

    Jiuh-Biing Sheu

    2014-05-01

    Full Text Available Under third-party power intervention (TPPI, which increases uncertainty in task environments, complex channel power interplays and restructuring are indispensable among green supply chain members as they move toward sustainable collaborative relationships for increased viability and competitive advantage. From the resource dependence perspective, this work presents a novel conceptual model to investigate the influence of political and social power on channel power restructuring and induced green supply chain collaboration in brander-retailer bidirectional green supply chains of fashionable consumer electronics products (FCEPs. An FCEP refers to the consumer electronics product (e.g., personal computers, mobile phones, computer notebooks, and game consoles with the features of a well-known brand associated, a short product lifecycle, timely and fashionable design fit for market trends, and quick responsiveness to the variations of market demands. The proposed model is tested empirically using questionnaire data obtained from retailers in the FCEP brander-retailer distribution channels. Analytical results reveal that as an extension of political and social power, TPPI positively affects the reciprocal interdependence of dyadic members and reduces power asymmetry, thereby enhancing the collaborative relationship of dyadic members and leading to improved green supply chain performance. Therein, reciprocal interdependence underlying collaborative relationship is the key to reducing the external environmental uncertainties in the TPPI context.

  18. Biomaterials and bioengineering tomorrow’s healthcare

    Science.gov (United States)

    Bhat, Sumrita; Kumar, Ashok

    2013-01-01

    Biomaterials are being used for the healthcare applications from ancient times. But subsequent evolution has made them more versatile and has increased their utility. Biomaterials have revolutionized the areas like bioengineering and tissue engineering for the development of novel strategies to combat life threatening diseases. Together with biomaterials, stem cell technology is also being used to improve the existing healthcare facilities. These concepts and technologies are being used for the treatment of different diseases like cardiac failure, fractures, deep skin injuries, etc. Introduction of nanomaterials on the other hand is becoming a big hope for a better and an affordable healthcare. Technological advancements are underway for the development of continuous monitoring and regulating glucose levels by the implantation of sensor chips. Lab-on-a-chip technology is expected to modernize the diagnostics and make it more easy and regulated. Other area which can improve the tomorrow’s healthcare is drug delivery. Micro-needles have the potential to overcome the limitations of conventional needles and are being studied for the delivery of drugs at different location in human body. There is a huge advancement in the area of scaffold fabrication which has improved the potentiality of tissue engineering. Most emerging scaffolds for tissue engineering are hydrogels and cryogels. Dynamic hydrogels have huge application in tissue engineering and drug delivery. Furthermore, cryogels being supermacroporous allow the attachment and proliferation of most of the mammalian cell types and have shown application in tissue engineering and bioseparation. With further developments we expect these technologies to hit the market in near future which can immensely improve the healthcare facilities. PMID:23628868

  19. Hybrid laser technology and doped biomaterials

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Zemek, Josef; Remsa, Jan; Mikšovský, Jan; Kocourek, Tomáš; Písařík, Petr; Trávníčková, Martina; Filová, Elena; Bačáková, Lucie

    2017-01-01

    Roč. 417, Sep (2017), s. 73-83 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GA15-05864S Institutional support: RVO:68378271 ; RVO:67985823 Keywords : hybrid PLD * Cr: DLC * Ti: DLC. comparison of properties * in vitro tests Subject RIV: BM - Solid Matter Physics ; Magnetism; EI - Biotechnology ; Bionics (FGU-C) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Biomaterials (as related to medical implants, devices, sensors) (FGU-C) Impact factor: 3.387, year: 2016

  20. Optical approach in characterizing dental biomaterials

    Science.gov (United States)

    Demoli, Nazif; Vučić, Zlatko; Milat, Ognjen; Gladić, Jadranko; Lovrić, Davorin; Pandurić, Vlatko; Marović, Danijela; Moguš-Milanković, Andrea; Ristić, Mira; Čalogović, Marina; Tarle, Zrinka

    2013-04-01

    The purpose of this paper is to present the current activities of a research collaborative program between three institutions from Zagreb (School of Dental Medicine, Institute of Physics, and Institute Ruđer Bo\\vsković). Within the scope of this program, it is planned to investigate and find guidelines for the refinement of the properties of dental biomaterials (DBs) and of procedures in restorative dental medicine. It is also planned to identify and model the dominant mechanisms which control polymerization of DBs. The materials to be investigated include methacrylate based composite resins, new composite materials with amorphous calcium phosphate, silorane based composite resins, glass-ionomer cements, and giomer.

  1. The case study of biomaterials and biominerals

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    The teaching of biomaterials as case study by on-line platform , susceptible to develop both individually and in groups, got different objectives proposed by the European Higher Education System, among which include: participate actively in the teaching-learning process by students, interpreting situations, adapt processes and solutions. It also improves oral and written communication, analytical skills and synthesis and also the ability to think critically. Biomaterials have their origin in biominerals. These are solid inorganic compounds of defined structure, consisting of molecular control mechanisms that operate in biological systems. Its main functions are: structural support, a reservoir of essential elements, sensors, mechanical protection and storage of toxic elements. Following the demand of materials compatible with certain functional systems of our body, developed biomaterials. Always meet the condition of biocompatibility. Should be tolerated by the body and do not provoke rejection. This involves a comprehensive study of physiological conditions and the anatomy of the body where a biomaterial has to be implemented. The possibility of generating new materials from biominerals has a major impact in medicine and other fields could reach as geology, construction, crystallography, etc. While the study of these issues is in its infancy today, can be viewed as an impact on the art and future technology. Planning case study that students would prepare its report for discussion in subgroups. Occurs then the pooling of individual analysis, joint case discussion and adoption by the subgroup of a consensual solution to the problem. The teacher as facilitator and coordinator of the final case analysis, sharing leads to group-wide class and said the unanimous decision reached by the students and gives his opinion on the resolution of the case. REFERENCES D.P. Ausubel. Psicología Educativa. Un punto de vista cognoscitivo. Trillas. Ed. 1983. E.W. Eisner. Procesos

  2. Biomaterials and scaffolds in reparative medicine

    Science.gov (United States)

    Chaikof, Elliot L.; Matthew, Howard; Kohn, Joachim; Mikos, Antonios G.; Prestwich, Glenn D.; Yip, Christopher M.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Most approaches currently pursued or contemplated within the framework of reparative medicine, including cell-based therapies, artificial organs, and engineered living tissues, are dependent on our ability to synthesize or otherwise generate novel materials, fabricate or assemble materials into appropriate 2-D and 3-D forms, and precisely tailor material-related physical and biological properties so as to achieve a desired clinical response. This paper summarizes the scientific and technological opportunities within the fields of biomaterials science and molecular engineering that will likely establish new enabling technologies for cellular and molecular therapies directed at the repair, replacement, or reconstruction of diseased or damaged organs and tissues.

  3. Minimizing Skin Scarring through Biomaterial Design

    Directory of Open Access Journals (Sweden)

    Alessandra L. Moore

    2017-01-01

    Full Text Available Wound healing continues to be a major burden to patients, though research in the field has expanded significantly. Due to an aging population and increasing comorbid conditions, the cost of chronic wounds is expected to increase for patients and the U.S. healthcare system alike. With this knowledge, the number of engineered products to facilitate wound healing has also increased dramatically, with some already in clinical use. In this review, the major biomaterials used to facilitate skin wound healing will be examined, with particular attention allocated to the science behind their development. Experimental therapies will also be evaluated.

  4. Biomaterial-Associated Infection: Locating the Finish Line in the Race for the Surface

    NARCIS (Netherlands)

    Busscher, Henk J.; van der Mei, Henny C.; Subbiahdoss, Guruprakash; Jutte, Paul C.; van den Dungen, Jan J. A. M.; Zaat, Sebastian A. J.; Schultz, Marcus J.; Grainger, David W.

    2012-01-01

    Biomaterial-associated infections occur on both permanent implants and temporary devices for restoration or support of human functions. Despite increasing use of biomaterials in an aging society, comparatively few biomaterials have been designed that effectively reduce the incidence of

  5. Electronic medical record data to identify variables associated with a fibromyalgia diagnosis: importance of health care resource utilization

    Directory of Open Access Journals (Sweden)

    Masters ET

    2015-03-01

    Full Text Available Elizabeth T Masters,1 Jack Mardekian,1 Birol Emir,1 Andrew Clair,1 Max Kuhn,2 Stuart L Silverman,31Pfizer, Inc., New York, NY, 2Pfizer, Inc., Groton, CT, 3Cedars-Sinai Medical Center, Los Angeles, CA, USABackground: Diagnosis of fibromyalgia (FM is often challenging. Identifying factors associated with an FM diagnosis may guide health care providers in implementing appropriate diagnostic and management strategies.Methods: This retrospective study used the de-identified Humedica electronic medical record (EMR database to identify variables associated with an FM diagnosis. Cases (n=4,296 were subjects ≥18 years old with ≥2 International Classification of Diseases, Ninth Revision (ICD-9 codes for FM (729.1 ≥30 days apart during 2012, associated with an integrated delivery network, with ≥1 encounter with a health care provider in 2011 and 2012. Controls without FM (no-FM; n=583,665 did not have the ICD-9 codes for FM. Demographic, clinical, and health care resource utilization variables were extracted from structured EMR data. Univariate analysis identified variables showing significant differences between the cohorts based on odds ratios (ORs.Results: Consistent with FM epidemiology, FM subjects were predominantly female (78.7% vs 64.5%; P<0.0001 and slightly older (mean age 53.3 vs 52.7 years; P=0.0318. Relative to the no-FM cohort, the FM cohort was characterized by a higher prevalence of nearly all evaluated comorbidities; the ORs suggested a higher likelihood of an FM diagnosis (P<0.0001, especially for musculoskeletal and neuropathic pain conditions (OR 3.1 for each condition. Variables potentially associated with an FM diagnosis included higher levels of use of specific health care resources including emergency-room visits, outpatient visits, hospitalizations, and medications. Units used per subject for emergency-room visits, outpatient visits, hospitalizations, and medications were also significantly higher in the FM cohort (P<0

  6. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials

    Directory of Open Access Journals (Sweden)

    Dai ZY

    2015-10-01

    Full Text Available Zhenyu Dai,1,2,* Yue Li,3,* Weizhong Lu,2,* Dianming Jiang,4 Hong Li,1 Yonggang Yan,1 Guoyu Lv,1 Aiping Yang1 1College of Physical Science and Technology, Sichuan University, Chengdu, 2Department of Orthopedics, Chongqing Hospital of Traditional Chinese Medicine, 3Department of Clinical Laboratory, the Second Affiliated Hospital, 4Department of Orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China *These authors contributed equally to this work Objective: To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA complex biomaterials with muscle and bone tissue in an in vivo model.Methods: Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining.Results: HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that

  7. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review.

    Science.gov (United States)

    Mitić, Žarko; Stolić, Aleksandra; Stojanović, Sanja; Najman, Stevo; Ignjatović, Nenad; Nikolić, Goran; Trajanović, Miroslav

    2017-10-01

    A review of recent advances in instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue is presented in this paper. In recent years, biomaterials attracted great attention primarily because of the wide range of biomedical applications. This paper focuses on the practical aspects of instrumental methods and techniques that were most often applied (X-ray methods, vibrational spectroscopy (IR and Raman), magnetic-resonance spectroscopy (NMR and ESR), mass spectrometry (MS), atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES), thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM)) in the structural investigation and physicochemical characterization of biomaterials and bone tissue. The application of some other physicochemical methods was also discussed. Hands-on information is provided about these valuable research tools, emphasizing practical aspects such as typical measurement conditions, their limitations and advantages, interpretation of results and practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Biomaterials and Magnetic fields for Cancer Therapy

    Science.gov (United States)

    Ramachandran, Narayanan; Mazuruk, Konstanty

    2003-01-01

    The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.

  9. SURFACE ENERGETIC CHARACTERISTICS OF ACRYLIC BIOMATERIALS

    Directory of Open Access Journals (Sweden)

    Mihaela-Papusa Vasiliu (Diaconu

    2011-09-01

    Full Text Available Introduction: Surface energetic characteristics of biomaterials influence their adherence to cells and bacteria, surface adsobtion of plasmatic proteins, as well as the capacity of such surfaces of immobilizing some biological species extremely important in medicine. Materials and method: Acrylic surfaces with an area of approximately 2 cm² were employed for the experiments: Duracryl® Plus (Spofa/Dental Product, Czechia, Duracryl® Plus covered with Palaseal (Heraeus Kulzer GmbH, Wehrheim, Germany; artificial saliva AFNOR S90-701 (pH 8.01 was used as a working solution. Results and discussion: Drops of distilled water and artificial saliva, deposited on the working materials: Duracryl and Duracryl covered with Palaseal, were photographed with an optical device, after which each drop was computer-processed, and the contact angle for each liquid surface on the surfaces of the biomaterials here under investigation was determined. On the basis of the determinations made for each material in part, the arihtmetic mean was established. Conclusions: The wettability of dental materials is wholly characterized by the values of the contact angle between the drop of biological liquid and the surface. Low values of the contact angles indicate a good wettability. The results obtained support the conclusion that the surface energy of the solid and rugosity are essential for controlling the adhesive properties of saliva unto dental materials.

  10. Plasma assisted surface treatments of biomaterials.

    Science.gov (United States)

    Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G

    2017-10-01

    The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Innate Immunity and Biomaterials at the Nexus: Friends or Foes

    Directory of Open Access Journals (Sweden)

    Susan N. Christo

    2015-01-01

    Full Text Available Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.

  12. Repairing Femoral Fractures: A Model Lesson in Biomaterial Science

    Science.gov (United States)

    Sakakeeny, Jarred

    2006-01-01

    Biomaterial science is a rapidly growing field that has scientists and doctors searching for new ways to repair the body. A merger between medicine and engineering, biomaterials can be complex subject matter, and it can certainly capture the minds of middle school students. In the lesson described in this article, seventh graders generally learn…

  13. Innate Immunity and Biomaterials at the Nexus: Friends or Foes

    Science.gov (United States)

    Christo, Susan N.; Diener, Kerrilyn R.; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D.

    2015-01-01

    Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation. PMID:26247017

  14. Innate Immunity and Biomaterials at the Nexus: Friends or Foes.

    Science.gov (United States)

    Christo, Susan N; Diener, Kerrilyn R; Bachhuka, Akash; Vasilev, Krasimir; Hayball, John D

    2015-01-01

    Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical "antigen." In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a "combined" immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.

  15. Innovative direct energy conversion systems using electronic adiabatic processes of electron fluid in solid conductors: new plants of electrical power and hydrogen gas resources without environmental pollutions

    International Nuclear Information System (INIS)

    Kondoh, Y.; Kondo, M.; Shimoda, K.; Takahashi, T.

    2001-07-01

    It is shown that using a novel recycling process of the environmental thermal energy, innovative permanent auto-working direct energy converter systems (PA-DEC systems) from the environmental thermal to electrical and/or chemical potential (TE/CP) energies, abbreviated as PA-TE/CP-DEC systems, can be used for new auto-working electrical power plants and the plants of the compressible and conveyable hydrogen gas resources at various regions in the whole world, with contributions to the world peace and the economical development in the south part of the world. It is shown that the same physical mechanism by free electrons and electrical potential determined by temperature in conductors, which include semiconductors, leads to the Peltier effect and the Seebeck one. It is experimentally clarified that the long distance separation between two π type elements of the heat absorption (HAS) and the production one (HPS) of the Peltier effect circuit system or between the higher temperature side (HTS) and the lower one (LTS) of the Seebeck effect circuit one does not change in the whole for the both effects. By using present systems, we do not need to use petrified fuels such as coals, oils, and natural gases in order to decrease the greenhouse effect by the CO 2 surrounding the earth. Furthermore, we do not need plats of nuclear fissions that left radiating wastes, i.e., with no environmental pollutions. The PA-TE/CP-DEC systems can be applicable for several km scale systems to the micro ones, such as the plants of the electrical power, the compact transportable hydrogen gas resources, a large heat energy container, which can be settled at far place from thermal energy absorbing area, the refrigerators, the air conditioners, home electrical apparatuses, and further the computer elements. It is shown that the simplest PA-TE/CP-DEC system can be established by using only the Seebeck effect components and the resolving water ones. It is clarified that the externally applied

  16. Development of an electronic medical record based alert for risk of HIV treatment failure in a low-resource setting.

    Directory of Open Access Journals (Sweden)

    Nancy Puttkammer

    Full Text Available The adoption of electronic medical record systems in resource-limited settings can help clinicians monitor patients' adherence to HIV antiretroviral therapy (ART and identify patients at risk of future ART failure, allowing resources to be targeted to those most at risk.Among adult patients enrolled on ART from 2005-2013 at two large, public-sector hospitals in Haiti, ART failure was assessed after 6-12 months on treatment, based on the World Health Organization's immunologic and clinical criteria. We identified models for predicting ART failure based on ART adherence measures and other patient characteristics. We assessed performance of candidate models using area under the receiver operating curve, and validated results using a randomly-split data sample. The selected prediction model was used to generate a risk score, and its ability to differentiate ART failure risk over a 42-month follow-up period was tested using stratified Kaplan Meier survival curves.Among 923 patients with CD4 results available during the period 6-12 months after ART initiation, 196 (21.2% met ART failure criteria. The pharmacy-based proportion of days covered (PDC measure performed best among five possible ART adherence measures at predicting ART failure. Average PDC during the first 6 months on ART was 79.0% among cases of ART failure and 88.6% among cases of non-failure (p<0.01. When additional information including sex, baseline CD4, and duration of enrollment in HIV care prior to ART initiation were added to PDC, the risk score differentiated between those who did and did not meet failure criteria over 42 months following ART initiation.Pharmacy data are most useful for new ART adherence alerts within iSanté. Such alerts offer potential to help clinicians identify patients at high risk of ART failure so that they can be targeted with adherence support interventions, before ART failure occurs.

  17. Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry.

    Science.gov (United States)

    Liang, Yingkai; Li, Linqing; Scott, Rebecca A; Kiick, Kristi L

    2017-01-24

    Biomaterials have been extensively used to leverage beneficial outcomes in various therapeutic applications, such as providing spatial and temporal control over the release of therapeutic agents in drug delivery as well as engineering functional tissues and promoting the healing process in tissue engineering and regenerative medicine. This perspective presents important milestones in the development of polymeric biomaterials with defined structures and properties. Contemporary studies of biomaterial design have been reviewed with focus on constructing materials with controlled structure, dynamic functionality, and biological complexity. Examples of these polymeric biomaterials enabled by advanced synthetic methodologies, dynamic chemistry/assembly strategies, and modulated cell-material interactions have been highlighted. As the field of polymeric biomaterials continues to evolve with increased sophistication, current challenges and future directions for the design and translation of these materials are also summarized.

  18. Study on MCP-1 related to inflammation induced by biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Ding Tingting [Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University/Shanghai Biomaterials Research and Testing Center, Shanghai 200023 (China); Sun Jiao [Shanghai Key Laboratory of Stomatology, Shanghai 200023 (China); Zhang Ping, E-mail: jiaosun59@yahoo.co [School of Life Science, East China Normal University, Shanghai 200062 (China)

    2009-06-15

    The study of inflammation is important for understanding the reaction between biomaterials and the human body, in particular, the interaction between biomaterials and immune system. In the current study, rat macrophages were induced by multiple biomaterials with different biocompatibilities, including polyvinyl chloride (PVC) containing 8% of organic tin, a positive control material with cellular toxicity. Human umbilical vein endothelial cells (ECV-304), cultured with PRMI-1640, were detached from cells cultured with the supernatant of macrophages containing TNF-alpha and IL-1beta because of stimulation by biomaterials. The cells were then treated with different biomaterials. Then both TNF-alpha and IL-1beta in macrophages were detected by ELISA. Levels of monocyte chemoattractant protein-1 (MCP-1) were measured by RT-PCR. The results suggested that the expression of TNF-alpha and IL-1beta was elevated by polytetrafluoroethylene (PTFE), polylactic-co-glycolic acid (PLGA) and American NPG alloy (p < 0.001). The level of MCP-1 cultured in supernatant of macrophages was higher than in PRMI-1640 with the same biomaterials. And the exposure to PTFE, PLGA and NPG resulted in the high expression of MCP-1 (p < 0.001) following cytokine stimulation. MCP-1 was also significantly expressed in beta-tricalcium phosphate (beta-TCP) and calcium phosphate cement samples (CPC) (p < 0.01). Thus, TNF-alpha, IL-1beta and MCP-1 had played an important role in the immune reaction induced by biomaterials and there was a close relationship between the expression of cytokines and biomcompatibility of biomaterials. Furthermore, these data suggested that MCP-1 was regulated by TNF-alpha and IL-1beta, and activated by both cytokines and biomaterials. The data further suggested that the expression of MCP-1 could be used as a marker to indicate the degree of immune reaction induced by biomaterials.

  19. Consumer reports [electronic resource

    National Research Council Canada - National Science Library

    1942-01-01

    ... only. A limited number of selected reports, advice on product selection and safety alerts are freely available, as are a five year listing of product recalls, a listing of major consumer product...

  20. Electronic Commerce Resource Centers

    National Research Council Canada - National Science Library

    Caprio, Kimberley

    1997-01-01

    ... No. 5AB-0052, "Audit of the Management and Administration of Research Projects Funded by the Defense Advanced Research Projects Agency," will discuss the adequacy of the Defense Advanced Research...

  1. Biomaterials and Bioactive Agents in Spinal Fusion.

    Science.gov (United States)

    Duarte, Rui M; Varanda, Pedro; Reis, Rui L; Duarte, Ana Rita C; Correia-Pinto, Jorge

    2017-12-01

    Management of degenerative spine pathologies frequently leads to the need for spinal fusion (SF), where bone growth is induced toward stabilization of the interventioned spine. Autologous bone graft (ABG) remains the gold-standard inducer, whereas new bone graft substitutes attempt to achieve effective de novo bone formation and solid fusion. Limited fusion outcomes have driven motivation for more sophisticated and multidisciplinary solutions, involving new biomaterials and/or biologics, through innovative delivery platforms. The present review will analyze the most recent body of literature that is focused on new approaches for consistent bone fusion of spinal vertebrae, including the development of new biomaterials that pursue physical and chemical aptitudes; the delivery of growth factors (GF) to accelerate new bone formation; and the use of cells to improve functional bone development. Bone graft substitutes currently in clinical practice, such as demineralized bone matrix and ceramics, are still used as a starting point for the study of new bioactive agents. Polyesters such as polycaprolactone and polylactic acid arise as platforms for the development of composites, where a mineral element and cell/GF constitute the delivery system. Exciting fusion outcomes were obtained in several small and large animal models with these. On what regards bioactive agents, mesenchymal stem cells, preferentially derived from the bone marrow or adipose tissue, were studied in this context. Autologous and allogeneic approaches, as well as osteogenically differentiated cells, have been tested. These cell sources have further been genetically engineered for specific GF expression. Nevertheless, results on fusion efficacy with cells have been inconsistent. On the other hand, the delivery of GF (most commonly bone morphogenetic protein-2 [BMP-2]) has provided favorable outcomes. Complications related to burst release and dosing are still the target of research through the development

  2. Electronic Information Resources (EIR Adoption in Private University Libraries: The Moderating Effect of Productivity and Relative Advantage on Perceived Usefulness

    Directory of Open Access Journals (Sweden)

    Izuagbe, Roland

    2016-03-01

    Full Text Available The study tested a hybrid model with constructs drawn from the Technology Acceptance Model (TAM and Diffusion of Innovation (DOI theory in order to examine the moderating effect of productivity and relative advantage (RA on perceived usefulness (PU vis-à-vis electronic information resources (EIR adoption in private university libraries in Ogun and Osun States of Nigeria. The descriptive research design was adopted in the study. The population consisted of 61 (55.0% librarians and 50 (45.0% library officers (totaling 116—100% in Babcock University, Bells University, Covenant University, Bowen University, Oduduwa University, and Redeemer's University. Purposive sampling procedure was adopted after which total enumeration was used since the total population is small. The questionnaire was used for data collection. Of the 116 copies of the questionnaire administered, 111 (95.7% were found usable. The instrument was structured based on a 4-point Likert agreement scale of Strongly Agree, Agree, Disagree, and Strongly Disagree. Data were analyzed using descriptive statistics like tables of frequency counts and percentage. The findings revealed that productivity and relative advantage are significant moderators of perceived usefulness of EIR adoption in private university libraries in Ogun and Osun States, Nigeria.

  3. The BRIGHTEN Program: Implementation and Evaluation of a Program to Bridge Resources of an Interdisciplinary Geriatric Health Team via Electronic Networking

    Science.gov (United States)

    Emery, Erin E.; Lapidos, Stan; Eisenstein, Amy R.; Ivan, Iulia I.; Golden, Robyn L.

    2012-01-01

    Purpose: To demonstrate the feasibility of the BRIGHTEN Program (Bridging Resources of an Interdisciplinary Geriatric Health Team via Electronic Networking), an interdisciplinary team intervention for assessing and treating older adults for depression in outpatient primary and specialty medical clinics. The BRIGHTEN team collaborates "virtually"…

  4. The module of methodical support in system of electronic educational resources as the innovative element of the modern maintenance of formation

    Directory of Open Access Journals (Sweden)

    Ольга Николаевна Крылова

    2009-06-01

    Full Text Available The article introduces some results of research, which were devoted to evaluation of tearches' mobility to introduce innovations in the contents of education. The author considers innovative potential of modules of the methodical support for system of electronic educational resources.

  5. Charting a Course through CORAL: Texas A&M University Libraries' Experience Implementing an Open-Source Electronic Resources Management System

    Science.gov (United States)

    Hartnett, Eric; Beh, Eugenia; Resnick, Taryn; Ugaz, Ana; Tabacaru, Simona

    2013-01-01

    In 2010, after two previous unsuccessful attempts at electronic resources management system (ERMS) implementation, Texas A&M University (TAMU) Libraries set out once again to find an ERMS that would fit its needs. After surveying the field, TAMU Libraries selected the University of Notre Dame Hesburgh Libraries-developed, open-source ERMS,…

  6. 圖書館事業專欄/Marketing of Electronic Information Resources: A Case of The J.D. Rockefeller Research Library, Egerton University/Nerisa Kamar

    OpenAIRE

    Nerisa Kamar

    2008-01-01

    This paper gives a brief overview of electronic information resources and services offered by The J.D. Rockefeller Research Library at Egerton University and the marketing of these resources. The paper examines the various reasons for marketing electronic information resources, with emphasis on the various, and illustrates marketing strategies used by J.D Rockefeller Research library towards effective utilization of the available resources in supporting research, teaching and learnin...

  7. Regenerative immunology: the immunological reaction to biomaterials.

    Science.gov (United States)

    Cravedi, Paolo; Farouk, Samira; Angeletti, Andrea; Edgar, Lauren; Tamburrini, Riccardo; Duisit, Jerome; Perin, Laura; Orlando, Giuseppe

    2017-12-01

    Regenerative medicine promises to meet two of the most urgent needs of modern organ transplantation, namely immunosuppression-free transplantation and an inexhaustible source of organs. Ideally, bioengineered organs would be manufactured from a patient's own biomaterials-both cells and the supporting scaffolding materials in which cells would be embedded and allowed to mature to eventually regenerate the organ in question. While some groups are focusing on the feasibility of this approach, few are focusing on the immunogenicity of the scaffolds that are being developed for organ bioengineering purposes. This review will succinctly discuss progress in the understanding of immunological characteristics and behavior of different scaffolds currently under development, with emphasis on the extracellular matrix scaffolds obtained decellularized animal or human organs which seem to provide the ideal template for bioengineering purposes. © 2017 Steunstichting ESOT.

  8. Tribological characteristics of dental metal biomaterials

    Directory of Open Access Journals (Sweden)

    Walczak Mariusz

    2016-12-01

    Full Text Available The paper is a report of the examination of the tribological wear characteristics of certain dental metal biomaterials. In the study, tests were undertaken on the following materials: 316L steel, NiCrMo alloy, technically pure titanium (ASTM-grade 2 and Ti6Al4V ELI alloy (ASTM-grade 5. The tribological tests were performed in artificial saliva to determine the coefficient of friction and wear factor; the traces of wear were then ascertained through SEM. The significance of variations in the wear factor, was subsequently assessed by the U Mann-Whitney test. The resistance to wear in the ball-on-disc test under in vitro conditions was observed for the tested materials in the following order: NiCrMo>316L>Ti6Al4V>Ti grade 2.

  9. Chitosan dan Aplikasi Klinisnya Sebagai Biomaterial

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The development of new materials with both organic and inorganic structures is of great interest to obtain special material properties. Chitosan [2-amino-2-deoxy-D-glucan] can be obtained by N-deacetylation of chitin. Chitin is the second most abundant biopolymer in nature and the supporting material of crustaceans, insects, fungi etc. Chitosan is unique polysaccharide and has been widely used in various biomedical application due to its biocompatibility, low toxicity, biodegradability, non-immunogenic and non-carcinogenic character. In the past few years, chitosan and some of its modifications have been reported for use in biomedical applications such as artificial skin, wound dressing, anticoagulant, suture, drug delivery, vaccine carrier and dietary fibers. Recently, the use of chitosan and its derivatives has received much attention as temporary scaffolding to promotie mineralization or stimulate endochodral ossification. This article aims to give a broad overview of chitosan and its clinical applications as biomaterial.

  10. Pulmonary emboli from blood-biomaterial interaction

    International Nuclear Information System (INIS)

    Coleman, J.E.; Ramberg, K.; McEnroe, C.S.; Connolly, R.J.; Callow, A.D.

    1988-01-01

    The problem of surface thrombosis and subsequent embolization remains entrenched as a yet incompletely surmounted barrier to the development of truly satisfactory intravascular prosthetic devices. A baboon ex vivo shunt was used to determine the interaction of Indium-111 platelets and potential biomaterials. The uptake of Indium-111 platelets was monitored continuously by gamma camera scanning. Several of the materials tested demonstrated a saw-toothed pattern of platelet activity, with accumulation followed by rapid decline. Neither PTFE nor Dacron exhibited this pattern. Post shunt scans of the animals' chests showed discrete foci of platelet activity in the lungs, corresponding to each embolic event noted on the material's scan. In conclusion, the search for a smooth surface as a blood material interface may produce a material which accumulates and then sloughs significant platelet aggregates. It is crucial that these materials be subjected to vigorous testing to determine their safety prior to initiation of clinical trials

  11. Biomaterials for intervertebral disc regeneration and repair.

    Science.gov (United States)

    Bowles, Robert D; Setton, Lori A

    2017-06-01

    The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biomaterials in search of a meniscus substitute.

    Science.gov (United States)

    Rongen, Jan J; van Tienen, Tony G; van Bochove, Bas; Grijpma, Dirk W; Buma, Pieter

    2014-04-01

    The menisci fulfill key biomechanical functions in the tibiofemoral (knee) joint. Unfortunately meniscal injuries are quite common and most often treated by (partial) meniscectomy. However, some patients experience enduring symptoms, and, more importantly, it leads to an increased risk for symptomatic osteoarthritis. Over the past decades, researchers have put effort in developing a meniscal substitute able to prevent osteoarthritis and treat enduring clinical symptoms. Grossly, two categories of substitutes are observed: First, a resorbable scaffold mimicking biomechanical function which slowly degrades while tissue regeneration and organization is promoted. Second, a non resorbable, permanent implant which mimics the biomechanical function of the native meniscus. Numerous biomaterials with different (material) properties have been used in order to provide such a substitute. Nevertheless, a clinically applicable cartilage protecting material is not yet emerged. In the current review we provide an overview, and discuss, these different materials and extract recommendations regarding material properties for future developmental research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Biomaterials Out of Thin Air: in Situ, On-Demand Printing of Advanced Biocomposites

    Science.gov (United States)

    Rothschild, Lynn J.; Gentry, Diana M.; Micks, Ashley

    2015-01-01

    Upmass is the single most significant limitation of our current space mission capability. Although biomaterials and biocomposites have mass, strength, flexibility, and self-healing properties that could significantly reduce upmass, their use is limited by the following drawbacks: Expensive, specific production. Many biomaterials can only be produced as part of significant support ecosystem; Inaccessible functional customization. The grain of wood, the porosity of bone, and so on are an integral part of the materials' desired mechanical properties, but are not deterministic when the material is naturally grown; Limited compositions. Most biomaterials (unlike metal, plastic, etc.) cannot be easily combined or modified to produce new materials. This project builds on recent advances in: Synthetic biology. Libraries of standardized genetic parts which can be used for controlled cellular material production, delivery, and binding; 3D printing. Commercial off-the-shelf components which can be used to make of a pico- to nanoliter cell deposition system; Tissue engineering. Proven cell-compatible support hydrogels and scaffolds can be modified to bind the deposited biomaterials of interest. Objectives: Feasibility and benefit analysis. Two mission contexts span the concept's scope (see below); Proof-of-concept demonstration. A simple grid of two proteins, fluorescent for easy detection, to validate the core technology concept; Proposed implementations for follow-on work. Avenues for future work on each core component (host cell, production control, material delivery, material binding, etc.); Complementary studies exploration. A survey of other emerging areas (in situ resource utilization, protein engineering, etc.) with the potential to multiply our technology's impact. Potential Impacts: This application could dramatically expand manufacturing capabilities on Earth and in space: In situ resource utilization. A far greater range of materials and products will be available

  14. Extracellular matrix-based biomaterial scaffolds and the host response.

    Science.gov (United States)

    Aamodt, Joseph M; Grainger, David W

    2016-04-01

    Extracellular matrix (ECM) collectively represents a class of naturally derived proteinaceous biomaterials purified from harvested organs and tissues with increasing scientific focus and utility in tissue engineering and repair. This interest stems predominantly from the largely unproven concept that processed ECM biomaterials as natural tissue-derived matrices better integrate with host tissue than purely synthetic biomaterials. Nearly every tissue type has been decellularized and processed for re-use as tissue-derived ECM protein implants and scaffolds. To date, however, little consensus exists for defining ECM compositions or sources that best constitute decellularized biomaterials that might better heal, integrate with host tissues and avoid the foreign body response (FBR). Metrics used to assess ECM performance in biomaterial implants are arbitrary and contextually specific by convention. Few comparisons for in vivo host responses to ECM implants from different sources are published. This review discusses current ECM-derived biomaterials characterization methods including relationships between ECM material compositions from different sources, properties and host tissue response as implants. Relevant preclinical in vivo models are compared along with their associated advantages and limitations, and the current state of various metrics used to define material integration and biocompatibility are discussed. Commonly applied applications of these ECM-derived biomaterials as stand-alone implanted matrices and devices are compared with respect to host tissue responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A new approach to the rationale discovery of polymeric biomaterials

    Science.gov (United States)

    Kohn, Joachim; Welsh, William J.; Knight, Doyle

    2007-01-01

    This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. PMID:17644176

  16. Hybrid biomaterials based on calcium carbonate and polyaniline nanoparticles for application in photothermal therapy.

    Science.gov (United States)

    Neira-Carrillo, Andrónico; Yslas, Edith; Marini, Yazmin Amar; Vásquez-Quitral, Patricio; Sánchez, Marianela; Riveros, Ana; Yáñez, Diego; Cavallo, Pablo; Kogan, Marcelo J; Acevedo, Diego

    2016-09-01

    Inorganic materials contain remarkable properties for drug delivery, such as a large surface area and nanoporous structure. Among these materials, CaCO3 microparticles (CMPs) exhibit a high encapsulation efficiency and solubility in acidic media. The extracellular pH of tumor neoplastic tissue is significantly lower than the extracellular pH of normal tissue facilitating the release of drug-encapsulating CMPs in this area. Conducting polyaniline (PANI) absorbs light energy and transforms it into localized heat to produce cell death. This work aimed to generate hybrid CMPs loaded with PANI for photothermal therapy (PTT). The hybrid nanomaterial was synthesized with CaCO3 and carboxymethyl cellulose in a simple, reproducible manner. The CMP-PANI-Cys particles were developed for the first time and represent a novel type of hybrid biomaterial. Resultant nanoparticles were characterized utilizing scanning electron microscopy, dynamic light scattering, zeta potential, UV-vis, FTIR and Raman spectroscopy. In vitro HeLa cells in dark and irradiated conditions showed that CMP-PANI-Cys and PANI-Cys are nontoxic at the assayed concentrations. Hybrid biomaterials displayed high efficiency for potential PTT compared with PANI-Cys. In summary, hierarchical hybrid biomaterials composed of CMPs and PANI-Cys combined with near infrared irradiation represents a useful alternative in PTT. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Aspect of use of ultrahigh molecular weight polyethylene (uhmwpe) as biomaterial and as armour material (abstract)

    International Nuclear Information System (INIS)

    Fuzail, M.

    2011-01-01

    Among the known polymeric materials, ultrahigh molecular weight polyethylene (UHMWPE) has unique properties as a biomaterial as well as armour material. Its high strength and very high modulus makes it an alternate candidate as body armour for example bullet proof vest. The drawn fibers from this material are best known for their break strength and compete with the steel and carbon fibers. On the other hand, its extremely high molar mass imparts outstanding wear resistance and impact toughness better than any other polymer which makes it a better choice as biomaterial used in hip and knee transplants. As a biomaterial, when body transplants are gamma sterilized, their shelf life depends upon the number and nature of free radicals produced during sterilization. These long-lived radicals ultimately affect the wear properties of hip and knee transplants. The Electron Spin Resonance (ESR) technique used to determine the concentration and nature of free radicals in about 16 years old powder, fibers and ram-extruded bar samples shows that at low microwave power (0.01 mW), polyenyl radicals become prominent while at high microwave power (160 mW), oxygen-centered radicals show their identity. The ESR study also exhibits that the concentration of free radicals depends upon the crystallinities of different morphologies known i.e powder, extruded bars and drawn fibers. Differential scanning calorimetry shows the order of crystallinity as: fiber > extruded bars > powder. (author)

  18. Formulation and characterization of a porous, elastomeric biomaterial for vocal fold tissue engineering research.

    Science.gov (United States)

    Gaston, Joel; Bartlett, Rebecca S; Klemuk, Sarah A; Thibeault, Susan L

    2014-12-01

    Biomaterials able to mimic the mechanical properties of vocal fold tissue may be particularly useful for furnishing a 3-dimensional microenvironment allowing for in vitro investigation of cell and molecular responses to vibration. Motivated by the dearth of biomaterials available for use in an in vitro model for vocal fold tissue, we investigated polyether polyurethane (PEU) matrices, which are porous, mechanically tunable biomaterials that are inexpensive and require only standard laboratory equipment for fabrication. Rheology, dynamic mechanical analysis, and scanning electron microscopy were performed on PEU matrices at 5%, 10%, and 20% w/v mass concentrations. For 5%, 10%, and 20% w/v concentrations, shear storage moduli were 2 kPa, 3.4 kPa, and 6 kPa, respectively, with shear loss moduli being 0.2 kPa, 0.38 kPa, and 0.62 kPa, respectively. Storage moduli responded to applied frequency as a linear function. Mercury intrusion porosimetry revealed that all 3 mass concentrations of PEU have a similar overall percentage porosity but differ in pore architecture. Twenty-µm diameter pores are ideal for cell seeding, and a range of mechanical properties indicates that the lower [corrected] mass concentration PEU formulations are best suited for mimicking the viscoelastic properties of vocal fold tissue for in vitro research. © The Author(s) 2014.

  19. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing

    International Nuclear Information System (INIS)

    Campoli, G.; Borleffs, M.S.; Amin Yavari, S.; Wauthle, R.; Weinans, H.; Zadpoor, A.A.

    2013-01-01

    Highlights: ► Finite element (FE) models were used to predict the mechanical properties of porous biomaterials. ► Porous materials were produced using additive manufacturing techniques. ► Manufacturing irregularities need to be implemented in FE models. ► FE models are more accurate than analytical models in predicting mechanical properties. - Abstract: An important practical problem in application of open-cell porous biomaterials is the prediction of the mechanical properties of the material given its micro-architecture and the properties of its matrix material. Although analytical methods can be used for this purpose, these models are often based on several simplifying assumptions with respect to the complex architecture and cannot provide accurate prediction results. The aim of the current study is to present finite element (FE) models that can predict the mechanical properties of porous titanium produced using selective laser melting or selective electron beam melting. The irregularities caused by the manufacturing process including structural variations of the architecture are implemented in the FE models using statistical models. The predictions of FE models are compared with those of analytical models and are tested against experimental data. It is shown that, as opposed to analytical models, the predictions of FE models are in agreement with experimental observations. It is concluded that manufacturing irregularities significantly affect the mechanical properties of porous biomaterials

  20. Engineering Biomaterials to Integrate and Heal: The Biocompatibility Paradigm Shifts

    Science.gov (United States)

    Bryers, James D.; Giachelli, Cecilia M.; Ratner, Buddy D.

    2012-01-01

    This article focuses on one of the major failure routes of implanted medical devices, the foreign body reaction (FBR)—that is, the phagocytic attack and encapsulation by the body of the so-called “biocompatible” biomaterials comprising the devices. We then review strategies currently under development that might lead to biomaterial constructs that will harmoniously heal and integrate into the body. We discuss in detail emerging strategies to inhibit the FBR by engineering biomaterials that elicit more biologically pertinent responses. PMID:22592568

  1. Preparation of hybrid biomaterials for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Vilma Conceição Costa

    2007-03-01

    Full Text Available Tissue engineering has evolved from the use of biomaterials for bone substitution that fulfill the clinical demands of biocompatibility, biodegradability, non-immunogeneity, structural strength and porosity. Porous scaffolds have been developed in many forms and materials, but few reached the need of adequate physical, biological and mechanical properties. In the present paper we report the preparation of hybrid porous polyvinyl alcohol (PVA/bioactive glass through the sol-gel route, using partially and fully hydrolyzed polyvinyl alcohol, and perform structural characterization. Hybrids containing PVA and bioactive glass with composition 58SiO2-33CaO-9P2O5 were synthesized by foaming a mixture of polymer solution and bioactive glass sol-gel precursor solution. Sol-gel solution was prepared from mixing tetraethoxysilane (TEOS, triethylphosphate (TEP, and calcium chloride as chemical precursors. The hybrid composites obtained after aging and drying at low temperature were chemically and morphologically characterized through infrared spectroscopy and scanning electron microscopy. The degree of hydrolysis of PVA, concentration of PVA solution and different PVA-bioglass composition ratios affect the synthesis procedure. Synthesis parameters must be very well combined in order to allow foaming and gelation. The hybrid scaffolds obtained exhibited macroporous structure with pore size varying from 50 to 600 µm.

  2. Fiber from ramie plant (Boehmeria nivea): A novel suture biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati [Drug discovery laboratory, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035 (India); Devi, Dipali [Seri biotech laboratory, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035 (India); Kalita, Dhaneswar [Government Ayurvedic College and Hospital, Jalukbari, Guwahati, Assam 781014 (India); Kalita, Kasturi [Department of Pathology, Hayat Hospital, Guwahati, Assam 781034 (India); Dash, Suvakanta [Girijananda Chowdhury Institute of pharmaceutical science, Azara, Guwahati, Assam 781017 (India); Kotoky, Jibon, E-mail: jkotoky@gmail.com [Drug discovery laboratory, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035 (India)

    2016-05-01

    The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characters to market available ones. From natural origin only silk, cotton and linen fibers are presently available in market as non-absorbable suture biomaterials. In this study, we have developed a novel, cost-effective, and biocompatible suture biomaterial from ramie plant, Boehmeria nivea fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of raw and degummed ramie fiber, where the former one showed desirable characteristics for suture preparation. The braided multifilament ramie suture prepared from degummed fiber exhibited excellent tensile strength. The suture found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The fabricated ramie suture exhibited significant antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus; which can be attributed to the inherent bacteriostatic ability of ramie plant fiber. In vivo wound closure efficacy was evaluated in adult male wister rats by suturing the superficial wound incisions. Within seven days of surgery the wound got completely healed leaving no rash and scar. The role of the ramie suture in complete wound healing was supported by the reduced levels of serum inflammatory mediators. Histopathology studies confirmed the wound healing ability of ramie suture, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Tensile properties, biocompatibility and wound closure efficacy of the ramie suture were comparable with market available BMSF suture. The outcome of this study can drive tremendous possibility for the utilization of ramie plant fiber for

  3. Fiber from ramie plant (Boehmeria nivea): A novel suture biomaterial

    International Nuclear Information System (INIS)

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Devi, Dipali; Kalita, Dhaneswar; Kalita, Kasturi; Dash, Suvakanta; Kotoky, Jibon

    2016-01-01

    The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characters to market available ones. From natural origin only silk, cotton and linen fibers are presently available in market as non-absorbable suture biomaterials. In this study, we have developed a novel, cost-effective, and biocompatible suture biomaterial from ramie plant, Boehmeria nivea fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of raw and degummed ramie fiber, where the former one showed desirable characteristics for suture preparation. The braided multifilament ramie suture prepared from degummed fiber exhibited excellent tensile strength. The suture found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The fabricated ramie suture exhibited significant antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus; which can be attributed to the inherent bacteriostatic ability of ramie plant fiber. In vivo wound closure efficacy was evaluated in adult male wister rats by suturing the superficial wound incisions. Within seven days of surgery the wound got completely healed leaving no rash and scar. The role of the ramie suture in complete wound healing was supported by the reduced levels of serum inflammatory mediators. Histopathology studies confirmed the wound healing ability of ramie suture, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Tensile properties, biocompatibility and wound closure efficacy of the ramie suture were comparable with market available BMSF suture. The outcome of this study can drive tremendous possibility for the utilization of ramie plant fiber for

  4. Brillouin microspectroscopy of nanostructured biomaterials: photonics assisted tailoring mechanical properties

    Science.gov (United States)

    Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.

    2016-03-01

    Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).

  5. Hydration behaviors of calcium silicate-based biomaterials

    Directory of Open Access Journals (Sweden)

    Yuan-Ling Lee

    2017-06-01

    Conclusion: Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level.

  6. Simplified process for preparation of schizophyllan solutions for biomaterial applications

    Science.gov (United States)

    Schizophyllan is a biopolymer commercially produced for pharmaceutical and cosmetics uses. However, schizophyllan also has potential biomaterial applications. Schizophyllan is conventionally produced from glucose and recovered by diafiltration and ultrafiltration to produce a highly purified product...

  7. Evolving the use of peptides as biomaterials components

    Science.gov (United States)

    Collier, Joel H.; Segura, Tatiana

    2012-01-01

    This manuscript is part of a debate on the statement that “the use of short synthetic adhesion peptides, like RGD, is the best approach in the design of biomaterials that guide cell behavior for regenerative medicine and tissue engineering”. We take the position that although there are some acknowledged disadvantages of using short peptide ligands within biomaterials, it is not necessary to discard the notion of using peptides within biomaterials entirely, but rather to reinvent and evolve their use. Peptides possess advantageous chemical definition, access to non-native chemistries, amenability to de novo design, and applicability within parallel approaches. Biomaterials development programs that require such aspects may benefit from a peptide-based strategy. PMID:21515167

  8. Mechanical and biological properties of keratose biomaterials.

    Science.gov (United States)

    de Guzman, Roche C; Merrill, Michelle R; Richter, Jillian R; Hamzi, Rawad I; Greengauz-Roberts, Olga K; Van Dyke, Mark E

    2011-11-01

    The oxidized form of extractable human hair keratin proteins, commonly referred to as keratose, is gaining interest as a biomaterial for multiple tissue engineering studies including those directed toward peripheral nerve, spinal cord, skin, and bone regeneration. Unlike its disulfide cross-linked counterpart, kerateine, keratose does not possess a covalently cross-linked network structure and consequently displays substantially different characteristics. In order to understand its mode(s) of action and potential for clinical translatability, detailed characterization of the composition, physical properties, and biological responses of keratose biomaterials are needed. Keratose was obtained from end-cut human hair fibers by peracetic acid treatment, followed by base extraction, and subsequent dialysis. Analysis of lyophilized keratose powder determined that it contains 99% proteins by mass with amino acid content similar to human hair cortex. Metallic elements were also found in minute quantities. Protein oxidation led to disulfide bond cleavage and drastic reduction of free thiols due to conversion of sulfhydryl to sulfonic acid, chain fragmentation, and amino acid modifications. Mass spectrometry identified the major protein constituents as a heterogeneous mixture of 15 hair keratins (type I: K31-35 and K37-39, and type II: K81-86) with small amounts of epithelial keratins which exist in monomeric, dimeric, multimeric, and even degraded forms. Re-hydration with PBS enabled molecular assembly into an elastic solid-like hydrogel. Highly-porous scaffolds formed by lyophilization of the gel had the compression behavior of a cellular foam material and reverted back to gel upon wetting. Cytotoxicity assays showed that the EC50 for various cell lines were attained at 8-10 mg/mL keratose, indicating the non-toxic nature of the material. Implantation in mouse subcutaneous tissue pockets demonstrated that keratose resorption follows a rectangular hyperbolic regression

  9. Specific recruitment of circulating angiogenic cells using biomaterials as filters.

    Science.gov (United States)

    Parlato, Matthew; Molenda, James; Murphy, William L

    2017-07-01

    Endogenous recruitment of circulating angiogenic cells (CACs) is an emerging strategy to induce angiogenesis within a defect site, and multiple recent strategies have deployed soluble protein releasing biomaterials for this purpose. However, the way in which the design of biomaterials affects CAC recruitment and invasion are poorly understood. Here we used an enhanced-throughput cell invasion assay to systematically examine the effects of biomaterial design on CAC recruitment. The screens co-optimized hydrogel presentation of a stromal-derived factor-1α (SDF-1α) gradient, hydrogel degradability, and hydrogel stiffness for maximal CAC invasion. We also examined the specificity of this invasion by assessing dermal fibroblast, mesenchymal stem cell, and lymphocyte invasion individually and in co-culture with CACs to identify hydrogels specific to CAC invasion. These screens suggested a subset of MMP-degradable hydrogels presenting a specific range of SDF-1α gradient slopes that induced specific invasion of CACs, and we posit that the design parameters of this subset of hydrogels may serve as instructive templates for the future design of biomaterials to specifically recruit CACs. We also posit that this design concept may be applied more broadly in that it may be possible to utilize these specific subsets of biomaterials as "filters" to control which types of cell populations invade into and populate the biomaterial. The recruitment of specific cell types for cell-based therapies in vivo is of great interest to the regenerative medicine community. Circulating angiogenic cells (CACs), CD133+ cells derived from the blood stream, are of particular interest for induction of angiogenesis in ischemic tissues, and recent studies utilizing soluble-factor releasing biomaterials to recruit these cells in vivo show great promise. However, these studies are largely "proof of concept" and are not systematic in nature. Thus, little is currently known about how biomaterial design

  10. Novel Biomaterials Used in Medical 3D Printing Techniques

    OpenAIRE

    Karthik Tappa; Udayabhanu Jammalamadaka

    2018-01-01

    The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and c...

  11. Novel antibacterial strategies to combat biomaterial-associated infection

    OpenAIRE

    Riool, M.

    2017-01-01

    The use of medical devices has grown significantly over the last decades, and has become a major part of modern medicine and our daily life. The risk of infection is a significant problem with any inserted or implanted foreign body material, and is the number one cause of failure of implanted biomaterials. These so-called biomaterial-associated infections (BAI) are mainly caused by Staphylococcus aureus and Staphylococcus epidermidis. This thesis describes the development and characterization...

  12. Advancing the field of 3D biomaterial printing.

    Science.gov (United States)

    Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N

    2016-01-11

    3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications.

  13. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.

    Science.gov (United States)

    Wang, Tsung-Jen; Wang, I-Jong; Hu, Fung-Rong; Young, Tai-Horng

    2016-11-01

    When corneal endothelial cells (CECs) are diseased or injured, corneal endothelium can be surgically removed and tissue from a deceased donor can replace the original endothelium. Recent major innovations in corneal endothelial transplantation include replacement of diseased corneal endothelium with a thin lamellar posterior donor comprising a tissue-engineered endothelium carried or cultured on a thin substratum with an organized monolayer of cells. Repairing CECs is challenging because they have restricted proliferative ability in vivo. CECs can be cultivated in vitro and seeded successfully onto natural tissue materials or synthetic polymeric materials as grafts for transplantation. The optimal biomaterials for substrata of CEC growth are being investigated. Establishing a CEC culture system by tissue engineering might require multiple biomaterials to create a new scaffold that overcomes the disadvantages of single biomaterials. Chitosan and polycaprolactone are biodegradable biomaterials approved by the Food and Drug Administration that have superior biological, degradable, and mechanical properties for culturing substratum. We successfully hybridized chitosan and polycaprolactone into blended membranes, and demonstrated that CECs proliferated, developed normal morphology, and maintained their physiological phenotypes. The interaction between cells and biomaterials is important in tissue engineering of CECs. We are still optimizing culture methods for the maintenance and differentiation of CECs on biomaterials.

  14. Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation.

    Science.gov (United States)

    Wang, Lan; Zhang, Jie; Zhang, Wen; Yang, Hui-Lin; Luo, Zong-Ping

    2017-01-01

    We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20-3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science.

  15. The pathology of the foreign body reaction against biomaterials.

    Science.gov (United States)

    Klopfleisch, R; Jung, F

    2017-03-01

    The healing process after implantation of biomaterials involves the interaction of many contributing factors. Besides their in vivo functionality, biomaterials also require characteristics that allow their integration into the designated tissue without eliciting an overshooting foreign body reaction (FBR). The targeted design of biomaterials with these features, thus, needs understanding of the molecular mechanisms of the FBR. Much effort has been put into research on the interaction of engineered materials and the host tissue. This elucidated many aspects of the five FBR phases, that is protein adsorption, acute inflammation, chronic inflammation, foreign body giant cell formation, and fibrous capsule formation. However, in practice, it is still difficult to predict the response against a newly designed biomaterial purely based on the knowledge of its physical-chemical surface features. This insufficient knowledge leads to a high number of factors potentially influencing the FBR, which have to be analyzed in complex animal experiments including appropriate data-based sample sizes. This review is focused on the current knowledge on the general mechanisms of the FBR against biomaterials and the influence of biomaterial surface topography and chemical and physical features on the quality and quantity of the reaction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 927-940, 2017. © 2016 Wiley Periodicals, Inc.

  16. The structural characterization of some biomaterials, type AISI 310, used in medicine

    Science.gov (United States)

    Minciuna, M. G.; Vizureanu, P.; Hanganu, C.; Achitei, D. C.; Popescu, D. C.; Focsaneanu, S. C.

    2016-06-01

    Orthopedics biomaterials are intended for implantation in the human body and substituted or help to repair of bones, cartilage or organ transplant, and tendons. At the end of the 20th century, the availability of materials for the manufacture implants used in medicine has been the same as for other industrial applications. The most used metals for manufacturing the orthopedics implants are: stainless steels, cobalt-chrome-molybdenum alloys, titanium and his alloys. The structural researches which are made in this paper, offer a complete analysis of AISI310 stainless steels, using: optical spectrometry, X-ray diffraction and scanning electronic microscopy.

  17. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Biomaterial scaffolds for treating osteoporotic bone

    Science.gov (United States)

    Sterling, Julie A.

    2014-01-01

    Healing fractures resulting from osteoporosis or cancer remains a significant clinical challenge. In these populations, healing is often impaired not only due to age and disease, but also by other therapeutic interventions such as radiation, steroids, and chemotherapy. Despite substantial improvements in the treatment of osteoporosis over the few decades, osteoporotic fractures are still a major clinical challenge in the elderly population due to impaired healing. Similar fractures with impaired healing are also prevalent in cancer patients, especially those with tumor growing in bone. Treatment options for cancer patients are further complicated by the fact that bone anabolic therapies are contraindicated in patients with tumors. Therefore, many patients undergo surgery to repair the fracture, and bone grafts are often used to stabilize orthopaedic implants and provide a scaffold for ingrowth of new bone. Both synthetic and naturally occurring biomaterials have been investigated as bone grafts for repair of osteoporotic fractures, including calcium phosphate bone cements, resorbable polymers, and allograft or autograft bone. In order to re-establish normal bone repair, bone grafts have been augmented with anabolic agents, such as mesenchymal stem cells (MSC) or recombinant human bone morphogenetic protein-2 (rhBMP2). These developing approaches to bone grafting are anticipated to improve the clinical management of osteoporotic and cancer-induced fractures. PMID:24458428

  19. Useful surface parameters for biomaterial discrimination.

    Science.gov (United States)

    Etxeberria, Marina; Escuin, Tomas; Vinas, Miquel; Ascaso, Carlos

    2015-01-01

    Topographical features of biomaterials' surfaces are determinant when addressing their application site. Unfortunately up to date there has not been an agreement regarding which surface parameters are more representative in discriminating between materials. Discs (n = 16) of different currently used materials for implant prostheses fabrication, such as cast cobalt-chrome, direct laser metal soldered (DLMS) cobalt-chrome, titanium grade V, zirconia (Y-TZP), E-glass fiber-reinforced composite and polyetheretherketone (PEEK) were manufactured. Nanoscale topographical surface roughness parameters generated by atomic force microscopy (AFM), microscale surface roughness parameters obtained by white light interferometry (WLI) and water angle values obtained by the sessile-water-drop method were analyzed in order to assess which parameter provides the best optimum surface characterization method. Correlations between nanoroughness, microroughness, and hydrophobicity data were performed to achieve the best parameters giving the highest discriminatory power. A subset of six parameters for surface characterization were proposed. AFM and WLI techniques gave complementary information. Wettability did not correlate with any of the nanoroughness parameters while it however showed a weak correlation with microroughness parameters. © Wiley Periodicals, Inc.

  20. Novel polyisobutylene (PIB)-based biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, J.P. [Univ. of Akron, OH (United States)

    1993-12-31

    High molecular weight PIB (polyisobutylene) exhibits an outstanding combination of chemical-physical-mechanical properties for very little cost and consequently is extensively used in various large volume engineering applications, e.g., inner tubes. This presentation concerns novel PIB-based biomaterials whose synthesis became possible by the recent discovery of living carbocationic polymerizations: (1) Cyanoacrylate-capped PIB macromonomers and telechelics that polymerize upon exposure to biological fluids and thus lead to highly viscous liquids or networks. These materials may be of use as a replacement of diseased intervertebra discs (nucleus pulposa). (2) Three-arm star methacrylate-telechelic PIBs ((MA){sub 3}-PIB) that copolymerize with methyl methacrylate (MMA) and thus lead to impact- and fatigue-resistant PMMA or superior bone cements for prosthesis fixation. (3) {open_quotes}Smart{close_quotes} amphiphilic networks that change their conformation (morphology) and surface with the medium they are in contact with. These networks are synthesized by the copolymethacrylate (e.g., hydroxyethyl methacrylate).

  1. Biomaterials for mRNA delivery.

    Science.gov (United States)

    Islam, Mohammad Ariful; Reesor, Emma K G; Xu, Yingjie; Zope, Harshal R; Zetter, Bruce R; Shi, Jinjun

    2015-12-01

    Messenger RNA (mRNA) has recently emerged with remarkable potential as an effective alternative to DNA-based therapies because of several unique advantages. mRNA does not require nuclear entry for transfection activity and has a negligible chance of integrating into the host genome which excludes the possibility of potentially detrimental genomic alternations. Chemical modification of mRNA has further enhanced its stability and decreased its activation of innate immune responses. Additionally, mRNA has been found to have rapid expression and predictable kinetics. Nevertheless, the ubiquitous application of mRNA remains challenging given its unfavorable attributes, such as large size, negative charge and susceptibility to enzymatic degradation. Further refinement of mRNA delivery modalities is therefore essential for its development as a therapeutic tool. This review provides an exclusive overview of current state-of-the-art biomaterials and nanotechnology platforms for mRNA delivery, and discusses future prospects to bring these exciting technologies into clinical practice.

  2. Additive Manufacturing of Biomaterials, Tissues, and Organs.

    Science.gov (United States)

    Zadpoor, Amir A; Malda, Jos

    2017-01-01

    The introduction of additive manufacturing (AM), often referred to as three-dimensional (3D) printing, has initiated what some believe to be a manufacturing revolution, and has expedited the development of the field of biofabrication. Moreover, recent advances in AM have facilitated further development of patient-specific healthcare solutions. Customization of many healthcare products and services, such as implants, drug delivery devices, medical instruments, prosthetics, and in vitro models, would have been extremely challenging-if not impossible-without AM technologies. The current special issue of the Annals of Biomedical Engineering presents the latest trends in application of AM techniques to healthcare-related areas of research. As a prelude to this special issue, we review here the most important areas of biomedical research and clinical practice that have benefited from recent developments in additive manufacturing techniques. This editorial, therefore, aims to sketch the research landscape within which the other contributions of the special issue can be better understood and positioned. In what follows, we briefly review the application of additive manufacturing techniques in studies addressing biomaterials, (re)generation of tissues and organs, disease models, drug delivery systems, implants, medical instruments, prosthetics, orthotics, and AM objects used for medical visualization and communication.

  3. Biomaterials for nanoparticle vaccine delivery systems.

    Science.gov (United States)

    Sahdev, Preety; Ochyl, Lukasz J; Moon, James J

    2014-10-01

    Subunit vaccination benefits from improved safety over attenuated or inactivated vaccines, but their limited capability to elicit long-lasting, concerted cellular and humoral immune responses is a major challenge. Recent studies have demonstrated that antigen delivery via nanoparticle formulations can significantly improve immunogenicity of vaccines due to either intrinsic immunostimulatory properties of the materials or by co-entrapment of molecular adjuvants such as Toll-like receptor agonists. These studies have collectively shown that nanoparticles designed to mimic biophysical and biochemical cues of pathogens offer new exciting opportunities to enhance activation of innate immunity and elicit potent cellular and humoral immune responses with minimal cytotoxicity. In this review, we present key research advances that were made within the last 5 years in the field of nanoparticle vaccine delivery systems. In particular, we focus on the impact of biomaterials composition, size, and surface charge of nanoparticles on modulation of particle biodistribution, delivery of antigens and immunostimulatory molecules, trafficking and targeting of antigen presenting cells, and overall immune responses in systemic and mucosal tissues. This review describes recent progresses in the design of nanoparticle vaccine delivery carriers, including liposomes, lipid-based particles, micelles and nanostructures composed of natural or synthetic polymers, and lipid-polymer hybrid nanoparticles.

  4. Interplay of Structure and Dynamics in Biomaterials

    Science.gov (United States)

    Vodnala, Preeti

    Study of structure and dynamic behavior is essential to understand molecular motions in biological systems. In this work, two biomaterials were studied to address membrane properties and protein diffusion. For the first project, we studied the structure of liposomes, artificial vesicles that are used for drug encapsulation and administration of pharmaceuticals or cellular nutrients. Small-angle x-ray scattering (SAXS) was used to determine the structural properties of different liposomes composed of egg-PC and cholesterol bilayer. We examined the location of cholesterol by labelling cholesterol with bromine molecule and reveal that cholesterol is located one side of the leaflet adjusting itself to the curvature of a liposome. In my second project, we studied the dynamics of concentrated suspensions of alpha crystallin, one of the most abundant proteins in the human eye lens using X-ray photon correlation spectroscopy (XPCS). An improved understanding of dynamics could point the way towards treatments presbyopia and cataract. The dynamics were measured at volume fraction close to the critical volume fraction for the glass transition, where the intermediate scattering function, ƒ(q,T) could be well fit using a double exponential decay. The measured relaxation is in reasonable agreement with published molecular dynamics simulations for the relaxation times of hard-sphere colloids.

  5. A Bone-Implant Interaction Mouse Model for Evaluating Molecular Mechanism of Biomaterials/Bone Interaction.

    Science.gov (United States)

    Liu, Wenlong; Dan, Xiuli; Wang, Ting; Lu, William W; Pan, Haobo

    2016-11-01

    response near the implant surface in a bone marrow microenvironment, and it also shows great potential in making transgenic animal resource applicable to biomaterial studies, so that the design of novel biomaterials could be better guided.

  6. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  7. The electronic Trauma Health Record: design and usability of a novel tablet-based tool for trauma care and injury surveillance in low resource settings.

    Science.gov (United States)

    Zargaran, Eiman; Schuurman, Nadine; Nicol, Andrew J; Matzopoulos, Richard; Cinnamon, Jonathan; Taulu, Tracey; Ricker, Britta; Garbutt Brown, David Ross; Navsaria, Pradeep; Hameed, S Morad

    2014-01-01

    Ninety percent of global trauma deaths occur in under-resourced or remote environments, with little or no capacity for injury surveillance. We hypothesized that emerging electronic and web-based technologies could enable design of a tablet-based application, the electronic Trauma Health Record (eTHR), used by front-line clinicians to inform trauma care and acquire injury surveillance data for injury control and health policy development. The study was conducted in 3 phases: 1. Design of an electronic application capable of supporting clinical care and injury surveillance; 2. Preliminary feasibility testing of eTHR in a low-resource, high-volume trauma center; and 3. Qualitative usability testing with 22 trauma clinicians from a spectrum of high- and low-resource and urban and remote settings including Vancouver General Hospital, Whitehorse General Hospital, British Columbia Mobile Medical Unit, and Groote Schuur Hospital in Cape Town, South Africa. The eTHR was designed with 3 key sections (admission note, operative note, discharge summary), and 3 key capabilities (clinical checklist creation, injury severity scoring, wireless data transfer to electronic registries). Clinician-driven registry data collection proved to be feasible, with some limitations, in a busy South African trauma center. In pilot testing at a level I trauma center in Cape Town, use of eTHR as a clinical tool allowed for creation of a real-time, self-populating trauma database. Usability assessments with traumatologists in various settings revealed the need for unique eTHR adaptations according to environments of intended use. In all settings, eTHR was found to be user-friendly and have ready appeal for frontline clinicians. The eTHR has potential to be used as an electronic medical record, guiding clinical care while providing data for injury surveillance, without significantly hindering hospital workflow in various health-care settings. Copyright © 2014 American College of Surgeons. Published

  8. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  9. Mechanically-competent and cytocompatible polycaprolactone-borophosphosilicate hybrid biomaterials.

    Science.gov (United States)

    Mondal, Dibakar; Dixon, S Jeffrey; Mequanint, Kibret; Rizkalla, Amin S

    2017-11-01

    Organic-inorganic class II hybrid materials have domain sizes at the molecular level and chemical bonding between the organic and inorganic phases. We have previously reported the synthesis of class II hybrid biomaterials from alkoxysilane-functionalized polycaprolactone (PCL) and borophosphosilicate (B 2 O 3 -P 2 O 5 -SiO 2 ) glass (BPSG) through a non-aqueous sol-gel process. In the present study, the mechanical properties and degradability of these PCL/BPSG hybrid biomaterials were studied and compared to those of their conventional composite counterparts. The compressive strength, modulus and toughness of the hybrid biomaterials were significantly greater compared to the conventional composites, likely due to the covalent bonding between the organic and inorganic phases. A hybrid biomaterial (50wt% PCL and 50wt% BPSG) exhibited compressive strength, modulus and toughness values of 32.2 ± 3.5MPa, 573 ± 85MPa and 1.54 ± 0.03MPa, respectively; whereas the values for composite of similar composition were 18.8 ± 1.6MPa, 275 ± 28MPa and 0.76 ± 0.03MPa, respectively. Degradation in phosphate-buffered saline was slower for hybrid biomaterials compared to their composite counterparts. Thus, these hybrid materials possess superior mechanical properties and more controlled degradation characteristics compared to their corresponding conventional composites. To assess in vitro cytocompatibility, MC3T3-E1 pre-osteoblastic cells were seeded onto the surfaces of hybrid biomaterials and polycaprolactone (control). Compared to polycaprolactone, cells on the hybrid material displayed enhanced spreading, focal adhesion formation, and cell number, consistent with excellent cytocompatibility. Thus, based on their mechanical properties, degradability and cytocompatibility, these novel biomaterials have potential for use as scaffolds in bone tissue engineering and related applications. Copyright © 2017. Published by Elsevier Ltd.

  10. Proteins at the Biomaterial Electrolyte Interface

    Science.gov (United States)

    Tengvall, Pentti

    2005-03-01

    Proteins adsorb rapidly onto solid and polymeric surfaces because the association process is in the vast majority of cases energetically favourable, i.e. exothermic. The most common exceptions to this rule are hydrophilic interfaces with low net charge and high mobility, e.g. immobilized PEGs. Current research in the research area tries to understand and control unwanted and wanted adsorption by studying the adsorption kinetics, protein surface binding specificity, protein exchange at interfaces, and surface protein repulsion mechanisms. In blood plasma model systems humoral cascade reactions such as surface mediated coagulation and immune complement raise considerable interest due to the immediate association to blood compatibility, and in tissue applications the binding between surfaces and membrane receptors in cells and tissues. Thus, the understanding of interfacial events at the protein level is of large importance in applications such as blood and tissue contacting biomaterials, in vitro medical and biological diagnostics, food industry and in marine anti-fouling technology. Well described consequences of adsorption are a lowered system energy, increased system entropy, irreversible binding, conformational changes, specific surface/protein interactions, and in biomedical materials applications surface opsonization followed by cell-surface interactions and a host tissue response. This lecture will deal with some mechanisms known to be of importance for the adsorption processes, such as the influence of surface chemistry and surface energy, the composition of the protein solution, the Vroman effect, and residence time. Examples will be shown from ellipsometric experiments using different model surfaces in single/few protein solutions, and specific attention be given to blood serum and plasma experiments on coagulation and immune complement at interfaces.

  11. Barriers to electronic access and delivery of educational information in resource constrained public schools: a case of Greater Tubatse Municipality

    CSIR Research Space (South Africa)

    Pholotho, T

    2016-05-01

    Full Text Available Information and Communication Technologies (ICTs) are capable of expanding access to quality education, educational resources and provide teachers with new skills. Nevertheless, a majority of rural public schools have limited ICTs, mainly due...

  12. Electronic Grey Literature in Accelerator Science and Its Allied Subjects : Selected Web Resources for Scientists and Engineers

    CERN Document Server

    Rajendiran, P

    2006-01-01

    Grey literature Web resources in the field of accelerator science and its allied subjects are collected for the scientists and engineers of RRCAT (Raja Ramanna Centre for Advanced Technology). For definition purposes the different types of grey literature are described. The Web resources collected and compiled in this article (with an overview and link for each) specifically focus on technical reports, preprints or e-prints, which meet the main information needs of RRCAT users.

  13. Dental pulp pluripotent-like stem cells (DPPSC), a new stem cell population with chromosomal stability and osteogenic capacity for biomaterials evaluation.

    Science.gov (United States)

    Núñez-Toldrà, Raquel; Martínez-Sarrà, Ester; Gil-Recio, Carlos; Carrasco, Miguel Ángel; Al Madhoun, Ashraf; Montori, Sheyla; Atari, Maher

    2017-04-21

    Biomaterials are widely used to regenerate or substitute bone tissue. In order to evaluate their potential use for clinical applications, these need to be tested and evaluated in vitro with cell culture models. Frequently, immortalized osteoblastic cell lines are used in these studies. However, their uncontrolled proliferation rate, phenotypic changes or aberrations in mitotic processes limits their use in long-term investigations. Recently, we described a new pluripotent-like subpopulation of dental pulp stem cells derived from the third molars (DPPSC) that shows genetic stability and shares some pluripotent characteristics with embryonic stem cells. In this study we aim to describe the use of DPPSC to test biomaterials, since we believe that the biomaterial cues will be more critical in order to enhance the differentiation of pluripotent stem cells. The capacity of DPPSC to differentiate into osteogenic lineage was compared with human sarcoma osteogenic cell line (SAOS-2). Collagen and titanium were used to assess the cell behavior in commonly used biomaterials. The analyses were performed by flow cytometry, alkaline phosphatase and mineralization stains, RT-PCR, immunohistochemistry, scanning electron microscopy, Western blot and enzymatic activity. Moreover, the genetic stability was evaluated and compared before and after differentiation by short-comparative genomic hybridization (sCGH). DPPSC showed excellent differentiation into osteogenic lineages expressing bone-related markers similar to SAOS-2. When cells were cultured on biomaterials, DPPSC showed higher initial adhesion levels. Nevertheless, their osteogenic differentiation showed similar trend among both cell types. Interestingly, only DPPSC maintained a normal chromosomal dosage before and after differentiation on 2D monolayer and on biomaterials. Taken together, these results promote the use of DPPSC as a new pluripotent-like cell model to evaluate the biocompatibility and the differentiation

  14. Novel nanostructured biomaterials: implications for coronary stent thrombosis

    Science.gov (United States)

    Karagkiozaki, Varvara; Karagiannidis, Panagiotis G; Kalfagiannis, Nikolaos; Kavatzikidou, Paraskevi; Patsalas, Panagiotis; Georgiou, Despoina; Logothetidis, Stergios

    2012-01-01

    Background Nanomedicine has the potential to revolutionize medicine and help clinicians to treat cardiovascular disease through the improvement of stents. Advanced nanomaterials and tools for monitoring cell–material interactions will aid in inhibiting stent thrombosis. Although titanium boron nitride (TiBN), titanium diboride, and carbon nanotube (CNT) thin films are emerging materials in the biomaterial field, the effect of their surface properties on platelet adhesion is relatively unexplored. Objective and methods In this study, novel nanomaterials made of amorphous carbon, CNTs, titanium diboride, and TiBN were grown by vacuum deposition techniques to assess their role as potential stent coatings. Platelet response towards the nanostructured surfaces of the samples was analyzed in line with their physicochemical properties. As the stent skeleton is formed mainly of stainless steel, this material was used as reference material. Platelet adhesion studies were carried out by atomic force microscopy and scanning electron microscopy observations. A cell viability study was performed to assess the cytocompatibility of all thin film groups for 24 hours with a standard immortalized cell line. Results The nanotopographic features of material surface, stoichiometry, and wetting properties were found to be significant factors in dictating platelet behavior and cell viability. The TiBN films with higher nitrogen contents were less thrombogenic compared with the biased carbon films and control. The carbon hybridization in carbon films and hydrophilicity, which were strongly dependent on the deposition process and its parameters, affected the thrombogenicity potential. The hydrophobic CNT materials with high nanoroughness exhibited less hemocompatibility in comparison with the other classes of materials. All the thin film groups exhibited good cytocompatibility, with the surface roughness and surface free energy influencing the viability of cells. PMID:23269867

  15. Methodology of citrate-based biomaterial development and application

    Science.gov (United States)

    Tran, M. Richard

    Biomaterials play central roles in modern strategies of regenerative medicine and tissue engineering. Attempts to find tissue-engineered solutions to cure various injuries or diseases have led to an enormous increase in the number of polymeric biomaterials over the past decade. The breadth of new materials arises from the multiplicity of anatomical locations, cell types, and mode of application, which all place application-specific requirements on the biomaterial. Unfortunately, many of the currently available biodegradable polymers are limited in their versatility to meet the wide range of requirements for tissue engineering. Therefore, a methodology of biomaterial development, which is able to address a broad spectrum of requirements, would be beneficial to the biomaterial field. This work presents a methodology of citrate-based biomaterial design and application to meet the multifaceted needs of tissue engineering. We hypothesize that (1) citric acid, a non-toxic metabolic product of the body (Krebs Cycle), can be exploited as a universal multifunctional monomer and reacted with various diols to produce a new class of soft biodegradable elastomers with the flexibility to tune the material properties of the resulting material to meet a wide range of requirements; (2) the newly developed citrate-based polymers can be used as platform biomaterials for the design of novel tissue engineering scaffolding; and (3) microengineering approaches in the form thin scaffold sheets, microchannels, and a new porogen design can be used to generate complex cell-cell and cell-microenvironment interactions to mimic tissue complexity and architecture. To test these hypotheses, we first developed a methodology of citrate-based biomaterial development through the synthesis and characterization of a family of in situ crosslinkable and urethane-doped elastomers, which are synthesized using simple, cost-effective strategies and offer a variety methods to tailor the material properties to

  16. Novel Biomaterials Used in Medical 3D Printing Techniques

    Directory of Open Access Journals (Sweden)

    Karthik Tappa

    2018-02-01

    Full Text Available The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  17. Biomaterial-Based Implantable Devices for Cancer Therapy.

    Science.gov (United States)

    Chew, Sue Anne; Danti, Serena

    2017-01-01

    This review article focuses on the current local therapies mediated by implanted macroscaled biomaterials available or proposed for fighting cancer and also highlights the upcoming research in this field. Several authoritative review articles have collected and discussed the state-of-the-art as well as the advancements in using biomaterial-based micro- and nano-particle systems for drug delivery in cancer therapy. On the other hand, implantable biomaterial devices are emerging as highly versatile therapeutic platforms, which deserve an increased attention by the healthcare scientific community, as they are able to offer innovative, more effective and creative strategies against tumors. This review summarizes the current approaches which exploit biomaterial-based devices as implantable tools for locally administrating drugs and describes their specific medical applications, which mainly target resected brain tumors or brain metastases for the inaccessibility of conventional chemotherapies. Moreover, a special focus in this review is given to innovative approaches, such as combined delivery therapies, as well as to alternative approaches, such as scaffolds for gene therapy, cancer immunotherapy and metastatic cell capture, the later as promising future trends in implantable biomaterials for cancer applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Novel Biomaterials Used in Medical 3D Printing Techniques.

    Science.gov (United States)

    Tappa, Karthik; Jammalamadaka, Udayabhanu

    2018-02-07

    The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.

  19. Surface modification of biomaterials and biomedical devices using additive manufacturing.

    Science.gov (United States)

    Bose, Susmita; Robertson, Samuel Ford; Bandyopadhyay, Amit

    2018-01-15

    The demand for synthetic biomaterials in medical devices, pharmaceutical products and, tissue replacement applications are growing steadily due to aging population worldwide. The use for patient matched devices is also increasing due to availability and integration of new technologies. Applications of additive manufacturing (AM) or 3D printing (3DP) in biomaterials have also increased significantly over the past decade towards traditional as well as innovative next generation Class I, II and III devices. In this review, we have focused our attention towards the use of AM in surface modified biomaterials to enhance their in vitro and in vivo performances. Specifically, we have discussed the use of AM to deliberately modify the surfaces of different classes of biomaterials with spatial specificity in a single manufacturing process as well as commented on the future outlook towards surface modification using AM. It is widely understood that the success of implanted medical devices depends largely on favorable material-tissue interactions. Additive manufacturing has gained traction as a viable and unique approach to engineered biomaterials, for both bulk and surface properties that improve implant outcomes. This review explores how additive manufacturing techniques have been and can be used to augment the surfaces of biomedical devices for direct clinical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Biomaterials and mesenchymal stem cells for regenerative medicine.

    Science.gov (United States)

    Zippel, Nina; Schulze, Margit; Tobiasch, Edda

    2010-01-01

    The reconstruction of hard and soft tissues is a major challenge in regenerative medicine, since diseases or traumas are causing increasing numbers of tissue defects due to the aging of the population. Modern tissue engineering is increasingly using three-dimensional structured biomaterials in combination with stem cells as cell source, since mature cells are often not available in sufficient amounts or quality. Biomaterial scaffolds are developed that not only serve as cell carriers providing mechanical support, but actively influence cellular responses including cell attachment and proliferation. Chemical modifications such as the incorporation of chemotactic factors or cell adhesion molecules are examined for their ability to enhance tissue development successfully. E.g. growth factors have been investigated extensively as substances able to support cell growth, differentiation and angiogenesis. Thus, continuously new patents and studies are published, which are investigating the advantages and disadvantages of different biomaterials or cell types for the regeneration of specific tissues. This review focuses on biomaterials, including natural and synthetic polymers, ceramics and corresponding composites used as scaffold materials to support cell proliferation and differentiation for hard and soft tissues regeneration. In addition, the local delivery of drugs by scaffold biomaterials is discussed.

  1. The influence of biomaterials on endothelial cell thrombogenicity

    Science.gov (United States)

    McGuigan, Alison P.; Sefton, Michael V.

    2007-01-01

    Driven by tissue engineering and regenerative medicine, endothelial cells are being used in combination with biomaterials in a number of applications for the purpose of improving blood compatibility and host integration. Endothelialized vascular grafts are beginning to be used clinically with some success in some centers, while endothelial seeding is being explored as a means of creating a vasculature within engineered tissues. The underlying assumption of this strategy is that when cultured on artificial biomaterials, a confluent layer of endothelial cells maintain their non-thrombogenic phenotype. In this review the existing knowledge base of endothelial cell thrombogenicity cultured on a number of different biomaterials is summarized. The importance of selecting appropriate endpoint measures that are most reflective of overall surface thrombogenicity is the focus of this review. Endothelial cells inhibit thrombosis through three interconnected regulatory systems (1) the coagulation cascade (2) the cellular components of the blood such as leukocytes and platelets and (3) the complement cascade, and also through effects on fibrinolysis and vascular tone, the latter which influences blood flow. Thus, in order to demonstrate the thromobgenic benefit of seeding a biomaterial with EC, the conditions under which EC surfaces are more likely to exhibit lower thrombogenicity than unseeded biomaterial surfaces need to be consistent with the experimental context. The endpoints selected should be appropriate for the dominant thrombotic process that occurs under the given experimental conditions. PMID:17316788

  2. Biomaterial aspects: A key factor in the longevity of implant overdenture attachment systems.

    Science.gov (United States)

    Daou, Elie E

    2015-01-01

    New attachment systems are released for mandibular two-implant overdentures often without evidence-based support. Biomaterial aspects are now the parameters considered when choosing the appropriate attachment. Studies regarding their properties remain scarce. The purpose of this review was to help the clinician in selrcting the most adapted stud attachments according evidence-based dentistry. An electronic search was conducted using specific databases (PubMed, Medline, and Elsevier libraries). Peer-reviewed articles published in English up to July 2014 were identified. Emphasis was given on the biomaterial aspects and technical complications. No hand search was added. The electronic search generated 115 full-text papers, of which 84 papers were included in the review. The majority were clinical and in vitro studies. Some review articles were also considered. Papers reported survival and failures of overdenture connection systems. Emphasis was laid on attachment deformation. Implant overdentures long-term follow-up studies may provide useful guidelines for the clinician in selecting the type of attachment system and overdenture design. Locator attachments are more and more used, with lesser complications reported.

  3. Bio-Functional Design, Application and Trends in Metallic Biomaterials

    Science.gov (United States)

    Yang, Ke; Zhou, Changchun; Fan, Hongsong; Fan, Yujiang; Jiang, Qing; Song, Ping; Fan, Hongyuan; Chen, Yu; Zhang, Xingdong

    2017-01-01

    Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) mechanical properties that mimic the host tissues; (2) sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3) a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed. PMID:29271916

  4. Biomaterials mediated microRNA delivery for bone tissue engineering.

    Science.gov (United States)

    Sriram, M; Sainitya, R; Kalyanaraman, V; Dhivya, S; Selvamurugan, N

    2015-03-01

    Bone tissue engineering is an alternative strategy to overcome the problems associated with traditional treatments for bone defects. A number of bioactive materials along with new techniques like porous scaffold implantation, gene delivery, 3D organ printing are now-a-days emerging for traditional bone grafts and metal implants. Studying the molecular mechanisms through which these biomaterials induce osteogenesis is an equally hot field. Biomaterials could determine the fate of a cell via microRNAs (miRNAs). miRNAs are short non-coding RNAs that act as post-transcriptional regulators of gene expression and play an essential role for regulation of cell specific lineages including osteogenesis. Thus, this review focuses the recent trends on establishing a link of biomaterials with miRNAs and their delivery for bone tissue engineering applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer techniques.

    Science.gov (United States)

    Schöne, Anne-Christin; Roch, Toralf; Schulz, Burkhard; Lendlein, Andreas

    2017-05-01

    Polymeric biomaterials are of specific relevance in medical and pharmaceutical applications due to their wide range of tailorable properties and functionalities. The knowledge about interactions of biomaterials with their biological environment is of crucial importance for developing highly sophisticated medical devices. To achieve optimal in vivo performance, a description at the molecular level is required to gain better understanding about the surface of synthetic materials for tailoring their properties. This is still challenging and requires the comprehensive characterization of morphological structures, polymer chain arrangements and degradation behaviour. The review discusses selected aspects for evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer methods as powerful techniques for studying interfacial properties, such as morphological and degradation processes. The combination of spectroscopic, microscopic and scattering methods with the Langmuir techniques adapted to polymers can substantially improve the understanding of their in vivo behaviour. © 2017 The Author(s).

  6. Biomaterial based cardiac tissue engineering and its applications

    Science.gov (United States)

    Huyer, Locke Davenport; Montgomery, Miles; Zhao, Yimu; Xiao, Yun; Conant, Genevieve; Korolj, Anastasia; Radisic, Milica

    2015-01-01

    Cardiovascular disease is a leading cause of death worldwide, necessitating the development of effective treatment strategies. A myocardial infarction involves the blockage of a coronary artery leading to depletion of nutrient and oxygen supply to cardiomyocytes and massive cell death in a region of the myocardium. Cardiac tissue engineering is the growth of functional cardiac tissue in vitro on biomaterial scaffolds for regenerative medicine application. This strategy relies on the optimization of the complex relationship between cell networks and biomaterial properties. In this review, we discuss important biomaterial properties for cardiac tissue engineering applications, such as elasticity, degradation, and induced host response, and their relationship to engineered cardiac cell environments. With these properties in mind, we also emphasize in vitro use of cardiac tissues for high-throughput drug screening and disease modelling. PMID:25989939

  7. Regeneration of damaged osteoporotic bone tissue with synthetic biomaterials

    Directory of Open Access Journals (Sweden)

    Petrović Nenad D.

    2014-01-01

    Full Text Available In some cases in oral and maxillofacial surgery, bone regeneration is required in large quantities. One of these cases is osteoporosis. This paper aims to show the new approach to solving this problem of impaired healing of bone defects in the jaw, as well as in other bones, with the use of synthetic biomaterials whose properties resemble the natural bone. Latest development in this area present an effort to create local drug-delivery systems for BMPs and growth factors, direct delivery of MSCs, as well as scaffolds for osteoconduction and also to utilize nanotechnology to synthesize composite biomaterials, predominantly based on HAp and polymers, that would mimic the natural bone nanocomposite architecture. There is also a tendency to create injectable biomaterials for simplified application.

  8. DIFFERENTIAL FUNCTIONAL EFFECTS OF BIOMATERIALS ON DENDRITIC CELL MATURATION

    Science.gov (United States)

    Park, Jaehyung; Babensee, Julia E.

    2012-01-01

    The immunological outcome of dendritic cell (DC) treatment with different biomaterials was assessed to demonstrate the range of DC phenotypes induced by biomaterials commonly used in combination products. Immature DCs (iDCs) were derived from human peripheral blood monocytes, and treated with different biomaterial films of alginate, agarose, chitosan, hyaluronic acid (HA), or 75:25 poly(lactic-co-glycolic acid) (PLGA) and a comprehensive cadre of phenotypic functional outcomes were assessed. Differential levels of functional changes of DC phenotype were observed depending on the type of biomaterial films used to treat DCs. Treatment of DCs with PLGA or chitosan films supported DC maturation with higher levels of DC allostimulatory capacity, pro-inflammatory cytokine release, expression of CD80, CD86, CD83, HLA-DQ and CD44 expression as compared to iDCs, and endocytic ability at a level lower compared to iDCs. Alginate film induced pro-inflammatory cytokine release from DCs at levels higher than iDCs,. Dendritic cells treated with HA film expressed lower levels of CD40, CD80, CD86 and HLA-DR as compared to iDCs. They also exhibited endocytic ability and CD44 expression at levels lower than iDCs, possibly due to an insolublized (cross-linked) form with high molecular weight HA. Interestingly, treatment of DCs with agarose film maintained a DC functional phenotype at levels similar to iDCs except for CD44 expression which was lower than expression levels for iDCs. Taken together, these results can provide selection criteria for biomaterials to be used in immunomodulating applications and can inform potential outcomes of biomaterials within combination products on associated immune responses as desired by the application. PMID:22705044

  9. Biomaterials approaches to treating implant-associated osteomyelitis.

    Science.gov (United States)

    Inzana, Jason A; Schwarz, Edward M; Kates, Stephen L; Awad, Hani A

    2016-03-01

    Orthopaedic devices are the most common surgical devices associated with implant-related infections and Staphylococcus aureus (S. aureus) is the most common causative pathogen in chronic bone infections (osteomyelitis). Treatment of these chronic bone infections often involves combinations of antibiotics given systemically and locally to the affected site via a biomaterial spacer. The gold standard biomaterial for local antibiotic delivery against osteomyelitis, poly(methyl methacrylate) (PMMA) bone cement, bears many limitations. Such shortcomings include limited antibiotic release, incompatibility with many antimicrobial agents, and the need for follow-up surgeries to remove the non-biodegradable cement before surgical reconstruction of the lost bone. Therefore, extensive research pursuits are targeting alternative, biodegradable materials to replace PMMA in osteomyelitis applications. Herein, we provide an overview of the primary clinical treatment strategies and emerging biodegradable materials that may be employed for management of implant-related osteomyelitis. We performed a systematic review of experimental biomaterials systems that have been evaluated for treating established S. aureus osteomyelitis in an animal model. Many experimental biomaterials were not decisively more efficacious for infection management than PMMA when delivering the same antibiotic. However, alternative biomaterials have reduced the number of follow-up surgeries, enhanced the antimicrobial efficacy by delivering agents that are incompatible with PMMA, and regenerated bone in an infected defect. Understanding the advantages, limitations, and potential for clinical translation of each biomaterial, along with the conditions under which it was evaluated (e.g. animal model), is critical for surgeons and researchers to navigate the plethora of options for local antibiotic delivery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Integrin-directed modulation of macrophage responses to biomaterials.

    Science.gov (United States)

    Zaveri, Toral D; Lewis, Jamal S; Dolgova, Natalia V; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-04-01

    Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. BIOMATERIAL IMPLANTS IN BONE FRACTURES PRODUCED IN RATS FIBULAS

    Science.gov (United States)

    Shirane, Henrique Yassuhiro; Oda, Diogo Yochizumi; Pinheiro, Thiago Cerizza; Cunha, Marcelo Rodrigues da

    2015-01-01

    To evaluate the importance of collagen and hydroxyapatite in the regeneration of fractures experimentally induced in the fibulas of rats. Method: 15 rats were used. These were subjected to surgery to remove a fragment from the fibula. This site then received a graft consisting of a silicone tubes filled with hydroxyapatite and collagen. Results: Little bone neoformation occurred inside the tubes filled with the biomaterials. There was more neoformation in the tubes with collagen. Conclusion: The biomaterials used demonstrated biocompatibility and osteoconductive capacity that was capable of stimulating osteogenesis, even in bones with secondary mechanical and morphological functions such as the fibula of rats. PMID:27047813

  12. An Overview of Biomaterials in Periodontology and Implant Dentistry

    Directory of Open Access Journals (Sweden)

    Young-Dan Cho

    2017-01-01

    Full Text Available Material is a crucial factor for the restoration of the tooth or periodontal structure in dentistry. Various biomaterials have been developed and clinically applied for improved periodontal tissue regeneration and osseointegration, especially in periodontology and dental implantology. Furthermore, the biomimetic approach has been the subject of active research in recent years. In this review, the most widely studied biomaterials (bone graft material, barrier membrane, and growth or differentiation factors and biomimetic approaches to obtain optimal tissue regeneration by making the environment almost similar to that of the extracellular matrix are discussed and specifically highlighted.

  13. Biomaterials and host versus graft response: A short review

    Science.gov (United States)

    Velnar, Tomaz; Bunc, Gorazd; Klobucar, Robert; Gradisnik, Lidija

    2016-01-01

    Biomaterials and biotechnology are increasing becoming an important area in modern medicine. The main aim in this area is the development of materials, which are biocompatible to normal tissue. Tissue-implant interactions with molecular, biological and cellular characteristics at the implant-tissue interface are important for the use and development of implants. Implantation may cause an inflammatory and immune response in tissue, foreign body reaction, systemic toxicity and imminent infection. Tissue-implant interactions determine the implant life-period. The aims of the study are to consider the biological response to implants. Biomaterials and host reactions to implants and their mechanisms are also briefly discussed. PMID:26894284

  14. Synthesis and characterization of α-alumina col-gel nanometric: elaboration of biomaterials nanostructured for biomedical applications

    International Nuclear Information System (INIS)

    Passoni, L.S.; Feit, G.; Camargo, N.H.A.

    2010-01-01

    The production of nanostructured biomaterials are research themes for these present new characteristics of biocompatibility and bioactivity. The sol-gel process allows obtaining α-alumina nanometric with purity 99.99%. The use of nanoparticles of Al 2 O 3 -α, SiO 2 and TiO 2 are being employed as a second stage in the development of nanocomposites biomaterials. The presence of the second phase within a ceramic matrix leads to obtaining nanomaterials with micropores in micro and nanostructures interconnected, what contributes within the processes of osseous integration, osseous induction. The goal of this work focused on synthesis and characterization of an α- alumina by sol-gel process. Characterization studies were conducted using the various techniques: X-ray diffraction, scanning electron microscopy, exploratory differential scanning calorimetry and infrared spectrometry by Fourier transforms. The preliminary results showed the attainment the nanometric α-alumina powder. (author)

  15. Adsorption of tranexamic acid on hydroxyapatite: Toward the development of biomaterials with local hemostatic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sarda, Stéphanie, E-mail: stephanie.sarda@iut-tlse3.fr [CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Université Toulouse 3 Paul Sabatier, Toulouse (France); Errassifi, Farid [CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, Université Toulouse 3 Paul Sabatier, Toulouse (France); Marsan, Olivier [CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, ENSIACET, Toulouse (France); Geffre, Anne; Trumel, Catherine [Université de Toulouse, INP, ENVT, UMS006, Laboratoire Central de Biologie Médicale, Toulouse (France); INSERM-UPS, UMS 006, Laboratoire Central de Biologie Médicale, Toulouse (France); Drouet, Christophe [CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, ENSIACET, Toulouse (France)

    2016-09-01

    This work proposes to combine tranexamic acid (TAX), a clinically used antifibrinolytic agent, and hydroxyapatite (HA), widely used in bone replacement, to produce a novel bioactive apatitic biomaterial with intrinsic hemostatic properties. The aim of this study was to investigate adsorptive behavior of the TAX molecule onto HA and to point out its release in near physiological conditions. No other phase was observed by X-ray diffraction or transmission electron microscopy, and no apparent change in crystal size was detected. The presence of TAX on the powders was lightly detected on Raman spectra after adsorption. The adsorption data could be fitted with a Langmuir–Freundlich equation, suggesting a strong interaction between adsorbed molecules and the formation of multilayers. The concentration of calcium and phosphate ions in solution remained low and stable during the adsorption process, thus ion exchange during the adsorption process could be ruled out. The release of TAX was fast during the first hours and was governed by a complex process that likely involved both diffusion and dissolution of HA. Preliminary aPTT (activated partial thromboplastin time) hemostasis tests offered promising results for the development of osteoconductive apatitic biomaterials with intrinsic hemostatic properties, whether for dental or orthopedic applications. - Highlights: • Interaction of tranexamic acid (TAX)/hydroxyapatite was studied. • The adsorption data could be fitted with a Langmuir–Freundlich equation. • The release of TAX, fast during the first hours, was governed by a complex process. • Preliminary aPTT hemostasis tests show promising results. • The aim is to develop biomaterials with local hemostatic activity.

  16. Sustainable polysaccharide-based biomaterial recovered from waste aerobic granular sludge as a surface coating material

    NARCIS (Netherlands)

    Lin, Y. M.; Nierop, K.G.J.; Girbal-Neuhauser, E.; Adriaanse, M.; van Loosdrecht, M. C M

    To evaluate the possibility of utilizing polysaccharide-based biomaterial recovered from aerobic granular sludge as a coating material, the morphology, molecular weight distribution and chemical composition of the recovered biomaterial were investigated by atomic force microscopy, size exclusion

  17. Sustainable polysaccharide-based biomaterial recovered from waste aerobic granular sludge as a surface coating material

    NARCIS (Netherlands)

    Lin, Y.M.; Nierop, K.G.J.; Girbal-Neuhauser, E.; Adriaanse, M.; Van Loosdrecht, M.C.M.

    2015-01-01

    To evaluate the possibility of utilizing polysaccharide-based biomaterial recovered from aerobic granular sludge as a coating material, the morphology, molecular weight distribution and chemical composition of the recovered biomaterial were investigated by atomic force microscopy, size exclusion

  18. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials.

    Science.gov (United States)

    Franz, Sandra; Rammelt, Stefan; Scharnweber, Dieter; Simon, Jan C

    2011-10-01

    A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Web Accessibility Issues for Higher & Further Education. EDNER (Formative Evaluation of the Distributed National Electronic Resource) Project. Issues Paper.

    Science.gov (United States)

    Manchester Metropolitan Univ. (England).

    This issues paper, sixth in a series of eight, is intended to distill formative evaluation questions on topics that are central to the development of the higher and further education information environment in the United Kingdom. In undertaking formative evaluation studies, the Formative Evaluation of the Distributed National Electronic Resource…

  20. Analyzing the Academic Research Trends by Using University Digital Resources: A Bibliometric Study of Electronic Commerce in China

    Science.gov (United States)

    Fatima, Anam; Abbas, Asad; Ming, Wan; Zaheer, Ahmad Nawaz; Akhtar, Masood-ul-Hassan

    2017-01-01

    Technology plays a vital role in every field of life especially in business and education. Electronic commerce (EC) begins in the year of 1991 right after internet was introduced for commercial use. It is known to be the 12th five years' plan (2011 to 2015) of Chinese Ministry of Industry and Information Technology. The main "objective"…

  1. Clinician‐selected Electronic Information Resources do not Guarantee Accuracy in Answering Primary Care Physicians’ Information Needs. A review of: McKibbon, K. Ann, and Douglas B. Fridsma. “Effectiveness of Clinician‐selected Electronic Information Resources for Answering Primary Care Physicians’ Information Needs.” Journal of the American Medical Informatics Association 13.6 (2006: 653‐9.

    Directory of Open Access Journals (Sweden)

    Martha Ingrid Preddie

    2008-03-01

    Full Text Available Objective – To determine if electronic information resources selected by primary care physicians improve their ability to answer simulated clinical questions.Design – An observational study utilizing hour‐long interviews and think‐aloud protocols.Setting – The offices and clinics of primary care physicians in Canada and the United States.Subjects – Twenty‐five primary care physicians of whom 4 were women, 17 were from Canada, 22 were family physicians,and 24 were board certified.Methods – Participants provided responses to 23 multiple‐choice questions. Each physician then chose two questions and looked for the answers utilizing information resources of their own choice. The search processes, chosen resources and search times were noted. These were analyzed along with data on the accuracy of the answers and certainties related to the answer to each clinical question prior to the search.Main results – Twenty‐three physicians sought answers to 46 simulated clinical questions. Utilizing only electronic information resources, physicians spent a mean of 13.0 (SD 5.5 minutes searching for answers to the questions, an average of 7.3(SD 4.0 minutes for the first question and 5.8 (SD 2.2 minutes to answer the second question. On average, 1.8 resources were utilized per question. Resources that summarized information, such as the Cochrane Database of Systematic Reviews, UpToDate and Clinical Evidence, were favored 39.2% of the time, MEDLINE (Ovid and PubMed 35.7%, and Internet resources including Google 22.6%. Almost 50% of the search and retrieval strategies were keyword‐based, while MeSH, subheadings and limiting were used less frequently. On average, before searching physicians answered 10 of 23 (43.5% questions accurately. For questions that were searched using clinician‐selected electronic resources, 18 (39.1% of the 46 answers were accurate before searching, while 19 (42.1% were accurate after searching. The difference of

  2. Surface modification of biomaterials using plasma immersion ion implantation and deposition

    OpenAIRE

    Lu, Tao; Qiao, Yuqin; Liu, Xuanyong

    2012-01-01

    Although remarkable progress has been made on biomaterial research, the ideal biomaterial that satisfies all the technical requirements and biological functions is not available up to now. Surface modification seems to be a more economic and efficient way to adjust existing conventional biomaterials to meet the current and ever-evolving clinical needs. From an industrial perspective, plasma immersion ion implantation and deposition (PIII&D) is an attractive method for biomaterials owing to it...

  3. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms

    NARCIS (Netherlands)

    Barradas, A.M.C.; Yuan, Huipin; van Blitterswijk, Clemens; Habibovic, Pamela

    2010-01-01

    In the past thirty years, a number of biomaterials have shown the ability to induce bone formation when implanted at heterotopic sites, an ability known as osteoinduction. Such biomaterials – osteoinductive biomaterials – hold great potential for the development of new therapies in bone

  4. The Effect of Biomaterials Used for Tissue Regeneration Purposes on Polarization of Macrophages

    NARCIS (Netherlands)

    G.S.A. ter Hoeve-Boersema (Simone); N. Grotenhuis (Nienke); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractActivation of macrophages is critical in the acute phase of wound healing after implantation of surgical biomaterials. To understand the response of macrophages, they are often cultured in vitro on biomaterials. Since a wide range of biomaterials is currently used in the clinics, we

  5. PRESERVATION OF THE CELL-BIOMATERIAL INTERFACE AT THE ULTRASTRUCTURAL LEVEL

    NARCIS (Netherlands)

    SCHAKENRAAD, JM; OOSTERBAAN, JA; BLAAUW, EH

    1991-01-01

    Studying the tissue-biomaterial interface at the ultrastructural level is not without problems. Dissolution of the biomaterial in one of the dehydration or embedding media causes holes and shatter during sectioning or dislodgement of the biomaterial. The fine tuning of the hardness of both

  6. SAGES: A Suite of Freely-Available Software Tools for Electronic Disease Surveillance in Resource-Limited Settings

    Science.gov (United States)

    2011-05-10

    3] Recently, the emergence of the novel 2009 influenza A ( H1N1 ) virus and the SARS coronavirus have demonstrated how rapidly pathogens can spread...standards in both minimum data sets for disease surveillance and routine diagnosis and care. Analysis & Visualization. As previously discussed, the...g002 SAGES Electronic Disease Surveillance PLoS ONE | www.plosone.org 3 May 2011 | Volume 6 | Issue 5 | e19750 for pandemic influenza as well as

  7. Share and share alike: encouraging the reuse of academic resources through the Scottish electronic Staff Development Library

    Directory of Open Access Journals (Sweden)

    Lorna M. Campbell

    2001-12-01

    Full Text Available The Scottish electronic Staff Development Library (http://www.sesdl.scotcit.acuk is an ongoing collaborative project involving the Universities of Edinburgh, Paisley and Strathclyde which has been funded by SHEFC as part of their current ScotCIT Programme (http:llwww.scotcit.ac.uk. This project is being developed in response to the increasing demand for flexible, high-quality staff development materials.

  8. Collagen based Biomaterials from CLRI: An Inspiration from the ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Collagen based Biomaterials from CLRI: An Inspiration from the master. In 1950's, Collagen attracted Prof GN Ramachandran. He had a neighbor (CLRI) for whom collagen formed the substrate. He sought a sample of pure collagen from CLRI. This was provided.

  9. Gold nanoparticle-coated biomaterial as SERS micro-probes

    Indian Academy of Sciences (India)

    Abstract. We report for the first time, on the utility of plant-based biomaterial as enhanced-Raman scattering probes. The bio-substrate used in this study are commonly found in plant extracts, and are cost-effective, mecha- nically robust, flexible and easily transportable. The probe was fabricated by coating the plant extract ...

  10. 3D microenvironment as essential element for osteoinduction by biomaterials

    NARCIS (Netherlands)

    Habibovic, Pamela; Yuan, Huipin; van der Valk, Chantal M.; Meijer, Gert; van Blitterswijk, Clemens; de Groot, K.

    2005-01-01

    In order to unravel the mechanism of osteoinduction by biomaterials, in this study we investigated the influence of the specific surface area on osteoinductive properties of two types of calcium phosphate ceramics. Different surface areas of the ceramics were obtained by varying their sintering

  11. Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke); S.F. De Witte (Samantha Fh); G.J.V.M. van Osch (Gerjo); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractBackground: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and

  12. Evaluation of starch based cryogels as potential biomaterials for ...

    Indian Academy of Sciences (India)

    These macroporous cryogels were loaded with an antibiotic drug, ciprofloxacin hydrochloride (Cfx), and evaluated for its in vitro delivery in a completely controlled manner thus exploring possibilities to use it as a biomaterial in burn or wound healing applications. The key advantage of the present system is that cryogels ...

  13. Standardization of incubation conditions for hemolysis testing of biomaterials

    NARCIS (Netherlands)

    Henkelman, Sandra; Rakhorst, Gerhard; Blanton, John; van Oeveren, Willem

    2009-01-01

    Hemolysis testing is the most common method to determine the hemocompatibility properties of biomaterials. There is however no consensus on the procedures of hemolysis testing due to insufficient comparative studies on the quality of the red blood cells used and the experimental conditions of

  14. Some Biomaterials based on Collagen in Human Health care

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Some Biomaterials based on Collagen in Human Health care. Ophthalmology. Wound healing. Burn Dressing. Tumor Treatment. Tissue Engineered devices. for cardio-vascular functions; For managing chronic illnesses including diabetic ulcers and foot. Smart shoe.

  15. Clay-Enriched Silk Biomaterials for Bone Formation

    Science.gov (United States)

    Mieszawska, Aneta J.; Llamas, Jabier Gallego; Vaiana, Christopher A.; Kadakia, Madhavi P.; Naik, Rajesh R.; Kaplan, David L.

    2011-01-01

    The formation of silk protein/clay composite biomaterials for bone tissue formation is described. Silk fibroin serves as an organic scaffolding material offering mechanical stability suitable for bone specific uses. Clay montmorillonite (Cloisite ® Na+) and sodium silicate are sources of osteoinductive silica-rich inorganic species, analogous to bioactive bioglass-like bone repair biomaterial systems. Different clay particle-silk composite biomaterial films were compared to silk films doped with sodium silicate as controls for support of human bone marrow derived mesenchymal stem cells (hMSCs) in osteogenic culture. The cells adhered and proliferated on the silk/clay composites over two weeks. Quantitative real-time RT-PCR analysis revealed increased transcript levels for alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col I) osteogenic markers in the cells cultured on the silk/clay films in comparison to the controls. Early evidence for bone formation based on collagen deposition at the cell-biomaterial interface was also found, with more collagen observed for the silk films with higher contents of clay particles. The data suggest that the silk/clay composite systems may be useful for further study toward bone regenerative needs. PMID:21549864

  16. Logic of Biomaterial devices from CLRI for wound management

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Logic of Biomaterial devices from CLRI for wound management. Designing of biodegradable scaffolds. Designing the scaffold. Host drugs and growth factors. Design controlled drug release only to the wound area (based on pH differentials). Smartness is built in ...

  17. Cell Physiology and Interactions of Biomaterials and Matrices

    Czech Academy of Sciences Publication Activity Database

    Hunkeler, D.; Vaňková, Radomíra

    2003-01-01

    Roč. 28, č. 6 (2003), s. 193-197 ISSN 0032-3918 R&D Projects: GA MŠk OC 840.20 Institutional research plan: CEZ:AV0Z5038910 Keywords : Biomaterials * Cell physiology * Encapsulation Subject RIV: CE - Biochemistry

  18. Additively manufactured metallic porous biomaterials based on minimal surfaces

    DEFF Research Database (Denmark)

    Bobbert, F. S. L.; Lietaert, K.; Eftekhari, Ali Akbar

    2017-01-01

    types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology...

  19. A mesoporous silica biomaterial for dental biomimetic crystallization.

    Science.gov (United States)

    Chiang, Yu-Chih; Lin, Hong-Ping; Chang, Hao-Hueng; Cheng, Ya-Wen; Tang, Hsin-Yen; Yen, Wei-Ching; Lin, Po-Yen; Chang, Kei-Wen; Lin, Chun-Pin

    2014-12-23

    The loss of overlying enamel or cementum exposes dentinal tubules and increases the risk of several dental diseases, such as dentin hypersensitivity (causing sharp pain and anxiety), caries, and pulp inflammation. This paper presents a fast-reacting, more reliable and biocompatible biomaterial that effectively occludes exposed dentinal tubules by forming a biomimetic crystalline dentin barrier. To generate this biomaterial, a gelatin-templated mesoporous silica biomaterial (CaCO3@mesoporous silica, CCMS) containing nanosized calcium carbonate particles is mixed with 30% H3PO4 at a 1/1 molar ratio of Ca/P (denoted as CCMS-HP), which enables Ca2+ and PO4(3-)/HPO4(2-) ions to permeate the dentinal tubules and form dicalcium phosphate dihydrate (DCPD), tricalcium phosphate (TCP) or hydroxyapatite (HAp) crystals at a depth of approximately 40 μm (sub-μ-CT and nano-SEM/EDS examinations). In vitro biocompatibility tests (WST-1 and lactate dehydrogenase) and ALP assays show high cell viability and mineralization ability in a transwell dentin disc model treated with CCMS-HP (pcrystal growth (DCPD, TCP or HAp-like) and no pulp irritation after 70 days (pcrystals within dentinal tubules. These findings demonstrate that the mesoporous silica biomaterials presented here have great potential for serving as both a catalyst and carrier in the repair or regeneration of dental hard tissue.

  20. PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants

    Science.gov (United States)

    Kurtz, S. M.; Devine, J. N.

    2007-01-01

    Since the 1980s, polyaryletherketones (PAEKs) have been increasingly employed as biomaterials for trauma, orthopedic, and spinal implants. We have synthesized the extensive polymer science literature as it relates to structure, mechanical properties, and chemical resistance of PAEK biomaterials. With this foundation, one can more readily appreciate why this family of polymers will be inherently strong, inert, and biocompatible. Due to its relative inertness, PEEK biomaterials are an attractive platform upon which to develop novel bioactive materials, and some steps have already been taken in that direction, with the blending of HA and TCP into sintered PEEK. However, to date, blended HA-PEEK composites have involved a trade-off in mechanical properties in exchange for their increased bioactivity. PEEK has had the greatest clinical impact in the field of spine implant design, and PEEK is now broadly accepted as a radiolucent alternative to metallic biomaterials in the spine community. For mature fields, such as total joint replacements and fracture fixation implants, radiolucency is an attractive but not necessarily critical material feature. PMID:17686513

  1. A Multidisciplined Teaching Reform of Biomaterials Course for Undergraduate Students

    Science.gov (United States)

    Li, Xiaoming; Zhao, Feng; Pu, Fang; Liu, Haifeng; Niu, Xufeng; Zhou, Gang; Li, Deyu; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Watari, Fumio

    2015-01-01

    The biomaterials science has advanced in a high speed with global science and technology development during the recent decades, which experts predict to be more obvious in the near future with a more significant position for medicine and health care. Although the three traditional subjects, such as medical science, materials science and biology…

  2. Harnessing the potential of biomaterials for brain repair after stroke

    Science.gov (United States)

    Tuladhar, Anup; Payne, Samantha L.; Shoichet, Molly S.

    2018-03-01

    Stroke is a devastating disease for which no clinical treatment exists to regenerate lost tissue. Strategies for brain repair in animal models of stroke include the delivery of drug or cell-based therapeutics; however, the complex anatomy and functional organization of the brain presents many challenges. Biomaterials may alleviate some of these challenges by providing a scaffold, localizing the therapy to the site of action, and/or modulating cues to brain cells. Here, the challenges associated with delivery of therapeutics to the brain and the biomaterial strategies used to overcome these challenges are described. For example, innovative hydrogel delivery systems have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. Novel treatments, such as electrical stimulation of transplanted cells and the delivery of factors for the direct reprogramming of astrocytes into neurons, may be further enhanced by biomaterial delivery systems. Ultimately, improved clinical translation will be achieved by combining clinically relevant therapies with biomaterials strategies.

  3. INTERACTION OF BIOMATERIALS CONTAINING CALCIUM HYDROXYAPATITE/ POLY-L-LACTIDE WITH THE SIMULATED BODY FLUID

    Directory of Open Access Journals (Sweden)

    Marija Petković

    2011-12-01

    Full Text Available The purpose of biomaterials is to replace a part or a function of the body in a safe, physiologically and economically acceptable way. The process of the reconstruction of bone defects has always been a big problem in orthopedics and maxillofacial surgery. Since hydroxyapatite (HAp was detected as a component, the predominant constituent and the integral element of Mammalian bones, the development of the phospate ceramics as potential materials for implantation was enabled. This study investigated whether and in which way biomaterial calcium hydroxyapatite/poly-L-lactide (HAp/PLLA interacts with the ionic composition of the human plasma. The simulated body fluid (SBF is an artificial fluid that has the ionic composition and ionic concentration similar to the human blood plasma. HAp/PLLA was incubated for 1, 2, 3 and 5 weeks in SBF. The surfaces of both treated and untreated materials were analyzed on a scanning electron microscopy (SEM, and were also exposed to the energy dispersive X-ray spectroscopy (EDS, while SBF was submitted to the measuring of pH and electrical conductivity. However, our results indicate that the degradational changes of the material HAp/PLLA in SBF start from the surface of the treated material and that observed changes are the consequence of dissolution of its polymer component and the precipitation of the material similar to hydroxyapatite on its surface. This material shows good characteristics that place it among good candidates for the application in orthopedics and maxillofacial surgery.

  4. Evaluation of protein immobilization capacity on various carbon nanotube embedded hydrogel biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Derkus, Burak, E-mail: burakderkus@gmail.com; Emregul, Kaan Cebesoy; Emregul, Emel

    2015-11-01

    This study investigates effective immobilization of proteins, an important procedure in many fields of bioengineering and medicine, using various biomaterials. Gelatin, alginate and chitosan were chosen as polymeric carriers, and applied in both their composites and nanocomposite forms in combination with carbon nanotubes (CNTs). The prepared nano/composite structures were characterized using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TG) and contact angle analysis (CA). Electrochemical impedance spectroscopy analysis revealed gelatin composites in general to exhibit better immobilization performance relative to the native gelatin which can be attributed to enhanced film morphologies of the composite structures. Moreover, superior immobilization efficiencies were obtained with the addition of carbon nanotubes, due to their conducting and surface enhancement features, especially in the gelatin–chitosan structures due to the presence of structural active groups. - Highlights: • Various nanocomposite biomaterials were developed for efficient immobilization of proteins. • CNTs enhance the immobilization efficiency owing to their conducting and surface enhancement features. • Gelatin–chitosan–CNTs structure is promising immobilization matrix thanks to its effective CNTs binding capacity.

  5. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties.

    Science.gov (United States)

    Thian, E S; Konishi, T; Kawanobe, Y; Lim, P N; Choong, C; Ho, B; Aizawa, M

    2013-02-01

    Hydroxyapatite (HA) is a synthetic biomaterial and has been found to promote new bone formation when implanted in a bone defect site. However, its use is often limited due to its slow osteointegration rate and low antibacterial activity, particularly where HA has to be used for long term biomedical applications. This work will describe the synthesis and detailed characterization of zinc-substituted HA (ZnHA) as an alternative biomaterial to HA. ZnHA containing 1.6 wt% Zn was synthesized via a co-precipitation reaction between calcium hydroxide, orthophosphoric acid and zinc nitrate hexahydrate. Single-phase ZnHA particles with a rod-like morphology measuring ~50 nm in length and ~15 nm in width, were obtained and characterized using transmission electron microscopy and X-ray diffraction. The substitution of Zn into HA resulted in a decrease in both the a- and c-axes of the unit cell parameters, thereby causing the HA crystal structure to alter. In vitro cell culture work showed that ZnHA possessed enhanced bioactivity since an increase in the growth of human adipose-derived mesenchymal stem cells along with the bone cell differentiation markers, were observed. In addition, antibacterial work demonstrated that ZnHA exhibited antimicrobial capability since there was a significant decrease in the number of viable Staphylococcus aureus bacteria after in contact with ZnHA.

  6. BioBankWarden: A web-based system to support translational cancer research by managing clinical and biomaterial data.

    Science.gov (United States)

    Ferretti, Yuri; Miyoshi, Newton Shydeo Brandão; Silva, Wilson Araújo; Felipe, Joaquim Cezar

    2017-05-01

    Researchers of translational medicine face numerous challenges in attempting to bring research results to the bedside. This field of research covers a wide range of resources, including blood and tissue samples, which are processed for isolation of RNA and DNA to study cancer omics data (genomics, proteomics and metabolomics). Clinical information about patients׳ habits, family history, physical examinations, remissions, etc., is also important to underpin studies aimed at identifying patterns that lead to the development of cancer and to its successful treatment. Development of a web-based computer system-BioBankWarden-to manage, consolidate and integrate these diversified data, enabling cancer research groups to retrieve and analyze clinical and biomolecular data within an integrative environment. The system has a three-tier architecture comprising database, logic and user-interface layers. The system׳s integrated database and user-friendly interface allow for the control of patient records, biomaterial storage, research groups, research projects, users and biomaterial exchange. BioBankWarden can be used to store and retrieve specific information from different clinical fields linked to biomaterials collected from patients, providing the functionalities required to support translational research in the field of cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Success factors for implementing and sustaining a mature electronic medical record in a low-resource setting: a case study of iSanté in Haiti.

    Science.gov (United States)

    deRiel, E; Puttkammer, N; Hyppolite, N; Diallo, J; Wagner, S; Honoré, J G; Balan, J G; Celestin, N; Vallès, J S; Duval, N; Thimothé, G; Boncy, J; Coq, N R L; Barnhart, S

    2018-03-01

    Electronic health information systems, including electronic medical records (EMRs), have the potential to improve access to information and quality of care, among other things. Success factors and challenges for novel EMR implementations in low-resource settings have increasingly been studied, although less is known about maturing systems and sustainability. One systematic review identified seven categories of implementation success factors: ethical, financial, functionality, organizational, political, technical and training. This case study applies this framework to iSanté, Haiti's national EMR in use in more than 100 sites and housing records for more than 750 000 patients. The author group, consisting of representatives of different agencies within the Haitian Ministry of Health (MSPP), funding partner the Centers for Disease Control and Prevention (CDC) Haiti, and implementing partner the International Training and Education Center for Health (I-TECH), identify successes and lessons learned according to the seven identified categories, and propose an additional cross-cutting category, sustainability. Factors important for long-term implementation success of complex information systems are balancing investments in hardware and software infrastructure upkeep, user capacity and data quality control; designing and building a system within the context of the greater eHealth ecosystem with a plan for interoperability and data exchange; establishing system governance and strong leadership to support local system ownership and planning for system financing to ensure sustainability. Lessons learned from 10 years of implementation of the iSanté EMR system are relevant to sustainability of a full range of increasingly interrelated information systems (e.g. for laboratory, supply chain, pharmacy and human resources) in the health sector in low-resource settings. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene

  8. Influence of therapeutic radiation on polycaprolactone and polyurethane biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Shelley L. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Whittington, Abby R., E-mail: awhit@mse.vt.edu [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2016-03-01

    ABSTRACT: Biomedical polymers are exposed in vivo to ionizing radiation as implants, coatings and bystander materials. High levels of ionizing radiation (e.g. X-ray and gamma) have been reported to cause degradation and/or cross-linking in many polymers. This pilot study sought to determine causes of failure, by investigating how therapeutic radiation affects two different porous polymeric scaffolds: polycaprolactone (PCL) and polyurethane (PU). PCL is a bioresorbable material used in biomedical devices (e.g., dentistry, internal fixation devices and targeted drug delivery capsules). PU is commonly used in medical applications (e.g., coatings for pacemakers, tissue expanders, catheter tubing and wound dressings). PU was specifically fabricated to be a non-degradable polymer in this study. Porous scaffolds, fabricated using solvent casting and/or salt leeching techniques, were placed in phosphate buffered saline (PBS, pH = 7.4) and exposed to typical cancer radiotherapy. A total dose of 50 Gy was broken into 25 doses over an eleven-week period. Collected PBS was tested for polymer leachants and degradation products using Gas Chromatography Mass Spectroscopy (GC–MS), results revealed no analyzable leachants from either polymer. Scaffolds were characterized using Environmental Scanning Electron Microscopy, Size-exclusion chromatography (SEC), Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FTIR). No gross visual changes were observed in either polymer, however PU exhibited microstructure changes after irradiation. Increased number average molecular weight and weight average molecular weight in PCL and PU were observed after irradiation, indicating crosslinking. PU displayed an increase in intrinsic viscosity that further confirms increased crosslinking. PCL and PU showed decreases in crystallinity after irradiation, and PU crystallinity shifted from long-range-order hard segments to short-range-order hard segments after

  9. The effect of different implant biomaterials on the behavior of canine bone marrow stromal cells during their differentiation into osteoblasts.

    Science.gov (United States)

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Şen, B H; Deliloğlu-Gürhan, S I

    2016-08-01

    We investigated the effects of different implant biomaterials on cultured canine bone marrow stromal cells (BMSC) undergoing differentiation into osteoblasts (dBMSC). BMSC were isolated from canine humerus by marrow aspiration, cultured and differentiated on calcium phosphate scaffold (CPS), hydroxyapatite, hydroxyapatite in gel form and titanium mesh. We used the MTT method to determine the effects of osteogenic media on proliferation. The characteristics of dBMSC were assessed using alizarin red (AR), immunocytochemistry and osteoblastic markers including alkaline phosphatase/von Kossa (ALP/VK), osteocalcin (OC) and osteonectin (ON), and ELISA. The morphology of dBMSC on the biomaterials was investigated using inverted phase contrast microscopy and scanning electron microscopy. We detected expression of ALP/VK, AR, OC and ON by day 7 of culture; expression increased from day 14 until day 21. CPS supported the best adhesion, cell spreading, proliferation and differentiation of BMSCs. The effects of the biomaterials depended on their surface properties. Expression of osteoblastic markers showed that canine dBMSCs became functional osteoblasts. Tissue engineered stem cells can be useful clinically for autologous implants for treating bone wounds.

  10. A partnership model for implementing electronic health records in resource-limited primary care settings: experiences from two nurse-managed health centers.

    Science.gov (United States)

    Dennehy, Patricia; White, Mary P; Hamilton, Andrew; Pohl, Joanne M; Tanner, Clare; Onifade, Tiffiani J; Zheng, Kai

    2011-01-01

    To present a partnership-based and community-oriented approach designed to ease provider anxiety and facilitate the implementation of electronic health records (EHR) in resource-limited primary care settings. The approach, referred to as partnership model, was developed and iteratively refined through the research team's previous work on implementing health information technology (HIT) in over 30 safety net practices. This paper uses two case studies to illustrate how the model was applied to help two nurse-managed health centers (NMHC), a particularly vulnerable primary care setting, implement EHR and get prepared to meet the meaningful use criteria. The strong focus of the model on continuous quality improvement led to eventual implementation success at both sites, despite difficulties encountered during the initial stages of the project. There has been a lack of research, particularly in resource-limited primary care settings, on strategies for abating provider anxiety and preparing them to manage complex changes associated with EHR uptake. The partnership model described in this paper may provide useful insights into the work shepherded by HIT regional extension centers dedicated to supporting resource-limited communities disproportionally affected by EHR adoption barriers. NMHC, similar to other primary care settings, are often poorly resourced, understaffed, and lack the necessary expertise to deploy EHR and integrate its use into their day-to-day practice. This study demonstrates that implementation of EHR, a prerequisite to meaningful use, can be successfully achieved in this setting, and partnership efforts extending far beyond the initial software deployment stage may be the key.

  11. Bioinformatics: Cheap and robust method to explore biomaterial from Indonesia biodiversity

    Science.gov (United States)

    Widodo

    2015-02-01

    Indonesia has a huge amount of biodiversity, which may contain many biomaterials for pharmaceutical application. These resources potency should be explored to discover new drugs for human wealth. However, the bioactive screening using conventional methods is very expensive and time-consuming. Therefore, we developed a methodology for screening the potential of natural resources based on bioinformatics. The method is developed based on the fact that organisms in the same taxon will have similar genes, metabolism and secondary metabolites product. Then we employ bioinformatics to explore the potency of biomaterial from Indonesia biodiversity by comparing species with the well-known taxon containing the active compound through published paper or chemical database. Then we analyze drug-likeness, bioactivity and the target proteins of the active compound based on their molecular structure. The target protein was examined their interaction with other proteins in the cell to determine action mechanism of the active compounds in the cellular level, as well as to predict its side effects and toxicity. By using this method, we succeeded to screen anti-cancer, immunomodulators and anti-inflammation from Indonesia biodiversity. For example, we found anticancer from marine invertebrate by employing the method. The anti-cancer was explore based on the isolated compounds of marine invertebrate from published article and database, and then identified the protein target, followed by molecular pathway analysis. The data suggested that the active compound of the invertebrate able to kill cancer cell. Further, we collect and extract the active compound from the invertebrate, and then examined the activity on cancer cell (MCF7). The MTT result showed that the methanol extract of marine invertebrate was highly potent in killing MCF7 cells. Therefore, we concluded that bioinformatics is cheap and robust way to explore bioactive from Indonesia biodiversity for source of drug and another

  12. Radiation Engineering of Functional Biomaterials: From Smart Hydrogels to Theragnostic Nanodevices

    International Nuclear Information System (INIS)

    Dispenza, C.; Spadaro, G.; Alessi, S.

    2009-01-01

    Radiation engineering represents an important tool in “nanobiotechology”. The possibility of manipulating photons and electrons alongside the possibility of manipulating macromolecules and biomolecules offers to the scientist and technologist an irresistible convergence of experimental tools for the generation of new or improved functional biomaterials. The versatility and the untapped potential of this approach may contribute in understanding, developing and exploring the role of nanobiomaterials in emerging research fields, such as biomolecules detection and/or delivery. In this short review, after an introductory part that describe the motivation of this research, we present some of the approaches we developed in the recent years for the synthesis and characterization of smart hydrogels for controlled delivery of proteins and for radiation engineering of nanostructured hydrogels that possess electrochemical activity and some novel optical properties. (author)

  13. Novel chemically modified bacterial cellulose nanocomposite as potential biomaterial for stem cell therapy applications.

    Science.gov (United States)

    Xavier Acasigua, Gerson Arisoly; de Olyveira, Gabriel Molina; Manzine Costa, Ligia Maria; Braghirolli, Daikelly Iglesias; Medeiros Fossati, Anna Christina; Guastaldi, Antonio Carlos; Pranke, Patricia; Daltro, Gildásio de Cerqueira; Basmaji, Pierre

    2014-03-01

    Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of applied scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of hyaluronic acid and gelatin (1% w/w) to the culture medium before the bacteria is inoculated. Hyaluronic acid and gelatin influence in bacterial cellulose was analyzed using Transmission Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adhesion and viability studies with human dental pulp stem cells using natural bacterial cellulose/hyaluronic acid as scaffolds for regenerative medicine are presented for the first time in this work. MTT viability assays show higher cell adhesion in bacterial cellulose/gelatin and bacterial cellulose/ hyaluronic acid scaffolds over time with differences due to fiber agglomeration in bacterial cellulose/gelatin. Confocal microscopy images showed that the cell were adhered and well distributed within the fibers in both types of scaffolds.

  14. Utility of the electronic information resource UpToDate for clinical decision-making at bedside rounds.

    Science.gov (United States)

    Phua, J; See, K C; Khalizah, H J; Low, S P; Lim, T K

    2012-02-01

    Clinical questions often arise at daily hospital bedside rounds. Yet, little information exists on how the search for answers may be facilitated. The aim of this prospective study was, therefore, to evaluate the overall utility, including the feasibility and usefulness of incorporating searches of UpToDate, a popular online information resource, into rounds. Doctors searched UpToDate for any unresolved clinical questions during rounds for patients in general medicine and respiratory wards, and in the medical intensive care unit of a tertiary teaching hospital. The nature of the questions and the results of the searches were recorded. Searches were deemed feasible if they were completed during the rounds and useful if they provided a satisfactory answer. A total of 157 UpToDate searches were performed during the study period. Questions were raised by all ranks of clinicians from junior doctors to consultants. The searches were feasible and performed immediately during rounds 44% of the time. Each search took a median of three minutes (first quartile: two minutes, third quartile: five minutes). UpToDate provided a useful and satisfactory answer 75% of the time, a partial answer 17% of the time and no answer 9% of the time. It led to a change in investigations, diagnosis or management 37% of the time, confirmed what was originally known or planned 38% of the time and had no effect 25% of the time. Incorporating UpToDate searches into daily bedside rounds was feasible and useful in clinical decision-making.

  15. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Ken Kono

    Full Text Available Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.

  16. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs

    Directory of Open Access Journals (Sweden)

    K Ishihara

    2000-01-01

    Full Text Available Novel polymer biomaterials, which can be used in contact with blood, are prepared with strong inspiration from the surface structure of biomembrane. That is, the polymers with a phospholipid polar group in the side chain, 2-methacrylooyloxyethyl phosphorylcholine (MPC polymers were synthesized. The MPC polymers can inhibit surface-induced clot formation effectively, when they are in contact with blood even in the absence of an anticoagulant. This phenomenon was due to the reduction of plasma protein and suppression of denaturation of adsorbed proteins, that is the MPC polymers interact with blood components very mildly. As the molecular structure of the MPC polymer was easily designed by changing the monomer units and their composition, it could be applied to surface modification of artificial organs and biomedical devices for improving blood and tissue compatibility. Thus, the MPC polymers are useful polymer biomaterials for manufacturing high performance artificial organs and biomedical devices to provide safe medical treatments.

  17. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  18. Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities

    Directory of Open Access Journals (Sweden)

    Sylvain Deville

    2010-03-01

    Full Text Available The freeze-casting of porous materials has received a great deal of attention during the past few years. This simple process, where a material suspension is simply frozen and then sublimated, provides materials with unique porous architectures, where the porosity is almost a direct replica of the frozen solvent crystals. This review focuses on the recent results on the process and the derived porous structures with regards to the biomaterials applications. Of particular interest is the architecture of the materials and the versatility of the process, which can be readily controlled and applied to biomaterials applications. A careful control of the starting formulation and processing conditions is required to control the integrity of the structure and resulting properties. Further in vitro and in vivo investigations are required to validate the potential of this new class of porous materials.

  19. Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.

    Science.gov (United States)

    Green, D W; Watson, G S; Watson, J A; Lee, D-J; Lee, J-M; Jung, H-S

    2016-09-15

    Regenerative medicine and biomaterials design are driven by biomimicry. There is the essential requirement to emulate human cell, tissue, organ and physiological complexity to ensure long-lasting clinical success. Biomimicry projects for biomaterials innovation can be re-invigorated with evolutionary insights and perspectives, since Darwinian evolution is the original dynamic process for biological organisation and complexity. Many existing human inspired regenerative biomaterials (defined as a nature generated, nature derived and nature mimicking structure, produced within a biological system, which can deputise for, or replace human tissues for which it closely matches) are without important elements of biological complexity such as, hierarchy and autonomous actions. It is possible to engineer these essential elements into clinical biomaterials via bioinspired implementation of concepts, processes and mechanisms played out during Darwinian evolution; mechanisms such as, directed, computational, accelerated evolutions and artificial selection contrived in the laboratory. These dynamos for innovation can be used during biomaterials fabrication, but also to choose optimal designs in the regeneration process. Further evolutionary information can help at the design stage; gleaned from the historical evolution of material adaptations compared across phylogenies to changes in their environment and habitats. Taken together, harnessing evolutionary mechanisms and evolutionary pathways, leading to ideal adaptations, will eventually provide a new class of Darwinian and evolutionary biomaterials. This will provide bioengineers with a more diversified and more efficient innovation tool for biomaterial design, synthesis and function than currently achieved with synthetic materials chemistry programmes and rational based materials design approach, which require reasoned logic. It will also inject further creativity, diversity and richness into the biomedical technologies that

  20. An introduction to biomaterial-based strategies for curbing autoimmunity.

    Science.gov (United States)

    Lewis, Jamal S; Allen, Riley P

    2016-05-01

    Recently, scientists have made significant progress in the development of immunotherapeutics that correct aberrant, autoimmune responses. Yet, concerns about the safety, efficacy, and wide scale applicability continue to hinder use of contemporary, immunology-based strategies. There is a clear need for therapies that finely control molecular and cellular elements of the immune system. Biomaterial engineers have taken up this challenge to develop therapeutics with selective spatial and temporal control of immune cells. In this review, we introduce the immunology of autoimmune disorders, survey the current therapeutic strategies for autoimmune diseases, and highlight the ongoing research efforts to engineer the immune system using biomaterials, for positive therapeutic outcomes in treatment of autoimmune disorders. © 2016 by the Society for Experimental Biology and Medicine.

  1. Pharmaceutical and biomaterial engineering via electrohydrodynamic atomization technologies.

    Science.gov (United States)

    Mehta, Prina; Haj-Ahmad, Rita; Rasekh, Manoochehr; Arshad, Muhammad S; Smith, Ashleigh; van der Merwe, Susanna M; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2017-01-01

    Complex micro- and nano-structures enable crucial developments in the healthcare remit (e.g., pharmaceutical and biomaterial sciences). In recent times, several technologies have been developed and explored to address key healthcare challenges (e.g., advanced chemotherapy, biomedical diagnostics and tissue regeneration). Electrohydrodynamic atomization (EHDA) technologies are rapidly emerging as promising candidates to address these issues. The fundamental principle driving EHDA engineering relates to the action of an electric force (field) on flowing conducting medium (formulation) giving rise to a stable Taylor cone. Through careful optimization of process parameters, material properties and selection, nozzle and needle design, and collection substrate method, complex active micro- and nano-structures are engineered. This short review focuses on key selected recent and established advances in the field of pharmaceutical and biomaterial applications. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Berry, T.; Narayan, R.

    2010-11-29

    Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examined the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.

  3. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    Science.gov (United States)

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  4. Cyclodextrin Nanoparticles Bearing 8-Hydroxyquinoline Ligands as Multifunctional Biomaterials.

    Science.gov (United States)

    Oliveri, Valentina; Bellia, Francesco; Vecchio, Graziella

    2017-03-28

    Cyclodextrins are used as building blocks for the development of a host of polymeric biomaterials. The cyclodextrin polymers have found numerous applications as they exhibit unique features such as mechanical properties, stimuli responsiveness and drug loading ability. Notwithstanding the abundance of cyclodextrin polymers studied, metal-chelating polymers based on cyclodextrins have been poorly explored. Herein we report the synthesis and the characterization of the first metal-chelating β-cyclodextrin polymer bearing 8-hydroxyquinoline ligands. The metal ions (Cu 2+ or Zn 2+ ) can modulate the assembly of the polymer nanoparticles. Moreover, the protective activity of the new chelating polymer against self- and metal-induced Aβ aggregation and free radical species are significantly higher than those of the parent compounds. These synergistic effects suggest that the incorporation of hydroxyquinoline moieties into a soluble β-cyclodextrin polymer could represent a promising strategy to design multifunctional biomaterials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The role of biomaterials in the treatment of meniscal tears

    Directory of Open Access Journals (Sweden)

    Crystal O. Kean

    2017-11-01

    Full Text Available Extensive investigations over the recent decades have established the anatomical, biomechanical and functional importance of the meniscus in the knee joint. As a functioning part of the joint, it serves to prevent the deterioration of articular cartilage and subsequent osteoarthritis. To this end, meniscus repair and regeneration is of particular interest from the biomaterial, bioengineering and orthopaedic research community. Even though meniscal research is previously of a considerable volume, the research community with evolving material science, biology and medical advances are all pushing toward emerging novel solutions and approaches to the successful treatment of meniscal difficulties. This review presents a tactical evaluation of the latest biomaterials, experiments to simulate meniscal tears and the state-of-the-art materials and strategies currently used to treat tears.

  6. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial

    International Nuclear Information System (INIS)

    Yu, Jian; Zhang, Wenyun; Li, Yang; Wang, Gang; Yang, Lidou; Jin, Jianfeng; Chen, Qinghua; Huang, Minghua

    2015-01-01

    Postoperative infections remain a risk factor that leads to failures in oral and maxillofacial artificial bone transplantation. This study aimed to synthesize and evaluate a novel hydroxyapatite whisker (HAPw) / nano zinc oxide (n-ZnO) antimicrobial bone restorative biomaterial. A scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD) were employed to characterize and analyze the material. Antibacterial capabilities against Staphylococcus aureus, Escherichia coli, Candida albicans and Streptococcus mutans were determined by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), and kinetic growth inhibition assays were performed under darkness and simulated solar irradiation. The mode of antibiotic action was observed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The MIC and MBC were 0.078–1.250 mg ml −1 and 0.156–2.500 mg ml −1 , respectively. The inhibitory function on the growth of the microorganisms was achieved even under darkness, with gram-positive bacteria found to be more sensitive than gram-negative, and enhanced antimicrobial activity was exhibited under simulated solar excitation compared to darkness. TEM and CLSM images revealed a certain level of bacterial cell membrane destruction after treatment with 1 mg ml −1 of the material for 12 h, causing the leakage of intracellular contents and bacteria death. These results suggest favorable antibiotic properties and a probable mechanism of the biomaterial for the first time, and further studies are needed to determine its potential application as a postoperative anti-inflammation method in bone transplantation. (paper)

  7. Effect of deproteination on bone mineral morphology: implications for biomaterials and aging.

    Science.gov (United States)

    Carter, D H; Scully, A J; Heaton, D A; Young, M P J; Aaron, J E

    2002-09-01

    Bone mineral morphology is altered by processing and this is rarely considered when preparing bone as a bioimplant material. To examine the degree of transformation, a commercial, coarsely particulate bone mineral biomaterial produced by prolonged deproteination, defatting, dehydration, and heating (donor material) was compared with similar particles of human bone (recipient material) prepared optimally by low-temperature milling. The two powders were freeze-substituted and embedded without thawing in Lowicryl K4M before sectioning for transmission electron microscopy (TEM) (other aliquots were processed by traditional TEM methods). To maximize resolution, electron micrographs were image-enhanced by digitization and printed as negatives using a Polaroid Sprint Scan 45. In addition to their morphology, the particles were examined for antigenicity (specific by reference to fluorescein isothiocyanate [FITC]-conjugated fibronectin, and nonspecific by reference to general FITC-conjugated immunoglobulins). Results showed that the optimally prepared human bone fragments stained discretely for fibronectin with negligible background autofluorescence. In contrast, the bioimplant fragments stained extensively with this and any other FITC-conjugated antibody and, unlike fresh bone, it also autofluoresced a uniform yellow. This difference was also expressed structurally and, although the bioimplant mineral consisted of rhomboidal plates up to 200 nm across and 10 nm thick, the optimally prepared bone mineral was composed of numerous clusters of 5-nm-wide sinuous calcified filaments of variable density and indeterminate length (which became straight needles 50 nm long and 5 nm thick following traditional chemical TEM fixation/staining). It was concluded that the inorganic phase of bone is both morphologically and immunologically transmutable and that, in biomaterials, the transformation is apparently so great that a broad indigenous antigenicity is unmasked, increasing the

  8. Improving Biomaterials Imaging for Nanotechnology: Rapid Methods for Protein Localization at Ultrastructural Level.

    Science.gov (United States)

    Cano-Garrido, Olivia; Garcia-Fruitós, Elena; Villaverde, Antonio; Sánchez-Chardi, Alejandro

    2018-04-01

    The preparation of biological samples for electron microscopy is material- and time-consuming because it is often based on long protocols that also may produce artifacts. Protein labeling for transmission electron microscopy (TEM) is such an example, taking several days. However, for protein-based nanotechnology, high resolution imaging techniques are unique and crucial tools for studying the spatial distribution of these molecules, either alone or as components of biomaterials. In this paper, we tested two new short methods of immunolocalization for TEM, and compared them with a standard protocol in qualitative and quantitative approaches by using four protein-based nanoparticles. We reported a significant increase of labeling per area of nanoparticle in both new methodologies (H = 19.811; p < 0.001) with all the model antigens tested: GFP (H = 22.115; p < 0.001), MMP-2 (H = 19.579; p < 0.001), MMP-9 (H = 7.567; p < 0.023), and IFN-γ (H = 62.110; p < 0.001). We also found that the most suitable protocol for labeling depends on the nanoparticle's tendency to aggregate. Moreover, the shorter methods reduce artifacts, time (by 30%), residues, and reagents hindering, losing, or altering antigens, and obtaining a significant increase of protein localization (of about 200%). Overall, this study makes a step forward in the development of optimized protocols for the nanoscale localization of peptides and proteins within new biomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Advances in Zirconia Toughened Alumina Biomaterials for Total Joint Replacement

    Science.gov (United States)

    Kurtz, Steven M.; Kocagöz, Sevi; Arnholt, Christina; Huet, Roland; Ueno, Masaru; Walter, William L.

    2014-01-01

    The objective of this article is to provide an up-to-date overview of zirconia-toughened alumina (ZTA) components used in total hip arthroplasties. The structure, mechanical properties, and available data regarding the clinical performance of ZTA are summarized. The advancements that have been made in understanding the in vivo performance of ZTA are investigated. This article concludes with a discussion of gaps in the literature related to ceramic biomaterials and avenues for future research. PMID:23746930

  10. Multicenter Clinical Trial of Keratin Biomaterial for Peripheral Nerve Regeneration

    Science.gov (United States)

    2012-10-01

    the issues associated w ith the use of autografts, nerve gui dance conduits have been developed to bridge the gap between the trans ected nerve ends...Biomaterial Hydrogel" Western North Carolina Society for Neuroscience : Winston-Salem, NC 11/2011; North Carolina Tissue Engineering and Regenerative...Technology Applications for Combat Casualty Care: St. Pete Beach, FL 8/2010; Society for Neuroscience : San Diego, CA 11/2010; Tissue Engineering and

  11. CHARACTERISATION OF CASSAVA FIBRE FOR USE AS A BIOMATERIAL

    OpenAIRE

    Lois Larbie; Claude Fiifi Hayford; Elsie Effah Kaufmann

    2012-01-01

    In this study we investigate the cytotoxicity of de-starched cassava fibre granules and fine powder using human peripheral blood mononuclear cells (PBMC) and examine changes in the composition of Simulated Body Fluid (SBF) resulting from immersion of cassava fibre samples. The purpose of the study was to characterise cassavafibre for possible biomaterial applications. Preliminary results indicate insignificant cytotoxic effects on PBMCs with cassava sample concentrations of 0.1g/ml, 0.025g/ml...

  12. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces

    OpenAIRE

    Fabiola Costa; Isabel F Carvalho; Ronald C Montelaro; Gomes, P; Cristina C L Martins

    2011-01-01

    Bacterial adhesion to biomaterials remains a major problem in the medical devices field. Antimicrobial peptides (AMPS) are well-known components of the innate immune system that can be applied to over-come biofilm-associated infections. Their relevance has been increasing as a practical alternative to conventional antibiotics, which are declining in effectiveness. The recent interest focused on these peptides can be explained by a group of special features, including a wide spectrum of activi...

  13. Biomaterials from beer manufacture waste for bone growth scaffolds

    OpenAIRE

    Martín-Luengo, María Ángeles

    2011-01-01

    Agricultural wastes are a source of renewable raw materials (RRM), with structures that can be tailored for the use envisaged. Here, theyhave proved to be good replacement candidates for use as biomaterials for the growth of osteoblasts in bone replacement therapies. Their preparation is more cost effective than that of materials presentlyin use with the added bonus of converting a low-cost waste into a value-added product. Due to their origin these solids are ecomaterials.

  14. β-pyrophosphate: A potential biomaterial for dental applications

    OpenAIRE

    Anastasiou, AD; Strafford, S; Posada-Estefan, O; Thomson, CL; Hussaein, SA; Edwards, TJ; Malinowski, M; Hondow, N; Metzger, NK; Brown, CTA; Routledge, MN; Brown, AP; Duggal, MS; Jha, A

    2017-01-01

    Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral transforms into a densified layer of acid resistant iron doped β-pyrophosphate, bonded with the surface of eroded enamel. Our aim therefore is to evaluat...

  15. β-pyrophosphate : a potential biomaterial for dental applications

    OpenAIRE

    Anastasiou, A. D.; Strafford, S.; Posada-Estefan, O.; Thomson, C. L.; Hussaein, S. A.; Edwards, T. J.; Malinowski, M.; Hondow, N.; Metzger, N. K.; Brown, C. T. A.; Routledge, M. N.; Brown, A. P.; Duggal, M. S.; Jha, A.

    2017-01-01

    The authors acknowledge support from the sponsors of this work; the EPSRC LUMIN (EP/K020234/1) and EU-Marie-Curie-IAPP LUSTRE (324538) projects. Tooth hypersensitivity is a growing problem affecting both the young and ageing population worldwide. Since an effective and permanent solution is not yet available, we propose a new methodology for the restoration of dental enamel using femtosecond lasers and novel calcium phosphate biomaterials. During this procedure the irradiated mineral trans...

  16. In silico design of anti-atherogenic biomaterials.

    Science.gov (United States)

    Lewis, Daniel R; Kholodovych, Vladyslav; Tomasini, Michael D; Abdelhamid, Dalia; Petersen, Latrisha K; Welsh, William J; Uhrich, Kathryn E; Moghe, Prabhas V

    2013-10-01

    Atherogenesis, the uncontrolled deposition of modified lipoproteins in inflamed arteries, serves as a focal trigger of cardiovascular disease (CVD). Polymeric biomaterials have been envisioned to counteract atherogenesis based on their ability to repress scavenger mediated uptake of oxidized lipoprotein (oxLDL) in macrophages. Following the conceptualization in our laboratories of a new library of amphiphilic macromolecules (AMs), assembled from sugar backbones, aliphatic chains and poly(ethylene glycol) tails, a more rational approach is necessary to parse the diverse features such as charge, hydrophobicity, sugar composition and stereochemistry. In this study, we advance a computational biomaterials design approach to screen and elucidate anti-atherogenic biomaterials with high efficacy. AMs were quantified in terms of not only 1D (molecular formula) and 2D (molecular connectivity) descriptors, but also new 3D (molecular geometry) descriptors of AMs modeled by coarse-grained molecular dynamics (MD) followed by all-atom MD simulations. Quantitative structure-activity relationship (QSAR) models for anti-atherogenic activity were then constructed by screening a total of 1164 descriptors against the corresponding, experimentally measured potency of AM inhibition of oxLDL uptake in human monocyte-derived macrophages. Five key descriptors were identified to provide a strong linear correlation between the predicted and observed anti-atherogenic activity values, and were then used to correctly forecast the efficacy of three newly designed AMs. Thus, a new ligand-based drug design framework was successfully adapted to computationally screen and design biomaterials with cardiovascular therapeutic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs

    OpenAIRE

    K Ishihara

    2000-01-01

    Novel polymer biomaterials, which can be used in contact with blood, are prepared with strong inspiration from the surface structure of biomembrane. That is, the polymers with a phospholipid polar group in the side chain, 2-methacrylooyloxyethyl phosphorylcholine (MPC) polymers were synthesized. The MPC polymers can inhibit surface-induced clot formation effectively, when they are in contact with blood even in the absence of an anticoagulant. This phenomenon was due to the reduction of plasma...

  18. Adhesion force of staphylococcus aureus on various biomaterial surfaces.

    Science.gov (United States)

    Alam, Fahad; Balani, Kantesh

    2017-01-01

    Staphylococcus comprises of more than half of all pathogens in orthopedic implant infections and they can cause major bone infection which can result in destruction of joint and bone. In the current study, adhesion force of bacteria on the surface of various biomaterial surfaces is measured using atomic force microscope (AFM). Staphylococcus aureus was immobilized on an AFM tipless cantilever as a force probe to measure the adhesion force between bacteria and biomaterials (viz. ultra-high molecular weight poly ethylene (UHMWPE), stainless steel (SS), Ti-6Al-4V alloy, hydroxyapatite (HA)). At the contact time of 10s, UHMWPE shows weak adhesion force (~4nN) whereas SS showed strong adhesion force (~15nN) due to their surface energy and surface roughness. Bacterial retention and viability experiment (3M™ petrifilm test, agar plate) dictates that hydroxyapatite shows the lowest vaibility of bacteria, whereas lowest bacterial retention is observed on UHMWPE surface. Similar results were obtained from live/dead staining test, where HA shows 65% viability, whereas on UHMWPE, SS and Ti-6Al-4V, the bacterial viability is 78%, 94% and 97%, respectively. Lower adhesion forces, constrained pull-off distance (of bacterial) and high antibacterial resistance of bioactive-HA makes it a potential biomaterial for bone-replacement arthroplasty. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Silicon: the evolution of its use in biomaterials.

    Science.gov (United States)

    Henstock, J R; Canham, L T; Anderson, S I

    2015-01-01

    In the 1970s, several studies revealed the requirement for silicon in bone development, while bioactive silicate glasses simultaneously pioneered the current era of bioactive materials. Considerable research has subsequently focused on the chemistry and biological function of silicon in bone, demonstrating that the element has at least two separate effects in the extracellular matrix: (i) interacting with glycosaminoglycans and proteoglycans during their synthesis, and (ii) forming ionic substitutions in the crystal lattice structure of hydroxyapatite. In addition, the dissolution products of bioactive glass (predominantly silicic acids) have significant effects on the molecular biology of osteoblasts in vitro, regulating the expression of several genes including key osteoblastic markers, cell cycle regulators and extracellular matrix proteins. Researchers have sought to capitalize on these effects and have generated a diverse array of biomaterials, which include bioactive glasses, silicon-substituted hydroxyapatites and pure, porosified silicon, but all these materials share similarities in the mechanisms that result in their bioactivity. This review discusses the current data obtained from original research in biochemistry and biomaterials science supporting the role of silicon in bone, comparing both the biological function of the element and analysing the evolution of silicon-containing biomaterials. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Biomaterial property-controlled stem cell fates for cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Yanyi Xu

    2016-09-01

    Full Text Available Myocardial infarction (MI affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes.

  1. Biomaterials in Cardiovascular Research: Applications and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Saravana Kumar Jaganathan

    2014-01-01

    Full Text Available Cardiovascular biomaterials (CB dominate the category of biomaterials based on the demand and investments in this field. This review article classifies the CB into three major classes, namely, metals, polymers, and biological materials and collates the information about the CB. Blood compatibility is one of the major criteria which limit the use of biomaterials for cardiovascular application. Several key players are associated with blood compatibility and they are discussed in this paper. To enhance the compatibility of the CB, several surface modification strategies were in use currently. Some recent applications of surface modification technology on the materials for cardiovascular devices were also discussed for better understanding. Finally, the current trend of the CB, endothelization of the cardiac implants and utilization of induced human pluripotent stem cells (ihPSCs, is also presented in this review. The field of CB is growing constantly and many new investigators and researchers are developing interest in this domain. This review will serve as a one stop arrangement to quickly grasp the basic research in the field of CB.

  2. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    Directory of Open Access Journals (Sweden)

    Bressan Eriberto

    2012-01-01

    Full Text Available Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering.

  3. An injectable shear-thinning biomaterial for endovascular embolization.

    Science.gov (United States)

    Avery, Reginald K; Albadawi, Hassan; Akbari, Mohsen; Zhang, Yu Shrike; Duggan, Michael J; Sahani, Dushyant V; Olsen, Bradley D; Khademhosseini, Ali; Oklu, Rahmi

    2016-11-16

    Improved endovascular embolization of vascular conditions can generate better patient outcomes and minimize the need for repeat procedures. However, many embolic materials, such as metallic coils or liquid embolic agents, are associated with limitations and complications such as breakthrough bleeding, coil migration, coil compaction, recanalization, adhesion of the catheter to the embolic agent, or toxicity. Here, we engineered a shear-thinning biomaterial (STB), a nanocomposite hydrogel containing gelatin and silicate nanoplatelets, to function as an embolic agent for endovascular embolization procedures. STBs are injectable through clinical catheters and needles and have hemostatic activity comparable to metallic coils, the current gold standard. In addition, STBs withstand physiological pressures without fragmentation or displacement in elastomeric channels in vitro and in explant vessels ex vivo. In vitro experiments also indicated that STB embolization did not rely on intrinsic thrombosis as coils did for occlusion, suggesting that the biomaterial may be suitable for use in patients on anticoagulation therapy or those with coagulopathy. Using computed tomography imaging, the biomaterial was shown to fully occlude murine and porcine vasculature in vivo and remain at the site of injection without fragmentation or nontarget embolization. Given the advantages of rapid delivery, in vivo stability, and independent occlusion that does not rely on intrinsic thrombosis, STBs offer an alternative gel-based embolic agent with translational potential for endovascular embolization. Copyright © 2016, American Association for the Advancement of Science.

  4. Designing protein-based biomaterials for medical applications.

    Science.gov (United States)

    Gagner, Jennifer E; Kim, Wookhyun; Chaikof, Elliot L

    2014-04-01

    Biomaterials produced by nature have been honed through billions of years, evolving exquisitely precise structure-function relationships that scientists strive to emulate. Advances in genetic engineering have facilitated extensive investigations to determine how changes in even a single peptide within a protein sequence can produce biomaterials with unique thermal, mechanical and biological properties. Elastin, a naturally occurring protein polymer, serves as a model protein to determine the relationship between specific structural elements and desirable material characteristics. The modular, repetitive nature of the protein facilitates the formation of well-defined secondary structures with the ability to self-assemble into complex three-dimensional architectures on a variety of length scales. Furthermore, many opportunities exist to incorporate other protein-based motifs and inorganic materials into recombinant protein-based materials, extending the range and usefulness of these materials in potential biomedical applications. Elastin-like polypeptides (ELPs) can be assembled into 3-D architectures with precise control over payload encapsulation, mechanical and thermal properties, as well as unique functionalization opportunities through both genetic and enzymatic means. An overview of current protein-based materials, their properties and uses in biomedicine will be provided, with a focus on the advantages of ELPs. Applications of these biomaterials as imaging and therapeutic delivery agents will be discussed. Finally, broader implications and future directions of these materials as diagnostic and therapeutic systems will be explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Biomaterials and Culture Technologies for Regenerative Therapy of Liver Tissue.

    Science.gov (United States)

    Perez, Roman A; Jung, Cho-Rok; Kim, Hae-Won

    2017-01-01

    Regenerative approach has emerged to substitute the current extracorporeal technologies for the treatment of diseased and damaged liver tissue. This is based on the use of biomaterials that modulate the responses of hepatic cells through the unique matrix properties tuned to recapitulate regenerative functions. Cells in liver preserve their phenotype or differentiate through the interactions with extracellular matrix molecules. Therefore, the intrinsic properties of the engineered biomaterials, such as stiffness and surface topography, need to be tailored to induce appropriate cellular functions. The matrix physical stimuli can be combined with biochemical cues, such as immobilized functional groups or the delivered actions of signaling molecules. Furthermore, the external modulation of cells, through cocultures with nonparenchymal cells (e.g., endothelial cells) that can signal bioactive molecules, is another promising avenue to regenerate liver tissue. This review disseminates the recent approaches of regenerating liver tissue, with a focus on the development of biomaterials and the related culture technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Engineering Biomaterial Properties for Central Nervous System Applications

    Science.gov (United States)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  7. Application of ion beams for polymeric carbon based biomaterials

    Science.gov (United States)

    Evelyn, A. L.

    2001-07-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials.

  8. Comprehensive evaluation of electronic medical record system use and user satisfaction at five low-resource setting hospitals in ethiopia.

    Science.gov (United States)

    Tilahun, Binyam; Fritz, Fleur

    2015-05-25

    Electronic medical record (EMR) systems are increasingly being implemented in hospitals of developing countries to improve patient care and clinical service. However, only limited evaluation studies are available concerning the level of adoption and determinant factors of success in those settings. The objective of this study was to assess the usage pattern, user satisfaction level, and determinants of health professional's satisfaction towards a comprehensive EMR system implemented in Ethiopia where parallel documentation using the EMR and the paper-based medical records is in practice. A quantitative, cross-sectional study design was used to assess the usage pattern, user satisfaction level, and determinant factors of an EMR system implemented in Ethiopia based on the DeLone and McLean model of information system success. Descriptive statistical methods were applied to analyze the data and a binary logistic regression model was used to identify determinant factors. Health professionals (N=422) from five hospitals were approached and 406 responded to the survey (96.2% response rate). Out of the respondents, 76.1% (309/406) started to use the system immediately after implementation and user training, but only 31.7% (98/309) of the professionals reported using the EMR during the study (after 3 years of implementation). Of the 12 core EMR functions, 3 were never used by most respondents, and they were also unaware of 4 of the core EMR functions. It was found that 61.4% (190/309) of the health professionals reported over all dissatisfaction with the EMR (median=4, interquartile range (IQR)=1) on a 5-level Likert scale. Physicians were more dissatisfied (median=5, IQR=1) when compared to nurses (median=4, IQR=1) and the health management information system (HMIS) staff (median=2, IQR=1). Of all the participants, 64.4% (199/309) believed that the EMR had no positive impact on the quality of care. The participants indicated an agreement with the system and information

  9. Freezing-induced deformation of biomaterials in cryomedicine

    Science.gov (United States)

    Ozcelikkale, Altug

    Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water

  10. Interactions between biomaterials and the sclera: Implications on myopia progression

    Science.gov (United States)

    Su, James

    Myopia prevalence has steadily climbed worldwide in recent decades with the most dramatic impact in East Asian countries. Treatments such as eyeglasses, contact lenses, and laser surgery for the refractive error are widely available, but none cures the underlying cause. In progressive high myopia, invasive surgical procedures using a scleral buckle for mechanical support are performed since the patient is at risk of becoming blind. The treatment outcome is highly dependent on the surgeon's skills and the patient's myopia progression rate, with limited choices in buckling materials. This dissertation, in four main studies, represents efforts made to control high myopia progression through the exploration and development of biomaterials that influence scleral growth. First, mRNA expression levels of the chick scleral matrix metalloproteinases, tissue-inhibitor of matrix metalloproteinases, and transforming growth factor-beta 2 were assessed for temporal and defocus power effects. The first study elucidated the roles that these factors play in scleral growth regulation and suggested potential motifs that can be incorporated in future biomaterials design. Second, poly(vinyl-pyrrolidone) as injectable gels and poly(2-hydroxyethyl methacrylate) as solid strips were implanted in chicks to demonstrate the concept of posterior pole scleral reinforcements. This second study found that placing appropriate biomaterials at the posterior pole of the eye could directly influence scleral remodeling by interacting with the host cells. Both studies advanced the idea that scleral tissue remodeling could be potentially controlled by well-designed biomaterials. These findings led to the exploration of biomimetic hydrogels comprising enzymatically-degradable semi-interpenetrating polymer networks (edsIPNs) to determine their biocompatibility and effects on the chick posterior eye wall. This third study demonstrated the feasibility of stimulating scleral growth by applying biomimetic

  11. The role of biomaterial properties in peri-implant neovascularization

    Science.gov (United States)

    Raines, Andrew Lawrence

    An understanding of the interactions between orthopaedic and dental implant surfaces with the surrounding host tissue is critical in the design of next generation implants to improve osseointegration and clinical success rates. Critical to the process of osseointegration is the rapid establishment of a patent neovasculature in the peri-implant space to allow for the delivery of oxygen, nutrients, and progenitor cells. The central aim of this thesis is to understand how biomaterials regulate cellular and host tissue response to elicit a pro-angiogenic microenvironment at the implant/tissue interface. To address this question, the studies performed in this thesis aim to (1) determine whether biomaterial surface properties can modulate the production and secretion of pro-angiogenic growth factors by cells, (2) determine the role of integrin and VEGF-A signaling in the angiogenic response of cells to implant surface features, and (3) to determine whether neovascularization in response to an implanted biomaterial can be modulated in vivo. The results demonstrate that biomaterial surface microtopography and surface energy can increase the production of pro-angiogenic growth factors by osteoblasts and that these growth factors stimulate the differentiation of endothelial cells in a paracrine manner and the results suggest that signaling through specific integrin receptors affects the production of angiogenic growth factors by osteoblast-like cells. Further, using a novel in vivo model, the results demonstrate that a combination of a rough surface microtopography and high surface energy can improve bone-to-implant contact and neovascularization. The results of these studies also suggest that VEGF-A produced by osteoblast-like cells has both an autocrine and paracrine effect. VEGF-A silenced cells exhibited reduced production of both pro-angiogenic and osteogenic growth factors in response to surface microtopgraphy and surface energy, and conditioned media from VEGF

  12. Design strategies and applications of nacre-based biomaterials.

    Science.gov (United States)

    Gerhard, Ethan Michael; Wang, Wei; Li, Caiyan; Guo, Jinshan; Ozbolat, Ibrahim Tarik; Rahn, Kevin Michael; Armstrong, April Dawn; Xia, Jingfen; Qian, Guoying; Yang, Jian

    2017-05-01

    The field of tissue engineering and regenerative medicine relies heavily on materials capable of implantation without significant foreign body reactions and with the ability to promote tissue differentiation and regeneration. The field of bone tissue engineering in particular requires materials capable of providing enhanced mechanical properties and promoting osteogenic cell lineage commitment. While bone repair has long relied almost exclusively on inorganic, calcium phosphate ceramics such as hydroxyapatite and their composites or on non-degradable metals, the organically derived shell and pearl nacre generated by mollusks has emerged as a promising alternative. Nacre is a naturally occurring composite material composed of inorganic, calcium carbonate plates connected by a framework of organic molecules. Similar to mammalian bone, the highly organized microstructure of nacre endows the composite with superior mechanical properties while the organic phase contributes to significant bioactivity. Studies, both in vitro and in vivo, have demonstrated nacre's biocompatibility, biodegradability, and osteogenic potential, which are superior to pure inorganic minerals such as hydroxyapatite or non-degradable metals. Nacre can be used directly as a bulk implant or as part of a composite material when combined with polymers or other ceramics. While nacre has demonstrated its effectiveness in multiple cell culture and animal models, it remains a relatively underexplored biomaterial. This review introduces the formation, structure, and characteristics of nacre, and discusses the present and future uses of this biologically-derived material as a novel biomaterial for orthopedic and other tissue engineering applications. Mussel derived nacre, a biological composite composed of mineralized calcium carbonate platelets and interplatelet protein components, has recently gained interest as a potential alternative ceramic material in orthopedic biomaterials, combining the

  13. 圖書館事業專欄/Marketing of Electronic Information Resources: A Case of The J.D. Rockefeller Research Library, Egerton University/Nerisa Kamar

    Directory of Open Access Journals (Sweden)

    Nerisa Kamar

    2008-04-01

    Full Text Available

    This paper gives a brief overview of electronic information resources and services offered by The J.D. Rockefeller Research Library at Egerton University and the marketing of these resources. The paper examines the various reasons for marketing electronic information resources, with emphasis on the various, and illustrates marketing strategies used by J.D Rockefeller Research library towards effective utilization of the available resources in supporting research, teaching and learning. These strategies include use of posters, notices, brochures, telephone calls, Current Awareness Services (CAS, workshops and seminars, and decentralization of services, among others. It concludes with a discussion of cost effective use of these strategies in research and teaching.

    頁次:89-93

  14. Randomized Controlled Trial of Electronic Care Plan Alerts and Resource Utilization by High Frequency Emergency Department Users with Opioid Use Disorder

    Directory of Open Access Journals (Sweden)

    Niels Rathlev, MD

    2016-01-01

    Full Text Available Introduction: There is a paucity of literature supporting the use of electronic alerts for patients with high frequency emergency department (ED use. We sought to measure changes in opioid prescribing and administration practices, total charges and other resource utilization using electronic alerts to notify providers of an opioid-use care plan for high frequency ED patients. Methods: This was a randomized, non-blinded, two-group parallel design study of patients who had 1 opioid use disorder and 2 high frequency ED use. Three affiliated hospitals with identical electronic health records participated. Patients were randomized into “Care Plan” versus “Usual Care groups”. Between the years before and after randomization, we compared as primary outcomes the following: 1 opioids (morphine mg equivalents prescribed to patients upon discharge and administered to ED and inpatients; 2 total medical charges, and the numbers of; 3 ED visits, 4 ED visits with advanced radiologic imaging (computed tomography [CT] or magnetic resonance imaging [MRI] studies, and 5 inpatient admissions. Results: A total of 40 patients were enrolled. For ED and inpatients in the “Usual Care” group, the proportion of morphine mg equivalents received in the post-period compared with the pre-period was 15.7%, while in the “Care Plan” group the proportion received in the post-period compared with the pre-period was 4.5% (ratio=0.29, 95% CI [0.07-1.12]; p=0.07. For discharged patients in the “Usual Care” group, the proportion of morphine mg equivalents prescribed in the post-period compared with the pre-period was 25.7% while in the “Care Plan” group, the proportion prescribed in the post-period compared to the pre-period was 2.9%. The “Care Plan” group showed an 89% greater proportional change over the periods compared with the “Usual Care” group (ratio=0.11, 95% CI [0.01-0.092]; p=0.04. Care plans did not change the total charges, or, the numbers

  15. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  16. Laser induced forward transfer technique for the immobilization of biomaterials in biosensors applications (Conference Presentation)

    Science.gov (United States)

    Papazoglou, Symeon; Chatzipetrou, Marianeza; Massaouti, Maria; Zergioti, Ioanna

    2017-02-01

    Laser Induced Forward Transfer (LIFT) is a direct write technique, able to create micropatterns of biomaterials on sensing devices. In this conference we will present a new approach using LIFT for the printing and direct immobilization of biomaterials on a great variety of surfaces, for bio-sensor applications. The basic requirement for the fabrication of a biosensor is to stabilize a biomaterial that brings the physicochemical changes in close proximity to a transducer. In this direction, several immobilization methods such as covalent binding and crosslinking have been implemented. The presence of the additional functionalization steps in the biosensors fabrication, is among the main disadvantages of chemical immobilization methods. Our approach employs the LIFT technique for the direct immobilization of biomaterials, either by physical adsorption or by covalent bonding of the biomaterials. The physical adsorption of the biomaterials, occurs on hydrophobic or super-hydrophobic surfaces, due to the transition of the wetting properties of the surfaces upon the impact of the biomaterials with high velocity. The unique characteristic of LIFT technique to create high speed liquid jets, leads to the penetration of the biomaterial in the micro/nano roughness of the surface, resulting in their direct immobilization, without the need of any chemical functionalization layers. Moreover, we will also present the direct immobilization of biomaterials on Screen Printed Electrodes, for enzymatic biosensors, with a limit of detection (LOD) for catechol at 150 nM, and protein biosensors, used for the detection of herbicides, with an LOD of 8-10 nM.

  17. Fatigue performance of additively manufactured meta-biomaterials: The effects of topology and material type.

    Science.gov (United States)

    Ahmadi, S M; Hedayati, R; Li, Y; Lietaert, K; Tümer, N; Fatemi, A; Rans, C D; Pouran, B; Weinans, H; Zadpoor, A A

    2018-01-01

    Additive manufacturing (AM) techniques enable fabrication of bone-mimicking meta-biomaterials with unprecedented combinations of topological, mechanical, and mass transport properties. The mechanical performance of AM meta-biomaterials is a direct function of their topological design. It is, however, not clear to what extent the material type is important in determining the fatigue behavior of such biomaterials. We therefore aimed to determine the isolated and modulated effects of topological design and material type on the fatigue response of metallic meta-biomaterials fabricated with selective laser melting. Towards that end, we designed and additively manufactured Co-Cr meta-biomaterials with three types of repeating unit cells and three to four porosities per type of repeating unit cell. The AM meta-biomaterials were then mechanically tested to obtain their normalized S-N curves. The obtained S-N curves of Co-Cr meta-biomaterials were compared to those of meta-biomaterials with same topological designs but made from other materials, i.e. Ti-6Al-4V, tantalum, and pure titanium, available from our previous studies. We found the material type to be far more important than the topological design in determining the normalized fatigue strength of our AM metallic meta-biomaterials. This is the opposite of what we have found for the quasi-static mechanical properties of the same meta-biomaterials. The effects of material type, manufacturing imperfections, and topological design were different in the high and low cycle fatigue regions. That is likely because the cyclic response of meta-biomaterials depends not only on the static and fatigue strengths of the bulk material but also on other factors that may include strut roughness, distribution of the micro-pores created inside the struts during the AM process, and plasticity. Meta-biomaterials are a special class of metamaterials with unusual or unprecedented combinations of mechanical, physical (e.g. mass transport

  18. There is a Relationship between Resource Expenditures and Reference Transactions in Academic Libraries. A Review of: Dubnjakovic, A. (2012. Electronic resource expenditure and the decline in reference transaction statistics in academic libraries. Journal of Academic Librarianship, 38(2, 94-100. doi:10.1016/j.acalib.2012.01.001

    Directory of Open Access Journals (Sweden)

    Annie M. Hughes

    2013-03-01

    Full Text Available Objective – To provide an analysis of the impact of expenditures on electronic resourcesand gate counts on the increase or decrease in reference transactions.Design – Analysis of results of existing survey data from the National Center for Educational Statistics (NCES 2006 Academic Library Survey(ALS.Setting – Academic libraries in the United States.Subjects – 3925 academic library respondents.Methods – The author chose to use survey data collected from the 2006 ALS conducted bythe NCES. The survey included data on various topics related to academic libraries, but in the case of this study, the author chose to analyze three of the 193 variables included. The three variables: electronic books expenditure, computer hardware and software, and expenditures on bibliographic utilities, were combined into one variable called electronic resource expenditure. Gate counts were also considered as a variable. Electronic resource expenditure was also split as a variable into three groups: low, medium, and high. Multiple regression analysis and general linear modeling, along with tests of reliability, were employed. Main Results – The author determined that low, medium, and high spenders with regard to electronic resources exhibited differences in gate counts, and gate counts have an effect on reference transactions in any given week. Gate counts tend to not have much of an effect on reference transactions for the higher spenders, and higher spenders tend to have a higher number of reference transactions overall. Low spenders have lower gate counts and also a lower amount of reference transactions.Conclusion – The findings from this study show that academic libraries spending more on electronic resources also tend to have an increase with regard to reference transactions. The author also concludes that library spaces are no longer the determining factor with regard to number of reference transactions. Spending more on electronic resources is

  19. Effect of pH on physical properties of two endodontic biomaterials

    Science.gov (United States)

    Mohebbi, Pooneh; Asgary, Saeed

    2016-01-01

    Aims: To compare the surface microhardness, setting time, and elemental and topographic changes of mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) in contact with acidic, neutral, and alkaline solutions. Subjects and Methods: For evaluating 24-h and 28-day surface microhardness using Vickers test and initial setting time using Gillmore apparatus, glass molds were filled manually or ultrasonically, either with CEM or MTA and randomly immersed in solutions with acidic, neutral, and alkaline pH (5.4, 7.4, and 9.4, respectively). Topographic changes of the samples as well as energy dispersive X-ray spectra were examined using the scanning electron microscopy. Statistical Analysis Used: Data were analyzed using the Kruskal-Wallis, Mann-Whitney, Wilcoxon, one- and two-way ANOVA, Tukey's post hoc, and t-tests. Results: After 28 days, there was an increase in the microhardness for all samples (without statistical significance [P > 0.05]), except for the samples of CEM in acidic environment (P > 0.05). The setting time of MTA samples was statistically higher than CEM samples (P ≤ 0.001). The setting time of both biomaterials was significantly higher in acidic pH than other groups (P ≤ 0.005). Surface topography and elemental constituents of biomaterials were altered in different solutions. Conclusion: The surface microhardness, setting time, and elemental and topographic properties of MTA and CEM were affected by different solutions. CEM exhibited quicker setting time than MTA; however, acidic solution negatively influenced both of them. PMID:27217632

  20. Chicken eggshells (Gallus gallus domesticus) as carbonate calcium source for biomaterials production; Casca de ovo de galinha caipira (gallus gallus domesticus), como fonte de carbonato de calcio para producao de biomateriais

    Energy Technology Data Exchange (ETDEWEB)

    Junior, E.A. de O.; Bastos, J.S.B.; Silva, R.C. de S.; Macedo, H.R.A.; Macedo, M. O.C.; Bradim, A.S., E-mail: angelcassiasasilva@gmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia do Piaui (FIPI), PI (Brazil)

    2016-07-01

    The eggshells present high levels of calcium carbonate. Calcium carbonate obtained from eggshells has been used in the production of biomaterials with applications in bone regeneration, since it is biocompatible. In this work, calcium carbonate was obtained from eggshells to prepare a composite biomaterial. The presence of calcium carbonate bands was observed through spectrometry in the infrared region. Scanning electron microscopy showed the presence of calcium carbonate particles with different sizes and shapes. Carbonate predominance in the form of calcite was also observed through the X-ray diffraction.

  1. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces.

    Science.gov (United States)

    Costa, Fabíola; Carvalho, Isabel F; Montelaro, Ronald C; Gomes, P; Martins, M Cristina L

    2011-04-01

    Bacterial adhesion to biomaterials remains a major problem in the medical devices field. Antimicrobial peptides (AMPs) are well-known components of the innate immune system that can be applied to overcome biofilm-associated infections. Their relevance has been increasing as a practical alternative to conventional antibiotics, which are declining in effectiveness. The recent interest focused on these peptides can be explained by a group of special features, including a wide spectrum of activity, high efficacy at very low concentrations, target specificity, anti-endotoxin activity, synergistic action with classical antibiotics, and low propensity for developing resistance. Therefore, the development of an antimicrobial coating with such properties would be worthwhile. The immobilization of AMPs onto a biomaterial surface has further advantages as it also helps to circumvent AMPs' potential limitations, such as short half-life and cytotoxicity associated with higher concentrations of soluble peptides. The studies discussed in the current review report on the impact of covalent immobilization of AMPs onto surfaces through different chemical coupling strategies, length of spacers, and peptide orientation and concentration. The overall results suggest that immobilized AMPs may be effective in the prevention of biofilm formation by reduction of microorganism survival post-contact with the coated biomaterial. Minimal cytotoxicity and long-term stability profiles were obtained by optimizing immobilization parameters, indicating a promising potential for the use of immobilized AMPs in clinical applications. On the other hand, the effects of tethering on mechanisms of action of AMPs have not yet been fully elucidated. Therefore, further studies are recommended to explore the real potential of immobilized AMPs in health applications as antimicrobial coatings of medical devices. Copyright © 2010 Acta Materialia Inc. All rights reserved.

  2. Biomaterials from beer manufacture waste for bone growth scaffolds

    OpenAIRE

    Martin Luengo, M.A.; Yates, M.; Ramos Gomez, Milagros; Saez Rojo, E.; Martinez Serrano, Alberto; Gonzalez Gil, L.; Ruiz Hitzky, E.

    2011-01-01

    Agricultural wastes are a source of renewable raw materials (RRM), with structures that can be tailored for the use envisaged. Here, they have proved to be good replacement candidates for use as biomaterials for the growth of osteoblasts in bone replacement therapies. Their preparation is more cost effective than that of materials presently in use with the added bonus of converting a low-cost waste into a value-added product. Due to their origin these solids are ecomaterials. In this study, s...

  3. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  4. Multifunctional biomaterial coatings: synthetic challenges and biological activity.

    Science.gov (United States)

    Pagel, Mareen; Beck-Sickinger, Annette G

    2017-01-01

    A controlled interaction of materials with their surrounding biological environment is of great interest in many fields. Multifunctional coatings aim to provide simultaneous modulation of several biological signals. They can consist of various combinations of bioactive, and bioinert components as well as of reporter molecules to improve cell-material contacts, prevent infections or to analyze biochemical events on the surface. However, specific immobilization and particular assembly of various active molecules are challenging. Herein, an overview of multifunctional coatings for biomaterials is given, focusing on synthetic strategies and the biological benefits by displaying several motifs.

  5. NASA's Needs for Biomaterials within the HEDS Initiative

    Science.gov (United States)

    Gillies, Donald C.

    2000-01-01

    The part to be played by materials scientists to further NASA's exploration missions cannot be underestimated. To quote Jerome Groopman (New Yorker, February 14, 2000), "The rocket science will be the easy part". The four main risks on the Critical Path Road Map during a three-year sojourn to Mars are osteoporosis, psychological problems, radiation induced cancer and acute medical trauma. NASA's microgravity materials science program has investigations in membrane fabrication, bone growth and materials for radiation protection. These programs will be reviewed in the context of the four main risks, as will other potential uses of biomaterials and applications of biomimetic processing.

  6. Injectable silk-based biomaterials for cervical tissue augmentation: an in vitro study.

    Science.gov (United States)

    Brown, Joseph E; Partlow, Benjamin P; Berman, Alison M; House, Michael D; Kaplan, David L

    2016-01-01

    Cerclage therapy is an important treatment option for preterm birth prevention. Several patient populations benefit from cerclage therapy including patients with a classic history of cervical insufficiency; patients who present with advanced cervical dilation prior to viability; and patients with a history of preterm birth and cervical shortening. Although cerclage is an effective treatment option in some patients, it can be associated with limited efficacy and procedure complications. Development of an alternative to cerclage therapy would be an important clinical development. Here we report on an injectable, silk protein-based biomaterial for cervical tissue augmentation. The rationale for the development of an injectable biomaterial is to restore the native properties of cervical tissue. While cerclage provides support to the tissue, it does not address excessive tissue softening, which is a central feature of the pathogenesis of cervical insufficiency. Silk protein-based hydrogels, which are biocompatible and naturally degrade in vivo, are suggested as a platform for restoring the native properties of cervical tissue and improving cervical function. We sought to study the properties of an injectable, silk-based biomaterial for potential use as an alternative treatment for cervical insufficiency. These biomaterials were evaluated for mechanical tunability, biocompatibility, facile injection, and in vitro degradation. Silk protein solutions were cross-linked by an enzyme catalyzed reaction to form elastic biomaterials. Biomaterials were formulated to match the native physical properties of cervical tissue during pregnancy. The cell compatibility of the materials was assessed in vitro using cervical fibroblasts, and biodegradation was evaluated using concentrated protease solution. Tissue augmentation or bulking was demonstrated using human cervical tissue from nonpregnant hysterectomy specimens. Mechanical compression tests measured the tissue stiffness as a

  7. Titanium biomaterials with complex surfaces induced aberrant peripheral circadian rhythms in bone marrow mesenchymal stromal cells.

    Science.gov (United States)

    Hassan, Nathaniel; McCarville, Kirstin; Morinaga, Kenzo; Mengatto, Cristiane M; Langfelder, Peter; Hokugo, Akishige; Tahara, Yu; Colwell, Christopher S; Nishimura, Ichiro

    2017-01-01

    Circadian rhythms maintain a high level of homeostasis through internal feed-forward and -backward regulation by core molecules. In this study, we report the highly unusual peripheral circadian rhythm of bone marrow mesenchymal stromal cells (BMSCs) induced by titanium-based biomaterials with complex surface modifications (Ti biomaterial) commonly used for dental and orthopedic implants. When cultured on Ti biomaterials, human BMSCs suppressed circadian PER1 expression patterns, while NPAS2 was uniquely upregulated. The Ti biomaterials, which reduced Per1 expression and upregulated Npas2, were further examined with BMSCs harvested from Per1::luc transgenic rats. Next, we addressed the regulatory relationship between Per1 and Npas2 using BMSCs from Npas2 knockout mice. The Npas2 knockout mutation did not rescue the Ti biomaterial-induced Per1 suppression and did not affect Per2, Per3, Bmal1 and Clock expression, suggesting that the Ti biomaterial-induced Npas2 overexpression was likely an independent phenomenon. Previously, vitamin D deficiency was reported to interfere with Ti biomaterial osseointegration. The present study demonstrated that vitamin D supplementation significantly increased Per1::luc expression in BMSCs, though the presence of Ti biomaterials only moderately affected the suppressed Per1::luc expression. Available in vivo microarray data from femurs exposed to Ti biomaterials in vitamin D-deficient rats were evaluated by weighted gene co-expression network analysis. A large co-expression network containing Npas2, Bmal1, and Vdr was observed to form with the Ti biomaterials, which was disintegrated by vitamin D deficiency. Thus, the aberrant BMSC peripheral circadian rhythm may be essential for the integration of Ti biomaterials into bone.

  8. Political Unrest and Educational Electronic Resource Usage in a Conflict Zone, Kashmir (Indian Administered Kashmir): Log Analysis as Politico Analytical Tool=Hindistan Tarafından Yönetilen Keşmir Anlaşmazlık Bölgesi’nde Siyasi Karışıklık ve Eğitimle İlgili Elektronik Kaynakların Kullanımı: Siyasi Analiz Aracı Olarak Log Analizleri

    OpenAIRE

    Sumeer Gul; Samrin Nabi; Samina Mushtaq; Tariq Ahmad Shah; Suhail Ahmad

    2013-01-01

    Electronic resource usage has proved as one of the best decision making tools in the library setups. Electronic resource usage in relation to the political disturbance can act as one of the tools to highlight the impact of political disturbance on educational setups in general and the electronic resource usage in particular. The study takes a serious look in the electronic resource usage in Kashmir and the impact of unrest on it. The paper highlights a relational platform between educat...

  9. Biomaterials for revascularization and immunomodulation after spinal cord injury.

    Science.gov (United States)

    Haggerty, Agnes E; Maldonado-Lasuncion, Ines; Oudega, Martin

    2018-01-23

    Spinal cord injury causes immediate damage to the nervous tissue accompanied by loss of motor and sensory function. The limited self-repair competence of injured nervous tissue underscores the need for reparative interventions to recover function after spinal cord injury. The vasculature of the spinal cord plays a crucial role in spinal cord injury and repair. Ruptured and sheared blood vessels in the injury epicenter and blood vessels with a breached blood-spinal cord barrier in the surrounding tissue cause bleeding and inflammation, which contribute to the overall tissue damage. The insufficient formation of new functional vasculature in and near the injury impedes endogenous tissue repair and limits the prospect of repair approaches. Limiting the loss of blood vessels, stabilizing the blood-spinal cord barrier, and promoting the formation of new blood vessels are therapeutic targets for spinal cord repair. Inflammation is an integral part of injury-mediated vascular damage, with deleterious and reparative consequences. Inflammation and the formation of new blood vessels are intricately interwoven. Biomaterials can be effectively used for promoting and guiding blood vessel formation or modulating the inflammatory response after spinal cord injury, thereby governing the extent of damage and the success of reparative interventions. This review deals with the vasculature after spinal cord injury, the reciprocal interactions between inflammation and blood vessel formation, and the potential of biomaterials to support revascularization and immunomodulation in damaged spinal cord nervous tissue. © 2018 IOP Publishing Ltd.

  10. Teaching technological innovation and entrepreneurship in polymeric biomaterials.

    Science.gov (United States)

    Washburn, Newell R

    2011-01-01

    A model for incorporating an entrepreneurship module has been developed in an upper-division and graduate-level engineering elective on Polymeric Biomaterials (27-311/42-311/27-711/42-711) at Carnegie Mellon University. A combination of lectures, assignments, and a team-based project were used to provide students with a framework for applying their technical skills in the development of new technologies and a basic understanding of the issues related to translational research and technology commercialization. The specific approach to the project established in the course, which represented 20% of the students' grades, and the grading rubric for each of the milestones are described along with suggestions for generalizing this approach to different applications of biomaterials or other engineering electives. Incorporating this model of entrepreneurship into electives teaches students course content within the framework of technological innovation and many of the concepts and tools need to practice it. For students with situational or individual interest in the project, it would also serve to deepen their understanding of the traditional course components as well as provide a foundation for integrating technological innovation and lifelong learning. Copyright © 2010 Wiley Periodicals, Inc.

  11. Self-Assembly for the Synthesis of Functional Biomaterials.

    Science.gov (United States)

    Stephanopoulos, Nicholas; Ortony, Julia H; Stupp, Samuel I

    2013-02-01

    The use of self-assembly for the construction of functional biomaterials is a highly promising and exciting area of research, with great potential for the treatment of injury or disease. By using multiple noncovalent interactions, coded into the molecular design of the constituent components, self-assembly allows for the construction of complex, adaptable, and highly tunable materials with potent biological effects. This review describes some of the seminal advances in the use of self-assembly to make novel systems for regenerative medicine and biology. Materials based on peptides, proteins, DNA, or hybrids thereof have found application in the treatment of a wide range of injuries and diseases, and this review outlines the design principles and practical applications of these systems. Most of the examples covered focus on the synthesis of hydrogels for the scaffolding or transplantation of cells, with an emphasis on the biological, mechanical, and structural properties of the resulting materials. In addition, we will discuss the distinct advantages conferred by self-assembly (compared with traditional covalent materials), and present some of the challenges and opportunities for the next generation of self-assembled biomaterials.

  12. Programming cancer through phase-functionalized silicon based biomaterials

    Science.gov (United States)

    Premnath, Priyatha; Venkatakrishnan, Krishnan; Tan, Bo

    2015-01-01

    Applications of biomaterials in cancer therapy has been limited to drug delivery systems and markers in radiation therapy. In this article, we introduce the concept of phase-functionalization of silicon to preferentially select cancer cell populations for survival in a catalyst and additive free approach. Silicon is phase-functionalized by the interaction of ultrafast laser pulses, resulting in the formation of rare phases of SiO2 in conjunction with differing silicon crystal lattices. The degree of phase-functionalization is programmed to dictate the degree of repulsion of cancer cells. Unstable phases of silicon oxides are synthesized during phase-functionalization and remain stable at ambient conditions. This change in phase of silicon as well as formation of oxides contributes to changes in surface chemistry as well as surface energy. These material properties elicit in precise control of migration, cytoskeleton shape, direction and population. To the best of our knowledge, phase-functionalized silicon without any changes in topology or additive layers and its applications in cancer therapy has not been reported before. This unique programmable phase-functionalized silicon has the potential to change current trends in cancer research and generate focus on biomaterials as cancer repelling or potentially cancer killing surfaces. PMID:26043430

  13. Biofunctionalized Plants as Diverse Biomaterials for Human Cell Culture.

    Science.gov (United States)

    Fontana, Gianluca; Gershlak, Joshua; Adamski, Michal; Lee, Jae-Sung; Matsumoto, Shion; Le, Hau D; Binder, Bernard; Wirth, John; Gaudette, Glenn; Murphy, William L

    2017-04-01

    The commercial success of tissue engineering products requires efficacy, cost effectiveness, and the possibility of scaleup. Advances in tissue engineering require increased sophistication in the design of biomaterials, often challenging the current manufacturing techniques. Interestingly, several of the properties that are desirable for biomaterial design are embodied in the structure and function of plants. This study demonstrates that decellularized plant tissues can be used as adaptable scaffolds for culture of human cells. With simple biofunctionalization technique, it is possible to enable adhesion of human cells on a diverse set of plant tissues. The elevated hydrophilicity and excellent water transport abilities of plant tissues allow cell expansion over prolonged periods of culture. Moreover, cells are able to conform to the microstructure of the plant frameworks, resulting in cell alignment and pattern registration. In conclusion, the current study shows that it is feasible to use plant tissues as an alternative feedstock of scaffolds for mammalian cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Complement inhibition in biomaterial- and biosurface-induced thromboinflammation.

    Science.gov (United States)

    Ekdahl, Kristina N; Huang, Shan; Nilsson, Bo; Teramura, Yuji

    2016-06-01

    Therapeutic medicine today includes a vast number of procedures involving the use of biomaterials, transplantation of therapeutic cells or cell clusters, as well as of solid organs. These treatment modalities are obviously of great benefit to the patient, but also present a great challenge to the innate immune system, since they involve direct exposure of non-biological materials, cells of non-hematological origin as well as endothelial cells, damaged by ischemia-perfusion in solid organs to proteins and cells in the blood. The result of such an exposure may be an inappropriate activation of the complement and contact/kallikrein systems, which produce mediators capable of triggering the platelets and PMNs and monocytes, which can ultimately result in thrombotic and inflammatory (i.e., a thrombo-inflammatory) response to the treatment modality. In this concept review, we give an overview of the mechanisms of recognition within the innate immunity system, with the aim to identify suitable points for intervention. Finally, we discuss emerging and promising techniques for surface modification of biomaterials and cells with specific inhibitors in order to diminish thromboinflammation and improve clinical outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science

    Science.gov (United States)

    Choi, Ji Sun; Mahadik, Bhushan P.; Harley, Brendan A. C.

    2016-01-01

    Hematopoietic stem cells (HSCs) play a crucial role in the generation of the body’s blood and immune cells. This process takes place primarily in the bone marrow in specialized ‘niche’ microenvironments, which provide signals responsible for maintaining a balance between HSC quiescence, self-renewal, and lineage specification required for life-long hematopoiesis. While our understanding of these signaling mechanisms continues to improve, our ability to engineer them in vitro for the expansion of clinically relevant HSC populations is still lacking. In this review, we focus on development of biomaterials-based culture platforms for in vitro study of interactions between HSCs and their local microenvironment. The tools and techniques used for both examining HSC-niche interactions as well as applying these findings towards controlled HSC expansion or directed differentiation in 2D and 3D platforms are discussed. These novel techniques hold the potential to push the existing boundaries of HSC cultures towards high-throughput, real-time, and single-cell level biomimetic approaches that enable a more nuanced understanding of HSC regulation and function. Their application in conjunction with innovative biomaterial platforms can pave the way for engineering artificial bone marrow niches for clinical applications as well as elucidating the pathology of blood-related cancers and disorders. PMID:26356030

  16. Cell-Biomaterial Mechanical Interaction in the Framework of Tissue Engineering: Insights, Computational Modeling and Perspectives

    Science.gov (United States)

    Sanz-Herrera, Jose A.; Reina-Romo, Esther

    2011-01-01

    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields. PMID:22174660

  17. Tailoring of new polymeric biomaterials for the repair of medium-sized corneal perforations

    NARCIS (Netherlands)

    Bruining, MJ; Blaauwgeers, HGT; Kuijer, R; Jongsma, FHM; de Brabander, J; Nuijts, RMMA; Koole, LH

    2000-01-01

    The aim of this study was to investigate whether polymeric biomaterials can be designed such that they become suitable for surgical closure of medium-sized perforations in the cornea, the transparent tissue in the front of the eye. Such a biomaterial must meet stringent requirements in terms of

  18. Tissue response to a new type of biomaterial implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Boennelycke, Marie; Christensen, Lise; Nielsen, Lene Feldskov

    2011-01-01

    A new type of resorbable biomaterial intended for pelvic reconstruction was tested with respect to tissue regeneration and biocompatibility in rats. The biomaterial consisted of methoxypolyethyleneglycol-poly (lactic-co-glycolic acid) (MPEG-PLGA). Implants were pure, enriched with extra...

  19. Application of poly(trimethylene carbonate) and calcium phosphate composite biomaterials in oral and maxillofacial surgery

    NARCIS (Netherlands)

    Zeng, Ni

    2017-01-01

    This thesis has been dedicated to explore the feasibilities of applying composite biomaterials to bone reconstruction in jawbones and skulls. The composite biomaterials used in our studies are composed of a polymer matrix and various calcium phosphate particles. The polymer matrix is made of a

  20. Fatigue performance of additively manufactured meta-biomaterials : The effects of topology and material type

    NARCIS (Netherlands)

    Ahmadi, S.M.; Hedayati, R.; Li, Y; Lietaert, K.; Tümer, N.; Fatemi, A.; Rans, C.D.; Pouran, B.; Weinans, H.H.; Zadpoor, A.A.

    2018-01-01

    Additive manufacturing (AM) techniques enable fabrication of bone-mimicking meta-biomaterials with unprecedented combinations of topological, mechanical, and mass transport properties. The mechanical performance of AM meta-biomaterials is a direct function of their topological design. It is,

  1. Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials

    NARCIS (Netherlands)

    Kolken, H.M.A.; Janbaz, S.; Leeflang, M.A.; Lietaert, K.; Weinans, H.H.; Zadpoor, A.A.

    2018-01-01

    Rationally designed meta-biomaterials present unprecedented combinations of mechanical, mass transport, and biological properties favorable for tissue regeneration. Here we introduce hybrid meta-biomaterials with rationally-distributed values of negative (auxetic) and positive Poisson’s ratios, and

  2. New Models for Patient-specific Evaluation of the Effect of Biomaterials on Macrophages

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke)

    2017-01-01

    markdownabstractBiomaterials are often used in many fields of medicine to restore or replace tissue. These biomaterials always elicit a reaction of the immune system, called the foreign body reaction, which can lead to complications in patients and failure of the device. Macrophages are key players

  3. Engaging Undergraduates in an Interdisciplinary Program: Developing a Biomaterial Technology Program

    Science.gov (United States)

    Liang, Jia-chi; Kung, Shieh-shiuh; Sun, Yi-ming

    2009-01-01

    Yuan Ze University targeted Biomaterials Science and developed a curriculum related to Biotechnology, Biochemical Engineering, and Biomaterials for engineering students to cultivate talents for both engineering and biotechnology. After several years of operation, recruiting students has succeeded, and students are satisfied with the course design…

  4. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates.

    Science.gov (United States)

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E

    2012-02-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response toward the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R(prediction)(2) = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R(prediction)(2) = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. [Progress in the studies of methods for testing cytotoxicity of dental biomaterial].

    Science.gov (United States)

    Yuan, Yanbo; Zhang, Wenyun

    2009-06-01

    The favorable biocompatibility of dental biomaterial is very important, which guarantees the safety and effectiveness of its clinical application. The cytotoxicity test, as one of the biological evaluation screening tests, is known to be an important and frequently used method to evaluate biocompatibility of biomaterials. This text is devoted to an overview of the cytotoxicity test for dental materials.

  6. Western blotting as a method for studying cell-biomaterial interactions : The role of protein collection

    NARCIS (Netherlands)

    van Kooten, T.G.; Klein, CL; Kirkpatrick, CJ

    2001-01-01

    Research of cell-biomaterial interactions is building on knowledge and methods available in cell and molecular biology. Western blotting is one of the options to characterize protein expression in cell populations. Method transfer to biomaterial model systems is not trivial because of the structure

  7. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model

    NARCIS (Netherlands)

    Fisher, J.P.; Lalani, Z.; Bossano, C.M.; Brey, E.M.; Demian, N.; Johnston, C.M.; Dean, D.; Jansen, J.A.; Wong, M.E.; Mikos, A.G.

    2004-01-01

    In this work we sought to understand the effect of biomaterial properties upon healing bone tissue. We hypothesized that a hydrophilic polymer gel implanted into a bone tissue defect would impede the healing process owing to the biomaterial's prevention of protein adsorption and thus cell adhesion.

  8. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates

    Science.gov (United States)

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.

    2011-01-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715

  9. The effect of post-mastectomy radiation therapy on breast implants: Unveiling biomaterial alterations with potential implications on capsular contracture

    Energy Technology Data Exchange (ETDEWEB)

    Ribuffo, Diego; Lo Torto, Federico [Department of Plastic Surgery, “Sapienza” University of Rome, Viale del Policlinico 155, 00166 Rome (Italy); Giannitelli, Sara M. [Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome (Italy); Urbini, Marco; Tortora, Luca [Surface Analysis Laboratory, Department of Mathematics and Physics, University “Roma Tre”, Via della Vasca Navale 84, 00146 Rome (Italy); INFN — National Institute of Nuclear Physics, Section of Roma Tre, Via della Vasca Navale 84, 00146 Rome (Italy); Mozetic, Pamela; Trombetta, Marcella [Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome (Italy); Basoli, Francesco; Licoccia, Silvia [Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00173 Rome (Italy); Tombolini, Vincenzo [Department of Radiation Oncology, “Sapienza” University of Rome, Viale del Policlinico 155, 00166 Rome (Italy); Spencer-Lorillard Foundation, Viale Regina Elena 291, 00161 Rome (Italy); Cassese, Raffaele [Department of Radiation Oncology, “Sapienza” University of Rome, Viale del Policlinico 155, 00166 Rome (Italy); Scuderi, Nicolò [Department of Plastic Surgery, “Sapienza” University of Rome, Viale del Policlinico 155, 00166 Rome (Italy); and others

    2015-12-01

    Post-mastectomy breast reconstruction with expanders and implants is recognized as an integral part of breast cancer treatment. Its main complication is represented by capsular contracture, which leads to poor expansion, breast deformation, and pain, often requiring additional surgery. In such a scenario, the debate continues as to whether the second stage of breast reconstruction should be performed before or after post-mastectomy radiation therapy, in light of potential alterations induced by irradiation to silicone biomaterial. This work provides a novel, multi-technique approach to unveil the role of radiotherapy in biomaterial alterations, with potential involvement in capsular contracture. Following irradiation, implant shells underwent mechanical, chemical, and microstructural evaluation by means of tensile testing, Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy (ATR/FTIR), Scanning Electron Microscopy (SEM), high resolution stylus profilometry, and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Our findings are consistent with radiation-induced modifications of silicone that, although not detectable at the microscale, can be evidenced by more sophisticated nanoscale surface analyses. In light of these results, biomaterial irradiation cannot be ruled out as one of the possible co-factors underlying capsular contracture. - Highlights: • The debate continues whether to perform breast reconstruction before or after PMRT. • Radiation therapy may alter implant material, concurring to capsular contracture. • In this work, irradiated implants were investigated by a multi-technique approach. • Radiation-induced alterations could be evidenced by ATR/FTIR and ToF-SIMS. • Reported alteration might represent a co-factor underlying capsular contracture.

  10. Synthesis and characterization of nanostructured CaSiO3 biomaterial

    Science.gov (United States)

    Jagadale, Pramod N.; Kulal, Shivaji R.; Joshi, Meghanath G.; Jagtap, Pramod P.; Khetre, Sanjay M.; Bamane, Sambhaji R.

    2013-04-01

    Here we report a successful preparation of nanostructured calcium silicate by wet chemical approach. The synthesized sample was characterized by various physico-chemical methods. Thermal stability was investigated using thermo-gravimetric and differential thermal analysis (TG-DTA). Structural characterization of the sample was carried out by the X-ray diffraction technique (XRD) which confirmed its single phase hexagonal structure. Transmission electron microscopy (TEM) was used to study the nanostructure of the ceramics while homogeneous grain distribution was revealed by scanning electron microscopy studies (SEM). The elemental analysis data obtained from energy dispersive X-ray spectroscopy (EDAX) were in close agreement with the starting composition used for the synthesis. Superhydrophilic nature of CaSiO3 was investigated at room temperature by sessile drop technique. Effect of porous nanosized CaSiO3 on early adhesion and proliferation of human bone marrow mesenchymal stem cells (BMMSCs) and cord blood mesenchymal stem (CBMSCs) cells was measured in vitro. MTT cytotoxicity test and cell adhesion test showed that the material had good biocompatibility and promoted cell viability and cell proliferation. It has been stated that the cell viability and proliferation are significantly affected by time and concentration of CaSiO3. These findings indicate that the CaSiO3 ceramics has good biocompatibility and that it is promising as a biomaterial.

  11. Silk-Based Injectable Biomaterial as an Alternative to Cervical Cerclage

    Science.gov (United States)

    Heard, Asha J.; Socrate, Simona; Burke, Kelly A.; Norwitz, Errol R.; Kaplan, David L.

    2013-01-01

    Objective: New therapies to prevent preterm birth are needed. Our objective was to study an injectable biomaterial for human cervical tissue as an alternative to cervical cerclage. Study Design: Human cervical tissue specimens were obtained from premenopausal gynecological hysterectomies for benign indications. A 3-part biomaterial was formulated, consisting of silk protein solution blended with a 2-part polyethylene glycol gelation system. The solutions were injected into cervical tissue and the tissue was evaluated for mechanical properties, swelling, cytocompatibility, and histology. Results: The stiffness of cervical tissue more than doubled after injection (P = .02). Swelling properties of injected tissue were no different than native tissue controls. Cervical fibroblasts remained viable for at least 48 hours when cultured on the biomaterial. Conclusions: We report a silk-based, biocompatible, injectable biomaterial that increased the stiffness of cervical tissue compared to uninjected controls. Animal studies are needed to assess this biomaterial in vivo. PMID:23271162

  12. Silk-based injectable biomaterial as an alternative to cervical cerclage: an in vitro study.

    Science.gov (United States)

    Heard, Asha J; Socrate, Simona; Burke, Kelly A; Norwitz, Errol R; Kaplan, David L; House, Michael D

    2013-08-01

    New therapies to prevent preterm birth are needed. Our objective was to study an injectable biomaterial for human cervical tissue as an alternative to cervical cerclage. Human cervical tissue specimens were obtained from premenopausal gynecological hysterectomies for benign indications. A 3-part biomaterial was formulated, consisting of silk protein solution blended with a 2-part polyethylene glycol gelation system. The solutions were injected into cervical tissue and the tissue was evaluated for mechanical properties, swelling, cytocompatibility, and histology. The stiffness of cervical tissue more than doubled after injection (P = .02). Swelling properties of injected tissue were no different than native tissue controls. Cervical fibroblasts remained viable for at least 48 hours when cultured on the biomaterial. We report a silk-based, biocompatible, injectable biomaterial that increased the stiffness of cervical tissue compared to uninjected controls. Animal studies are needed to assess this biomaterial in vivo.

  13. Albumin removal from human fibrinogen preparations for manufacturing human fibrin-based biomaterials

    Directory of Open Access Journals (Sweden)

    Vaibhav Sharma

    2015-01-01

    Full Text Available Commercially available two component human fibrin sealants are commonly used to manufacture human fibrin-based biomaterials. However, this method is costly and allows little room for further tuning of the biomaterial. Human fibrinogen solutions offer a more cost-effective and versatile alternative to manufacture human fibrin-based biomaterials. Yet, human fibrinogen is highly unstable and contains certain impurities like human albumin. Within the context of biomaterials and tissue engineering we offer a simple yet novel solution based on classical biochemical techniques to significantly reduce albumin in human fibrinogen solutions. This method can be used for various tissue engineering and biomedical applications as an initial step in the manufacturing of human fibrin-based biomaterials to optimise their regenerative application.

  14. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials

    Directory of Open Access Journals (Sweden)

    Zeeshan Sheikh

    2015-08-01

    Full Text Available All biomaterials, when implanted in vivo, elicit cellular and tissue responses. These responses include the inflammatory and wound healing responses, foreign body reactions, and fibrous encapsulation of the implanted materials. Macrophages are myeloid immune cells that are tactically situated throughout the tissues, where they ingest and degrade dead cells and foreign materials in addition to orchestrating inflammatory processes. Macrophages and their fused morphologic variants, the multinucleated giant cells, which include the foreign body giant cells (FBGCs are the dominant early responders to biomaterial implantation and remain at biomaterial-tissue interfaces for the lifetime of the device. An essential aspect of macrophage function in the body is to mediate degradation of bio-resorbable materials including bone through extracellular degradation and phagocytosis. Biomaterial surface properties play a crucial role in modulating the foreign body reaction in the first couple of weeks following implantation. The foreign body reaction may impact biocompatibility of implantation devices and may considerably impact short- and long-term success in tissue engineering and regenerative medicine, necessitating a clear understanding of the foreign body reaction to different implantation materials. The focus of this review article is on the interactions of macrophages and foreign body giant cells with biomaterial surfaces, and the physical, chemical and morphological characteristics of biomaterial surfaces that play a role in regulating the foreign body response. Events in the foreign body response include protein adsorption, adhesion of monocytes/macrophages, fusion to form FBGCs, and the consequent modification of the biomaterial surface. The effect of physico-chemical cues on macrophages is not well known and there is a complex interplay between biomaterial properties and those that result from interactions with the local environment. By having a

  15. Hyperspectral chemical imaging reveals spatially varied degradation of polycarbonate urethane (PCU) biomaterials.

    Science.gov (United States)

    Dorrepaal, Ronan M; Lawless, Bernard M; Burton, Hanna E; Espino, Daniel M; Shepherd, Duncan E T; Gowen, Aoife A

    2018-04-04

    Hyperspectral chemical imaging (HCI) is an emerging technique which combines spectroscopy with imaging. Unlike traditional point spectroscopy, which is used in the majority of polymer biomaterial degradation studies, HCI enables the acquisition of spatially localised spectra across the surface of a material in an objective manner. Here, we demonstrate that attenuated total reflectance Fourier transform infra-red (ATR-FTIR) HCI reveals spatial variation in the degradation of implantable polycarbonate urethane (PCU) biomaterials. It is also shown that HCI can detect possible defects in biomaterial formulation or specimen production; these spatially resolved images reveal regional or scattered spatial heterogeneity. Further, we demonstrate a map sampling method, which can be used in time-sensitive scenarios, allowing for the investigation of degradation across a larger component or component area. Unlike imaging, mapping does not produce a contiguous image, yet grants an insight into the spatial heterogeneity of the biomaterial across a larger area. These novel applications of HCI demonstrate its ability to assist in the detection of defective manufacturing components and lead to a deeper understanding of how a biomaterial's chemical structure changes due to implantation. Statement of Signifance The human body is an aggressive environment for implantable devices and their biomaterial components. Polycarbonate urethane (PCU) biomaterials in particular were investigated in this study. Traditionally one or a few points on the PCU surface are analysed using ATR-FTIR spectroscopy. However the selection of acquisition points is susceptible to operator bias and critical information can be lost. This study utilises hyperspectral chemical imaging (HCI) to demonstrate that the degradation of a biomaterial varies spatially. Further, HCI revealed spatial variations of biomaterials that were not subjected to oxidative degradation leading to the possibility of HCI being used in the

  16. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells.

    Science.gov (United States)

    Park, Jaehyung; Gerber, Michael H; Babensee, Julia E

    2015-01-01

    Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses. © 2014 Wiley Periodicals, Inc.

  17. Interactive Electronic Decision Trees for the Integrated Primary Care Management of Febrile Children in Low Resource Settings - Review of existing tools.

    Science.gov (United States)

    Keitel, Kristina; D'Acremont, Valérie

    2018-04-20

    The lack of effective, integrated diagnostic tools pose a major challenge to the primary care management of febrile childhood illnesses. These limitations are especially evident in low-resource settings and are often inappropriately compensated by antimicrobial over-prescription. Interactive electronic decision trees (IEDTs) have the potential to close these gaps: guiding antibiotic use and better identifying serious disease. This narrative review summarizes existing IEDTs, to provide an overview of their degree of validation, as well as to identify gaps in current knowledge and prospects for future innovation. Structured literature review in PubMed and Embase complemented by google search and contact with developers. Six integrated IEDTs were identified: three (eIMCI, REC, and Bangladesh digital IMCI) based on Integrated Management of Childhood Illnesses (IMCI); four (SL eCCM, MEDSINC, e-iCCM, and D-Tree eCCM) on Integrated Community Case Management (iCCM); two (ALMANACH, MSFeCARE) with a modified IMCI content; and one (ePOCT) that integrates novel content with biomarker testing. The types of publications and evaluation studies varied greatly: the content and evidence-base was published for two (ALMANACH and ePOCT), ALMANACH and ePOCT were validated in efficacy studies. Other types of evaluations, such as compliance, acceptability were available for D-Tree eCCM, eIMCI, ALMANACH. Several evaluations are still ongoing. Future prospects include conducting effectiveness and impact studies using data gathered through larger studies to adapt the medical content to local epidemiology, improving the software and sensors, and Assessing factors that influence compliance and scale-up. IEDTs are valuable tools that have the potential to improve management of febrile children in primary care and increase the rational use of diagnostics and antimicrobials. Next steps in the evidence pathway should be larger effectiveness and impact studies (including cost analysis) and

  18. DMPD: The interrelated role of fibronectin and interleukin-1 in biomaterial-modulatedmacrophage function. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16978691 The interrelated role of fibronectin and interleukin-1 in biomaterial-modulatedm...(.svg) (.html) (.csml) Show The interrelated role of fibronectin and interleukin-1 in biomaterial-modulatedm...and interleukin-1 in biomaterial-modulatedmacrophage function. Authors Schmidt DR, Kao WJ. Publication Bioma

  19. Piezoelectric smart biomaterials for bone and cartilage tissue engineering.

    Science.gov (United States)

    Jacob, Jaicy; More, Namdev; Kalia, Kiran; Kapusetti, Govinda

    2018-01-01

    Tissues like bone and cartilage are remodeled dynamically for their functional requirements by signaling pathways. The signals are controlled by the cells and extracellular matrix and transmitted through an electrical and chemical synapse. Scaffold-based tissue engineering therapies largely disturb the natural signaling pathways, due to their rigidity towards signal conduction, despite their therapeutic advantages. Thus, there is a high need of smart biomaterials, which can conveniently generate and transfer the bioelectric signals analogous to native tissues for appropriate physiological functions. Piezoelectric materials can generate electrical signals in response to the applied stress. Furthermore, they can stimulate the signaling pathways and thereby enhance the tissue regeneration at the impaired site. The piezoelectric scaffolds can act as sensitive mechanoelectrical transduction systems. Hence, it is applicable to the regions, where mechanical loads are predominant. The present review is mainly concentrated on the mechanism related to the electrical stimulation in a biological system and the different piezoelectric materials suitable for bone and cartilage tissue engineering.

  20. Clinical study on orofacial photonic hydration using phototherapy and biomaterials

    Science.gov (United States)

    Lizarelli, Rosane F. Z.; Grandi, Natália D. P.; Florez, Fernando L. E.; Grecco, Clovis; Lopes, Luciana A.

    2015-06-01

    Skin hydration is important to prevent aging and dysfunction of orofacial system. Nowadays, it is known that cutaneous system is linked to muscle system, then every dentist need to treat healthy facial skin, as lips, keeping orofacial functions healthy. Thirty-two patients were treated using laser and led therapy single or associated to biomaterials (dermo-cosmetics) searching for the best protocol to promote skin hydration. Using a peace of equipment to measure electric impedance, percentage of water and oil from skin, before and after different treatments were analyzed. Statistic tests using 5% and 0.1% of significance were applied and results showed that light could improve hydration of epidermis layer of facial skin. Considering just light effect, using infrared laser followed by blue led system is more effective to hydration than just blue led system application. Considering dermo-cosmetic and light, the association between both presented the best result.